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Abstract 

Ordered granular systems have been a subject of active research for decades, due to their rich dynamic 

response and nonlinearity. For example, their extraordinary wave propagation properties, shock 

absorption ability, and tunability are of interest for different scientific communities that range from 

condensed matter physics to applied mathematics to engineering. Thanks to their unique nonlinear 

properties, ordered granular systems have been suggested for several applications, such as solitary 

wave focusing, acoustic signals manipulation, and vibration absorption. Most of the fundamental 

research performed on ordered granular systems has focused on macro-scale examples. However, 

most engineering applications require these systems to operate at much smaller scales (for example, 

to affect acoustic signals in the ultrasound regime within acoustic imaging applications). Very little 

is known about the response of micro-scale granular systems, primarily because of the difficulties in 

realizing reliable and quantitative experiments. These experimental difficulties originate from the 

discrete nature of granular materials and their highly nonlinear inter-particle contact forces. The 

discreteness and accompanying micro-scale sizes require efficient means to assemble the particles 

precisely, to excite them, and to measure their dynamic response. The high nonlinearity in these 

systems requires particularly high precision, and imperfections can be extremely important in 

controlling the dynamic response of the entire system. 

In order to characterize micro-scale, ordered, granular systems, it is necessary to understand the 

fundamental physical mechanisms that govern their response. For example, do the same physical laws 

that govern the macro-scale granular response apply? Does the Hertzian elastic contact theory hold? 

What is the role of the particle/substrate interactions? How does stress propagate through micro-scale 

particle systems and what are the main defects that affect these systems?  

In this work, we address these questions by designing an innovative experimental platform that allows 

us to assemble, excite, and characterize ordered micro-granular systems. This new experimental 

platform employs a laser system to deliver impulses with controlled momentum and incorporates 

non-contact measurement apparatuses (including high-speed optical microscopy and laser 

interferometry) to detect the particles’ displacement and velocity. We first built and programed a 

computer-controlled micro-manipulator that can position and assemble steel micro-particles in 



 

 

v 
configurations that are desired for testing. We then fabricated microstructures to guide and confine 

the micro-particle assembly. Next we tested and demonstrated the capability of the laser excitation 

system to deliver controlled momentums to systems of dry (stainless steel particles of radius 150 µm) 

and wet (SiO2 particles of radius 3.69 µm, immersed in fluid) micro-particles, after which we analyzed 

the stress propagation through these systems.  

To describe the fundamental dynamic mechanisms governing the response of dry and wet micro-

particle systems, we derived the equations of motion governing the dynamic response of dry and wet 

particles on a substrate, which we then validated in experiments. We then measured the losses in these 

systems and characterized the collision and friction between two micro-particles. We next assembled 

one-dimensional dry chains of micro-particles and investigated the mechanical wave propagation 

properties as well as the influence of defects in these systems. We also studied wave propagation in 

two-dimensional colloidal systems immersed in fluid. Finally, we experimentally characterized the 

wave-attenuation and its relation to the viscosity of the surrounding fluid and performed computer 

simulations to establish a model that captures the observed response. 

The findings of the study offer the first systematic experimental and numerical analysis of wave 

propagation through ordered systems of micro-particles. The experimental system designed in this 

work provides the necessary tools for further fundamental studies of wave propagation in both 

granular and colloidal systems. The findings also offer fundamental insights for the miniaturization 

of highly nonlinear granular devices.  
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Chapter 1 

Introduction 

1.1. Motivation and significance 

Granular materials are collections of discrete, solid particles in ordered or disordered configurations, 

and are present in many natural and man-made systems. Understanding the fundamental dynamical 

principles that govern the propagation of stress waves in micro-scale granular systems has 

implications in many fields of physics and engineering: for example, micro-granular dynamics 

encompass problems of relevance in powder mixing, acoustics, mining, semiconductor 

manufacturing, and the pharmaceutical and food industries [1]. 

Along the broad spectrum of different micro-granular systems, we are especially interested in the 

characterization of ordered micro-granular systems, and most particularly in micro-granular crystals 

(which are discrete, ordered arrays of solid micro-particles that are arranged in different lattice 

geometries). Macroscopic granular crystals, which have been the subject of active research [2-4], 

have been proposed for use in many engineering applications, such as shock mitigation [5-7], acoustic 

rectification [8], sound scrambling [9], actuators [10], and acoustic lenses [11, 12]. However, the 

macro-scale size of the particles tested and modeled in initial studies imposes important limitations 

to these studies’ direct applicability. For example, Donahue et al. [12] demonstrated experimentally 

the possibility to use properly engineered granular crystals to produce focused, compact pressure 

pulses in water. Their work directly suggested the use of granular crystals for biomedical imaging 

and underwater sensing and mapping applications. In these systems, however, the spatial resolution 

of the propagating pressure pulses, and consequently the size of the focal area, is determined by the 

size of the particles that compose the granular system. In the experimental setup described by 

Donahue et al. [9], the particles tested were in the centimeter-scale. This macro-scale dimension limits 

the spatial resolution of the acoustic pulses traveling through the granular crystals to a few centimeters 

(and thus necessarily limits the size of the adjacent focal areas to similar dimensions). For acoustic 

medical imaging or non-destructive evaluation applications, the spatial wavelengths of interest are in 

the order of a few micrometers. To target these applications it is necessary to miniaturize the granular 

crystals and to scale the particle size to the micrometer range.   
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In order to miniaturize granular crystals and explore their functionality at the micro-scale, it is 

necessary to first understand their underlying physics: Are the assumptions made to model the 

dynamic response of micro-particles correct? Is the elastic contact interaction still the dominant effect 

in the contact collisions between two micro-scale particles? How do waves propagate through such 

miniaturized systems? What are the effective roles of defects/disorder/surface properties and 

environmental conditions in the dynamics of micro-particles? What role do the particle-substrate 

interactions play? How do micro-scale granular crystals respond in water? These are some of the 

fundamental questions we will address in this thesis. Many of these findings extend beyond the 

limited realm of ordered granular lattices and provide general and fundamental insights into the 

physical response of micro-scale granular systems.  

Despite the fundamental importance of understanding the physics of micro-granular systems, very 

little experimental work has been conducted at these scales. The lack of experimental investigation 

results from two major difficulties: first, the absence of reliable methods to assemble micro-particles 

in controlled configurations (as well as of methods to characterize their precise positions); second, 

the lack of a systematical way to measure the interaction between micro-granular particles and of the 

stress propagation through large particle arrays.  

Granular crystals are highly nonlinear and discrete. These characteristics are reflected in enhanced 

practical difficulties in fabricating and mechanically exciting ordered lattices of small-size particles. 

Conventional experimental techniques, which are widely used in the study of macro-scale granular 

systems, cannot be directly employed or scaled down to test systems of micro-granules. To provide 

fundamental insights into the dynamics of micro-particles, it was therefore first necessary to develop 

a new experimental platform that allowed for repeatable fabrication methods, as well as for 

mechanical excitation and measurement of micro-granular systems. 

We focused on the study of two micro-granular systems: (i) dry, one-dimensional granular systems 

that consisted of stainless steel micro-particles with a radius of 150 µm, and (ii) wet, two-dimensional 

granular systems that consisted of SiO2 particles with a radius of 3.69 µm. In the dry micro-granular 

systems, we characterized the role of the substrate, the presence of friction, and the mechanics of 

collisions between two particles. We excited and measured propagation of nonlinear waves along 

one-dimensional micro-granular chains and studied the influence of inter-particle gaps on the 

system’s group velocity. We further applied this experimental framework to study wave propagation 
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within a self-assembled colloidal system of SiO2 particles, using both numerical and experimental 

approaches. We excited the wave propagation within the two-dimensional hexagonal lattice and 

characterized the role of hydrodynamic interactions within this system.  

1.2. Background concerning granular materials 

Because of its inhomogeneity, nonlinearity, disorder, and anisotropy, granular material is one of the 

most challenging subjects in solid mechanics [13, 14]. The experimental difficulties originate from 

the discrete nature of granular material; the irregularity of sizes, shapes, and materials compositions; 

and highly nonlinear inter-particle contact forces. The discreteness and the varying particle 

dimensions together impose difficulty in describing, characterizing, and reproducing granular system 

configurations. The high nonlinearity in these systems [15] further increases the experimental 

precision requirement, in which imperfection of the granular system does not even out as the system 

size grows and sometimes dominates the dynamics response of the system [16]. 

Due to the experimental difficulties, there are two major trends in the research of granular mechanics. 

One focuses on the collective and statistical behavior of unstructured granular systems [17-20] 

without seeking to reproduce exactly the same configuration of samples; it includes the study of 

granular gas [21-23], granular flow [24-28], particle segregation [29-31], avalanche [32-34], and 

compression and force in a granular medium [35]. The other approach is to focus on the subsets of 

granular material, in which the variation in size, shape, and material are limited and particle packing 

is simplified. One of these subsets is the granular crystal, which refers to highly ordered granular 

systems. 

1.2.1. Ordered granular systems 

Research on granular crystals has attracted great attention since the pioneering work done by 

Nesterenko [2]. He predicted the existence of highly nonlinear soliton-like waves in uncompressed 

one-dimensional homogeneous granular crystals, specifically an array of spherical particles, where 

neighboring spheres interact through the Hertzian force. Within the elastic limit of this system, if two 

neighboring spherical particles have center coordinate x𝑚 , radius R𝑚 , elastic modulus E𝑚 , and 

poisson ratio ν𝑚, then the contact force between two particles locating at 𝑥𝑚 and 𝑥𝑛 is 

 
𝑓𝑚𝑛(𝑥𝑚, 𝑥𝑛) =

4

3

E𝑚E𝑛

E𝑚(1−ν𝑛
2)+E𝑛(1−ν𝑚

2)
√

2R𝑚R𝑛

R𝑚+R𝑛
(𝑅𝑚 + 𝑅𝑛 − |𝑥𝑚 − 𝑥𝑛|)+

3

2, (1.1) 
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where (𝑅𝑚 + 𝑅𝑛 − |𝑥𝑚 − 𝑥𝑛|)+ = max⁡(𝑅𝑚 + 𝑅𝑛 − |𝑥𝑚 − 𝑥𝑛|, 0)  is the positive overlap 

distance of the spheres (if they are not deformed). The equations of motion of the granular chain 

system are 

 
𝑚⁡𝑥𝑛̈ = −

2

3

E

1−ν2 √R((2R − 𝑥𝑛+1 − 𝑥𝑛)+
3

2 − (2R − 𝑥𝑛 + 𝑥𝑛−1)+
3

2). (1.2) 

Nesterenko solved these equations with long wavelength approximation [2, 3], in which the discrete 

coordinates of the nth particles, 𝑥𝑛  is now redefined as the value of a continuous function of 

displacement 𝑥 at position 2𝑅𝑛 in a continuous medium, 𝑥𝑛 ≡ 𝑥(2𝑅𝑛). He obtained a solution, 

 
𝑣(𝑧, 𝑡) =

25

16

𝑣𝑔
5

𝑐4 cos4 (
1

√10

𝑧−𝑣𝑔𝑡

𝑅
), (1.3) 

where 𝑣(𝑧, 𝑡)  is the particle velocity at 𝑧 = 2𝑅𝑛 , 𝑣𝑔  is group velocity, and 𝑐 =

√8𝐸𝑅3/3(1 − ν2)𝑚 is the wave velocity in the material. The results show a highly nonlinear 

dependency between the group velocity and the maximal amplitude of the particle velocity 

(maximum velocity), 

 
𝑣𝑔 = √

16

25

5
𝑐4/5𝑣𝑚𝑎𝑥

1/5. (1.4) 

Once the existence of the predicted compact solitary wave was confirmed experimentally [36], 

numerous numerical [37-39] and experimental [9, 40-43] studies of this system were carried out. 

The excellent properties originate from the highly nonlinear interaction, 𝑓 ∝ 𝛿3/2, and it was proven 

in later years in rigorous mathematics that solitary waves exist in granular chains with arbitrary 

power-law (𝑓 ∝ 𝛿𝑛) nearest-neighbor contact interaction [44-46]. This discovery indicates that the 

solitary wave is a universal phenomenon in granular medium and that it should exist in a large variety 

of systems that are made of granular particles with different shapes and types of contact force. It also 

means that the study of solitary waves in granular materials has fundamental importance in 

understanding the mechanics of granular materials. 

Propagation of soliton waves in one-dimensional granular crystal has since been observed 

experimentally on several different granular particles, including ellipsoidal particles [47, 48], 

cylindrical particles [49], hollow particles [50], and heterogeneous media [51-53]. The roles of 
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dissipation [54], plasticity [9, 55] of the granular particles, and velocity tunability under pre-

compression [42] have been characterized. 

Research interests have advanced to understanding the interaction between two solitary waves [56-

60] and between a solitary wave and the interface, boundaries [61], and defects [62, 63] of the granular 

material. The transmission of solitary waves through the interface between two granular crystals [64] 

and interface between a granular crystal and elastic medium [10] has also been studied. Yang et al. 

demonstrated that by sending solitary waves through the interfacing between a known granular chain 

and an elastic medium, site-specific material properties of the elastic medium can be obtained by 

measuring the time-delay and reflectivity of the solitary wave [65]. 

Significant attention has also given to the study of vibration modes and the band structure of granular 

chains [66]. Despite the highly nonlinear nature of the contact force, a sinusoidal driving can be 

considered as weakly nonlinear if the background pre-compression force along the chain is big in 

comparison to the amplitude of the driving force. Experimental and numerical investigations of highly 

compressed granular chain reveal the existence of band gaps and indicate the possibility of tuning the 

band gap by tuning pre-compression [67-71]. A particularly interesting case happens when defects 

(i.e., granular particles with different sizes, masses, or elastic moduli) are placed inside the chain. 

Boechler et al. conducted numerical and experimental research to reveal the existence of intrinsic 

localized modes, also known as breathers, in granular chains with defects [72, 73]. An intrinsic 

localized mode is a localized vibration centered at the defect and amplitude decay exponentially along 

the lattice. The localized mode has been shown to be universal phenomena in granular chains [16] 

and can be used for both acoustic switching and rectification [74]. 

The dynamics of two- and three-dimensional ordered granular systems are relatively poorly 

understood. While it is suggested that a squared lattice granular system should behave similarly to a 

one-dimensional granular chain when the solitary wave is propagating along the lattice vectors, a 

direct generalization of a solitary wave solution to two- and three-dimensional systems has yet been 

derived. As an intermediate step between one- and two-dimensional granular crystals, Daraio et al. 

investigated pulse branching and recombination in a y-shaped granular network [75], using the quasi-

particle description of a solitary wave to derive transmission coefficients for y-shaped pulse splitting 

[76, 77]. Leonard et al. further developed an energy mitigation granular network that consists of a 

three-dimensional network of granular chains [78]. 
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In the early experimental efforts on real two-dimensional granular systems, Shukla et al. used 

photoelasticity techniques to image wave propagation in various two-dimensional granular crystals, 

including cubic and hexagonal packing [47, 79-84]. Their experiments show that within higher 

dimensional granular crystals, the force load path is influenced by the contact angle between lattice 

elements and wave propagating is altered by the vector connecting the centers of mass of the 

neighboring particles. The new dimensionality not only introduces more interaction between 

particles, but also brings new degrees of freedom for designing and engineering the lattice to achieve 

the desired wave propagating properties. Leonard et al., who studied the wave propagation in two-

dimensional square lattices of spherical particles [85], showed that inserting cylindered intruders into 

these lattices makes it possible to alternate both the wave direction and the energy flux [86]. 

Despite the good agreement between the average experimental results and wave propagation 

simulations, the results of experiments involving these two-dimensional granular lattices generally 

show low repeatability. The difficulty stems from the inability to construct “perfect crystals” in a 

repeatable fashion. Failing to reproduce perfect crystals has various causes, including the differences 

of granular particles in size, surface roughness, and shape. The small differences in size and shape do 

not only change the magnitude of contact force in neighboring particles [87], but they also cause the 

deformation of the lattice structure and create local compressive areas and gaps [88-90]. Small 

misalignments that are created by these defects divert force to neighboring particles and therefore 

scatter the wave propagation [89]. Another mechanism of disorder is through the presence of friction, 

in which tangential force diverts the wave propagation when the vector connecting the centers of the 

contacting particles is not parallel to their relative motion [91-93]. 

Numerical and experimental efforts are devoted to the randomness of granular chains and the 

influence of this randomness on wave propagation. Manjunath et al. studied random granular chains 

in which randomness results in the divergence of the magnitude of contact force in relation to 

neighboring granular particles [94]. They found that the peak amplitudes of propagating waves in 

random granular chains decay to the degree of randomness with an exponential law, and that the 

dependency later becomes a power law as randomness further increases. Ponson et al. studied 

experimentally the effect of randomness on the array of particles. Particles of two different material 

properties were selected to construct random arrays of diatomic granular crystals. The ratio between 

two particles defines the randomness of the system, and the researchers observed behavior that was 

similar to that of the exponential to power law transition [90]. 



 

 

11 
To understand the influence of the polydispersity in higher dimensional systems, load transfer paths 

are studied numerically in compressed granular crystals [95-98] with different particle sizes. Larger 

imperfections such as point defects [99, 100] and size deviations [101, 102] of the granular systems 

have been found to alter the wave propagation more significantly than granular crystals. 

1.2.2. Micro-scale granular systems 

For particles with diameters of only a few micrometers, the Van der Waals interaction between the 

particles becomes relatively important. The most famous models describing the influence due to Van 

der Waals interaction are the Johnson-Kendall-Roberts (JKR) and the Derjaguin-Muller-Toporov 

(DMT) models [103-105]. In these models, the Hertzian elastic contact potentials are modified to 

include the electric dipole-dipole energy between particles. The inclusion of these adhesive forces 

changes the mechanical response of granular systems not only by changing the inter-particle 

interaction, but also by changing the interaction of the granules with the structures that support the 

granular assembly [106]. 

In the 1970s, P. A. Cundall developed a numerical method, namely the distinct element method 

(DEM), for computing the motion of large numbers of small objects [107, 108]. The DEM, which 

has since become one of the standard tools for numerical studies of system response in granular 

materials, enables researchers to predict the mechanical response of micro-granular systems of large 

numbers of particles through computer simulation. 

On the other hand, scaling down the particles means that the traditional means of observing and 

identifying the configuration of a granular system does not apply to micro-granular systems. These 

experimental difficulties originate from the discrete nature of granular materials and their highly 

nonlinear inter-particle contact forces. This discreteness and the micro-scale sizes require efficient 

means to assemble the particles precisely, to excite them, and to measure their dynamic response. The 

high nonlinearity of these systems requires particularly high precision, and imperfections can be 

extremely important in controlling the dynamic response of the entire system. 

Because of the difficulty of constructing repeatable micro-granular systems, the experimental study 

of micro-granular systems has been focused on unstructured granular systems, in which the exact 

configurations of micro-particles are unknown. The experimental studies on micro-granular systems 

are largely focused on the collective behavior of granular systems [109-111]. 
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A special subset of ordered micro-granular systems is the micro-colloidal system, which consists 

of ordered two-/three-dimensional granular crystals that are created in water with self-assembly 

technology. Using photon correlation spectroscopy, Alan J. Hurd et al. measured the phonon 

dispersion curves and wavelength dependent friction factors [112]. More experimental studies using 

dynamic light scattering have also been performed to understand the over-damped collective 

behaviors; they have discussed both wall effects due to finite sample thickness (or confinement 

effects) and the role of ion behaviors in liquids [113, 114]. In 2004, P. Keim et al. first used video 

microscopy to study lattice dynamics, which allowed them to observe the harmonic lattice behavior 

of two-dimensional colloidal crystals with phonon dispersion curves [115, 116]. In later studies, 

lattice dynamics in one- and two-dimensional colloidal systems under various local substrate 

potentials produced by light have also been studied with video microscopy [117-120] and Brownian 

dynamics simulations [120, 121] to investigate the effects of local potential on the collective 

behaviors and phononic band structures. 

Furthermore, the existence of fluid environments enriches the interaction forces by adding non-

conservative hydrodynamic forces (such as viscous friction and many-body hydrodynamic forces) 

that arise from the relative motion of colloids [122-124]. Brownian dynamics simulation studies, 

where the motions are driven by entropic thermal fluctuations and the inertia of colloids is negligible 

due to their over-damped nature, have generally been performed to understand colloidal aggregation, 

phase transitions, and crystallization. 

1.3. Contributions of this thesis 

In this work, we study the fundamental dynamic response of micro-scale granular systems and design 

an innovative experimental platform that allows us to assemble, excite, and characterize ordered 

micro-granular lattices. This new experimental platform employs a laser system to deliver impulses 

with controlled momentum and non-contact measurements, including high-speed optical microscopy 

and laser interferometry, to detect the particles’ displacement and velocity. We build and program a 

computer-controlled micro-manipulator that can position and assemble steel micro-particles in 

desired configurations for testing. We fabricate micro-structures to guide and confine the micro-

particle assembly to allow interested dynamics to be tested. We test and demonstrate the capability 

of the laser excitation system to deliver controlled momentums to systems of dry (stainless steel 

particles of radius 150 µm) and wet (SiO2 particles of radius 3.69 µm, immersed in fluid) micro-

particles.  
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We first derive the governing equations of motion describing the dynamic response of dry and wet 

particles on a substrate, which we validate in experiments. To investigate the influence of micro-

structure support on the dynamics of micro-particles loaded on the structure, we study the loss in our 

micro-particle configuration analytically and experimentally. We then measure the Stoke and 

Coulomb friction of the micro-particles by tracking particle-trajectories at varying initial momentum. 

Thereafter we study the collisions of rolling micro-particles in a groove to investigate the translational 

and angular momentum during collision. In observing inelastic collisions when the particles are 

rolling in the groove, we discover a linear dependency between the contact force and the tangential 

frictional force between the colliding particles. We also observe serious inelastic collisions when the 

spheres are rolling. Next we obtain an empirical equation of motions that describes the dynamics of 

the micro-granular system. We assemble one-dimensional dry chains of micro-particles and 

investigate the mechanical wave propagation properties as well as the influence of defects in these 

systems. Upon measuring the time of fly of wave that is propagating inside the chain at different 

initial input momentums, we show that measured group velocity depends on the initial velocity 

(which is a feature of wave traveling in granular systems with highly nonlinear interaction). We then 

examine the deviation of the measured group velocity with the Hertzian system and numerically show 

that the deviation can result from the presence of defects (which in this case are gaps between micro-

particles). To prove this, we perform time of fly measurement for systems with a known maximum 

gap using the microscopic system and show that the measured group velocity agrees with numerical 

simulation. 

We also study wave propagation in two-dimensional colloidal systems that are immersed in fluid. We 

employ self-assembling technology to create a two-dimensional hexagonal lattice in a micro-fluidic 

cell and apply the laser-based excitation to the system. We perform the experimental examination by 

sending laser energy into the system to excite the initial velocity of the six centermost particles in the 

lattice. The resulting high velocity (which is higher than what could be achieved using traditional 

means) allows us to explore the system while the particles have enough velocity to break through the 

hydrodynamic barriers and to study wave propagation in the system with different viscosities. We 

construct a model that includes the contact, hydrodynamic, electrostatic, and Stokes’ drag forces and 

perform numerical simulation to study wave propagation at a time resolution higher than our 

experimental system. The simulation that results characterizes the roles of the hydrodynamic force 

and the contact within wave propagation and explains the origins of the isotropic wave propagation 

within the system. 
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Our finding represents the first systematic experimental and numerical analysis of wave 

propagation in ordered micro-granular systems. This work establishes the basis for further advancing 

studies of granular and colloidal systems and sheds light on the miniaturization of highly nonlinear 

granular devices. 

1.4. Conceptual organization of this thesis 

The remainder of the thesis is structured as follows:  

In Chapter 2, we describe the design of the experimental platform that is used to carry out the micro-

granular system. 

In Chapter 3, we show the feasibility of utilizing pulsed laser ablation as a tool for delivering 

mechanical excitation to micro-particles. We experimentally calibrate the material response of the 

laser on different materials, as well as control the direction of transferred momentum. 

In Chapter 4, we study the equation of motion of particles that are moving, rolling, sliding, and 

colliding in a groove. We also analyze the collisions between particles in a groove and provide 

empirical descriptions of the equation of motion for particles. 

In Chapter 5, we construct one-dimensional micro-granular chains and study the wave-propagation 

within those chains. We measure the group velocity and attenuation of wave propagation. Via 

experiments and numerical simulation, we study the relationship between wave propagation and 

defects (the gap between micro-particles). 

In Chapter 6, we apply the experimental setup to a micro-colloidal system and study the system’s 

response to laser-generated impact. We also study the relation between striker velocity, viscosity, and 

decay length of the wave displacement of the particles in each force chain. 
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Chapter 2 

Instrumentation  

All experimental setups used to test the dynamic behavior of granular systems are composed of three 

basic elements that are used to assemble, excite, and measure the response of the granular system of 

interest. Conventional experimental techniques employed for macroscopic granular systems include 

piezo transducers for applying excitation [16, 66], sensor particles embedded with accelerometer [9, 

42, 63, 125, 126] for force measurements, and laser vibrometers [16, 127] for measurement of 

selected particles’ displacement and velocity. Most of these methods cannot be directly applied or 

adapted to micro-granular systems. For example, force measurement based on sensors that are 

embedded in selected particles is not possible in micro-granular systems due to difficulties in 

fabricating micro-particles with embedded accelerometers. Also, piezo transducers cannot be easily 

used to drive micro-particles, because of the high-precision requirements related to controlling the 

nano-scale contact surface conditions and stiffness. 

Assembling ordered granular systems is another challenge that emerges when the size of the systems 

is scaled down. Experimental studies of ordered granular materials require repeatable and regular 

means to assemble the particles in selected geometries/lattices. High accuracy in packing the particles 

is particularly necessary given the nonlinear nature of the contact interaction between each pair of 

particles. Increasing the number of particles in a lattice then creates increasing challenges in 

assembling a reproducible sample for testing. One-dimensional granular chains are easier to 

assemble, because the presence of a small pre-compressive force can compensate for small 

irregularities between particles. However, for two-dimensional systems, creating a “perfect” lattice is 

difficult even at the macro-scale [128], and disorder and misalignment between the particles can 

significantly alter wave propagation. 

At the micro-scale, the precise control of the physical contact between particles is more difficult. The 

accuracy required to ensure repeatable tests increases rapidly as the particle size is reduced. At the 

same time, the physical contact between micro-particles is no longer exclusively governed by elastic 

interactions; particles exchange forces also through other potentials (such as Van der Waals), which 
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can be significantly altered by surface quality, geometry of the contact, and a variety of other 

factors that are difficult to monitor in real time. All of these issues that arise at the micro-scale call 

for the design of an ad-hoc experimental setup that reduces uncertainties that are related to the driving 

and measurement systems and that allows for a repeatable and controllable assembly of one- and two-

dimensional samples. The rest of this chapter details the design of our new experimental system.  

In our experimental setup (Fig. 2.1), we introduce non-contact excitation and measurement methods 

to avoid influencing the response of the system with intrusive driving and detection systems. We also 

design a computer-controlled robotic micro-manipulator to assemble the micro-particles 

automatically in selected lattice geometries, thus ensuring high-packing repeatability. The 

experimental setup designed for this thesis consists of three major components: (i) The sample holders 

and the micro-manipulator system, which confine and assemble the micro-particles in precise 

locations; (ii) the excitation system, which delivers controlled momentum to a target particle using a 

Q-switched, nanosecond pulsed laser that is operating in single-shot mode; and (iii) the measurement 

system, which consists of laser vibrometry and high-speed microphotography. In this chapter, we 

discuss the sample preparation and the measurement systems. The excitation of the micro-particles is 

discussed in more detail in the next chapter. 

 

Figure 2.1: Overview of the experiment scheme. The apparatus 
consists of three major parts, including the excitation system (focused 
laser pulse), the measurement system (high-speed microphotography 
and laser vibrometry), and the sample assembly and manipulating 
system. 
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2.1. Particle confinement and sample stage 

In this thesis, we focus on micro-particle systems that are assembled in one- and two-dimensional 

configurations. Two specific types of systems are investigated: (1) dry, one-dimensional granular 

chains that consist of stainless steel particles with a radius of 150µm, and (2) wet, two-dimensional 

systems that consist of silica spheres with a radius of 3.69 µm that are immersed in a water-glycerol 

solution with variable viscosity. For testing these two systems in the selected configurations, it is 

necessary to design specific supporting structures that guide and confine the movement of micro-

particles. For the experiments on dry particles, we fabricate appropriate v-shaped supports using 

photolithography on a silicon wafer. To assemble two-dimensional, close-packed arrays of colloids 

in fluids, we use commercially available micro-fluidic cells as supports. 

Once the micro-particles are loaded on the desired support structures, the experimental apparatus 

needs to (i) record the initial particle-configuration by identifying and locating all of the particles and 

(ii) modify the initial configuration to the particle-configuration of interest, which entails moving, 

positioning, and pre-compressing the micro-particles to ensure physical contact between them. As 

described in detail later, we perform this operation using a microscopic imaging system and a micro-

manipulator.  

We then mount the samples on a computer-controlled sample stage that consists of a pitch and roll 

platform (Thorlabs APR001) that is installed on a three-dimensional motorized stage (zaber T-

LSM025A). The sample stage is leveled with an inclinometer (Level Developments IS-2-30) with an 

accuracy of 0.1°, which allows us to induce particle movement by tilting the stage. This sample stage 

reduces the difficulty of handling and manipulating the systems of micro-particles. In the following 

subsections, we explain the experimental construction of the two micro-granular systems (i.e., the dry 

and wet micro-granular systems) that are analyzed in this work. 

2.1.1. One-dimensional micro-granular systems 

The one-dimensional micro-granular systems considered in this thesis consist of micro-particles that 

are made of two different stainless steel materials, namely grade 316 and grade 440c. We list the 

dimensions and properties of these materials in Table 2.1. The two particles being studied both have 

a 300 μm diameter; their other similar physical properties include density, elastic modulus, and 

Poisson ratio. The most significant difference between them is surface roughness, which is an 

important source of imperfections in micro-granular chains. According to the specifications provided 
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by their manufacturers, the stainless steel 316 particles have a nominal surface roughness of 3 µm, 

while the 440c particles have a smaller surface roughness of 0.1 µm. The difference in surface quality 

can be seen in the scanning electron microscope (SEM) images of the two particles in Fig. 2.2. As we 

show in the following chapters, systems made of the higher surface quality particles of stainless steel 

440c have a mechanical response that better agrees with the theoretical and numerical predictions of 

granular systems that are composed of ideal particles. Another noticeable difference between the two 

types of particles is their thermal conductivity; stainless steel 440c has a nominal thermal conductivity 

(24.2 W/mK) that is about 50% higher than that of stainless steel 316 (16.3 W/mK) [129]. This affects 

the efficiency of the laser excitation we used to drive the system, which is discussed in Chapter 3. 

Due to the small size and mass of the individual micro-particles, configurations of micro-granular 

systems are vulnerable to static charges and external magnetic fields. Electrically charged particles 

strongly repel each other and cannot be arranged in an ordered lattice. To avoid these issues, all 

particles are rested on a conducting metal disk to remove unwanted static charges before they are 

assembled into specific configurations. Magnetic fields, even those generated by magnetic objects 

such as metal tools, attract the stainless steel 440c particles. To avoid magnetic interferences during 

assembly, we transport the particles to the supporting structures with either a very light blow of 

compressed air or tweezers made of non-magnetic materials. 

 

Figure 2.2: An SEM image of micro-particles used in this experiment. 
(a) Stainless steel 316 particle with a radius of 150 µm and surface 
roughness of 3 µm. (b) Stainless steel 440c particle with a radius of 
150 µm and surface roughness of 0.1 µm. 

Material properties Stainless steel 316 particle Stainless steel 440c particle 

Radius (µm) 150 150 

Radius variation (+µm) 2 1 

Surface roughness (µm) 3 0.1 

Density (kg/m3) 7990 7650 
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Elastic modulus (GPA) 193 200 

Melting point (K) 1660 1760 

Thermal conductivity at 100C (W/mK) 16.3 24.2 

Specific heat (J/kg/K) 510 460 

Table 2.1: Dimensions and material properties of our stainless steel 

micro-particles [129, 130]. Particles made of stainless steel 316 and 

440c are used in this work. These two particles have similar 

physical properties except for the significant differences in surface 

roughness and thermal conductivity. 

To create a one-dimensional micro-granular system, we deposit the particles on v-shaped grooves 

that are fabricated on silicon wafers. The grooves constrain the particles from moving along the axis 

of the groove. The fabrication procedures are shown in Fig. 2.3a. Starting with a [100] silicon wafer 

with a thickness of 1 mm, we deposit a 1 µm thick layer of silicon nitride (Si3N4) on the surface via 

chemical vapor deposition. The wafer is then patterned with 1.6 µm of AZ5214 positive photo-resist, 

before the silicon nitride layer is opened up with reactive-ion etching (RIE) techniques. The wafer is 

subsequently treated with a 50% potassium hydroxide (KOH) solution at 85ºC to perform anisotropic 

chemical etching. This etching process removes unmasked silicon, reveals the [111] crystal planes, 

and forms v-shaped grooves (Fig. 2.3b). The grooves we use in the experiments have a width of 240 

µm and we estimate the surface roughness to be 0.1 µm according to the fabrication process [131]. 

The angle between two inclined [111] planes is 70.6º. 

 

Figure 2.3: Micro-fabrication process of one-dimensional v-shaped 
grooves with a width of 240 µm and an inclined angle of 70.6º. (a) 
Overview of the fabrication process: i) Chemical vapor deposition of 
a 1µm thick layer of silicon nitride (Si3N4) on the surface of a 1mm 
thick silicon wafer [100]. ii) Spin coating with 1.6 µm of AZ5214 
positive photo-resist. iii) Exposing and developing the photo-resist. 
iv) Patterning the silicon nitride layer with reactive-ion etching (RIE). 
v) Anisotropic chemical etching with a 50% potassium hydroxide 
(KOH) solution at 85ºC. (b) An SEM image of the resultant v-shaped 
grooves. 
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Once the particles are placed in the v-shaped groove, we manipulate them with a computer-

controlled micro-manipulator to align them and secure contact between them. The micro-manipulator 

consists of a sharp tip (a stainless steel micro-wire with a tip size of 100 µm) that is installed on a 

three-dimensional motorized stage (zaber T-LSM025A). The micro-manipulator moves the micro-

particles by physically pushing them from one side. The position of the micro-particles is determined 

by image processing, using a microscopic photography system. The sequences of the micro-

manipulator movements are determined by a control program. The motion is determined based on the 

difference between the current configuration (as detected by the imaging system) and the desired 

configuration (which is preset in each experimental run). More details concerning the particle 

manipulation procedures are given in Section 2.5. 

To construct a micro-granular chain, we use our computer-controlled sample stage and the micro-

manipulator system to assemble close-packed micro-particles in a v-shaped groove. We start by 

loading the particles randomly into the v-shaped groove, after which we blow along the groove with 

compressed air to form a loose chain of particles. To minimize the gap between particles and create 

a close-packed chain of micro-particles, we tilt the computer-controlled sample holder by 10° from 

horizontal place while simultaneously positioning the micro-manipulator to the lower end of the 

groove to block the free-moving particles from rolling out (see Fig. 2.4). After particles form a close-

packed granular chain, we slowly tilt the sample stage back to a horizontal position and withdraw the 

micro-manipulator carefully so as not to disturb the chain. 

To characterize the assembled chain before each measurement, we acquire microscopic digital images 

to record the initial position of each particle. Using photographs taken by our imaging system (Fig. 

2.4b), we determine the location of the particles at a 2 µm accuracy with an image-processing 

algorithm similar to what was mentioned in Chapter 2. Since gaps between particles can be as small 

as tens of nanometers, which is far below the diffraction limit of our imaging system, the image-

processing algorithm cannot resolve the presence of individual gaps. However, by measuring the total 

length of the micro-particle chain, we can estimate an upper bound of the average gaps that are present 

within the chain. According to the specifications provided by the manufacturer [130], the stainless 

steel 440c micro-particles used in our experiments have a variation in radius of +1 micrometer. In a 

chain that is composed of 15 particles, the resulting uncertainty in the total length of the chain is 

𝜎𝑡𝑜𝑡𝑎𝑙⁡𝑙𝑒𝑛𝑔𝑡ℎ = 2√15 − 1𝜎𝑟𝑎𝑑𝑖𝑢𝑠 micrometer. After the construction of micro-chains, if we opt to 
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test only the chains that have a total measured length that is below average, we can estimate that 

the upper bound of the average gap is not larger than 2√14𝜎𝑟𝑎𝑑𝑖𝑢𝑠⁡/14 = 500⁡𝑛𝑚. 

 

Figure 2.4: Procedures for assembling a micro-granular chain. (a) i) 
Micro-particles are positioned loosely in a v-shaped groove. ii) The 
sample stage is tilted to create a close-packed granular chain, blocked 
at one end by a robotic tip. iii) The sample stage is tilted back 
horizontally and the tip is withdrawn. (b) Optical imaging system to 
determine the locations of the particles using an image-processing 
algorithm. The image of the particle in the red box is used as the 
kernel of the image deconvolution, to reveal the position of other 
particles. The blue curves below show the results of the 
deconvolution algorithm, through which the other four particles are 
detected. A particle’s position can be obtained with 2µm accuracy. 

2.1.2. Two-dimensional micro-colloidal systems 

Another type of micro-granular system that we investigated in this thesis is the two-dimensional 

system of colloidal particles immersed in fluid. The micro-particles (MicroParticles GmbH) are SiO2 

particles with two different radiuses (Table 2.2) of 3.69 and 3.14 µm. These two types of particles 

differ slightly in size and mass but have the same material properties. 

Material properties SiO2 particles 1 SiO2 particles 2 

Radius (µm) 3.69 3.14 

Radius variation (µm) 0.12 0.12 

Refractive index 1.42 1.42 

Density (kg/m3) 1850 1850 

Elastic modulus (GPA) 73 73 



 

 

22 
Table 2.2: Dimensions and material properties of the colloidal 

particles used in the wet, two-dimensional experiments.  

The supporting structures used to confine the two-dimensional motion of the SiO2 particles is a 

commercially available micro-fluid cell (Hellma Analytics, Fig. 2.5a) that has a high quality quartz 

interior flat surface. Two-dimensional ordered granular systems are created within the cell using self-

assembling techniques: after the particles are first injected into the cell with water, we tilt the cell to 

5° along the long axis of the horizontal plane (Fig. 2.5b). After the particles cumulate on one side 

(Fig. 2.5c), the cell is tilted back to a horizontal position, which allows the piled up particles to relax 

and slowly move back toward the other side of the cell. In this relaxation process, micro-particles can 

form a hexagonal lattice after the system is stabilized. In Fig. 2.5d, we show the hexagonal lattice that 

is created. The dark particle in the center is a particle that is coated with a metal layer to enhance its 

interaction with the laser excitation system, which we explain in Chapter 3. 

 

Figure 2.5: Preparation of two-dimensional micro-colloidal systems of 
SiO2 particles. Hexagonal lattices are created by self-assembling 
techniques. (a) The micro-fluid cell used in this experiment. (b) A 
schematic diagram of the cell tilting process. (c) A digital image of 
dense, disordered micro-particles in the cell at the beginning of the 
relaxation process. (d) The final hexagonal lattice with a coated 
particle in the center. 

2.2. Laser power controlling and beam conditioning 

The mechanical excitation of the micro-particles is obtained with a focused, high-power laser beam 

that targets the surface of selected particles. The temperature rise that is induced by the focused pulsed 

energy results in the vaporization and removal of the particles’ surface materials. This phenomenon 

is known as pulsed laser ablation (PLA). When ablation is induced on the surface of a micro-particle, 

the reaction force from the ablated material pushes the particle forward. The momentum transferred 

to the targeted particles is proportional to the velocity of the ablated materials, as well as to the mass 
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of the vaporized surface materials. With this technique, we can deliver controlled impulses to 

selected particles that result in the motion of these particles with a controlled initial velocity. We look 

into the details of the ablation process in Chapter 3; here we just focus on the optical systems that 

guide the laser beam to the sample. 

The laser system is responsible for producing accurate, repeatable mechanical excitations to the 

system of micro-particles. The requirements for performing reproducible experiments are proper 

conditioning of the beam profile, control of the laser power, and focusing. The laser system in use is 

a 532 nm wavelength, Q-switched Nd:YAG nanosecond laser (Quantel Brilliant) with a maximum 

power of 3.2 W. The laser beam has a linear polarization and energy stability of 2% and the pulse 

duration is 4 ns. To improve beam quality and focusability, we install a spatial filter (Thorlabs KT310) 

at the output of the laser beam to create a clean Gaussian beam profile. 

The total laser beam output can be controlled manually by an internal attenuator that is located inside 

the laser body. Since the maximum laser power achievable by our system is too high for the optimal 

range of operation of our experiments, to prevent excessive damage to the sample we limit the actual 

output of the laser to 5 mW. The beam is then passed through a combination of a half-wave plate and 

a polarized beam splitter to further control the laser power that will be delivered to excite the sample. 

The beam is split into two by a polarized beam splitter. In one arm the beam is sent to the sample 

holder, while in the other arm it is monitored by a power meter. The ratio of the power of the input 

beam, 𝐼, to the power of the output beam, 𝐼1, is determined by the angle between the axis of the half-

wave plate. The polarized angle of the beam, θ. 𝐼1 can be expressed as: 𝐼1 = 𝐼(
1

1+𝑣
+

𝑣

1+𝑣
sin⁡(4𝜃 −

4𝜃0)). Here 𝑣 is visibility and 𝜃0 is a constant offset that depends on the polarization angle of the 

laser beam and on the angle of the polarized beam splitter. 

Before experiments are conducted, the laser power is calibrated at different 𝜃 to retrieve accurate 

values of 𝑣, 𝐼, and 𝜃0. This process allows us to accurately control the output power. The control of 

the laser power is also enhanced by the computer-controlled motorized rotational stage (Thorlabs 

PRM1Z8, PRM1Z8E) that supports the half-wave plate. The motorized stage has an angular 

resolution of 0.03º, which corresponds to a power resolution of 0.1% of the maximum power. A 

computer-controlled optical shutter (Thorlabs SH05, SC10) is also installed to block and prevent the 

beam from damaging the samples when the laser is operating. 
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2.3. Measurement system 

The dynamic response of the micro-particles on the sample stage is measured by two independent 

methods: a laser vibrometer and a high-speed microscopic imaging system. We use a laser vibrometer 

to measure the velocity of the micro-particles and use the high-speed imaging system to measure the 

trajectory of the micro-particles. 

2.3.1. Laser vibrometry 

Laser vibrometers measure the velocity of the targeted surface via Doppler effects of reflected laser 

beam from the target. Considering the surface curvature of our micro-particles, it is necessary to focus 

the beam to a size much smaller than the particle’s radius. For focusing the laser beam to a 3µm spot 

size, we install an objective lens (Mitutoyo PLAN APO 10x) on the vibrometer. 

The laser vibrometer (Polytec OFV-534, OFV-5000) can achieve a resolution of < 1 pm and has a 

maximum sampling frequency of 2.5 MHz in DC mode and 24 MHz in AC mode. The output of the 

vibrometer is recorded by a high-speed data acquisition system (AlazarTech ATS9462) at a maximum 

acquisition rate of 180 MS/s, which is higher than the upper limit of the frequency band of the 

vibrometer.  

 

Figure 2.6: (a) Photograph of a laser vibrometer shining on the surface 
of particles with a radius of 150µm; the beam waist of the vibrometer 
beam is 3µm. (b) Schematic diagram of a realistic use case of a 
vibrometer being used on micro-particles. The red line indicates the 
beam of vibrometer, while d is the offset of the beam to the center of 

the particle and 𝜃 is the angle between the particle displacement, x, 
and the laser beam. 

The requirements of laser focus on the particles impose many restrictions on the experiments that can 

be conducted. The vibrometer can only be focused on particles that are lying within the laser’s focal 
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plane. This limits the ability to use the vibrometer to track moving particles, as these particles move 

rapidly out of the field of view. As a result, the range of displacement acquisitions is limited to only 

the first few µm of the micro-particle’s motion. 

The size and surface curvature of the micro-particles also introduce additional complexity to the 

measurements (Fig. 2.6b). Because of the limitations dictated by the physical geometry of the 

experimental system, the laser vibrometer is usually pointed at the particles with an inclined angle 

that is between 10º and 40º with the horizontal place. Since Doppler effects only account for the 

motion of the particle parallel to the axis of the vibrometer’s beam, we expect the measured velocity 

to be different from the real particle velocity (which is along the horizontal plane). 

This problem can be accounted for by measuring experimentally the ratio between the measured 

velocity and the actual velocity. In our measurements, we obtain a correction factor by measuring the 

displacement of the particle on the sample stage while moving the stage by computer in a known 

direction and distance (Fig. 2.7). The ratio between the two can be used to correct the velocity data 

obtained by the vibrometer. Typically, the correction factor for a given system configuration is 

calculated between 0.6 and 0.9; it is mostly affected by the inclined angle of the vibrometer. Using 

the symbols defined in Fig. 2.6b, it is not difficult to derive the following formula for the displacement 

𝑑(𝑚)(𝑑) as measured by the vibrometer: 

 𝑑(𝑚)(𝑑) = sin(𝜃)2√1 + tan(𝜃)2 (𝑥 cot(𝜃)2 − √(−𝑑2 + 𝑅2)⁡cot(𝜃)2 ⁡csc(𝜃)2 +

√cot(𝜃)2 (𝑅2cot(𝜃)2 + (𝑅 − 𝑥 − 𝑑⁡csc(𝜃))(𝑅 + 𝑥 + 𝑑⁡csc(𝜃))))
, (2.1) 

  
where 𝑥 is the displacement of the particles, 𝜃 is the angle between the beam direction and the particle 

displacement, 𝑑 is the offset of the laser beams to the particle center, and 𝑅 is the particle radius. This 

formula also indicates that the measured velocity is linearly proportional to the actual particle velocity 

and that the inclined angle dominates the correcting factor. 
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Figure 2.7: Calibration of vibrometer output. (a) Calibrations are 
performed by focusing a laser beam on the surface of a micro-particle 
and then using the computer-controlled sample stage to move it along 
its expected direction of motion in experiments (i.e., along the axis of 
the v-shaped groove). (a) The measured displacement (red dots) 
compared with the displacement of the sample stage (and the particle). 
The slope of the (blue) fitting line shows that there is a factor of 1.24 
between the output velocities of the vibrometer and the real velocities 
in the horizontal plane. 

 

Figure 2.8: Schematic diagram of the experimental setup. (a) Two laser 
vibrometers are pointed on the micro-granular chain that is 
constructed with the procedures shown in Fig. 2.4. The granular chain 
consists of 15 particles and the vibrometers are pointed at the 2nd and 
13th particles. (b) Calibration of vibrometer output. Two vibrometers 
are focused on the same particle. To calibrate vibrometer 
measurements, we point two vibrometers on the same particles and 
measure the relative time delay in output signals. 
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In Chapter 5, we measure the wave speed of the pulses traveling through the chain. Two 

vibrometers are used to measure the motions of two separate particles in the chain, and we measure 

the difference in arrival time (∆𝑡) of the traveling wave at these two locations, as shown in Fig. 2.8. 

Due to the constraints on the available workspace, the two vibrometers need to point at the particles 

in the chain at different angles and in opposite directions along the groove (Fig. 2.8a). Besides the 

different output amplitudes caused by the different angles of the laser beams, processing the signal 

introduces an additional time delay of a few microseconds to the output signals of each vibrometer. 

In order to ensure meaningful comparison of the output signals of the two vibrometers, calibration 

must be used to determine both the time delay between the two output signals on the same event and 

the output voltage level for both vibrometers of the same particle velocities along the axis of the chain. 

The calibration process is similar to what we describe in the case of one vibrometer, except in this 

case two vibrometers need to be calibrated using the same object (Fig. 2.8b). To do this, the two 

vibrometers are moved to focus on the same particle (while maintaining the same angle to the chain); 

and the target particle is then moved with the computer-controlled sample stage. From reading the 

voltage output of both vibrometers, we know the scaling of the output signals, as well as the time 

delay between the outputs of the two vibrometers 

2.3.2. High-speed micro-photography 

We use high-speed cameras (Vision Research Phatom v12.1 and v1622) to record the trajectories of 

micro-particles that are excited by a controlled impact. After acquisition, the images are analyzed 

with an image-processing program to extract the displacement and velocity of the particles in the 

system. In this work, we deal with two micro-granular systems at two very different length scales 

(stainless steel particles of radius 150 µm and SiO2 particles of radius 3.69 µm); different optical lens 

systems are therefore used for the best results in both cases. 

Imaging the dry micro-particles requires a large field of view in order to capture sharp images of all 

of the stainless steel micro-particles that contribute to the dynamics. To accomplish this, the high-

speed camera is equipped with a microscope (Leica S6D) with a large depth of field and achromatic 

lens pairs (Thorlabs MAP1050100-A) and is aligned and mounted vertically on top of the sample 

stage. A notch filter with a 532 nm central wavelength is installed to protect the CMOS sensor of the 

camera from the focused laser beam. The imaging system provides a spatial resolution of 4.3 µm per 

pixel and the field of view is 5.5 x 3.4 mm2. The acquisition rate is limited by the shortest feasible 
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exposure time (39 µs in our system), which depends on the available illumination (we use a Fiber 

Optic Illuminator, 250 W). In our setup we achieve a maximum acquisition rate of 25,000 fps.  

 

Figure 2.9: Image processing of the high-speed image sequence of a 
micro-particle moving on a groove. (a) Image of a micro-particle in a 
microstructure with an exposure time of 990 µs. (b) Image of the same 
particle with an exposure time of 39µs. (c) A portion of (b) is manually 
selected for use as the kernel of the deconvolution algorithm. (d) 
Resultant trajectory of the micro-particle moving under the camera. 

To extract quantitative information from the high-speed images, we write an image-processing 

program to automatically detect a particle’s position and measure its velocity. Each frame in the high-

speed image sequence is deconvoluted to identify relevant tracking features and record the particle’s 

position. Figure 2.3a shows typical high-speed images obtained when a single particle positioned in 

the v-shaped groove is moving. In this acquisition, the high-speed camera was operated at 1,000 fps 

with an exposure time of 990 µs. By decreasing the exposure time to 39 µs (25,000 fps), a higher time 

resolution can be obtained (Fig. 2.9ab). In this case the illumination is not sufficient to provide a clear 

view of the particle’s edges and the particle’s position is tracked following reflected light spots on the 

particle’s surface. The image of the particles that is shown in the red box of Fig. 2.9b,is selected 

manually and used as a reference point for the particles in low light conditions. 

Starting from the first frame, our program searches the next frame in the movie for areas that are 

similar to the image of the particles in the previous frame. We use image deconvolution to resolve 

the location of such areas and therefore the location of the particles. The particles’ positions are then 

updated at each time step by searching for the trackers within a small window of their previous 
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position. Typical particle tracking results are shown in Fig. 2.9d. Because the deconvolution 

algorithm utilizes 50 x 50 pixels of information for each particle, the location of the particles can be 

determined with a sub-pixel accuracy. The observation can be confirmed in Fig. 2.9d, where the 

fluctuation of particle location is about 2 µm (which is less than the image resolution of 4.2 µm). A 

particle’s velocity can be calculated by dividing its travel distance by the exposure time. 

For the wet particles, we use a commercial available lens tube (Infinity) with a microscope lens 

(NIKON LU Plan Fluor EPI P 20x) to achieve micro-scale image resolution. We obtain a spatial 

resolution of 0.90 µm per pixel and a depth of field of a few µm. With the illuminating light now 

focusing on a much smaller area, we are able to acquire clear images at an exposure time of 2.7 µs 

and a maximum of 311111 frames per second, with a resolution of 128 x 128 during typical data 

acquisitions. 

 

Figure 2.10: A typical high-speed image of the wet two-dimensional 
micro-granular system and the results of image processing. (a) Image 
of a micro-particle in a microstructure with an exposure time of 2.7 
µs. (b) Resolved positions of colloids with image processing 
algorithm. The blue circles are the initial positions at t=0, while the 
red circles are the positions after 3.3 µs. 

The particles are tracked with an image processing software following a working principle that is 

similar to the one used in the case of dry particles. In Fig. 2.10, we show the images obtained by the 

high-speed imaging system (Fig. 2.10a) and the resolved particle positions in the frame before (blue 

circles) and after (red circles) the system is excited by the laser. Notice that the resolved particle 

positions (Fig. 2.10b) do not contain all of the particles in the original photography (Fig. 2.10a). This 

can occur when some particles move out of the focal plane of the camera, or when some particles 

move too fast for the program to capture. 
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2.4. Configuration of the laser focusing system 

The high-power laser beam is used to deliver controlled momentum to the micro-particles in different 

configurations. Since the samples tested vary significantly in their requirements and geometric 

assemblies, the laser beam configuration is also different in each case. The following subsections 

provide more details of each sample’s design and utilization.  

2.4.1. One-dimensional micro-granular systems 

In Fig. 2.11, we plot the laser configuration used to excite the dry micro-particle chains. Before the 

laser beam reaches the micro-particles, it is focused with a lens that has a 60 mm focal length and a 

beam waist of 15 µm at the focal point. In order to ensure that the particles gain their momentum 

along the groove, the beam needs to be aligned to shine into the v-shaped groove in order to reach the 

outer-most particle. 

 

Figure 2.11: Experiment configuration for one-dimension micro-
granular systems. (a) Micro-particles loaded on the supporting 
structure are assembled to the desired configuration by the computer-
controlled micro-manipulator. The samples are monitored with a 
high-speed imaging system above the sample holder and a vibrometer 
that is pointed at the surface of a micro-particle. The focused laser 
beam with 15 µm is aligned to shine at the outer-most surface of the 
particle to excite the sample. (b) One-dimension micro-granular chain 
assembled in a v-shaped groove. 

2.4.2. Two-dimensional colloidal hexagonal lattices 

In Fig. 2.12, we show the laser configuration we used to excite the wet micro-particle systems. The 

SiO2 micro-particles are arranged in hexagonal lattices in a micro-fluidic cell made of transparent 

material (quartz). The transparent material used for the cell allows the laser beam to transmit through 
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the cell from below. The laser beam is merged with the illumination and passes through an 

objective lens (Mitutoyo 20X) to focus at the same focal plane of the high-speed imaging system 

(which is also the location of the micro-particles). The laser is targeted at the dark particle in the 

center of Fig. 2.12b, which is an SiO2 particle coated with a metal layer (non-transparent). The 

resulting dynamic response is monitored by the high-speed imaging system above the sample stage, 

which is protected by a notch filter that is blocking the pulsed laser from the sensor of the high-speed 

camera. 

 

Figure 2.12: Experiment configuration for colloidal systems. (a) SiO2 
particles are injected into micro-fluid cells made of transparent 
material, in which self-assembled hexagonal lattices are created. The 
laser beam is merged with the illumination and focused at the same 
focal plane of the high-speed imaging system. The laser is targeted at 
the coated SiO2 particles at the center of the lattice. The resultant 
response is measured by the high-speed imaging system above the 
sample. (b) Hexagonal lattice of SiO2 micro-colloids. 

2.5. Software system and lattice construction 

To take full advantage of the ability of the experimental system, we used LabVIEW to create a united 

software interface to communicate with all of the instruments built within the apparatus. Each 

instrument is controlled by individual LabVIEW blocks that reproduce the physical user interfaces. 

These blocks are written following the programming architecture of queued state machines. To 

increase the flexibility of operation, each device can be detached or installed independently in 

experiments. When hardware failures (such as a loose cable) are detected, the control program 

automatically disables the corresponding LabVIEW block(s) to prevent damage to the instruments. 
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A central controlling block communicates with all blocks, as well as with pre-written queue 

commands in each LabVIEW block. The device blocks communicate with each other through the 

central controlling block. All steps of the experiments are decomposed into lists of sequential 

commands. The controlling block ensures that each step of an experiment is being successfully 

performed in the correct order. This automated control system minimizes experimental errors. 

On top of the software system, we developed a sophisticated particle assembling and positioning 

subroutine that controls the micro-manipulator in order to create the desired configuration of micro-

particles on the micro-structure support. Before the process begins, the location of all particles is 

detected by processing all images of the microscope sequence. The program then automatically 

generates a sequence of micro-manipulator operations, which is then sent to the LabVIEW controlling 

blocks. An example of particle assembly and positioning is given in Fig. 2.13, in which the goal is to 

relocate the two particles to the targeted position marked by the red crosses. The micro-manipulator 

moves micro-particles by physically pushing them from one side. Figure 2.13a-d shows four basic 

manipulations of micro-particles along a v-groove, including pushing the particles to the left (or right) 

and separating particles that are in contact. The positioning of the particles is completed using the 

following steps: (i-iii) open a small gap between the two particles in contact by lightly brushing on 

one of the particles from the top; (iv-v) after enough space is available, separate the two particles; and 

(vi-viii) push the micro-particles to the target position. The central controlling block monitors the 

progress and completion of each step. If one of the steps fails, our algorithm re-sends the same step 

to the micro-manipulator or re-generates the entire procedure, if necessary. 
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Figure 2.13: An example of the procedure for positioning and 
assembling micro-particles. (a-d) Schematic of four basic 
manipulations of a micro-particle, including pushing the particles to 
the left (right) and gently touching the particle from the top to open 
up gaps. (e) Procedures of relocating micro-particles to the two 
targeted positions that are marked by the red crosses. i-iii) open a 
small gap between the two particles in contact by lightly brushing on 
one of the particles from the top; iv-v) after enough space is available, 
separate the two particles; vi-viii) push the micro-particles to the target 
position. 
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Chapter 3 

Mechanical Excitation via Pulsed Laser Ablation 

The mechanical excitation of a granular system can be achieved by applying a controlled force or 

momentum vector to one or more parts of the granular system. Knowing and controlling the applied 

force, or initial velocity, are the starting points for numerical, theoretical, and experimental 

investigation of the system. Conventional means to mechanically excite a macroscopic granular 

system include using collision with a particle at controlled momentum [125] or actuating the system 

with a piezo transducer [16]. However, both of these methods rely on making physical contact with 

individual particles in the system. For example, experimentalists use collisions of freely moving 

particles to deliver momentum on target particles in granular systems. The freely moving particles 

(i.e., the strikers) need to be accelerated under a given potential before interacting with the granular 

system in order to reach a predetermined initial velocity. Fine aiming and precise control of the 

trajectory requires the accurate holding and releasing of the strikers in the potential field. For 

macroscopic particles, holding and releasing strikers from their initial position can be achieved by 

solenoids [132] or electromagnets [133]. In these cases, after being released the striker particles move 

along a predesigned path and apply initial conditions to the granular systems via collisions. 

Achieving such controlled initial conditions at the micro-scale, however, is experimentally 

challenging, especially when adhesion forces can exceed the weight of the micro-particles. Adhesion 

forces (such as Van der Waals) and capillary forces both alter the trajectory of the strikers and 

therefore affect the collisions between the strikers and the target particles. The interaction between 

particles depends heavily on the particles’ surface quality, which can degrade over time and must be 

monitored in real time. Therefore, a real-time verification of surface qualities, contact points, and 

particles’ geometries is essential for the mechanical excitation of micro-granular systems. To create 

an experimental setup that can impart repeatable and controllable initial conditions to a micro-scale 

granular system, it is important to monitor the particles’ geometries, the surface conditions of the 

contact area, and the adhesion properties of the particles with their substrate. 
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Pulsed laser ablation (PLA) is a process that is used widely in industry for material removal [134]. 

Ni et al. recently showed that PLA can be applied to generate solitary waves within macro-scale 

granular chains [135]. By vaporizing a controlled amount of water deposit on the surface of macro-

scale particles, mechanical stress is created at one end of granular chains, which in turn generates 

traveling solitary waves within the chain.  

In our work, we use PLA as a tool to deliver controlled momentum to a micro-scale granular system. 

By shining a focused laser radiation on the surface of a selected micro-particle in the system, we 

deliver momentum to that micro-particle, which then accelerates and acquires a controlled velocity 

before striking other target particles. In order to use PLA as a reliable tool for exciting micro-scale 

granular systems, we need to be able to predict the magnitude, as well as the direction and the 

variation of the striker’s velocity. In the first section of this chapter, we review the history and 

background theory of pulsed laser ablation. In the second section, we examine the ablation process 

on micro-particles that are made of two different materials. We investigate the energy and directional 

stability of the ablation process as a tool for exciting dry micro-particles in air. In the third section, 

we investigate PLA as a means to excite colloidal particles in fluid. We summarize the advantages of 

the PLA method in the fourth section. The knowledge gained in this chapter lays the groundwork for 

the mechanical excitation and experimental study of dry and wet micro-particle systems in one- and 

two-dimensional configurations. 

3.1. Theory of laser ablation for nanosecond lasers 

When laser radiation is shined onto a metal’s surface, the laser interacts with the electrons in the metal 

via inverse Bremsstrahlung scattering. The heated electrons couple with the lattice and raise the 

temperature locally. If the temperature exceeds the melting or boiling point of the material, the lattice 

is destroyed and material is ejected from the surface. If the attenuation of radiation is much slower 

than the electron relaxation time, we can describe the heating of the metal surface with a diffusion 

equation [136], 

 C
𝜕𝑇(𝑧,𝑡)

𝜕𝑡
− k

𝜕2T(𝑧,𝑡)

𝜕𝑧2 = 𝐼(𝑧, 𝑡). (3.1) 

Here, 𝐼(𝑧, 𝑡) = 𝐼0(𝑡)⁡A⁡exp⁡(−𝛼𝑧) is the laser radiation at depth 𝑧 and time 𝑡 that propagates within 

the material. Furthermore, 𝐼0(𝑡) is the intensity of free space laser pulse input, 𝐴 is the transmission 

of the metal surface, and 𝛼 is the skin depth of the electromagnetic field in the material. In this 
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equation, the radiation impinges on the surface of the material (𝑧 = 0) and results in a temperature 

rise near the surface. 

When the radiation is a pulsed laser, we set 𝐼0(𝑡) ∝ exp⁡(−𝑡2/𝜏𝐿
2), where 𝜏𝐿 is the pulse width of 

the laser. For a sufficiently short pulse width, the temperature field can accumulate near the material 

surface to form a high temperature layer before there is enough time for the temperature to diffuse. 

Two competing factors determine the thickness of the high temperature layer on the surface, namely 

the heat diffusion length, √𝑘𝜏𝐿/𝐶 , and the skin depth of the laser within the metal, 1/𝛼. 

The energy density per unit mass within the surface is 𝐼⁡𝜏𝑙/𝜌𝑙, where⁡𝑙 = max⁡(√𝑘𝜏𝐿/𝐶, 1/𝛼) is the 

thickness of the high temperature layer and 𝜌 is the material density. In our system, the skin depth of 

the Nd:Yag laser radiation on stainless steel is expected to be ~2 nm, while the heat diffusion length 

is ~150 nm; the thickness of the high temperature layer is hence determined by heat diffusion. 

Ablation of material occurs when the energy density within this layer is higher than the enthalpy of 

evaporation, Ω. Therefore the threshold for the laser energy of ablation is 

 𝐼𝜏𝐿

𝜌𝑙
> Ω. (3.2) 

This simple model [137] explains the origins of the surface vaporization.  

Now let us return to our original goal of delivering momentum to micro-particles. When ablation 

occurs at the surface of the material, the vaporized mass can eject at a ballistic speed of 104 to 105 m/s 

and the reaction force shall push the particle in the opposite direction of the momentum of the 

vaporized mass. In reality, the ablation process is a very complicated thermal dynamic possibility of 

using PLA as a reliable tool for exciting mechanical motion in micro-granular systems. To simplify 

this discussion, we estimate the momentum gained by a particle from the local ablation of its surface 

to be: 

 
𝑝𝑔𝑎𝑖𝑛 = 𝑚𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑣𝑣𝑎𝑝𝑜𝑟 ∝

𝐼𝜏𝐿

𝜌𝑙Ω
𝐴𝐿√

𝑇𝑣𝑎𝑝𝑜𝑟

𝑚
∝

𝐸𝐿

𝜌𝑙Ω
√

𝑇𝑣𝑎𝑝𝑜𝑟

𝑚
∝

𝐸𝐿

𝜌Ω
√

𝐶

𝑘𝜏𝐿
√

𝑇𝑣𝑎𝑝𝑜𝑟

𝑚
, (3.3) 

where 𝐸𝐿 and 𝐴𝐿 are respectively the pulse energy and beam area of the laser. The above equation 

says that the momentum gained by the illuminated particle is affected by the thermal conductivity 𝑘 

of the material. Large thermal conductivity implies a fast heat removal from the surface layer into the 
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bulk material of the particle and reduces the amount of the vaporized surface materials. The 

momentum gained by the striker particle using PLA is proportional to the pulse energy of the laser. 

This is shown experimentally in the next section. It is worth mentioning that the momentum of the 

laser photons plays no role in this scenario.  

3.2. Pulsed laser ablation on stainless steel micro-particles 

In this section, we experimentally describe PLA effects on steel micro-particles in air. We placed a 

steel micro-particle on top of a v-shaped groove (see Fig. 2.3 above) and excited it with the laser. 

Figure 3.1 shows high-speed images obtained when a single particle positioned in the v-shaped 

groove is excited by the laser pulse. In this acquisition, the high-speed camera was operated at 1,000 

fps with an exposure time of 990 µs. The first image was taken before the laser pulse was fired, and 

the second image (0 ms) was taken less than one microsecond after the laser pulse interacted with the 

particle. The presence of material ejected from the particle’s surface is evident from the plume trailing 

the particle. Damage to the surface of the particle, which is identifiable by changes in the particle’s 

surface texture, can be seen 1 ms after triggering the laser and then again after 8 ms. The 

disappearance and reappearance of the damaged surface indicates that the particle was rolling in the 

groove after being excited. These results indicate that PLA can excite mechanical motion of the 

micro-particles. Following this preliminary confirmation, we studied the fundamental mechanisms to 

control the momentum of the target particle and identified the essential controlling factors that 

influence this process. 

  

Figure 3.1: High-speed images of a micro-particle (114 µm radius, 
stainless steel 440c) on a v-shaped groove being illuminated by a 
pulsed laser at t=0 ms. Ejected materials can be seen at t=0 ms and 
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the damage on the particle’s surface can be seen at t=1 ms and 9 ms. 
The sequential reappearance of the damaged surface indicates that the 
particle is rolling after being excited.  

We performed experiments to determine the relation between the laser energy input and the 

momentum gained by the targeted particle. We placed target particles at a fixed location on top of the 

v-shaped groove and illuminated them with the pulsed laser, using pulse energy that varied between 

0 to 0.8 mJ (Fig. 3.2a). The particle motion that resulted was recorded using the high-speed camera 

system. The speed of the particle was then obtained using image processing techniques, as described 

in detail in Chapter 2. The results obtained (Fig. 3.2b) show that the momentum transferred to the 

particles is proportional to the pulse energy, which agrees with the simple estimation derived in Eq. 

(3.3). We further compared the response of target micro-particles made with two different steel 

materials (stainless steel 316 and 440c) that do not have the same nominal thermal conductivity 

values. In Fig. 3.2b, it can be seen that the 316 particles gain almost twice the momentum that the 

440c particles do, at the same laser energy input. 

 

Figure 3.2: (a) Experimental scheme of calibrating the dependency of 
the transferred momentum to the laser pulse energy. (b) Momentum 
obtained by particles of two different materials (stainless steel 316 and 
440c) at different laser inputs. 
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This difference in momentum gain indicates that the stainless steel 316 particles are more easily 

excited by laser ablation than the 440c particles. This result is not surprising; considering that stainless 

steel 316 has a smaller thermal conductivity (16.3 W/mK) than the 440c (24.2 W/mK), we expect the 

PLA efficiency to be higher in relation to stainless steel 440c (see the discussion in the previous 

section). However, experimental calibration is still required to ascertain if PLA excitation would be 

effective on particles of different materials, since an accurate theoretical estimation of the PLA 

efficiency remains difficult. 

In the above experiments, when the striker particles were illuminated with the highest laser energy 

(0.8 mJ), the depth of the ablated mass was estimated to be ~150 nm using the data in [138]. This 

corresponds to only 0.01% of the mass of the test particles. As such, we considered the total mass of 

the excited particles as a constant. The total kinetic energy of the ejected mass and the particle was 

estimated to be 0.07 mJ; this is reasonable compared to the energy of the input laser pulse (0.8 mJ), 

if we consider that a large portion of laser is lost due to the reflection of metal surface.   

3.2.1.  Accuracy and repeatability 

Before we can apply PLA as a tool of mechanical excitation in our micro-particles, we need to answer 

two main questions: (i) How repeatable is the PLA method for accelerating micro-particles?; and (ii) 

How accurately do we have to align the laser in order to obtain reproducible results? We conducted 

two tests to investigate the stability of a particle’s excitation as a function of the laser’s direction (Fig. 

3.3a) and the position of the laser beam on the particle’s surface (Fig. 3.3b). We first excited the 

particle with the laser beam intentionally shifted away from the center of the particle’s mass by a 

distance 𝑥 and measured the direction 𝜃 of the particle’s displacement and velocity. Since the light 

wave front arrives simultaneously at every point of the illuminated area of the target particle 

(compared to the time scale of heat diffusion), we expect that the direction of the momentum gain 

does not depend on the direction of the beam, but only on the location of the laser beam on the surface 

of the particle. An offset of 𝑥 should therefore lead to 𝜃 = sin⁡−1(𝑥/𝑅), where 𝑅 is the radius of the 

particle. We performed experiments to verify this assumption. We placed target particles on a clean, 

flat silicon wafer (instead of a groove) to allow them to move freely on a plane. Then we fixed the 

laser power to a specific value, to accelerate the particle to a velocity of 0.05 m/s (a relatively high 

speed at these scales was chosen in order to minimize the influence of the substrate’s adhesion on the 

particle’s motion). We used the micro-scope imaging system and the computer-controlled stage to 

locate the particles and aim the laser beam on their surfaces. In Fig. 3.3c, we plot the measured 
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particles’ directions (red dots with error bars) and the theoretical predictions as obtained with 𝜃 =

sin⁡−1(𝑥/𝑅) (blue line). From the data we can see that when 𝑥 < 0.1𝑅, the maximum deviation is 

about 5°. We expect that an angular accuracy of 3° is possible when aiming the laser beam at the 

particles with a spatial accuracy of 10 µm (as in our experimental setup). 

We performed experiments to determine the role of particle position with respect to the laser focal 

plane (Fig. 3.3b). The simpler estimation of the PLA efficiency in transferring momentum to target 

particles only depends on the laser energy. However, if the laser beam intensity diverges when it 

reaches the particle’s surface, more energy is needed to raise the local temperature to the vaporization 

point. This effect is expected to lower the efficiency of the PLA process. We performed experiments 

to monitor variations of the target particle velocity as a function of its distance from the laser focal 

point. For these experiments, we used steel 440c particles positioned in a v-groove. To perform the 

experiments, we first used a micro-manipulator to position the target particles at the laser’s focal point 

and then illuminated the particles and measured their velocity. We then repeated these measurements, 

using a computer-controlled sample stage to move the particle systematically away from the focal 

point by shifting its position along the reference axis (z). The results are shown in Fig. 3.3d. We can 

see that the momentum gain is quite stable when the laser beam is focused within 1𝑅 from the surface 

of the particles. This agrees well with our laser beam waist of 15 µm (the corresponding Rayleigh 

length is 1.3 mm). 

 

Figure 3.3: Repeatability of the laser ablation method to excite 
particles on a substrate. (a,b) Experimental diagrams. (a,c) Schematic 
diagram and results of the experiment measuring the angular 
dependency of the momentum to the off axis distance. (b,d) 
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Schematic diagram and results of the experiment measuring the 
accuracy requirement for particles along the optical axis of the laser. 
A 15% variation of output velocity is observed. 

However, a closer examination of Figs. 3.2 and 3.3 reveals a velocity variation of ~15% in all data, 

which is a limitation of our experimental system. Such velocity variation can arise from imperfections 

in the stainless steel particles, from the energy stability of the laser (about 1% in our system), from 

the angular stability of the laser beam, or other systematic errors. We conclude that under realistic 

operation conditions, our laser system can deliver momentum to our stainless steel micro-particles 

with 15% accuracy in magnitude and 3% angular stability. In the next section, we investigate the laser 

energy transfer to silica colloids that are immersed in water, which are used in the dynamic testing of 

two-dimensional colloidal systems (as described in Chapter 6). 

3.3. Pulsed laser ablation on silicon dioxide colloids 

In this section, we describe the laser ablation process acting on micro-scale SiO2 particles in fluid. As 

SiO2 is a transparent dielectric material with a refractive index of 1.42, when the particles are 

immersed in water (refractive index of 1.33), a focused laser beam passing through the particles will 

be slightly diffracted by the spheres and not absorbed. In order to increase the efficiency of laser 

interaction, some particles are coated first with 5 nm of Cr as an adhesion layer and then with 50 nm 

of Au before being mixed with the uncoated particles. As the skin depth of our Nd:Yag laser beam 

on Au is 3 nm, we expect a very strong absorption of the laser beam in the gold layer. 

We inject the coated and uncoated particles with DI water to the micro-fluidic cell. We focus the laser 

beam within the water on the particles, especially those that are coated. In Fig. 3.4abc, we show 

images of the excitation process of micro-particles in water that are taken at 45553 frames per second. 

The coated target particle, which is initially at rest on the micro-fluid cell, is marked by the white 

arrow. The laser radiation that results when we shine a laser pulse on this particle can be seen in the 

photo (Fig. 3.4b). After the particle is shot, we observe that the particle is relocated in the next frame 

and that the material ejected from the particle is left at the original location (as marked by a hollow 

arrow in Fig. 3.4c). This is because the high-speed camera does not directly resolve the velocity of 

the particle due to insufficient acquisition speed. To estimate the momentum gain of the particle at 

different laser power, we consider the particles are experiencing a Stokes’ drag force in the 

background liquid, 𝑓 = −6𝜋𝜇𝑅𝑣, where 𝜇 is the viscosity of the liquid and 𝑅 and 𝑣 are respectively 

the radius and velocity of the particle. We can solve the relationship between the initial velocity of 



 

 

42 
the motion, 𝑣0 , and the final displacement using ∆𝑥 = 𝑣0/6𝜋𝜇𝑅 . By measuring the final 

displacement of micro-particles in a liquid with known viscosity, we can therefore calculate the initial 

velocity at a given laser energy. In our system, the laser beam is focused with an objective lens and 

expected to have a beam diameter of 10 µm. Since the laser spot is bigger than our micro-particles, 

the absorbed laser energy is estimated by the product of laser intensity and the area of particles.  

 

Figure 3.4: Excitation of micro-colloids’ motion in water. We focus 
the laser on the micro-colloids in liquid. (a) The target particle 
(marked with a white arrow) before the laser is shone on it. (b) During 
the laser excitation, the laser radiation can be seen at the original 
position of the target particle. (c) The target particle is relocated to a 
new position (again marked with a white arrow). A residue of ejected 
dark metal flake is left at this particle’s original position (marked by a 
hollow arrow). (d) The measured initial velocity at different laser 
energy and different viscosity of the background fluid. 

We measure particle velocity gain due to the PLA process at varying laser energy and varying 

viscosity. To change the viscosity of the background fluid, we mix the water-glycerol ratio to adjust 

the dynamic viscosity of the background fluid from 0.001 to 0.01 Pl [139, 140]. The resultant velocity 

is shown in Fig. 3.4d. Here we also see the dependency of the particle velocity at different laser energy 

and the viscosity of background fluid, which interestingly suggests that a thicker background fluid 

can enhance the momentum that is gained through the PLA process. The higher the viscosity, the 

greater the velocity gain. We fit these data with power law 𝑣 ∝ 𝐸𝑛 and obtain 𝑛 equals to 2.23, 2.10, 
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and 5.83 for dynamic viscosity equals to 0.001, 0.004, 0.01 Pl, respectively. This behavior deviates 

from the prediction given by Eq. (3.3), which indicates that the working principle of this wet particle 

excitation is very different from that of the dry particle case. The efficiency of this process (i.e., the 

ratio between the kinetic energy that is obtained by the micro-particle and the laser pulse energy) is 

about 0.001%, which is significantly lower than the efficiency in dry particle cases. With this 

calibration results, we can predict the momentum gain of the target particle at controlled laser energy 

in the background fluid that was tested. 

Finally, it should be clearly stated that the particle manipulation we performed in this section is 

unrelated to optical tweezing [141, 142], which is a technique for manipulating micro-particles in 

liquid. The optical tweezer manipulates micro-particles by creating an attractive potential well to the 

electric dipole of the target particles by properly tuning the laser intensity and frequency. However, 

the process is four orders of magnitude weaker than laser ablation in our system and is omitted 

throughout our discussion. 

3.4. Summary 

In this chapter we investigated the use of pulse laser ablation as a tool for mechanically exciting dry 

(stainless steel particles of a radius 150 µm) and wet (SiO2 colloids with a radius of 3.69 µm) micro-

particles. For the dry particles, we measured variations of the magnitude and direction of the 

momentum gain as a function of the laser position and alignment. We showed that our system can 

deliver momentum to target stainless steel micro-particles with 15% accuracy in magnitude and 3% 

angular stability under realistic operation conditions. For the wet particles, we measured the velocity 

gains of micro-particles in fluid due to PLA at varying laser energy and at varying viscosity. The 

velocity gains are shown to be dependent on the viscosity of the background fluid, which indicates 

the interplay of the hydrodynamic system within the PLA process. 

We obtained the calibration relationship between the laser energy and the momentum gained during 

the PLA process for both the dry and wet particles. The ability to predict the magnitude and direction 

of the delivered momentum is especially useful in our experiments, where direct measurements of 

the applied stress by direct physical contact are difficult to obtain. The laser system can deliver fast, 

repeatable, and automatic mechanical excitations to any point of the system that can be reached by 

the laser radiation. The non-contact nature of the PLA excitation system makes our experimental 
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apparatus also ideal for testing different micro-particle types and geometries, because the assembly 

and excitation of the system constitute independent parts of the setup. 
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Chapter 4 

Micro-particles in One-dimensional Confinement 

In the previous chapter, we described the phenomena that are associated with using pulsed laser 

ablation as a tool to mechanically excite spherical, metallic micro-particles. This approach provides 

the basis for transferring a controlled momentum to a system of micro-particles. However, before we 

proceed to study the wave propagation in micro-granular systems, we need to know how the particles 

behave on the substrate (i.e., we need to identify the governing equations of motion). The basic motion 

of a macroscopic sphere on a support structure has been studied earlier, for example in [143, 144]. In 

the simplest models, a sphere moving in one direction is considered as a rigid body and is subjected 

to Coulomb friction that acts between the surface of the sphere and the supporting structure [4]. 

However, the complexity of the models increases significantly if the spheres are no longer assumed 

as rigid bodies, and if the elastic contact force, the hysteretic losses in rolling [145], the lubricated 

sliding friction, the deformation of the surfaces, and the shear adhesive force are also included [145]. 

For example, for particles moving in an asymmetric v-shaped groove, governed by gravitation and 

static friction, the uneven shear force exerted on the spheres by both walls can cause the spheres to 

rotate. As a result, models that describe the particles’ motion must account for such rotation. 

In most studies of macroscopic granular systems, for example [125], the granular chains are 

considered as a classical system of spheres moving on a guiding rail, where only the elastic contact 

forces between particles are included. In these cases, the interactions between particles and their 

supports are usually considered negligible or are only seen as contributing to dissipation in the system. 

It is questionable whether the description of macro-granular systems still applies to the micro-granular 

system of interest for this thesis. In the rest of this chapter, we analyze the relevant types of 

interactions that arise when particle size is reduced. The next chapter builds on these findings, to 

analyze the dynamic response of a multi-particle chain and verify if the same phenomena found in 

macroscopic particles (e.g., solitary wave propagation) are also present at the micro-scale.   
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It is well known that when particle size is reduced to the micro-scale, adhesive forces such as 

hydrodynamic and Van der Waals interactions become more dominant [34, 103, 146]. The particles 

considered in our dry systems have diameters of ~300 m, which are much larger than the diameters 

of 1 to 10 m that are usually assumed in the DMT and JKR models; however, they are also not 

properly “macro-scale.” No theoretical approaches are available to describe these contact regimes. 

However, this intermediate size range indicates that the modeling of the system should be modified 

to account for the presence of the support system and air drag in the system’s dynamics.  

A complete first-principle model of the dynamics of micro-particles is difficult, as not enough 

information is available about these particles’ physical characteristics. In this chapter, we address this 

issue by extracting experimental parameters from the study of the motion of individual particles on 

their substrate (in this case a v-shaped groove). We also derive an empirical model to describe the 

observed particle motion. We extract the dissipation terms, including Coulomb friction, Stokes’ 

viscous drag force, and quadratic drag force, and analyze the trajectories of the particles moving in 

the groove. In addition, we also study the interaction between two particles by extracting from 

experiments the coefficient of restitution upon impact and the frictional constant between two 

particles. The goal of our initial set of experiments is to construct an empirical description of the 

dynamical system that can pave the way for a complete study of wave propagation in micro-granular 

chains and that can serve as the foundation for the analysis that is presented in the next chapters. With 

the experiments described in this chapter, however, it is not possible to study either the particle contact 

interaction potential or specific interaction/adhesion between the particles and their support in detail. 

4.1. Modeling the motion of a sphere in a groove 

In this section, we model the rolling and sliding motion of a spherical particle in a groove. Let the 

particle have a radius 𝑅, mass 𝑚, and moment of inertia 𝐼. Frictional forces between a particle and 

the surface of a groove are proportional to the normal force between the contact with a proportional 

constant, 𝜇𝑝𝑔. The inclined angle between the two surfaces of the v-shaped groove is 𝜃, where 𝜃 =

70.6° in our system. 

Let the v-grooves lie in the x-z plane, with its long axis (i.e., the direction of motion of the particle) 

parallel to the z-direction (Fig. 4.1). Assuming the particles do not move in the x- and y-directions, 

we can describe the motion of the particles with four parameters, namely 𝑧, 𝑣𝑧, 𝜃𝑥, and 𝜔𝑥, where z 

is the z-component of the particle displacement, 𝑣𝑧  is the velocity in the z-direction, 𝜃𝑥  is the x-
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component of the particle angular displacement, and 𝜔𝑥 ⁡is the x-component of the angular velocity. 

If there is a relative motion between the surface of the particles and the groove (i.e., 𝑣𝑧 −

𝑅𝜔𝑥sin⁡(
𝜃

2
) ≠ 0), the total force and torque resulting from the frictional forces between the particles 

and the two surfaces of the v-groove are respectively 𝑓𝑧 = −𝑚𝑔𝜇𝑝𝑔/sin⁡(
𝜃

2
) and 𝜏𝑥 = 𝑅𝑚𝑔𝜇𝑝𝑔. For 

convenience, we define 𝑣𝑎 ≡ 𝑅𝜔𝑥, and 𝑠 ≡ sin⁡(
𝜃

2
) as a geometric factor that depends on the inclined 

angle of the groove. In our system⁡𝑠 is 0.5779. 

 

Figure 4.1: A particle in a v-shaped groove. The direction in which the 
particle is moving is defined as the z-direction. The particle is 
supported by the groove’s two inclined surfaces. In comparison to 
when particles are placed on a flat surface, the geometry of the v-

groove enhances the frictional force by a factor of 1/sin⁡(𝜃/2), where 

𝜃  is the angle between the two surfaces of the v-groove. For the 
particles to roll without sliding on the groove, the groove’s 

translational and angular velocities need to satisfy 𝑣𝑧 = 𝑅𝜔𝑥sin⁡(
𝜃

2
). 

We can see that when a particle is moving on the groove, the frictional force transfers energy between 

translational and angular motion until no relative motion occurs between the surfaces in contact: 

 𝑣𝑧 = 𝑠𝑣𝑎. (4.1) 

When 𝑣𝑧 ≠ 𝑠𝑣𝑎, the equations of motion become 

 𝑑

𝑑𝑡
𝑣𝑧 = −𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑔𝜇𝑝𝑔/𝑠, 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔, 

(4.2) 

where 𝑠𝑖𝑔𝑛(𝑥) is the signum function with 𝑠𝑖𝑔𝑛(0) = 0. For a particle moving in a groove, the 

Coulomb friction causes the particle to reach a steady state of rolling without sliding. If the system 

evolves from an initial state of 𝑣𝑦
(0) and 𝑣𝑎

(0) to a final steady state of 𝑣𝑦
(1) and 𝑣𝑎

(1), the steady 

state velocities (defined as the velocity of the particles that are rolling without sliding) are 
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 𝑣𝑧

(1) =
𝑘𝑠2

𝑘𝑠2+1
𝑣𝑧

(0) +
𝑠

𝑘𝑠2+1
𝑣𝑎

(0), 

𝑣𝑎
(1) =

𝑘𝑠

𝑘𝑠2+1
𝑣𝑧

(0) +
1

𝑘𝑠2+1
𝑣𝑎

(0). 

(4.3) 

Starting at the initial velocities of 𝑣𝑧
(0) and 𝑣𝑎

(0), the distance (z) and time (t) required to achieve 

steady states are, respectively,  

 
∆𝑧 =

1

2

𝑠

𝑘𝑠2 + 1

𝑣𝑧
(0) − 𝑠𝑣𝑎

(0)

𝑔𝜇𝑝𝑔
(
2𝑘𝑠2 + 1

𝑘𝑠2 + 1
𝑣𝑧

(0) +
𝑠

𝑘𝑠2 + 1
𝑣𝑎

(0)) 

∆𝑡 =
𝑠

𝑘𝑠2+1

𝑣𝑧
(0)−𝑠𝑣𝑎

(0)

𝑔𝜇𝑝𝑔
. 

(4.4) 

This means that the rolling-sliding to rolling transition happens at a time scale of 
𝑠

𝑘𝑠2+1

𝑣𝑧
(0)

𝑔𝜇𝑝𝑔
, which 

is in the order of a few milliseconds in our system. For a more realistic model of all of the physical 

forces that are involved in the experimental system, we include the time constant for air friction, 𝑇, 

which is another empirical parameter, 

 𝑑

𝑑𝑡
𝑣𝑧 = −𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑔𝜇𝑝𝑔/𝑠 − 𝑣𝑧/𝑇, 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔. 

(4.5) 

Notice that we have two dependent variables (namely 𝑣𝑧 and 𝑣𝑎) that should be investigated: we will 

retrieve the information for 𝑣𝑎 through indirect fitting of the experimental data. 

4.2. Motion of one micro-particle in a groove 

We first study the motion of a single micro-particle that is rolling in a v-shaped groove (Fig. 4.1). A 

micro-particle is placed in the groove and excited with the laser system (see Chapter 3) to different 

controlled velocities between 0 to 0.1 m/s. The particle is positioned in the groove with a computer-

controlled micro-manipulator, in order to achieve accurate and repeatable initial conditions. We track 

the motion of a micro-particle with the optical high-speed imaging system that is described in Chapter 

2. In Fig. 4.2b, we show a typical measured trajectory for a micro-particle that is moving in the groove. 

The particle has an initial velocity of 0.025 m/s, and from the trajectory it is evident that its motion is 

characterized by two different regimes: i) a rolling and sliding regime; and ii) a rolling without sliding 

regime (which are labeled with green and red lines, respectively). The transition time between these 
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two different motion regimes, 𝑡1, as well as 𝜇𝑝𝑔, 𝑇, and the initial velocity 𝑣0 are found by fitting 

the experimental data numerically. The fitting parameters are obtained by minimizing the error 

function Er(𝜇𝑝𝑔, T) = ∑ (𝑓(𝑡𝑛; 𝑣z0, 𝜇𝑝𝑔, T) − 𝑥𝑛)2𝑛 , where 𝑓(𝑡; 𝑣z0, 𝜇𝑝𝑔 , T) is the solution of Eq. 

(4.5), 

 

𝑓(𝑡; 𝜇𝑝𝑔, T) = {
𝑇 (𝑣z0 −

𝑔𝑡𝜇pg

𝑠
+

𝑔𝑇𝜇pg

𝑠
) − e−

𝑡

𝑇𝑇 (𝑣z0 +
𝑔𝑇𝜇pg

𝑠
) , if⁡𝑡 < 𝑡1

e−
𝑡

𝑇(𝑠𝑣z0 + 𝑔𝑇𝜇pg − e
t1

𝑇 𝑔𝑇𝜇pg)/𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4.6) 

where it is assumed the initial angular velocity is zero and 𝑡1  is the solution of 𝑔𝑘𝑠𝑡𝜇pg +

e−
𝑡

𝑇(−𝑠𝑣z0 − 𝑔𝑇𝜇pg + e𝑡 𝑇⁄ 𝑔𝑇𝜇pg)/𝑠 = 0 . In Figs. 4.2c-d, we plot the ⁡𝑇  and 𝜇𝑝𝑔  which are 

obtained through numerical fitting. It can be seen in Fig. 4.2c that the empirical parameter of the time 

constant for air friction, 𝑇, is not a constant but instead has a linear dependency on the initial velocity. 

The two clouds of the measured value of 𝑇 obtained from the two types of particles (stainless steel 

440C and stainless steel 316) overlap to give 𝑇 = 𝑇0 + 𝑇′𝑣0 = 0.052 + 1.10𝑣0. For comparison, 

the predicted time constant caused by the Stokes’ drag in air is 𝑇 = m/6πμR = 0.074 . The 

agreement between data from particles of different materials that are the same size shows that the 

measured time constant is a geometric effect that is only altered by the particles’ shapes and 

dimensions. The linear behavior of⁡𝑇 implies that the air friction should include another correcting 

term that is proportional to the square of velocity: 

 𝑣𝑧

𝑇
=

𝑣𝑧

𝑇0+𝑇′𝑣0
~

𝑣𝑧

𝑇0
−

𝑇′

𝑇0

𝑣𝑧
2

𝑇0
≡

𝑣𝑧

𝑇0
−

𝑣𝑧
2

𝐿
, (4.7) 

where 𝑣𝑧 is the particle velocity, T is the original proposed time constant for dissipation, and 𝑇0 and 

𝐿 are empirical parameters that provide a more accurate representation of dissipation. 
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Figure 4.2: Experimental investigation of single micro-particles 
moving in a groove. (a) Schematic diagram of the experimental setup: 
a laser (green beam in the diagram) excites a particle in a groove, with 
a controlled pulse energy. We tested two types of micro-particles, 
stainless steel 316 and 440c. (b) A typical measured trajectory of an 
excited micro-particle. The transition from a rolling and sliding 
motion to rolling without sliding can be found by using an 

optimization algorithm to obtain the empirical parameters 𝑇 and 𝜇𝑝𝑔, 

as a function of initial velocity. (c) 𝑇 is found to depend linearly on 

the initial velocity 𝑇 = 0.052 + 1.10𝑣0.  (d) Stainless steel 316 

particles have a mean of 𝜇𝑝𝑔 = 0.337 (dashed line) and stainless steel 

440c particles have a mean of 𝜇𝑝𝑔 = 0.296 (dotted line) for 𝑣0 >

0.03⁡𝑚/𝑠 . The error bars are plotted with ±𝜎/2 , where 𝜎  is the 
standard deviation of the measurement. 

The average friction constant, 𝜇𝑝𝑔, is 0.337 for stainless steel 316 and 0.293 for stainless steel 440c 

particles. It can be seen that the friction coefficient for stainless steel 440c particles approaches zero 

at low velocity. This can result from the fact that particles made of steel 440c have much smoother 

surfaces and a higher quality than the steel 316 particles. The complete equations of motion for 

particles moving in a groove are 



 

 

51 
 𝑑

𝑑𝑡
𝑣𝑧 = −

𝑠𝑖𝑔𝑛(𝑣𝑧−𝑠𝑣𝑎)𝑔𝜇𝑝𝑔

𝑠
− (

𝑣𝑧

𝑇0
−

𝑣𝑧
2

𝐿
), 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔, 

(4.8) 

where 𝑇0 = 0.052⁡𝑠 , 𝐿 = 2.5⁡𝑚𝑚 , and 𝜇 = 0.337⁡  and 0.293  for stainless steel 316 and 440c, 

respectively.  

4.3. Modeling the collision of two particles in a groove 

With the equations obtained in the previous section, we can move on to modeling the collision of two 

particles in a groove. In an ideal scenario, when two particles of the same mass collide elastically, 

e.g., 𝑧2 − 𝑧1 < 2𝑅, they exchange their velocity. Assuming their initial velocities are 𝑣𝑧1
(1) and 

𝑣𝑧2
(1), after an elastic collision their velocities are expected to become 𝑣𝑧1

(2) = 𝑣𝑧2
(1) and 𝑣𝑧2

(2) =

𝑣𝑧1
(1). However, the real contact interaction between the particles is affected by the presence of a 

frictional force between their surfaces. If a relative sliding motion occurs between the surfaces of the 

two particles (i.e., 𝑣𝑎1 + 𝑣𝑎2 ≠ 0), then the presence of a frictional force induces a torque at the 

contact and changes the angular momentum of both particles. Let 𝜇𝑝𝑝  be the frictional constant 

between the surfaces of two particles; when 𝑣𝑎1 + 𝑣𝑎2 > 0, we have 

 −∆𝑣𝑧1 = ∫
𝑓

𝑚
𝑑𝑡 = −∫

𝜏𝑥1

𝑚𝜇𝑝𝑝𝑅
𝑑𝑡 = −

𝐼∆𝜔𝑥1

𝑚𝜇𝑝𝑝𝑅
= −

𝐼∆𝑣𝑎1

𝑚𝜇𝑝𝑝𝑅2. (4.9) 

Here, ∆𝑣𝑧 and ∆𝜔𝑥 are respectively the changes in translational and angular velocity before and after 

the collision. In addition, 𝑓 is the contact force during the impact, 𝜏𝑥 is the torque resulted from the 

frictional force, and 𝑅 , 𝑚 , and 𝐼  are the radius, mass, and inertia of moment of the particle, 

respectively. We therefore have ∆𝑣𝑎1 = 𝜇𝑝𝑝𝑘∆𝑣𝑦1  and similarily, ∆𝑣𝑎2 = −𝜇𝑝𝑝𝑘∆𝑣𝑦2 , and the 

resulted angular 𝑣𝑎1
(2) = 𝑅𝜔𝑥1

(2), 

 𝑣𝑎1
(2) = 𝑣𝑎1

(1) + 𝑠𝑖𝑔𝑛(𝑣𝑎1
(1) + 𝑣𝑎2

(1))𝜇𝑝𝑝𝑘(𝑣𝑧2
(1) − 𝑣𝑧1

(1)), 

𝑣𝑎2
(2) = 𝑣𝑎2

(1) + 𝑠𝑖𝑔𝑛(𝑣𝑎1
(1) + 𝑣𝑎2

(1))𝜇𝑝𝑝𝑘(𝑣𝑧2
(1) − 𝑣𝑧1

(1)). 

(4.10) 

Equation (4.10) holds only when the sliding motion between the particle surfaces is not eliminated 

by the frictional force between the particles before the end of the impact. If the frictional force 

eliminates the relative motion between the surfaces during the impact, the frictional force would cease 
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to contribute to the change of angular velocities. In this case, we can solve the final states of angular 

velocities, 

 
𝜔𝑥1

(2) + 𝜔𝑥2
(2) =

𝑣𝑎1
(2)

𝑅
+

𝑣𝑎2
(2)

𝑅
=

(𝑣𝑎1
(1)+∆𝑣𝑎1)

𝑅
+

(𝑣𝑎2
(1)+∆𝑣𝑎2)

𝑅
= 0, (4.11) 

and obtain 

 𝑣𝑎1
(2) = (𝑣𝑎1

(1) − 𝑣𝑎2
(1))/2, 

𝑣𝑎2
(2) = (𝑣𝑎2

(1) − 𝑣𝑎1
(1))/2. 

(4.12) 

For the relative motion between the surfaces to be eliminated by frictional force during the impact, 

we require the magnitude of change in angular velocity |∆𝑣𝑎| in Eq. (4.12) to be smaller than the one 

in Eq. (4.10), which translates into 

 |𝑣𝑎1
(1) + 𝑣𝑎2

(1)| < 2𝜇𝑝𝑝𝑘(𝑣𝑧1
(1) − 𝑣𝑧2

(1)). (4.13) 

By checking the inequality, we can determine which case applies to the collision. 

Let us consider the specific collision in which the two colliding particles are rolling without sliding. 

The first particle, which starts with the initial velocities of 𝑣𝑧1
(0) = 𝑢1

(0) and 𝑣𝑎1
(0) = 𝑢1

(0)/𝑠, 

moves toward the second particle, which has velocities of 𝑣𝑧2
(0) = 𝑢2

(0)  and 𝑣𝑎2
(0) = 𝑢2

(0)/𝑠. 

Depending on the values of 𝑢1
(0) and 𝑢2

(0), either Eq. (4.10) or (4.12) can be used to determine the 

resultant states after the instance of collision. If Eq. (4.13) holds, right after collisions we have  

 𝑣𝑧1
(1) = 𝑢2

(0), 

𝑣𝑧2
(1) = 𝑢1

(0), 

𝑣𝑎1
(1) = (

1

𝑠
− 𝜇𝑝𝑝𝑘)𝑢1

(0) + 𝜇𝑝𝑝𝑘𝑢2
(0), 

𝑣𝑎2
(1) = (−𝜇𝑝𝑝𝑘)𝑢1

(0) + (
1

𝑠
+ 𝜇𝑝𝑝𝑘)𝑢2

(0). 

(4.14) 

After the system evolves into steady state motions, we have 

 𝑣𝑧1
(2) =

1

𝑘𝑠2+1
(1 − 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0) +
1

𝑘𝑠2+1
(𝑘𝑠2 + 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0), (4.15) 



 

 

53 

𝑣𝑧2
(2) =

1

𝑘𝑠2+1
(𝑘𝑠2 − 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0) +
1

𝑘𝑠2+1
(1 + 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0), 

𝑣𝑎1
(2) = 𝑣𝑧1

(2)/𝑠, 

𝑣𝑎2
(2) = 𝑣𝑧2

(2)/𝑠. 

If Eq. (4.9) does not hold, the relative surface motion between the particles is zero when the two 

particles are in contact. Right after the collision, we have 

 𝑣𝑧1
(1) = 𝑢2

(0) 

𝑣𝑧2
(1) = 𝑢1

(0) 

𝑣𝑎1
(1) =

1

2𝑠
𝑢1

(0) −
1

2𝑠
𝑢2

(0) 

𝑣𝑎2
(1) = −

1

2𝑠
𝑢1

(0) +
1

2𝑠
𝑢2

(0) 

(4.16) 

After the system evolves into steady state motions, we have 

 
𝑣𝑧1

(2) =
1

𝑘𝑠2 + 1
(1/2)𝑢1

(0) +
1

𝑘𝑠2 + 1
(𝑘𝑠2 − 1/2)𝑢1

(0) 

𝑣𝑧2
(2) =

1

𝑘𝑠2 + 1
(𝑘𝑠2 − 1/2)𝑢1

(0) +
1

𝑘𝑠2 + 1
(1/2)𝑢1

(0) 

𝑣𝑎1
(2) = 𝑣𝑧1

(2)/𝑠 

𝑣𝑎2
(2) = 𝑣𝑧2

(2)/𝑠 

(4.17) 

The physical meaning of the above derivation is simple: during the collision, the two particles 

exchange momentum and apply a reciprocal torque, which changes angular momentum; after the 

collision, the particles accelerate if the translational and angular velocities are mismatched. In both 

cases, we have 𝑣𝑧1
(2) − 𝑣𝑧2

(2) =
1−𝑘𝑠2

1+𝑘𝑠2 (𝑣𝑧1
(0) − 𝑣𝑧2

(0)) , which means that the collision and 

reacceleration process scale the inter-particle velocity by a factor of 
1−𝑘𝑠2

1+𝑘𝑠2. If  

 0 <
1−𝑘𝑠2

1+𝑘𝑠2 < 1, (4.18) 



 

 

54 

n secondary collisions after the first impact will occur (with n going to infinity) because 𝑣𝑧1
(2n) −

𝑣𝑧2
(2n) > 0. For solid spherical particles (𝑘 = 5/2) on a flat planar surface (𝑠 = 1), only one 

collision (i.e., the first impact), is expected to occur. For particles in a v-groove, the condition in Eq. 

(4.18) implies 𝜃 < 78.5°, which is satisfied for the specific v-shaped groove that we experimentally 

fabricated. 

In the beginning of the above derivation, we assumed completely elastic collisions between particles. 

The derivation can be easily generalized to include the case of inelastic collisions, and the prediction 

of multiple secondary collisions remains valid. For example, if the collision is perfectly inelastic such 

that both particles obtain the same translational velocity after collision, 𝑣𝑧1
(1) = 𝑣𝑧2

(1), it follows 

that 𝑣𝑎1
(1) > 𝑣𝑎2

(1) due to the torque exerted by frictional forces. After the system evolves into 

steady state, from Eq. (4.3) we have 𝑣𝑧1
(2) − 𝑣𝑧2

(2) =
𝑠

𝑘𝑠2+1
(𝑣𝑎1

(1) − 𝑣𝑎2
(1)) > 0 , which 

guarantees another upcoming collision. We can generalize the above derivation for particle-groove 

systems by adding dissipation that is linearly proportional to the particle velocity. Since the 

dissipation only scales linearly with the velocity, with a factor of exp (−
∆𝑡

𝑇
), where ∆𝑡 is the time 

difference and 𝑇 is the time constant of the dissipation, the system results in a positive final velocity 

difference: 

 𝑣𝑧1
(2) − 𝑣𝑧2

(2) =
1−𝑘𝑠2

1+𝑘𝑠2 (𝑣𝑧1
(0) − 𝑣𝑧2

(0)) exp (−
∆𝑡

𝑇
) > 0. (4.19) 

In this case, secondary collisions are also expected. 

Notice that the criterion of Eq. (4.18) does not depend on the frictional constants of 𝜇𝑝𝑝 and 𝜇𝑝𝑏. This 

means that the number of expected collisions is independent of the particles’ material properties. The 

presence of multiple secondary collisions can occur in a very large number of systems despite the 

specific value of Coulomb friction. Such collisions constitute a very universal behavior among 

various particle-groove systems, including the micro-granular system that we fabricated. In our 

experimental system, 
1−𝑘𝑠2

1+𝑘𝑠2 = 0.09, and after each collision and reacceleration process the velocity 

difference, (𝑣𝑧1
(2n+2) − 𝑣𝑧2

(2n+2)) = 0.09(𝑣𝑧1
(2n) − 𝑣𝑧2

(2n)) scales to 9% of its original value. 

Due to the limited length of the fabricated grooves and limited spatial resolution of the imaging 

system, the presence of the secondary collisions cannot be resolved in our experiments. However, 

since the micro-particles are expected to collide multiple times, while they simultaneously lose kinetic 
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energy via Coulomb friction or other dissipation channels, we can argue that the two particles 

should end up rolling very close to each other, with 𝑧2 − 𝑧1~2𝑅; this is indeed what we see in the 

next section. 

4.4. Collisions between two particles in a groove 

In this section, we experimentally investigate the collisions of two micro-particles in a v-shaped 

groove and extract the coefficient of restitution for each impact and the frictional constant between 

the two micro-particles from the measurements (Fig. 4.3). The first micro-particle, which acts as a 

striker, is positioned in the groove and excited with the laser pulse to reach a maximum velocity of 

0.3 m/s before colliding with a stationary micro-particle (i.e., the target particle). Both particles are 

positioned by a computer-controlled micro-manipulator that has a location accuracy of ~1 𝜇m. We 

studied two different types of collisions (Fig. 4.2a): (1) collisions that occurred when the striker 

gained enough angular velocity to roll without sliding before impacting the target particle, and (2) 

collisions between two micro-particles that are initially positioned in physical contact with each other. 

In Fig. 4.3b we show a photograph of two micro-particles in a typical experimental run for the first 

case study. Typical trajectories of micro-particles moving in the groove are shown for the same case 

in Fig. 4.3c, with the blue line representing the trajectory of the striker particle and the red line that 

of the target particle. It can be seen that after the collision, the striker particle accelerates due to the 

Coulomb frictional force. This results from a gain of angular momentum during collision and 𝑣𝑧 −

𝑠𝑣𝑎 < 0 such that the Coulomb frictional force on the striker is in the positive z direction. The striker 

particle quickly catches up with the second particle after the collision, and the two particles keep a 

distance close to two times their radius, which is what we expected for two particles that are 

undergoing multiple secondary collisions (see section 4.3 above). 
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Figure 4.3: Experiments involving particle collisions in a groove. (a) 
Experimental schematics. Two cases of collisions are tested: a particle 
collides with another particle that is i) separated by 1 mm, or ii) in 
direct contact with it. (b) Digital image of the particles during the 
experiments. The blue and red dashed boxes identify the striker and 
the target particles, respectively. (c) Trajectories of the two colliding 
particles. (d) Rolling and sliding motion and rolling without sliding 
motion as identified for the striker particle. This trajectory reveals 
information on the angular motion of the particle. 

In Fig. 4.3d, we plot the trajectory of the striker particle throughout the collision. The collision point 

can be clearly identified by the abrupt change in velocity. The particles undergo four ranges of motion, 

namely rolling and sliding before and after collision (green curves) and rolling without sliding before 

and after collision (red curves).  

We examine the relation of tangential and normal forces between two particles. Throughout this 

chapter, we have assumed that the tangential force between two particles is well described by 

Coulomb friction and is linearly proportional to the inter-particle contact force. This is the foundation 
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of all of our derivations about particle collisions; however, is not true in general [147]. To justify 

whether it is valid for our system, we examine the ratio between the changes in translational and 

angular velocities that are caused by collisions.  

In order to extract information (i.e., translational and angular velocities) about the particles’ motions 

before and after the collision from the experimental data, we manually separate the trajectory before 

and after the collision and fit them with the solutions of Eq. (4.5). This allows us to obtain the initial 

values of 𝑣z and 𝑣a and to calculate the values of 𝑣z and 𝑣a near the collision. We plot the relation 

between the change of linear and angular momenta of the target particle (stainless steel 440c) in Fig. 

4.4a. We can see that the change of momenta has a linear relationship. Fitting this linear relationship 

with Eq. (4.9), we obtain the frictional constant between two spheres, 𝜇𝑝𝑝, which is equal to 1.4. 

Despite the large variation in the resulting velocity after collision, the data indicates a linear 

relationship between inter-particle normal and tangential forces; from an experimental point of view, 

this can be used to describe our micro-particle system in general. 

We are also interested in extracting the coefficient of restitution in the collisions, which is defined as 

 𝐶 =
𝑣z2

(1)−𝑣z1
(1)

𝑣z1
(1)−𝑣z2

(1), (4.20) 

This coefficient, which represents the ratio of relative velocities between the two particles before and 

after collision, is a measure of the efficiency of the collision process. The higher the coefficient of 

restitution, the more elastic the collision. We plot the experimental coefficients of restitution obtained 

for the stainless steel micro-particles as a function of the impact velocities in Fig. 4.4b-c; the red 

squares represent 316, the blue circles 440c. The variations in the values of the experimental 

coefficient of restitution obtained in our tests are large. Those obtained with stainless steel 316 

particles are much larger than those obtained with stainless steel 440c particles, which can be 

explained by the much rougher surface of the 316 particles (see Chapter 2). Despite the big variation 

in the measured data, the results show that the coefficient of restitution has velocity dependence and, 

for both particle types, the coefficient of restitution approaches unity at lower speeds, which means 

that lower speed collisions are less lossy. 
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Figure 4.4: Experimental results for the collisions of two particles. (a) 
A linear correlation between the change of translational and angular 
velocities during collisions of two 440c particles is observed. The 

error bars are plotted with ±𝜎/2, where 𝜎 is the standard deviation 
of the measurement. Fitting shows the normal force and tangential 
force can be described with Coulomb friction with a frictional 
constant of 1.4 (b) The coefficient of restitution between two stainless 
steel 316 particles when they are rolling (red squares) or initially in 
contact (orange triangles). (c) The coefficient of restitution between 
two stainless steel 440c particles when they are rolling (blue circles) or 
initially in contact (purple diamonds) 

We perform measurements to extract the coefficient of restitution for collisions between two particles 

that are initially in direct contact as well. To create contacting pairs of micro-particles, the computer-

controlled micro-manipulator is used to push the two particles together to where the laser beam is 

focused. The striker particles are excited with varying laser energy and the trajectory of the second 

particle is measured. Since the striker particle has no trajectory before collision, the initial velocities 

of the particles are estimated from the calibration of momentum gain at different laser power, as 

described in Chapter 3. We plot the coefficients of restitution at different impact velocities for both 

stainless steel 316 (orange triangles) and 440c (purple diamonds) in Fig. 4.4b-c. 

The first observations demonstrate that the coefficients of restitution in these measurements are higher 

than the one measured in the collisions between separated particles, which implies that collisions 



 

 

59 
result in less loss when the rotational motion of particles is reduced. The coefficient of restitution 

approaches unity for stainless steel 440c particles, which is again a higher value than the one obtained 

for the rougher 316 particles. From the calibration results shown in Chapter 3, we know that the 

momentum gained by the striker has a 15% standard deviation, which should contribute to the error 

of measurement of the coefficient of restitution. From the data we can see that the standard deviation 

of the coefficient of restitution for the 440c particles is approximately the same as the contribution of 

the system; as such we can argue that the resultant velocity after collision should be highly 

reproducible with uncertainty that is much less than 15%. 

These results are fundamentally important to our goal of studying the wave propagation in micro-

granular particles, because they imply that neighboring particles in contact can transfer energy with 

little dissipation within certain ranges of initial velocities. Without this result, the dissipation of the 

mechanical energy would prevent the propagation of nonlinear waves in a micro-granular chain. 

4.5. Summary 

In this chapter, we studied the motion and collision of dry micro-particles in a groove and 

experimentally investigated the fundamental principles that govern their behavior. We modeled the 

particles in a groove (Eq. (4.8)) with empirical parameters obtained directly from experiments. 

 𝑑

𝑑𝑡
𝑣𝑧 = −𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑔𝜇𝑝𝑔/s − (

𝑣𝑧

𝑇
−

𝑣𝑧
2

𝐿
), 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔, 

 

where, 𝑇 = 0.052⁡𝑠 , 𝐿 = 2.5⁡𝑚𝑚 , and 𝜇 = 0.337  and 0.293  for stainless steel 316 and 440c, 

respectively. The empirical model obtained in this chapter was used as the foundation for modeling 

wave propagation in multi- particle micro-granular systems. 

By using proper fitting techniques, we can resolve the angular motion of the particles that are 

governed by the above equations. After studying the relation between the normal force and tangential 

force during impact, we found that it can be described with Coulomb friction with 𝜇𝑝𝑝 = 1.4. We 

also measured the coefficient of restitution during impact for both separated and neighboring particles. 

The results show that at low impact velocities, little momentum loss is observed when two micro-

particles that are initially in contact collide. This implies the possibility of observing traveling pulses 

in micro-granular systems that are composed of larger numbers of particles in contact.  
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Chapter 5 

The Dynamics of Dry, Microscopic Granular Chains  

In the previous chapter, we established a set of empirical equations of motion for the particles in a 

groove. In this chapter, we describe the dynamic response of one-dimensional chains of particles in 

contact in response to a mechanical impulse excitation. The particles tested for this analysis are made 

of stainless steel 316 and stainless steel 440c (see Table 2.1); all particles have a diameter of 300 

micrometers. The rest of this chapter is organized as follows: in section 5.1, we discuss the modeling 

approach that is used in the analysis and the results that are obtained with it, predicting the propagation 

of solitary waves. In section 5.2, we present the measured properties of the stress waves that are 

propagating through these systems (including their group velocity) and amplitude decay. In section 

5.3, we discuss the dynamic response of non-ideal particle chains and study the influence of defects 

(i.e., the presence of inter-particle gaps) in the measured response of micro-granular chains. In section 

5.4, we summarize the findings. 

5.1. Modeling solitary waves in micro-granular chains 

We model the system of micro-particles assuming Hertzian contact interactions and free boundary 

conditions, using the empirical equations of motion of a free-moving particle that were obtained in 

the previous chapter. Accordingly, we can describe the motion of the ith particle in the chain as: 

 𝑚⁡𝑧𝑖̈ = −𝑠𝑖𝑔𝑛(𝑧𝑖̇ − 𝑠𝑅𝜃𝑖̇)𝑚𝑔𝜇𝑝𝑔/s − m(𝑧𝑖̇/𝑇0 − 𝑧𝑖̇
2/L) + 𝑓𝑖−1,𝑖(𝑧𝑖−1, 𝑧𝑖) −

𝑓𝑖,𝑖+1(𝑧𝑖, 𝑧𝑖+1), 

𝐼𝜃𝑖̈ = R(𝑠𝑖𝑔𝑛(𝑧𝑖̇ − 𝑠𝑅𝜃𝑖̇)𝑚𝑔𝜇𝑝𝑔 − 𝑠𝑖𝑔𝑛(𝜃𝑖−1
̇ + 𝜃𝑖̇)𝑓𝑖−1,𝑖(𝑧𝑖−1, 𝑧𝑖)𝜇𝑝𝑝 ±

𝑠𝑖𝑔𝑛(𝜃𝑖̇ + 𝜃𝑖+1
̇ )𝑓𝑖,𝑖+1(𝑧𝑖, 𝑧𝑖+1)𝜇𝑝𝑝), 

(5.1) 

where 𝑧𝑖 is the coordinate of the ith particles, and 𝑓𝑖−1,𝑖(𝑧𝑖−1, 𝑧𝑖) is the Hertzian contact force between 

the (i-1)th and ith particles. In Eq. (5.1), 𝑇 = 0.052⁡𝑠, 𝐿 = 2.5⁡𝑚𝑚, 𝜇𝑝𝑔 = 0.293, and 𝜇𝑝𝑝 = 1.4 are 

the empirical parameters obtained in Chapter 4. By using a fourth-order Runge–Kutta solver with a 

1 ns time step to solve this equation of motion numerically, we simulate the dynamics of granular 

chains composed of 15 stainless steel 440c particles with a radius of 150 µm that are resting on a v-
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groove (i.e., the micro-granular chain we constructed experimentally; see the next section). The 

particles are in a close-packed condition with zero pre-compression. We are interested in finding the 

relationship between the striker velocity and the propagating wave group velocity, to compare the 

numerical results with the continuum theory derived for highly nonlinear systems [3] (as described 

in Chapter 1). The solution of the system of equations of motion shows that for a perfectly packed 

system, the stress waves propagate through the chain forming a solitary wave; this is similar to what 

has been reported for macroscopic granular systems [36]. An example of the evolution of the particle 

velocity in time for all 15 particles in the chain as computed numerically is shown in Fig. 5.1a. For 

these results, the micro-granular chain was excited with an initial striker velocity of 0.1 m/s. It can be 

seen that when the particles are in close contact, the maximum velocity reached by the particles is 

about 2/3 of the striker velocity. We perform further numerical simulations to examine the 

dependency between the maximum particle velocity and the initial striker velocity; the results are 

shown in Fig. 5.1b. We find a linear relationship between the maximum particle velocity and the 

striker velocity, 𝑣𝑚𝑎𝑥 = 0.64𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟. In Fig. 5.1c, we show the calculated group velocities (red dots) 

for the propagating stress wave at different initial striker velocities. For comparison, in this figure we 

also plot the solution of Eq. (1.4), which is the analytical solution derived by Nesterenko for a granular 

chain that is interacting with only Hertzian force (no rotational degrees of freedom) [2]. By 

substituting 𝑣𝑚𝑎𝑥 = 0.64𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟  from fitting the data in Fig. 5.1b, we have 𝑣𝑔 =

√
16

25

5
𝑐4/5𝑣𝑚𝑎𝑥

1/5 = √
16

25

5
𝑐4/5(0.64𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟)

1/5 . The corresponding (blue) curve in Fig. 5.1c 

matches the simulation results very well, despite the absence of rotational degrees of freedom in the 

Nesterenko theory. These results are in line with the analysis of macroscopic granular chains as 

described in Chapter 1 and in [2].  
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Figure 5.1: Numerically computed nonlinear waves traveling in an 
uncompressed, micro-granular chain that consists of 15 stainless steel 
particles (440c) with a radius of 150 µm. The first particle (the striker) 
has an initial velocity of 0.1 m/s. (a) Velocities of micro-particles 
along the chain. The solitary wave is seen to evolve to a stable shape 
after traveling through the first few particles. (b) Calculated maximum 
particle velocity at different initial striker velocities. The results can be 

fitted with a linear relation, 𝑣𝑚𝑎𝑥~0.64𝑣𝑠 . (c) Calculated group 
velocities (red dots) at different initial striker velocities. The results 
match with the analytical solution for a granular chain (Eq. (1.4) if the 

𝑣𝑚𝑎𝑥~0.64𝑣𝑠 obtained in (c) is assumed. 

The agreement between the two models (Eq. 1.4 and Eq. 5.1) might be surprising at first, but it can 

be understood by estimating the energy transfer to the rotational degrees of freedom (due to the 

presence of Coulomb friction in our model) and the energy loss that results from dissipation (due to 

air friction). The ratio between the energy transfer/loss can be estimated with 

 ∆𝐸(𝐶𝑜𝑢𝑙𝑜𝑚𝑏)/𝐸~ − 𝑚𝑔𝜇𝑝𝑔∆𝑥/
1

2
𝑚𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

2~2𝑔𝜇𝑝𝑔∆𝑥/𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟
2, (5.2) 

and  

 ∆𝐸(𝑎𝑖𝑟⁡𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛)/𝐸~
1

2
𝑚𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

2 (exp (−
2∆𝑡

𝑇
) − 1) /

1

2
𝑚𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

2~ −
2∆𝑡

𝑇
, (5.3) 
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where ∆𝑥 is the total traveling distance of all particles and ∆𝑡 is the total interaction time. In the 

case presented in Fig. 5.1a, we have ∆𝑥~2⁡𝜇𝑚 , ∆𝑡~10⁡𝜇𝑠 , and 
∆𝐸(𝐶𝑜𝑢𝑙𝑜𝑚𝑏)

𝐸
~ 0.1%, 

∆𝐸(𝑎𝑖𝑟⁡𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛)

𝐸
~0.05%. These ratios are both very small compared to the total kinetic energy of the 

system. From an experimental point of view, a difference of 0.1% or 0.05% is well below the accuracy 

of the measurements and cannot be directly observed.  

The solitary waves observed in the simulations have a temporal width of about 2 µs, which is 

challenging from an experimental point of view. To correctly resolve the pulse profile experimentally, 

we need a sampling bandwidth that is greater than 5 MHz. This requirement exceeds the bandwidth 

of our laser vibrometers (which are limited to operating up to 2.5 MHz). As a consequence, we expect 

the shape of the measured waveform to be distorted. However, in order to extract useful information 

from experiments and compare the experimental data with the theoretical models available, we 

measure the time evolution of the maximum particle velocity, which is not expected to be affected by 

the limited bandwidth. In the experiments, we measure the velocities of the 2nd and 13th particles in 

the chain and define their maximum velocities as 𝑣𝑚𝑎𝑥,1 ≡ 𝑣𝑚𝑎𝑥,2nd , 𝑣𝑚𝑎𝑥,2 ≡ 𝑣𝑚𝑎𝑥,13th . We 

compare these with the corresponding values obtained in numerical simulations. From our numerical 

simulations we obtain: 

  𝑣𝑚𝑎𝑥,2
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.72𝑣𝑚𝑎𝑥,1

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛), 

𝑣𝑚𝑎𝑥,1
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.89𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛), 

𝑣𝑚𝑎𝑥,2
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.64𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛). 

 

In the next section, we compare these numerical results with the corresponding values obtained 

experimentally. 

5.2. Wave propagation in micro-granular chains 

To perform experimental measurements of wave propagation in micro-granular chains, we excite the 

first particle of an assembled micro-granular chain with the laser ablation system, which provides a 

controlled initial momentum. We measure the propagation of waves along the chain at selected 

particle locations using two laser vibrometers. To ensure precise excitations, the laser focus needs to 

be aimed very accurately on the striker. Poor laser excitation alignment results in particles gaining 
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velocity components in unwanted direction and results in the scattering or buckling of the 

constructed micro-granular chains. 

We measure the time-dependent velocity profiles of the 2nd and 13th particles in the chain, as described 

in Chapter 2. A typical measurement obtained by the two vibrometers is shown in Fig. 5.2a. 

 

Figure 5.2: Measured particle velocities in a micro-granular chain of 
15 stainless steel 440c particles (a) Measured particle velocities 
(rescaled with the calibration Eq. 2.1 and normalized by the striker 
velocities) for the 2nd and 13th particles in the chain. From these data 

we obtain the maximum particle velocities, 𝑣𝑚𝑎𝑥,1 and 𝑣𝑚𝑎𝑥,2, and 

the time delay ∆𝑡. (b) Measured maximum velocities (red dots) of the 

two monitored particles. The red fitting line has a slope of 0.80 ±
0.08 (95% confidence interval). (c) Measured maximum velocities 

(normalized to the striker velocity). An averaging gives ⁡𝑣𝑚𝑎𝑥,1/

𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟 = 0.57 ± 0.09  and 𝑣𝑚𝑎𝑥,2/𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟 = 0.46 ± 0.07  (95% 

confidence interval). (d) Measured group velocities at different striker 
velocities. 

A typical measurement obtained by the two vibrometers is shown in Fig. 5.2a. The measured vibration 

is a filtered pulse response function (which is not representative of the real pulse shape because of the 

bandwidth limits). From this data, a reconstruction of the original waveform shape is difficult. To 

overcome this issue, as mentioned in the previous section we extract from the vibrometer data only 

the maximum values of the wave velocities and make no analysis or consideration of the shape and/or 
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frequency content of the propagating waves. We measure the maximum amplitudes, 𝑣𝑚𝑎𝑥,1 and 

𝑣𝑚𝑎𝑥,2 , of the two velocities output by the 2nd and 13th particles and time delays between the 

maximum amplitudes Δ𝑡. We plot the measured 𝑣𝑚𝑎𝑥,1 and 𝑣𝑚𝑎𝑥,2 in Fig. 5.2b. Despite the large 

variation of the measured velocities, 𝑣𝑚𝑎𝑥,1 and 𝑣𝑚𝑎𝑥,2 show a linear dependency and are fitted to 

obtain their experimental ratio of 𝑣𝑚𝑎𝑥,2/𝑣𝑚𝑎𝑥,1 = 0.80 ± 0.08 (95% confidence interval). This 

result has a good agreement to the simulation results, 𝑣𝑚𝑎𝑥,2
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)/𝑣𝑚𝑎𝑥,1

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.72. 

It might seem counter-intuitive that the experimentally obtained ratio between 𝑣𝑚𝑎𝑥,2 and 𝑣𝑚𝑎𝑥,1 is 

bigger than the one obtained through simulation, as we know for a perfect Nesterenko granular chain, 

the maximum velocities decay slightly as the wave propagates (see Fig. 5.1a). We also expect that 

any energy loss due to imperfection of the experimental system should only contribute to further 

decreasing the value of⁡𝑣𝑚𝑎𝑥,2. This interesting observation is explained in the next section, where 

the presence of gaps between particles is considered. 

In Fig. 5.2c, we plot the measured 𝑣𝑚𝑎𝑥,1, 𝑣𝑚𝑎𝑥,2 at different striker velocities; the 𝑣𝑚𝑎𝑥,1, 𝑣𝑚𝑎𝑥,2 

shown are normalized to 𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟. We have averaged the values of 𝑣𝑚𝑎𝑥,1 = (0.57 ± 0.09)𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟 

and 𝑣𝑚𝑎𝑥,2 = (0.46 ± 0.07)𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟. The predicted values obtained in numerical simulations are 

𝑣𝑚𝑎𝑥,1
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.89𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  and 𝑣𝑚𝑎𝑥,2
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.64𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) . 

It seems that the measured values are about 40% smaller than the simulation, which might be a result 

of extra-loss on the striker due to imperfections in the construction of the chain. 

Next we plot the measured group velocity 𝑣𝑔 = (13 − 2)2𝑅/Δ𝑡 at varying striker velocities in Fig. 

5.2d for both 316 and 440c stainless steel particles. We first see the (striker) velocity. The measured 

pulse shown in Fig. 5.4a is a filtered response function that is not representative of the real traveling 

pulse shape, because of the bandwidth limits of our laser acquisition system (as discussed above). 

From these experimental data, a reconstruction of the original waveform shape is difficult. To 

overcome this issue, we extract from the vibrometer data only the maximum values of the particle 

velocities and the time delays between them, Δ𝑡, as these values are not affected by the bandwidth 

limit. We do not analyze the shape and/or frequency content of the propagating waves. We plot the 

measured 𝑣𝑚𝑎𝑥,1  and 𝑣𝑚𝑎𝑥,2  in Fig. 5.2b. Despite the large variation of the measured velocities 

𝑣𝑚𝑎𝑥,1 and 𝑣𝑚𝑎𝑥,2 it is possible to fit the data with a linear dependence. The experimental ratio is 

𝑣𝑚𝑎𝑥,2/𝑣𝑚𝑎𝑥,1 = 0.80 ± 0.08 (95% confidence interval). This result has a good agreement to the 

simulation results, 𝑣𝑚𝑎𝑥,2
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)/𝑣𝑚𝑎𝑥,1

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 0.72. It might seem counter-intuitive 
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that the experimentally obtained ratio between 𝑣𝑚𝑎𝑥,2 and 𝑣𝑚𝑎𝑥,1 is bigger than the one obtained 

through simulation, as we know for a perfect Nesterenko granular chain, the maximum velocities 

decay slightly as the wave propagates (see Fig. 5.1a). We also expect that any energy loss due to 

imperfections in the experimental system should only contribute to further decreasing the value 

of⁡𝑣𝑚𝑎𝑥,2. This interesting observation is explained in the next section, where the presence of gaps 

between particles is considered. 

Finally, we plot the measured group velocity 𝑣𝑔 = (13 − 2)2𝑅/Δ𝑡 at varying striker velocities in 

Fig. 5.2d for both 316 and 440c stainless steel particles. Remarkably, the propagating wave group 

velocity varies as a function of the striker velocity for both particles tested. This is a clear indication 

of the nonlinear interaction between the particles. From the data, however, we note a significant 

deviation of the group velocities from their predicted values to much lower values. This is again 

puzzling, since in previous plots we have observed a good agreement between the maximum 

velocities of the 2nd and 13th particles in the chains. It is surprising that the group velocities can deviate 

significantly, while the model accurately captures the maximum velocities. In order to explain this 

phenomenon, we analyze the effects of defects (i.e., gaps) in the chain and discuss the results in the 

next section. 

5.3. Gaps in micro-granular chains 

In order to explain the large deviation of the measured group velocity from the group velocity that 

was calculated with our numerical model for an ideal chain of particles that are perfectly in contact, 

we must consider the role of defects and gaps between particles in wave propagation. To compute 

these effects numerically, we include the presence of gaps between the micro-particles in our 

simulation (Fig. 5.3a). We perform numerical simulations of the wave propagation in a granular chain 

with randomly distributed gaps between neighboring particles. As seen in Fig. 5.3b, when an average 

gap of 20 nm is included between each contact, the maximum particle velocity along the chain begins 

to oscillate (the particle velocity no longer decreases uniformly along the chain), and the oscillation 

amplitude has a variation of about 20%. This can explain the variations of 𝑣𝑚𝑎𝑥,1 and 𝑣𝑚𝑎𝑥,2 in the 

experimental data shown in previous section. 
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Figure 5.3: Wave propagation in micro-granular chains with gaps. (a) 
Schematic diagram of the setup obtained by assigning a random gap 
between neighboring particles. (b) Numerical simulations for waves 
propagating in a granular chain with gaps. The initial velocity is 0.1 
m/s and the average gap size is 20 nm (c) Group velocity as a function 
of the striker velocity, at various gap sizes. Purple line: simulation of 
an ideal chain (gap=0). Pink bands: simulation results with randomly 
generated gap distributions, at a fixed average gap size ranging from 
10 to 190 nm. Dashed lines: theoretical predictions obtained with Eq. 
(26), based on the group velocity of a close-packed chain. The 
measured group velocity is fitted with the simulation results (dashed 
lines) of systems with averaged gap = 190 and 47 nm for stainless steel 
316 and 440c, respectively. 

We then calculate the value of the average group velocity as a function of the striker velocity and 

compare the results with the experimental data obtained for the two types of particles. The average 

group velocity is now defined as 𝑣𝑔 = 11(2𝑅 + ∆̅)/Δ𝑡, where ∆̅ is the average gap size per contact 

along the chain. The randomly sampled group velocities, at different values of ∆̅, are shown as the 

pink bands in Fig. 5.3c. We use a simple equation to estimate the measured group velocity: 

 2𝑅+∆̅

𝑣𝑔
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡,𝑤𝑖𝑡ℎ⁡𝑔𝑎𝑝𝑠) =

2𝑅

𝑣𝑔
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑛𝑜⁡𝑔𝑎𝑝𝑠) +

∆̅

𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟
, (5.4) 

This formula assumes that the total time of flight is equal to the sum of the time required for a wave 

to travel through the particles and the time required for the free-moving particles to travel the distance 

of a gap to reach the neighboring particles. The estimated curves obtained from Eq. (5.4) for different 

gap sizes are plotted by the blue dashed lines in Fig. 5.3c. We can see that the blue dashed lines lie 

above the corresponding randomly sampled chains, which is because 𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟 is not the exact velocity 

of the free-moving particle, but the highest possible velocity of any particle within the system. The 
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resulting group velocity therefore defines the upper bound for a chain with randomly distributed 

gaps, in which the real velocity is lower than 𝑣𝑠𝑡𝑟𝑖𝑘𝑒𝑟. These results show that even the presence of 

very little gaps can significantly alter wave propagation through micro-granular chains. For example, 

even gaps of only 20 nm (a value that is smaller than 0.1% of the diameter of the particles) can reduce 

the group velocity of the system by about 1/3. This results from the three order of magnitudes of 

difference between the group and striker velocities.  

We further analyze the experimental data obtained with the close-packed stainless steel 316 and 440c 

particles. By fitting the experimental points in Fig. 5.3c with different average gap sizes, we show 

that numerical predictions estimate an average gap size of 190.4 nm in a chain of stainless steel 316 

spheres and an average gap size of 47 nm for the chain of 440c particles. Note that the fitting curve 

lies above the experimental data because we fit it as an upper bound to the data points. 

 

Figure 5.4: Experimental data of group velocity at different gap sizes. 
The chains are excited with an initial velocity of 0.01m/s and group 
velocities are measured on a loosely packed chain. (a) Measurement 
of the total length of the chain. (b) Experimental data for the group 
velocity (brown dots) and predictions (dashed line). The data are 
scattered but remain below the upper bound of the dashed line. 

Experimentally, no direct way is available for resolving and measuring nanometer-size gaps in a given 

chain. To further analyze the effect of the gaps in experiments, we intentionally create micro-granular 

chains with a controlled length (defining an upper bound for the gaps). We create “loosely packed” 

chains, with a total length that is equal to the length of the ideally packed chain plus 4 to 8 µm. The 

total length 𝐿 of each chain is measured with the microscope system. We use (∆𝐿 − 11 × 2𝑅)/11 to 
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estimate the average gap size within each chain. We then excite the chains with the striker particle 

with a fixed striker velocity of 0.1 m/s and measure the resulting group velocities. The results are 

shown in Fig. 5.4. The numerically predicted curve for the corresponding group velocity is plotted 

with a dashed line, while the experimental data of the measured group velocities are indicated by 

brown dots. The measured group velocity appears to be scattered but is generally below the predicted 

upper bound of the dashed line, which is expected from Eq. (5.4). 

5.4. Summary 

In this chapter, we experimentally investigated the wave propagation within a one-dimensional chain 

of micro-particles. We constructed the micro-granular chain with a carefully engineered micro-

manipulator system and measured the traveling wave within the chain at different initial striker 

velocities. We obtained good agreement of propagation amplitude with simulation, but we observed 

a disagreement in the measured group velocities. This deviation is later explained with the presence 

of gaps within the non-compressed chain. Further simulation and experiments are then performed to 

quantify the influence of the gaps on the group velocity. 
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Chapter 6 

Wave Propagation in a Two-dimensional Colloidal System 

In the previous chapter, we analyzed wave propagation through dry, one-dimensional micro-granular 

chains in air. The generalization of the results to two-dimensional, micro-granular lattices is an 

interesting fundamental question. Earlier experimental investigations of wave propagation in 

macroscopic two-dimensional granular lattices have shown that lattice configuration plays a crucial 

role in determining the possible traveling wave that is supported by the granular system [85, 128]. 

For example, in contrast to the one-dimensional system, no genuine traveling wave excitations with 

constant velocity have been found to persist in a hexagonal configuration [148]. The new 

dimensionality not only introduces more interaction between particles and more possible direction 

for wave propagation, but it also changes the behavior of mechanical wave transport within the 

system.  

However, the dynamics of two- or three-dimensional ordered granular systems are relatively poorly 

understood. While it is suggested that a squared lattice granular system should behave similarly to a 

one-dimensional granular chain when the solitary wave is propagating along the lattice vectors, direct 

generalization of solitary wave solution to two- or three-dimensional systems has not yet been 

derived. Early experimental efforts by Shukla et al. use photoelasticity techniques (including cubic 

and hexagonal packing) to image wave propagation in various two-dimensional granular crystals [47, 

79-84]. These researchers’ experiments show that within higher dimensional granular crystals, the 

force load path is influenced by the contact angle between lattice elements and wave propagation is 

altered by the vectors connecting the centers of mass of the neighboring particles. The new 

dimensionality not only introduces more interaction between particles, but also brings new degrees 

of freedom for designing and engineering the lattice to achieve desired wave propagating properties. 

Leonard et al. studied the wave propagation in two-dimensional square lattice of spherical particles 

[85] and showed that by inserting cylindered intruders into square lattices of spherical particles, 

alternating both the wave direction and energy flux is possible [86]. 
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The testing of two-dimensional granular systems has also been shown to be sensitive to the 

presence of defects and imperfections in the lattice packing. Experimental results of different two-

dimensional arrangements of particles all showed that variations due to inter-particle gaps, surface 

defects, particle size variations, and the flatness of the supporting structure all affect the repeatability 

of the measured dynamic response. As the scale of the particles is reduced, these effects are expected 

to become more dominant, particularly in a dry environment where the physical contact between 

particles is not altered by surrounding media.  

To overcome these limitations, we explore wave propagation in two-dimensional micro-granular 

systems that are immersed in a fluid environment. For this we test colloidal systems that are composed 

of SiO2 particles in a water glycerol solution. In these systems, hexagonal lattices of SiO2 particles 

with a radius of 3.69 µm can be constructed using self-assembling techniques. We investigate these 

colloidal systems’ dynamics by delivering controlled kinetic energy that is several orders of 

magnitude higher than the background kinetic energy to specific particles within them. With higher 

kinetic energy, we are able to observe the inter-particle interaction at a much higher velocity and 

consequently much smaller inter-particle distance. This allows us to characterize the particle-particle 

interactions and their roles in particle wave propagation within the colloidal systems. 

6.1. Modeling the two-dimensional colloidal systems 

The colloidal system of SiO2 particles studied in this chapter differs from the dry particle system in 

the previous chapter not only due to the much smaller particles size, but also because of the presence 

of the background fluid. In this system, hydro-dynamic interactions between particles are a 

dominating factor in the dynamic response of the colloidal system. In the inertia regime, other types 

of forces such as lubrication hydrodynamic forces [122, 149], elastic contact forces [150], and even 

elatohydrodyamic forces [151, 152] might become significant in addition to the elastic inter-particle 

interactions. In this section, we detail the model that we developed for the colloidal systems. In this 

model, the inter-particle interactions between neighboring particles include contact forces, 

electrostatic forces, Stokes’ drag forces, and hydrodynamic forces. 

For particle 𝑖 interacting with another particle 𝑗, the total force on particle 𝑖 is 

 𝑓𝑖⃗⃗ = 𝑓stoke,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑓electrostatic,ij

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑓hydro,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑓contact,ij

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (6.1) 
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where 𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the electrostatic force due to the surface charges on the particles, 𝑓stoke,i

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 

the Stokes’ drag on particle 𝑖  moving in the fluid, 𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑓hydro,ij

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ , and 𝑓contact,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  are 

respectively the electrostatic, hydrodynamic, and contact interactions between the two particles. 

The electrostatic force, 𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , is formulated [153] as 

 
𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

1

4𝜋𝜀
(

𝑍

1+𝜅𝑅
)
2
(𝜅

𝑒
−𝜅𝐷𝑖𝑗

|𝑋𝑖⃗⃗⃗⃗ −𝑋𝑗⃗⃗⃗⃗  |
+ 𝑒−𝜅𝐷𝑖𝑗

1

|𝑋𝑖⃗⃗⃗⃗ −𝑋𝑗⃗⃗⃗⃗  |
2), (6.2) 

where 𝜀  is the permittivity of the background medium, 𝜅  is the screening coefficient of the 

electrostatic force, 𝑍 is the surface charges, 𝑅 is the radius of the particles, and 𝐷𝑖𝑗 ≡ 𝑅𝑖 + 𝑅𝑗 −

|𝑋𝑖
⃗⃗  ⃗ − 𝑋𝑗

⃗⃗  ⃗| is the distance between the surfaces of the two particles that are located at 𝑋𝑖
⃗⃗  ⃗ and 𝑋𝑗

⃗⃗  ⃗. 

Following the derivation in [149], the hydrodynamic force caused by the existence of the background 

fluid contributes to the dynamics with a velocity-dependent force that resists the relative motion in 

the normal direction, as well as with a tangential force between the two particles (when tangential 

motion exists): 

 
𝑓ℎ𝑦𝑑𝑟𝑜,𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (

𝑓(ℎ𝑦𝑑𝑟𝑜)𝑛

𝑓(ℎ𝑦𝑑𝑟𝑜)𝑡
) = (

−6𝜋𝜇𝑅2/𝐷𝑖𝑗
12

5
𝜋𝜇𝑅√2𝑅/𝐷𝑖𝑗

0 −2𝜋𝜇𝑅√2𝑅/𝐷𝑖𝑗

)(
𝑣𝑛,𝑖𝑗

𝑣𝑡,𝑖𝑗
), (6.3) 

where 𝜇 is the dynamic viscosity of the background fluid. In reality, because of the surface roughness 

of the particles, two particles approaching each other would have contact before 𝐷𝑖𝑗 reaches zero. We 

define this distance as the cutoff distance 𝐷𝑐𝑢𝑡, and Eq. (28) only holds when 𝐷𝑖𝑗 > 𝐷𝑐𝑢𝑡. Once the 

two particles are in contact (𝐷𝑖𝑗 < 𝐷𝑐𝑢𝑡), the tangential force becomes zero, 𝑓(ℎ𝑦𝑑𝑟𝑜)𝑡 = 0, and the 

normal force is modified to: 

 𝑓(ℎ𝑦𝑑𝑟𝑜)𝑛 = −6𝜋𝜇𝑅2 𝑣𝑛,𝑖𝑗

𝐷𝑖𝑗
(1 −

𝛿𝑖𝑗

𝐷𝑖𝑗
). (6.4) 

Here, 𝛿𝑖𝑗 ≡ 𝑅𝑖 + 𝑅𝑗 + 𝐷𝑐𝑢𝑡 − |𝑋𝑖
⃗⃗  ⃗ − 𝑋𝑗

⃗⃗  ⃗|  is the real deformation of the particles with the cut-off 

distance, 𝐷𝑐𝑢𝑡, included. Correspondingly, the contact force, 𝑓contact,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, is a modified version of Eq. 

(1) with 𝐷𝑐𝑢𝑡 included [154]: 
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𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) =
4

3

E𝑖E𝑗

E𝑖(1−ν𝑗
2)+E𝑗(1−ν𝑖

2)
√

2R𝑖R𝑗

R𝑖+R𝑗
(𝑅𝑖 + 𝑅𝑗 + 𝐷𝑐𝑢𝑡 − |𝑥𝑖 − 𝑥𝑗|)+

3

2. (6.5) 

In this model, 𝐷𝑐𝑢𝑡  is an artificial cut-off distance between the hydrodynamic and contact 

interactions, which we estimated based on the experimentally measured roughness of the particles’ 

surface. The parameters used in the model are listed in Table 6.1. With this model, we can simulate 

the wave propagation behavior at different initial velocities through a two-dimensional hexagonal 

lattice of particles.  

Material properties Values 

𝐷𝑐𝑢𝑡 (nm) 24 

𝜅 (1/nm) 1/300 

Z (G) 600 

E (GPa) 73.1 

𝜐 0.17 

Table 6.1: The parameters for numerical simulation with Eq. (6.1). 

6.2. Excitation of mechanical waves in colloidal systems 

In experiments, we begin by testing the dynamic response of the hexagonal lattice to a controlled 

energy input. The experimental setup has been described in Chapter 2. At first we create a hexagonal 

lattice within the micro-fluidic cell using the self-assembling techniques. In order to excite the 

transparent SiO2 particles, we deposit a metal layer of SiO2 particles and mix it with the uncoated one 

at a ratio of 1 to 500. Using the laser ablation technique, we excite the particles around the coated 

particle and observe the displacement of the surrounding particles with our high-speed imaging 

system at a rate of 311111 frames per second. 

 

Figure 6.1: Images of laser excitation of micro-particles in a hexagonal 
lattice. (a) Photograph of a lattice prepared for laser excitation. The 
dark particle in the center is a micro-particle coated with 50 nm of Au 
that is targeted by the laser. (b) Excitation of the system with a weak 
laser pulse with energy of 0.1 µJ. The target particle obtains an initial 
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velocity in the direction of the red arrows. (c) Excitation of the system 
with a strong laser pulse of 0.25 µJ. Isotropic wave propagation in all 
directions is observed. 

Fig. 6.1 shows the high-speed images of a typical response of the system to laser excitation. A coated 

particle originally at rest in a hexagonal lattice (Fig. 6.1a) is shot by weak (Fig. 6.1b) or strong (Fig. 

6.1c) laser pulse. In the weak case, the laser energy projected onto the particle is 0.1 µJ and results in 

a linear motion of the excited particles along the red arrows. At higher power, a more isotropical 

displacement of particles occurs along the six preferred directions in the hexagonal lattice (which are 

labeled by the six red arrows in Fig. 6.1c). The difference between linear particle motion and isotropic 

excitation may be due to the initial disorder of the hexagonal lattice or the inhomogeneity of the 

coated surface. 
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Figure 6.2: The velocity and kinetic energy transfers to the colloidal 
system by laser excitation. The velocity map of the system excited at 
(a) 0.13, (b) 0.19, (c) 0.21, and (d) 0.23 µJ shows that at lower energy 
(less than 0.15 µJ in our system), the laser can only excite the linear 
motion of the coated particles. At higher power the laser is capable of 
exciting mechanical impulses in all six hexagonal directions. The 
higher the laser energy, the farther the wave can reach out from the 
center. (e) The total kinetic energy of micro-particles in the lattice at 
different laser powers and background fluid viscosities. The energy 
transfer efficiency is about 0.001%, which is close to the efficiency 
when exciting one particle (see Chapter 3). 

Using imaging processing techniques, we obtain the averaged velocities of the colloids in the lattice. 

An averaged velocity is defined as 𝑣̅ ≡ ∆𝑥/∆𝑡𝑐, where ∆𝑥 is the displacement observed in one frame 

and ∆𝑡𝑐 is the sample interval of the high-speed camera (which is 1/311111 in our system). We 

analyze the data of the colloidal system excited at different laser energy and plot the velocity map in 

Fig. 6.2. We can see decay of particle velocity over the distance from the center of laser impact. The 
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laser energy of the excitation is 0.13, 0.19, 0.21, and 0.23 µJ for Fig. 6.2a-d, respectively. At the 

low power excitation of 0.13 µJ, the linear excitation is observed again; while the laser energy 

increases, a more uniform displacement in all directions can be seen and the observed averaged 

velocity reaches out farther from the center of laser impact. While the exact mechanism of the laser 

excitation of the lattice is unclear given that the event happens much faster than the acquisition rate 

of our high-speed imaging system, the phenomenon is shown to be very reproducible and can be used 

as an experimental technique for exciting wave propagation in hexagonal lattices. 

From the calibration of particle velocity at fixed laser energy and dynamic viscosity of the background 

fluid (Chapter 3), we know that the hydrodynamic properties of the background fluid are major factors 

influencing the laser excitation process. To gain more insight into the laser excitation, we vary the 

viscosity of the background fluid and calculate the total kinetic energy of all particles of the resulted 

measurement; the result is shown in Fig. 6.2e. Here we define the total kinetic energy of the system 

with the average velocity that we obtained from the experiment, 𝐸𝑘 = ∑𝑚𝑣̅2/2, where 𝑚 is the mass 

of the colloids. The efficiency of energy transfer is about 0.001%, which is very close to what we 

have seen in Chapter 3. Since the kinetic energy carried by the background fluid is not measurable 

using the imaging system, the results imply that the kinetic energies of the lattices excited by laser 

are mostly carried by the colloids that are visible experimentally. If this is true, our modeling of the 

colloids with particle-particle interaction (as opposed to a full hydrodynamic system that includes the 

fluid) should be sufficient for capturing most of the system’s dynamics. 

It is also interesting to see that the sample with viscosity equals to 0.004 Pl obtains more kinetic 

energy than the other two cases. When the laser excites the system, two competing factors influence 

the measured total energy: one is the higher efficiency of the PLA in fluid with higher viscosity, the 

other is the higher loss of kinetic energy due to higher viscosity. The first factor has already been 

discussed in Chapter 3; let us now consider the second one. If the colloids have a viscosity of 𝜇, the 

Stokes’ drag force (𝑓 = −6𝜋𝜇𝑅𝑣) has a time constant of 2𝑅2𝜌/9𝜇, which is 5.6, 1.4, and 0.56 µs 

for our SiO2 particles when 𝜇 equals 0.001, 0.004 and 0.01, respectively. Considering our acquisition 

time of 3.3 µs, we expect very strong deceleration of the particles in the system with 𝜇 = 0.01⁡𝑃𝑙, 

which explains the suppressed total kinetic energy. In the following work, we consider the laser 

excitation as a means to excite the six centermost particles simultaneously to the six hexagonal 

directions, with a controlled velocity that is determined by the laser energy and viscosity. Based on 
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this observation, we simulate wave propagation excited by laser in our colloidal system in the next 

section. 

6.3. Mechanical wave propagation in colloidal systems 

Until now we have been discussing the displacement and averaged velocities that are obtained 

experimentally. In order to gain more insight into the roles of different interactions between the 

particles in the system, in this section we perform numerical simulation of wave propagation. We 

start with the simulation of wave propagation behavior along the six branches of colloids in the 

hexagonal direction from the center (Fig. 6.3). In Fig. 6.3a, the coated particle is illustrated as the 

black particle in the center. After the laser excitation, the six neighboring particles obtain initial 

velocities and produce propagating waves in each hexagonal direction. We simulate the two-

dimensional wave propagation with an initial velocity, 𝑣𝑖𝑛𝑖, of 13 m/s, a viscosity of 0.004 Pl, and an 

initial distance between neighboring particles of 250nm. We choose a branch of particles from the six 

hexagonal directions and label those particles from 1 to 7. We plot the velocity of each particle in Fig. 

6.3b and the inter-particle distance in Fig. 6.3d. 

In Fig. 6.3d, we first notice that most of the evolution of the particles’ velocities occurs within the 

first 200 ns and is quickly stabilized after 1 µs from the initial excitation. Since this is shorter than the 

minimal exposure time of our high-speed imaging system (2.7 µs), the details of the collision will not 

be resolved in the high-speed images; the measured displacement of the particle is the time-integration 

of velocity during the camera’s acquisition time. In the first 200 ns, the particles collide with each 

other and pass on velocities along the chain. During this process, the velocities decay much faster 

than they do during the later period. The differences in velocity between particles are also being 

eliminated, and after the particles obtain similar velocities, their velocities decay exponentially. The 

fast elimination of velocity difference is the effect of the hydrodynamic force, 𝑓ℎ𝑦𝑑𝑟𝑜,𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ~ −

6𝜋𝜇𝑅2

𝐷𝑖𝑗
𝑣𝑖𝑗 = −6𝜋𝜇R

𝑅

𝐷𝑖𝑗
⁡𝑣𝑖𝑗, which causes the relative velocities between neighboring particles, 𝑣𝑖𝑗, 

to decrease. Notice that the hydrodynamic force differs with the Stokes’ drag by a factor of 
𝑅

𝐷𝑖𝑗
. This 

is because in a close-packed lattice, 𝐷𝑖𝑗 ≪ 𝑅, the hydrodynamic force is the dominant interaction that 

contributes to the decay of velocities before the velocity difference is eliminated. A closer look at the 

velocity of the first particle reveals a short period of acceleration after it collides with the second 

particle, which is again due to the hydrodynamic force resisting the separation of two particles. 
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Figure 6.3: Numerical study of wave propagation along a chain within 
the hexagonal lattice. (a) Schematic diagram of the excitation and 
geometry of the lattice (b) The velocities of particles along the chain. 
(c) The total displacement (red dots) after the excitation obtained 
through simulation. It is fitted with an exponential decay formula and 
gives the decay length of 2.7. (d) The inter-particle distance during 
wave propagation. 

In Fig. 6.3b, we also plot the same velocity result in log scale. It becomes clear that the final velocities 

of the particles approach the same value and results in the broadening of mechanical pulse. Due to 

the presence of the factor of 
𝑅

𝐷𝑖𝑗
 in hydrodynamic force, the broadening effects of hydrodynamic force 

on the traveling wave are more significant in a system where two particles can approach each other 

more closely. In our system this means when we have a higher initial velocity on the six centermost 

particles, the measured distance along the chain should decrease less since the particles obtain the 

same velocities more quickly than they do in the case of lower initial velocities. 

It is noticeable that the velocity behavior of the first four particles is different from the behavior of 

later particles along the chain. The distinct behavior is due to the first four particles having reached 
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the regime of particle deformation. This deformation can be confirmed from Fig. 6.3d, in which 

the inter-particle distances between the first five particles have reach the cut-off distance, along with 

a faster bounce back. During the contact time, the particles transfer velocities via contact force, which 

is much more efficient than via hydrodynamic force. Whether a particle can reach the deformation 

regime is determined by whether its initial velocity is large enough to bring two particles into contact. 

In this case, the velocity barrier seems to be approximately 1 m/s.  

To compare the simulation results with the experimental data of displacement, in Fig. 6.3c we plot 

each particle’s final displacement, which decreases along the chain. To obtain a quantitative 

description of the decay, we fit the results with an exponential law of decay and obtain a decay 

constant of 28.2 µm. 

   

Figure 6.4: Experimental data of a wave propagation in the colloidal 
system with a viscosity of 0.01 Pl is excited by pulse energy of 0.16 µJ. 
(a) The measured velocity map of the system. The red boxes show the 
geometry of chains in the six hexagonal directions from the center 
particle. (b) The displacement of the particles that are shown in the 
red boxes in (a). (c) The decay length measured at different 
combinations of laser energy and viscosity. 

In Fig. 6.4, we show experimental results of a velocity map of a system with a viscosity of 0.01 Pl as 

excited by pulse energy of 0.16 µJ. The six directions, which are marked by red boxes along the 
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lattice, and the displacement of particles within these boxes are shown by the dashed line in Fig. 

6.2b. The decay can be seen from this dashed line. The averaged values (red dots) of the displacement 

at each distance are used to fit the exponential decay of the displacement along the chain. We obtain 

a decay length at varying laser energy and viscosity, as shown in Fig. 6.4c. The results show that for 

the same viscosity, the higher the laser energy (and initial velocities) are, the longer the decay length 

of the wave propagation. This agrees with the simulation, which indicates that a system with higher 

initial velocities will reach steady states (i.e., particles moving at the same velocities) faster and that 

the differences between the measured displacements along the chain will be smaller. With regard to 

the decay length obtained at the same laser energy, we expect it to be shorter given that at lower 

viscosity, the initial velocity excited by lasers will be less than in the case of higher viscosity. On the 

other hand, another competing factor is at play, namely the higher dissipation (and shorter decay 

length) due to higher viscosity. As a result we observe a shorter decay length of the same laser power 

at both low viscosity 0.001 (due to lower initial velocity) and high viscosity 0.01 (due to the higher 

dissipation). 

 

Figure 6.5: Velocity maps of the system tested at different laser energy 
and background fluid viscosity. The system is tested under a 
combination of viscosity equaling 0.001 Pl and 0.004 Pl and laser 
energy equaling 0.16, 0.20, and 0.25 µJ. 

In Fig. 6.5, we show the experimental results of the velocity maps of systems of different viscosity as 

excited by different laser energy. Let us first compare images in the same column, which represents 

the system response at the same laser energy and different viscosity. The images with higher viscosity 

show shorter mechanical wave spans, which result from the high dissipation from higher viscosity. If 

we consider the fact that the laser transfers a higher initial velocity at higher viscosity, the effect of 

higher viscosity stopping the wave from reaching a farther distance from the center is even more 
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evident. Looking at the images in one row, we can see that at higher laser energy, the velocity 

distribution in the lattice becomes more isotropic. This can be explained by the tangential component 

of the hydrodynamic force, which is proportional to the tangential component of relative velocity 

between particles. Furthermore, at higher velocity, the particles in the chain in the six hexagonal 

directions could exert higher tangential force on the particles that are next to the chain. Since the 

hydrodynamic force is the main source for redistributing energy to the neighboring particles (other 

than the very small component of normal force that occurs when particles in the chain dislocate from 

their positions in an ideal lattice), a comparison of two systems dominated by the contact or 

hydrodynamic force will help to clarify the origin of isotropicity. 

We simulate the behavior of two cases in which 𝜇 and 𝑣𝑖𝑛𝑖 are (a) 0.001 Pl, 8 m/s and (b) 0.004 Pl, 

24 m/s. The higher initial velocity in the second case is included to account for the higher initial 

velocity that is obtained from the same laser energy acting on a system with higher viscosity. We 

obtain the evolution of the system at different time steps and plot the resultant velocity map in Fig. 

6.6ab. In the fluid with a viscosity of 0.001 Pl, the wave propagates with little loss and redistribution 

to the other particles. In the fluid with a viscosity of 0.004 Pl, the wave decays faster and shows more 

isotropic propagation due to the strong hydrodynamic forces. The anisotropicity in the less viscous 

fluid comes from the fact that the deformation regime can easily be reached between the spheres in 

the branches due to lower hydrodynamic barriers. This allows more efficient momentum transfers 

between spheres in the branches, and as a result the hydrodynamic regime becomes less dominant in 

the evolution of the system and less energy is distributed onto the neighboring particles. These results 

indicate that the hydrodynamic force is the main contributing factor to the system’s isotropicity. 
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Figure 6.6 Numerical simulation of wave propagation generated with 

different initial velocities and fluid viscosities; 𝜇 and 𝑣𝑖𝑛𝑖 are (a) 0.001 
Pl, 8 m/s and (b) 0.004 Pl, 24 m/s. The higher initial velocity in the 
second case is included to account for the higher initial velocity 
obtained from the same laser energy acting on a system with higher 
viscosity. 

6.4. Summary 

In this chapter we discussed the experimental and numerical examination of a two-dimensional 

micro-granular system that consists of a hexagonal lattice of SiO2 particles with a radius of 3.69 µm. 

We performed the experimental examination by sending laser energy into the system to excite the 

initial velocity of one of the six centermost particles in the lattice. With the resultant velocity that is 
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high in comparison to traditional means, we are allowed to explore the system while the particles 

have enough velocity to break through the hydrodynamic barriers and to study wave propagation in 

systems of different viscosities. To capture the behavior of the system, we constructed a model that 

included the contact force, hydrodynamic force, electrostatic force, and Stokes’ drag force and 

performed numerical simulation to study wave propagation at a time resolution higher than the one 

we used in our experimental system. The resultant simulation characterizes the roles of the 

hydrodynamic force and contact within wave propagation as well as explains the origins of isotropic 

wave propagation within the system. 

 



 

 

84 

Chapter 7 

Conclusion & Future Work 

7.1. Conclusion 

In this thesis, we design an innovative experimental platform that allows us to assemble, excite, and 

characterize ordered micro-granular systems. In Chapter 2 and 3, we detail the design of a new 

experimental platform that employs both a laser system to deliver impulses with controlled 

momentum and non-contact measurements (including high-speed optical microscopy and laser 

interferometry) to detect particle displacement and velocity. We fabricate micro-structures to guide 

and confine the one-dimensional micro-granular system that is assembled using a computer-

controlled micro-manipulator. In addition, we employ self-assembling techniques to create two-

dimensional hexagonal lattices in micro-fluidic cells. We test and demonstrate the capability of the 

laser excitation system to deliver controlled momenta to the above systems of dry (stainless steel 

particles of radius 150 µm) and wet (SiO2 particles of radius 3.69 µm, immersed in fluid) micro-

particles.  

In Chapter 4, we study the dynamics of particles in a one-dimensional micro-structure support. We 

first derive the governing equations of motion that describe the dynamic response of dry and wet 

particles on a substrate. To investigate how a micro-structure support influences the dynamics of 

micro-particles that are loaded onto it, we study the loss in our micro-particle configuration both 

analytically and experimentally. We measure the Stokes’ and Coulomb friction of the micro-particles 

by tracking their trajectories at varying initial momenta. We study the collisions of rolling micro-

particles in a groove to investigate the exchange of translational and angular momenta during 

collisions. Through observing inelastic collisions of rolling particles and nearly elastic collisions of 

particles that are initially in contact, we discover a linear dependency between the contact force and 

the tangential frictional force between the colliding particles. We obtain empirical equations of 

motions that describes the dynamics of the micro-granular system. 

In Chapter 5, we investigate the mechanical wave propagation properties as well as the influence of 

defects in one-dimensional, dry chains of micro-particles. We measure the attenuation of the 
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mechanical wave along the chain at different initial striker velocities and show that it agrees with 

the theoretical prediction. We measure the delay time of wave propagation inside the chain and show 

that measured group velocity depends on the initial velocity. We compare the deviation of the 

measured group velocity with the case of a Hertzian system, and we numerically show that the 

deviation can result from the presence of defects (which here are gaps between micro-particles). To 

prove this we use the microscopic system to perform time of fly measurements for systems with a 

known maximum gap. We show that the measured group velocity agrees the numerical simulation. 

In Chapter 6, we study wave propagation in two-dimensional colloidal systems that are immersed in 

fluid. We produce controlled mechanical wave impulses within the system, study the total energy 

transfer at varying laser energy, and observe the system’s response displacement. We experimentally 

characterize the wave-attenuation and its relation to the viscosity of the surrounding fluid and perform 

computer simulations to establish a model that captures the observed response. 

In this thesis we describe the first systematic experimental and numerical analysis of wave 

propagation in ordered systems of micro-particles. This work provides a foundation for advancing 

fundamental research of granular and colloidal systems and offers basic insights into the 

miniaturization of applications based on highly nonlinear granular systems. 

7.2. Future work 

In this thesis we present a new experimental framework and study micro-granular systems 

constructed on supporting structures that are fabricated with photolithography technology. Modern 

micro-fabrication technology provides us with well-studied fabrication processes that enable more 

sophisticated micro-structures for constructing micro-granular systems. The fabrication technology 

provides great experimental freedom for future studies related to micro-granular systems with 

different geometries, improving micro-granular system assembling, and the mechanical response of 

a hybrid system of a micro-granular and elastic materials. 

The local, instantaneous delivery of momentum to micro-particles that is used in these experiments 

have several advantages. In the wet particle experiments, we demonstrate that with the high initial 

velocity that is generated by laser ablation, the particles have enough energy to overcome the 

hydrodynamic boundary and to interact with other particles with contact force (which is a regime that 

is difficult to access using traditional experimental tools for colloidal dynamics). This allows us to 

explore experimentally the interplay between hydrodynamic interaction and contact interaction, and 
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influence of these interactions on the collective behavior of the lattice. Using chemical growing 

techniques, colloidal particles can be fabricated to carry desired softness, surface roughness, and 

attractive or repulsive inter-particle electrostatic forces. The laser-based excitation system can be used 

to examine the dynamics of the customized fabricated colloidal systems.  

This flexibility of laser excitation can also be applied to one- or three-dimensional colloidal systems. 

Since the laser only interacts with non-transparent particles that are near its focal point, a laser 

excitation can be delivered to the target particles within three-dimensional systems with negligible 

influence on other particles. This provides us with new ways to excite mechanical waves at specific 

locations within the colloidal systems, which will be useful for researching new categories of 

mechanical waves (which are difficult to generate using traditional means). 

Non-contact laser-based excitation has a great advantage over traditional contact-based excitation, 

which is the ease of producing excitation at multiple locations by splitting and redirecting the laser 

beam. While we only use the laser to excite a single particle within the system in this study, the 

capability of exciting the system at multiple locations allows us to investigate the interaction between 

mechanical waves that are generated at different locations within the granular system. Future studies 

of the collision and interference of mechanical waves within micro-granular systems can advance the 

fundamentally understanding of the micro-granular system as a medium of wave propagation. 

The mechanical response of the laser ablation has significant space for improvement. The stainless 

steel particles used in this work were not chosen for their good material response, and the complicated 

material composition of stainless steel is a possible cause of the 15% variation on output velocities. 

Future systematic searches for a better ablation material for mechanical wave generation would 

benefit the accuracy and repeatability of these laser-based experiments. An ideal ablation should 

possess efficient material response, high repeatability, low material consumption per ablation, and 

little influence on the sample. While materials with these properties might not be available, we expect 

that a great improvement in ablation performance could be achieved through switching to material 

that is better than stainless steel. Our experimental capacity would benefit from a material that is 

ideally suitable for mechanical wave generation, as it would enable accurate, repeatable, continuous 

operation of mechanical wave generation.  

Finally, other than the material response of the laser ablation, more work can be done to improve 

particle manipulation mechanisms via the sophisticated control of laser beam profiles and positions. 
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Modern optics have a variety of tools to shape the laser pulse in time and spatial domains. For 

example, a spatial light modulator can alter the beam profile and direction by modulating the phase 

of the laser profile using liquid crystals. This device can be used to create multiple focus points as 

well as to shift the focus point in real time. Together with the image acquisition and processing 

system, future work to explore the manipulation of non-transparent colloids in micro-fluid systems 

with an optical griper that consists of laser focal points would benefit our fundamental ability to 

manipulate micro-particles. This advance could in turn be applied to studying complex two- and 

three-dimensional structures in colloidal systems or to manipulating objects in bio-mechanical 

systems. Unlike the optical tweezer (which can only be applied to transparent targets), laser ablation 

can be applied to non-transparent targets; as a result it can provide control over entirely different 

categories of micro-objects. 

. 
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