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Chapter 6 

Wave Propagation in a Two-dimensional Colloidal System 

In the previous chapter, we analyzed wave propagation through dry, one-dimensional micro-granular 

chains in air. The generalization of the results to two-dimensional, micro-granular lattices is an 

interesting fundamental question. Earlier experimental investigations of wave propagation in 

macroscopic two-dimensional granular lattices have shown that lattice configuration plays a crucial 

role in determining the possible traveling wave that is supported by the granular system [85, 128]. 

For example, in contrast to the one-dimensional system, no genuine traveling wave excitations with 

constant velocity have been found to persist in a hexagonal configuration [148]. The new 

dimensionality not only introduces more interaction between particles and more possible direction 

for wave propagation, but it also changes the behavior of mechanical wave transport within the 

system.  

However, the dynamics of two- or three-dimensional ordered granular systems are relatively poorly 

understood. While it is suggested that a squared lattice granular system should behave similarly to a 

one-dimensional granular chain when the solitary wave is propagating along the lattice vectors, direct 

generalization of solitary wave solution to two- or three-dimensional systems has not yet been 

derived. Early experimental efforts by Shukla et al. use photoelasticity techniques (including cubic 

and hexagonal packing) to image wave propagation in various two-dimensional granular crystals [47, 

79-84]. These researchers’ experiments show that within higher dimensional granular crystals, the 

force load path is influenced by the contact angle between lattice elements and wave propagation is 

altered by the vectors connecting the centers of mass of the neighboring particles. The new 

dimensionality not only introduces more interaction between particles, but also brings new degrees 

of freedom for designing and engineering the lattice to achieve desired wave propagating properties. 

Leonard et al. studied the wave propagation in two-dimensional square lattice of spherical particles 

[85] and showed that by inserting cylindered intruders into square lattices of spherical particles, 

alternating both the wave direction and energy flux is possible [86]. 
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The testing of two-dimensional granular systems has also been shown to be sensitive to the 

presence of defects and imperfections in the lattice packing. Experimental results of different two-

dimensional arrangements of particles all showed that variations due to inter-particle gaps, surface 

defects, particle size variations, and the flatness of the supporting structure all affect the repeatability 

of the measured dynamic response. As the scale of the particles is reduced, these effects are expected 

to become more dominant, particularly in a dry environment where the physical contact between 

particles is not altered by surrounding media.  

To overcome these limitations, we explore wave propagation in two-dimensional micro-granular 

systems that are immersed in a fluid environment. For this we test colloidal systems that are composed 

of SiO2 particles in a water glycerol solution. In these systems, hexagonal lattices of SiO2 particles 

with a radius of 3.69 µm can be constructed using self-assembling techniques. We investigate these 

colloidal systems’ dynamics by delivering controlled kinetic energy that is several orders of 

magnitude higher than the background kinetic energy to specific particles within them. With higher 

kinetic energy, we are able to observe the inter-particle interaction at a much higher velocity and 

consequently much smaller inter-particle distance. This allows us to characterize the particle-particle 

interactions and their roles in particle wave propagation within the colloidal systems. 

6.1. Modeling the two-dimensional colloidal systems 

The colloidal system of SiO2 particles studied in this chapter differs from the dry particle system in 

the previous chapter not only due to the much smaller particles size, but also because of the presence 

of the background fluid. In this system, hydro-dynamic interactions between particles are a 

dominating factor in the dynamic response of the colloidal system. In the inertia regime, other types 

of forces such as lubrication hydrodynamic forces [122, 149], elastic contact forces [150], and even 

elatohydrodyamic forces [151, 152] might become significant in addition to the elastic inter-particle 

interactions. In this section, we detail the model that we developed for the colloidal systems. In this 

model, the inter-particle interactions between neighboring particles include contact forces, 

electrostatic forces, Stokes’ drag forces, and hydrodynamic forces. 

For particle 𝑖 interacting with another particle 𝑗, the total force on particle 𝑖 is 

 𝑓𝑖⃗⃗ = 𝑓stoke,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑓electrostatic,ij

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑓hydro,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑓contact,ij

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (6.1) 
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where 𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the electrostatic force due to the surface charges on the particles, 𝑓stoke,i

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 

the Stokes’ drag on particle 𝑖  moving in the fluid, 𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑓hydro,ij

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ , and 𝑓contact,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  are 

respectively the electrostatic, hydrodynamic, and contact interactions between the two particles. 

The electrostatic force, 𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , is formulated [153] as 

 
𝑓electrostatic,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

1

4𝜋𝜀
(

𝑍

1+𝜅𝑅
)
2
(𝜅

𝑒
−𝜅𝐷𝑖𝑗

|𝑋𝑖⃗⃗⃗⃗ −𝑋𝑗⃗⃗⃗⃗  |
+ 𝑒−𝜅𝐷𝑖𝑗

1

|𝑋𝑖⃗⃗⃗⃗ −𝑋𝑗⃗⃗⃗⃗  |
2), (6.2) 

where 𝜀  is the permittivity of the background medium, 𝜅  is the screening coefficient of the 

electrostatic force, 𝑍 is the surface charges, 𝑅 is the radius of the particles, and 𝐷𝑖𝑗 ≡ 𝑅𝑖 + 𝑅𝑗 −

|𝑋𝑖
⃗⃗  ⃗ − 𝑋𝑗

⃗⃗  ⃗| is the distance between the surfaces of the two particles that are located at 𝑋𝑖
⃗⃗  ⃗ and 𝑋𝑗

⃗⃗  ⃗. 

Following the derivation in [149], the hydrodynamic force caused by the existence of the background 

fluid contributes to the dynamics with a velocity-dependent force that resists the relative motion in 

the normal direction, as well as with a tangential force between the two particles (when tangential 

motion exists): 

 
𝑓ℎ𝑦𝑑𝑟𝑜,𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (

𝑓(ℎ𝑦𝑑𝑟𝑜)𝑛

𝑓(ℎ𝑦𝑑𝑟𝑜)𝑡
) = (

−6𝜋𝜇𝑅2/𝐷𝑖𝑗
12

5
𝜋𝜇𝑅√2𝑅/𝐷𝑖𝑗

0 −2𝜋𝜇𝑅√2𝑅/𝐷𝑖𝑗

)(
𝑣𝑛,𝑖𝑗

𝑣𝑡,𝑖𝑗
), (6.3) 

where 𝜇 is the dynamic viscosity of the background fluid. In reality, because of the surface roughness 

of the particles, two particles approaching each other would have contact before 𝐷𝑖𝑗 reaches zero. We 

define this distance as the cutoff distance 𝐷𝑐𝑢𝑡, and Eq. (28) only holds when 𝐷𝑖𝑗 > 𝐷𝑐𝑢𝑡. Once the 

two particles are in contact (𝐷𝑖𝑗 < 𝐷𝑐𝑢𝑡), the tangential force becomes zero, 𝑓(ℎ𝑦𝑑𝑟𝑜)𝑡 = 0, and the 

normal force is modified to: 

 𝑓(ℎ𝑦𝑑𝑟𝑜)𝑛 = −6𝜋𝜇𝑅2 𝑣𝑛,𝑖𝑗

𝐷𝑖𝑗
(1 −

𝛿𝑖𝑗

𝐷𝑖𝑗
). (6.4) 

Here, 𝛿𝑖𝑗 ≡ 𝑅𝑖 + 𝑅𝑗 + 𝐷𝑐𝑢𝑡 − |𝑋𝑖
⃗⃗  ⃗ − 𝑋𝑗

⃗⃗  ⃗|  is the real deformation of the particles with the cut-off 

distance, 𝐷𝑐𝑢𝑡, included. Correspondingly, the contact force, 𝑓contact,ij
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, is a modified version of Eq. 

(1) with 𝐷𝑐𝑢𝑡 included [154]: 
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𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) =
4

3

E𝑖E𝑗

E𝑖(1−ν𝑗
2)+E𝑗(1−ν𝑖

2)
√

2R𝑖R𝑗

R𝑖+R𝑗
(𝑅𝑖 + 𝑅𝑗 + 𝐷𝑐𝑢𝑡 − |𝑥𝑖 − 𝑥𝑗|)+

3

2. (6.5) 

In this model, 𝐷𝑐𝑢𝑡  is an artificial cut-off distance between the hydrodynamic and contact 

interactions, which we estimated based on the experimentally measured roughness of the particles’ 

surface. The parameters used in the model are listed in Table 6.1. With this model, we can simulate 

the wave propagation behavior at different initial velocities through a two-dimensional hexagonal 

lattice of particles.  

Material properties Values 

𝐷𝑐𝑢𝑡 (nm) 24 

𝜅 (1/nm) 1/300 

Z (G) 600 

E (GPa) 73.1 

𝜐 0.17 

Table 6.1: The parameters for numerical simulation with Eq. (6.1). 

6.2. Excitation of mechanical waves in colloidal systems 

In experiments, we begin by testing the dynamic response of the hexagonal lattice to a controlled 

energy input. The experimental setup has been described in Chapter 2. At first we create a hexagonal 

lattice within the micro-fluidic cell using the self-assembling techniques. In order to excite the 

transparent SiO2 particles, we deposit a metal layer of SiO2 particles and mix it with the uncoated one 

at a ratio of 1 to 500. Using the laser ablation technique, we excite the particles around the coated 

particle and observe the displacement of the surrounding particles with our high-speed imaging 

system at a rate of 311111 frames per second. 

 

Figure 6.1: Images of laser excitation of micro-particles in a hexagonal 
lattice. (a) Photograph of a lattice prepared for laser excitation. The 
dark particle in the center is a micro-particle coated with 50 nm of Au 
that is targeted by the laser. (b) Excitation of the system with a weak 
laser pulse with energy of 0.1 µJ. The target particle obtains an initial 
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velocity in the direction of the red arrows. (c) Excitation of the system 
with a strong laser pulse of 0.25 µJ. Isotropic wave propagation in all 
directions is observed. 

Fig. 6.1 shows the high-speed images of a typical response of the system to laser excitation. A coated 

particle originally at rest in a hexagonal lattice (Fig. 6.1a) is shot by weak (Fig. 6.1b) or strong (Fig. 

6.1c) laser pulse. In the weak case, the laser energy projected onto the particle is 0.1 µJ and results in 

a linear motion of the excited particles along the red arrows. At higher power, a more isotropical 

displacement of particles occurs along the six preferred directions in the hexagonal lattice (which are 

labeled by the six red arrows in Fig. 6.1c). The difference between linear particle motion and isotropic 

excitation may be due to the initial disorder of the hexagonal lattice or the inhomogeneity of the 

coated surface. 
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Figure 6.2: The velocity and kinetic energy transfers to the colloidal 
system by laser excitation. The velocity map of the system excited at 
(a) 0.13, (b) 0.19, (c) 0.21, and (d) 0.23 µJ shows that at lower energy 
(less than 0.15 µJ in our system), the laser can only excite the linear 
motion of the coated particles. At higher power the laser is capable of 
exciting mechanical impulses in all six hexagonal directions. The 
higher the laser energy, the farther the wave can reach out from the 
center. (e) The total kinetic energy of micro-particles in the lattice at 
different laser powers and background fluid viscosities. The energy 
transfer efficiency is about 0.001%, which is close to the efficiency 
when exciting one particle (see Chapter 3). 

Using imaging processing techniques, we obtain the averaged velocities of the colloids in the lattice. 

An averaged velocity is defined as 𝑣̅ ≡ ∆𝑥/∆𝑡𝑐, where ∆𝑥 is the displacement observed in one frame 

and ∆𝑡𝑐 is the sample interval of the high-speed camera (which is 1/311111 in our system). We 

analyze the data of the colloidal system excited at different laser energy and plot the velocity map in 

Fig. 6.2. We can see decay of particle velocity over the distance from the center of laser impact. The 
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laser energy of the excitation is 0.13, 0.19, 0.21, and 0.23 µJ for Fig. 6.2a-d, respectively. At the 

low power excitation of 0.13 µJ, the linear excitation is observed again; while the laser energy 

increases, a more uniform displacement in all directions can be seen and the observed averaged 

velocity reaches out farther from the center of laser impact. While the exact mechanism of the laser 

excitation of the lattice is unclear given that the event happens much faster than the acquisition rate 

of our high-speed imaging system, the phenomenon is shown to be very reproducible and can be used 

as an experimental technique for exciting wave propagation in hexagonal lattices. 

From the calibration of particle velocity at fixed laser energy and dynamic viscosity of the background 

fluid (Chapter 3), we know that the hydrodynamic properties of the background fluid are major factors 

influencing the laser excitation process. To gain more insight into the laser excitation, we vary the 

viscosity of the background fluid and calculate the total kinetic energy of all particles of the resulted 

measurement; the result is shown in Fig. 6.2e. Here we define the total kinetic energy of the system 

with the average velocity that we obtained from the experiment, 𝐸𝑘 = ∑𝑚𝑣̅2/2, where 𝑚 is the mass 

of the colloids. The efficiency of energy transfer is about 0.001%, which is very close to what we 

have seen in Chapter 3. Since the kinetic energy carried by the background fluid is not measurable 

using the imaging system, the results imply that the kinetic energies of the lattices excited by laser 

are mostly carried by the colloids that are visible experimentally. If this is true, our modeling of the 

colloids with particle-particle interaction (as opposed to a full hydrodynamic system that includes the 

fluid) should be sufficient for capturing most of the system’s dynamics. 

It is also interesting to see that the sample with viscosity equals to 0.004 Pl obtains more kinetic 

energy than the other two cases. When the laser excites the system, two competing factors influence 

the measured total energy: one is the higher efficiency of the PLA in fluid with higher viscosity, the 

other is the higher loss of kinetic energy due to higher viscosity. The first factor has already been 

discussed in Chapter 3; let us now consider the second one. If the colloids have a viscosity of 𝜇, the 

Stokes’ drag force (𝑓 = −6𝜋𝜇𝑅𝑣) has a time constant of 2𝑅2𝜌/9𝜇, which is 5.6, 1.4, and 0.56 µs 

for our SiO2 particles when 𝜇 equals 0.001, 0.004 and 0.01, respectively. Considering our acquisition 

time of 3.3 µs, we expect very strong deceleration of the particles in the system with 𝜇 = 0.01⁡𝑃𝑙, 

which explains the suppressed total kinetic energy. In the following work, we consider the laser 

excitation as a means to excite the six centermost particles simultaneously to the six hexagonal 

directions, with a controlled velocity that is determined by the laser energy and viscosity. Based on 
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this observation, we simulate wave propagation excited by laser in our colloidal system in the next 

section. 

6.3. Mechanical wave propagation in colloidal systems 

Until now we have been discussing the displacement and averaged velocities that are obtained 

experimentally. In order to gain more insight into the roles of different interactions between the 

particles in the system, in this section we perform numerical simulation of wave propagation. We 

start with the simulation of wave propagation behavior along the six branches of colloids in the 

hexagonal direction from the center (Fig. 6.3). In Fig. 6.3a, the coated particle is illustrated as the 

black particle in the center. After the laser excitation, the six neighboring particles obtain initial 

velocities and produce propagating waves in each hexagonal direction. We simulate the two-

dimensional wave propagation with an initial velocity, 𝑣𝑖𝑛𝑖, of 13 m/s, a viscosity of 0.004 Pl, and an 

initial distance between neighboring particles of 250nm. We choose a branch of particles from the six 

hexagonal directions and label those particles from 1 to 7. We plot the velocity of each particle in Fig. 

6.3b and the inter-particle distance in Fig. 6.3d. 

In Fig. 6.3d, we first notice that most of the evolution of the particles’ velocities occurs within the 

first 200 ns and is quickly stabilized after 1 µs from the initial excitation. Since this is shorter than the 

minimal exposure time of our high-speed imaging system (2.7 µs), the details of the collision will not 

be resolved in the high-speed images; the measured displacement of the particle is the time-integration 

of velocity during the camera’s acquisition time. In the first 200 ns, the particles collide with each 

other and pass on velocities along the chain. During this process, the velocities decay much faster 

than they do during the later period. The differences in velocity between particles are also being 

eliminated, and after the particles obtain similar velocities, their velocities decay exponentially. The 

fast elimination of velocity difference is the effect of the hydrodynamic force, 𝑓ℎ𝑦𝑑𝑟𝑜,𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ~ −

6𝜋𝜇𝑅2

𝐷𝑖𝑗
𝑣𝑖𝑗 = −6𝜋𝜇R

𝑅

𝐷𝑖𝑗
⁡𝑣𝑖𝑗, which causes the relative velocities between neighboring particles, 𝑣𝑖𝑗, 

to decrease. Notice that the hydrodynamic force differs with the Stokes’ drag by a factor of 
𝑅

𝐷𝑖𝑗
. This 

is because in a close-packed lattice, 𝐷𝑖𝑗 ≪ 𝑅, the hydrodynamic force is the dominant interaction that 

contributes to the decay of velocities before the velocity difference is eliminated. A closer look at the 

velocity of the first particle reveals a short period of acceleration after it collides with the second 

particle, which is again due to the hydrodynamic force resisting the separation of two particles. 
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Figure 6.3: Numerical study of wave propagation along a chain within 
the hexagonal lattice. (a) Schematic diagram of the excitation and 
geometry of the lattice (b) The velocities of particles along the chain. 
(c) The total displacement (red dots) after the excitation obtained 
through simulation. It is fitted with an exponential decay formula and 
gives the decay length of 2.7. (d) The inter-particle distance during 
wave propagation. 

In Fig. 6.3b, we also plot the same velocity result in log scale. It becomes clear that the final velocities 

of the particles approach the same value and results in the broadening of mechanical pulse. Due to 

the presence of the factor of 
𝑅

𝐷𝑖𝑗
 in hydrodynamic force, the broadening effects of hydrodynamic force 

on the traveling wave are more significant in a system where two particles can approach each other 

more closely. In our system this means when we have a higher initial velocity on the six centermost 

particles, the measured distance along the chain should decrease less since the particles obtain the 

same velocities more quickly than they do in the case of lower initial velocities. 

It is noticeable that the velocity behavior of the first four particles is different from the behavior of 

later particles along the chain. The distinct behavior is due to the first four particles having reached 
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the regime of particle deformation. This deformation can be confirmed from Fig. 6.3d, in which 

the inter-particle distances between the first five particles have reach the cut-off distance, along with 

a faster bounce back. During the contact time, the particles transfer velocities via contact force, which 

is much more efficient than via hydrodynamic force. Whether a particle can reach the deformation 

regime is determined by whether its initial velocity is large enough to bring two particles into contact. 

In this case, the velocity barrier seems to be approximately 1 m/s.  

To compare the simulation results with the experimental data of displacement, in Fig. 6.3c we plot 

each particle’s final displacement, which decreases along the chain. To obtain a quantitative 

description of the decay, we fit the results with an exponential law of decay and obtain a decay 

constant of 28.2 µm. 

   

Figure 6.4: Experimental data of a wave propagation in the colloidal 
system with a viscosity of 0.01 Pl is excited by pulse energy of 0.16 µJ. 
(a) The measured velocity map of the system. The red boxes show the 
geometry of chains in the six hexagonal directions from the center 
particle. (b) The displacement of the particles that are shown in the 
red boxes in (a). (c) The decay length measured at different 
combinations of laser energy and viscosity. 

In Fig. 6.4, we show experimental results of a velocity map of a system with a viscosity of 0.01 Pl as 

excited by pulse energy of 0.16 µJ. The six directions, which are marked by red boxes along the 
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lattice, and the displacement of particles within these boxes are shown by the dashed line in Fig. 

6.2b. The decay can be seen from this dashed line. The averaged values (red dots) of the displacement 

at each distance are used to fit the exponential decay of the displacement along the chain. We obtain 

a decay length at varying laser energy and viscosity, as shown in Fig. 6.4c. The results show that for 

the same viscosity, the higher the laser energy (and initial velocities) are, the longer the decay length 

of the wave propagation. This agrees with the simulation, which indicates that a system with higher 

initial velocities will reach steady states (i.e., particles moving at the same velocities) faster and that 

the differences between the measured displacements along the chain will be smaller. With regard to 

the decay length obtained at the same laser energy, we expect it to be shorter given that at lower 

viscosity, the initial velocity excited by lasers will be less than in the case of higher viscosity. On the 

other hand, another competing factor is at play, namely the higher dissipation (and shorter decay 

length) due to higher viscosity. As a result we observe a shorter decay length of the same laser power 

at both low viscosity 0.001 (due to lower initial velocity) and high viscosity 0.01 (due to the higher 

dissipation). 

 

Figure 6.5: Velocity maps of the system tested at different laser energy 
and background fluid viscosity. The system is tested under a 
combination of viscosity equaling 0.001 Pl and 0.004 Pl and laser 
energy equaling 0.16, 0.20, and 0.25 µJ. 

In Fig. 6.5, we show the experimental results of the velocity maps of systems of different viscosity as 

excited by different laser energy. Let us first compare images in the same column, which represents 

the system response at the same laser energy and different viscosity. The images with higher viscosity 

show shorter mechanical wave spans, which result from the high dissipation from higher viscosity. If 

we consider the fact that the laser transfers a higher initial velocity at higher viscosity, the effect of 

higher viscosity stopping the wave from reaching a farther distance from the center is even more 
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evident. Looking at the images in one row, we can see that at higher laser energy, the velocity 

distribution in the lattice becomes more isotropic. This can be explained by the tangential component 

of the hydrodynamic force, which is proportional to the tangential component of relative velocity 

between particles. Furthermore, at higher velocity, the particles in the chain in the six hexagonal 

directions could exert higher tangential force on the particles that are next to the chain. Since the 

hydrodynamic force is the main source for redistributing energy to the neighboring particles (other 

than the very small component of normal force that occurs when particles in the chain dislocate from 

their positions in an ideal lattice), a comparison of two systems dominated by the contact or 

hydrodynamic force will help to clarify the origin of isotropicity. 

We simulate the behavior of two cases in which 𝜇 and 𝑣𝑖𝑛𝑖 are (a) 0.001 Pl, 8 m/s and (b) 0.004 Pl, 

24 m/s. The higher initial velocity in the second case is included to account for the higher initial 

velocity that is obtained from the same laser energy acting on a system with higher viscosity. We 

obtain the evolution of the system at different time steps and plot the resultant velocity map in Fig. 

6.6ab. In the fluid with a viscosity of 0.001 Pl, the wave propagates with little loss and redistribution 

to the other particles. In the fluid with a viscosity of 0.004 Pl, the wave decays faster and shows more 

isotropic propagation due to the strong hydrodynamic forces. The anisotropicity in the less viscous 

fluid comes from the fact that the deformation regime can easily be reached between the spheres in 

the branches due to lower hydrodynamic barriers. This allows more efficient momentum transfers 

between spheres in the branches, and as a result the hydrodynamic regime becomes less dominant in 

the evolution of the system and less energy is distributed onto the neighboring particles. These results 

indicate that the hydrodynamic force is the main contributing factor to the system’s isotropicity. 
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Figure 6.6 Numerical simulation of wave propagation generated with 

different initial velocities and fluid viscosities; 𝜇 and 𝑣𝑖𝑛𝑖 are (a) 0.001 
Pl, 8 m/s and (b) 0.004 Pl, 24 m/s. The higher initial velocity in the 
second case is included to account for the higher initial velocity 
obtained from the same laser energy acting on a system with higher 
viscosity. 

6.4. Summary 

In this chapter we discussed the experimental and numerical examination of a two-dimensional 

micro-granular system that consists of a hexagonal lattice of SiO2 particles with a radius of 3.69 µm. 

We performed the experimental examination by sending laser energy into the system to excite the 

initial velocity of one of the six centermost particles in the lattice. With the resultant velocity that is 
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high in comparison to traditional means, we are allowed to explore the system while the particles 

have enough velocity to break through the hydrodynamic barriers and to study wave propagation in 

systems of different viscosities. To capture the behavior of the system, we constructed a model that 

included the contact force, hydrodynamic force, electrostatic force, and Stokes’ drag force and 

performed numerical simulation to study wave propagation at a time resolution higher than the one 

we used in our experimental system. The resultant simulation characterizes the roles of the 

hydrodynamic force and contact within wave propagation as well as explains the origins of isotropic 

wave propagation within the system. 

 


