
 

 

45 

Chapter 4 

Micro-particles in One-dimensional Confinement 

In the previous chapter, we described the phenomena that are associated with using pulsed laser 

ablation as a tool to mechanically excite spherical, metallic micro-particles. This approach provides 

the basis for transferring a controlled momentum to a system of micro-particles. However, before we 

proceed to study the wave propagation in micro-granular systems, we need to know how the particles 

behave on the substrate (i.e., we need to identify the governing equations of motion). The basic motion 

of a macroscopic sphere on a support structure has been studied earlier, for example in [143, 144]. In 

the simplest models, a sphere moving in one direction is considered as a rigid body and is subjected 

to Coulomb friction that acts between the surface of the sphere and the supporting structure [4]. 

However, the complexity of the models increases significantly if the spheres are no longer assumed 

as rigid bodies, and if the elastic contact force, the hysteretic losses in rolling [145], the lubricated 

sliding friction, the deformation of the surfaces, and the shear adhesive force are also included [145]. 

For example, for particles moving in an asymmetric v-shaped groove, governed by gravitation and 

static friction, the uneven shear force exerted on the spheres by both walls can cause the spheres to 

rotate. As a result, models that describe the particles’ motion must account for such rotation. 

In most studies of macroscopic granular systems, for example [125], the granular chains are 

considered as a classical system of spheres moving on a guiding rail, where only the elastic contact 

forces between particles are included. In these cases, the interactions between particles and their 

supports are usually considered negligible or are only seen as contributing to dissipation in the system. 

It is questionable whether the description of macro-granular systems still applies to the micro-granular 

system of interest for this thesis. In the rest of this chapter, we analyze the relevant types of 

interactions that arise when particle size is reduced. The next chapter builds on these findings, to 

analyze the dynamic response of a multi-particle chain and verify if the same phenomena found in 

macroscopic particles (e.g., solitary wave propagation) are also present at the micro-scale.   
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It is well known that when particle size is reduced to the micro-scale, adhesive forces such as 

hydrodynamic and Van der Waals interactions become more dominant [34, 103, 146]. The particles 

considered in our dry systems have diameters of ~300 m, which are much larger than the diameters 

of 1 to 10 m that are usually assumed in the DMT and JKR models; however, they are also not 

properly “macro-scale.” No theoretical approaches are available to describe these contact regimes. 

However, this intermediate size range indicates that the modeling of the system should be modified 

to account for the presence of the support system and air drag in the system’s dynamics.  

A complete first-principle model of the dynamics of micro-particles is difficult, as not enough 

information is available about these particles’ physical characteristics. In this chapter, we address this 

issue by extracting experimental parameters from the study of the motion of individual particles on 

their substrate (in this case a v-shaped groove). We also derive an empirical model to describe the 

observed particle motion. We extract the dissipation terms, including Coulomb friction, Stokes’ 

viscous drag force, and quadratic drag force, and analyze the trajectories of the particles moving in 

the groove. In addition, we also study the interaction between two particles by extracting from 

experiments the coefficient of restitution upon impact and the frictional constant between two 

particles. The goal of our initial set of experiments is to construct an empirical description of the 

dynamical system that can pave the way for a complete study of wave propagation in micro-granular 

chains and that can serve as the foundation for the analysis that is presented in the next chapters. With 

the experiments described in this chapter, however, it is not possible to study either the particle contact 

interaction potential or specific interaction/adhesion between the particles and their support in detail. 

4.1. Modeling the motion of a sphere in a groove 

In this section, we model the rolling and sliding motion of a spherical particle in a groove. Let the 

particle have a radius 𝑅, mass 𝑚, and moment of inertia 𝐼. Frictional forces between a particle and 

the surface of a groove are proportional to the normal force between the contact with a proportional 

constant, 𝜇𝑝𝑔. The inclined angle between the two surfaces of the v-shaped groove is 𝜃, where 𝜃 =

70.6° in our system. 

Let the v-grooves lie in the x-z plane, with its long axis (i.e., the direction of motion of the particle) 

parallel to the z-direction (Fig. 4.1). Assuming the particles do not move in the x- and y-directions, 

we can describe the motion of the particles with four parameters, namely 𝑧, 𝑣𝑧, 𝜃𝑥, and 𝜔𝑥, where z 

is the z-component of the particle displacement, 𝑣𝑧  is the velocity in the z-direction, 𝜃𝑥  is the x-
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component of the particle angular displacement, and 𝜔𝑥 ⁡is the x-component of the angular velocity. 

If there is a relative motion between the surface of the particles and the groove (i.e., 𝑣𝑧 −

𝑅𝜔𝑥sin⁡(
𝜃

2
) ≠ 0), the total force and torque resulting from the frictional forces between the particles 

and the two surfaces of the v-groove are respectively 𝑓𝑧 = −𝑚𝑔𝜇𝑝𝑔/sin⁡(
𝜃

2
) and 𝜏𝑥 = 𝑅𝑚𝑔𝜇𝑝𝑔. For 

convenience, we define 𝑣𝑎 ≡ 𝑅𝜔𝑥, and 𝑠 ≡ sin⁡(
𝜃

2
) as a geometric factor that depends on the inclined 

angle of the groove. In our system⁡𝑠 is 0.5779. 

 

Figure 4.1: A particle in a v-shaped groove. The direction in which the 
particle is moving is defined as the z-direction. The particle is 
supported by the groove’s two inclined surfaces. In comparison to 
when particles are placed on a flat surface, the geometry of the v-

groove enhances the frictional force by a factor of 1/sin⁡(𝜃/2), where 

𝜃  is the angle between the two surfaces of the v-groove. For the 
particles to roll without sliding on the groove, the groove’s 

translational and angular velocities need to satisfy 𝑣𝑧 = 𝑅𝜔𝑥sin⁡(
𝜃

2
). 

We can see that when a particle is moving on the groove, the frictional force transfers energy between 

translational and angular motion until no relative motion occurs between the surfaces in contact: 

 𝑣𝑧 = 𝑠𝑣𝑎. (4.1) 

When 𝑣𝑧 ≠ 𝑠𝑣𝑎, the equations of motion become 

 𝑑

𝑑𝑡
𝑣𝑧 = −𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑔𝜇𝑝𝑔/𝑠, 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔, 

(4.2) 

where 𝑠𝑖𝑔𝑛(𝑥) is the signum function with 𝑠𝑖𝑔𝑛(0) = 0. For a particle moving in a groove, the 

Coulomb friction causes the particle to reach a steady state of rolling without sliding. If the system 

evolves from an initial state of 𝑣𝑦
(0) and 𝑣𝑎

(0) to a final steady state of 𝑣𝑦
(1) and 𝑣𝑎

(1), the steady 

state velocities (defined as the velocity of the particles that are rolling without sliding) are 
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 𝑣𝑧

(1) =
𝑘𝑠2

𝑘𝑠2+1
𝑣𝑧

(0) +
𝑠

𝑘𝑠2+1
𝑣𝑎

(0), 

𝑣𝑎
(1) =

𝑘𝑠

𝑘𝑠2+1
𝑣𝑧

(0) +
1

𝑘𝑠2+1
𝑣𝑎

(0). 

(4.3) 

Starting at the initial velocities of 𝑣𝑧
(0) and 𝑣𝑎

(0), the distance (z) and time (t) required to achieve 

steady states are, respectively,  

 
∆𝑧 =

1

2

𝑠

𝑘𝑠2 + 1

𝑣𝑧
(0) − 𝑠𝑣𝑎

(0)

𝑔𝜇𝑝𝑔
(
2𝑘𝑠2 + 1

𝑘𝑠2 + 1
𝑣𝑧

(0) +
𝑠

𝑘𝑠2 + 1
𝑣𝑎

(0)) 

∆𝑡 =
𝑠

𝑘𝑠2+1

𝑣𝑧
(0)−𝑠𝑣𝑎

(0)

𝑔𝜇𝑝𝑔
. 

(4.4) 

This means that the rolling-sliding to rolling transition happens at a time scale of 
𝑠

𝑘𝑠2+1

𝑣𝑧
(0)

𝑔𝜇𝑝𝑔
, which 

is in the order of a few milliseconds in our system. For a more realistic model of all of the physical 

forces that are involved in the experimental system, we include the time constant for air friction, 𝑇, 

which is another empirical parameter, 

 𝑑

𝑑𝑡
𝑣𝑧 = −𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑔𝜇𝑝𝑔/𝑠 − 𝑣𝑧/𝑇, 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔. 

(4.5) 

Notice that we have two dependent variables (namely 𝑣𝑧 and 𝑣𝑎) that should be investigated: we will 

retrieve the information for 𝑣𝑎 through indirect fitting of the experimental data. 

4.2. Motion of one micro-particle in a groove 

We first study the motion of a single micro-particle that is rolling in a v-shaped groove (Fig. 4.1). A 

micro-particle is placed in the groove and excited with the laser system (see Chapter 3) to different 

controlled velocities between 0 to 0.1 m/s. The particle is positioned in the groove with a computer-

controlled micro-manipulator, in order to achieve accurate and repeatable initial conditions. We track 

the motion of a micro-particle with the optical high-speed imaging system that is described in Chapter 

2. In Fig. 4.2b, we show a typical measured trajectory for a micro-particle that is moving in the groove. 

The particle has an initial velocity of 0.025 m/s, and from the trajectory it is evident that its motion is 

characterized by two different regimes: i) a rolling and sliding regime; and ii) a rolling without sliding 

regime (which are labeled with green and red lines, respectively). The transition time between these 
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two different motion regimes, 𝑡1, as well as 𝜇𝑝𝑔, 𝑇, and the initial velocity 𝑣0 are found by fitting 

the experimental data numerically. The fitting parameters are obtained by minimizing the error 

function Er(𝜇𝑝𝑔, T) = ∑ (𝑓(𝑡𝑛; 𝑣z0, 𝜇𝑝𝑔, T) − 𝑥𝑛)2𝑛 , where 𝑓(𝑡; 𝑣z0, 𝜇𝑝𝑔 , T) is the solution of Eq. 

(4.5), 

 

𝑓(𝑡; 𝜇𝑝𝑔, T) = {
𝑇 (𝑣z0 −

𝑔𝑡𝜇pg

𝑠
+

𝑔𝑇𝜇pg

𝑠
) − e−

𝑡

𝑇𝑇 (𝑣z0 +
𝑔𝑇𝜇pg

𝑠
) , if⁡𝑡 < 𝑡1

e−
𝑡

𝑇(𝑠𝑣z0 + 𝑔𝑇𝜇pg − e
t1

𝑇 𝑔𝑇𝜇pg)/𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4.6) 

where it is assumed the initial angular velocity is zero and 𝑡1  is the solution of 𝑔𝑘𝑠𝑡𝜇pg +

e−
𝑡

𝑇(−𝑠𝑣z0 − 𝑔𝑇𝜇pg + e𝑡 𝑇⁄ 𝑔𝑇𝜇pg)/𝑠 = 0 . In Figs. 4.2c-d, we plot the ⁡𝑇  and 𝜇𝑝𝑔  which are 

obtained through numerical fitting. It can be seen in Fig. 4.2c that the empirical parameter of the time 

constant for air friction, 𝑇, is not a constant but instead has a linear dependency on the initial velocity. 

The two clouds of the measured value of 𝑇 obtained from the two types of particles (stainless steel 

440C and stainless steel 316) overlap to give 𝑇 = 𝑇0 + 𝑇′𝑣0 = 0.052 + 1.10𝑣0. For comparison, 

the predicted time constant caused by the Stokes’ drag in air is 𝑇 = m/6πμR = 0.074 . The 

agreement between data from particles of different materials that are the same size shows that the 

measured time constant is a geometric effect that is only altered by the particles’ shapes and 

dimensions. The linear behavior of⁡𝑇 implies that the air friction should include another correcting 

term that is proportional to the square of velocity: 

 𝑣𝑧

𝑇
=

𝑣𝑧

𝑇0+𝑇′𝑣0
~

𝑣𝑧

𝑇0
−

𝑇′

𝑇0

𝑣𝑧
2

𝑇0
≡

𝑣𝑧

𝑇0
−

𝑣𝑧
2

𝐿
, (4.7) 

where 𝑣𝑧 is the particle velocity, T is the original proposed time constant for dissipation, and 𝑇0 and 

𝐿 are empirical parameters that provide a more accurate representation of dissipation. 
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Figure 4.2: Experimental investigation of single micro-particles 
moving in a groove. (a) Schematic diagram of the experimental setup: 
a laser (green beam in the diagram) excites a particle in a groove, with 
a controlled pulse energy. We tested two types of micro-particles, 
stainless steel 316 and 440c. (b) A typical measured trajectory of an 
excited micro-particle. The transition from a rolling and sliding 
motion to rolling without sliding can be found by using an 

optimization algorithm to obtain the empirical parameters 𝑇 and 𝜇𝑝𝑔, 

as a function of initial velocity. (c) 𝑇 is found to depend linearly on 

the initial velocity 𝑇 = 0.052 + 1.10𝑣0.  (d) Stainless steel 316 

particles have a mean of 𝜇𝑝𝑔 = 0.337 (dashed line) and stainless steel 

440c particles have a mean of 𝜇𝑝𝑔 = 0.296 (dotted line) for 𝑣0 >

0.03⁡𝑚/𝑠 . The error bars are plotted with ±𝜎/2 , where 𝜎  is the 
standard deviation of the measurement. 

The average friction constant, 𝜇𝑝𝑔, is 0.337 for stainless steel 316 and 0.293 for stainless steel 440c 

particles. It can be seen that the friction coefficient for stainless steel 440c particles approaches zero 

at low velocity. This can result from the fact that particles made of steel 440c have much smoother 

surfaces and a higher quality than the steel 316 particles. The complete equations of motion for 

particles moving in a groove are 
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 𝑑

𝑑𝑡
𝑣𝑧 = −

𝑠𝑖𝑔𝑛(𝑣𝑧−𝑠𝑣𝑎)𝑔𝜇𝑝𝑔

𝑠
− (

𝑣𝑧

𝑇0
−

𝑣𝑧
2

𝐿
), 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔, 

(4.8) 

where 𝑇0 = 0.052⁡𝑠 , 𝐿 = 2.5⁡𝑚𝑚 , and 𝜇 = 0.337⁡  and 0.293  for stainless steel 316 and 440c, 

respectively.  

4.3. Modeling the collision of two particles in a groove 

With the equations obtained in the previous section, we can move on to modeling the collision of two 

particles in a groove. In an ideal scenario, when two particles of the same mass collide elastically, 

e.g., 𝑧2 − 𝑧1 < 2𝑅, they exchange their velocity. Assuming their initial velocities are 𝑣𝑧1
(1) and 

𝑣𝑧2
(1), after an elastic collision their velocities are expected to become 𝑣𝑧1

(2) = 𝑣𝑧2
(1) and 𝑣𝑧2

(2) =

𝑣𝑧1
(1). However, the real contact interaction between the particles is affected by the presence of a 

frictional force between their surfaces. If a relative sliding motion occurs between the surfaces of the 

two particles (i.e., 𝑣𝑎1 + 𝑣𝑎2 ≠ 0), then the presence of a frictional force induces a torque at the 

contact and changes the angular momentum of both particles. Let 𝜇𝑝𝑝  be the frictional constant 

between the surfaces of two particles; when 𝑣𝑎1 + 𝑣𝑎2 > 0, we have 

 −∆𝑣𝑧1 = ∫
𝑓

𝑚
𝑑𝑡 = −∫

𝜏𝑥1

𝑚𝜇𝑝𝑝𝑅
𝑑𝑡 = −

𝐼∆𝜔𝑥1

𝑚𝜇𝑝𝑝𝑅
= −

𝐼∆𝑣𝑎1

𝑚𝜇𝑝𝑝𝑅2. (4.9) 

Here, ∆𝑣𝑧 and ∆𝜔𝑥 are respectively the changes in translational and angular velocity before and after 

the collision. In addition, 𝑓 is the contact force during the impact, 𝜏𝑥 is the torque resulted from the 

frictional force, and 𝑅 , 𝑚 , and 𝐼  are the radius, mass, and inertia of moment of the particle, 

respectively. We therefore have ∆𝑣𝑎1 = 𝜇𝑝𝑝𝑘∆𝑣𝑦1  and similarily, ∆𝑣𝑎2 = −𝜇𝑝𝑝𝑘∆𝑣𝑦2 , and the 

resulted angular 𝑣𝑎1
(2) = 𝑅𝜔𝑥1

(2), 

 𝑣𝑎1
(2) = 𝑣𝑎1

(1) + 𝑠𝑖𝑔𝑛(𝑣𝑎1
(1) + 𝑣𝑎2

(1))𝜇𝑝𝑝𝑘(𝑣𝑧2
(1) − 𝑣𝑧1

(1)), 

𝑣𝑎2
(2) = 𝑣𝑎2

(1) + 𝑠𝑖𝑔𝑛(𝑣𝑎1
(1) + 𝑣𝑎2

(1))𝜇𝑝𝑝𝑘(𝑣𝑧2
(1) − 𝑣𝑧1

(1)). 

(4.10) 

Equation (4.10) holds only when the sliding motion between the particle surfaces is not eliminated 

by the frictional force between the particles before the end of the impact. If the frictional force 

eliminates the relative motion between the surfaces during the impact, the frictional force would cease 
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to contribute to the change of angular velocities. In this case, we can solve the final states of angular 

velocities, 

 
𝜔𝑥1

(2) + 𝜔𝑥2
(2) =

𝑣𝑎1
(2)

𝑅
+

𝑣𝑎2
(2)

𝑅
=

(𝑣𝑎1
(1)+∆𝑣𝑎1)

𝑅
+

(𝑣𝑎2
(1)+∆𝑣𝑎2)

𝑅
= 0, (4.11) 

and obtain 

 𝑣𝑎1
(2) = (𝑣𝑎1

(1) − 𝑣𝑎2
(1))/2, 

𝑣𝑎2
(2) = (𝑣𝑎2

(1) − 𝑣𝑎1
(1))/2. 

(4.12) 

For the relative motion between the surfaces to be eliminated by frictional force during the impact, 

we require the magnitude of change in angular velocity |∆𝑣𝑎| in Eq. (4.12) to be smaller than the one 

in Eq. (4.10), which translates into 

 |𝑣𝑎1
(1) + 𝑣𝑎2

(1)| < 2𝜇𝑝𝑝𝑘(𝑣𝑧1
(1) − 𝑣𝑧2

(1)). (4.13) 

By checking the inequality, we can determine which case applies to the collision. 

Let us consider the specific collision in which the two colliding particles are rolling without sliding. 

The first particle, which starts with the initial velocities of 𝑣𝑧1
(0) = 𝑢1

(0) and 𝑣𝑎1
(0) = 𝑢1

(0)/𝑠, 

moves toward the second particle, which has velocities of 𝑣𝑧2
(0) = 𝑢2

(0)  and 𝑣𝑎2
(0) = 𝑢2

(0)/𝑠. 

Depending on the values of 𝑢1
(0) and 𝑢2

(0), either Eq. (4.10) or (4.12) can be used to determine the 

resultant states after the instance of collision. If Eq. (4.13) holds, right after collisions we have  

 𝑣𝑧1
(1) = 𝑢2

(0), 

𝑣𝑧2
(1) = 𝑢1

(0), 

𝑣𝑎1
(1) = (

1

𝑠
− 𝜇𝑝𝑝𝑘)𝑢1

(0) + 𝜇𝑝𝑝𝑘𝑢2
(0), 

𝑣𝑎2
(1) = (−𝜇𝑝𝑝𝑘)𝑢1

(0) + (
1

𝑠
+ 𝜇𝑝𝑝𝑘)𝑢2

(0). 

(4.14) 

After the system evolves into steady state motions, we have 

 𝑣𝑧1
(2) =

1

𝑘𝑠2+1
(1 − 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0) +
1

𝑘𝑠2+1
(𝑘𝑠2 + 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0), (4.15) 
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𝑣𝑧2
(2) =

1

𝑘𝑠2+1
(𝑘𝑠2 − 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0) +
1

𝑘𝑠2+1
(1 + 𝑠𝜇𝑝𝑝𝑘)𝑢1

(0), 

𝑣𝑎1
(2) = 𝑣𝑧1

(2)/𝑠, 

𝑣𝑎2
(2) = 𝑣𝑧2

(2)/𝑠. 

If Eq. (4.9) does not hold, the relative surface motion between the particles is zero when the two 

particles are in contact. Right after the collision, we have 

 𝑣𝑧1
(1) = 𝑢2

(0) 

𝑣𝑧2
(1) = 𝑢1

(0) 

𝑣𝑎1
(1) =

1

2𝑠
𝑢1

(0) −
1

2𝑠
𝑢2

(0) 

𝑣𝑎2
(1) = −

1

2𝑠
𝑢1

(0) +
1

2𝑠
𝑢2

(0) 

(4.16) 

After the system evolves into steady state motions, we have 

 
𝑣𝑧1

(2) =
1

𝑘𝑠2 + 1
(1/2)𝑢1

(0) +
1

𝑘𝑠2 + 1
(𝑘𝑠2 − 1/2)𝑢1

(0) 

𝑣𝑧2
(2) =

1

𝑘𝑠2 + 1
(𝑘𝑠2 − 1/2)𝑢1

(0) +
1

𝑘𝑠2 + 1
(1/2)𝑢1

(0) 

𝑣𝑎1
(2) = 𝑣𝑧1

(2)/𝑠 

𝑣𝑎2
(2) = 𝑣𝑧2

(2)/𝑠 

(4.17) 

The physical meaning of the above derivation is simple: during the collision, the two particles 

exchange momentum and apply a reciprocal torque, which changes angular momentum; after the 

collision, the particles accelerate if the translational and angular velocities are mismatched. In both 

cases, we have 𝑣𝑧1
(2) − 𝑣𝑧2

(2) =
1−𝑘𝑠2

1+𝑘𝑠2 (𝑣𝑧1
(0) − 𝑣𝑧2

(0)) , which means that the collision and 

reacceleration process scale the inter-particle velocity by a factor of 
1−𝑘𝑠2

1+𝑘𝑠2. If  

 0 <
1−𝑘𝑠2

1+𝑘𝑠2 < 1, (4.18) 
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n secondary collisions after the first impact will occur (with n going to infinity) because 𝑣𝑧1
(2n) −

𝑣𝑧2
(2n) > 0. For solid spherical particles (𝑘 = 5/2) on a flat planar surface (𝑠 = 1), only one 

collision (i.e., the first impact), is expected to occur. For particles in a v-groove, the condition in Eq. 

(4.18) implies 𝜃 < 78.5°, which is satisfied for the specific v-shaped groove that we experimentally 

fabricated. 

In the beginning of the above derivation, we assumed completely elastic collisions between particles. 

The derivation can be easily generalized to include the case of inelastic collisions, and the prediction 

of multiple secondary collisions remains valid. For example, if the collision is perfectly inelastic such 

that both particles obtain the same translational velocity after collision, 𝑣𝑧1
(1) = 𝑣𝑧2

(1), it follows 

that 𝑣𝑎1
(1) > 𝑣𝑎2

(1) due to the torque exerted by frictional forces. After the system evolves into 

steady state, from Eq. (4.3) we have 𝑣𝑧1
(2) − 𝑣𝑧2

(2) =
𝑠

𝑘𝑠2+1
(𝑣𝑎1

(1) − 𝑣𝑎2
(1)) > 0 , which 

guarantees another upcoming collision. We can generalize the above derivation for particle-groove 

systems by adding dissipation that is linearly proportional to the particle velocity. Since the 

dissipation only scales linearly with the velocity, with a factor of exp (−
∆𝑡

𝑇
), where ∆𝑡 is the time 

difference and 𝑇 is the time constant of the dissipation, the system results in a positive final velocity 

difference: 

 𝑣𝑧1
(2) − 𝑣𝑧2

(2) =
1−𝑘𝑠2

1+𝑘𝑠2 (𝑣𝑧1
(0) − 𝑣𝑧2

(0)) exp (−
∆𝑡

𝑇
) > 0. (4.19) 

In this case, secondary collisions are also expected. 

Notice that the criterion of Eq. (4.18) does not depend on the frictional constants of 𝜇𝑝𝑝 and 𝜇𝑝𝑏. This 

means that the number of expected collisions is independent of the particles’ material properties. The 

presence of multiple secondary collisions can occur in a very large number of systems despite the 

specific value of Coulomb friction. Such collisions constitute a very universal behavior among 

various particle-groove systems, including the micro-granular system that we fabricated. In our 

experimental system, 
1−𝑘𝑠2

1+𝑘𝑠2 = 0.09, and after each collision and reacceleration process the velocity 

difference, (𝑣𝑧1
(2n+2) − 𝑣𝑧2

(2n+2)) = 0.09(𝑣𝑧1
(2n) − 𝑣𝑧2

(2n)) scales to 9% of its original value. 

Due to the limited length of the fabricated grooves and limited spatial resolution of the imaging 

system, the presence of the secondary collisions cannot be resolved in our experiments. However, 

since the micro-particles are expected to collide multiple times, while they simultaneously lose kinetic 
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energy via Coulomb friction or other dissipation channels, we can argue that the two particles 

should end up rolling very close to each other, with 𝑧2 − 𝑧1~2𝑅; this is indeed what we see in the 

next section. 

4.4. Collisions between two particles in a groove 

In this section, we experimentally investigate the collisions of two micro-particles in a v-shaped 

groove and extract the coefficient of restitution for each impact and the frictional constant between 

the two micro-particles from the measurements (Fig. 4.3). The first micro-particle, which acts as a 

striker, is positioned in the groove and excited with the laser pulse to reach a maximum velocity of 

0.3 m/s before colliding with a stationary micro-particle (i.e., the target particle). Both particles are 

positioned by a computer-controlled micro-manipulator that has a location accuracy of ~1 𝜇m. We 

studied two different types of collisions (Fig. 4.2a): (1) collisions that occurred when the striker 

gained enough angular velocity to roll without sliding before impacting the target particle, and (2) 

collisions between two micro-particles that are initially positioned in physical contact with each other. 

In Fig. 4.3b we show a photograph of two micro-particles in a typical experimental run for the first 

case study. Typical trajectories of micro-particles moving in the groove are shown for the same case 

in Fig. 4.3c, with the blue line representing the trajectory of the striker particle and the red line that 

of the target particle. It can be seen that after the collision, the striker particle accelerates due to the 

Coulomb frictional force. This results from a gain of angular momentum during collision and 𝑣𝑧 −

𝑠𝑣𝑎 < 0 such that the Coulomb frictional force on the striker is in the positive z direction. The striker 

particle quickly catches up with the second particle after the collision, and the two particles keep a 

distance close to two times their radius, which is what we expected for two particles that are 

undergoing multiple secondary collisions (see section 4.3 above). 
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Figure 4.3: Experiments involving particle collisions in a groove. (a) 
Experimental schematics. Two cases of collisions are tested: a particle 
collides with another particle that is i) separated by 1 mm, or ii) in 
direct contact with it. (b) Digital image of the particles during the 
experiments. The blue and red dashed boxes identify the striker and 
the target particles, respectively. (c) Trajectories of the two colliding 
particles. (d) Rolling and sliding motion and rolling without sliding 
motion as identified for the striker particle. This trajectory reveals 
information on the angular motion of the particle. 

In Fig. 4.3d, we plot the trajectory of the striker particle throughout the collision. The collision point 

can be clearly identified by the abrupt change in velocity. The particles undergo four ranges of motion, 

namely rolling and sliding before and after collision (green curves) and rolling without sliding before 

and after collision (red curves).  

We examine the relation of tangential and normal forces between two particles. Throughout this 

chapter, we have assumed that the tangential force between two particles is well described by 

Coulomb friction and is linearly proportional to the inter-particle contact force. This is the foundation 
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of all of our derivations about particle collisions; however, is not true in general [147]. To justify 

whether it is valid for our system, we examine the ratio between the changes in translational and 

angular velocities that are caused by collisions.  

In order to extract information (i.e., translational and angular velocities) about the particles’ motions 

before and after the collision from the experimental data, we manually separate the trajectory before 

and after the collision and fit them with the solutions of Eq. (4.5). This allows us to obtain the initial 

values of 𝑣z and 𝑣a and to calculate the values of 𝑣z and 𝑣a near the collision. We plot the relation 

between the change of linear and angular momenta of the target particle (stainless steel 440c) in Fig. 

4.4a. We can see that the change of momenta has a linear relationship. Fitting this linear relationship 

with Eq. (4.9), we obtain the frictional constant between two spheres, 𝜇𝑝𝑝, which is equal to 1.4. 

Despite the large variation in the resulting velocity after collision, the data indicates a linear 

relationship between inter-particle normal and tangential forces; from an experimental point of view, 

this can be used to describe our micro-particle system in general. 

We are also interested in extracting the coefficient of restitution in the collisions, which is defined as 

 𝐶 =
𝑣z2

(1)−𝑣z1
(1)

𝑣z1
(1)−𝑣z2

(1), (4.20) 

This coefficient, which represents the ratio of relative velocities between the two particles before and 

after collision, is a measure of the efficiency of the collision process. The higher the coefficient of 

restitution, the more elastic the collision. We plot the experimental coefficients of restitution obtained 

for the stainless steel micro-particles as a function of the impact velocities in Fig. 4.4b-c; the red 

squares represent 316, the blue circles 440c. The variations in the values of the experimental 

coefficient of restitution obtained in our tests are large. Those obtained with stainless steel 316 

particles are much larger than those obtained with stainless steel 440c particles, which can be 

explained by the much rougher surface of the 316 particles (see Chapter 2). Despite the big variation 

in the measured data, the results show that the coefficient of restitution has velocity dependence and, 

for both particle types, the coefficient of restitution approaches unity at lower speeds, which means 

that lower speed collisions are less lossy. 
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Figure 4.4: Experimental results for the collisions of two particles. (a) 
A linear correlation between the change of translational and angular 
velocities during collisions of two 440c particles is observed. The 

error bars are plotted with ±𝜎/2, where 𝜎 is the standard deviation 
of the measurement. Fitting shows the normal force and tangential 
force can be described with Coulomb friction with a frictional 
constant of 1.4 (b) The coefficient of restitution between two stainless 
steel 316 particles when they are rolling (red squares) or initially in 
contact (orange triangles). (c) The coefficient of restitution between 
two stainless steel 440c particles when they are rolling (blue circles) or 
initially in contact (purple diamonds) 

We perform measurements to extract the coefficient of restitution for collisions between two particles 

that are initially in direct contact as well. To create contacting pairs of micro-particles, the computer-

controlled micro-manipulator is used to push the two particles together to where the laser beam is 

focused. The striker particles are excited with varying laser energy and the trajectory of the second 

particle is measured. Since the striker particle has no trajectory before collision, the initial velocities 

of the particles are estimated from the calibration of momentum gain at different laser power, as 

described in Chapter 3. We plot the coefficients of restitution at different impact velocities for both 

stainless steel 316 (orange triangles) and 440c (purple diamonds) in Fig. 4.4b-c. 

The first observations demonstrate that the coefficients of restitution in these measurements are higher 

than the one measured in the collisions between separated particles, which implies that collisions 
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result in less loss when the rotational motion of particles is reduced. The coefficient of restitution 

approaches unity for stainless steel 440c particles, which is again a higher value than the one obtained 

for the rougher 316 particles. From the calibration results shown in Chapter 3, we know that the 

momentum gained by the striker has a 15% standard deviation, which should contribute to the error 

of measurement of the coefficient of restitution. From the data we can see that the standard deviation 

of the coefficient of restitution for the 440c particles is approximately the same as the contribution of 

the system; as such we can argue that the resultant velocity after collision should be highly 

reproducible with uncertainty that is much less than 15%. 

These results are fundamentally important to our goal of studying the wave propagation in micro-

granular particles, because they imply that neighboring particles in contact can transfer energy with 

little dissipation within certain ranges of initial velocities. Without this result, the dissipation of the 

mechanical energy would prevent the propagation of nonlinear waves in a micro-granular chain. 

4.5. Summary 

In this chapter, we studied the motion and collision of dry micro-particles in a groove and 

experimentally investigated the fundamental principles that govern their behavior. We modeled the 

particles in a groove (Eq. (4.8)) with empirical parameters obtained directly from experiments. 

 𝑑

𝑑𝑡
𝑣𝑧 = −𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑔𝜇𝑝𝑔/s − (

𝑣𝑧

𝑇
−

𝑣𝑧
2

𝐿
), 

𝑑

𝑑𝑡
𝑣𝑎 = 𝑠𝑖𝑔𝑛(𝑣𝑧 − 𝑠𝑣𝑎)𝑘𝑔𝜇𝑝𝑔, 

 

where, 𝑇 = 0.052⁡𝑠 , 𝐿 = 2.5⁡𝑚𝑚 , and 𝜇 = 0.337  and 0.293  for stainless steel 316 and 440c, 

respectively. The empirical model obtained in this chapter was used as the foundation for modeling 

wave propagation in multi- particle micro-granular systems. 

By using proper fitting techniques, we can resolve the angular motion of the particles that are 

governed by the above equations. After studying the relation between the normal force and tangential 

force during impact, we found that it can be described with Coulomb friction with 𝜇𝑝𝑝 = 1.4. We 

also measured the coefficient of restitution during impact for both separated and neighboring particles. 

The results show that at low impact velocities, little momentum loss is observed when two micro-

particles that are initially in contact collide. This implies the possibility of observing traveling pulses 

in micro-granular systems that are composed of larger numbers of particles in contact.  


