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Abstract

It has been well-established that interfaces in crystalline materials are key players in the mechanics of

a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and

severe plastic deformation. In particular, interfaces with complex morphologies have been observed to

play a crucial role in many micromechanical phenomena such as grain boundary migration, stability,

and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of

behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse

behavior of interfaces is still an active area of research, and to the author’s knowledge there are as yet

no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of

this thesis is to develop a novel model for interface energy and morphology that i) provides accurate

results (especially regarding “energy cusp” locations) for interfaces with arbitrary character, ii) depends

on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By

building on the assumption that anisotropic grain boundary energetics are dominated by geometry and

crystallography, a construction on lattice density functions (referred to as “covariance”) is introduced

that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully

general model of the energy of a planar interface, and it is demonstrated by comparison with a wide

selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model

accurately reproduces the energy landscape using only three material parameters. It is observed that

the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the

model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the

vi



vii

planar interface model for grain boundaries. Building on previous work in mathematics and materials

science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and

the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation

significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist

boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by com-

parison to molecular dynamics energy data and experimental morphological observation for asymmetric

tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance

model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet

formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by

means of extensive MD and experimental comparison, future applications and implementations of the

model are explored.
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Chapter 1

Introduction

Why do we care about interfaces in crystalline materials? To the everyday observer, it is often not

immediately intuitive that microscopic crystalline interfaces should be of any consequence: as there are

no significant static effects on the visible length scale, effects of interfaces are often considered to be

small enough to be safely ignored. However, despite the negligible effect of interfaces at the visible

lengthscale, they play a much stronger role at the microscopic level. This counter-intuitive difference

between the relative mechanical influence at these different levels is, in fact, a result of scaling laws.

Interfacial effects scale with surface area, while other quantities, such as elastic or potential energy,

scale with volume. Volume is proportional to the object’s length cubed, while surface area scales as

the length squared. Thus, we expect bulk effects to dominate at large scales, with surface effects

dominating at small scales. Flypaper or Scotch tape provide a practical example of this effect. One

can easily catch insects or dust with these sticky materials, because at the millimeter lengthscale the

adhesive force (scaling with contact area) dominates the gravitational force (scaling with volume). On

the other hand, a human could not be caught in the same way—even with an entire wall covered with

flypaper or Scotch tape—because at the meter lengthscale, the forces scaling with volume dominate

those scaling with surface area. The same is true with crystalline materials: though surface effects seem

negligible to the observer, we should expect that they will eventually dominate (become “sticky”) at

small enough scales. Thus, it is important to account for area-scaling effects in order to understand the

mechanics of a wide variety of micromechanical processes.

Effects of this type are visible in many cases. Surface tension in liquids and interfacial energy in

1
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continuum scale

grains with varying

crystallographic orientation

grain boundaries

mesoscale

Figure 1.1: Macro- and microscopic view of metal structure. (image credit: imsoup.com, wikipedia.org)

multimaterial composites are some examples of area-scaling phenomena. For this work, the example of

interest are grain boundaries (GBs). As shown in Figure 1.1, most metals used in structural applications

are composed of microscopic grains, distinguishable from one another only by their crystallographic

orientation. The interface separating two grains is referred to as a grain boundary. Grain boundaries

affect the macroscopic properties of the material in many ways; for instance, grain boundaries raise the

yield strength of the material by restricting dislocation transmission and, consequently, effecting the

obstruction of plastic flow. GBs are often treated isotropically; that is, all GBs are treated the same

way regardless of the relative crystallographic orientation. However, grain boundaries exhibit strong

anisotropy, so understanding and modeling this anisotropy is of great importance in understanding,

modeling, and creating strong materials.

Materials are exceedingly complicated mechanical systems and all effective material models must take

into account a wide range of mechanisms by which the material body responds to physical inputs. The

best way to account for all of these competing mechanical effects is my means of variational (or energy)

methods. Variational methods provide an elegant and efficient mathematical framework for studying

complex mechanical processes. By computing the energy of each competing mechanical process, one

can show that the combined result is computed simply by minimizing the total energy, and it can always

be guaranteed that the minimizing result satisfies the conservation constraints on the system. From a

modeling perspective, variational methods are convenient because they allow a formulation of a model

using generalized degrees of freedom, essentially decoupling the materials physics from the kinematics
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and geometry of the system. Additionally, solving a problem with a variational structure allows for a

modular approach where the different physical mechanisms are isolated from each other until the final

minimizing step. As such, modeling of interfaces and grain boundaries is done most conveniently by

formulating a model for their energy.

Over the course of the past two centuries or so, but even more within the past several decades,

the focus of a great deal of research has been directed towards understanding and characterizing how

materials behave at microscopic scale in order to understand, quantify, predict, and even design their

behavior on the macroscopic scale. Broad and extensive work has been done to model a variety of

micromechanical phenomena, but study of the behavior of grain boundaries is comparatively undevel-

oped. In fact, to the best of the author’s knowledge, there are no models that can robustly predict

grain boundary energy for an arbitrary homophase configuration. Indeed, the grain boundary community

has yet to reach consensus even on the dominant mechanisms involved in determining grain boundary

energy: though it has been proposed many times that the anisotropy is driven by geometry, no geometric

quantity has yet been produced that consistently correlates to grain boundary energy.

In this work we present a new model for anisotropic grain boundary energy. The development

proceeds in two stages. First, we propose a model for strictly planar grain boundaries, and we show

that it is i) able to find location of energy minimizers in configuration space, ii) defined for an GB with

arbitrary configuration, and ii) computationally efficient. Second, following previous work, we describe

the variational principle for GBs from which a faceting scheme for relaxation is constructed. We then

are able to show that the relaxation scheme combined with the grain boundary energy model accurately

reproduces the relaxed energy and interfacial morphology of a wide range of crystals. We note here

that the work in this thesis is taken from current work of the author along with Dr. Irene Beyerlein,

Professor Sergio Conti, and Professor Michael Ortiz [1, 2].

1.1 Motivating applications

The applications for grain boundary energy research are wide and varied. Recrystallization [3], mi-

crostructure formation in solidification [4], and microstructure evolution [5] are all examples of phenom-
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(a) Schematic of a high strain rate Rayleigh
Taylor experiment in a vanadium rippled sur-
face [16].

(b) Comparison of computational modeling
attempts, with a close match obtained using
a multiscale approach [17].

ena that are significantly influenced by grain boundary anisotropy. Because of the many cases in which

grain boundaries play a significant role, it is of great interest to be able to understand and predict the

free energy of grain boundaries in a broad range of cases.

In addition to predicting the energy of grain boundaries, it is also of interest to predict their morphol-

ogy. The need for predictive morphological modeling is motivated by many observations and applications

In particular, faceted interfaces (interfaces with a piecewise affine zig-zag structure) are ubiquitous in

experimental observation and molecular dynamics simulations [6]. Some of the observed phenomena

influenced by faceted interfaces are deformation twinning [7], interface sliding under deformation [8],

interface mobility [9–14], and solidification [15]. Because they are frequently observed and because their

discrete and ordered structure is conducive to analysis, faceted grain boundaries and interfaces are of

great interest.

Of particular relevance to GB energy and morphology research are the applications towards high

energy physics simulations and multiscale modeling, spallation at grain boundaries, and optimal manu-

facturing of accumulated roll bonded composites. We discuss these applications briefly in the following

sections.
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1.1.1 Multiscale modeling of material strength in extreme strain rate deformation

Knowledge of material behavior in extreme dynamics and environments is of great importance in a wide

range of applications. For the military, knowledge of extreme material properties is crucial in the design

of weapons and shielding. Other applications of relevant high energy density materials physics include,

for example, the mechanics of inertial confinement fusion.

To this end, there is a great experimental effort to observe and characterize these high strain rate

properties. One example is illustrated in Figure 1.2a. This figure illustrates an experimental apparatus

in which a drive laser is used to cause a shock wave to propagate through a rippled interface in a sample

of vanadium. By examining the growth rate of the ripples, it is possible to quantitatively characterize

the role of material strength in this extreme environment.

Experiments provide valuable insight into high energy density material behavior, but are inherently

difficult and expensive operation. In order to predict material behavior in a wide range of high energy

density cases, there is a great need for accurate material models for large-scale simulations. The creation

of accurate extreme models for materials is a highly active research area.

There are many types of approaches to material behavior at high strain rates ranging from ab initio

to heuristic. Recently, the multiscale materials modeling paradigm has gained traction as a possible

means of predicting material behavior without relying on empirical models. Many of the results have

been promising: Figure 1.2b illustrates the predicted ripple growth rate from a variety of simulations

using different material strength models with drastically differing results. Clearly the multiscale model

predictions are the most reliable.

The goal of multiscale modeling is, broadly speaking, to capture the effects of a wide variety of mate-

rial behavior on multiple length and time scales. While material behavior is generally well-characterized

(if only phenomenologically) on the large scale, there are many physical phenomena that can only be

explained by linking the large scale response to small scale phenomena. However, because of the vast

difference in scaling, it is unfeasible to resolve small scales completely if a large simulation is to be run.

Thus the challenge is to bridge scales by creating large scale models informed by small scale physics.

To this end, grain boundaries play a strong role. In addition to the GB-related effects described above,
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(c) Experimental results for copper [19]. (d) MD simulation results for lead [20].

Figure 1.2: Spallation is often observed to occur at grain boundaries in materials undergoing rarefaction.

GB energy models are able to inform and improve existing models for other mechanical models, such

as models of microstructure and phase transition in which GBs energy determines the length scale of

energy-minimizing laminated microstructure [18].

1.1.2 Grain boundary spallation

A specific high energy density mechanism of great interest is the behavior of materials undergoing

extreme tension. By applying a near-instantaneous application of a very high pressure to a sample of

material, a shock wave is created that propagates though the material. Because failure rarely occurs

under pure compression, materials generally do not fail under compressive shock loading. However, when

the shock reaches the free end of a material the compressive shock can no longer be sustained. As a

consequence of the conservation of energy and momentum, a resulting tensile wave (called a rarefaction

wave) is reflected from the free end that propagates back through the material. When a rarefaction

wave encounters a free surface, the response is another wave propagating in the opposite direction.

This can create a region in the material where the rarefaction wave overlaps itself, causing the tensile

stress to double. This often causes failure in the material by the creation and unstable growth of small

nanovoids. This is referred to as spallation, and is a significant effect in many large-scale applications.

Grain boundaries have been observed to play a significant role in spallation during rarefaction.

Particularly, grain boundaries with higher energy are more likely to spall than those with low energy [21].

Consequently, it is important to account for grain boundary anisotropy when analyzing and designing

materials designed to undergo shock loading.
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Figure 1.3: Accumulated roll bonded composites use a macroscopic manufacturing method to generate
ultra-strong composites with an interface-dominated microstructure [22].

1.1.3 Accumulated roll bonded composites

Accumulated roll bonded (ARB) composites are a class of composites created using severe plastic

deformation (SBD). ARB show great promise due to their high strength and straightforward method

for manufacture. It has been demonstrated that at high layer density layer evolution is dominated by

interface mechanics [23, 24]. To be able to maintain layer stability for very small laminate scales, it

is necessary to understand the mechanics of the interfaces as well. By accurately understanding and

modeling the mechanics of grain boundaries, the same modeling approach may be extended towards

general multi-material applications.

1.2 Background

Work in the mechanics of materials at very small scales frequently is said to lie in “the intersection of

materials science and engineering” and, as such, motivates the need for a brief discussion of some of

the techniques used. Because (as is concluded) grain boundary energy is driven by geometrical effects,

it is essential to lay the groundwork for working with crystallographic terminology. On the other hand,

the implementation of the covariance model for grain boundary energy relies initially on some of the

developments in measure theory, and the formulation of the convexification method for relaxation uses

some of the developments in the calculus of variations. Therefore we include a brief discussion of some

of the mathematical preliminaries upon which the theory is built.



Chapter 1. Introduction 8

1.2.1 Crystallography

In this work, interfaces between exclusively crystalline materials are considered, where by “crystalline” it

is implied that the material is made up of lattices of atoms. A broad range of lattices occur naturally, but

in this work, all are assumed to be of the “Bravais” variety. A Bravais lattice in an n-dimensional space

is one generated by integral combinations of basis vectors; for instance, r(l , m, n) = l a + m b + n c

generates the lattice by enumerating atomic sites indexed by the integers l , m, n, given lattice basis

vectors a, b, c.

Another concept that will be used here is the crystallographic unit cell. The unit cell, defined

informally, is the smallest subsection of a Bravais lattice that generates the entire crystal structure.

Some lattices are conveniently represented by cubic unit cells and are referred to as “cubic lattices.”

Body-centered cubic (BCC) lattices are one example: the BCC unit cell has an atom at each corner

of the cube and an additional atom in the center. Face-centered cubic (FCC) lattices similarly have

an atom located at each corner of the cube; the remaining atoms are located at the center of each face.

Here and subsequently, we treat cubic lattices only.

Unit cells provide a basis for describing crystallographic geometry that is more convenient than the

Bravais basis, because the Bravais vectors are generally not orthogonal, even for FCC and BCC lattices.

Geometric quantities defined relative to the unit cell are generally defined using triplets of integers lmn

referred to as Miller indices. (By convention, an overbar is used to denote negativity, e.g. 5̄ ≡ −5.)

Vectors (often referred to as “directions”) are denoted using Miller indices with square brackets, e.g.

[lmn]. Crystallographic planes are denoted using parentheses, e.g. (lmn), where the indices lmn are

the indices of the vector normal to the surface. Mathematically, crystallographic directions correspond

to vectors in R3 (column vectors) whereas crystallographic planes correspond to 1-forms (alternatively:

covectors, dual vectors, row vectors). Cubic materials generally have high symmetry, and so many

directions/planes differ only by the coordinate system used to describe them. Therefore, generalized

directions and planes are often used to denote families of directions/planes that are crystallographically

identical. Angle brackets denote families of directions, e.g. 〈lmn〉; curly braces denote families of planes,

e.g. {lmn}. In general, use of direction/plane family notation is kept to a minimum in this work to
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avoid ambiguity.

Of primary interest in this work is the crystallographic conventions needed to precisely and consis-

tently characterize boundaries between two crystalline bodies. To begin let us consider two semi-infinite

Bravais lattices occupying the halfspaces {x ∈ R3, x3 > 0}, {x ∈ R3, x3 > 0}; without loss of generality

adopting the convention that R2 is the boundary plane.

Suppose that for each crystal there exists a reference configuration. Then the top and bottom crystals

are generated by the images of their reference configurations under the mappings φ±(x) = u±(x3)(R±x+

t±), where u± are the indicator functions for the upper/lower halfspaces, R± ∈ SO(3) are rotation

transformations, and t± ∈ R3 are offset vectors. The rotations R± are referred to as macroscopic

degrees of freedom and the offsets t± as microscopic degrees of freedom. General categorization of

grain boundaries considers the macroscopic DOFs only; that is, an implicit minimization with respect

to t± is assumed.

By parameterizing all grain boundaries using pairs of upper and lower rotations, the space of all GBs

can be represented as the direct product I = SO(3)× SO(3). The definition of the operation

RXRY = (R+
X R+

Y , R−X R−Y ) RX ,Y = (R+
X ,Y , R−X ,Y ) ∈ I (1.1)

gives I the structure of a Lie group. The requirements of closure, associativity, and identity/inverse

elements follow from the Lie group structure of SO(3). Then we observe that dim(I) = dim(SO(3)) +

dim(SO(3)) = 6, the topological dimension of the corresponding Lie manifold

We identify an equivalence class on the elements of I corresponding to grain boundaries that

are identical up to mutual rotation of both halves about the grain boundary normal. We define the

equivalence relation ∼ on I: for RX = (R+
X , R−X ), RX = (R+

Y , R−Y ) ∈ I

RX ∼ RY ⇔ ∃R ∈ im(f ) s.t. Rx
1 = RRy

1 , Rx
2 = RRy

2 , (1.2)

where f : SO(2) → SO(3), the embedding of SO(2) corresponding to the set of rotations about the

grain boundary normal. This definition is cumbersome, so we define ∼ alternatively in terms of the Lie
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subgroup

I2 = {(R+, R−) ∈ I : R+ = R− ∈ im(f )}. (1.3)

The reader may verify that, as before, the Lie group structure follows from the structure of SO(2). It

is easily shown that I2 is isomorphic to SO(2); consequently dim(I2) = dim(SO(2)) = 1. With this

definition we write ∼ as

RX ∼ RY ⇔ RXR−1
Y ∈ I2. (1.4)

This definition of the equivalence relation allows us to quantify the set of unique grain boundary

orientations as the quotient group I/ ∼ or I/I2, the set of equivalence classes in I. We see that

dim(I/I2) = dim(I)−dim(I2) = 6−1 = 5 and conclude that the space of grain boundary configurations

has topological dimension of 5.

It is possible that other equivalence classes exist that may further reduce the topological dimension of

the space of grain boundaries; such a reduction would make the problem of interface characterization and

energy quantification significantly easier. Some work has been done that may indicate such a reduction

[25, 26], but for now, we will treat the space of grain boundary configurations as five-dimensional.

A more intuitive argument for the 5d domain follows by considering the interface as being defined

by two quantities: the orientation relationship (OR) and the interface orientation. Again assuming the

existence of a reference configuration for both lattices, one may find a transformation matrix R+(R−)T

that maps from the bottom crystal’s orientation to the top. This set of relative orientations is SO(3).

Now, with the OR fixed, the interface is allowed to vary from its original orientation. This set of

interface orientations is S2, the unit 2-sphere. All interfaces can be represented in this way. Thus the

space can be represented as the direct product SO(3)× S2 so that dim(SO(3)× S2) = 3 + 2 = 5. This

characterization is generally more convenient when discussing classes of interfaces, and references to

the orientation and interface orientation will be made extensively in this work.
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1.2.2 Measure theory

In the formulation of the covariance model, it is convenient to introduce a function that describes

the geometry of each crystal. In the case of a rigid lattice with no thermal atomic vibrations, a

natural description of the lattice is as a collection of point masses. In order to describe point masses

mathematically, it is necessary to use measures.

Before discussing measures, it is necessary to introduce the concept of “generalized functions” or

“distributions.” Distributions are defined strictly in functional form; for instance, the Dirac distribution

is defined in terms of test functions as

δ[φ(x)] = φ(0) (1.5)

for any (well-behaved) function φ. Building on this definition it is possible to define derivatives, trans-

forms, and most of the usual properties of functions for distributions, in terms of the test function.

Measures, then, are distributions that have the additional constraint of i) non-negativity for positive

valued functions and ii) value of zero for the null set. The Dirac distribution (and additive combinations

thereof) is also a measure, and this allows the use of more restrictive mathematical tools. In this

work, Dirac measures are used to represent point densities of atoms for a lattice in which each atom is

considered to be absolutely rigid (i.e., at a temperature of absolute zero.)

1.2.3 Nonconvex optimization

The section on convexification for relaxed energy and morphology relies heavily on many of the devel-

opments in the mathematical fields of optimization and the calculus of variations. These tools have

been applied widely with great success to many problems in mechanics ranging from crystal plasticity

to microstructure of martensite. Specifically, in the context of variational methods in mechanics, it has

been shown that in order to minimize energy, materials tend to form very fine alternating microstruc-

tures when the energy functional is nonconvex. Here, a brief introduction to convexity and nonconvex

optimization is presented.
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(a) Nonconvexity of the integrand. (b) A minimizing sequence for I [u]

Figure 1.4: Nonconvexity and minimizing sequences.

A function over a linear space f : V → R is said to be convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ∀ x , y ∈ V ,λ ∈ [0, 1]. (1.6)

This is the zeroth-order convexity inequality and only requires f ∈ C0(V ). It may be described informally

by stating “f is convex if it lies on or below its chords.” If f ∈ C1(V ) then an equivalent inequality for

convexity is

f (y) ≥ f (x) +∇f (x)T (y − x) ∀x , y ∈ V . (1.7)

This is the first-order convexity inequality, and may be informally described by stating “f is convex if it

lies above its tangent planes.” Finally, restricting f ∈ C2(V ), an equivalent inequality is

xT∇2f (y) xT ≥ 0 ∀x , y ∈ V , (1.8)

where ∇2f is the Hessian matrix. This is the second-order convexity inequality and may be described

informally by stating “f is convex if its second derivative is positive-definite.” For a function f it is

useful to define fC the greatest possible convex function on or below f . fC is referred to as the convex

envelope, the convexification, or as the function of the convex hull of the epigraph of f .

A common example of the consequence of nonconvexity can be seen in the following functional
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I : C0([0, 1])→ R+.

I [u] =

ˆ 1

0
f (u, u′)dx =

ˆ 1

0

(
(u′(x)2 − 1)2 + u2(x)

)
dx . (1.9)

It is easily seen that I ≥ 0 for all u, so a u∗ such that I [u∗] = 0 is a minimizer. But does such a u∗

exist? From the second part of the integrand we get that a minimizer must u(x) = 0 ∀x . But from the

first part of the integrand we see that a minimizer must also satisfy u′(x) = ±1 for all x ∈ [0, 1]. This

indicates that f is nonconvex in its second argument, as shown in Figure 1.4a. We see that these two

competing terms drive the minimizing function to create infinitesimally small corrugations with slope

±1, as shown in Figure 1.4b, but arbitrarily small value; that is

lim inf
z→0

I [z ] = 0. (1.10)

Thus, it is impossible to actually attain the minimum, rendering the problem ill-posed. There are two

possible solutions: in the present example, one can regularize the solution by adding (u′′(x))2 to the

integrand. Alternatively, one can define the relaxation

IC [z ] = lim inf
z̄→z

I [z̄ ] = 0, (1.11)

which, as can be demonstrated, is equivalent to the convexification of I . This technique forms the

groundwork for the algorithm proposed in the chapter on relaxation, where notions of convexification

for interfaces will be discussed.

1.3 Organization of thesis

The work is presented in the following way. We present a literature review surveying the broad range

of previous work in Chapter 2. We develop the covariance model for grain boundary energy of planar

interfaces in Chapter 3 and present a selection of examples for validation. We then develop the relaxation

algorithm in Chapter 4 and present examples of its use with the covariance model towards a wide variety
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of grain boundaries applications. Finally, in Chapter 5, we present a summary of the covariance and

relaxation models and then briefly discuss future directions.



Chapter 2

Literature Review

The work in this thesis is intended to contribute to the field of interface energy by the development of

a novel grain boundary energy model. As such, in order to give the proper context for a new energy

formulation, it is essential to give a broad overview of the previous work done towards the same objective.

The work can be divided cleanly into two sections: the development of planar (unrelaxed) rigid models,

and the prediction of relaxation via faceting. The content of this chapter is taken from current work by

the author on the development of the covariance model [1], and from the work on the convexification

method [2].

2.1 Interface energy models

Developing models for interfaces has been a subject of research for many decades. They are unique

among material defects in their variety and complexity, and attempts to characterize them in a general

sense are ongoing. The plethora of interface models is as wide and varied as the selection of interfaces

themselves, and elude many attempts to cohesively organize and categorize them. Approaches range

from ab-initio quantum-based methods to heuristic geometrical constructions, and in the following

subsections we discuss some of the most prominent.

15
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2.1.1 Interface classification

The space of interface configurations is exceedingly large, and it is in general difficult to identify one

unifying characteristic to which the energy of each interface can be linked. Consequently it becomes

necessary to distinguish between and create models for different interface types. Interfaces between like

materials are referred to as grain boundaries The simplest types of non-trivial grain boundaries are

twin boundaries, which require no displacement of individual atoms in either lattice from the reference

in order to maintain registry at the boundary. Twin boundaries have the highest degree of order possible

in a non-trivial interface and have relatively low energy.

Many types of high-order boundaries are not twin boundaries, but have a high degree of order

and locally minimize the energy. Energy minimizing configurations in the space of interface energy

orientations form energy cusps near their location in configuration space [27–29]. Though the interfaces

themselves are well-understood, a current challenge is to find the locations of the cusps from which the

stability of interfaces in configuration space can be assessed.

The remainder of interface types are low-order boundaries due to the large rotation required to

obtain them from the nearest high-order boundary, and quantifying their energy can present a challenge

for low order models.

2.1.2 Atomistic simulations

It is difficult to obtain experimental data for the energy of grain boundaries, and we are not aware of the

existence of enough data for validating a model for the energy of a general GB. Thus, to validate low-

order models in lieu of raw experimental energy data, the common approach is to recourse to atomistic

simulations. Other than solving Schrödingers’ equation directly, the most fundamental method for

computing interface energy is density functional theory (DFT), which solves a reduced formulation of

the ground state energy eigenproblem in terms of the electron density. DFT has been used to examine

the properties of some grain boundaries and interfaces [30, 31]. However, computing energy for a wide

range of grain boundaries is currently prohibitively expensive, although we anticipate improvements in

the DFT theory that will make grain boundary and interface computations more feasible [32].
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The phase-field crystal method is an atomistic approach that has recently gained some popularity

[33–35]. It has been applied to grain boundary migration [14] and computation of GB energy [36].

Currently the de facto method for studying grain boundary energy is molecular dynamics (MD) [37].

The typical computational procedure is to create adjacent lattices of atoms, apply periodic boundary

conditions, and relax to static equilibration by minimizing the energy calculated with an interatomic

potential. All MD simulations require the use of interatomic potential. The simplest types of potentials

possible are empirical or effective pair potential, such as Lennard-Jones (LJ). Significant fundamental

shortcomings were found with the use of pair potentials [38], and the most commonly used potential

in modern interface calculations is the Embedded Atom Model (EAM) potential [39]. However, it

has been observed that, though often insufficient, pair potentials tend to give the correct result when

computing grain boundary energy [40]. The literature is rich with MD data on a wide variety of subsets

of the five-dimensional configuration space of interfaces. Data for FCC-FCC [41–48], BCC-BCC [49–51],

HCP-HCP [52, 53], and FCC-BCC [6, 54] provide solid benchmarks for model verification.

2.1.3 Current approaches

Perhaps the most satisfying and physically justifiable low-order models for interface energy are those that

build on the firmly established theory of dislocations. Theories of this nature rest upon the assumption

that the interface possesses a sufficient degree of order so that distinct interfacial defects can be identi-

fied. This perspective can be traced back to the original insight of G.I. Taylor [55] whose treatment of

dislocation surfaces led to the celebrated work of Read and Shockley [56]. They considered a generic

low-angle tilt boundary between two cubic lattices, and used geometry to determine the dislocation

density. By using the solution for the stress state resulting from ordered infinite rows of dislocations,

they were able to compute the interaction analytically and to integrate the expression, obtaining the

classic equation for tilt interface energy as a function of tilt angle E = E0θ[A − ln θ]. The model has

been shown to work well for low angle tilt, and Wolf demonstrated that the model can be adapted

to large-angle tilt boundaries to some degree [57], although this relationship is generally recognized as

strictly empirical [58]
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Read and Shockley’s contemporary, JH van der Merwe, approached the problem of interface energy

by devising a periodic interplanar potential and solving for the elastic response of the interface for

symmetric tilt grain boundaries [59–61]. In a similar vein, Bullough extended the established theory of

Peierls-Nabarro [60] for edge dislocations to symmetric tilt boundaries by treating interfaces as arrays

of evenly spaced edge dislocations [62].

It has been observed empirically that the crystallography of many interfaces drives the energy;

e.g., that most FCC crystals have similar GB anisotropy (up to a multiplicative constant) [63]. As

a result, a reasonable hypothesis is that models informed heavily by geometry may ultimately be the

most predictive. Several have been proposed that connect the energy of an interface to a geometrically

determined quantity, and we discuss some of them below.

No geometric quantity is more commonly encountered in interface theory than the coincident site

lattice (CSL) construction. When two misoriented lattices are adjacent to each other, the set of lattice

sites common to both form an additional lattice, called the coincident site lattice. The ratio of the area

of the CSL unit cell to the area of the lattice unit cell gives the so-called “Σ” value of the interface.

Because low Σ values correspond, in general, to low energy grain boundaries, the CSL has been proposed

as a model for GB energy [64, 65]. However the validity of such models has been questioned [66] and

even now there is no general consensus about its reliability for grain boundary energy [67].

The “structural unit model” is a well-known geometric approach [68–72]. This is a heuristic method

that attempts to characterize interfaces by determining the requisite structures needed for (or resulting

from) compatibility between the crystals. The model is helpful in understanding the geometry of an

unstructured interface, but it does not provide a means for predicting GB energy.

Frank and Bilby developed a theory that predicts the Burgers vector associated with a dislocation

at an interface [73, 74]. The approach considers two crystals with some arbitrary orientation and then

effects an arbitrary interface character by applying linear transformations FA, FB to the lattices. The

resultant formula b = (FA−1 − FB−1) t relates the dislocation Burgers vector (b) for the interface to

an in-plane measurement vector (t). A similar construction is the O-lattice of Bollmann that provides a

geometrical sense of the number of coincident points (“O-points”) in two interpenetrating lattices, from
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which the registry (and, ostensibly, the dislocation content) may be inferred [75]. By using geometric

constructions of the Frank-Bilby/O-lattice types and assuming the existence of ordered networks of

interfacial dislocations, it is possible to use anisotropic elasticity theory to compute the resultant energy

as well as the full stress field [76]. However, we are not aware of any procedure for predicting the

location of energy cusps (for arbitrary configurations) by means of these methods.

A number of approaches have also been developed that capitalize on the lattice periodicity and use it

to connect the evaluation of pairwise potentials and the geometric structure of the interface. Sutton [77]

proposed an analytic model for grain boundaries’ cleavage energy, and Widjaja et. al [78] developed a

similar model based on original work by Fletcher [79] that modeled the energy in quasicrystal-crystal

epitaxy. However, these approaches are not designed to handle the arbitrary case and cannot determine

a priori the locations of the cusps.

In an attempt to understand grain boundaries with arbitrary orientation and to model them from

a purely physical perspective, many researchers have formulated models for strictly large-angle grain

boundaries. The model proposed by Li attempts to model a posteriori the excess elastic energy between

energy cusps using a disclination-based model [80,81]. Bulatov et al proposed an alternative model based

on the concept of so-called “grofs” to build an interpolation that gives an energy function covering a

broad range of grain boundary orientations [82]. These models capture the known regions of grain

boundary energy well, but their strong dependence on previously available data may compromise their

predictive ability.

2.2 Relaxation

The propensity of crystal interfaces to equilibrate by forming piecewise-affine interface segments (“facets”)

is a phenomenon that has been studied for more than a century. As with most problems in mechan-

ics, the theory of interface morphology begins with the ansatz that equilibrium interface shapes are

energy minimal, allowing the problem to be posed in a variational framework. In general, crystalline

interfaces have a strongly anisotropic energy, resulting in nonconvexity of the integrand. Many non-

convex variational problems are eminently treatable in mechanics [18,83–85]; however, minimal surface
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problems generally lack coercivity, making a recourse to the familiar calculus of variations approach

impossible [86]. Treating problems of this variety (among others) led to the development of geometric

measure theory, which provides the necessary tools for minimal surface problems [87].

More than a century ago, Wulff proposed a construction for predicting the equilibrium shape of

a crystalline inclusion given that a method exists for computing the interface as a function of normal

vector [88]. This formed the basis for the study of crystalline inclusions [89]. The study of crystalline

inclusions is well developed; however, it is often the case that an interface is formed in a material that

is not globally energy-minimal. For instance, in large crystals, the energy dissipation for reorientation

is prohibitively high so that interface energy-minimal shape is inaccessible. Alternatively interfaces be-

tween bodies large enough to be treated as semi-infinite crystals face a similar restriction. A major

insight into the behavior of such interfaces may be attributed to Herring, who observed that interfaces

whose macroscopic orientation does not coincide with one of the equilibrium shape boundaries tend

to form a “hill-and-valley” (faceted) structure that is locally energy-minimal [90]. Put mathemati-

cally, faceted structures arise as a result of the nonconvexity of the interface energy functional. This

interpretation connects the theory of faceted structures to a variety of other nonconvex optimization

problems in mechanics [91]. This led to a number of equivalent expressions for energy-minimal facet

patterns: Cahn’s use of the vectorized energy formalism to formulate a facet optimization problem [92];

Taylor’s formulation of the problem in terms of convexity [93]; the use of varifolds to represent infinitely-

finely corrugated surfaces with a macroscopic shape [94–96]; a common tangent construction [97]; and

standard convexification with the problem posed in terms of graphs [98]. Independently from the de-

velopments in the mathematical community, materials scientists observed that the energy of faceted

interfaces can be quantified by rotational interpolation between the facet planes or by constructing a

lever-type rule [45, 99].

In the past, relaxation interpretation of faceting has been presented only as a means of explaining the

phenomenon, or in a highly reduced form. This is because the development of the relaxation theory in

the arbitrary case relies on the existence of a hypothetical interface energy functional γ for all possible

interface orientations, from which the relaxed energy γC may be computed. However, as discussed
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in the previous section, the problem of computing such a γ is still an open question in the modeling

community. Because of the lack of a general planar interface model, it has not been possible to use the

relaxation model predictively in the general sense. However, with the introduction of a fast and general

planar model, we will show that it is possible to use convexification in a predictive way.



Chapter 3

The Covariance Interface Energy Model

In this chapter, a general model for grain boundary energy is formulated by constructing thermalized

density measures and defining the covariance as a bilinear functional on them. Results for the covariance

model (without any relaxation) are presented to demonstrate the model’s range and scope and for

validation. The following sections are from the paper “A geometry-based model for the energy of grain

boundaries” by Runnels, Beyerlein, Ortiz, currently under review for publication in JMPS [1].

3.1 Theory

3.1.1 Problem definition and notation

The specific aim of the present work is to characterize the interface energy of infinite planar interfaces

separating two semi-infinite grains. We consider two general clusters of atoms, labeled b and w (“black”

and “white”), interacting through a general interatomic potential. Without approximation, the resulting

total energy can be formally written as

Ebw
tot ({rb}, {rw}), (3.1)

22
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where Ebw
tot ({rb}, {rw}) is an energy function and {rb}, {rw} are collections of atomic coordinates.

Following the definition of Gibbs [100], we define the “excess energy” to be

Exs = Ebw
tot ({rb}, {rw})− Eb − Ew , (3.2)

where Eb,w are the energies of the black and white crystals as if they were homogeneous [58,101,102].

When considering infinite systems, direct evaluation of (3.1) or (3.2) results in infinite energies in

general; however the “interfacial energy”, or excess energy density per unit area of the interface, may

be expected to be well defined. We define a computable interfacial energy by means of the following

limiting process. Consider a sequence of finite systems consisting of the atoms contained in an orthogonal

parallelepiped [−L/2, L/2]2 × [−H/2, H/2], where the square [−L/2, L/2]2 is contained in the plane of

the interface. Let {rbwL,H} be the atomic positions at equilibrium in the finite subsystem thus defined.

Then the interfacial energy per unit area follows as the limit

γbw = lim
L→+∞

1

L2

(
lim

H→+∞

(
Ebw
tot ({rbwL,H})− Nb

L,HEb
coh − Nw

L,HEw
coh

))
, (3.3)

where Ebw
tot ({rbwL,H}) is the total energy at equilibrium, Eb,w

coh are the cohesive energies per atom in infinite

crystals of type b, w , respectively, and Nb,w
L,H are the number of atoms of type b and w in the finite

subsystem, respectively. Provided that the limits are well-defined, (3.3) supplies a means of computing

the interfacial energy per unit area of an infinite planar interface.

We note that the surface energies per unit area of the half-crystals, γb and γw , follow as special

cases as

γb = lim
L→+∞

1

L2

(
lim

H→+∞

(
Eb
tot({rbL,H})− Nb

L,HEb
coh

))
(3.4)

and

γw = lim
L→+∞

1

L2

(
lim

H→+∞

(
Ew
tot({rwL,H})− Nw

L,HEw
coh

))
, (3.5)

where {rbL,H} and {rwL,H} are the atomic positions for the free-standing half-crystals b, w at equilibrium,

respectively, and Eb
tot({rbL,H}) and Ew

tot({rwL,H}) the corresponding total energies. Subtracting (3.4) and
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(3.5) from (3.3) we obtain the alternative representation

γbw − γb − γw = lim
L→+∞

1

L2

(
lim

H→+∞

(
Ebw ({rbwL,H})− Eb({rbL,H})− Ew ({rwL,H})

))
. (3.6)

The evaluation of (3.3) and (3.6) give an exact value for interface energy. The MD approach is to

minimize γbw with respect to the atomic positions and then to evaluate it directly. In this work, we

seek to model γbw directly, free from atomic-scale relaxation, with a suitable geometrical quantity.

3.1.2 Density measures of lattices

Consider a Bravais lattice in three dimensions generated by vectors a, b, c. The atomic sites indexed by

a 3-tuple n ∈ Z3 with an offset vector t are enumerated as

r(n) = t + n1a + n2b + n3c. (3.7)

Let % : C0(R3)→ R be a density measure defined by the following

ˆ
B

d%(x) = 〈NB〉 ∀B ⊂ R3, (3.8)

where 〈NB〉 is the expectation for the occupancy of B. If the lattice extends to infinity in all directions,

is subject to no external forces, and atoms have a fixed (i.e., not fluctuating) position, then the density

measure for the lattice is

% =
∑

n∈Z3

δr(n), (3.9)

where δx is the Dirac measure centered at x. The density measure is periodic and therefore is charac-

terized as a tempered distribution [103, p.165], and consequently has a Fourier transform [104]. For

most crystal structures, there exists an orthogonal parallelepiped periodic cell. This periodic cell exists

naturally for lattices with cubic crystal structure such as face-centered (FCC) and body-centered (BCC)
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cubic. For lattices with lower symmetry such as hexagonal close-packed (HCP), the rectangular periodic

cell is less natural.

3.1.3 Thermalization by maximum entropy

To regularize the model, we account for the effect of temperature on the density measure in a process

we refer to as thermalization. Let wn(x) = w(x− r(n)) be a function that measures the energy required

to displace atom n when all of the other atoms in the crystal are held in a fixed position. In a zeroth

order approximation, let the lattice density measure be additively decomposed into a sum of probability

density measures

% =
∑

n∈R3

%̄n, (3.10)

where %̄n is the density measure for the location of atom n. Because it is for a single atom, %̄n satisfies

the normalization constraint, and for the unthermalized case, %̄n = δr(n). For the regularized case we

use a functional representation of %, although this cannot be done in general [105]:

d %̄n(x) = ρn(x)dx. (3.11)

ρn(x) is the density function for atom n. ρn satisfies the normalization condition
´
ρn(x)dx = 1, and

so it can be considered a probability density function for atom n. We will use a statistical mechanical

argument to compute the form of ρn at finite temperature.

The principle of maximum entropy (colloquially “MaxEnt”) provides an efficient and convenient

framework for finding the probability density measure given a set of known constraints on a system [106].

Arising from information theory, MaxEnt was applied to thermodynamics by Jaynes [107, 108] and has

since been successfully used in many applications [109, 110].

The Gibbs entropy is defined as

S [ρn] =

ˆ
ρn(x) ln ρn(x) dx. (3.12)
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Following the MaxEnt procedure, we seek the maximizer of S subject to a normality constraint,

ˆ
ρn(x) dx = 1 (3.13)

and an energy equality ˆ
ρn(x) wn(x) dx = 〈wn〉. (3.14)

Enforcing (3.13) and (3.14) by means of Lagrange multipliers, we have

ρn = argsup
ρn

[
−
ˆ
Rn

ρn(x) ln ρn(x)dx− λ
(ˆ

Rn

ρn(x)dx− 1

)
− β

(ˆ
Rn

wn(x)ρn(x)dx− 〈wn〉
)]

.

(3.15)

Applying stationarity to (3.15) yields the Euler-Lagrange equation

ln ρn(x) + 1 + λ+ βwn(x) = 0. (3.16)

Using (3.13) to solve for λ we obtain the result

ρn(x) =
1

Q
e−βw(x−r(n)) Q =

ˆ
Rn

e−βw(x−r(n)) dx, (3.17)

where Q is the single atom partition function, and we identify β = 1
kBT

as the reciprocal temperature.

The convolution of a measure µ with a function f gives

(µ ∗ f )(x) =

ˆ
f (x− x̄) dµ(x̄) (3.18)

[103]. Thus we write (3.17) in convolution form:

ρ̄n = δr(n) ∗ ψ, (3.19)
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where

ψ(x) =
1

Q
e−βw(x). (3.20)

Now by (3.9) and the linearity of the convolution, we write the lattice density function at finite temper-

ature in terms of the lattice density measure:

ρ(x) =

((∑
n∈Z3

δr(n)

)
? ψ

)
(x) = (% ∗ ψ)(x) (3.21)

3.1.4 Fourier expansions of convolved periodic measures

The general reference for this discussion is Donoghue [103, pp.162-163]. Let µ be a tempered distribution

with period 2π. If µ is a measure of finite total mass, that is,
∑
|µk | <∞ where

µk =
1

2π

ˆ 2π

0
e−ikxdµ(x), (3.22)

then there is a Fourier series representation for µ

dµ(x) = f (x)dx =
∑
k

µk e ixkdx . (3.23)

Measures that do not have finite total mass can be regularized by convolution with a smoothing function

as follows. Let φ : R→ R be a mollifying function with Fourier transform φ̂. Then

(µ ∗ φ)(x) =
∑
k

e ikx ck φ̂(k), (3.24)

which converges absolutely. It is worth mentioning that for the special cases of φ(x) = e−σ|x | and

φ(x) = e−σ|x |
2
, we see that (3.22) is made Abel and Gauss summable, respectively, and that we recover

the unthermalized limit as σ → 0 [111].

It is easily verified that the lattice density measure % does not have finite mass. Its Fourier transform

is the point measure for the dual lattice [112], so the Fourier coefficients clearly do not decay. This
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motivates the need for regularization, which is effected by the thermalization of the density functions

as discussed in the previous section.

For the applications considered in this work, it suffices to consider lattices that are periodic in an

orthogonal parallelepiped E = [−a1/2, a1/2]× [−a2/2, a2/2]× [−a3/2, a3/2]. With this cuboid periodic

cell, (3.24) extends readily to three dimensions:

ρ(x) = (% ∗ ψ)(x) =
∑
n∈R3

e ik(n)·x %n ψ̂(k(n)), (3.25)

where k(n) = [2πn1/a1, 2πn2/a2, 2πn3/a3] are the reciprocal lattice vectors and the Fourier coefficients

are given by

%n =
1

|E |

ˆ
E

e−ik(n)·x d%(x). (3.26)

Special care must be taken when evaluating (3.26), because many lattices have sites located on ∂E , the

boundary of the periodic cell. Here it is useful to define the three dimensional set density [105, p.189]

θE (x) = lim
r→0

µ(E ∩ B3(x, r))

r 3 µ(B3(0, 1))
, (3.27)

where µ is a Lebesgue measure and B3(x, a) is the three-dimensional ball of radius a centered at x. For

an orthogonal parallelepiped, θE (x) = 1 on the interior, 1
2 on a face, 1

4 on an edge, 1
8 on a corner, and

0 in the exterior. With the set density defined we easily write (3.28) explicitly in terms of the atoms in

the unit cell:

%n =
1

|E |
∑
n∈IE

θE (r(n)) e−ik(n)·r(n), (3.28)

where IE = {n ∈ Z3 : r(n) ∈ E}, the index set of the lattice points in the unit cell.

3.1.5 Lattice deformation

Finally, we consider the action of a linear transformation on the lattice in real space. Let F ∈ GL(3) be

a linear map acting on the lattice such that r(m) 7→ F r(m). We introduce the notation ρ(x, F ) for the

density function under the action of a linear transformation, where ρ(x) = ρ(x, I ) implicitly. Following
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the same steps as above, but this time with the measure under the action of a linear transformation,

we obtain

ρ(x, F ) =
∑
n∈Z3

ψ̂(F−Tk(n)) %n e i F
−T k(n)·x. (3.29)

For the special case F = R ∈ SO(3) with ψ isotropic we arrive at the simplified expression

ρ(x, R) =
∑
n∈Z3

ψ̂(k(n)) %n e i R k(n)·x. (3.30)

3.1.6 Interface covariance

With the lattice density measures and thermalized density functions formalized, we seek to define a

geometric quantity that is reflective of the interface energy. We observe a strong correlation between low

interface energy and the registry of the two lattices at the interface; therefore we look for a quantity that

measures the degree of matched coincidence on the subspace of the interface plane. Let us consider an

interface between two thermalized lattices, “black” and “white”, with lattice density measures %b, %w ,

thermalization functions ψb,ψw , thermalized density functions ρb, ρw , under linear transformations

F b, Fw . Both crystals are periodic, but not necessarily with respect to the same unit cell. Without a

loss of generality, we let the x1 − x2 plane correspond to the shared interface between the black and

white crystals. We define P : R3 → R2 as the submersion operator

P =

[
1 0 0

0 1 0

]
, (3.31)

where PT : R2 → R3 is the embedding of the x1 − x2 plane into R3. Thus ρb,w (PTy), y ∈ R2 is the

density function evaluated on the interface. With these established, we propose the following geometric

quantity that we refer to here and subsequently as covariance.

Definition 3.1 (Covariance). The covariance of two lattices with thermalized density functions ρb, ρw
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under the linear transformations F b, Fw ∈ GL(3) is defined as the bilinear functional

c[ρb(·, F b), ρw (·, Fw )] =
1

µ(1)

ˆ
ρb(PTy, F b) ρw (PTy, Fw ) dµ(y), (3.32)

with µ a measure on L2(R2) as

µ(f ) =

ˆ
R2

f (y)φ(y) dy (3.33)

and φ : R2 → R an integrable window function

Some immediate simplifications of (3.32) are apparent. From [104, Example 7.16] we have

µ(1) =

ˆ
R2

φ(y) dy = φ̂(0). (3.34)

Because we have explicit expressions for ρb, ρw , we can evaluate (3.32) directly.

c[ρb(·, F b), ρw (·, Fw )] =

=
1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(F b−Tkb(m)) ψ̂∗(Fw−Tkw (n))

ˆ
e i (PF b−T kb(m)−PFw−T kw (n))·y φ(y) dy

=
1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(F b−Tkb(m)) ψ̂∗(Fw−Tkw (n)) φ̂(PF b−Tkb

m − PFw−Tkw
n ). (3.35)

For the special case of F = R ∈ SO(3) with ψ isotropic, (3.35) reduces to

c[ρb(·, Rb), ρw (·, Rw )] =
1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(kb(m)) ψ̂∗(kw (n)) φ̂(PRbkb

m − PRbkw
n ). (3.36)

An examination of (3.35) yields insight into the behavior of c . The double sum ensures that all

possible matched periodicity between the two lattices is incorporated. The Fourier coefficients ρb,w
m,n

contain the information about the lattice structure. The thermalization functions ψb,w monotonically

decrease to zero with increasing m, n, and thus they cause high order modes to be damped and to give

convergence of the sum, as expected. The Fourier transformed window function φ̂ becomes a saturated

measure of the coincidence between transformed reciprocal lattice vectors, returning a maximal value
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when coincidence is attained.

Another useful fact about (3.35) is that it is given entirely in terms of φ̂ and ψ̂, that is, expressions

for φ and ψ are not needed. This is beneficial from a modeling perspective, as is eliminates the need to

compute Fourier transforms, which is frequently nontrivial in two or more dimensions. Here we emphasize

that, for the general formulation, the only restrictions on φ̂ and ψ̂ are their square integrability. We

restrict to specific forms only in the results section where we validate the model.

3.1.7 Bounds on covariance

We immediately note that (3.35) is maximized by coincidence. This suggests an inverse relationship

with energy. Thus it is useful at this point to determine scaling relations that map the covariance to a

reasonable range for energy.

By (3.8), we have that

ˆ
B
ρ(x) dx = 〈NB〉 ≥ 0 ∀B ⊂ Rn =⇒ ρ(x) ≥ 0, (3.37)

whence we establish a lower bound for the covariance functional

c[ρb, ρw ] ≥ 0 ∀ρb, ρw . (3.38)

We observe that the covariance functional defines an inner product over L2(R2), which in turn induces

a norm over the space. This prompts an application of the Cauchy-Schwarz inequality, giving

c[ρb(x, F b), ρ2(x, Fw )]2 ≤ c[ρb(x, F b), ρb(x, F b)] c[ρw (x, Fw ), ρw (x, Fw )]

≤ sup
F̄ b,F̄w ∈GL(3)

c[ρb(x, F̄ b), ρb(x, F̄ b)] c[ρw (x, F̄w ), ρw (x, F̄w )]

= sup
F̄ b ∈GL(3)

c[ρb(x, F̄ b), ρb(x, F̄ b)] sup
F̄w ∈GL(3)

c[ρw (x, F̄w ), ρw (x, F̄w )]. (3.39)

Here we restrict F a, F b to SO(3), considering rigid lattice rotations only. Inequality (3.39) introduces a
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notion of a ground-state covariance:

cgs [ρb), ρw ] =

(
sup

F̄ b ∈ SO(3)

c[ρb(·, F̄ b), ρb(·, F̄ b)] sup
F̄w ∈ SO(3)

c[ρw (·, F̄w ), ρw (·, F̄w )]

)1/2

(3.40)

Let the normalized covariance be defined as follows

C [ρb(·, Rb), ρw (·, Rw )] = 1− c[ρb(·, Rb), ρ2(·, Rw )]

cgs [ρb, ρw ]
, (3.41)

whence it is easily verified that

0 ≤ C [ρb(·, Rb), ρw (·, Rw )] ≤ 1. (3.42)

3.1.8 Microscopic degrees of freedom

Up to this point, only the effect of macroscopic degrees of freedom—that is, the relative rotations and

interface orientation—have been considered on the grain boundary energy. Now we investigate the effect

of the microscopic degrees of freedom. In general, the microscopic degrees of freedom are the relative

rigid-body displacement between the two crystals

t = tb − tw , (3.43)

where tb, tw are the translation vectors referred to in (3.7). In atomistic simulations, the microscopic

degrees of freedom are determined by relaxation. In an experimental context, it is generally not possible

to prescribe a relative displacement in a grain boundary. It is therefore of no utility to incorporate the

offset vector as a free variable into the covariance model. However, because it may significantly affect

the result, we cannot neglect it. Therefore, we seek a method for the selection of an optimal offset

vector.

We will show that the covariance is inversely correlated to grain boundary energy. Thus a natural

choice for an offset vector is one that minimizes energy and, consequently, maximizes the covariance.
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To find the optimal offset we first modify the expression for a density function (3.30) by giving the

lattice an offset t:

ρ(x, F , t) =
∑
n∈Z3

ψ̂(F−Tk(n)) %n e i F
−T k(n)·(x−t) (3.44)

=
∑
n∈Z3

ψ̂(F−Tk(n)) %n e−i F
−T k(n)·t e i R k(n)·x. (3.45)

Let tb, tw be the offset vectors for the two lattices so that the total offset is tb − tw . Substituting into

(3.35) we have

c[ρb(·, F b, tb), ρw (·, Fw , tw )] =

=
1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(F b−Tkb(m)) ψ̂∗(Fw−Tkw (n)) e−i (F b−T k(m)·tb−Fw−T k(n)·tw )×

φ̂(PF b−Tkb
m − PFw−Tkw

n ). (3.46)

Proposition 3.1 (Minimal offset vector). Let %b, %w be density measures. Let the thermalization

function ψ and the window function φ be defined such that ψ̂ and φ̂ are nonnegative. Let F b, Fw ∈

GL(3). If %bm, %wn ∈ R+ then

argsup
tb,tw

c[ρb(·, F b, tb), ρw (·, Fw , tw )] = (0, 0). (3.47)

Proof. Using the fact that all terms are nonnegative except the exponential term, we find

c[ρb(·, F b, tb), ρw (·, Fw , tw )] ≤ |c[ρb(·, F b, tb), ρw (·, Fw , tw )]|

=

∣∣∣∣ 1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(F b−Tkb(m)) ψ̂∗(Fw−Tkw (n)) e−i (F b−T k(m)·tb−Fw−T k(n)·tw )×

φ̂(PF b−Tkb
m − PFw−Tkw

n )

∣∣∣∣
=

1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(F b−Tkb(m)) ψ̂∗(Fw−Tkw (n))

∣∣e−i (F b−T k(m)·tb−Fw−T k(n)·tw )
∣∣︸ ︷︷ ︸

≤1

×
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φ̂(PF b−Tkb
m − PFw−Tkw

n )

≤ 1

φ̂(0)

∑
m,n∈Z3

%bm %
w∗
n ψ̂(F b−Tkb(m)) ψ̂∗(Fw−Tkw (n)) φ̂(PF b−Tkb

m − PFw−Tkw
n )

= c[ρb(·, F b, 0), ρw (·, Fw , 0)] (3.48)

whence we conclude that tb = tw = 0 maximize the covariance.

Proposition 3.1 provides sufficient conditions to guarantee that no offset vector need be considered

in covariance calculations. The conditions of nonnegativity for ψ and φ are satisfied naturally, but

the constraints on %bm, %wn are more restrictive. The property %n ∈ R is satisfied automatically if the

periodic cell E is chosen so that the lattice is symmetric, but the constraint of nonnegativity must be

additionally verified. For the lattice structures considered in this work (FCC and BCC), the properties

are verified easily. However we note that the rectangular periodic cell for other structures such as HCP

are asymmetric. Consequently, the role of the offset vector will need to be considered for those cases.

3.1.9 Covariance as a measure of grain boundary energy

With the covariance defined as a geometric quantity, we hypothesize that the covariance controls the

interface energy. Employing a simple linear scaling relationship, we have as the formulation of the

general covariance model

γbw (Rb, Rw ) = E0 C [ρb(·, Rb), ρw (·, Rw )], (3.49)

where E0 is a material-dependent parameter.

The atomic embedding energy w(x) (and hence ψ(k)) can be determined experimentally or the-

oretically, but for most purposes we find that a simple quadratic potential effects a sufficiently close

result and, additionally, admits a ready formulation of its Fourier transform. The window function ψ(x)

appears to determine the near-cusp behavior of the energy, and we may expect that there is some

connection between the choice of window function and the elastic constants of the crystals. However

this observation is strictly, for the time being, empirical. We leave the selection of ψ(x) (or, rather
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ψ̂(k)–only the reciprocal function is needed for evaluation) open as a way to introduce near-cusp models

into the general framework.

While the relationship between covariance and interface energy is as yet an empirical connection,

the covariance formulation provides a number of useful insights into the relationship between interface

energy and state variables. It is observed that the main motivator of the energy is the coherence of the

interface, in the argument of φ̂. If φ̂ is maximized by 0, then the covariance increases when there is

registry between the dual lattice vectors k(n) under their respective linear transformations.

The effect of the thermalization function ψ is to dampen higher order terms in the sum. For the case

of 0K , ψ → δ, and consequently ψ̂ → 1. This destroys the convergence of the sum, effectively allowing

an infinite number of terms to contribute equally, as expected. Alternatively, at higher temperature,

σ(ψ) (the standard deviation of ψ) decreases, damping higher order terms. From this it is clear that

the fine structure of the interface energy function is visible at low temperatures, but is damped out with

thermal fluctuations.

We conclude this section with a simple example that demonstrates the behavior of the model for

the simplest possible nontrivial system. In the subsequent sections we validate the use of the model by

comparison to molecular dynamics data for grain boundary energy.

Example 3.1 (1D chains). Let ρb, ρw be 1D lattices with lattice constants equal to ab, aw , respectively.

Then for 0K

%b,w (x) =
∑
n∈Z

δnab,w . (3.50)

For both lattices, let

ψσ(x) =
1

σ
√
π

e−x
2/σ2

=⇒ ψ̂σ(k) = e−σ
2k2/4, (3.51)
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(a) (negative) covariance as a function of a with σ fixed at σ = 0.3.
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(b) (negative) covariance as a function of a with ε fixed at ε = 0.1.

where σ =
√

2kBT
E , the thermalization constant. Then the thermalized lattice density function is

ρb,w (x) =
∑
n∈Z

ψ̂(2πn/ab,w ) e i2πn/a
b,w

. (3.52)

Let

φ̂ε(k) = e−|k|/ε. (3.53)

In real space the integral formulation of the covariance is

c[ρa, ρb] =

ˆ ∞
−∞

ρa(x)ρb(x)dx (3.54)

=
∑

m,n∈Z
ψ̂(2πm/ab) ψ̂(2πn/aw )

ˆ ∞
−∞

e i(2πn/ab−2πm/aw )x φ(x)dx (3.55)
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=
∑

m,n∈Z
ψ̂(2πm/ab) ψ̂(2πn/aw ) φ̂

(
2πn/aw − 2πm/ab

)
dx . (3.56)

Letting ab = 1 and aw → a, we plot the covariance as a function of a for various values of σ (Figure

3.1b) and ε (Figure 3.1a).

These figures show the effect of varying ε and σ. As ε decreases the cusps become less smooth. In

the limit as ε→ 0, the cusps become perfectly sharp, as expected.

On the other hand, we see that the value of σ does not affect the slope of the cusps directly. The

value of σ determines the degree of “fine structure” in the energy functional; σ → 0 causes the cusp

structure to become infinitely dense, as expected.

3.2 Results for homophase boundaries

The space of interface orientations is exceedingly large. Consequently we restrict the scope of the

validation tests to a subset of well-understood interface classes, with the expectation that consistent

behavior for these interface classes is an indicator of the predictive nature of the model. The choice of

these interface classes is entirely driven by the availability of verification data. The data for interface

energy, in lieu of direct experimental measurement, is taken from MD simulations.

In this section we consider homophase interfaces or grain boundaries, that is, interfaces for which

a rotational transformation exists that transforms one crystal lattice to the other. We consider the

following three types of interfaces: symmetric tilt grain boundaries (STGB), symmetric twist grain

boundaries (STwGB), and asymmetric twist grain boundaries (ATwGB). Additionally, we consider

materials whose lattice structure falls into one of three categories: face-centered cubic (FCC), body-

centered cubic (BCC), and hexagonal close-packed (HCP). Two or more materials are considered for

each choice of crystal structure and boundary class, with the choice of materials driven by the availability

of MD data.
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θ

tilt angle

(c) STGB.

tilt axis

twist axis

(d) Homogeneous

twist angle

θ

(e) TwGB

Figure 3.1: We begin with a uniform crystal with no boundary (center). A symmetric tilt grain boundary
is formed by symmetric rotation about an in-plane tilt axis (left). A symmetric twist grain boundary
results from asymmetric rotation about the normal twist axis (right).

3.2.1 Grain boundary geometry

Three types of grain boundary geometries are considered in this section.

Symmetric tilt grain boundaries (Figure 3.1c) are obtained by rotating two halves of a uniform

crystal symmetrically with respect to a prescribed interface. Thus all STGBs are defined by i) the

crystallographic direction (in Miller indices) corresponding to the constant tilt axis that remains constant,

ii) the total tilt angle between the two crystals about the tilt axis, and iii) the direction corresponding

to the initial normal axis to the homogeneous interface. Because STGBs are by definition symmetric

about the constant interface plane, the tilt axes must lie within a symmetry plane of the crystal [58];

as such the class of STGBs is limited to a selection of tilt axes. For cubic materials the STGB tilt

axes are 〈100〉, 〈110〉, 〈111〉, and 〈112〉, and we have found a wide selection of MD data for these

STGBs [41–43, 49–51].

Symmetric twist grain boundaries (Figure 3.1e) are obtained by an antisymmetric rotation of upper

and lower halves of the crystal about a common axis (the “twist axis”) that is normal to the initial

interface plane. The twist axis and twist angle are sufficient to characterize any STwGB grain boundary.

As with STGBs, the class of STwGBs are restricted to those associated with twist axes for which the
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(a) FCC. (b) BCC.

Figure 3.2: Optimal geometry of unit cells for FCC and BCC crystal structures.

corresponding normal is a symmetry plane of the material. Asymmetric twist grain boundaries are

defined similarly to STwGBs, but without the restriction of a common twist axis between the materials

(thereby eliminating any restrictions on the symmetry of the interface). Classes of ATwGBs are specified

using the two crystallographic directions corresponding to the normal vectors of the top and bottom

crystals.

3.2.2 Crystal structure and material parameters

The atomic density functions ρ for the crystals are computed in Fourier series form. The Fourier

coefficients %n for a lattice are computed by integrating over the unit cell [−a/2, a/2]3. Cubic lattices

(FCC,BCC) have a natural rectangular unit cell that is tabulated easily. The rectangular unit cells for

BCC and FCC crystal structures are illustrated in Figure 3.2, and their locations are given in Table 3.1.

The unit cell for the BCC case is familiar, but we note that the choice of FCC unit cell differs from the

conventional unit cell for this structure. The reason for this choice is to satisfy the positivity conditions

in Proposition 3.1; proof is given in Appendix A for both structures.

Assuming a quadratic potential for the atomic displacement energy: w(x) = 1
2 E ||x||2, the corre-

sponding normalized thermalization function is a Gaussian function
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Table 3.1: Locations of atoms in the Fourier periodic unit cell for BCC, FCC, and HCP lattices.

Crystal structure Unit cell
E

Atomic Locations
{ri}

Density
θ(ri )

BCC [− a
2 , a

2 ]3 (0,0,0) 1
(± a

2 , ± a
2 , ± a

2 ) 1/8

FCC [− a
2 , a

2 ]3 (0,0,0) 1
(0, ± a

2 , ± a
2 ), (± a

2 , 0, ± a
2 ), (± a

2 , ± a
2 , 0) 1/4

ψ(x) =
1

σ3π3/2
e−||x||

2/σ2
, (3.57)

where the quantity σ2 = 2kT/E is the dimensionless temperature. For the window function we choose

a Cauchy distribution function

φ̂(k) = e−||k||/ε, (3.58)

which closely models the behavior of the interface energy function near energy cusps. With this choice

of thermalization and window functions the energy model is dependent on three material parameters:

σ, ε, and E0. We have determined these values by finding the optimal fit based on a wide range of MD

data (Table 3.2).

The MD data chosen for comparison in this work is taken from a series of papers by Wolf [41–51],

which provide comprehensive data from a wide range of interface configurations using a consistent

methodology. MD data from other works was considered (including some for which an even closer fit

to the covariance model was obtained, c.f. [113]); however, we found that results from different authors

required different selections of E0. Therefore we choose a set of self-consistent MD results for validation.

Table 3.2: Material parameter values used for materials in all GB tests

Cu (FCC) Au (FCC) Mo (BCC) Fe (BCC)

E0(J/m2) 1.45 0.95 2.525 1.950
σ/α 0.175 0.175 0.19 0.19
ε 0.5 0.5 0.25 0.25
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Figure 3.3: FCC STGB results of the covariance model for Copper and Gold, compared with molecular
dynamics results using the Embedded Atom Method (EAM) and Lennard-Jones (LJ) potentials. MD
results from [41]. Annotations on the top indicate the boundary plane for the top crystal at cusp
locations.

3.2.3 FCC symmetric tilt grain boundaries

The first set considered are the FCC symmetric tilt grain boundaries. The results of the comparison

for the [100], [110], [111], and [112] boundaries are presented in Figure 3.3. We compare and fit the

model results to MD results from [41] for gold, using an embedded atom method (EAM) potential, and

copper, using both EAM and Lennard-Jones (LJ) potentials. We computed the grain boundary energy

using the covariance model (the solid line), and observed a close matching of the model to the MD

results.
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For the [100] tilt boundaries, the cusp corresponding to the {110} boundary is observed at θ = 90◦.

For the [110] tilt boundaries, we observe the cusps corresponding to the {111} and {113} boundaries at

θ = 70.6◦ and θ = 129.4◦, respectively. For the [111] tilt boundaries, other than the cusp corresponding

to the homogeneous case at θ = 0◦, we do not observe any significant energy cusps. For the [112] tilt

boundaries, we observe a deep cusp corresponding to the {113} boundary. The location of all of the

deep energy cusps for θ > 0 predicted by the MD data are matched exactly (to an arbitrary degree of

precision) by the model.

We observe a discrepancy between the model and the MD data at the {100} homogeneous case

(〈100〉 at θ = 0◦) and the {110} homogeneous case (〈110〉,〈111〉,〈112〉 STGB at θ = 0◦). Although

the location of the cusps corresponding to the homogeneous case is correct, we observe that the model

overpredicts the energy. To address this issue requires additional considerations of relaxation, which will

be discussed in the next chapter.

3.2.4 BCC symmetric tilt grain boundaries

The next set of boundaries considered are the symmetric tilt grain boundaries for BCC crystals, with the

same configurations and θ ranges as for FCC STGBs. We compare the results of the model with MD

results from [49] for α-Iron (Ferrite) using a Johnson potential, and Molybdenum using a Finnis-Sinclair

type potential. The model results are plotted in Figure 3.4. We observe strong agreement between the

predictions of the model and with the MD results.

For the [100] tilt we observe strong energy cusps at θ = 0◦, 90◦, corresponding to the {100} and

{110} STGBs. A weak cusp is also present at θ = 37◦ corresponding to the {310} STGB. For [110]

tilt, we observe strong energy cusps at θ = 0, 109◦, 180◦, corresponding to the {110}, {112}, {100}

boundaries. We note that the cusp at θ = 51◦ corresponding to the {332} STGB is only barely

noticeable in the model, whereas it is a significant cusp in the MD data. On the other hand, the model

predicts a cusp at θ = 70◦ corresponding to the {111} STGB that is not present in the MD data. We

refer the reader to alternative MD simulations (e.g., [113]) of the same boundaries that also do not

predict the {332} cusp. For the [111] tilt boundaries we observe deep cusps at θ = 0◦ and θ = 90◦,
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Figure 3.4: BCC STGB results of the covariance model for Molybdenum and α-Iron, compared with
MD results using FS (for Mo) and Johnson (for Fe) potentials. MD results from [49]. Annotations on
the top indicate the boundary plane for the top crystal at cusp locations.

corresponding to the {100} and {110} STGBs. A minor cusp is observed at θ = 38◦ corresponding to

the {231} STGBs.

3.2.5 FCC twist grain boundaries

The next set of boundaries considered are the FCC twist grain boundaries. There are two types of these

boundaries: asymmetric twist (ATwGB) and symmetric twist (STwGB). The STwGBs are created by

beginning with a homogeneous crystal, defining a twist axis, and rotating the top and bottom crystals

symmetrically about it. ATwGBs are a more general class of boundaries, and are defined by the two
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Figure 3.5: FCC TwGB results of the covariance model for Copper and Gold, compared with MD results
using EAM (for gold) and LJ (for copper). The boundary planes (constant for all twist angles) are
indicated by the graph labels. MD results for symmetric twist from [42], asymmetric twist from [43].

grain boundary planes of the top and bottom crystals.

The results for the STwGBs are, in general, as expected, with deep cusps corresponding to the

homogeneous cases at θ = 0, 90◦ and θ = 0, 60◦. Results are compared to MD work by Wolf [43] in

the first two plots in Figure 3.5. However we see a greater difference for the STwGBs than any other of

the FCC tests; the {111} STwGB showing a particularly high value above the MD results. It appears

that the results differ only be a multiplicative constant and we note that the model results could easily

be re-scaled for a better fit. However, as the the same set of material parameters are used for all GB

calculations, it would not be possible to adjust E0 without significantly altering the fit to other data.

We suggest as possible explanations that i) the MD results attain a relaxation state that is inaccessible
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Figure 3.6: BCC StwGB results of the covariance model for α-Iron, compared with MD results using a
Johnson potential. MD data from [50, 51].

by the model or ii) the potential used for these MD results differ by a multiplicative constant.

Notably, the results for the asymmetric twist boundaries are more accurate. The results are again

compared to MD work by Wolf [43] in the last four plots in Figure 3.5. We notice almost exact

agreement for the (115)(111) and (221)(001) boundaries, and a fairly close estimate of the energy for

the (114)(011) and (557)(113) boundaries. In addition, we note that the cusp location is predicted

exactly as well. The cusp magnitude for some of the cases, particularly (114)(011) and (221)(001),

differ significantly.

3.2.6 BCC twist grain boundaries

The final set of grain boundaries investigated were BCC STwGB and ATwGB configurations. The

selection of the investigated boundaries was driven by the available MD data.

The results for the model for STwGB boundaries are compared against MD data from Wolf [50,51]
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Figure 3.7: BCC ATwGB results of the covariance model for Molybdenum and α-Irdon, compared with
MD results using a Finnis-Sinclair (FS) potential for Mo and a Johnson potential for FE. MD results
from [51].

in Figure 3.6. For the {001} STwGB we notice close agreement with the MD data, matching the minor

cusps at θ = 37◦, 53◦. The results for {011} are very similar to the MD results, differing only by a

multiplicative factor. For the {031}, {111} and {112} boundaries, the MD data is somewhat chaotic

and we do not observe a significant trend in the data or the presence of cusps. Further, we notice that

the symmetry present in these lattices does not appear to be present in the MD data. Finally we note

that, as with previous examples, the absolute values of many of the deep energy cusps differs from that

predicted by the model.

Finally, the results for BCC ATwGBs are presented with MD data from Wolf [51] in Figure 3.7.

For the (114)(011) we notice an exceedingly close match, with all of the cusps and magnitudes almost

identical. For the other families of ATwGBs we notice a somewhat chaotic tendency in the MD data

without many distinguishing features. One exception is the data for Fe in the (221)(001) configuration–
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we observe apparent cusps at ∼ 37◦ and ∼ 53◦ that are not captured by the data. However, in this

case, the cusps are clearly not present in the Mo case, an apparent example of material dependence in

the behavior of the energy landscape.

3.3 Conclusions and future work

The aim of this present work was to develop a geometry-based, general, predictive, and general model

for the energy anisotropy of grain boundaries. In the formulation of the model, the concept of a lattice

density measure is introduced and, from it, the thermalized lattice density function is defined. Based

on these definitions we propose a geometric quantity, the covariance, between two thermalized lattice

density functions, and we hypothesize that the covariance correlates strongly with the interface energy.

Finally, we formulate an energy model based on the covariance.

In the second part of the paper, we specialize the covariance energy model to realistic materials by

selecting crystal structures, thermalization mollifiers, and window functions. For each material, three

material parameters are introduced, σ, ε, E0 and these are characterized by comparisons with extensive

suites of MD data. The same three parameters are used for all MD comparisons, and are not adjusted

on a plot-by-plot basis. We find that the model predicts cusp locations reasonably well, captures trends

in the energy closely, and serves as a good approximation of the large-angle tilt boundary energy data.

Because all results are given using consistent material parameters and no information regarding cusp

location or magnitude, we find this to be strong validation of the predictive ability of the model for a

wide range of grain boundary orientations.

Some of the differences between MD and the covariance model are consequences of the uncertainty

in the pair potentials used in the MD data, resulting in an unreliable calculation of the absolute value

for the excess energy [51]. We can attribute some of the error to the restriction of the model to planar

interfaces. Toward resolving this issue, ongoing work will be dedicated to implementing energy relaxation

via complex morphology [2]. Finally, we acknowledge that due to the complex energy-relaxing structures

that are formed at some interfaces, some energy states are outside of the scope of any low-parameter

model. However, we expect that the discrepancy due to these differences to be small.
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The encouraging results from this model prompt a wide range of future research directions. Only

a small subset of all possible interface orientations has been explored, and we anticipate extensions

of the model to alternative orientations, such as asymmetric tilt grain boundaries, to other crystal

structures, such as hexagonal close-packed, and to multiphase/multi-material boundaries, such as FCC-

BCC Kurdjumov-Sachs. The model has immediate applications to the study of multiple mesoscopic

phenomena, such as recrystallization, solidification, severe plastic deformation, etc. We also anticipate

the computational adaption of this model to integrate interfacial dynamics into large-scale computational

models.
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Chapter 4

The Convexification Algorithm for
Relaxed Energy and Morphology

The previous chapter constructed a model for strictly planar interfaces. In this chapter, we develop a

method for computing the energy and morphology of non-planar interfaces by applying relaxation to a

planar model. This work builds on many of the developments in the mathematics and materials science

community. The result that the faceting construction recovers the convexification of the interface en-

ergy function has been reached independently in a number of previous results. In this work, we present

the development of the construction and connect it with previous work. The main contribution is the

application of the relaxation as a computational algorithm and its ability, when applied using the covari-

ance model, to accurately predict interface energy, morphology, and thermally induced morphological

transformations. nn

4.1 Theory

Let us consider an interface between two materials, where the orientation relationship (OR) between

the crystals is fixed and the interface energy per unit area is given by γπ : G (3, 2) → R+, given the

selection of a coordinate system such that the embedding of π aligns with R2. (Here, G (m, n) is the

Grassmannian, or the set of n-dimensional linear subspaces in Rm.) We also define γ̂π : R2 → R+,

the interface energy as a function of the gradient of the interface. In this coordinate system, let the

interface between the crystals be R2. Following a formalization along the lines of [98], in the relaxed
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z(y)

material 1

material 2

interface

π

Figure 4.1: We choose a coordinate system between the materials and add z , a perturbation to the
interface.

case we let the materials be separated by an interface S that is parameterizable by a single piecewise

differentiable graph z : R2 → R as shown in Figure 4.1. Then we write the total interface energy with

the morphology given by z as

Γ[z ] =

ˆ
γ̂π(∇z(y)) |z(y)| dy, (4.1)

where |z(y)| =
√

1 + |∇z |2 is the density of z at y, and the integral is over R2. We note that the

domain of integration is infinite. Consequently because there is no guarantee of the integrability of

γ̂π(∇z)|z |, we conclude that (4.1) is not evaluable in general. Instead, we introduce a normalization to

compute the relaxed energy per unit area, and the following notation

 
f (y)dy

def
= lim

L→∞

1

L2

ˆ
[− L

2
, L

2
]2

f (y)dy. (4.2)

Then we define the energy per unit area as

γ(π, z) =

 
γ̂π(∇z(y)) |z(y)| dy, (4.3)

where we see that the planar energy per unit area follows as a special case of (4.3) for z = 0:

γ(π, 0) =

 
γ̂π(0) dy = γ(π). (4.4)
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Suppose we attempt to find the minimizing z for the functional in (4.3). Let z = ξ · y. Then

γ(π, z) =

 
γ̂π(ξ)

√
1 + |ξ|2 dy = γ̂π(ξ)

√
1 + |ξ|2 (4.5)

whence we see that the optimal graph z? is given by z?(y) = ξ? · y, where

ξ? = arginf
ξ

γ̂π(ξ)
√

1 + |ξ|2. (4.6)

Apparently, minimization of (4.3) results in a divergent planar graph. But we are interested in finding the

z that minimizes (4.3) without large-scale deviation from the planar interface. To effect this behavior

we introduce the Moreau-Yosida regularization

γε(π, z) =

 
γ̂π(∇z) |z(y)| dy +

1

ε

 
π

z2 dy, (4.7)

where ε is a penalty parameter that drives z → 0 as ε → 0. Let {zn}∞n=0 be a sequence of graphs

converging to 0 as n→∞. If

lim
ε→0,n→0

γε(π, zn) ≥ γ(π, 0) (4.8)

then γ is said to be lower-semicontinuous. In this case then z = 0 is a minimizer for (4.7), the minimizing

interface is said to be planar.

The interesting behavior happens when γ lacks lower-semicontinuity. In this case, the minimizer z?

for (4.7) is not attained in general, and the best one can hope for is to choose a sequence of functions

that approaches the infimum of (4.7) [86]. If a sequence of functions {zn} satisfies

lim
zn→0

γε(π, z) = inf
z
γε(π, z) (4.9)

then {zn} is said to be a minimizing sequence. Given the existence of a minimizing sequence [86], the

functional

γC (π) = lim
ε→0

inf
z
γε(π, z) (4.10)
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is said to be the relaxed interface energy per unit area or, alternatively, the relaxation of γ. We note

that i) γC is itself lower-semicontinuous and therefore is its own relaxation and ii) two planar interface

energy per area functions γ1, γ2 may have the same relaxation.

4.1.1 Faceting construction

With the introduction of the “faceting” terminology, we acknowledge the two meanings of the word

facet in the literature, and to avoid ambiguity we clarify here our use of the word. The first meaning is

used to describing the geometry of a large polyhedral crystal, the planar faces are referred to as facets.

The second refers to the zig-zag structure observed on the atomic scale. In this work we shall use the

latter defintion. When it is necessary to distinguish between the two we shall refer to the former as

macrofacets and the latter as microfacets.

Using facets, we seek to find a minimizing sequence that approaches the infimum of γε, in order to

construct γC . Let us make the following definition:

Definition 4.1 (Facet sequence). A sequence of piecewise differentiable functions {zn}∞n=0 is said to be

an m-facet sequence if it satisfies the following properties:

i) Piecewise affine: for each n there is a cover {Ωn
i }mi=1 of R2 and a collection {ξi}mi=1 ⊂ G (3, 2) so

that

∇zn(y) = ξi ∀y ∈ Ωn
i i = 1 ... m, (4.11a)

and there is a collection {µi}mi=1 so that

µi = lim
L→∞

Ωn
i ∩ [−L

2 , L
2 ]2

L2
(4.11b)

for all n.

ii) Pointwise convergence:

lim
n→∞

|zn(y)| = 0 ∀y ∈ R2 (4.11c)
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iii) Weak derivative convergence:  
∇z dy = 0 (4.11d)

The substitution of (4.11a) into (4.11d) yields the linear system

 
ξ dy =

m∑
i=1

µi ξi = 0. (4.12)

Let {zn} be an m-facet sequence with gradients {ξi} and area fractions {µi}. Then the relaxation

corresponding to zn of the energy is

γε(π, zn) =

 
γ̂π(∇zn)

√
1 + |∇z |2 dy +

1

ε

 
z2dy. =

m∑
i=1

µi γ̂π(ξi )
√

1 + |ξi |2 +
1

ε

 
z2dy. (4.13)

By (4.11c), in the limit as n→∞,

lim
n→∞

γε(π, zn) =
m∑
i=1

µi γ̂π(ξi )
√

1 + |ξi |2. (4.14)

Substituting into (4.10), and restricting to a minimization over all m-facet sequences, we obtain the

following discrete optimization problem

γC (π) = inf
{ξi},{µi}

m∑
i=1

µi γ̂π(ξi )
√

1 + |ξi |2

subject to
m∑
i=1

µiξi = 0
m∑
i=1

µi = 1 µi ≥ 0. (4.15)

The solution of (4.15) over the set of m-facet sequences is said to be the m-relaxation of γ. If m ≥ 3

then the solution of (4.15) is the convexification of γ [114]. Solutions of (4.15) are a set of optimal facet

gradients and area fractions; the corresponding facet graph is referred to as the optimal facet pattern.

We note that (4.15) also generates the Young measure [115]

ν =
n∑

i=1

µ?i δξ?i , (4.16)
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(b) 1-sphere convexification (bold line) of γ (light
line) projected as a function of n, the normal vector
to the interface.

Figure 4.2: Two plots of the same data demonstrating the connection between convexity in gradient
space and convexity on the unit sphere. The “convex hull” on the unit sphere is equivalent to the
convex hull of the energy multiplied by

√
1 + |∇z |2. (The shaded region is the Wulff construction.)

where µ?i , ξ?i are solutions of (4.15) and δx are the Dirac measures centered at x.

4.1.2 Convexification on the unit sphere

The formulation of the convexification problem using graphs and gradients is useful for connection

with other gradient problems; however, the formulation (4.15) proves cumbersome in application. In

addition, that the problem is posed in terms of gradients is problematic because i) we cannot guarantee

differentiability of the interface and ii) solutions may drive the gradient to be infinite.

There exists a natural duality between G (3, 2), and S2 = {x ∈ R3 : |x| = 1}, the unit 2-sphere

in 3D. We use the Hodge star operator ? to convert between the two dual spaces. For S2 we define

the embedding f : S2 → R3 and the submersion g : R3 → S2. Finally, we define the homeomorphism

h : R2 → S2

f (h(ξ)) =
1√

1 + |ξ|2

−ξ1

−ξ2

1

 , (4.17)
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which, interpreted informally, converts the gradient of a plane to its normal vector. These definitions

enable us to write (4.15) as

γC (π) = inf
{ξi},{µi}

m∑
i=1

γπ(?h(ξi )) (µi

√
1 + |ξi |2)

subject to
m∑
i=1

µi
√

1 + |ξi |2√
1 + |ξi |2

ξi = 0
m∑
i=1

µi
√

1 + |ξi |2√
1 + |ξi |2

= 1 µi

√
1 + |ξi |2 ≥ 0. (4.18)

The first and second constraints combine in the following way:

m∑
i=1

µi
√

1 + |ξi |2√
1 + |ξi |2

[
(ξi )1$ξi )2

1

]
=

m∑
i=1

µi

√
1 + |ξi |2 f (h(ξi )) =

0

0

1

 . (4.19)

Let λi = µi
√

1 + |ξi |2 and let πi = ?h(ξi ). Then

γC (π) = inf
{πi},{λi}

m∑
i=1

λiγπ(πi ) subject to
m∑
i=1

λi f (?πi ) =

0

0

1

 , λi ≥ 0. (4.20)

Finally, transforming coordinates, we have the result for convexity on the unit sphere

γC (π) = inf
{πi},{λi}

m∑
i=1

λiγ(πi ) subject to
m∑
i=1

λi f (?πi ) = f (?π), λi ≥ 0 (4.21)

whence we see that the facet minimization problem of Cahn [92] is equivalent to the standard convexifi-

cation (4.15). The solution to this program yields both i) the value for the relaxed energy γC and ii) the

minimizing facet planes {πi} and their area fractions {λi}. We note that the usual constraint
∑

i µi = 1

is effectively replaced by
∑

i λi ≥ 1. For the relaxed energy to remain bounded, it is necessary that the

energy provided by γ be nonnegative.

The problem of convexification was previously treated by Jean Taylor, who presented an alternative
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method for finding the convexification γC of a function γ on the unit sphere [93].

γC (π) = sup
π1

inf
π2

(?π1,? π)

|(?π1,? π2)|
γ(π2) (4.22)

While the same result is produced, information about the facet sequence morphology is lost.

4.2 Implementation

The relaxation construction relies on the existence of a general interface energy function γ(π). Here, we

present an algorithm for computing energy and morphology of grain boundaries by using the relaxation

algorithm with the covariance model.

4.2.1 Covariance model for interface energy

We begin with a brief overview of the covariance method for interface energy. [1] is a general reference

for this section. The key element of the covariance method is the construction of “density measures”

% : C0(R3)→ R+ defined by

ˆ
B

d%(x) = 〈NB〉 ∀ measurable B ⊂ R3, (4.23)

where 〈NB〉 is the expected number of atoms in B. The density measure is periodic allowing % to be

expressed in terms of a Fourier series; however, it is necessary to regularize % in order to make the

Fourier series summable. This is effected by thermalization using the MaxEnt formalism. The end

result is that the rigid lattice density measure % is convolved with a thermalization function ψ to give a

regularized lattice density function ρ. The thermalization function is determined by the choice of atomic

embedding energy potential. As in the previous work we choose a quadratic potential, resulting in a

Gaussian thermalization function

ψ(x) =
1

σ3π3/2
e−||x||

2/σ2
, (4.24)
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Table 4.1: Material parameters for covariance model

Cu (FCC) Au (FCC) Al (FCC) Mo (BCC) Fe (BCC)

E0(J/m2) 1.45 0.95 750 2.525 1.950
σ/α 0.175 0.175 .175 0.19 0.19
ε 0.5 0.5 .175 0.25 0.25

where the quantity σ2 = 2kBT/w0, kB is Boltzmann’s constant, T is the absolute temperature in

Kelvins, and w0 is a material parameter for the quadratic potential. The interface energy is computed

as a linear function of the covariance, a geometric quantity given as

c[ρb, ρw ] =

 
ρb(PTy) ρw (PTy)φ(y)dy, (4.25)

where PT : R2 → R3 embeds R2 in R3 and φ(y) is a window function. We choose a window function

φ so that

φ̂(k) = e−||k||/ε, (4.26)

where ε is a material parameter. With these definitions the interface energy is given in terms of the

covariance as

γ(ρb, ρw ) = E0

(
1− c[ρb, ρw ]√

c0[ρb] c0[ρw ]

)
, (4.27)

where

c0[ρb,w ] = inf
R∈SO(3)

c[ρb,w (·, R), ρb,w (·, R)]. (4.28)

Generally, there are three parameters for each test: E0, σ, and ε. Consistent values for these parameters

are used for all tests in this work, and values are given in Table 4.1.

4.2.2 Stereographic projections of interface energy surfaces

The behavior of γ(n) drastically affects the faceting behavior (and consequently the relaxed energy) of

the interface, so it is crucial that the surface be visualized in an intuitive way. In this work we visualize

the energy surface via a stereographic projection. Figure 4.3 illustrates the process for generating
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(a) Fixing the orientation relation-
ship between the upper and lower
crystals, all remaining interface
configurations are determined by
normal vector, mapping interface
energy to the unit sphere.

(b) The upper unit 2-hemisphere
is homeomorphic to the unit 2-ball
over which the energy is plotted.
For example, the value at the cen-
ter corresponds to the normal vec-
tor n = [0 0 1]T .

0.00
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0.16

0.24

0.32

0.40

0.48

0.56

0.64

(c) The relaxation algorithm is
used to compute the energy-
minimizing facets. Facet config-
urations are represented as nodes
on the stereographic plot or visu-
alized as a faceted surface.

Figure 4.3: Faceting algorithm

stereographic visualizations: the orientation relationship is fixed and the interface is allowed to vary. The

set of all normal vectors is equivalent to the unit sphere, and therefore it is convenient to associate the

energy of each interface inclination with its corresponding point on the unit sphere, generating a plot of

energy over the sphere. γ is clearly parity invariant, that is, γ(n) = γ(−n), indicating that the interface

need not be oriented. As a consequence, the unit hemisphere (S+
2 = {x ∈ R3 : |x| = 1, x3 ≥ 0}) is

sufficient to capture all of the interface behavior. Because it is homeomorphic to the unit 2-ball, we use

the projection (n1, n2, n3) 7→ (n1, n2) to visualize the energy surface.

Energy surface plots provide a convenient means of describing optimal facet patterns. A collection

of normal vectors can be visualized as a collection of points, and the resultant facet pattern as a convex

polygon connecting them. We see that the constraint in (4.21) indicates that a set of facet vectors {n}

form a facet pattern only if their convex hull contains the origin; consequently a polyhedral representation

of a facet pattern gives an immediate indication of their compatibility.
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4.2.3 Procedure

We implement a basic grid search algorithm to compute the relaxation of γ. We use the following

procedure for each relaxed energy point. First the orientation relationship of the crystals is fixed, so that

γ = γ(n). A uniform grid of normal vectors {ni} ⊂ S+
2 is generated, and the interface energy model is

used to compute the energy at each point, giving a set of values {λi} ⊂ R+.

We refer to “m-relaxation” as the relaxation given by solving (4.21) in the space of m-facet sequences;

e.g. a 2-relaxation returns the optimal 2-facet pattern and the corresponding relaxed energy. Since m-

facets ⊂ (m+1)-facets, it follows that γmC ≥ γ
m+1
C with the superscript of γC denoting the order of the

relaxation.

Algorithm 1 outlines the general procedure for computing the 3-relaxation; the algorithm for other

relaxation orders (particularly, 2) is almost identical differing only by the number of nested loops. The

basic procedure has O(nm) time complexity, where n is the number of grid points and m is the order of

the faceting. A number of filters can be exploited that improve the efficiency of the computation, such

as selective sampling, partitioning of the domain, and numerical annealing. In addition, by exploiting

known symmetries of γ, the search space can be significantly reduced. However, we find that the basic

method does not require extensive improvement in order to return results.

4.2.4 Computation of results

The planar results were generated using the same C++ code as the previous chapter, with additional

code added to compute the faceting relaxation. Threading was implemented using pthreads so that the

program was run with 7-8 processes. The computation of each set of data (with high enough resolution

for the relaxation method to accurately find the minimal cusp value) was generally generally completed

in 1-2 seconds, although this number varied depending on the value of the dimensionless temperature.

The relaxation method was used on each dataset to compute the optimal faceting pattern. For many

cases the 2- and 3-relaxation results were identical, although in some cases it was necessary to run a

full 3-relaxation. With datasets large enough to find cusps accurately and with no data reduction, each

relaxation computation took approximately 1-2 seconds to complete.
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Algorithm 1 Grid search algorithm to compute γC (n)

Require: n · n = 1
create tuple ({ni}, {γi}) using planar model
γmin =∞
for all (n1, γ1) in ({ni}, {γi}) do

for all (n2, γ2) in ({ni}, {γi}) do
for all (n3, γ3) in ({ni}, {γi}) do

N = [n1, n2, n3]
if det N = 0 then

continue
end if
λ = N−1n
if not λ ∈ R3+ then

continue
end if
if γmin > λ1γ1 + λ2γ2 + λ3γ3 then
γmin = λ1γ1 + λ2γ2 + λ3γ3

end if
end for

end for
end for
γC = γmin

return γC

4.3 Examples

We validate the use of the convexification method algorithm by using the covariance method for the

unrelaxed planar model. The range and scope of the covariance model with the enhancements provided

by convexification is demonstrated through comparison to a wide range MD and experimental data

for several grain boundary configurations. In this section we use MD results from consistent authors

where possible, though more recent MD results are available in some cases. In Appendix B we include

additional comparisons with results from more recent MD calculations, as well as experimental results

and low-angle tilt models.
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tilt axis

(a) Begin with a uniform crystal

θ

tilt angle

(b) Rotate symmetrically about
tilt axis to form STGB

Figure 4.4: Geometry of symmetric tilt grain boundaries

4.3.1 Symmetric tilt grain boundaries

The set of symmetric tilt grain boundaries (STGBs) forms one of the most basic classes of nontrivial

grain boundaries. STGBs are obtained are obtained by beginning with a uniform crystal and rotating

the upper and lower halves symmetrically with respect to a tilt axis contained in the prescribed interface

(Figure 4.4). Consequently, STGBs are defined by i) the crystallographic direction (in Miller indices)

corresponding to the tilt axis that remains constant, ii) the total tilt angle between the two crystals

about the tilt axis, and iii) the direction corresponding to the initial normal axis to the homogeneous

interface. Because STGBs are by definition symmetric about the constant interface plane, the tilt axes

must lie within a symmetry plane of the crystal [58]; as such the class of STGBs is limited to a selection

of tilt axes. For cubic materials the STGB tilt axes are 〈100〉, 〈110〉, 〈111〉, and 〈112〉, and we use a

wide selection of MD data for comparison [41, 49].

The results in this section and in section 4.3.2 follow the results in the previous work by the authors

on the covariance model for interface energy [1]. As discussed in the original formulation, the planar

restriction on the covariance model results in overprediction of the energy of some boundaries, particularly

for boundaries in homogeneous crystals. For many of the cases described we find that the planar model
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Figure 4.5: FCC STGB results of the covariance model (relaxed and unrelaxed) for Copper and Gold,
compared with molecular dynamics results using the Embedded Atom Method (EAM) and Lennard-
Jones (LJ) potentials. MD results from [41]. Annotations on the top indicate the boundary plane for
the top crystal at cusp locations.

suffices and that no change is effected by relaxation. For a thorough discussion of the behavior of the

grain boundary energy for the unrelaxed regions we refer the reader to the original analysis. In this

work we are concerned with the effect of relaxation; consequently we discuss the improvements on the

unrelaxed results only.

In Figure 4.5 we observe the effect of relaxation on the set of FCC STGBs. The original results for

the planar model are plotted using a finely dashed line and the results for the relaxed model are plotted

using a solid line; results for Copper and Gold are plotted in blue and green, respectively. We note that,

in general, the unrelaxed and relaxed results are coincident; relaxation only occurs in the regions where
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they diverge.

For tilt about the [100] axis, relaxation occurs for 0◦ ≤ θ < 5◦ and 75◦ < θ ≤ 90◦. The result

for the 0◦ ≤ θ < 5◦ region corrects a discrepancy in the planar model; at θ = 0 the crystal is uniform

and should therefore have zero grain boundary excess energy. The relaxation method effects this energy

reduction by creating facets for the {111} boundary planes, obtained by rotating the interface about

the {110} axes. That the resultant energy would be reduced to zero follows by the observation that

the {111} family of STGBs are energy minimizers; from the [110] tilt plot we see that the unrelaxed

energy is zero for the {111} case. Consequently we observe that this relaxation construction occurs for

all {100} symmetric tilt boundaries, (the other occurring for [110] tilt at 175◦ < θ ≤ 180◦).

For the [110], [111], and [112] tilt boundaries we observe significant relaxation for 0◦ ≤ θ < 15◦, all

of which correspond to the case of near-uniform crystals. As before, by examining the energy plot we

see that the relaxation to zero is effected by convexification with zero-energy {111} facets.

In Figure 4.6 we perform a similar set of tests using materials with BCC crystal structure, Molybde-

num (blue) and α phase Iron (green). As with the FCC results, the results from the planar model are

plotted with a hashed line, while the relaxed model results are plotted using a solid line. For almost the

entire range of tilt angles for all four cases, no relaxation occurs and the relaxed plot is consequently

coincident with that of the planar model. The only relaxation that is observed to occur in these figures

is: for [100] tilt, 0◦ ≤ θ < 5◦; for [110] tilt, 175◦ < θ ≤ 180◦. The reason for the relaxation occurring

exclusively for these configurations is intuitive and is consistent with that of the FCC tilt case. Evalu-

ation of the covariance model in the uniform crystal case shows that there exists an anisotropy in the

energy. The absolute minimum energy value is attained in the uniform crystal orientation corresponding

to the most densely packed plane: for FCC the {111} plane and for BCC the {110}, and the energy for

all uniform crystal orientations is reduced to zero by convexifying between these minimal energy orien-

tations. As a result, no relaxation occurs in the BCC STGB case when the uniform crystal boundary

is already minimized; because θ = 0 corresponds to a {110} plane for most of the cases, no relaxation

occurs.

At this point the reader may raise an objection regarding the consistency of the use of a relaxation
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Figure 4.6: BCC STGB results of the covariance model (relaxed and unrelaxed) for Molybdenum and
α-Iron, compared with MD results using FS (for Mo) and Johnson (for Fe) potentials. MD results
from [49]. Annotations on the top indicate the boundary plane for the top crystal at cusp locations.

construction with symmetric tilt grain boundaries: STGBs are generally observed to be planar, so any

faceting construction of the interface results in a departure from observed (and simulated) behavior.

In response we remark that all relaxation for STGBs occurs at or very near to the uniform crystal

case. Uniform crystals by definition have no physical boundary; the supposed interface between them

is reduced to a construction. Thus there is no reason why the constructed interface need be planar; on

the contrary, because we expect the constructed boundary in a uniform crystal to be densely packed,

we would expect that it follows the densely packed regions to some extent.

We also note that relaxation does not occur for the majority of the tilt configurations. That is, the
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energy surface for most STGBs is sufficiently convex so that it is not possible to reduce the energy by

faceting. Consequently we conclude that the observed planar behavior of STGBs may be explained by

the observation that planar STGBs (except in the uniform crystal case) are energy minimizers.

The relaxation resolves the original discrepancy of nonzero energy at uniform boundaries in the

results for the unrelaxed model. For all of the symmetric tilt grain boundaries, and for the FCC cases in

particular, we observe that the covariance model used with the relaxation theory produces results that

very closely match results from MD calculations.

4.3.2 Twist grain boundaries

For every possible grain boundary there exists a corresponding set of twist grain boundaries (TwGB).

TwGBs are generated by rotating the top and bottom crystals of any grain boundary antisymmetrically

about a twist axis that is normal to the interface plane (Figure 4.7.) Any TwGB is described by its

two boundary planes and the twist angle. A subset of the family of TwGBs are symmetric twist grain

boundaries (STwGB). A TwGB is a STwGB if the crystal is uniform when the twist angle θ = 0. A

TwGB is specified by a single boundary plane. The set of asymmetric twist grain boundaries (ATwGB)

are all the TwGBs that are not STwGBs.

The selection of TwGBs that we use for comparison is driven by the availability of molecular dynamics

data. For FCC-FCC TwGBs we compare with two STwGB cases and four ATwGB cases. The results

for the comparison are included in Figure 4.8. As with the previous section, the planar results are

represented with a hashed line, and the relaxed with a solid line. Only data for copper was available

for the FCC STwGB case, so we only include the results for copper STwGB. For the remainder of the

cases we compare results for both copper and gold. As with the previous work, we observe the greatest

discrepancy in the case of the FCC STwGBs. While the shape and cusp location match well, both

appear to differ by some multiplicative constant.

For the (111) case, no relaxation occurs because, as expected, the planar model attains its minimum

for θ = 0◦. For the (100) case we observe relaxation occurring near θ = 0◦, 90◦. As with STGBs,

relaxation using {111} facets in FCC materials is necessary to correctly recover the value of 0 for uniform
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twist axis

(a) Begin with a uniform crystal.

twist angle

θ

(b) Rotate symmetrically about
tilt axis to form STGB.

Figure 4.7: Geometry of asymmetric tilt grain boundaries.

crystals. For (115)(111) and (221)(001) asymmetric twist we observe very good agreement between

the molecular dynamics data and the results of the model. The improvement on the (115)(111) case

by relaxation is negligible but unnecessary given the high correlation of the unrelaxed results. For

(221)(001) the planar model overpredicts the value of the energy at the cusps for θ = 0◦, 90◦; however,

the relaxed model corrects the energy value to give an almost exact matching of the cusp magnitude.

For the remaining two ATwGBs we observe more chaotic energy data in the MD results as well as the

relaxed and unrelaxed model. For (114)(011) ATwGB we see a marked difference between the behavior

of the MD data for copper vs for gold, indicating that for this type of interface, grain boundary energy

may not be dominated by geometry. We see a considerable improvement on the planar model at the

energy cusps for θ = 0◦, 180◦. The model already predicted cusps at those locations, but relaxation

corrects the magnitudes for an almost exact match. For (557)(113) there is a slight improvement in the

energy for the cusps at θ = 0◦, 180◦, though the energy match is not exact. It is interesting to note that

small energy reductions by relaxation occur through the range of θ for both (114)(011) and (557)(113)

TwGBs. An examination of the stereographic energy surface visualizations for those values do not yield

any interesting insight into their morphology, but we observe that continuous, slight relaxation seems

to correspond to more “chaotic” boundaries that invariably have more disordered morphology. This is
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Figure 4.8: FCC TwGB results of the covariance model (relaxed and unrelaxed) for Copper and Gold,
compared with MD results using EAM (for gold) and LJ (for copper). The boundary planes (constant for
all twist angles) are indicated by the graph labels. MD results for symmetric twist from [42], asymmetric
twist from [43].

a trend that we will observe in the following BCC twist cases as well.

A broader range of BCC twist grain boundary data are available, giving us a greater dataset for

validation. For symmetric twist only data for alpha-phase iron was found, so we include only the iron

results. For asymmetric twist we compare against both alpha-phase iron and molybdenum.

The results for BCC symmetric twist grain boundaries are plotted in Figure 4.9. As we expect for

(100) symmetric twist relaxation occurs near the end cusps, as a result of the fact that (100) boundaries

for uniform crystals in BCC require convexification with (110) boundaries to reduce the energy to zero.

For the remainder of this region the match is close, and coincident with the planar model. No relaxation
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Figure 4.9: BCC StwGB results of the covariance model (relaxed and unrelaxed) for α-Iron, compared
with MD results using a Johnson potential. MD data from [50, 51].

occurs for the (110) STwGB set of boundaries; the planar model recovers γ = 0 at the end cusps and

apparently the remainder of the interfaces are planar. As in the previous work we note that the shape of

the energy matches very closely, differing only by a multiplicative constant. For (031)(031) symmetric

twist, the relaxation model correctly adjusts the cusp at θ = 0◦ to zero. The resultant matching of both

end cusps is very good. We see a fairly chaotic pattern in both the MD and the model data, with the

relaxed energy diverging slightly from the unrelaxed at multiple points. The match of the general trend

is good, and neither MD nor the model predict the existence of a well-defined cusp that the other does

not. For (111)(111) symmetric twist we find again that the model correctly adjusts the θ = 0◦ to zero

as expected; no other relaxation occurs, and the matching of the energy trends and cusp magnitudes

is very close. Finally, as with most of the other cases, we observe θ = 0◦ cusp correction to zero for

(112)(112).

The results for BCC asymmetric twist grain boundaries are plotted in Figure 4.10. For (114)(011)
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Figure 4.10: BCC ATwGB results of the covariance model (relaxed and unrelaxed) for Molybdenum and
α-Iron, compared with MD results using a Finnis-Sinclair (FS) potential for Mo and a Johnson potential
for FE. MD results from [51].

twist almost an exact match exists between the planar model and the MD data. No relaxation is

observed, (or needed). For (115)(111) twist we observe a slight reduction of energy by relaxation for

θ < 50◦, and a significant reduction at the cusp θ = 0◦. The cusp matching is not precise, but the

relaxation clearly improves the planar results considerably. For (158)(031) we observe a significantly

chaotic pattern in both MD data and the model. The relaxation behavior is unique for this set of data

in that additional minima are formed by the creation of relaxation structures. Additionally we do not

observe any correction of the values at the end points, although neither endpoint appears to correspond

to a cusp in either the model or MD results. For the (221)(001) case we observe no relaxation and,

interestingly, the value of the energy at the cusps does not change either. Good agreement is observed

for molybdenum in particular. An energy structure in the MD data is observed for iron that differs

from molybdenum. As with some of the the low-symmetry FCC cases, this difference may indicate a
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departure from the interface energy behavior from dependence on geometry, at least for this specific

type of grain boundary. Finally, for the (552)(112) case we observe majority coincidence of the planar

model with the relaxed model. However, relaxation occurs near θ = 180◦ that improves the matching

of the energy cusps. Otherwise we find good agreement between the model and the MD results.

In conclusion for the discussion of twist grain boundaries, we believe that the combination of the

covariance model with relaxation produces a wide range of results that match very well with molecular

dynamics data. Some outlying cases exist; however, we find almost universal agreement of the predicted

cusp location. Because the model was designed primarily as a means of locating cusps, this serves as

validation within the mission space of the model. Further, the primary discrepancies between the model

and the MD data are generally cases where the results are still almost identical up to a multiplicative

constant. Closer matching could be obtained by adjusting the model parameters for those sets specif-

ically, but a departure from a consistent set of parameters would compromise the model’s predictive

ability. A number of explanations may be offered for these differences ranging from the inability of the

model to access certain relaxation mechanisms, to an inaccuracy of the MD potentials [51].

4.3.3 Asymmetric tilt grain boundaries

The last set of grain boundaries that we consider are the set of asymmetric tilt grain boundaries (ATGBs).

The space of possible ATGBs is very large, encompassing almost any type of grain boundary. In this work

we restrict our use of the ATGB nomenclature to a particular type of asymmetric tilt grain boundary.

ATGBs are defined by the way in which they are constructed. Figure 4.11 illustrates the procedure

for generating an ATGB from a uniform crystal. The uniform crystal boundary is transformed to a

symmetric tilt grain boundary by symmetric rotation about an in-plane axis. Then a different in-plane

axis is selected and the interface is rotated with the orientation relationship of the crystals remaining

fixed. (Alternatively, the top and bottom crystals are tilted antisymmetrically about the in-plane axis.)

The axis about which the interface is rotated is referred to as the inclination axis, and the angle of

rotation φ as the inclination angle. In this work we refer to a class of ATGBs using the following system:

a {lmn}〈pqr〉 set of ATGBs is one for which φ corresponds to inclination of the interface about a mutual
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tilt axis

(a) Begin with a uniform crystal.

inclination axis

(b) Rotate symmetrically about
tilt axis to form STGB.

φ

inclination

angle

(c) Rotate interface about inclina-
tion axis to form ATGB

Figure 4.11: Geometry of asymmetric tilt grain boundaries

〈pqr〉 axis, and φ = 0◦ corresponds to a {lmn} STGB. One major disadvantage to this categorization

system is that ATGBs can sometimes be constructed more than one way, resulting in a nonunique

notation.

ATGBs are of interest because they are relatively simple and have a high degree of symmetry, yet

tend to have complex morphology. ATGBs are ideal for observing the behavior of the relaxation model

to determine its ability to predict not only the relaxed energy but the corresponding morphology as

well. In this work we study three different ATGBs. As before, our choice of GB cases is driven by the

availability of published experimental and molecular dynamics data. For the first two cases, {111}〈110〉

and {111}〈112〉, we compare energetic data with results from MD and compare the morphological

prediction of the relaxed model with experimental observation. For the final case, {113}〈110〉, we

examine the effect of changing the dimensionless temperature σ to determine its effect on faceting

behavior and the relationship to thermalization in experimental observation.

{111}〈110〉 ATGB

The energetic results for the {111}〈110〉 ATGB for various FCC materials are shown in Figure 4.12.

Comparison is made of copper and aluminum data with MD results, and the relaxed results for gold
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Figure 4.12: MD data for Cu from [45, 47]. MD data for Al from [47].

are included as well. As with the other tests the unrelaxed results are plotted as a hashed line with the

relaxed results plotted with a solid line. (Unrelaxed results for are included for copper only; including

it for gold and aluminum obfuscates the visibility of the other plots.) We observe a major difference

between the unrelaxed and the relaxed results. Order 2 faceting occurs for all points 0◦ < φ < 90◦,

where facets are created corresponding to the 0◦ and 90◦ orientations. The energy appears to match

closely, and the resultant 2-facet pattern is consistent with observation of the MD results.

In the original paper containing the MD data, Wolf proposed a scheme for approximating the energy

of the faceted interface given the energy per unit area of the two individual facets [45]. Here we note

that this formula is recoverable as a special case of the relaxation model. Let γ(φ) be the planar energy

as a function of inclination angle, and let φ1 = 0◦ and φ2 = 90◦ correspond to the optimal facet

orientations. Then the optimal normal vectors are

n1(φ) =

 0

sin(φ1 − φ)

cos(φ1 − φ)

 =

 0

− sin(φ)

cos(φ)

 n2(φ) =

 0

sin(φ2 − φ)

cos(φ2 − φ)

 =

 0

cos(φ)

sin(φ)

 . (4.29)
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We use the constraint of the optimization problem to obtain λ1,λ1:

[
− sin(φ) cos(φ)

cos(φ) sin(φ)

][
λ1

λ2

]
=

[
0

1

]
=⇒

[
λ1

λ2

]
=

[
cos(φ)

sin(φ)

]
. (4.30)

Then the relaxed energy is

γ(φ) = cos(φ) γ(φ1) + sin(φ) γ(φ2), (4.31)

which corresponds to Wolf’s approximation where γ1 = γ(φ1), γ2 = γ(φ2).

{111}〈112〉 ATGB

Next we consider a similar set of ATGB data. These grain boundaries are obtained by beginning with the

same STGB as in the previous section, but inclining the interface about the mutual 〈112〉 axis instead

of the 〈110〉 axis. This family of ATGBs demonstrates a wide range of morphological behavior, varying

from planar in the STGB case to 3-faceted for 0◦ < φ < 90◦ to 2-faceted for 90◦. The evolution of the

F3 plot and the corresponding morphology is given in Figure 4.13.

One particularly interesting thing to note about the evolution of this morphology is that the 2-facet

direction for φ = 90◦ is orthogonal to the inclination axis. As a result, an observer looking at a 2D

cross section with the inclination axis as a normal will not be able to detect the 2-facets. However, the

case of φ = 90◦ is interesting because it lies in the intersection of {111}〈112〉 ATGBs and {112}〈111〉

ATGBs.

{112}〈111〉 ATGBs have been studied experimentally. The relaxation model gives the precise ori-

entation of the facets formed for the 90◦ case, and can be used to construct a faceting pattern. In

Figure 4.14, experimental observations of faceting in this interface configuration are compared with

results from the model by overlaying the observed interface with a reconstructed one using predicted

faceting slopes. We observe that the matching is almost exact.

We note that the facets have the length scale of approximately 100nm. As stated earlier, the length

scale may be determined in some cases by the energy of edge defects (such as dislocations), although in

this case edge effects are likely negligible. The more likely explanation is that the energetic barrier for
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(e) Stereographic energy plot for φ = 0◦. (f) Facet pattern for φ = 0◦.

Figure 4.13: Evolution of the facet microstructure for φ varying from 0◦ to 90◦.
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(a) Faceting in Au [116, Figure 7]. Overlay is a trace of the facet pattern using relaxation
method-predicted facets.
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Figure 4.14: Comparison of experimentally observed faceting in a {111}〈112〉 ATGB with the relaxation
method’s predicted facet pattern.

interfacial migration and restructuring is prohibitively high at this scale. Regardless of the length scale,

the matched optimal interface orientations provides strong verification for the relaxation method.

Finally, we compare the computed relaxed energy of the ATGB with that determined using molecular

dynamics in Figure 4.15. We observe that the energy match is consistent, although the molecular

dynamics data increases sharply as φ → 90◦. Because the MD results for φ = 90◦ did not indicate

the presence of 2-faceting, one possible reason for the difference may be that the MD results were high

because the system did not relax. Nevertheless, we conclude that the experimental faceting matches

well with the predicted faceting and that the molecular dynamics data matches well with the predicted

relaxed energy.

{113}〈110〉 ATGB

Here we investigate the effect of thermalization on faceting configurations. We compare with results

from Hsieh and Balluffi who examined the results of temperature on faceted interfaces, and concluded

that a de-faceting transition can take place as the result of elevated temperature [116]. The thermal

regularization in the covariance model admits a convenient way of examining the effect of elevated
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Figure 4.15: Model prediction of energy for {111}〈112〉 ATGBs in Copper. Results are presented for the
planar model (dash), relaxed using 2-facets (thin), relaxed using 3-facets (thick). MD results computed
with an EAM potential are included for comparison (dot-dash). MD data from [44].

temperature on grain boundaries. If a quadratic potential is used for the atomic embedding function w ,

then the parameter σ = kBT/w0 models the dimensionless temperature of the interface. We consider

the effect of thermalization on the {113}〈110〉 asymmetric tilt grain boundary in Al, where the inclination

angel is 25.24◦ so that the mean (“prescribed”) upper and lower boundary planes are {002} and {667}.

For interfaces of this type we find that there are no facet patterns of order greater than two. Thus

we restrict to two-dimensional faceting, which speeds up the analysis. In Figure 4.16 we plot the energy

for several values of σ and all rotations of the interface about the shared [110] axis. The thin blue curve

corresponds to the planar energy for the ATGB as a function of interface orientation, where the value

at θ = 0◦ (the “north” end of the plot) is the energy for the planar interface without relaxation.

The thick blue line corresponds to the relaxed energy for each rotation of the interface. As ex-

pected, we recover the maximal convex energy (in the sense of crystalline integrands [93]), that is, the

convexification γC . In general we find that computation of γC is infeasible for the full range of n ∈ S2;

however, it is possible here by restriction to n ∈ S1 ⊂ S2.

Also of interest (albeit extraneous to the observation of faceting structure) is the crystal of the energy,
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Figure 4.16: Predicted evolution of the planar energy surface (thin line) and the relaxed energy surface
(thick line) with the temperature σ; shaded region is Wulff shape.

or the Wulff shape, shown as the shaded region. The Wulff shape is a construction corresponding to the

energy-minimizing shape of an inclusion given a specified volume; that is, the optimal shape that one

crystal would take if it is an inclusion in the other. Here the boundary of the Wulff shape is computed

by solving

γc(n) = inf
n̄∈S1

w(n̄)

n̄ · n
. (4.32)
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Clearly the Wulff shape undergoes significant change as the temperature increases. We see that for

higher temperatures the structure becomes more amorphous, whereas lower temperatures produce a

crystal with sharper edges.

We observe that as the temperature increases the minimizing facet pattern changes. For σ =

0.1, 0.15 the optimal facets form at θ = 4.26◦,−25.24◦ corresponding to interfaces with (001)(66̄7) and

(11̄3)(1̄13) boundary planes, respectively. In Figure 4.17a we observe that this faceting construction

corresponds very well to the observed morphology. On the other hand, for σ = 0.2, 0.25 the {113}

STGB boundary plane facets remain, but the other facet plane is the incoherent ∼ (1 1̄ 19) ∼ (37 37 50)

boundary. In Figure 4.17b we observe that the high temperature faceting pattern is also observed

experimentally.

We note the following observations: 1) the faceting transition behavior occurs independently of

the value of E0, which acts as a scaling constant and does not affect the convexification; 2) material

dependence can be introduced via the w0 parameter, the atomic embedding energy constant. As a

result we expect that a faceting phase transition of this type will take place in all FCC materials, but

the transition temperature for different materials will differ for different values of w0.

The lengthscale of the facets here is approximately an order of magnitude smaller than those in the

previous FCC ATGB case. As before, the edge energies are likely too small to be the factor determining

the lengthscale. We may speculate that the smaller lengthscale is the result of the higher temperature,

allowing the reconfiguration of the interface to become accessible. Causes for the resultant lengthscale

notwithstanding, the facet orientation provides strong validation for the use of thermalization with the

relaxed covariance model.

4.4 Conclusion

The purpose of this work was twofold: first, to review and reformulate the theory of relaxation for

surfaces in such a way as to use an existing planar interface energy model to predict relaxed energy

and morphology; second, to use the relaxation framework with the covariance model as developed

in previous work to validate the model by application to a wide range of existing computational and
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0.05µm

(a) Observed faceting at 293K, with overlay corre-
sponding to facets for σ = 0.2, 0.25.

(b) Observed faceting at 896K, with overlay corre-
sponding to facets for σ = 0.1, 0.15.
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(d) Facet planes at 896K.

Figure 4.17: Experimentally observed faceting in Al changing with temperature [116, Figure 8a]. The
superimposed white lines in the figures are an approximation of the interface using predicted facet slopes.

theoretical data. We examined the results of the relaxation model to FCC/BCC, symmetric/asymmetric,

tilt/twist boundaries, showing that we obtained a high degree of matching of the energy data for all of

these cases. As with the previous work, the same set of three parameters were used for all of these cases:

they were not adjusted on a plot-by-plot basis. (Except for {113}〈110〉 ATGB, where σ was varied to

observe the effect of temperature.) In addition, we found that the morphological prediction of the model

matched closely with the results seen in experiment, and that the different facet patterns observed at

different temperatures can be reproduced by altering the temperature of the covariance model.

To our knowledge, there is no prior model for grain boundary energy that has the range, scope,

and accuracy of the model developed here; as such, the possibilities for future developments using this

model are wide and varied. One direction for exploration is the implementation of this model into

continuum-level codes to study interface evolution on a large scale. Another direction is to extend the

model to heterophase and multi-material interfaces.
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Chapter 5

Conclusions and Future Work

5.1 Summary

The aim of this work has been to present a novel approach for modeling interface energy by formulating

models for predicting energy and morphology. In this work the main application has been towards grain

boundaries; however the approach does not exclude an extension to multi-phase interfaces.

In Chapter 2 we motivated the need for a new grain boundary energy model by surveying the broad

spectrum of existing models. Current approaches include molecular dynamics, dislocation-based models,

geometrical constructions, and MD-informed interpolative models. In our search through the literature,

we found that the construction of a model that is rapidly evaluable, general (i.e., able to find cusp

locations), and predictive (i.e., minimal number of adjustable parameters) remains an open objective.

Regarding the relaxation portion of the work, we surveyed the literature in mathematics and materials

science regarding the method of convexification by faceting. We found that the observation of relaxation

by faceting is made independently by several authors but, because a sufficiently general model is not

available, the construction has yet to be applied in a predictive analysis.

In Chapter 3 we formulated the planar covariance model for interface energy. The fundamental

definition upon which the model is constructed is the density measure, %, a functional on a subset of the

spatial domain that return’s the domain’s occupancy. We showed using an argument from statistical

thermodynamics that we can account for thermalization of the density measure while simultaneously

effecting a numerical regularization. The crux of the first part of the thesis is the definition of covariance,

81
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a geometric measure of atomic coincidence. Covariance was defined for all possible interface orientations,

and because the thermalized density functions are expressible in Fourier series form, an expression

for covariance can be found in closed-form, resulting in a computationally efficient formulation. The

covariance energy model was constructed as a linear function of covariance, introducing an additional

material parameter, resulting in three material parameters total. To validate the covariance model, we

used it to evaluate the energy for 19 separate classes of grain boundaries including symmetric/asymmetric

tilt/twist configurations for copper, gold, molybdenum, and α-iron, using a consistent set of parameters

for each material. We compared the results with 45 sets of MD data for the same materials with multiple

potentials and demonstrate that there is very strong agreement.

In Chapter 4 we investigated whether the frequently-observed faceting patterns in grain boundaries

(and interfaces) can be explained in terms of a planar energy model by nonconvexity, and that facet

patterns arise to minimize the energy. This observation is not new; equivalent statements of the same

idea have been made in both mathematics and materials science literature. However, the statements are

purely observational, due to an inablility to compute energy for strictly planar interfaces. In this work we

formulated the variational interface energy problem, present the convexification relaxation both in the

graph and the unit sphere descriptions of interface configurations, and show that they are equivalent.

We then presented the method as an algorithm for computing relaxed energy and morphology. This

method was then applied using the planar covariance model developed in the previous chapter. We

applied the relaxation method to all of the grain boundary configurations in the previous section, and

showed that the results were significantly improved. In addition, we applied the method to a set of

asymmetric tilt grain boundaries that are known to exhibit faceting. We showed that the relaxed model

predicts the facet pattern precisely and, for those for which the data is available, gives a good match

with MD energy data. An additional test included examining the dependence of faceting configurations

on temperature. We showed that by adjusting the nondimensional temperature in the covariance model,

a distinct transition occurred in the facet pattern, matching the experimentally-observed effect.

The combination of the convexification algorithm with the planar covariance model has been demon-

strated to predict anisotropic grain boundary energy and morphology with a high degree of success, and
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to be efficient enough for use in a continuum-level simulation.

5.2 Future work

The model as presented, though shown to give accurate results, is still fundamentally a geometric

construction. As such, it requires continual testing to determine what the limits of its application are;

thus the immediate task is to continue to test the model for additional grain boundary data, possibly

requiring the generation of additional data from experiment or molecular dynamics for comparison.

The model has been tested exclusively with grain boundaries thus far, but extending it towards

general interfaces would be beneficial in characterizing bimetallic interfaces. (However, it remains to be

seen if a geometric construction is sufficient for characterizing interfaces of this complexity.) Additionally,

other challenges are immediately apparent, such as determining the correct definition of the ground state

covariance c0.



Appendix A

Positivity of Fourier Coefficients for FCC
and BCC Lattices

Here we validate the positivity of the Fourier coefficients for the Fourier expansions of FCC and BCC

crystals with unit cells described in Table 3.1.

For BCC lattices the Fourier coefficients are given by

%bccn =
1

|E |
∑
n∈IE

θE (r(n))e−ik(n)·r(n) (A.1)

=
1

α1α2α3

[
1 +

1

8

(
e±iπn1±iπn2±iπn3

)]
(A.2)

=
1

α1α2α3

[
1 +

1

8

(
Re(e±iπn1)× 2 Re(e±iπn2)× 2 Re(e±iπn3)

)]
(A.3)

=
1

α1α2α3

[
1 + cos(n1π) cos(n2π) cos(n3π)

]
(A.4)

=
1

α1α2α3

[
1 + (−1)n1+n2+n3

]
≥ 0, (A.5)

demonstrating the coefficient positivity for this choice of unit cell.

For FCC lattices the Fourier coefficients are given by

%fccn =
1

|E |
∑
n∈IE

θE (r(n))e−ik(n)·r(n) (A.6)

=
1

α1α2α3

[
1 +

1

4

(
e±iπn2±iπn3 + e±iπn3±iπn1 + e±iπn1±iπn2

)]
(A.7)
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=
1

α1α2α3

[
1 + cos(n2π) cos(n3π) + cos(n3π) cos(n1π) + cos(n1π) cos(n2π)

]
(A.8)

=
1

α1α2α3

[
1 + (−1)n2+n3 + (−1)n3+n1 + (−1)n1+n2

]
. (A.9)

It is obvious that the expression in the brackets cannot be lower than −2. But for this to be true,

n2 + n3, n3 + n1, n1 + n2 must all be odd. However, n2 + n3, n3 + n1 both odd implies that n1 and n2

are either both even or both odd, either case leading to n1 + n2 even. Thus we see that the expression

is either equal to 1 + 1 + 1 + 1 = 4 or 1 + 1− 1− 1 = 0, so we see that %fccn ≥ 0, concluding the proof.

We note that the usual FCC lattice structure does not satisfy the positivity constraint. The unit

cell has atoms placed at (±α1/2,±α2,±α3) (θ = 1
8 ) and at (±α1/2, 0, 0), (0,±α2/2, 0)(0, 0,±α3/2),

(θ = 1
2 ). Then the coefficients are

%fccn =
1

|E |
∑
n∈IE

θE (r(n))e−ik(n)·r(n) (A.10)

=
1

α1α2α3

[
1 +

1

8

(
e±iπn1±iπn2±iπn3

)
+

1

2

(
e±iπn1 + e±iπn2 + e±iπn3

)]
(A.11)

=
1

α1α2α3

[
1 + (−1)n1+n2+n3 +

1

2

(
(−1)n1 + (−1)n2 + (−1)n3

)]
. (A.12)

Choosing odd values for n1, n2, n3 produces a value of −3/2 in the brackets; as a result this choice of

Fourier expansion is not optimal.



Appendix B

Supplementary Validation

In the main part of this work, we use consistent MD results for verification of the model in order to

avoid the need to adjust material parameters to accommodate discrepancies between authors. The

disadvantage of using consistent results is the possibility that both the model and the MD results are

wrong about something. Therefore, in this section we present additional verification and validation

examples for the relaxed covariance model by comparing it to i) more modern MD simulations, ii)

experimentally measured grain boundary energy, and iii) the Read-Shockley low-angle tilt model.

B.1 Molecular Dynamics

The molecular dynamics results from Wolf for tilt and twist grain boundaries in FCC and BCC metals

provide valuable data for validation. However, because of the significant progress made in the field of

atomistic simulations, as well as advances in computational resources, it is important to ensure that the

model captures behavior of modern GB MD results.

Here we compare against MD results for iron in both FCC and BCC phases using a Finnis-Sinclair

potential by Shibuta et al [113]. The MD results were computed for 2-3 values of a normalized tem-

perature, TN . (It is apparent from the MD results that the effect of changing the temperature is very

small, consequently we do not adjust the nondimensionalized temperature in our model.)

Material parameters of E0 = 2.4 J
m2 , 2.25 J

m2 , σ/α = 0.175, 0.19, and ε = 0.5, 0.25 were used for

FCC and BCC Iron, respectively.
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Figure B.1: Model comparison with MD results for FCC and BCC Iron [113].
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Figure B.2: Comparison of the relaxed covariance model with experimental data for [100] and [110]
STGBs in Cu. Experimental data for [100] STGBs from [29], for [110] STGBs from [118]

Figure B.1 includes a comparison of the model results to the MD results. For the FCC case, we see

that the match is very close, with the cusps lining up exactly and the large angle tilt values reasonably

approximated by the model. Similarly for the BCC case, the locations of the cusps are predicted exactly

and the large angle tilt values are matched well; indeed, the modern BCC-Fe results match much more

closely than the original ones. In particular, for 110 BCC tilt, a cusp predicted in the original MD but

missing in the model at around θ ≈ 40◦ is also missing in the Shibuta et al MD results.

B.2 Experimental Energy Data

Experimental grain boundary anisotropy data provide a useful method for validation of any grain bound-

ary model. We compare the results of the relaxed covariance model with measured grain boundary

energy data in Figure B.2. Here a multiplier of E0 = 1750K is used instead of that used for MD

comparison.

It is important to note that the experimental measurements were taken for a very high value of

energy. However, apparently, the increased temperature does not significantly affect the general shape

of the energy landscape, in accordance with the recent observations that energy depends most strongly

on the mismatch of the ideal lattices [117]. We again observe a satisfying match between the relaxed

covariance model and the experimental measurements.
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Figure B.3: Model results for FCC Cu compared with the Read-Shockley model

B.3 Read-Shockley Comparison

The Read-Shockley model was the first to capture grain boundary energy by treating interfacial defects as

ordered arrays of non-interacting dislocations. By computing the density of the geometrically necessary

dislocations, classical dislocation theory was used to determine the energy density [56]. The model for

grain boundary energy per unit area as a function of misorientation angle is

γ = E0θ[A− ln(θ)], (B.1)

where the constants E0 and A are given by

E0 =
a

4π

C44

1− σ100

√
2(1− σ100)

α(1 + α(1− 2σ100))
σ100 =

C12

C11 + C12
α =

2C44

C11 − C12

A = 1 + ln

(
a

2πr0

)
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where C11, C12, C44 are the cubic elastic constants, a is the lattice constant, and r0 is the dislocation

core cutoff radius. For copper, C11 = 168.40GPa, C12 = 121.40GPa, C75.40, a = 3.597Å, and a cutoff

radius of r0 = a/2 is used.

The results are plotted in Figure B.3. Because the Read-Shockley model is only valid for small

angle tilt, comparisons are only included for the regions θTB − 15◦ ≤ θ ≤ θTB + 15◦ where θTB is the

location of the energy cusp. Additionally, it is important to note that the locations of the cusps for the

Read-Shockley model were included explicitly; i.e. RS does not predict cusp locations.

In general the relaxed covariance model recovers Read-Shockley. We note some differences in the

slope particularly around θ = 70◦ for [110] tilt. The RS model begins to diverge from the relaxed

covariance model (and MD data) at |θ − θTB | = 10◦, as expected given the low-angle assumption.
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