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Abstract

This work presents the development and investigation of a new type of concrete for the attenuation of

waves induced by dynamic excitation. Recent progress in the field of metamaterials science has led to

a range of novel composites which display unusual properties when interacting with electromagnetic,

acoustic, and elastic waves. A new structural metamaterial with enhanced properties for dynamic load-

ing applications is presented, which is named metaconcrete. In this new composite material the standard

stone and gravel aggregates of regular concrete are replaced with spherical engineered inclusions. Each

metaconcrete aggregate has a layered structure, consisting of a heavy core and a thin compliant outer

coating. This structure allows for resonance at or near the eigenfrequencies of the inclusions, and the

aggregates can be tuned so that resonant oscillations will be activated by particular frequencies of an ap-

plied dynamic loading. The activation of resonance within the aggregates causes the overall system to

exhibit negative effective mass, which leads to attenuation of the applied wave motion. To investigate the

behavior of metaconcrete slabs under a variety of different loading conditions a finite element slab model

containing a periodic array of aggregates is utilized. The frequency dependent nature of metaconcrete is

investigated by considering the transmission of wave energy through a slab, which indicates the presence

of large attenuation bands near the resonant frequencies of the aggregates. Applying a blast wave loading

to both an elastic slab and a slab model that incorporates the fracture characteristics of the mortar matrix

reveals that a significant portion of the supplied energy can be absorbed by aggregates which are activated

by the chosen blast wave profile. The transfer of energy from the mortar matrix to the metaconcrete ag-

gregates leads to a significant reduction in the maximum longitudinal stress, greatly improving the ability

of the material to resist damage induced by a propagating shock wave. The various analyses presented in

this work provide the theoretical and numerical background necessary for the informed design and de-

velopment of metaconcrete aggregates for dynamic loading applications, such as blast shielding, impact

protection, and seismic mitigation.
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Chapter 1

Introduction

Recently, the design and construction of artificial composite materials with unconventional properties

has become an area of active research. These man-made structures can produce unique and desired

behavior when they interact with an applied field or loading. One class of these composites is known

as metamaterials, a term first introduced by Walser (2000) to emphasize their purpose as man-made,

heterogeneous devices that display performance beyond the limitations of conventional composites.

Metamaterials research first began in the field of electromagnetics, where researchers were interested

in the construction of devices and systems for controlling the propagation of electromagnetic waves and

light. This has led to significant progress in developing electromagnetic metamaterials for negative re-

fractive index applications, sub-wavelength imaging, and transformation optics. However, many of these

concepts and techniques are not restricted to just electromagnetism and have counterparts in other areas

of wave science. This has led to an explosion of research in metamaterial applications for other fields such

as acoustics, elastodynamics, and thermodynamics.

Here, we apply the broad definition that a metamaterial is an artificial composite whose overall mate-

rial properties are dependent on an engineered microstructure rather than solely the material properties

of the constituents. Thus, these devices can display new responses that are precluded from traditional

materials due to the physical constraints of their constituents. Such complex composites can be specifi-

cally designed to manipulate an applied wave or loading, resulting in unusual properties such as negative

refractive index, negative shear modulus, or negative effective mass.

The unique properties that metamaterials display are often gained through the use of inclusions or

structural features, engineered to interact with a particular type of wave motion. Often, this involves

structures whose elements are arranged in a manner so that their size and spacing is smaller than the

scale of spatial variation of the exciting field. These structures can also contain other unusual features,

such as locally resonant behavior or active elements. Other composites and periodic media of interest

include those with structural units of roughly the same size as the wavelength of the incident wave. Often

termed photonic or phononic crystals, these materials use periodically spaced elements to create fre-

quency bands of reduced wave transmission. These composites are closely linked to metamaterials, and

the same structure may behave as one or the other depending on wavelength of the incident wave.

The structural features of metamaterials and composites can be designed in a multitude of ways to
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control and create a number of desired behavior when interacting with electromagnetic, acoustic, elas-

tic, and other incident waves. Therefore, there has been a significant amount of research into a variety

of applications for these engineered materials. We begin by introducing the novel composites and meta-

materials that fall into two broad categories, photonic crystals and electromagnetic metamaterials, which

deal with the manipulation of electromagnetic waves, and mechanical metamaterials, which are designed

for waves with lower input frequencies such as acoustic, elastic, or seismic loads. We then provide a brief

assessment of other emerging fields in metamaterials science, such as thermodynamic and active meta-

materials, and follow with an outline of the current research on blast shielding structures and impact

protection. The theoretical and experimental work in these fields provides the background and motiva-

tion for the development of a new modified concrete with enhanced performance for dynamic loading

applications.

1.1 Electromagnetic waves in metamaterials and composites

There has been a significant amount of research into the development of new artificial materials capable

of exhibiting unusual properties when interacting with an electromagnetic field. The two most popular

areas of interest are photonic crystals and electromagnetic metamaterials.

1.1.1 Photonic crystals

Photonic crystals are a class of artifical material that derive their properties from an internal structure

that is of similar size to the wavelength of the applied wave (Andreone et al., 2011; Banerjee, 2011). They

are also known as photonic or electromagnetic band gap structures. These crystals contain a periodic

arrangement of macroscopic media with differing dielectric constants and, if absorption is minimal, re-

flection and refraction of light from the different interfaces can produce phenomena such as forbidden

photonic bands. Photonic crystals can be specifically designed to induce these photonic band gaps, where

light is prevented from propagating in certain directions with specified frequencies (Joannopoulos et al.,

2008). In other words, photonic crystals can prevent the propagation of a specific range of wavelengths,

or colors, of light. The band gap is considered ‘complete’ when it exists for any polarization and any angle

of incidence of the light (Andreone et al., 2011).

The periodicity of the of the crystal plays an important role in the formation of the band gap. The width

of the gap depends on the geometrical configuration and element spacing of the crystal, the geometry

and size of the internal elements, and the dielectric constants of the crystal constituents. In general, a

photonic band gap is more likely to occur in crystals where there is significant contrast in the dielectric

constants of the constituent materials (Andreone et al., 2011).

The development of photonic crystals began when Yablonovitch (1987) and John (1987) proposed the

use of artificial periodic structures to engineer electromagnetic modes at optical frequencies. Yablonovitch
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suggested that these structures could alter radiation-matter interactions and therefore improve efficiency

by controlling spontaneous emissions, which plays an important role in limiting the performance of opti-

cal devices such as semiconductor lasers, heterojunction bipolar transistors, and solar cells. John demon-

strated the possibility of strong Anderson localization of light in three–dimensional disordered superlat-

tices.

Figure 1.1: Examples of simple of one–, two–, and three–dimensional photonic crystals. Each color repre-
sents a material with a different dielectric constant (Joannopoulos et al., 2008).

Since then, there has been a significant amount of research activity in the development of photonic

crystals, with a large number of experimental and theoretical investigations into crystals with both di-

electric and metallic materials. Photonic crystals have been developed with periodicity in one–, two–,

and three–dimensions, as shown in Figure 1.1. The number of axes of periodicity of the dielectric material

is the defining feature of a photonic crystal.

One–dimensional photonic crystals contain alternating layers of dielectric material and can exhibit

photonic band gaps, however only for specific angles of incidence in the direction of periodicity. Multi-

layer films have been used in dielectric mirrors and optical filters (Hecht, 2002), along with optoelectronic

devices such as feedback lasers (Yeh, 2005).

Two–dimensional photonic crystals are periodic along two axes and homogeneous in the third, and

may exhibit a photonic band gap in the plane of periodicity. An example of a two–dimensional photonic

crystal is shown in Figure 1.2, where the structure consists of an array of long dielectric cylinders. Experi-

mental and theoretical analyses of two–dimensional band gap systems include studies on different lattice

structures, such as arrays of low–loss high–dielectric–constant cylinders (McCall et al., 1991), short dielec-

tric cylinders including lattice defects (Smith et al., 1993), cylinders embedded in a background medium

with a different dielectric constant (Plihal and Maradudin, 1991), and comparisons of square and hexag-

onal lattices of parallel rods (Villeneuve and Piché, 1992). Two–dimensional photonic crystals have also

been shown to demonstrate negative refraction behavior. Luo et al. (2002) use a square lattice of air holes
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Figure 1.2: Example of a two–dimensional photonic crystal, consisting of a square lattice of dielectric
rods of radius r . The material is homogeneous along the z direction and periodic in x and y , with lattice
constant a (Joannopoulos et al., 2008).

to demonstrate an all-angle negative refraction effect and, similarly, Foteinopoulou et al. (2003) use an

hexagonal lattice of dielectric rods to numerically investigate the wave behavior at an interface with a

negative refractive index photonic crystal.

Figure 1.3: A three-dimensional woodpile photonic crystal tested at infrared wavelengths, consisting of
rods made of polycrystalline silicon layered on a silicon substrate. The spacing between adjacent rods
is d = 4.2 µm, rod width w = 1.2 µm, and the layer thickness is 1.6 µm. Scale bar 5 µm. Reprinted by
permission from Macmillan Publishers Ltd: Nature (Lin et al., 1998), copyright (1998).

Three–dimensional crystals are the most complex of the photonic crystal configurations, being peri-

odic along all three axes. They therefore exhibit a ‘complete’ photonic band gap, meaning that no prop-

agating states are allowed in any direction within the crystal. Ho et al. (1990) proposed the first three–
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dimensional structure that obtained a complete photonic band gap, which consisted of a diamond lattice

of spheres. The first laboratory realization of a complete photonic band gap material was developed by

Yablonovitch et al. (1991) and was constructed by drilling along the lattice vectors of a dielectric medium.

Other three-dimensional photonic crystals include the woodpile crystal for infrared wavelengths (Ho

et al., 1994; Sözüer and Dowling, 1994; Lin et al., 1998), an example of which is shown in Figure 1.3, along

with inverse opal structures (Sözüer et al., 1992), and stacks of alternating two-dimensional crystals of

rods and holes (Johnson and Joannopoulos, 2000).

Applications for photonic crystals include reflection type devices, such as reflectors, wave guides,

microcavities, and emitters (Andreone et al., 2011; Joannopoulos et al., 2008). Another promising area

is the use of all-dielectric negative refraction in superlenses for subwavelength imaging (Pendry, 2000;

Joannopoulos et al., 2008; Luo et al., 2003).

1.1.2 Electromagnetic metamaterials

Electromagnetic metamaterials are another class of composite that utilize a designed internal struture.

In photonic crystals, the properties of the composite are derived from diffraction effects and thus the

lattice constant is of comparable size to the wavelength of the incident wave. By contrast, electromagnetic

metamaterials utilize engineered internal structures that are much smaller than the wavelength. This

enables the structure to be regarded as nearly homogeneous and therefore it is possible to describe the

response of the composite by only the effective material parameters. In the case of visible light, this means

structures that are nanometers in dimension, and for GHz radiation, such as microwaves, this results in

structures as large as a few millimeters (Pendry, 2007).

The foundations of electromagnetic metamaterials lie with work conducted by Veselago (1968) on the

electrodynamics of isotropic substances. Veselago stated that media with simultaneously negative val-

ues of dielectric constant and magnetic permeability could produce interesting phenomena. While at the

time substances of this type did not yet exist, these materials could be imagined as possible composites

of the future. It wasn’t until much later that Pendry (2000) first took the principles outlined by Veselago

and developed the initial theory for modern electromagnetic metamaterials, proposing the idea of super-

lenses with spatial resolution below that of the wavelength of light. Ordinary lenses are restricted by their

diffraction limit, which means that the best resolution possible corresponds to about half of the incident

wavelength of the light that is used to produce the image. However, by utilizing a medium with both neg-

ative permittivity and permeability, this new perfect lens material can have a negative refractive index,

allowing imaging of objects only nanometers in size.

Negative refractive index electromagnetic metamaterials, termed ‘left-handed’ materials, were first re-

alized experimentally by Smith et al. (2000). Simultaneously negative values of effective permeability and

permittivity were created using a composite medium based on a periodic array of interspaced conduct-

ing nonmagnetic split ring resonators and continuous wires. The split ring resonator design used in the



6 Introduction

(a) (b)

Figure 1.4: Split ring resonator electromagnetic metamaterials: (a) Resonance curve for the copper split
ring resonator used in the experiments of Smith et al. (2000); c = 0.8 mm, d = 0.2 mm, and r = 1.5 mm.
Reprinted figure with permission from Smith et al. (2000) Copyright (2000) by the American Physical So-
ciety, http://dx.doi.org/10.1103/PhysRevLett.84.4184. (b) Left-handed metamaterial consisting
of square copper split ring resonators and copper wire strips on fiber glass circuit board material, which
have been assembled into an interlocking lattice with a lattice constant of 5 mm. From (Shelby et al.,
2001b). Reprinted with permission from AAAS.

experiment is shown in Figure 1.4(a). Split ring resonators, introduced by Pendry et al. (1999), are con-

centric cylinders with capacitive splits that respond resonantly to radiation applied so that the magnetic

field is parallel to the axis of the ring. The splits in the rings enable the unit to be resonant at wavelengths

much greater than the diameter of the rings, i.e., avoiding the half-wavelength requirement that would

be the case if the rings were closed. The second split ring inside the first allows the unit to generate large

capacitance in the small gap region between the ring, lowering the resonant frequency and concentrating

the electric field.

A negative effective index of refraction for microwave frequencies was also demonstrated by Shelby

et al. (2001b), and they present experimental data for a two–dimensional array of repeated unit cells of

copper strips and split ring resonators, shown in Figure 1.4(b). Numerical simulations and analytical cal-

culations for the same structure are presented in Shelby et al. (2001a). Control over the refractive index

can also be used to create a new type of metamaterial lens using transformation optics for imaging appli-

cations. Kundtz and Smith (2010) use a varying refractive index to control ray trajectories, demonstrating

a form of invisibility over a narrow wave band with gradient-index materials.

Another exciting area of research is electromagnetic cloaking. Electromagnetic metamaterials offer

the ability to control both the permittivity and permeability, which may be designed to vary independently

and arbitrarily throughout the material. This control allows for unusual material properties that can be

exploited in applications such as cloaking and invisibility. A carefully designed metamaterial cloak can

bend an electromagnetic field around an object, recombining the field lines back together so that they

http://dx.doi.org/10.1103/PhysRevLett.84.4184
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emerge in the same direction as they entered. In terms of light, an observer would not see the difference

between rays passing though the metamaterial medium or propagating in a uniform medium, so as a

result, the object is invisible. Leonhardt (2006) presented a general design guide for the creation of perfect

invisibility within the accuracy of geometrical optics using a dielectric metamaterial medium with man-

made resonances. The paper also indicates that the same principles can be applied to cloaking devices for

other electromagnetic waves or even sound. Simultaneously, an independent study by Pendry et al. (2006)

proposed another design strategy for the redirection of electromagnetic fields, using an electromagnetic

cloak to deflect the radiation. The authors demonstrate concealment of an object by cloaking a spherical

volume in a metamaterial which guides the rays around the hidden object so that it remains untouched

by external radiation, which leads to a perfect electromagnetic shield.

(a) (b)

Figure 1.5: Metamaterial cloak for microwaves presented by Schurig et al. (2006): (a) two–dimensional
structure consisting of 10 concentric cylinders of square split ring resonators. The cloak has an inner ra-
dius of 27.1 mm and an outer radius of 58.9mm. Each split ring resonator has a dimension of 10/3 mm; (b)
experimental measurements showing a snapshot of the time-dependent, steady-state eletric field pattern.
The cloak lies in the annular region between the two black circles and surrounds a conducting copper
cylinder at the inner radius. From Schurig et al. (2006) and Cho (2006). Reprinted with permission from
AAAS.

The first successful experimental implementation of an electromagnetic cloak was demonstrated by

Schurig et al. (2006), where a two–dimensional cloaking structure consisting concentric shells of split–

ring resonators was used to shield a small copper cylinder from a band of incoming microwaves. The

structure of the cloaking metamaterial and the resulting steady-state electric field patterns are shown in

Figure 1.5. More recently, Landy and Smith (2013) designed and experimentally tested a two–dimensional

unidirectional microwave cloak capable of reducing the scattering of an object ten wavelengths in size.

Microwaves have a relatively long wavelength, varying between a few millimeters and a little less than

a meter. Visible light, however, has significantly smaller wavelengths and therefore cloaking of invisible

light requires much smaller internal elements, on the order of nanometers, resulting in structures that are

more difficult to fabricate (Soukoulis and Wegener, 2011; Wegener, 2013). Recent developments include

the fabrication of a visible light carpet cloak which demonstrates wideband invisibility throughout the
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visible spectrum with low loss (Gharghi et al., 2011).

1.2 Mechanical waves in metamaterials and composites

Recent developments in the field of elctromagnetic metamaterials has led to the exploration of other pos-

sible applications for metamaterials, such as acoustics and elastodynamics. Interest in these new appli-

cations has come from the realization that the concepts underlying the design of metamaterials for elec-

tromagnetic waves translate analogously to the design of elastic and acoustic metamaterials, which has

led to a rapid increase in research activity. The full vector character of elastic waves, with different velocity

of propagation for both the longitudinal and transverse components, provides a rich array of interesting

problems for physicists and engineers.

Many of the challenges associated with the design and fabrication of electromagnetic metamaterials

do not apply to elastic and acoustic metamaterials (Craster and Guenneau, 2013). For example, in op-

tical metamaterials, to achieve strong contrast in optical properties generally requires the use of metals,

which are accompanied by strong and undesirable dissipation or loss of energy. However, in acoustics

and elastodynamics, the combination of strong contrast and weak energy dissipation is easily achieved.

Fabrication of acoustic and elastic metamaterials can also be considerably easier than their optical coun-

terparts. This opportunity for novel and exciting new materials in acoustics and elastodynamics has led

to a burgeoning field in metamaterials science, and this section reviews the theory, numerical, and exper-

imental work being conducted in this area.

1.2.1 Phononic crystals and acoustic metamaterials

Theoretical and experimental work on photonic crystals, discussed in Section 1.1.1, has shown the exis-

tence of frequency gaps for the propagation of electromagnetic waves. Phononic crystals are the acoustic

equivalent of photonic crystals. Phononic crystals consist of a periodic array of elements with different

elastic properties arranged so that the lattice constant of the structure is comparable in size to the wave-

length of the incident wave. The interaction of the crystal with an acoustic wave causes the creation of

band gaps or stop bands within the frequency spectrum, within which the applied wave cannot propagate

and the incident energy is dispersed or scattered from the medium.

The band gaps observed in phononic crystals are caused by Bragg scattering and reflections within the

structure. A full band gap is attained if the crystal is arranged so that band gaps overlap for all the direc-

tions of periodicity within the crystal, i.e., the band gaps are independent of the direction of propagation.

This is caused by reflections on the surface of the scatterers or wave propagation within the scatterers

(Miyashita, 2005). In this case, any incident wave is reflected completely from the structure, which results

in the potential for many advantageous applications, such as for sound filters, transducers, wave-guides,

acoustic imaging, and vibrationless environments (Kafesaki and Economou, 1999; Kushwaha et al., 1993).
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The study of phononic crystals emerged in the early 1990’s from investigations into the spectral gaps

of periodic composites and the existence of localized waves in disordered systems. Studies on the spectral

gaps of photonic crystals led to consideration of the band structure of materials interacting with acoustic

and elastic waves. The investigation of acoustic and elastic wave propagation in composites consisting of

spheres or cylinders embedded in a host material indicated that gaps could exist depending on the prop-

erties of the composite and its constituents (Sigalas and Economou, 1992, 1993; Economou and Sigalas,

1993; Sigalas et al., 1994; Economou and Sigalas, 1994; Kafesaki et al., 1995). The density and velocity con-

trast of the components of the composite, the volume fraction of each constituent, along with the lattice

structure and topology all changed the band structure behavior of the material.

It was found that the use of different dielectric materials in photonic crystals could be equivalently

applied through contrasting material constants in acoustic composites. The degree of contrast between

the constituents led to different band structure behavior (Economou and Sigalas, 1993). For the case

of three–dimensional fluid structures, the creation band gaps was easily induced using low velocity, low

density inclusions in a high velocity, high density matrix. This, for example, is achieved in a system such

as bubbles in a liquid. For the solid three-dimensional structures the optimal conditions for spectral gaps

were obtained using low velocity, high density inclusions embedded in a high velocity, low density matrix.

Economou and Sigalas (1994) proposed a composite of this type, using a silicon host containing a periodic

array of gold or lead spheres with a volume fraction of about 10%.

Several theoretical methods were developed in order to study the elastic response of phononic crys-

tals. The plane–wave expansion method is a popular approach that solves the wave equations in the

Fourier space (Kushwaha et al., 1993; Sigalas and Economou, 1993; Kushwaha et al., 1994). However,

phononic crystals containing elements with large contrast in their elastic properties are not easily treated

with the plane–wave expansion method, because of the large number of plane waves required to obtain

a reliable band structure. Other approaches can overcome these difficulties, and examples include the

multiple scattering method (Kafesaki et al., 2000a; Kafesaki and Economou, 1999; Liu et al., 2000a) and

finite-difference algorithms (Sigalas and García, 2000; Tanaka et al., 2000).

There are many potential arrangements and structures that can be created in a phononic crystal. Sim-

ple phononic crystals involving periodic arrays of cylinders have been shown to exhibit wave filtering

behavior, utilizing spectral gaps to inhibit sound transmission. Mártinez-Sala et al. (1995) introduced an

investigation into the sound attenuation achieved by a sculpture in Madrid, shown in Figure 1.6, where

they measured transmission characteristics of the sculpture for sound wave vectors perpendicular to the

vertical axis of the cylinders. They observed a sound attenuation peak at 1,670 Hz corresponding to the

Bragg-type band gap predicted by theoretical calculations. This analysis was more formally presented

by Sánchez-Pérez et al. (1998) with an experimental investigation of a two-dimensional periodic array of

rigid stainless steel cylinders under lab conditions.

Another similar study was presented by Caballero et al. (1999), where they investigated the sonic band
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(a) (b)

Figure 1.6: Phononic crystal in the form of a sculpture by artist Eusebio Sempere, located in Madrid;
(a) The sculpture consists of a periodic array of hollow stainless steel cylinders. Each cylinder has a diam-
eter of 2.9 cm arranged in a square lattice with a spacing of 10 cm. (b) Sound attenuation as a function of
the sound frequency. The wave vector is along the (100) direction, as shown in the inset. Arrows on the
figure indicate the calculated maxima and minima due to interference from different crystal planes of the
sculpture. Reprinted by permission from Macmillan Publishers Ltd: Nature (Mártinez-Sala et al., 1995),
copyright (1995).

gaps created by rigid cylinders in air, showing that wider gaps can be achieved by reducing the structure

symmetry. The control of acoustic frequency gaps was also demonstrated theoretically by Goffaux and

Vigneron (2001), where changes in geometry were shown to alter gaps in a system of parallel solid square-

section columns distributed in a square lattice arrangement in air. Other interesting examples include an

analysis of air bubbles in water presented by Kafesaki et al. (2000a) and fluids infiltrated in drilled solids for

ultrasonic applications (Montero de Espinosa et al., 1998; Torres et al., 2001). Sonic crystals have also been

developed for refractive acoustic devices used as interferometers or convergent lenses, which operate at

wavelengths below the first acoustic gap. An example of of such a system was developed by Cervera et al.

(2002) and is shown in Figure 1.7.

Phononic crystals containing both solid inclusions and a solid host have also been considered. Vasseur

et al. (1998) experimentally investigated a square lattice of Duralumin cylindrical inclusions in an epoxy

resin matrix, showing the existence of full band gaps. A further study by Vasseur et al. (2001) considered an

array of steel cylinders in an epoxy matrix, thus using constitutent materials which have strong contrast

in their densities and elastic constituents. The cylinders were arranged in a triangular lattice and demon-

strated two absolute stop bands independent of the direction of propagation of the acoustic waves.

The existence of full or absolute band gaps in the transmission spectrum can be attributed two behav-

ior, which must both be present in order for a full spectral gap to occur (Kafesaki and Economou, 1995;

Kafesaki et al., 1995, 2000b; Klironomos and Economou, 1998). The first behavior is when the channel of

propagation uses mainly the host material and avoids the inclusions, which causes a frequency gap when

propagation is inhibited along the host material. The gap forms due to the presence of rigid inclusions,
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Figure 1.7: A sonic crystal sample, shown from underneath, consisting of 1 m long cylindrical aluminum
rods hanging from a frame with a hexagonal pattern of lattice constant a = 6.35 cm. Experiments were
performed with rods of d = 1, 2, 3, and 4 cm. Reprinted figure with permission from Cervera et al. (2002)
Copyright (2002) by the American Physical Society, http://dx.doi.org/10.1103/PhysRevLett.88.
023902

i.e., ones which do not allow the wave to enter its interior. The other channel employs resonance states,

i.e., strong peaks in the scattering cross–section, which are created by coherent jumping from resonance

state to neighboring resonance state equivalent to the linear combination of atomic orbitals in the elec-

tronic band structure. The combination of both of these phenomena leads to wide spectral gaps in the

spectral regions between well-separated resonances, since in this gap neither channel is operational and

consequently no propagation is expected to take place.

To further exploit the band gap behavior in phononic metamaterials consisting of cylinders embed-

ded in a solid matrix, a new type of inclusion was considered, one in which there are localized resonances

associated with each scattering unit. The use of these locally resonant inclusions can create new band

structure behavior, allowing for spectral bands that are not dictated by the dimension of the lattice spac-

ing. An analytical comparison of the band structure produced by arrays of solid Au cylinders and resonant

Au cylinders layered with a thin rubber polymer was performed by Goffaux et al. (2002) and Goffaux and

Sánchez-Dehesa (2003). They demonstrated that a complete band gap can be achieved in a frequency

region two orders of magnitude lower than the one expected from considering only Bragg conditions.

Similar studies include those by Hirsekorn (2004) and Wang et al. (2004a) on coated cylinders in an epoxy

matrix, and that by Wang et al. (2004b) on the binary counterpart of locally resonant phononic crystals,

where a locally resonant structure was created using purely rubber cylinders in an epoxy matrix. A review

of the three–dimensional counterpart to these system is discussed in the following section.

1.2.1.1 Locally resonant sonic metamaterials

One subset of acoustic metamaterials is the class of composites known as locally resonant sonic metama-

terials, introduced above. These structures combine some of the features of acoustic metamaterials and

http://dx.doi.org/10.1103/PhysRevLett.88.023902
http://dx.doi.org/10.1103/PhysRevLett.88.023902
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phononic crystals with a new type of locally resonant inclusion. Locally resonant sonic materials con-

tain inclusions with a layered structure, engineered to create band gaps or stop band at frequencies much

lower than that achieved using a purely periodic material.

Phononic crystals make use of Bragg–type band gaps, where the periodicity of the structure induces

vibration reduction within the material. However, inducing Bragg gaps in the low frequency range requires

the internal structure to have a spatial period of similar size to the wavelength of the incoming wave.

The wavelength of low frequency elastic waves in typical solids is relatively long in comparison to the

dimensions of a typical acoustic shelter, thus making the use of Bragg gaps alone impractical for insulating

acoustic waves.

Figure 1.8: Locally resonant sonic crystal; (a) Cross section of a single inclusion, consisting of a lead sphere
of radius 5 mm coated in a 2.5 mm layer of silicone rubber, embedded in an epoxy matrix. (b) 8×8×8 sonic
crystal with a lattice constant of 1.55 cm tested with acoustic waves applied in the (100) direction with
varying frequencies, producing the amplitude transmission plot shown in (c). The solid lines represent
the calculated values and the circles represent the measured experimental values. (d) The calculated band
structure for the sonic crystal, showing band gaps in the frequency spectrum. From Liu et al. (2000b).
Reprinted with permission from AAAS.

To overcome this problem, Liu et al. (2000b) developed an array of locally resonant inclusions, con-

sisting of silicone coated lead spheres in an epoxy matrix, shown in Figure 1.8. When a sonic wave passes

through the material, resonance of the internal lead sphere can be activated at chosen frequencies, cre-



Mechanical waves in metamaterials and composites 13

ating resonance induced band gaps two orders of magnitude lower than that obtained by the Bragg limit.

Liu et al. (2002) demonstrated that the configuration of the band-gap can be tuned continuously from

a resonance gap to a Bragg gap by varying the elastic properties of the inclusion components. A softer

coating led to a resonance gap, whereas a stiff coating material created an elastic wave gap derived from

Bragg scattering.

The wave attenuation behavior of locally resonant sonic materials is derived from the unusual mate-

rial properties that these composites display, such as negative effective mass or negative bulk modulus.

Liu et al. (2000b) demonstrated that disordered composites constructed with locally resonant inclusions

display negative effective material properties, breaking the conventional mass-density law of sound trans-

mission. Mass density is typically considered to be the volume average of the constituents . The implicit

assumption in this expression is that the two components of the composite move in unision. However, in

the case of resonant inclusions there is relative motion between the constituents and the matrix, meaning

that the internal mass of the local resonator can move out of phase with the matrix displacement (Mei

et al., 2006). If, in addition, the local resonators occupy a significant volume of the composite, then this

results in a change in the overall mass density. Thus the effective mass density for the dynamic case is

different from that in the static configuration (Banerjee, 2011; Mei et al., 2013). The effective mass density

can also become negative in value when the core of the inclusion resonates, leading to interesting and

unusual interactions with the applied wave motion. The concept of effective mass density has also been

studied by Sheng et al. (2003, 2007), Liu et al. (2002, 2005), and Liu et al. (2011).

To further investigate the design of locally resonant metamaterials, Wang et al. (2006) studied longi-

tudinal wave propagation in a quasi-one-dimensional slender beam with periodically attached harmonic

oscillators. They computed the transmission frequency response function for the system and performed

vibration experiments on a laboratory setup with an arrangement of masses and springs resembling the

theoretical model, observing good correspondence between the two results. Wang et al. also found an-

alytically that the beam to inclusion coating stiffness ratio highly influenced the attenuation properties

within the observed transmission frequency band gap. Xiao et al. (2012) extended this work, modeling

a uniform elastic rod containing a periodic array of multi-degree-of-freedom resonators, developing a

methodology to predict the complex band structure resulting from these metamaterials. The inclusion

of multi-degree-of-freedom resonators resulted in the presence of multiple band gaps, often achieving

greater attenuation performance than in the single-degree-of-freedom case. Through a parametric study

they were able to show that there exists coupling between both the Bragg-type and resonance-type gaps

present in the response. This coupling behavior resulted in a great improvement in the bandwidth and

attenuation performance of gaps around Bragg conditions, leading to super-wide band gaps useful in

broadband vibration control applications.

There have been a number of recent efforts in the development of analytic modeling tools for meta-

materials containing inclusions and other complex microstructures. Milton and Willis (2007) presented



14 Introduction

a rigorous framework involving what they term the Willis equations, introducing a new point of view on

the elastodynamic equations of composite materials. They consider the harmonic motion of a rigid body

with hidden spring–mass systems, using a number of configurations to explain the concept of negative

effective mass density in simple metamaterials with resonators. Using Newton’s law for the motion of the

included mass, they derive generalized equations of motion for the rigid body, where the effective mass

(or p–mass) is a function of the oscillation frequency. Near the resonance frequency of the spring-mass

system the p-mass assumes large values, becoming complex and eventually negative.

Zhu et al. (2011) used the same metamaterial proposed by Milton and Willis (2007) to develop a mi-

crostructure continuum model as an alternative to classic continuum theory. They derived field equations

to represent elastic metamaterials with resonator microstructures, and used these in comparison with the

finite element method to show accurate prediction of band gap features. Liu et al. (2012) took a similar

approach, developing a multi-displacement microstructure continuum model to obtain the macroscopic

governing equations for an anisotropic elastic metamaterial consisting of an epoxy matrix with lead cylin-

ders coated with an elliptically shaped soft layer. Milton et al. (2006) and Milton (2007) also discussed

metamaterials in the context of elastic cloaking devices, developing theory that may be useful for design

of composites that can cloak objects from elastic waves of a given frequency.

1.2.1.2 One–dimensional model for negative–mass materials

The behavior of structures with locally resonant inclusions has been attributed to negative effective mate-

rial properties, such as negative effective mass. As described above, the static and dynamic mass density

are different when the composite material under dynamic excitation contains locally resonant inclusions.

Figure 1.9: A one-dimensional material where the ‘effective’ mass depends on the frequencyω and can be
negative (Milton and Willis, 2007).

The concept of negative effective mass is important in the design and analysis of metamaterials with

locally resonant inclusions. To aid in the understanding of how these materials behave under an oscillat-

ing loading, we introduce the idea of negative mass by briefly recalling the elementary example described

in Milton and Willis (2007). They consider a one-dimensional model consisting of n cylindrical cavities of

length d , carved out from a bar of rigid material with mass m0. In each cavity, a mass m is connected to
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the walls through two springs of stiffness k, as illustrated in Figure 1.9.

The system oscillates harmonically in time with frequency ω under the action of the external force

f (t ). The spring forces acting on the right and left side of each mass are denoted fr (t ) and fl (t ), respec-

tively. All the forces vary in time according to

f (t ) = Re(F e−iωt ),

fr (t ) = Re(Fr e−iωt ),

fl (t ) = Re(Fl e−iωt ),

where capital symbols denote complex numbers. The position of the left wall and of the first mass are

denoted by the coordinates x(t ) and y(t ), with

x(t ) = Re(Ux e−iωt ), y(t ) = d

2
+Re(Uy e−iωt ),

where Ux and Uy are the complex displacements of the rigid system and of the mass, respectively. The

velocities follow as

vx (t ) = Re(Vx e−iωt ), vy (t ) = Re(Vy e−iωt ),

with

Vx =−iωUx , Vy =−iωUy .

and accelerations are

ax (t ) = Re(Ax e−iωt ), ay (t ) = Re(Ay e−iωt ),

with

Ax =−iωVx =ω2Ux , Ay =−iωVy =ω2Uy . (1.1)

The equation of motion of the rigid body is

F −n(Fl −Fr ) = m0 Ax (1.2)

and the equation of motion for each mass m is

Fl −Fr = m Ay . (1.3)

The forces of the springs can be expressed in terms of the displacement by using the Hooke’s law

Fl −Fr = 2k(Uy −Ux ), (1.4)
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leading to

2k(Uy −Ux ) = 2k
Ay − Ax

ω2 = m Ay , (1.5)

from where the expression of Ay can be derived

Ay = 2k

2k −mω2 Ax . (1.6)

By combining (1.2)-(1.3) and (1.6) we obtain

F = M(ω)Ax , M(ω) = m0 + 2k nm

2k −mω2 .

The mass M is called the effective momentum mass or p-mass. The p-mass reduces to the rigid body

mass m0 for vanishing spring stiffness, and to the sum of the masses m0+nm in absence of motion. If we

introduce the natural frequency of one of the mass-spring cores as

ωρ =
√

2k

m
(1.7)

we can write the p-mass as

M(ω) = m0

(
1+α

ω2
ρ

ω2
ρ −ω2

)
, α= n m

m0
. (1.8)
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Figure 1.10: Variation of the p-mass value with the excitation frequency of the model described in Milton
and Willis (2007).

The p-mass can become very large and complex near the resonant frequency, achieving negative val-

ues for ω > ωρ , as seen in Figure 1.10. Thus the effective mass is a function of the oscillation frequency,

and it is this behavior near the resonant value of the internal system that causes the change in global ma-

terial properties, leading to the new and novel materials with the ability to reduce the effect of an applied



Mechanical waves in metamaterials and composites 17

wave.

Similar models consisting of one–dimensional spring–mass chains have also been used to model the

band gap and transmission behavior in acoustic and elastic metamaterials, where the band gap results

from the occurrence of negative effective mass. Jensen (2003) used a one–dimensional array of masses and

springs to model a periodic lattice structure, investigating the structural response and band gap behavior.

The model showed that the one–dimensional filter was insensitive to both damping and small imperfec-

tions within the system. With the development of locally resonant sonic metamaterials, one–dimensional

mass-spring chains have also been used to derive the dispersion relation for systems containing mass–

in–mass resonating units. (Huang et al., 2009) and (Huang and Sun, 2009) compute the dispersion curves

for such a system, demonstrating the formation of band gaps and relating this to resonant behavior. They

also link this behavior to the effective mass of the periodic unit, showing that modeling the system in

this way leads to negative effective mass at freqeuncies just above the resonance value. Similarly, Yao

et al. (2008) used a one–dimensional system with effective mass to compute band gap behavior and wave

transmission, finding close correspondence between the numerical and experimental results.

1.2.2 Other mechanical metamaterials

Many of the systems used in phononic crystals and acoustic metamaterials are also applicable to other

mechanical waves. The control of elastic wave trajectories in thin plates is one interesting area being ex-

plored. Farhat et al. (2009) proposed a design for a cloak to control bending waves propagating in isotropic

heterogeneous thin plates. This was followed with further analysis in Farhat et al. (2012), where it was

shown that a heterogeneous orthotropic cloak can be designed using a radially symmetric multilayered

structure. An object surrounded by such a cloak can appear neutral for flexural waves, due to a set of peri-

odic perforations, or air holes, in the plate. This theoretical and numerical work was then experimentally

tested by Stenger et al. (2012), using a cloak consisting of 20 concentric rings of 16 different metamaterials

to show that cloaking behavior can be successfully achieved in thin plates at low frequencies. A similar

experimental study on flat lens focusing of elastic waves in plates was performed by Dubois et al. (2013),

using an array of circular air holes in a thin plate to achieve large–angle negative refraction.

The studies on elastic waves in thin plates naturally suggest potential useful applications in vibration

isolating structures in the aeronautical, automotive, and ship industries, along with larger scale appli-

cations such as earthquake resistant infrastructures and anti-earthquake passive systems (Farhat et al.,

2009). Work in the seismic application of these systems has recently been presented by Brûlé et al. (2014),

where civil engineers explored the potential of using metamaterials with seismic surface waves. They

present the results of a large scale experiment, shown in Figure 1.11, where a grid of holes was bored

5 m deep into clay soil and the system tested using a vibrating probe to simulate an earthquake. Mea-

surements showed a modification of the seismic energy distribution in the presence of the metamaterial,

displaying shielding of surface elastic waves at around 50 Hz, and the results were in agreement with those



18 Introduction

(a) (b)

Figure 1.11: Seimic metamaterial experiment by the Ménard company: (a) cross section of the seismic
testing device in the x-z plane, and (b) photograph of the experiment showing the location of the sensors
(green dashed line), the 5 m deep self-stable holes of diameter 0.32 m with center–to–center spacing of
1.73 m making up the seismic metamaterial (blue dashed line), and the rotating source, which is a vibrat-
ing probe set on a crane generating an elastic wave of frequency 50 Hz (red dashed line). Reprinted from
Brûlé et al. (2014), http://dx.doi.org/10.1103/PhysRevLett.112.133901.

from numerical simulations using an approximate plate model. A system of this type could be useful for

the protection of buildings from earthquake shaking and the authors suggest that this is only the starting

point for these applications, with much further investigation needed.

Figure 1.12: Structured cloak for surface waves in fluids, consisting of 100 rigid sectors evenly machined
in a metallic ring of inner diameter 82 mm and outer diameter 200 mm. Reprinted figure with permission
from Farhat et al. (2008) Copyright (2008) by the American Physical Society, http://dx.doi.org/10.
1103/PhysRevLett.101.134501.

Another idea being explored is the use of cloaking devices for surface waves in fluids. Farhat et al.

(2008) built a prototype for a cloak of this type consisting of concentric rings of metallic rods, creating a

http://dx.doi.org/10.1103/PhysRevLett.112.133901
http://dx.doi.org/10.1103/PhysRevLett.101.134501
http://dx.doi.org/10.1103/PhysRevLett.101.134501
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structure ranging from 82 mm to 200 mm in diameter, shown in Figure 1.12. This structure was tested in

a wave tank with a closely located acoustic source and was observed to bend surface waves over a finite

interval of frequencies. These devices could eventually be developed on a larger scale and used for hiding

vulnerable coastlines and protecting offshore platforms from ocean waves such as tsunamis.

1.3 Further applications for metamaterials

Metamaterials have also been considered for a number of other applications, some of which will be briefly

summarized here.

One interesting field being considered is the use of metamaterials in thermodynamics. In the design

of optical metamaterials, much of the focus is on molding of the flow of energy flux per unit time and

area, i.e., the Poynting vector. The heat current density in thermodynamics has the same meaning and

units and follows a related continuity equation to that in optical design, even though in thermodynamics

waves do not occur. A thermodynamic cloak could be made using the principles of metamaterial de-

sign conidered in optics, thus protecting objects from overheating while keeping the heat flow in their

surroundings as though nothing is there (Guenneau et al., 2012; Schittny et al., 2013). Further, active

thermodynamic metamaterials could provide exterior thermal cloaking to objects, i.e., where the object

is spatially separated from the cloak. This could be achieved using metamaterials to create negative heat

conductivities, reversing the flow of heat so that it moves from cold to hot (Wegener, 2013).

Active metamaterials have already been demonstrated using embedded active circuits and devices,

such as the zero loss structures tested by Yuan et al. (2009) and the self-tuning metamaterials presented

by Barrett and Cummer (2014). Likewise, active metamaterials could be considered for mechanical meta-

materials, integrating miniature energy sources together with sensors, actuators, and feedback loops into

the individual unit cells (Wegener, 2013). An acoustic metamaterial with active elements was recently

demonstrated by Popa and Cummer (2014), and a model for an active elastodynamic cloak was presented

by Norris and Amirkulova (2014) based on the active acoustic cloaking theory of Norris et al. (2012).

We have provided a description of the theory, design, numerical and experimental testing of meta-

materials for a variety of applications in electromagnetics, mechanics, and fields beyond classical waves.

This summary provides the background and motivation for the design and analysis of a new concrete

metamaterial, discussed in detail in the following chapters.

1.4 Blast and impact protection structures

The protection of buildings and structures from terrorist or accidental explosions is becoming an increas-

ingly important consideration for many government, military, and even civilian facilities (Krauthammer,

2008). Explosive events generate a high-pressure dynamic loading on a structure, and for many this load-
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ing goes well beyond the conventional lateral earthquake and wind loads that the building system is de-

signed to resist. The detonation of an explosive device generates an overpressure wave which radiates

out from the source of the detonation, and when this reaches the structure it results in a dynamically ap-

plied pressure load. Without proper design and consideration of the effects of this loading, the structure

and the occupants can be at risk from failure of the exterior of the structure, high-velocity debris, and

high-pressure demands entering the interior of the building or structure.

There have been a number of structural systems developed for the protection of structures and sensi-

tive facilities. These range from simple techniques, such as the use of interior rubber membrane coatings

and exterior soil embankments, to more sophisticated systems such fiber–reinforced composites and lay-

ered wall panels for the retrofit of at–risk structures. Naito et al. (2011) describe the design and testing

of a precast concrete panel system for the retrofit of facilities with exterior light gauge metal stud walls.

These conventional wall systems provide many benefits in terms of fire and weather resistance; however,

their low weight and weak floor connections result in poor performance when subjected to a blast load-

ing. The use of precast concrete wall panels can provide additional protection, with their large mass and

high inertial resistance making them ideal for resisting a dynamic blast event. A series of precast panels

was installed exterior to the test building envelope, with measurements from a blast test showing that the

precast wall system can provide effective protection, with only minor cracking and no permanent defor-

mation on the interior wall.

Fiber reinforcement has also been used to protect structural beams, columns, slabs, and walls. Mal-

var et al. (2007) review some of the techniques proposed, such as fiber–reinforced jackets for columns

and beams, near-surface mounted rods, and fiber reinforced expoxies or polyurea layered on masonry

walls. These systems provide additional strength to critical structural elements and can also allow for the

containment of fragments ejected from the structural material during a blast event.

Fibers can also be mixed into the concrete itself, forming what is termed ‘fiber reinforced concrete’.

Garfield et al. (2011) test a number of different concrete panel configurations containing macro-synthetic

fibers dispersed through the concrete matrix. Fiber reinforced concrete panels containing steel bar re-

inforcement provided the best performance when experimentally tested with a blast loading, exhibiting

significantly less damage when compared to standard concrete panels. Similar numerical studies were

conducted by Pantelides et al. (2014) on fiber reinforced panels with normal weight concrete and Mao

et al. (2014) on fiber reinforced panels using high strength concrete.

Other designs combine these techniques, using layered panels to reduce the effect of blast loading.

Christian and Chye (2014) propose a steel-concrete composite panel consisting of fiber-reinforced high-

strength concrete on the incident face combined with a steel sandwich inner layer. The inner layer of

the composite panel is designed to dissipate energy from the imparted blast wave. This panel design

displayed good performance and high energy absorption in numerical simulations when tested with a

blast charge.
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For a general review of the history of blast protective structures, explosive devices, design procedures,

and recommendations for blast fortifications, see Krauthammer (2008).

1.5 A new concept for an engineered concrete

Research on engineered composites designed for interaction with electromagnetic, acoustic, and elastic

waves has led to a new suite of materials that can develop unusual properties. As the field of metama-

terials science has grown, the creation of new devices and structures in one field of wave science has led

scientists and engineers to consider its benefits in other areas. For example, the use of designed struc-

tures in electromagnetics led to new devices in acoustics and elastodynamics. One structural material

with the potential for enhanced properties through the use of a designed microstructure is concrete, a

composite used for myriad of structural applications. Influenced by the development of locally resonant

inclusions in acoustic and elastic metamaterials, we investigate a new type of concrete that contains res-

onant ‘aggregates’ to modify the effect of an applied dynamic loading. We name this particular composite

metaconcrete.

Metaconcrete utilizes the concept of negative effective mass, which has been shown to successfully

attenuate acoustic waves in locally resonant sonic crystals, discussed previously in Sections 1.2.1.1 and

1.2.1.2. This new composite material employs bi-material spherical inclusions as a replacement for the

standard stone and gravel aggregates of regular concrete. Metaconcrete aggregates contain a heavy metal

core and are coated with a thin compliant outer layer, a few millimeters in thickness. Layering a softer

coating between two relatively stiff materials allows for relative motion, and thus resonance, within the

aggregate. Under the action of particular frequencies, the aggregates display resonant behavior by os-

cillating about their equilibrium configuration and consequently trapping a portion of the supplied me-

chanical energy of the system.

Resonant aggregates characterize metaconcrete with a wide range of natural frequencies not observed

in regular concrete. We investigate the dynamic behavior of metaconcrete by considering a number of

different loading profiles applied to a slab of material with an internal structure containing a periodic

array of metaconcrete aggregates. By adjusting the geometry and coating stiffness we can modify the

resonant behavior of the aggregate so that it occurs within a desired frequency range.

Meataconcrete aggregates can therefore be easily tuned to a chosen dynamic loading by simply ad-

justing the properties of the coating and core layers, and this provides the opportunity for the material

to be engineered for a variety of applications. A metamaterial system utilizing locally resonant inclusions

could be used in a panel structure or protective slabs for blast shielding, acting as an absorbing layer to re-

move some of the energy from a propagating shock wave caused by an explosion. Metaconcrete could be

used as an alternative to or in conjunction with the structural protection devices described in Section 1.4,

for example, as a metamaterial layer to absorb shock energy in wall panels or as a protective barrier slab
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for retrofit applications. Other possible applications include impact protection, vibration absorption, and

tuned damping foundations to mitigate seismic actions in buildings.

1.6 Outline of contents

The thesis builds on the general concepts and theory of engineered materials introduced in this chapter,

which provide the motivation and background for the development of metaconcrete. Chapter 2 begins by

detailing the design and structure of a metaconcrete aggregate, providing the geometrical and material

parameters considered in all the numerical analyses. An analysis of resonant behavior and aggregate

natural frequencies is presented for both a simplified one–dimensional model and a more detailed three-

dimensional aggregate model. A slab design for the computations is then presented, along with details of

the finite element models used in the study.

We begin the numerical analyses in Chapter 3 by considering the effect of resonant behavior on the

performance of the slab. We first consider a simple one–dimensional model to generate dispersion plots,

indicating band gap frequency ranges where attenuation of the propagating wave can be achieved. We

then consider the transmission of wave energy through a three–dimensional metaconcrete slab model.

The method for computing the transmission ratio from a finite element slab model is presented along

with results from four aggregate configurations, showing the change in behavior as the frequency of the

applied sinusoidal displacement reaches the resonant value of the aggregates.

In Chapter 4 we examine numerically the behavior of metaconcrete slabs under the action of a blast

wave profile caused by the ignition of an explosive. We investigate a range of different aggregate geome-

try and material configurations to identify how changes in resonant frequency effect slab behavior. The

consideration of transmitted mechanical energy and maximum mortar stress provide some design indi-

cations for the tuning of the aggregate structure for particular dynamic loadings.

An analysis of the fracture behavior of metaconcrete follows in Chapter 5, where we extend the elastic

analyses of the previous chapter to include fracture and damage of the mortar material. Brittle fracture

is incorporated through the use of an eigenerosion scheme, which erodes elements satisfying an energy–

based fracture criterion. The effect of different fracture parameters on the performance of the slab is

investigated through parametric studies, looking at the change in slab behavior due to various aggregate

material and geometry configurations. We examine slab stress distribution, fracture surfaces, and energy

transmission to identify the best aggregate configuration for enhanced slab performance.

Finally, a summary of the most important results from the study is given in Chapter 6, along with

concluding remarks and an outline of future avenues for investigation.
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Chapter 2

Modeling metaconcrete

A new type of structural concrete for dynamic loading applications was introduced in Chapter 1, which

we have called metaconcrete. To investigate this new material we conduct a numerical study of its be-

havior under a variety of conditions, including harmonic displacement loading, blast loading, and in the

presence of brittle fracture. We begin by detailing the design and configuration of the metaconcrete ag-

gregates, the spherical layered inclusions that provide metaconcrete with unusual global properties. This

chapter provides a description of the geometry and materials chosen for the aggregates, the calculation of

the eigenfrequencies for each aggregate configuration, and the finite element models used in the analyses.

2.1 Metaconcrete aggregates and their properties

Metaconcrete aggregates consist of a layered structure designed to allow for resonance and absorption of

wave energy. We use a similar structure to the locally resonant inclusions utilized by Liu et al. (2000b) in

the design of sonic crystals for the attenuation of acoustic waves. These inclusions were shown to resonate

at certain frequencies, creating a negative effective dynamic mass density which has been linked to the

reduction in wave transmission observed in theoretical and experimental studies.

Standard concrete consists of a graded assortment of gravel, crushed stone, and sand aggregates mixed

into a paste made from cement and water (McMillan and Tuthill, 1973; Mehta, 1986). The cement paste

acts as a binding medium, taking up approximately one–quarter of the total volume, and the aggregates

act as a relatively inert filler material, occupying roughly three–quarters of the concrete volume (Trox-

ell et al., 1956). The proportions of these principal constituents can be changed to create concrete with

different properties, such as high–strength or lightweight concrete. The aggregates serve a number of

functions; they provide a relatively cheap filler for the cementing material, they reduce volume changes

resulting from the hardening process and moisture changes, and they provide a mass of particles to re-

sist the action of applied loads, abrasion, and weather (Troxell et al., 1956). The material character of the

aggregate particles effects the workability of the fresh mix along with the strength and durability of the

hardened material.

To design a concrete composite with the ability to attenuate dynamic loading, we replace the tradi-

tional stone and gravel aggregates of standard concrete with an engineered aggregate. These new ag-
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gregates produce local resonances within the material and provide metaconcrete with a range of natural

frequencies not found in typical concrete. Standard coarse concrete gravel and stone aggregates have a

maximum size of around 10-38 mm (American Concrete Institute, 2007). We therefore design our aggre-

gates so that they have an outer diameter of 24 mm and mix them into a cement paste that will form the

outer matrix material. The properties of the metaconcrete aggregates will be discussed in this section,

providing an outline of how to tune the aggregates for different resonant behavior.

2.1.1 Aggregate structure and materials

Metaconcrete aggregates contain two components which interact to cause resonance. Each aggregate

contains a heavy metal core coated in a more compliant outer material, a few millimeters in thickness, as

shown in Figure 2.1. The aggregates are suspended in a mortar matrix, that for numerical purposes we

assume is homogeneous in nature. It is possible that for certain applications a thin protective metal or

plastic casing may be required to maintain the integrity of the aggregate when cast in large sections or to

prevent any seepage into the coating material.

compliant 
coating 

heavy core

𝑡

𝑡

2𝑅𝑙

mortar 
matrix

Figure 2.1: Structure of a metaconcrete aggregate with lead core radius Rl and coating thickness t .

Table 2.1 lists the materials considered in the numerical analyses. The table displays properties for the

mortar matrix along with the aggregate core and coating materials, listing the density ρ, elastic modulus

E , and poisson’s ratio ν. In our numerical analyses, lead is used for the aggregate core material. Lead

has a very high density and therefore creates a drastic mass contrast between the core and outer layer

of the aggregate. This mass contrast combined with the large difference in stiffness between the coating

layer, the surrounding matrix, and the core material helps to create the out of phase behavior required for

resonance within the aggregate at the frequencies typical of elastic waves.

To investigate a range of coating materials, we consider five different aggregate coatings with elastic

moduli ranging between 1 MPa and 10 GPa, as listed in Table 2.1. Choosing coatings that encompass a

range of elastic moduli allows us to assess the effect of coating stiffness on slab performance. Moreover,

we study three different aggregate geometry configurations, presented in Table 2.2, where Rl represents



Metaconcrete aggregates and their properties 25

Table 2.1: Material constants used in the simulations.

Material ρ (kg/m3) E (GPa) ν

Mortar 2,500 30 0.20
Lead 11,400 16 0.44
Silicone 1,100 0.001 0.47
Natural rubber 900 0.01 0.49
Low density polyethylene (LDPE) 1,100 0.1 0.45
Nylon 1,150 1.0 0.40
Urea formaldehyde (UF) 1,500 10 0.40

the radius of the lead core and t is the thickness of the coating layer. Changing the thickness of the coating

and lead core radii allows us to consider the effect of geometry changes on the performance of the aggrea-

gate, since we can generate different natural frequencies and behavior for each configuration. The outer

diameter of the aggregate remains at 24 mm for all three cases, and the coating thickness varies between

1 mm and 3 mm.

Table 2.2: Aggregate geometry data.

Configuration Rl (mm) t (mm) Rl t (mm)

A 11 1 11
B 10 2 20
C 9 3 27

2.1.2 Aggregate resonant frequency

Metaconcrete aggregates are structured so that local resonances may occur when a slab of metaconcrete

material is under the action of a dynamic loading. Resonance of the heavy core is the key aggregate feature

influencing slab behavior. The aggregate configurations listed in Section 2.1.1 each produce a different

resonant frequency. Therefore, in order to compare each configuration, we derive the resonant frequen-

cies using two methods. First, we develop general tuning equations based on a simple one–dimensional

spring–mass system. We then use a three–dimensional metaconcrete unit cell to compute a more detailed

picture of the modal frequencies using finite element analysis.

2.1.2.1 One–dimensional model for resonant frequency

With the help of a mass-spring system equivalent to the resonant aggregate, we derive a simple relation-

ship for the main geometry and stiffness parameters of the aggregate, accounting for the movement of the

central core through the softer outer material. This relation can be used to define the range of resonant

frequencies for an ideal metaconcrete.
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Let us consider a single inclusion, where we choose a heavy core consisting of lead with a radius Rl

and a soft material coating of thickness t . The density of lead is denoted ρl , and the total mass of the

heavy core is

m = ρl
4

3
πR3

l . (2.1)

The stiffness of the surrounding soft material can be assumed, on each side, to be equivalent to a spring

of constant k

k = Ec A

t
, (2.2)

where A = πR2
l is proportional to the lead core maximum section area, i.e., the portion of soft material

resisting the motion of the core, and Ec is the elastic modulus of the coating material.

Figure 2.2: One–dimensional spring–mass system, with heavy mass m and spring constant k.

The resonant frequency of a one-dimensional system of mass m and with two equivalent springs of

stiffness k, shown in Figure 2.2, is therefore given by

ω2 = 2k

m
(2.3)

Combining Eqs. (2.1)-(2.3) gives the following relation for the aggregate resonant frequency,

ω2 = 3

2

Ec

Rl t ρl
, (2.4)

or expressed in units of Hertz,

f = 1

2π

√
3

2

Ec

Rl t ρl
. (2.5)

Table 2.3: Aggregate resonant frequency, in kHz, for each geometry and material configuration.

Silicone Natural Rubber LDPE Nylon Urea formaldehyde

A 0.55 1.74 5.50 17.41 55.04
B 0.41 1.29 4.08 12.91 40.82
C 0.35 1.11 3.51 11.11 35.13

Using the material data from Table 2.1 along with the geometry data from Table 2.2, we can therefore

compute the approximate resonant frequencies for each aggregate configuration. Table 2.3 lists the nat-
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ural frequency, computed using Eq. (2.5), for every aggregate material and geometry arrangement under

consideration in the numerical analyses. The same data is plotted in Figure 2.3, where we observe that

decreasing the coating thickness and increasing the coating elastic modulus will increase the value of the

aggregate resonant frequency. Using the chosen configurations, we cover frequencies between 0.35 kHz

and 55.04 kHz in the analyses. We therefore consider aggregates with a wide range of frequencies, encom-

passing those typical of fast dynamical actions.
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Figure 2.3: Resonant frequency for each geometry and material aggregate configuration studied in the
numerical analyses, computed using Eq. (2.5).

The spring mass system considered here can also be used to indicate the best aggregate configuration

for a specific resonant frequency. We derive general tuning equations which can be used to configure

aggregates for a particular loading case. For an assigned frequency ω = ω̄, Eq. (2.4) or Eq. (2.5) provide

the optimal combination of geometry and mechanical properties for the aggregates. In particular, for an

assigned geometry one can estimate the appropriate material stiffness Ec as

Ec = 2

3
Rl t ρl ω̄

2. (2.6)

Likewise, for an assigned material, the geometrical term Rl t is given by

Rl t = 3

2

Ec

ρl ω̄2 , (2.7)

which provides an approximate definition of the aggregate size.

The variation of the coating elastic modulus Ec and the aggregate size Rl t with the resonant frequency

are visualized in Figures 2.4(a) and 2.4(b), respectively. The figures provide interesting design suggestions

according to the application desired of the metaconcrete material. For the material to be employed as pro-
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Figure 2.4: Dependence of aggregate parameters on the resonant frequency. (a) Elastic modulus of the
soft coating. Lines correspond to different aggregate sizes Rl t , from 5 mm2 (solid line) to 30 mm2 (broken
line). (b) Size of the aggregate. Lines correspond to different elastic moduli Es , from 0.001 GPa (solid line)
to 100 GPa (broken line).

tection against blast loading, metaconcrete must behave as a resonant material at high frequencies, since

blast pressure histories are typically characterized by high frequency spectra. Adopting a stiff coating layer

and a small aggregate size achieves the high resonant frequencies desired, as seen in Figure 2.4(a). For the

case of protection against earthquakes, whose frequencies are in the range 0.01-10 Hz, the aggregates

must be of larger size and a lower value of elastic modulus must be chosen, see Figure 2.4(b).

2.1.2.2 Three–dimensional model for resonant frequency

The aggregate resonant frequency given by Eq. (2.5) provides an estimate for the purposes of aggregate

tuning and design. However, the one-dimensional spring–mass model used to derive this equation can-

not adequately capture all the behavior present in a three-dimensional metaconcrete model. To more

accurately understand the resonant behavior of the system, we can model a three-dimensional meta-

concrete aggregate using commercial finite element software capable of performing frequency or modal

analyses (Abaqus/Standard 6.12-2, 2012).

We consider a 0.03 m mortar cube containing a single aggregate, representing a periodic unit cell from

a metaconcrete slab. Figure 2.5 depicts the finite element model used to estimate the modal properties

of a 1 mm nylon coated aggregate. The model is meshed with quadratic tetrahedral elements with a max-

imum size of 2.5 mm, reducing to a smaller size within the coating and core phases. We consider four

aggregate cases for this analysis: 1 mm and 3 mm rubber coated aggregates, and 1 mm and 3 mm nylon

coated aggregates. Table 2.4 provides the discretization data for the geometry cases considered, along

with the volume fractions for each phase of the aggregate, given as a percentage of total slab volume.

Boundary conditions are assigned to the outer edges of the cube so that only the modes of interest,



Metaconcrete aggregates and their properties 29
Printed using Abaqus/CAE on: Wed Feb 11 16:14:22 Pacific Standard Time 2015

Figure 2.5: A periodic unit cell used for the modal analysis, showing the outer mortar block containing a
1 mm nylon coated lead aggregate.

Table 2.4: Discretization data and volume fractions for the finite element periodic unit cell model.

Configuration Nodes Elements Vmortar (%) Vcoating (%) Vlead(%)

A 40,307 25,047 73.2 6.2 20.6
C 41,074 26,260 73.2 15.5 11.3

those involving the aggregate constituents, are output from the analysis. Each part within the model is

assigned the appropriate properties as given in Table 2.1 and a linear elastic material model is assumed

for each constituent.

A frequency analysis is run to compute the first four eigenfrequencies and corresponding eigenshapes.

Table 2.5 lists the results for each aggregate configuration. The first mode shape represents a rigid body

rotation of the lead core inside the compliant coating. The second mode shape consists of rigid body

translation of the heavy core, oscillating within the coating material. The third and forth mode shapes

correspond to vibration and flexing of the lead core and/or coating materials.

Table 2.5: Resonant frequencies from both Eq. (2.5) and the finite element periodic unit cell model.

Finite Element Unit Cell (kHz)

Configuration Eq. (2.5) (kHz) Mode 1 Mode 2 Mode 3 Mode 4

1 mm Rubber 1.74 1.99 5.99 25.00 27.70
3 mm Rubber 1.11 1.51 3.39 10.44 11.12
1 mm Nylon 17.41 18.84 21.12 32.14 36.42
3 mm Nylon 11.11 15.08 15.94 34.19 36.92
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The eigenshapes are also illustrated in Figure 2.6, where each of the first four mode shapes are shown

for the 1 mm nylon aggregate configuration. A contour plot of the maximum principal strain is shown

for each mode, and it can be seen that the first two modes display rigid body motion, with rotation of

the heavy core in the first mode and translation in the second mode. The third and fourth modes display

mixed bending and oscillation of the core and coating.
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Figure 2.6: Contour plot of the maximum principal strain for each of the eigenshapes corresponding to
the first four eigenfrequencies for a metaconcrete unit cell containing a 1 mm nylon coated aggregate;
blue represents zero strain and red indicates large values of strain.

The second mode shape containing rigid body translation of the heavy core is the mode we wish to

activate in metaconcrete and is also the mode shape we hoped to capture in Eq. (2.5). However, as can

be seen from Table 2.5, while the frequency from Eq. (2.5) reasonably estimates the first mode natural

frequency, it underestimates the second mode resonant frequency by approximately 2-4 kHz. Therefore,

the additional accuracy provided by the eigenfrequencies from the modal analysis allows us to see which

mode shapes produce changes in slab behavior. In particular, in Chapter 3 we analyze the change in wave

transmission across the depth of a metaconcrete slab, computing a transmission coefficient for a range

of forcing frequencies. The eigenfrequencies computed in Table 2.5 enable us to more directly attribute

changes in transmission coefficient to the activation of a particular mode of resonance.
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2.2 Finite element slab models

To investigate the behavior of metaconcrete we incorporate the aggregate configurations discussed in

Section 2.1 into a finite element slab model. Using a numerical analysis of each aggregate configuration

for a number of different loading cases, we can explore how aggregate design influences slab performance.

2.2.1 Slab configuration and meshes

We consider an infinite planar slab of thickness L and restrict our attention to a square cross section of

material spanning the entire slab thickness, shown in Figure 2.7. The concrete portion is constrained so

that is does not deform in the slab plane.

Figure 2.7: Geometry of the concrete slab of thickness L, and the restricted slab portion of edge length b.

Figure 2.8: Geometrical assembly of the aggregates in a regular two-dimensional arrangement, character-
ized by heavy cores located at central distances of magnitude d and h.

The size b of the sample is chosen to be significantly smaller than the slab thickness and close to

the actual size of the aggregates, which are arranged periodically at a distance d one from another (see
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Figure 2.8). Geometrical constraints impose the following restriction:

2(Rl + t ) ≤ d . (2.8)

To increase the density of the aggregates within the slab, we model quarter aggregates along the longitu-

dinal edges, at a distance h = d
p

3/2 from the center of the aligned aggregates, as seen in Figure 2.8.

The total volume and the total mass of the system can be expressed in terms of the volume and mass

of the components,

vtot = vm + vc + vl , Mtot = vmρm + vcρc + vlρl , (2.9)

where vi and ρi denote, respectively, the volume and the density of the component i . Indices m, c, and l

refer to the mortar, compliant coating, and lead phases, respectively. The volume fractions of the compo-

nents Vi , and the filling fraction of the aggregates in terms of weight fa , are defined as:

Vi = vi

vtot
, fa = 1

Mtot

(
vcρc + vlρl

)
. (2.10)

In the present study, we assume L = 0.24 m and b = 0.03 m with the aggregates arranged at 0.03 m

centers. Each aggregate has a dimension Rl + t = 12 mm, and we vary Rl and t according to the values

reported in Table 2.2.

In the numerical analyses we consider two different aggregate arrangements within the slab. The pri-

mary configuration is a high–density arrangement, where we include the 28 quarter spheres located along

the longitudinal edges of the slab, resulting in 36 separate inclusions. This arrangement is considered for

all numerical analyses. A low–density arrangement is also used in the analysis of wave transmission in

Chapter 3, and consists of only 8 whole spherical aggregates located along the central axis of the slab. The

volume and filling fractions for both arrangements are listed in Table 2.6 for each of the aggregate geom-

etry configurations. The filling ratio varies according to the choice of the compliant coating material.

Table 2.6: Geometrical data.

# Aggregates Configuration Rl t (mm2) Vm (%) Vc (%) Vl (%) fa (%)

8
A 11 73.2 6.2 20.6 56.8-57.2
B 20 73.2 11.3 15.5 50.6-51.4
C 27 73.2 15.5 11.3 43.9-45.4

36
A 11 49.7 11.6 38.7 78.4-78.7
B 20 49.7 21.2 29.1 73.8-74.5
C 27 49.7 29.1 21.2 68.3-69.7

Configuration A is visualized in Figure 2.9. The solid model is discretized with a uniform mesh, which

reduces, if necessary, to a smaller value within the soft layer according to the coating thickness, as shown
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Table 2.7: Discretization data.

Mesh Size Configuration Nodes Elements hmin (mm) havg (mm)

Coarse
h = 2.5 mm

A 19228 96314 0.0026 0.503
B 19645 95390 0.0271 0.502
C 20891 107562 0.1271 0.486

Fine
h = 1.5 mm

A 102,965 561,846 0.0762 0.279
C 84,000 451,457 0.1031 0.287

(a) Solid model

(b) Finite Element Mesh

Figure 2.9: Solid model and finite element discretization for a metaconcrete slab containing an array of
1 mm coated aggregates (configuration A) and discretized with a coarse mesh of size h = 2.5 mm.

in Figure 2.9(b). Two mesh sizes are needed for the numerical analyses; a coarse mesh of size h = 2.5 mm,

and a fine mesh of size h = 1.5 mm, which is used for configurations A and C in the calculation of trans-

mission coefficients discussed in Chapter 3.

The discretization data for each finite element configuration is presented in Table 2.7, listing the num-

ber of nodes and elements for each finite element model. We also present more detailed information

on the mesh size for each slab case, listing the minimum mesh size hmin, and the average mesh size havg,

within the mortar phase of the slab. The minimum mesh size is used in the implementation of the fracture

algorithm, discussed in Chapter 5.

The elastic material behavior of each slab constituent is described by a neo-Hookean material model,

extended to the compressible range and adopting the material properties listed in Table 2.1. Details of the

model can be found in Appendix A.
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In the numerical analyses we model the matrix surrounding the aggregates as a homogeneous ma-

terial with the equivalent properties of concrete. Although standard concrete is a true composite, we

assume that for applications where the elastic behavior is dominant it can be considered a homogeneous

material. Conversely, metaconcrete is non–homogeneous because of the particular choice of aggregates.

In each numerical study we therefore also model a homogeneous slab for comparison with metaconcrete,

where we fill the entire finite element model with the homogeneous concrete material.

2.2.2 Blast wave loading

We test the metaconcrete slab model with two loading profiles. The first is a harmonic displacement

applied to the end surface of the slab at a prescribed frequency in order to activate resonance within the

aggregates. This is described in further detail in Chapter 3. We also consider a loading caused by a blast

wave, which is used in Chapter 4 and Chapter 5 to investigate a range of slab behavior.

(a) Blast force versus time (b) Blast force magnitude versus frequency

Figure 2.10: Blast wave loading: (a) Variation in time of the resultant blast pressure on the exposed surface
of the slab. (b) Fourier transform (signal magnitude) of the blast force.

The blast pressure history activates a large spectrum of frequencies within the system. We assume

that the blast is applied to the forward side of the slab, while the opposite side is free to move, and we

apply periodic boundary conditions to the lateral surfaces. The blast pressure history is caused by the

ignition of an explosion in air, which results in a spherical pressure wave that propagates out from the

ignition site. We assume a blast force caused by the ignition of an explosive charge located 0.015 m from

the central point of the exposed slab surface. The controlling parameter for explosions in atmosphere is

the yield factor λ, i.e., the cubic root of the ratio between the energy released by the actual explosion and

the energy released in a 1 ton of TNT reference explosion. The model for the blast pressure history used

in the calculations is summarized in Appendix B and a more detailed description of explosions in air can
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be found in, e.g., Kinney (1962).

The blast force is characterized by the time history and frequency spectrum. The total blast force at

time t is given by the resultant of the blast pressures acting normally to the exposed surface Aexposed, i.e.

F (t ) =
∫

Aexposed

p(t )d A. (2.11)

To demonstrate the shape of a typical blast profile we consider, as an example, a blast pressure wave

caused by a yield factor λ = 0.01, which is applied to the exposed end face of a metaconcrete slab. This

yield factor corresponds to the ignition of a 1 g TNT charge. Figure 2.10(a) shows the time history of the

blast force. The frequency spectrum, shown in Figure 2.10(b), is obtained in terms of magnitude by taking

the Fourier transform of the blast force time history. For this particular example, the blast pressure acts

for a short time interval of less than 0.01 ms, and most of the excited frequencies are in the range between

1 kHz and 1 MHz, indicating the frequency range for which activation of the resonant aggregates may

occur.
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Chapter 3

Wave transmission in a metaconcrete
slab

Transmission ratio plots have been used to quantify the band gap and resonance–induced behavior of

acoustic crystals with a layered structure analogous to that used in metaconcrete (Liu et al., 2000b; Sheng

et al., 2003). These crystals have been shown to exhibit resonant behavior when experimentally tested

with sound waves of varying frequencies, where the ratio of the change in wave amplitude across the

crystal is measured and plotted against input wave frequency. The dispersion equation, which defines

the wave frequencies for different wave numbers, is also closely related to wave transmission behavior.

Plotting the dispersion equation allows for the identification of the band gap behavior of the system. The

formation of band gaps within locally resonant sonic crystals has also been linked to the negative effective

mass that these materials display near the resonant frequency of the inclusions, caused by out–of–phase

behavior between the constituents and the matrix.

We can investigate the wave transmission properties of metaconcrete by modeling slab behavior using

both one– and three–dimensional systems. We begin by considering a one–dimensional model of a meta-

concrete slab and analyze the link between band gap behavior, resonance, and wave attenuation using

this simplified system. Similar behavior can be seen by computing a wave transmission ratio for a finite

element metaconcrete model containing a periodic array of aggregates, where we consider the amount

of energy transmitted through a slab. We examine the transmission behavior and resonance activation

of metaconcrete by considering a metaconcrete slab subjected to a displacement loading over a range of

chosen frequencies. The information gained from these analyses allows us to more accurately determine

the appropriate aggregate properties for specific loading applications.

3.1 The characteristics of aggregate resonant behavior

We introduce the effect of local resonances in metaconcrete by simplifying the system to a one–dimensional

spring–mass model. This enables us to easily derive the dispersion relation for the system, which aids in

the visualization of band gap behavior. While the one–dimensional model does not capture all of the

complexities of the three–dimensional slab model, it does address the most important behavior present,
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which is the activation of the resonant aggregates and the development of negative effective mass. This

leads to the attenuation of the wave motion within the band gap freqeuncy range, and we can observe

this effect by deriving a transmission ratio for the one–dimensional model. A one–dimensional metacon-

crete model will therefore provide further insight into the link between local resonances and formation

of band gaps, which will aid in the understanding of wave transmission behavior produced by a three–

dimensional finite element slab model, discussed in Section 3.2.

3.1.1 Dispersion and a simple spring–mass chain

We begin by deriving the dispersion relation for the simple one–dimensional spring–mass chain shown in

Figure 3.1 (Banerjee, 2011). The system consists of periodically spaced lumped masses m, with a unit cell

spacing of L, connected by springs of stiffness k.

݉
݇ ݇

݉ ݉
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݆݆ െ 1 ݆  1

Figure 3.1: Simple one–dimensional spring–mass system representing a periodic structure.

The displacement at unit cell j is given by u j and the system is constructed from an infinite number

of the spring–mass unit cells. Using Newton’s second law, we can therefore write the equation of motion

for the j -th mass as

mü j +k(u j −u j−1)+k(u j −u j+1) = 0, (3.1)

where ü j is the acceleration of the j -th mass given by ü j = d 2u j /d t 2.

The harmonic wave solution for the ( j +n)-th unit cell is expressed in the form

u j+n = Ae i ( j qL+nqL−ωt ) , (3.2)

where A is the wave amplitude, q is the wave number, and ω is the oscillation frequency, and we assume

that only the real part of Eq. (3.2) is to be taken for the physical interpretation of the solution. This can

also be written in the form

u j = Ae i ( j qL−ωt ) , (3.3)

where we have
d 2u j

d t 2 =−ω2u j and u j+n = u j e i nqL . (3.4)
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Note that this indicates that the equation satisfies the Bloch periodicity condition, which is a consequence

of the Bloch-Floquet theorem. Thus, we can rewrite the equation of motion by substituting Eq. (3.4) for

n =±1, which gives [
k(2−e−i qL −e i qL)−mω2

]
u j = 0. (3.5)

We can use identities e i qL +e−i qL = 2cos(qL) and 1−cos(qL) = 2sin2(qL/2) to rewrite this expression as

[
4k

m
sin2

(
qL

2

)
−ω2

]
u j = 0. (3.6)

For real q , and since ω> 0, this equation has a nontrivial solution only if

ω2(q) = 4
k

m
sin2

(
qL

2

)
, (3.7)

or, noting that ω0 =
p

(k/m) is the natural frequency of the mass-spring system

ω(q) = 2

√
k

m

∣∣∣∣sin

(
qL

2

)∣∣∣∣= 2ω0

∣∣∣∣sin

(
qL

2

)∣∣∣∣ . (3.8)

This expression represents the dispersion relation for the structure, which is plotted in Figure 3.2.
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Figure 3.2: Dispersion plot for the one–dimensional spring–mass system, showing the first Brillouin zone
shaded in gray.

The dispersion plot is a periodic function of q with a period of 2π/L, and at the value of the period the

function falls to zero. This is explained by looking at the reciprocal lattice vector, which has a spacing of

d := 1/L. Thus the frequency is zero every time q becomes an integer multiple of 2πd . The mode where
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both ω and q go to zero simultaneously is called the acoustic mode.

We may use the periodicity to concentrate on a small range of values of k while still being able to

understand the behavior of the system for all q . This irreducible set of values of q is indicated by the gray

region in Figure 3.2, and is called the first Brillouin zone. At the boundaries of the Brillouin zone ω= 2ω0,

and the group velocity dω/d q becomes zero. Therefore we have standing waves for values of q which are

odd integer multiples of π/L.

Because the system is a periodic array of units consisting of a single spring–mass system, i.e., there is

only one k and one m in the model, we only see one mode in the dispersion plot. We will observe other

modes as further detail is included in the model.

3.1.2 Spring–mass chain with local resonances

We increase the complexity of our one–dimensional model by adding local resonances to the simple

spring–mass chain (Huang et al., 2009; Huang and Sun, 2009). This allows the system to approximately

represent a chain of metaconcrete aggregates in a mortar matrix. The updated model is shown in Fig-

ure 3.3 where an additional spring–mass system, with mass m2 and spring constant k2, is added inter-

nally to the lumped mass used in simple chain arrangement, which is now denoted m1. The unit cells are

periodically spaced at a distance L and the external masses are connected by a spring with constant k1.
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Figure 3.3: One–dimensional spring–mass chain with local resonances. The system is constructed using
a periodic array of mass–in–mass unit cells.

We can derive the dispersion relation for this system using the same process as used previously. We

begin by writing the equations of motion for the both the external and internal masses,

m j
1ü j

1 +k1

(
2u j

1 −u j−1
1 −u j+1

1

)
+2k2

(
u j

1 −u j
2

)
= 0 (3.9)

m j
2ü j

2 +2k2

(
u j

2 −u j
1

)
= 0. (3.10)

We substitute the following relations from the time harmonic wave solution

ü j
1 =−ω2u j

1 ü j
2 =−ω2u j

2 (3.11)
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u j+1
1 = u j

1e i qL u j−1
1 = u j

1e−i qL (3.12)

to get

−m1ω
2u j

1 +k1

(
2u j

1 −u j
1e−i qL −u j

1e i qL
)
+2k2

(
u j

1 −u j
2

)
= 0 (3.13)

−m j
2ω

2u j
2 +2k2

(
u j

2 −u j
1

)
= 0. (3.14)

Using again the following identities, e i qL+e−i qL = 2cos(qL) and 1−cos(qL) = 2sin2(qL/2), we can rewrite

these expressions as (
−m1ω

2 +2k2 +4k1 sin2
(

qL

2

))
u j

1 −2k2u j
2 = 0 (3.15)

−2k2u j
1 +

(
−m j

2ω
2 +2k2

)
u j

2 = 0. (3.16)

In order to find the dispersion relation for this system we want to reduce the problem into a generalized

matrix eigenvalue problem of the form

[
K(q)−ω2M

]
u = 0 , (3.17)

where M and K are the mass and stiffness matrices, respectively, which contain the geometry and material

parameters, q is the wave number, ω is the frequency, and u is the displacement vector for the degrees of

freedom in the system. Thus, we rewrite the equations of motion in the form

−m1ω
2 +2k2 +4k1 sin2

(
qL
2

)
−2k2

−2k2 −m j
2ω

2 +2k2

u j
1

u j
2

= 0. (3.18)

This eigenvalue problem has a nontrivial solution if det
(
K(q)−ω2M

)= 0, resulting in

m1m2ω
4 −

(
2k2 (m1 +m2)+4m2k1 sin2

(
qL

2

))
ω2 +8k1k2 sin2

(
qL

2

)
= 0. (3.19)

Solving this expression for ω(q) gives the dispersion relation for the locally resonant spring–mass chain,

ω(q) =

±
√(

−4k1m2 sin2
(

qL
2

)
−2k2 (m1 +m2)

)2 −32k1k2m1m2 sin2
(

qL
2

)
2m1m2

+
2k1 sin2

(
qL
2

)
m1

+ k2

m1
+ k2

m2

1/2

(3.20)

taking only the positive eigenvalues. Note that the dispersion relation for this case results in an extra

mode, called the optical mode. We will see this in more detail upon examination of the dispersion plot

resulting from the use of equivalent metaconcrete properties in one–dimensional form, discussed in the
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following section.

We can also rearrange Eq. (3.19) into the following form

ω2 = 4
k1

meff
sin2

(
qL

2

)
(3.21)

with

meff = m1 +
ω2

0m2

ω2
0 −ω2

, (3.22)

where ω2
0 = 2k2/m2 is the resonant frequency of the internal spring–mass system. This equation is there-

fore equivalent to that given in Eq. (3.7) for the simple spring–mass chain; however, the mass m is now

replaced with the effective mass meff (Yao et al., 2008; Huang et al., 2009). This frequency–dependent

mass is identical to that derived by Milton and Willis (2007) in the analysis of a one–dimensional bar with

voids containing hidden resonant systems, as given by Eq. (1.8) of Chapter 1. Just above the resonant

frequency ω0, the effective mass becomes very large and negative in value, leading to the response being

out of phase with the input force. This is what is known as negative effective mass, and was discussed in

relation to acoustic metamaterials in Chapter 1. When the oscillation frequency reduces towards zero, i.e.,

in the long wavelength limit as ω→ 0, the effective mass approaches meff = m1 +m2, and the static mass

for the system is recovered. It is the presence of local resonances within the system which leads to neg-

ative effective mass, which in turn creates the wave attenuation properties observed in locally resonant

metamaterials.

Eq. (3.21) also implies that the lumped mass of Figure 3.1 can simply be replaced in the equations of

motion by an effective frequency dependent mass meff, as demonstrated in Figure 3.4. In light of this, we

can now easily derive a simple relation for the amplitude tranmission ratio.

݇ଵ ݇ଵ
݉ୣ

ܮ ݑ

݆݆ െ 1 ݆  1

݉ୣ ݉ୣ

Figure 3.4: One–dimensional spring–mass chain containing lumped masses with effective properties
equivalent to a mass–in–mass resonator.

For a finite periodic system of N units, the amplitude transmission of the spring–mass chain can be

computed from the ratio given by the displacement amplitude of the last unit over the displacement am-

plitude of the excitation (Yao et al., 2008). Assuming that the displacement u j
1 of the j -th unit is given by

u j
1 = ū j

1e−iωt , where ū j
1 is the time–independent complex displacement amplitude, i.e., ū j

1 = A1e j qL , we
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can rewrite the equations of motion for the simple chain using the effective mass meff,

(
2k1 −ω2meff

)
ū j

1 = k1

(
ū j+1

1 + ū j−1
1

)
, j = 1,2, . . . , N −1 (3.23)

(
k1 −ω2meff

)
ū j

1 = k1ū j−1
1 , j = N . (3.24)

From Eqs. (3.23) and (3.24), we can write the transmission ratio T = ∣∣ūN
1 /ū0

1

∣∣ as

T =
∣∣∣∣∣ N∏

j=1
T j

∣∣∣∣∣ , (3.25)

where T j = ū j
1/ū j−1

1 is given by the recurrence relation

T j = k1

k1
(
2−T j+1

)−meffω2
j = 1,2, . . . , N (3.26)

with TN+1 = 1.

Another quantity of interest is the relative amplitudes between the outer mass m1 and the inner mass

m2 at different values of oscillation frequency. We can find a ratio of these amplitudes by substituting the

harmonic wave solution from Eq. (3.11), i.e., u j+n = Aγe i ( j qL+nqL−ωt ), into the equation of motion for the

inner mass, i.e., Eq. (3.10), which gives

A2

A1
= 2k2

2k2 −m2ω2 = 1

1− (ω/ω0)2 , (3.27)

where A1 and A2 are the displacement amplitudes for the outer and inner masses, respectively (Milton

and Willis, 2007).

3.1.3 Effect of local resonances in a one–dimensional metaconcrete model

We can use the one–dimensional spring–mass model from Section 3.1.2 to form a simplified model of a

metaconcrete slab. This will allow us to investigate the formation of band gap type behavior and to ap-

proximate the frequency location of changes in transmission for comparison with the three-dimensional

model discussed in the next section.

We model an eight aggregate periodic configuration, using the outer mass m1 and spring constant

k1 to represent the mortar, and the inner mass m2 and spring constant k2 to model the lead core and

coating material of the aggregate. The spring constant for the coating material is derived using the tuning

equations from Section 2.1.2.1 of Chapter 2, and is given by

k2 =
πR2

l Ec

t
. (3.28)
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Table 3.1: Aggregate configurations.

Configuration Rl (mm) t (mm) Coating

1 11 1 Nylon
2 9 3 Nylon
3 11 1 Rubber
4 9 3 Rubber

Table 3.2: Mass and spring constants for the elements of the one–dimensional metaconcrete model.

Configuration m1 (kg) m2 (kg) k1 (N/m) k2 (N/m)

1 0.0494 0.0636 1.2296×109 3.8013×108

2 0.0494 0.0348 1.2296×109 8.4823×107

3 0.0494 0.0636 1.2296×109 3.8013×106

4 0.0494 0.0348 1.2296×109 8.4823×105

The spring constant for the mortar material is derived using a similar approach, by computing an equiv-

alent stiffness for the mortar in a single slab unit cell, i.e.,

k1 = Em A

L
, (3.29)

where Em is the elastic modulus of the mortar material, A = b2 is the cross sectional area of the slab, and

L is the equivalent length of the volume of mortar in a slab unit cell, given by

L = b3 − 4
3π (Rl + t )3

A
. (3.30)

Substituting Eq. (3.30) into Eq. (3.29) therefore gives

k1 = Em A2

b3 − 4
3π (Rl + t )3

. (3.31)

We consider four aggregate cases; 1 mm and 3 mm nylon coated inclusions and 1 mm and 3 mm

rubber coated inclusions, as listed in Table 3.1. The material properties and resonant frequencies for

each of these configurations are presented in Section 2.1 of Chapter 2. Table 3.2 summarizes the values

computed for each of the mass and spring constants used in the one–dimensional metaconcrete model.

The results for the nylon coated aggregates are shown in Figure 3.5 and Figure 3.7. The inclusion of

the internally resonant masses creates a second mode in the dispersion plot, known as the optical mode.

The dispersion relation is plotted only for the first Brillouin zone, i.e., for qL = −π to qL = π. Due to the

periodicity of the structure, this reduced range of values can represent the behavior of the system for all

q , as discussed in relation to the dispersion plot for the simple mass-spring chain.
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The resonant frequency ω0, and the amplitude ratio |A2/A1|, are also shown in Figure 3.5, where it

can be seen that the amplitude of the motion for the internal mass grows significantly larger than the

amplitude of the external mass at the resonance frequency. The resonant frequency of 17.4 kHz lies near

the lower end of the band gap frequency range, but slightly above the lower bound.
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Figure 3.5: Plot of the dispersion relation, transmission ratio T , and amplitude ratio |A2/A1| for a one–
dimensional model based on a periodic array of 1 mm nylon coated aggregates in a mortar matrix. The
band gap is shaded in gray and the dotted line represents the natural frequency of the resonant aggregate
ω0.

From the plot of the dispersion relation, we observe a gap between the maximum value of the acoustic

mode and the minimum value of the optical mode. This is a band gap and is caused by the inclusion of

locally resonant spring–mass systems in the model and the interaction of these internal systems with the

global spring–mass chain. The band gap for the 1 mm nylon coated inclusion spans the frequency range of

16.1 kHz to 26.3 kHz, as shown by the gray shaded region in Figure 3.5. We also observe that this band gap

corresponds to the large dip seen in the plot of wave amplitude transmission T , where the transmission

ratio drops dramatically from positive to negative values. This indicates that within the bad gap region,

the system attains a negative value of effective mass which results in attenuation of the wave amplitude.

We can investigate the effect of negative effective mass by considering the link between the behavior

within the band gap frequency range and the motion of the masses m1 and m2. From Eq. (3.22) we can

see that negative mass occurs in the frequency range given by

ω0 <ω<ωR , ωR =ω0

√
m1 +m2

m1
. (3.32)
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The upper bound of this range corresponds with the upper bound of the band gap given by the dispersion

relation, i.e., for the case of 1 mm nylon coated aggregates, ωR = 26.3 kHz. By substituting the amplitude

ratio given in Eq. (3.27) into the time harmonic wave solution, we can compute the displacements of m1

and m2 for different forcing frequencies, i.e.,

u j
1 = A1e i ( j qL−ωt ) (3.33)

u j
2 = A2e i ( j qL−ωt ) = A1

1− (ω/ω0)2 e i ( j qL−ωt ) , (3.34)

where the wavenumber q is given by

q = ω

cL
, cL =

√
E

ρ
, (3.35)

and cL is the longitudinal wave speed, which for the mortar matrix material is cL = 3464 m/s . We can then

compute the normalized real–valued displacement for each of m1 and m2 for four forcing frequencies:

0.2ω0, 0.9ω0, 0.75ωR , and 1.2ωR , i.e., one frequency much smaller than the resonant frequency, one just

under the resonant frequency, one in the negative mass frequency range, and one at a frequency outside

the upper bound of the band gap.

The displacements computed for the j = 8-th mass in a spring–mass chain representing 1 mm nylon

coated aggregates are shown in Figure 3.6. At frequencies much lower than the resonant frequency, Fig-

ure 3.6(a) shows that the displacement of both masses are almost identical, with in phase motion of a sim-

ilar amplitude. As the forcing frequency is increased to just below the resonant frequency, the displace-

ment amplitude of the smaller inner mass m2 becomes very large; however, both masses are still in phase

with each other, as seen in Figure 3.6(b). When the oscillation frequency lies in the range ω0 <ω<ωR , as

shown in Figure 3.6(c) , the motion changes and the two masses oscillate out of phase. In fact, m2 moves

in the opposite direction to m1, 180◦ out of phase and at three and a half times the displacement ampli-

tude. When the forcing frequency further increases to a value above ωR , the amplitude of both masses

decreases. However, the motion of external mass becomes larger than that of the inner mass, and the

two masses still move out of phase, see Figure 3.6(d). It is this transition to out of phase motion with a

large amplitude contrast within the negative mass frequency range that leads to band-gap behavior and a

reduction in transmission ratio.

We observe similar band gap behavior for the 3 mm nylon coated aggregate configuration, shown in

Figure 3.7. However, in this case the band gap is much smaller and located at lower frequencies, spanning

the range between 10.9 kHz and 14.5 kHz. For the 3 mm nylon case the mass of the heavy core m2, is now

smaller than the mass representing the mortar material m1. This lower contrast between the two masses,

in combination with a smaller spring constant due to the increase in coating thickness, results in a smaller

band gap at a lower frequency. The lower bound of the band gap also corresponds with the resonant
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Figure 3.6: Displacement time histories for both the outer mass m1 and the inner mass m2 of the locally
resonant spring–mass chain representing the 1 mm nylon aggregate configuration. The displacements
are plotted for four forcing freqeuncies: (a) 0.2ω0, (b) 0.9ω0, (c) 0.75ωR , and (d) 1.2ωR .

frequency of the inclusion at 11.1 kHz. As in the 1 mm nylon aggregate configuration, the amplitude

transmission ratio shows a large dip to negative values within the range of frequencies corresponding to

the band gap and the resonant frequency of the inclusion.

The results for the rubber coated aggregate configurations are shown in Figure 3.8 and Figure 3.9. In

this case, there is a lower contrast in stiffness between the parameters representing the coating material

and the mortar matrix. This leads to a frequency gap that covers a narrower range of frequencies. The

softer coating material also leads to resonance behavior and a band gap located at lower values of fre-

quency. For the 1 mm rubber coated aggregates the band gap spans the range of 1.7 kHz to 2.6 kHz, and

the resonant frequency, at 1.7 kHz, lies on the lower bound of the band gap range. Similarly, for the 3 mm

rubber coated aggregates, the band gap ranges from 1.1 kHz to 1.4 kHz with a corresponding resonant
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Figure 3.7: Plot of the dispersion relation, transmission ratio T , and amplitude ratio |A2/A1| for a one–
dimensional model based on a periodic array of 3 mm nylon coated aggregates in a mortar matrix. The
band gap is shaded in gray and the dotted line represents the natural frequency of the resonant aggregate,
ω0.
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Figure 3.8: Plot of the dispersion relation, transmission ratio T , and amplitude ratio |A2/A1| for a one–
dimensional model based on a periodic array of 1 mm rubber coated aggregates in a mortar matrix. The
band gap is shaded in gray and the dotted line represents the natural frequency of the resonant aggregate,
ω0.
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Figure 3.9: Plot of the dispersion relation, transmission ratio T , and amplitude ratio |A2/A1| for a one–
dimensional model based on a periodic array of 3 mm rubber coated aggregates in a mortar matrix. The
band gap is shaded in gray and the dotted line represents the natural frequency of the resonant aggregate,
ω0.

frequency of 1.1 kHz. The amplitude transmission plots also appear to have a different shape around the

band gap range when compared with the the nylon coated aggregate case, with a less drastic contrast in

magnitude between the regions located inside and outside the band gap frequency range.

Comparing the same geometry configuration for the two different coating materials, we see that chang-

ing the elastic modulus of the coating leads to a smaller band gap. Therefore, aggregates with a smaller

coating thickness, i.e., a larger core radius, and a stiffer coating material, lead to wider gaps at higher fre-

quencies. Aggregate configurations of this type display the highest mass contrast between the aggregate

and the mortar matrix along with the highest one–dimensional equivalent coating stiffness. By contrast, a

larger coating thickness and a softer coating material leads to a band gap, and corresponding wave attenu-

ation, over a smaller range of lower frequencies. The one–dimensional study also indicates that aggregates

within the metaconcrete slab can be easily tuned to create band gaps with different widths and frequency

locations by simply changing the material properties and geometry of the aggregate constituents. We fur-

ther investigate the transmission behavior of metaconcrete in the following section by using finite element

analysis to compute wave energy transmission through a three–dimensional slab model.
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3.2 Computation of wave transmission coefficients from finite element

metaconcrete slab models

Transmission coefficients have been used to identify the band gap properties of both photonic (Sigalas

et al., 1993; Smith et al., 1993, 1994) and acoustic crystals (Sánchez-Pérez et al., 1998; Liu et al., 2000b;

Sheng et al., 2003). For sonic metamaterials using layered resonant inclusions, the change in sound wave

amplitude across the crystal was measured experimentally to give the transmission ratio for a chosen

wave frequency (Liu et al., 2000b; Sheng et al., 2003). A similar ratio can be computed for metaconcrete

by considering the amount of mechanical energy transmitted through a slab. This ratio is plotted against

input frequency to investigate which ranges of frequency correspond to reduced wave transmission and

to ascertain whether this effect is caused by the activation of resonance.

3.2.1 Finite element model

Figure 3.10: Finite element mesh with a fine discretization (mesh size h = 1.5 mm) for a metaconcrete slab
containing an array of aggregates with a 1 mm coating.

To investigate the transmission of wave energy we employ the finite element model described in Chap-

ter 2. We consider a rectangular section of an infinite planar slab containing a periodic array of metacon-

crete aggregates. The solid model is discretized with the fine mesh, i.e., of size h = 1.5 mm, described in

Chapter 2. An example of the fine discretization finite element mesh for an array of 1 mm coated aggre-

gates is shown in Figure 3.10. We can check the maximum allowable applied wave frequency that can by

calculated using this mesh by considering the maximum wavenumber qmax, computed using the mesh

size h,

qmax = 1

h
. (3.36)

We obtain the equation for maximum frequency fmax, by multiplying the maximum wavenumber by the

longitudinal wave speed of the material cL ,

fmax = cL

h
. (3.37)



Computation of wave transmission coefficients from finite element metaconcrete slab models 51

If we consider the longitudinal wave speed for the homogeneous mortar material cL = 3464 m/s, given by

cL =√
E/ρ, we compute the approximate maximum allowable frequency as fmax = 2309 kHz.

The chosen dimensions for the slab are L = 0.24 m and b = 0.03 m, with a periodic arrangement of

aggregates at 0.03 m centers. This gives a total of 8 whole spherical central inclusions and 28 quarter

spheres around the longitudinal edges of the slab. Each aggregate has an outer diameter of 24 mm and

contains a central lead core.

In the study of wave transmission, we consider the four aggregate configurations listed in Table 3.1. In

addition, we consider two periodic aggregate arrays. First, the slab is configured with a total of 8 aggre-

gates in a periodic arrangement along the center of the slab. The simulations are then run again with a

more densely packed configuration, this time also including the 28 quarter spheres surrounding the outer

edges of the slab, giving a total of 36 separate inclusions. A mortar slab with no inclusions is analyzed

as a baseline comparison. The material properties, geometry, and resonant frequencies for each of these

configurations are presented in Section 2.1 of Chapter 2, and the volume fractions and descretization data

are provided in Section 2.2 of Chapter 2.

We consider purely elastic behavior for all components, with the material behavior described by a

neo-Hookean material model, extended to the compressible range, see Appendix A. The forcing function

is generated by applying a sinusoidal displacement to all nodes on one end face of the slab at a prescribed

frequency. The other end face is unconstrained, and we apply periodic boundary conditions to the lateral

faces of the slab. To have the same input energy for every harmonic wave frequency, we scale the ampli-

tude of the applied displacement relative to a reference resonance value. The energy of a harmonic wave

is proportional to the square of both the frequency and the amplitude of the wave, i.e.,

E∝ω2 A2 . (3.38)

To maintain the same input energy for a frequency other than the resonant value, we therefore multi-

ply the reference amplitude by fr / f , the ratio of the resonant frequency relative to the frequency value

under consideration. For example, an amplitude of Ar = 0.001 m was chosen for the reference critical

frequency equal to the resonant frequency of the inclusion. The amplitude for a subcritical frequency

f1 = 0.25 fr is therefore A1 = 0.004 m, and similarly, the amplitude for a supercritical frequency f2 = 2 fr is

A2 = 0.0005 m.

The amount of energy trapped within the metaconcrete aggregates is averaged over a total fixed time

duration for each configuration. We begin computation of the transmission ratio after the greater of either

one period of the harmonic forcing function or the time it takes for approximately two transits of a wave

through a homogeneous slab. The transit time for the wave to travel once through the length of the slab

is given by tL = L/cL , where L is the length of the slab and cL = 3464 m/s is the longitudinal wave speed of

mortar, given previously. For the homogeneous mortar slab under consideration this gives tL = 7×10−5 s
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and a minimum time 2tL = 1.4×10−4 s. The end time for the simulation is chosen based on the aggregate

configuration and is given by ttot al = 0.0004 s for the 1 mm nylon coated aggregates, ttot al = 0.0005 s for

the 3 mm nylon coated aggregates, ttot al = 0.0011 s for the 1 mm rubber coated aggregates, and ttot al =
0.0018 s for the 3 mm rubber coated aggregates. The time interval for averaging is chosen so that there is a

minimum of two transits of the applied wave through the slab, with an average of 15 cycles of the applied

displacement over the duration of the calculation. This allows sufficient time for resonance activation of

the aggregates while preventing any build-up of numerical interference.

To compute the transmission coefficient we consider the amount of energy that is trapped by the

aggregate farthest away from the applied loading and compare this to the behavior of the entire slab.

This indicates how much energy reaches the far end of the slab and therefore how much energy has been

distributed and absorbed by the aggregates during the transition of the wave. The transmission coefficient

T is therefore given by the ratio of the amount of energy trapped in the last aggregate relative to the total

energy trapped within all the aggregates of the slab,

T = EN

N∑
j=1

E j

, (3.39)

where E j is the total mechanical energy of the j -th aggregate, time-averaged over the duration of the

calculation, and N is the total number of aggregates, where the aggregate furthest from the exposed face

is denoted by j = N . A decrease in transmission coefficient therefore implies that less energy has reached

the final aggregate and thus activation of the inclusions has resulted in a behavior that absorbs energy

from the applied wave.

3.2.2 Transmission plots for four aggregate configurations

The transmission ratio is computed from the results of the finite element analyses using the model and

material properties described in the previous section. Both the 8 and 36 aggregate array configurations

are tested for each model with the same range of applied wave frequencies, varying between 4-139 kHz

for the 1 mm nylon coated inclusions, 5-100 kHz for the 3 mm nylon coated inclusions, 2-37 kHz for the

1 mm rubber coated inclusions, and 1-22 kHz for the 3 mm rubber coated inclusions. Each frequency

range is chosen so that any behavior near the four modes of vibration given in Table 2.5 of Chapter 2 can

be fully captured. In addition, the maximum frequency considered is selected to be significantly smaller

than the maximum allowable frequency computed from Eq. (3.37).

The resulting plots for the two cases of nylon coated lead inclusions are shown in Figure 3.11. The plot

for the 1 mm nylon coated inclusions, shown in Figure 3.11(a), displays a low frequency dip in transmis-

sion coefficient at 22 kHz for both the 8 and 36 aggregate arrays. This dip occurs near the approximate

resonant frequency of 17.4 kHz calculated from the one–dimensional spring–mass system (Eq. (2.5) of
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Chapter 2) and at the Mode 2 resonant frequency of 21.12 kHz computed with the modal analysis.

The low frequency decrease in energy transmission ratio observed in Figure 3.11(a) also corresponds

with the bad gap frequency range found for the equivalent one–dimensional spring–mass model of Sec-

tion 3.1.3, where the bad gap was found to lie between 16.1 kHz and 26.3 kHz. Due to the nature of the

one–dimensional spring–mass system, only one mode of resonant behavior can be modeled and there-

fore we note that the system cannot capture any of the higher mode band gaps that may be present in the

finite element transmission analysis.

The transmission plot also displays a second dip at a higher frequency of 35 kHz, which corresponds

approximately to the Mode 3 and 4 frequencies found from the modal analysis. This dip is slightly greater

in magnitude and wider in frequency range, which indicates that vibration and oscillation of the core

and coating at higher frequencies produces a greater reduction in transmission. However, a distinct dip is

only apparent for the 36 aggregate case and a significant drop in transmission ratio is not seen when fewer

aggregates are present in the slab. A further decrease at very high frequencies greater than approximately

78 kHz is also observed. The high-frequency decrease in transmission coefficient seen in Figure 3.11(a) is

possibly due to the periodic arrangement of aggregates combining to provide amplification of the energy

absorption properties, a Bragg-type scattering of the waves caused by the applied wavelength nearing

the aggregate spacing and dimensions, improved performance at higher modal frequencies, or numerical

interference.

We observe an improvement in transmission ratio when we compare the results of the metaconcrete

configurations to that achieved with a homogeneous mortar slab. The transmission coefficient for the

homogeneous slab is independent of the frequency of applied loading, maintaining a value of 0.13 over

the entire frequency range for all cases. The low frequency dip for the 1 mm nylon aggregate case at

22 kHz displays a magnitude that is 3.0% of the transmission coefficient of the homogeneous mortar slab

for both aggregate configurations. The second low frequency dip for the 36 aggregate arrangement occurs

at 35 kHz, with 2.2% of the mortar value. This improvement over the homogeneous mortar slab suggests

enhanced performance within the range of frequencies corresponding to the dips.

We see similar behavior for the 3 mm nylon aggregate case, shown in Figure 3.11(b). A sharp dip

for both array configurations is located at the Mode 2 natural frequency of the aggregate, 15.94 kHz. The

magnitude of this dip is 3.2% of the homogeneous mortar slab coefficient, thus achieving a similar Mode 2

dip magnitude to the 1 mm nylon case. Like the 1 mm nylon aggregate case, we also observe a higher

frequency dip for the 36 aggregate configuration located near the Mode 3 and 4 natural frequencies, along

with a drop in transmission coefficient at very high frequencies greater than 60 kHz.

In this case, the one–dimensional model from Section 3.1.3 underestimates the location of the first

transmission dip. The band gap from the one–dimensional model spanned the range between 10.9 kHz

and 14.5 kHz, thus covering the lower section of the dip location in Figure 3.11(b); however, the one–

dimensional approximation does not capture the higher frequency part of the attenuation band.
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(a) 1 mm nylon coated lead aggregates
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Figure 3.11: Transmission coefficient plotted against frequency of excitation for a metaconcrete slab con-
sisting of (a) 1 mm and (b) 3 mm nylon coated aggregates. Also shown are the corresponding transmission
coefficients for a homogeneous slab along with the resonant frequencies fr of the inclusion from both the
approximate one–dimensional equation and the modal analysis.
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Figure 3.12: Transmission coefficient plotted against frequency of excitation for a metaconcrete slab con-
sisting of (a) 1 mm and (b) 3 mm rubber coated aggregates. Also shown are the corresponding transmis-
sion coefficients for a homogeneous slab along with the resonant frequencies fr of the inclusion from
both the approximate one–dimensional equation and the modal analysis.
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The results for the two rubber coated aggregate configurations are shown in Figure 3.12. The 1 mm

rubber coated aggregregate case, shown in Figure 3.12(a), displays a dip located in the range of 6-10 kHz,

which corresponds to the Mode 2 natural frequency of 5.99 kHz as computed by the modal analysis. This

dip occurs for both the 8 and 36 aggregate configurations and reaches 3.5% of the homogeneous mortar

value, although the apparent band gap is wider when there are more aggregates present in the slab. For

either array configuration case, we do not observe a second dip at higher frequencies near the Mode 3 and

4 values. Instead, the transmission ratio sits near that of the homogeneous mortar slab, indicating a lack

of improved performance at higher frequencies for the case where a thin 1 mm rubber coating is used.

By contrast, the transmission plot for the 3 mm rubber coated aggregates, shown in Figure 3.12(b), dis-

plays three distinct dips in transmission coefficient, most particularly for the 36 aggregate arrangement.

The first dip occurs in the frequency range of 3.5-5.5 kHz and is present for both the 8 and 36 aggregate

cases, achieving a minimum of 13.0% of the homogeneous slab transmission value. The second dip is

present only in the 36 aggregate configuration and occurs in the range of 14-16 kHz, reaching 18.8% of the

homogeneous mortar value. The third dip is present for both aggregate array configurations and occurs

in the range of 17-21 kHz. Only the first dip corresponds directly to the natural frequency computed with

the modal analysis, occuring near the Mode 2 natural frequency of 3.39 kHz. The second and third dips

are greater than 3 kHz higher than the fourth Mode natural frequency, suggesting they are generated by

some higher mode combination of coating and core oscillation within the aggregate.

The three gaps observed in the transmission plot in Figure 3.12(b) for the 3 mm rubber case are more

distinct than any other configuration of coating material and thickness. However, the magnitude of the

dips are much smaller and the gaps are narrower, or in the case of the 8 aggregate configuration, barely

present. Furthermore, the shape of the gaps present in Figure 3.12(b) also resemble the form of the mea-

sured amplitude transmission found in the experiments conducted by Liu et al. (2000b) and Sheng et al.

(2003) on sound waves in locally resonant sonic crystals. Sound wave transmission was tested using an

array of 15 mm diameter inclusions with 2.5 mm silicone rubber coated lead cores. These inclusions are

of similar configuration to those tested in the metaconcrete slab and the transmission coefficient plots

produced from experiments on sonic crystals of this structure display a similar trend; two distinct dips

in transmission coefficient with frequency locations corresponding to those calculated from theoretical

analyses.

For the rubber coated aggregates we also note that there are large ranges in frequency for which the

plots indicate that metaconcrete performs the same or worse than the homogeneous concrete slab; the

transmission coefficient sits above the line of the reference homogeneous value. In contrast, the aggre-

gates with the comparatively more stiff nylon coating perform, in general, better than the concrete slab

over large spans of frequency within the range under investigation.

The one–dimensional metaconcrete slab approximation from Section 3.1.3 displays a band gap near

the one–dimensional estimate of the resonant frequency. As a consequence, the one–dimensional ap-
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proximation therefore underestimates the location of the transmission attenuation band, predicting much

lower frequencies than seen in Figure 3.12. However, the one–dimensional model did predict a signifi-

cantly smaller band gap range for the rubber coated aggregates when compared with the nylon coated

configurations, and this trend was observed in the energy transmission results calculated using the finite

element model.

3.3 Summary

We present a numerical investigation of the transmission behavior of four metaconcrete slab configu-

rations for a range of forcing frequencies. Dispersion relations are derived from a one–dimensional ap-

proximation of a metaconcrete slab, using mass–in–mass resonators within a spring–mass chain. These

relations display band gaps and large attenuation of wave transmission near the aggregate resonant fre-

quency. Within the band gap frequency range, the transition to negative effective mass causes the mass

representing the aggregate core to move out of phase with the equivalent one–dimensional mortar matrix

mass. The high amplitude contrast between the two masses combined with the antiphase behavior leads

to large energy absorption within the aggregate and attenuation of the applied wave.

To further investigate the frequency–dependent nature of metaconcrete, a finite element model is

used to compute the transmission coefficients for metaconcrete slabs over a range of forcing frequen-

cies. The transmission coefficients are computed based on the amount of energy transmitted through the

slab, where the average energy absorbed by the last aggregate was compared to that of all the aggregates.

The transmission coefficient plots indicate the existence of bands of reduced energy transmission within

the frequency spectrum and also suggest a frequency range for which a particular aggregate configuration

provides the most beneficial behavior. For each of the four cases, the most significant dip in transmission

coefficient is achieved near the Mode 2 natural frequency computed by the modal analysis, which corre-

sponds to the rigid body translation resonant frequency of the inclusion. This dip is present for both 8 and

36 aggregate configurations, with both aggregate arrays achieving the same dip magnitude in the Mode 2

range in three out of four cases. For the nylon coated inclusion, this gap is given by frequencies within

the range of approximately 20-60 kHz for the 1 mm coated aggregates and 13-30 kHz for the 3 mm coated

aggregates. For the more compliant rubber coating, the Mode 2 gap is present in the range of 6-9 kHz for

the 1 mm coated aggregates and 3.5-5.5 kHz for the 3 mm coated aggregates. The density of the aggre-

gates within the slab was also seen to affect the magnitude of the dip in transmission coefficient, with a

larger number of aggregates per unit volume leading to a wider frequency range of influence. Of the two

cases, aggregates with the more stiff nylon coating provide a greater dip in wave energy transmission over

a larger range of applied frequencies.

The understanding gained from the location and size of of the wave attenuation frequency bands for

each inclusion configuration can be further utilized in the design of metaconcrete aggregates for loading



58 Wave transmission in a metaconcrete slab

applications where attenuation of dynamic excitation with a specific frequency profile is desired.
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Chapter 4

Metaconcrete and shock mitigation

To further explore the dynamic behavior of metaconcrete we now consider slab performance under the

action of a blast wave caused by the ignition of an explosion. We utilize the finite element model described

in Chapter 2, and apply a blast wave loading to the exposed end of the slab, which activates a wide range

of frequencies. We will show that the mechanical behavior of metaconcrete differs from that of regular

concrete. Resonant aggregates are able to trap a portion of the supplied energy through the activation

of localized oscillatory motions, which is characterized by an exchange of elastic and kinetic energy be-

tween the stiff core and soft outer coating. The global effect is to reduce the amount of energy and stress

within the mortar phase of the slab, enhancing the slab’s ability to sustain the applied dynamical actions

without damage. We investigate a range of different aggregate and geometry configurations and consider

how changes in local resonant behavior effect slab performance. The insight gained from this analysis

will help to build on the understanding of general transmission and band gap characteristics outlined

in Chapter 3, suggesting optimal design configurations for the mitigation of shock waves in blast wave

loading applications.

4.1 Energy time histories

To investigate blast wave loading of metaconcrete, we utilize the finite element slab model with the coarse

element mesh described in Section 2.2.1 of Chapter 2. The blast wave loading is generated using the

model outlined in Section 2.2.2 of Chapter 2, with an explosion yield factor of λ= 0.01. Further details are

provided in Appendix B. We consider the aggregate and geometry configurations described in Section 2.1

of Chapter 2, using only the high–density 36 aggregate arrangement. This allows us to explore how the

different aggregate configurations, and therefore resonant frequencies, affect energy transfer and stress

distribution within the slab.

We begin by providing a qualitative illustration of the behavior of metaconcrete when subject to a

blast excitation. As an illustrative example, we first consider a metaconcrete slab consisting of nylon

coated inclusions of the configuration denoted A in Table 2.2 of Chapter 2. We analyze this alongside

a homogeneous slab with the effective properties of concrete, which provides a baseline for comparison.

We evaluate the two materials using the energy time history, which is shown in Figure 4.1(a) for the case



60 Metaconcrete and shock mitigation

Time (ms)

E
ne

rg
y 

(N
m

)

0 1 2 3 4
0

0.5

1

1.5

2

2.5
External Work
Total
Kinetic
Elastic

(a) Homogeneous Material

Time (ms)

E
ne

rg
y 

(N
m

)

0 1 2 3 4
0

0.5

1

1.5

2

2.5
External Work
Total
Kinetic
Elastic

(b) Metaconcrete

Figure 4.1: Global system energy history: supplied energy (white circles), kinetic energy (black line), elas-
tic energy (blue line), and total mechanical energy of the system (black circles).

of the homogeneous material, and Figure 4.1(b) for the chosen metaconcrete slab configuration. In these

figures, black lines denote the total kinetic energy, blue lines the total elastic energy, black circles the total

mechanical energy, and white circles the energy supplied to the system. The supplied energy is given by

the external work done by the pressure forces on the impacted surface, or

W ext =
∫ t

0

∫
Aexposed

p(t )du(t )d A, (4.1)

where du(t ) is the incremental displacement component normal to the exposed area. Note that the

amount of supplied energy differs depending on the configuration chosen for the metaconcrete and ac-

cording to the choice of soft coating material. Since the applied force is equal, the difference is due to the

magnitude of the displacement at the exposed surface. Figure 4.1 shows clearly that the system is con-

servative; the supplied energy provides the total mechanical energy and a continuous exchange between

kinetic and elastic energy is observed during the process.

Details concerning the partition of the energy between the three components of the metaconcrete

system can be observed in Figure 4.2. The plots show the time histories of the mechanical, kinetic, and

elastic energy for each component of the system. Black lines denote the energy carried by the mortar, blue

lines the energy carried by the compliant coating, and red lines the energy carried by the lead cores. The

energies are expressed with respect to the total mechanical energy of the system. For the configuration

of metaconcrete considered, Figure 4.2(a) shows that approximately 60% of the total mechanical energy

is carried by the heavy lead cores, while the mortar carries only 30%. Figure 4.2(b) shows that the elastic

energy in the mortar and in the compliant coating is only one third of the elastic energy in the lead cores,

which undergo elastic oscillations. Figure 4.2(c) shows that a large amount of kinetic energy remains
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(c) Kinetic Energy

Figure 4.2: Fractions of mechanical, elastic and kinetic energy carried by the three components of the
metaconcrete slab, expressed with respect to the total mechanical energy of the system.

trapped in the heavy lead cores.

Comparison of the plots suggests the presence of oscillatory motion of the lead cores inside the ag-

gregates. The large amount of kinetic and elastic energy absorbed by lead core of the aggregates can be

related to the resonant behavior seen in the analysis of transmission characteristics. This absorption of

energy is caused by the activation of resonant or near–resonant behavior within the aggregates, which in

Chapter 3 was found to lead to higher–amplitude antiphase motion within the negative–mass frequency

band. This suggests that the resonant behavior of this aggregate configuration is activated by the chosen

blast loading profile, leading to a reduction in mechanical energy within the mortar phase.

We further investigate the trapping of energy within the aggregates in the following section, by con-

sidering the energy distribution and energy density for other aggregate material and geometry configura-

tions.
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4.2 Influence of aggregate properties on slab energy distribution

We perform a parametric study of the mechanical behavior of metaconcrete by varying the material prop-

erties and geometry of the compliant coating. We investigate the five aggregate coating and three aggre-

gate geometries presented in Section 2.1 of Chapter 2. The results of the analyses are presented in terms of

the distribution of kinetic, elastic, and mechanical energies between the three phases of the metaconcrete

slab.
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Figure 4.3: Parametric study by varying the compliant coating thickness and elastic modulus. (a) Fraction
of the total mechanical energy captured by the aggregates; (b) Average energy density of the mortar; (c)
Average elastic energy density of the mortar; (c) Average kinetic energy density of the mortar. For each
case, the results obtained using an equivalent homogeneous slab and a mortar and gravel slab are also
shown for comparison.

Figure 4.3(a) shows the fraction of mechanical energy captured by the aggregates as a function of the

elastic modulus of the soft coating. Each line refers to a different aggregate geometry. As the elastic mod-

ulus of the coating material is increased, each aggregate configuration displays an increase in trapped

energy. This indicates that propagating shock wave energy caused by the blast loading is captured by the
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aggregates, and as a result, removed from the mortar matrix material. The same trend is present for all

three aggregate geometry configurations, with the 1 mm nylon coated aggregate achieving the highest

fraction of aggregate energy of all the cases considered.

The fraction of energy trapped in a equivalent aggregate volume of gravel in a mortar slab is also plot-

ted in Figure 4.3(a) to provide a baseline for comparison. These aggregates assume the properties of gravel

or stone, as used in standard concrete, utilizing the same positioning and spherical shape as the metacon-

crete aggregates. The material properties used for the gravel aggregates are ρ = 2700 kg/m3, E = 50 GPa,

and ν = 0.25. From Figure 4.3(a) we see that the fraction of the total energy captured by the aggregates

with the three highest elastic moduli is larger than that trapped by the equivalent gravel aggregates in a

gravel and mortar slab. This indicates that the layered resonant aggregates with higher coating stiffness

can trap a larger proportion of the energy supplied from the blast wave.

The aggregate energy can also be presented in terms of aggregate resonant frequency, which is shown

in Figure 4.4. The scatter plot reveals that aggregates with resonant frequencies above 4 kHz absorb a

greater amount of energy than that found for the mortar and gravel case, for all three of the geometry

configurations considered. Aggregates with resonant frequencies below this value absorb significantly

less energy, as low as 10% of the total mechanical energy for configurations with the lowest resonant fre-

quency. Above 10 kHz, increasing the resonant frequency causes very little, if any, increase in the energy

absorbed by the aggregates. This implies that aggregates in this range are activated by the applied blast

wave loading and that once an aggregate has transitioned to resonant behavior a similar fraction of the

total energy is absorbed for all cases.
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Figure 4.4: Fraction of mechanical energy absorbed by the metaconcrete aggregates, plotted against the
aggregate resonant frequency computed from the one–dimensional model for each aggregate configura-
tion.

To see the changing distribution of energy among the slab constituents as the aggregate properties

are varied, we plot the mechanical energy for each slab component for three cases, shown in Figure 4.5.

We consider only the 1 mm aggregate geometry and choose three different coatings covering the range of
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elastic moduli under investigation: silicone, low density polyethylene, and urea formaldehyde.

Time (ms)

M
ec

ha
ni

ca
l E

ne
rg

y 
/ T

ot
al

 E
ne

rg
y

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Mortar
Compliant coating
Heavy core

(a) 1 mm silicone coating

Time (ms)

M
ec

ha
ni

ca
l E

ne
rg

y 
/ T

ot
al

 E
ne

rg
y

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Mortar
Compliant coating
Heavy core
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(c) 1 mm urea formaldehyde coating

Figure 4.5: Mechanical energy distribution for three slab cases: (a) 1 mm silicone coated aggregates, (b)
1 mm low density polyethylene coated aggregates, and (c) 1 mm urea formaldehyde coated aggregates.

For soft coatings, such as the silicone coating shown in Figure 4.5(a), the mechanical energy is dis-

tributed so that the mortar phase accounts for approximately 90% of the total energy, with the coating

and core materials absorbing the remaining 10%. This indicates that aggregates with a soft coating are

not activated by the chosen blast loading, and therefore their energy trapping properties are not utilized,

causing the aggregate energy to be much lower, as seen in Figure 4.3(a). As the coating elastic modulus

is increased the behavior starts to transition, where the fraction of energy trapped within the aggregates

begins to increase. This is seen in Figure 4.5(b) for the low density polyethylene coated aggregate, where

the fraction of energy present within the mortar phase starts to decrease, and the energy trapped within

the core and coating of the aggregates increases. Finally, at the highest coating stiffness considered, the

urea formaldehyde coating shown in Figure 4.5(c), the behavior has fully transitioned and the aggregate

core now absorbs the largest portion of the mechanical energy. This indicates that inclusions with coat-
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ings of higher stiffness display resonant or near-resonant behavior, leading to energy trapping within the

aggregates.

We explore this further by considering the mortar energy density, which is the average mechanical

energy in the mortar material divided by the mortar volume, see Figure 4.3(b). The elastic and kinetic

energy components of the mortar energy density are shown in Figure 4.3(c) and Figure 4.3(d), respectively.

The plots display a distinct trend which corresponds with that found for the aggregate energy; as the

coating elastic modulus is increased, the mortar energy density decreases. This suggests the energy is

transferred away from the mortar matrix and trapped within the metaconcrete aggregates.

Lines representing the energy density for both a homogeneous mortar slab and a mortar and gravel

slab are also shown in Figures 4.3(b)-4.3(d). These lines are in an almost identical location, showing no

difference in mortar energy density. We see that the two coatings with the highest stiffness produce mortar

energy densities below the corresponding values for the homogeneous or gravel slabs.

The distribution of energy for the different aggregate configurations shows that, in order to transfer

energy from the mortar to the heavy cores, it is necessary to have a coating softer than the other two

phases but still stiff enough to transfer some stress. Very soft coatings (such as silicone, natural rubber, or

low density polyethylene) do not lead to resonance behavior in the presence of the chosen blast loading,

causing the heavy core to be excluded from the dynamic behavior of the metaconcrete slab. As a conse-

quence, this results in a reduction in the global stiffness of the system, and therefore, at an equal blast

force, the material deforms more and the supplied energy is higher. In these cases, the performance of

the metaconcrete can be considered inferior to that of a homogeneous concrete slab, as shown by the

first three points in Figure 4.3(b). When the stiffness of the soft material is comparable to the stiffness

of both the lead and mortar phases, the metaconcrete works as a whole and exhibits attenuation of the

propagating shock wave, due to trapping of the energy within the resonant cores.

4.3 Influence of aggregate properties on slab stress distribution

Further insight into the resonant and energy trapping behavior of metaconcrete aggregates can be re-

vealed by studying the longitudinal stress distribution along the surface of the mid-longitudinal cross-

section of the slab. Figure 4.6 compares the stress distribution 0.05 ms after the beginning of the blast

in a homogeneous material along with two metaconcrete slabs; one containing 1 mm silicone coated ag-

gregates and the other containing 1 mm nylon coated aggregates. The blast pressure acts on the left end

section of the slab, and lasts for less than 0.01 ms. The stress profile captures the first transition of the

compressive shock wave through the depth of the slab. In the figure, blue shades denote compression

and the red shades denote tension.

In the homogeneous material, shown in Figure 4.6(a), the initial shock wave travels at the velocity

of the longitudinal wave speed, maintaining a regular planar shock front structure. In the metaconcrete
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slabs, however, the shock front propagates at lower speed, delayed in time most significantly when the

aggregates are activated. The metaconcrete slab containing 1 mm silicone coated aggregates, seen in

Figure 4.6(b), shows that little or no stress enters the aggregate constituents. Instead, the shock wave

stress travels around the aggregates, concentrated in the mortar matrix material. This indicates that no

resonant or energy absorbing properties are present, as expected from the energy analyses in the previous

section.

By contrast, the slab containing 1 mm nlyon coated aggregates, presented in Figure 4.6(c), shows a

significant amount of stress is concentrated inside the aggregates themselves. In this configuration, the

stress wave is significantly delayed in time and the magnitude of the stress in the matrix material appears

to be less. The average magnitude of the longitudinal stress also reduces with the distance from the blasted

surface. The aggregates in this slab are subject to elastic oscillations, which can be observed in the left side

of Figure 4.6(c). The resonant behavior can be seen in the second inclusion from the left; the center of the

lead core displays compressive stresses while the annular region surrounding the core displays tensile

stresses.

Longitudinal Stress (Pa)

(a) Homogeneous material

(b) 1 mm silicone coated lead aggregates

(c) 1 mm nylon coated lead aggregates

Figure 4.6: Comparison of the distribution of longitudinal stress at t = 0.05 ms for (a) a homogeneous
mortar slab (maximum 59 MPa compression, 28 MPa tension), (b) a metaconcrete slab containing 1 mm
silicone coated inclusions (maximum 86 MPa compression, 21 MPa tension), and (c) a metaconcrete slab
containing 1 mm nylon coated inclusions (maximum 29 MPa compression, 28 MPa tension). Blue shades
denote compression, red shades denote tension.

An assessment of the stress profile for each of the different configurations can be made by consider-

ing the maximum longitudinal tensile and compressive stresses present in the mortar matrix of the slab.

Lower stresses in the mortar phase suggest improved slab performance, as this indicates the slab will be
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less susceptible to brittle behavior or fracture processes that are typical of mortar–like materials. The

stress in the section of slab nearest to the blast exposed face cannot be reduced, however, it is likely that

the magnitude of the stress induced in the mortar reduces progressively with distance from the exposed

face. Therefore, we consider the maximum stresses in both the full slab and the half slab furthest from the

blast site.
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Figure 4.7: Maximum and minimum longitudinal Cauchy stress in the mortar matrix of the metaconcrete
slab, as a function of the soft coating elastic modulus. (a) Stresses in the full length of the slab. (b) Stresses
in the half slab furthest from the blast face.

Figure 4.7(a) shows the maximum tensile and compressive longitudinal stress observed in the mortar

of the full slab over the entire duration of the dynamical analysis. The maximum longitudinal stress in

the mortar reduces with increasing compliant coating stiffness. In the case of urea formaldehyde, the

maximum longitudinal stress is half of the stress computed for the silicone coating. It is also seen that the
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maximum longitudinal stress is slightly lower than that obtained for the homogeneous mortar slab when

coatings with higher stiffness are used.

The stress reduction is more evident when we consider only the right half of the slab, furthest from

the blast site, see Figure 4.7(b). In this region, the maximum stress evaluated for the urea formaldehyde

coating reduces to a quarter of the stress computed for the silicone coating. The maximum tensile and

compressive stresses are also significantly lower than the homogeneous mortar value for the two highest

coating elastic moduli, reducing to around 45−60% of the mortar value. Therefore, we can ascertain that

the main advantage of the layered resonant aggregates is to reduce the amount of energy transmitted

through the depth of the slab perpendicular to the blast face and, consequently, the magnitude of the

stress in the mortar phase.

4.4 Summary

In this chapter we consider the energy and stress distribution in metaconcrete slabs subjected to a blast

wave loading profile. A numerical analysis of a range of coating and aggregate configurations reveals

that oscillatory behavior within the aggregates may be activated by the chosen blast loading, indicated

by an increase in aggregate energy. The aggregates with higher coating elastic moduli are able to absorb

a consistent fraction of the mechanical energy, reducing the total energy and stress within the mortar

matrix of the slab. The numerical results show that, under dynamic excitation, metaconcrete behaves in

a rather different way to an equivalent homogeneous slab with the effective properties of concrete. The

most prominent effect is the reduction in the amount of energy transmitted across the system and, as a

result, the reduction of stress within the brittle phase, i. e., the mortar.

In the numerical calculations, we considered three heavy core radii and three coating thicknesses.

However, in the results obtained, we do not observe a strong dependence of the mechanical response on

these geometrical parameters. Our results show that the most important parameter is the elastic modulus

of the soft coating. This outer layer to the heavy core must be more compliant, although of comparable

stiffness, to the mortar and lead components. Only under these conditions is the compliant coating layer

able to transfer the mechanical energy contained in the mortar to the heavy cores and, as a result, activate

elastic oscillations inside the resonant aggregates. The energy absorption properties were most promi-

nent for aggregate coatings with higher elastic moduli, such as nylon and urea formaldehyde, and this

corresponds with the wide band gap behavior observed with stiffer coatings in the analysis of slab wave

transmission. The presence of resonant aggregates leads to the attenuation of wave energy and therefore a

reduction in the tensile and compressive stresses observed in the brittle mortar phase, which is most sus-

ceptible to weakening and fracture under high stresses. This analysis provides additional understanding

and design indications for applications where blast wave loading is considered.
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Chapter 5

Brittle fracture in a metaconcrete slab

In Chapter 4 the analysis of purely elastic metaconcrete slabs under the action of a blast wave loading

revealed that tuned aggregates are capable of trapping a significant portion of the supplied energy, thus

reducing the energy and stress transferred to the mortar matrix. However, these analyses did not account

for the brittle behavior of the mortar phase, which can fracture under dynamic loading, and thus models

that contain only elastic constituents cannot accurately describe the full dynamic behavior of metacon-

crete.

In this chapter, we analyze the response of metaconcrete slabs under blast loading, additionally incor-

porating into the analyses the brittleness of the mortar phase of the slab. We account for fracture through

an eigenerosion scheme that applies to the finite element discretization of the solid (Pandolfi and Ortiz,

2012). Erosion of solid elements within the mortar phase occurs when elements meet an energy–based

criterion for failure, meaning that they can no longer carry the applied stress and are therefore labeled as

eroded. The insight gained from the incorporation of fracture within the dynamic analysis of a slab will

enable us to better understand metaconcrete behavior in applications such as blast shielding and impact

protection.

To assess the performance of metaconcrete in the presence of brittle fracture, we utilize the slab model

outlined in Chapter 2. We model a periodic array of metaconcrete aggregates within a mortar matrix, and

perform an inelastic analysis where fracture of the slab constituents, and most importantly the mortar

phase, is accounted for through an eigenerosion scheme. Elastic analyses conducted previously displayed

distinct trends in energy distribution and stress magnitude, clearly showing that both the material prop-

erties and thickness of the aggregate coating change the way in which metaconcrete behaves under the

action of a blast wave. Therefore, to fully characterize the behavior of a metaconcrete slab, we investigate

a number of aggregate material and geometry configurations. The investigation of different aggregate

configurations allows us to evaluate the effect of the presence of selective natural frequencies on the at-

tenuation of the shock waves induced by an assigned blast loading, and to additionally understand the

behavior of aggregates with various resonant frequencies in the post-blast behavior of a fractured meta-

concrete slab.
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5.1 Modeling mortar fracture through an eigenerosion scheme

The shock and damage mitigation properties of metaconcrete are derived from the dynamical behavior of

the inclusions. These properties are observed when an impulsive loading is applied to the system. Under

such a loading, it is unlikely that metaconcrete behaves in an elastic manner, and therefore it is possible

to observe damage and fracture due to the natural brittleness of the mortar matrix. So far, we have only

considered purely elastic metaconcrete constituents; however, in this study, we wish to account for inelas-

ticity within the mortar material, i.e., the inability of mortar to support stresses that exceed its resistance.

We perform inelastic analyses, accounting for fracture by utilizing an erosion algorithm derived from a

general eigenfracture approach that has been proved convergent (Schmidt et al., 2009).

Eigenfracture is an approximation scheme for variational models of Griffith’s theory of fracture that

resorts to the classical device of eigendeformations (Colonnetti, 1917) in order to account for material

fracture. To this end, the energy functional of the system is assumed to be dependent on two fields: the

displacement field u and an eigendeformation field ε∗ which describes the crack set and the opening dis-

placements of the crack. Specifically, eigendeformations allow the displacement field to develop jumps

at no cost in local elastic energy. In the eigenfracture scheme the definition of the support of the eigende-

formation field requires the introduction of a small parameter ε, with the dimension of length, which has

the only requirement that it must tend to zero with, but more slowly than, the discretization size h. Thus,

the support of the eigendeformation field is called the ε-neighborhood. Upon this definition, the fracture

energy is set to be proportional to the volume of the ε-neighborhood, suitably scaled by 1/ε. The optimal

crack set is obtained by minimizing the energy functional with respect to both the displacement and the

eigendeformation fields, subject to irreversibility constraints.

We note that other two-field approximation schemes for brittle fracture, most notably the Ambrosio-

Tortorelli scheme (Ambrosio and Tortorelli, 1992; Braides and Dal Maso, 1997; Francfort and Marigo,

1998), have been proposed in the past and used as a basis for numerical approximations (Bourdin et al.,

2000) and they have been shown to be convergent (Negri, 2006).

When combined with a finite element discretization, eigenfracture may be implemented as a partic-

ular form of element erosion named eigenerosion, i. e., an element can be either intact, in which case its

behavior is elastic, or be completely failed, or eroded, and have no load bearing capacity. The concept

of element erosion has been extensively utilized to simulate fracture in a number of areas of application,

including terminal ballistics (Johnson and Stryk, 1987; Belytschko and Lin, 1987; Ortiz and Giannakopou-

los, 1990; Børvik et al., 2010). However, some of these methods fail to converge or converge to the wrong

limit (Negri, 2003). By contrast, the eigenerosion approach inherits the characteristics of the eigenfrac-

ture scheme which is known to properly converge to Griffith fracture (Griffith, 1921) in the limit of van-

ishingly small mesh sizes (Schmidt et al., 2009). In particular, the local-neighborhood averaging of the

energy which underlies the calculation of the effective energy-release has the effect of eliminating spuri-
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ous mesh-dependencies.

The implementation of eigenerosion, including the all-important ε-neighborhood construction, is ex-

ceedingly simple (Pandolfi and Ortiz, 2012) and applies to general situations, possibly involving complex

three-dimensional fracture patterns such as branching and fragmentation, and most notably, to any kind

of approximation scheme (Pandolfi et al., 2013; Li et al., 2015). The convergence properties of the eigen-

erosion scheme for modeling fracture propagation in three dimensional problems have been discussed

in Pandolfi and Ortiz (2012). The accuracy and convergence of the eigenerosion approach is comparable,

at a much reduced implementation cost and complexity, to that of other numerical fracture approaches.

(a) (b)

Figure 5.1: (a) Visualization of the crack ε-neighborhood, Cε = {ε∗ 6= 0}ε, where ε∗ represents the eigen-
deformation. The ε-neighborhood is the set of elements whose barycenters are at distance less or equal
to ε from any of the barycenters of the eroded elements in the crack set, C , filled in black. Elements in
the crack ε-neighborhood are marked with black dots. (b) Visualization of the elements belonging to the
incremental crack ε-neighborhood to be considered for the erosion of the test element, K , marked in gray
(Pandolfi and Ortiz, 2012).

The ease of implementation of eigenerosion in a finite element code motivates the choice of this ap-

proach for modeling fracture in metaconcrete. The method requires the construction of the ε-neighborhood

for each element, and necessitates an auxiliary topology array together with a search algorithm to fill its

entries. The practical meaning of the element ε-neighborhood is to define the portion of discretized solid

whose elastic energy will be dissipated as the consequence of the element failure. The collection of the ε-

neighborhood of eroded elements defines, in turn, the ε-neighborhood of the crack set. This is visualized

in Figure 5.1(a), where the crack set elements are filled in black and the crack ε-neighborhood is shown

surrounding the eroded elements.

The failure criterion consists of a comparison of energies for each non-eroded element. The amount

of elastic energy of the element ε-neighborhood is compared with the attendant fracture energy, so that
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the determination of the next set of elements to be eroded is based on the net energy gain,

−∆FK =−∆EK −Gc∆AK , (5.1)

where −∆EK is the elastic energy released upon erosion of element K , and Gc∆AK denotes the fracture

energy cost. The energy release rate attendant to the erosion of one element can be computed explicitly as

the difference between the energies of the body before and after the erosion of the element, or more con-

veniently, it can be approximated using first–order asymptotic formulae for notches (Pandolfi and Ortiz,

2012). For the particular case of metaconcrete subject to a blast wave loading, we modify the eigenerosion

algorithm to also account for failure in compression, which was not considered in the original algorithm.

In this case, we therefore account for only the deviatoric part of the elastic energy,

∆E dev
K =∆EK −∆E vol

K . (5.2)

The fracture energy cost is computed using the critical energy release rate Gc of the material multiplied

by a measure of the crack extension. The crack extension is given by the elemental area ∆AK , which is

the increment of the crack area attendant to the erosion of a previously intact element K ∉ C . This is set

to be proportional to the advancing volume of the crack ε-neighborhood, shown in Figure 5.1(b), suitably

scaled by 1/ε, i.e.,

∆AK = |(C ∪K )ε \Cε|
2ε

. (5.3)

If the elemental elastic energy is larger than the elemental fracture energy, the element is eroded. The

larger the value of the Gc parameter, the higher the elastic energy needed to enable the advance of the

crack. Note that in the implementation of the eigenerosion scheme with metaconcrete, when an element

is eroded the element material is replaced with a corresponding material with no shear bearing capabili-

ties. This material behaves as a fluid in compression, and therefore is still able to transmit stresses.

In addition to the standard material parameters needed for elastic analyses, an implementation of

eigerosion also requires the critical energy release rate for any material that is allowed to fracture, along

with the specification of the extension of the ε-neighborhood, i.e., the regularization parameter ε. The

size of the regularization parameter must be chosen so that it tends to zero more slowly than the mesh

size. For the purposes of convergence, it is suffice to express ε as simply a multiple of the minimum mesh

size hmin, i.e.,

ε=C1hmin , (5.4)

where C1 is a constant. In the following analyses, we utilize a ε-neighborhood size of either ε = 6hmin or

ε= 4hmin, and consider three values of critical energy release rate for the mortar matrix material; Gc = 60,

70, and 80 N/m. This range of energy release rates covers the typical estimated values of fracture energy

for mortar.
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5.2 Finite element dynamic analysis including erosion

To study the behavior of metaconcrete undergoing fracture and erosion, we implement the same finite

element model as used in the elastic analyses of Chapter 4. We utilize the coarse finite element discretiza-

tion outlined in Chapter 2, details of which are repeated here in Table 5.1. For each configuration, Ta-

ble 5.1 lists the minimum mesh size hmin, and the average mesh size havg, within the mortar phase of

the slab. The minimum mesh size is used in the eigenerosion implementation for calculation of the ε-

neighborhood size, and in our models we implement ε= 6hmin for configurations A and B, and ε= 4hmin

for configuration C.

Table 5.1: Discretization data for fracture calculations.

Configuration Rl t (mm2) Nodes Elements hmin (mm) havg (mm)

A 11 19228 96314 0.0026 0.503
B 20 18299 91519 0.0271 0.502
C 27 20891 107562 0.1271 0.486

The elastic material behavior of each slab constituent is described by a neo-Hookean material model,

extended to the compressible range. Fracture occurring under the eigenerosion scheme is allowed only in

the mortar phase of the metaconcrete slab when lower yield explosions are considered. Given the higher

resistance and ductility of the aggregate constituents, in the case of smaller explosions we therefore as-

sume elastic behavior for both the core and coating of the aggregates. A further investigation for larger

explosion pressures also includes erosion of the aggregate materials. To facilitate a quantitative compari-

son, we analyze an equivalent mortar slab by using the same meshes as utilized for the metaconcrete slab,

assigning in this case the properties of the mortar material to all elements.

We apply periodic boundary conditions to the lateral faces of the slab. The forward face is subjected

to a blast loading caused by the ignition of an explosion in air, while the opposite end face is uncon-

strained and thus free to move. The blast pressure history results in a large spectrum of applied frequen-

cies, through which we activate the resonant aggregate behavior. We assume a blast force caused by the

ignition of an explosive charge located 0.015 m from the central point of the exposed slab surface. As dis-

cussed in Chapter 2, the controlling parameter for explosions in atmosphere is the yield factor λ, i. e., the

cubic root of the ratio between the energy released by the actual explosion and the energy released by a

1 ton TNT reference explosion. The model for the blast pressure history used in the calculations is sum-

marized in Appendix B. For the study of fracture behavior, we investigate yield factors within the range of

λ= 0.01−0.5, looking at both low and high yield explosions to see the effect on the amount of erosion and

energy distribution within the slab.

We study the behavior of metaconcrete slabs under erosion by first considering the features and ap-

pearance of the propagating stress wave in both a metaconcrete slab and an equivalent homogeneous
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mortar slab. These analyses provide a baseline and motivation for subsequent parametric studies, where

we evaluate numerically the effect of different model parameters, aggregate geometries, and material

properties on the fracture behavior of metaconcrete slabs.

5.2.1 Stress wave propagation in metaconcrete slabs under fracture

To see the effect of the presence of metaconcrete aggregates in a slab where the mortar is allowed to

fracture, we begin by visualizing the stress distribution a small time after the arrival of the blast wave. The

difference in stress wave propagation between a purely mortar slab and a metaconcrete slab allows us to

assess any changes in behavior between the two cases.

Longitudinal Stress (Pa)

(a) Homogeneous material

(b) 1 mm silicone coated lead aggregates

(c) 1 mm nylon coated lead aggregates

Figure 5.2: Volume rendering of the longitudinal stress distribution at t = 0.05 ms in an (a) homogeneous
mortar slab (maximum 130 MPa compression, 60 MPa tension), (b) metaconcrete slab with 1 mm silicone
coated inclusions (maximum 110 MPa compression, 140 MPa tension), and (c) metaconcrete slab with
1 mm nylon coated inclusions (maximum 130 MPa compression, 120 MPa tension) for λ= 0.05 and Gc =
70 N/m. Blue indicates compressive stress, red indicates tensile stress, and the black outline represents
the reference slab configuration. Note that the colorbar is truncated in order to show the details of the
stress pattern.

Figure 5.2 shows a volume rendering of the longitudinal Cauchy stress in a purely mortar slab along-

side that for two metaconcrete slab configurations, one consisting of an array of 1 mm silicone coated

inclusions and another consisting of an array of 1 mm nylon coated inclusions. The blast wave profile

was calculated using an explosion yield factor of λ= 0.05 and a critical energy release rate of Gc = 70 N/m
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is chosen for the mortar material. The distribution is plotted at t = 0.05 ms after the beginning of the

simulation, thus capturing the first transition of the shock wave through the slab.

As in the elastic analyses of Chapter 4, we see that the propagation of the stress wave front in the

metaconcrete slab is delayed in time when compared to that in the mortar slab. We see also that in the

metaconcrete slab the stress is non uniform and distributed around the aggregates, concentrated mostly

in the area near the exposed face. By comparison, the stress wave in the mortar slab is planar in configu-

ration with more distinct bands of high compressive and tensile stress.

We note that the values of maximum tensile and compressive stress listed for each slab case are given

as the maximum of the entire slab, including the aggregates. In the metaconcrete slab the largest stresses

are located in the mortar and aggregates near the exposed face. In this case the metaconcrete aggregates

shield the interior of the slab, which is shown by the intense colors observed at the front of the slab in

Figure 5.2(b) and Figure 5.2(c). By contrast, in the homogeneous material the highest stresses are located

where the shock wave has penetrated into the interior of the slab.

We also note the difference between the two metaconcrete slab configurations. Similar to what was

observed in Chapter 4, the aggregates with 1 mm silicone coatings do not seem to capture the stress prop-

agating through the slab, instead the stress is concentrated in the mortar material. By contrast, the stress

is captured by the 1 mm nylon coated aggregates, indicating that resonance behavior is activated by the

blast loading.

In addition, in both the metaconcrete and purely mortar slabs, material fractures only around the

blast site. Missing eroded elements at the left end surface of the slab are evidenced in Figure 5.2, where

the black outline indicates the original configuration of the slab. Details of the eroded surface for each

slab case are shown in Figure 5.3, where the black outline again describes the original configuration. The

images show that the outer layer of elements are missing due to the attainment of the failure criterion,

resulting in a blasted surface that appears uneven and rough.

From the eroded surfaces it is clear that a greater amount of degradation is present when the coating

elastic modulus is lower. This is seen when comparing the eroded surfaces for the 1 mm silicone coated

aggregate case in Figure 5.3(b) to the 1 mm nylon coated aggregate case shown in Figure 5.3(c). The

slab containing silicone coated aggregates displays significantly more erosion around the central portion

of front slab surface, eroding to expose the entire front face of the first aggregate. The slab containing

nylon coated aggregates also shows significant erosion, however the front aggregate in this case is only

partially exposed. This effect can be attributed to a number of factors. The use of softer coatings could

lead to a greater amount of mortar crushing due to vibration of the aggregate near the exposed face. The

energy absorption properties due to the vibration of the aggregates could also lead to reduced erosion

by removing energy from the mortar matrix. The elastic analyses of Chapter 4 showed that a blast wave

profile can activate aggregates with higher coating elastic moduli and that performance of the slab can be

improved when aggregates of this type are used. Thus, we see a similar effect when we consider a slab also
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(a) Homogeneous material (b) 1 mm silicone coated lead aggregates

(c) 1 mm nylon coated lead aggregates

Figure 5.3: Eroded surface of an (a) homogeneous slab, (b) metaconcrete slab with 1 mm silicone coated
aggregates, and (c) metaconcrete slab with 1 mm nylon coated aggregates for an explosion yield λ= 0.05
and a mortar critical energy release rate Gc = 70 N/m. The black outline represents the reference slab
configuration.

undergoing fracture behavior. Not only is the stress higher in the aggregates when a stiffer coating material

is used, as seen in Figure 5.2, the fracturing around the exposed face is also reduced. This indicates that

there is some activation of the aggregates and that improved performance may be gained when resonance

within the aggregates is utilized. This effect will be explored further in later sections by considering the

energy and stress distribution in slabs with various aggregate geometry and material configurations.

Both metaconcrete slabs also show more erosion than the equivalent homogeneous mortar slab, as

seen in Figure 5.3(a). The metaconcrete slabs exhibit more erosion around the exposed face due to the

presence of the heavy aggregates. Each aggregate has a mass that is between 2.1 and 3.7 times the mass of

the equivalent volume of mortar. When the slab undergoes fracture, the heavy aggregates cause additional

crushing of the mortar material. This local comminution of the mortar acts as a second energy absorption

mechanism, in addition to the absorption that results from resonance within the aggregates. This effect

stops the wave from penetrating deep into the slab and causes the the damage to remain localized near
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the exposed surface. We explore this effect further in the following section by considering the amount of

fracture energy within the slab.

5.2.2 Fracture Energy

Previous studies of purely elastic metaconcrete slabs under blast loading have shown that enhanced per-

formance can be achieved through mechanical energy attenuation and stress reduction. In the presence

of fracture, the balance of energy requires us to also account for the fracture energy, which is the dissipa-

tion induced by the formation of fracture surfaces. Fracture energy is therefore one of the key parameters

to assess the performance of metaconcrete when fracture damage is considered. We recall that within the

eigenerosion scheme, based on Griffith’s energy criterion, the fracture energy corresponds to the mea-

sure of the fracture surface defined by the ε-neighborhood construction multiplied by the critical energy

release rate Gc .

The two primary input parameters for the control of the extension and depth of damage in our slab

models are the explosion yield factor λ, and the critical energy release rate Gc . We summarize how these

parameters affect the amount of energy dissipated during fracture by plotting fracture energy surfaces for

two of the slab cases considered above: a homogeneous mortar slab and a metaconcrete slab containing

a periodic array of 1 mm nylon coated inclusions. Figure 5.4 displays the results for λ = 0.01−0.10 and

Gc = 60−80 N/m, plotting the energy that has been dissipated through fracturing of the mortar matrix at

the end of the calculation.
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Figure 5.4: Fracture energy plotted against explosion yield factor, λ, and critical energy release rate, Gc ,
for a homogeneous mortar slab and a metaconcrete slab containing 1 mm nlyon coated inclusions.
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The fracture energy computed during the analysis indicates the amount of energy the has been dis-

sipated in forming the fracture surfaces. Each parameter axis, i.e., in the direction of either λ or Gc , in-

dicates different behavior. An increase in fracture energy with higher yield indicates a greater depth of

erosion within the slab, i.e., more mortar material is eroded. An increase in fracture energy with energy

release rate Gc indicates that more energy is required to fracture the material when erosion occurs. This

means that a larger amount of energy is required to produce the same amount of fracture, thus an increase

in fracture energy along this axis does not necessarily mean a greater amount of erosion.

Figure 5.4 reveals three distinct patterns of behavior. Below λ = 0.02 the fracture energy is equal to

zero and there is no erosion of the slab, i.e., the slab behaves in a purely elastic manner. Above λ = 0.02

the slab begins to exhibit fracture, and between λ= 0.02 and λ= 0.065 the metaconcrete fracture energy

surface lies slightly above that for the equivalent homogeneous mortar slab. This is more evident for yield

factors closer to λ = 0.065. This difference indicates that the metaconcrete slab exhibits slightly more

erosion than the homogeneous mortar slab for this range of explosion yields. This correlates with what

was seen in Figure 5.3, where erosion in the metaconcrete slab was more extensive than that observed

in the equivalent mortar slab. In the explosion yield range between 0.02 and 0.065 it is likely that energy

absorption from mortar crushing due to the presence of the heavy metaconcrete aggregates contributes to

the difference between the two slabs, resulting in a higher fracture energy due to the erosion of elements

around the exposed surface. We also note that a higher input energy may be present in the metaconcrete

case, due to larger movement of the exterior slab surface caused by the lower moduli materials used in the

aggregates.

Above λ= 0.065 the behavior transitions and the fracture energy for the homogeneous mortar slab be-

comes significantly larger than that for the metaconcrete slab. At these higher values of explosion yield the

volume of mortar corresponding to the aggregate position in the metaconcrete slab erodes, resulting in a

much greater fracture energy. In the metaconcrete slab the aggregates at the front behave like a protective

barrier preventing high stresses from reaching the interior of the slab, since the aggregate materials are

not eroded during the computation. This causes only the mortar surrounding the aggregate to be eroded

and results in a smaller fracture energy than in the metaconcrete slab.

We also see that, for higher yield values, as the critical energy release rate increases there is a linear in-

crease in the fracture energy. This is more pronounced for the mortar slab, which has the highest fracture

energy at the maximum values of λ and Gc investigated. This behavior is due to the fact that the depth of

the damaged material layer, and thus the equivalent fracture surface, depends mainly on the yield of the

explosion; the increment of the fracture energy with Gc for a fixed λ is indeed almost linear.

The effect of the parameters λ and Gc can be further examined by considering the eroded surfaces

for different points on the fracture energy surfaces in Figure 5.4. Figure 5.5 shows the amount of fracture

near the exposed face for both the mortar and metaconcrete slab considered in Figure 5.4 for three cases:

Gc = 60 N/m and λ= 0.04, Gc = 60 N/m and λ= 0.10, and Gc = 80 N/m and λ= 0.04. These combinations
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(a) Mortar, Gc = 60 N/m, λ= 0.04 (b) Metaconcrete, Gc = 60 N/m, λ= 0.04

(c) Mortar, Gc = 60 N/m, λ= 0.10 (d) Metaconcrete, Gc = 60 N/m, λ= 0.10

(e) Mortar, Gc = 80 N/m, λ= 0.10 (f) Metaconcrete, Gc = 80 N/m, λ= 0.10

Figure 5.5: Eroded surface of a homogeneous slab and metaconcrete slab containing 1 mm nylon coated
inclusions for different combinations of λ and Gc . The black outline represents the reference slab config-
uration.

of parameters cover the three main patterns of behavior observed in fracture energy contour plot.

Figure 5.5(a) and Figure 5.5(b) show similar results to that observed in Figure 5.3, however displaying

less erosion due to the smaller explosion yield factor. We see that the metaconcrete slab shows slightly

more fracture than the equivalent homogeneous mortar slab, accounting for the slightly larger fracture
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energy for the metaconcrete case. However at this level of explosion yield only the very front surface of

the slab is fractured.

Figure 5.5(c) and Figure 5.5(d) show that increasing the explosion yield factor greatly increases the

amount of erosion observed around the exposed face. In this case the mortar in the metaconcrete slab is

eroded around the aggregates, revealing almost the entire first aggregate surface. The mortar slab erodes

to a similar depth, however in this case a greater amount of mortar is eroded, equivalent to the volume of

the aggregates.

Figure 5.5(e) and Figure 5.5(f) show the eroded surfaces for the same yield factor, however this time

the material constant Gc is increased to 80 N/m. In this case we observe less erosion when the critical

energy release rate is increased, since more energy is required to fracture the material.

The shape of the fracture energy plot and the eroded configuration of the slabs considered here imply

that there is a difference in behavior due to the presence of resonant aggregates. The difference in fracture

energy may be due to a number of factors including mortar crushing at the exposed surface and resonant

absorption. Metaconcrete aggregates have been shown to transfer energy away from the mortar in the

previous elastic analyses. In the fracture case, the resonant properties of the inclusions may help to trap

some of the mechanical energy, diminishing the elastic energy density in the mortar where fracture is

occurring, and, as a direct consequence, reducing the stress in the mortar matrix of the slab. This effect

will be explored further in the next section.

5.2.3 Parametric analysis of aggregate configurations

The different aggregate geometry and material configurations each produce a unique metaconcrete ag-

gregate resonant frequency. Different combinations of aggregate properties have been shown to change

slab behavior in the study of both transmission characteristics and the blast wave loading of slabs with

elastic constituents. To compare the performance of each aggregate configuration when fracture pro-

cesses are present, we conduct a parametric study of the energy and stress distribution within the slab,

considering the configurations presented in Section 2.1.1 of Chapter 2. For all calculations we use a

blast wave generated by an explosion yield factor of λ = 0.05 and a mortar critical energy release rate

of Gc = 70 N/m.

5.2.3.1 Aggregate energy

Figure 5.6 presents the amount of mechanical energy trapped in the slab aggregates as a fraction of the

total mechanical energy in the slab, where the energies are averaged over the duration of the calculation.

The trapped energy is plotted for each coating stiffness and aggregate geometry. The aggregate energy

indicates the amount of energy absorbed by the metaconcrete aggregates and, in a similar way to the

energy calculations of Chapter 4, reveals how the amount of energy trapped inside the aggregates changes
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as the coating configuration is varied.

Coating Elastic Modulus (GPa)
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Figure 5.6: Fraction of the total mechanical energy captured by the aggregates for various coating moduli
and geometries.

For all three aggregate geometry configurations we observe a similar trend, where the energy absorbed

by aggregates with higher coating elastic moduli is greater than that for aggregates with softer coatings.

This is the same effect as was seen in the elastic analyses of Chapter 4 and also correlates with the stress

patterns observed in the longitudinal stress distributions shown in Figure 5.2. Other factors may also

come into play when fracture is included. When the mortar matrix material erodes the aggregate surface

can be exposed and in this case the aggregates may be subject to more direct and higher stresses. This

may account for the difference between the three coating geometries, since each configuration will have

a different amount of erosion.

5.2.3.2 Maximum longitudinal stress

To further characterize how metaconcrete aggregates help to reduce the effect of the propagating shock

wave, we consider the maximum longitudinal Cauchy stress in the mortar matrix of the slab. We take into

account only the stress present in the second-half of the slab, farthest away from the blast site. This allows

us to look at only the intact portion of the slab, avoiding the high stresses associated with the elements

undergoing fracture. Figure 5.7 presents the maximum longitudinal Cauchy stress for a variety of meta-

concrete slabs, expressed as a percentage of the maximum stress in an equivalent homogeneous mortar

slab. Both longitudinal tensile and compressive stresses are shown.

Both the tensile stresses in Figure 5.7(a) and compressive stresses in Figure 5.7(b) reveal the same

trend, with a decrease in value as the modulus of the compliant coating is increased. Slabs containing

aggregates with the softest coating material, i.e. the silicone coated aggregates, display stresses that range

from 59% to 95% of that found in the homogeneous mortar slab, which is the highest maximum stress

observed for all of aggregate coating materials. We also see that coatings with the two highest elastic
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Figure 5.7: Maximum longitudinal Cauchy stress in the second-half of the metaconcrete slab expressed
as a percentage of maximum longitudinal Cauchy stress in an equivalent homogeneous mortar slab; (a)
maximum tensile stress, (b) maximum compressive stress.

moduli display the most significant improvement over the equivalent mortar slab. For the nylon and urea

formaldehyde coated aggregates, the tensile stress ranges between 31-36% of the mortar value and the

compressive stress attains 30-39% of the maximum homogeneous mortar slab stress. This improvement

indicates that performance enhancements can be achieved by incorporating resonant aggregates, signif-

icantly reducing the stress load on the mortar matrix by capturing energy within the aggregates.

The geometry of the aggregates also causes different behavior, particularly for the lower coating elastic

moduli. The aggregates with a 3 mm coating thickness seem display slightly smaller stress values when

coating moduli is very low, such as for the silicone coated aggregates. However, changing the geometry

has a less significant effect when the aggregates within the slab are fully activated by the blast loading,

shown by the smaller difference between aggregate geometry cases for coatings with higher stiffness. In

fact, the percentage of maximum mortar stress attained by each geometry configuration is very similar for

all three coating thicknesses when nylon or urea formaldehyde coating materials are used.

The maximum longitudinal stress for every aggregate configuration also shows improvement over the

equivalent mortar slab, where each combination considered produces a mortar matrix stress that is lower

than that obtained for the homogeneous slab. This indicates that including the aggregates causes signif-

icantly less stress to propagate into the end section of the slab. The aggregates can act like a shield to the

interior while also absorbing stress away from the mortar matrix.

5.2.4 High yield explosions

To further characterize the fracture behavior of metaconcrete, we now consider loading cases that are

more extreme in magnitude by analyzing the behavior of metaconcrete under the action of very high
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yield explosions. In this case we now assume that fracture of the aggregate core and coating materials

may occur during the blast event. Lead is a ductile material thus has a much higher critical energy release

rate than concrete, but still may fracture when exposed directly to the explosion pressure as the mortar

matrix erodes. We therefore assume a critical energy release rate of Gc = 10,000 N/m for the lead core

material. We again consider only the metaconcrete slab case where 1 mm nylon coated aggregates are

used and we assume a value of Gc = 1,000 N/m for the coating material. A Gc = 80 N/m is chosen for the

mortar matrix. We consider a range of very high explosion yield factors, taking values between λ= 0.1, the

highest assumed in the analyses above, and λ = 0.5. This will indicate how the slab may behave under a

catastrophic event, where a large amount of the slab is fractured and eroded.

Time (ms)

F
ra

ct
ur

e 
E

ne
rg

y 
(N

m
)

0 0.02 0.04 0.06 0.08
0

100

200

300

400

500

600

700

800

900

1000
λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5

(a) Homogeneous material

Time (ms)

F
ra

ct
ur

e 
E

ne
rg

y 
(N

m
)

0 0.02 0.04 0.06 0.08
0

100

200

300

400

500

600

700

800

900

1000
λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5
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Figure 5.8: Fracture energy as a function of time plotted for (a) a homogeneous mortar slab, and (b) a
metaconcrete slab with eroding 1 mm nlyon coated inclusions for a range of high yield factor explosions.
The critical energy release rate is Gc = 80 N/m for the mortar matrix, Gc = 1,000 N/m for the coating, and
Gc = 10,000 N/m for the lead core material.

To investigate this case we begin by plotting the fracture energy as a function of time for each of the

explosion yield factors considered. Figure 5.8 shows the results for both the metaconcrete slab and an

equivalent homogeneous mortar slab. As the explosion yield factor is increased, the fracture energy in

the slab becomes larger. This indicates that a significant amount of energy is required in order to fracture

the slab, an effect that can now be attributed to the fracture of both the mortar matrix and the aggregate

materials themselves. The fracture energy for the metaconcrete slab is also larger than that obtained for

the mortar slab at the same yield, particularly for the higher yield explosions such as that given by λ= 0.5.

This again shows that more energy is dissipated through fracturing of the metaconcrete slab, indicating

that metaconcrete effectively behaves as a tougher material.

Figures 5.9-5.10 visualize the behavior of a metaconcrete slab alongside a homogeneous mortar slab

at 0.06 ms after the start of the calculations for each of the explosion yield factors presented in Figure 5.8.

For each case there is a significantly greater depth of erosion in the mortar slab when compared with the
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Figure 5.9: Longitudinal stress distribution at t = 0.06 ms in a homogeneous mortar slab for a range of
high yield explosions with yield factors between λ = 0.1 and λ = 0.5. The critical energy release rate for
the mortar matrix is given by Gc = 80 N/m. Blue indicates compressive stress, red indicates tensile stress,
and the colorbar ranges in scale between 600 MPa compression to 600 MPa tension. The black outline
represents the reference slab configuration.

metaconcrete slab, particularly for the cases where a higher explosion yield factor is used. In the homoge-

neous material the stress wave has also propagated into the end of the slab, whereas in the metaconcrete

slab no stress wave is observed. In fact, in Figure 5.9(b) and Figure 5.9(c) the stress wave is on its return

transition through the slab, indicated by the reflected tensile wave, and in Figure 5.9(d) and Figure 5.9(e)

the slab has eroded so significantly that there have been multiple reflections of the shock wave inside the

slab. In the metaconcrete slab, by contrast, the stress is concentrated in the still intact aggregates near the
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front of the slab. This effect indicates that the aggregates near the exposed surface act like protective bar-

rier in high yield explosions, shielding the interior from the stress wave and concentrating erosion around

the surface exposed to the blast wave.

Longitudinal Stress (Pa)

Longitudinal Stress (Pa)
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(b) λ= 0.2

(c) λ= 0.3

(d) λ= 0.4

(e) λ= 0.5

Figure 5.10: Longitudinal stress distribution at t = 0.06 ms in a metaconcrete slab with 1 mm nylon coated
inclusions for a range of high yield explosions with yield factors between λ= 0.1 and λ= 0.5. The critical
energy release rate is given by Gc = 80 N/m for the mortar matrix, Gc = 1,000 N/m for the aggregate
coating, and Gc = 10,000 N/m for the aggregate lead core material. Using the same color scale as in
Figure 5.9, blue indicates compressive stress and red indicates tensile stress. The black outline represents
the reference slab configuration.
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5.3 Summary

We present an investigation into the behavior of metaconcrete slabs undergoing fracture when subjected

to a blast wave loading. Studies previously conducted on slabs with purely elastic constituents indicate

that there is a reduction in mortar stress and a general improvement in slab performance when metacon-

crete aggregates with relatively stiff coatings are present in the slab. To more accurately model the brittle

behavior of mortar under dynamic loading, we extend the elastic models examined previously to include

the fracture properties of the mortar matrix. Fracture is modeled through an eigenerosion scheme, which

is based on the more general eigenfracture approach. The attainment of fracture within the slab is eval-

uated through an energy–based criterion, and elements satisfying the failure criterion are eroded, and

therefore excluded from the finite element mesh so that they no longer have load bearing capacity. This

results in an eroded volume that propagates from the surface of the slab exposed to the blast wave.

We test the models with a blast loading caused by the ignition of an explosive charge of yield factor λ.

We see that this parameter, along with the critical energy release rate of the mortar material, Gc , impact

the amount of energy released during fracture, implying a change in the depth and size of the fracture

surface. Plotting the longitudinal stress distribution of both a homogeneous mortar and metaconcrete

slab for the same λ and Gc , we see that the shock wave induced by the blast loading is delayed by the

presence of the metaconcrete aggregates. The stress distribution observed when fracture processes are

present is similar to that seen in the case of purely elastic metaconcrete constituents, where trapping of

the stress wave occurs within the aggregates at the front of the slab near the exposed face. This correlates

with the slab energy distribution, which is investigated for a number of aggregate material and geometry

configurations. The amount of energy that is trapped by the metaconcrete aggregates increases when

attenuation behavior of the aggregates is activated by the blast loading. Similarly, the magnitude of the

maximum stress in the slab mortar matrix was found to be significantly improved when metaconcrete

aggregates were incorporated into the slab structure.

These results, combined with those found for the transmission and elastic behavior of metaconcrete,

imply that tuning the aggregates to the frequency input of an applied dynamic loading will aid in mitigat-

ing the high stresses caused by a propagating shock wave.



87

Chapter 6

Concluding remarks and further
directions

This thesis introduced and developed a new concept for a modified concrete which is designed for dy-

namic loading applications. Recently, the field of metamaterials science has grown extensively, with new

materials being developed for a wide range of applications in electromagnetics, acoustics, and elastody-

namics. Metamaterials consist of a designed internal structure, that is engineered to produce unusual

properties when interacting with an applied wave or loading. Influenced by the use of locally resonant

inclusions in acoustic metamaterials, we propose a new type of concrete that contains resonant aggre-

gates which provide enhanced performance in the presence of dynamic loading. We have named this

new composite metaconcrete.

Metaconcrete is a new type of engineered metamaterial where the standard stone and gravel aggre-

gates of regular concrete are replaced by designed inclusions that resonate at chosen frequencies. The

aggregates have a bi-material layered structure, consisting of a heavy metal core coated with a compliant

outer material. The aggregates are designed so that resonance may be activated by an applied loading at

designed frequencies, allowing for a transfer of energy between the aggregates and the mortar matrix. The

activation of resonance leads to what as known as ‘negative effective mass’, which has been demonstrated

by theoretical studies of one–dimensional bars and spring–mass systems.

In the present study we have undertaken a numerical analysis to determine the response of a meta-

concrete slab made of uniform and regularly arranged aggregates. The inclusions are spherical and their

arrangement was chosen in order to produce a packed configuration with very little separation between

the aggregates. We consider a number of different aggregate geometry and coating material configura-

tions, and derive tuning equations which can be used to determine a recommended activation frequency

for each aggregate combination.

We begin the numerical analyses by considering a one–dimensional idealization of a metaconcrete

slab, investigating the band gap behavior and transmission characteristics for four different aggregate

material and geometry configurations. The results reveal that band gaps of different sizes and frequency

location can be generated when locally resonant behavior is present in the system. These band gaps

correspond with the resonant frequency of the particular aggregate configuration and also the frequency
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band across which a reduction is observed in wave amplitude transmission.

To further investigate the frequency-dependent nature of metaconcrete, we consider the transmission

of energy through a three–dimensional finite element slab model. Transmission coefficients for the sys-

tem are computed based on the amount of energy that reaches the far end of the slab, where the average

energy absorbed by the last aggregate was compared to that of all the aggregates. The results reveal a

dip in the transmission coefficient near the rigid body translation resonant frequency of the inclusion,

which corresponds with the behavior observed from the one–dimensional model. Within the dip fre-

quency range, the magnitude of energy transmission is greatly reduced when compared to that observed

in a homogeneous mortar slab. This improvement in performance over a slab with no resonant aggre-

gates suggests frequency ranges that provide the most beneficial behavior for each aggregate configura-

tion. The study of energy transmission also suggests that a nylon coating is the best choice for an overall

improvement in the behavior of metaconcrete with elastic constituents.

The three–dimensional metaconcrete slab model is then tested with a blast loading profile generated

by a explosion of known size and duration. The numerical results show that, under dynamic excitation,

the slab containing an array of metaconcrete aggregates behaves in a rather different way to an equivalent

homogeneous slab with the effective properties of concrete. The most prominent effect is the reduction

in the amount of energy transmitted across the system and, as a result, the reduction of stress within the

brittle phase, i. e., the mortar. The results show that performance of the slab is heavily influenced by the

elastic modulus of the compliant coating. Changing the coating modulus alters the resonant frequency

of the aggregate. Coatings with higher stiffness, and a thus a higher resonant frequency, were found to

provide the most significant absorption of mechanical energy and the greatest reduction in mortar stress.

The results indicate that aggregates with coatings corresponding to the two highest elastic moduli, i.e.,

nylon and urea formaldehyde, provide the most beneficial attenuation of the applied blast loading.

Mortar is a brittle material that will suffer from weakening and fracture under the action of a blast wave

loading. To more accurately model the brittle behavior of mortar we therefore extend the elastic models

examined previously to include the fracture properties of the mortar matrix. Fracture is modeled through

an eigenerosion scheme, which is based on the more general eigenfracture approach. The attainment of

fracture within the slab is evaluated through an energy–based criterion, and elements satisfying the failure

criterion are eroded, and therefore excluded from the finite element mesh so that they no longer have load

bearing capacity. This results in an eroded volume that propagates from the surface of the slab exposed to

the blast wave. We find that the incorporation of metaconcrete aggregates into a slab design modifies the

behavior of a mortar slab, reducing the effect of a blast loading when the slab is also undergoing erosion

and fracture. When the aggregates within a metaconcrete slab are activated, there is a reduction in the

amount of energy and stress that reaches the far end of the slab. Similar to the previous elastic analyses,

the use of aggregates with higher coating elastic moduli led to the greatest performance enhancement

for the particular blast profile chosen, with these aggregates demonstrating the highest absorbed energy
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and lowest mortar stress values. Therefore, tuning the aggregates to the frequency input of an applied

dynamic loading will aid in mitigating the high stresses caused by a propagating shock wave.

Metaconcrete could be a useful alternative to traditional concrete materials for a multitude of applica-

tions where protection from blast and impact is required. Some possible structural applications include

wall panels, exterior walls, and barriers for explosive blast shielding structures, along with impact pro-

tection slabs and shields. Further examples are presented Appendix C, along with a discussion of some

of the more practical design considerations for metaconcrete. Another potential application is the use of

metaconcrete with lower frequency seismic waves, which could include seismic shielding slabs or tuned

damping foundations. The same principles could be applied to armored vehicles, where the mortar ma-

terial could simply be replaced with an alternative matrix material suitable for the particular purpose

There are many potential areas for further investigation of metaconcrete and its behavior. The mod-

els considered so far only utilize periodic arrays of metaconcrete aggregates. If the aggregates were to be

mixed into mortar in the same way as the stone and gravel aggregates of regular concrete, then an exactly

periodic array of aggregates would not easily be achieved. The practical implementation of metacon-

crete for structural purposes will therefore require further investigation of metaconcrete slabs with non–

periodic aggregate arrangements. The numerical comparison of different slab aggregate configurations

would also be of interest. Calculations showing the full set of slab behavior for not only a homogeneous

mortar slab but also a gravel aggregate slab and a slab containing purely lead aggregates could provide

very interesting design indications. Further, different layered aggregate sizes and materials may need to

be considered for loading conditions other than the blast wave profile primarily investigated here. The

use of alternative aggregate geometries, materials, and arrangements therefore offers an area open for

potential investigation.

To further characterize the real–life behavior of metaconcrete, other material characteristics could be

incorporated into the model. The models used thus far also do not consider any viscous effects and the

high loss tangent of the lead core material could also be considered in future studies. Similarly, a thorough

experimental investigation of metaconcrete properties and dynamic behavior would provide a wealth of

information useful for the practical implementation of metaconcrete. Experimental validation of the nu-

merical results would provide further insight into the resonant behavior of the aggregates and the effect

this has on the performance of the overall material. An experiment could be designed to test the reso-

nant properties of a single aggregate, comparing the resonant frequency to that found in an equivalent

numerical investigation. Further, a full scale sample of a metaconcrete slab could be fabricated with an

array of internal aggregates. The transmission of wave amplitude or energy through a metaconcrete spec-

imen could be measured by testing the specimen with an applied loading over a range of known forcing

frequencies. This experimental evaluation of transmission behavior would allow for comparison with the

attenuation observed in the numerical calculations so far investigated.

The investigation presented here indicates that metaconcrete is capable of improving performance
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under dynamic loading when compared with conventional concrete. The use of metaconcrete provides

the potential for the absorption of energy and the mitigation of the high stresses associated with shock

and impact loading. The studies presented provide an understanding of the theoretical development and

design of metaconcrete for use as an alternative construction material for for blast wave, seismic, impact,

and shielding applications.
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Appendix A

Neo-Hookean material model

A neo-Hookean material model, extended to the compressible range, is used for all of the numerical meta-

concrete slab analyses. The model is described by the following stored strain energy function (Bonet and

Wood, 2008):

Ψ(C) = λ

2
(ln J )2 −µ ln J + µ

2
(I1 −3) , (A.1)

where C is the right Cauchy-Green deformation tensor, which can be expressed in terms of the defor-

mation gradient F as C = FT F, J represents the Jacobian, i.e., J = det F, I1 is the first invariant of C, i.e.,

I1 = trC, and λ and µ are the material coefficients representing the Lamé modulus and shear modulus,

respectively. These material coefficients are the familiar material parameters found in linear elastic anal-

yses.

From Eq. A.1 we can derive the following expressions. The first Piola-Kirchhoff stress tensor is given

by

P = ∂Ψ

∂J

∂J

∂F
+ ∂Ψ

∂I1

∂I1

∂F
= (λ ln J −µ)F−T +µF . (A.2)

The Kirchhoff stress tensor is

τ= PFT = (λ ln J −µ)F−T FT +µFFT = (λ ln J −µ)I+µb , (A.3)

where b = FFT is the left Cauchy-Green tensor. The second Piola–Kirchhoff stress tensor is

S = 2
∂Ψ

∂I1
I+4

∂Ψ

∂I2
C+2J 2 ∂Ψ

∂I3
C−1 =µ(I−C−1)+λ(ln J )C−1 , (A.4)

where I2 = trCC and I3 = detC = J 2 are the second and third invariants of C, respectively. Finally, the

Cauchy stresses can be obtained in terms of the left Cauchy-Green tensor,

σ= J−1FSF−T = 2J−1 ∂Ψ

∂I1
b+4J−1 ∂Ψ

∂I2
b2 +2J

∂Ψ

∂I3
I = µ

J
(b− I)+ λ

J
(ln J )I . (A.5)

The compressible neo-Hookean potential used here represents an isotropic hyperelastic material model.

When the deformation in the material is small, i.e., in the case of small strains, the standard linear elastic

behavior, or Hooke’s law, is recovered (Bonet and Wood, 2008). Thus, since we have only small deforma-
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tion in our analyses, this material model is used for all the constituents of the metaconcrete slab.
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Appendix B

Modeling the blast pressure history
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Figure B.1: Typical pressure-time curves for an explosive blast wave.

The blast wave is modeled as follows. An explosion in air of pressure p0 produces an overpressure

p(t ) in the surrounding atmosphere. This is called the blast wave. The blast wave is formed when the

atmosphere surrounding the explosion is forcibly pushed back, for example, by the gases produced from

a conventional chemical explosive. At a fixed, reasonable distance r from the center of the explosion,

all overpressure histories due to any blast show a similar configuration, see Figure B.1. In particular, the

shock velocities are uniquely related to the overpressure ratios, and thus the peak overpressure uniquely

defines the time required for the shock front to travel out to various distances and the decay time to reach

the original pressure p0. It follows that the shock pressure front reaches the position r at time t = tr ,

where tr is defined as the arrival time. Thus, the air pressure at the observer’s location jumps to the initial

overpressure p0 +P . The overpressure immediately begins to decay, following a pressure-time relation

described by the following quasi-exponential relation, known as the modified Friedlander equation:

p(t ) = p0 +P (1−τ)exp(−bτ) τ= t − tr

Td
t > tr , (B.1)

where Td is the duration of the positive overpressure phase and b is a decay parameter. Blast waves of

the type shown in Figure B.1 are therefore characterized by three independent parameters, i.e., the initial

peak overpressure P , the duration of the blast wave Td , and the rate of decay of the overpressure, dictated

by decay parameter b.
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The characteristics of blast waves caused by explosions have been obtained using both experimental

and analytical means. Values for the parameters of a blast shock wave generated in a nominal standard

atmosphere by a one ton spherical charge of T N T 1 are tabulated in Kinney (1962). To find the description

of any explosion using these standardized tables, a simple scaling principle can be applied by considering

two similarly proportioned objects, i.e., the ratio of the volume of to two spheres. By geometry, this ratio

is proportional to the third power of the ratio of the diameters. Similarly mass and energy, which also

vary with volume, can also follow the third power rule. Applying this scaling principle, two explosions in

atmosphere can be expected to give identical blast wave intensities at distances which are proportional to

the cube root of the respective energy release. That is, to produce a given blast intensity at twice a given

distance requires eight times the explosive energy release.

Utilizing the scaling principles described above, we can define the explosive energy release by the yield

factor λ,

λ=
(

W

Wref

)1/3

, (B.2)

where W is the energy released by the current explosion in air and Wref is the energy released by the ref-

erence explosion. A similar scaled or equivalent distance rs can be computed using the following scaling

law:

rs = fd

λ
r , (B.3)

where r is the actual distance to the shock front, and fd is the transmission factor for atmospheric density

given by

fd =
(
ρ

ρ0

)1/3

. (B.4)

Using this scaling law, the distance at which a given shock intensity is produced by a reference explosion

may be scaled up (or down) to provide a corresponding distance for other explosions. Similarly, a scaled

time ts can be derived:

ts = fd fa

λ
tr , (B.5)

where fa represents the transmission factor for the speed of sound and is given by

fa = a

aref
. (B.6)

The general procedure for computing the the overpressure p(t ) is therefore as follows. Once the lo-

cation of the ignition point, (xe , ye , ze ) has been established, the distance of each surface point to the

explosion ignition location can be computed as:

r =
√

(x −xe )2 + (y − ye )2 + (z − ze )2 . (B.7)

1A gram of TNT releases 4200-4602 J upon explosion. This was arbitrarily standardized by setting 1 gram TNT = 4184 J and thus a
one tonne TNT reference explosion releases 4.184×109 J.
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It is also necessary to identify the energy release rate of the explosion W , the air pressure p0, the sound

speed a0, and the temperature T0 for the given situation. Once the initial parameters have been estab-

lished, Eqs. B.2, B.4, and B.6 can be used to compute the yield factor, density transmission factor, and

speed of sound transmission factor, respectively. Following this, the scaled distance can be computed

using Eq. B.3. These values can then be used to obtain the corresponding overpressure ratio Pr , scaled

arrival time ts , and scaled time duration Td s , by interpolation using Table B.2. The overpressure P can

then be computed from

P = Pr p0 (B.8)

and the characteristic times can be evaluated using

tr = λ

fd fa
ts Td = λ

fd fa
Td s . (B.9)

Once the time from explosion ignition equals the arrival time, the Fridlander equation, Eq. B.1, can be

used to evaluate the actual pressure value. These computations have been implemented in the finite

element code used in the present calculations. Further details and examples of this operative procedure

to compute the scaled parameters can be found in Kinney (1962). Alternative explanations of air blast

theory and blast scaling can be found in, e.g., Baker (1973).
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r p / p0 t T d b M

[m]  [ms] [ms]   

1.524 970.000 0.06 14.8 100.0 28.800

3.048 115.000 0.30 14.5 50.0 9.960

4.572 35.000 0.85 14.0 10.0 5.560

6.096 16.000 1.71 13.3 5.0 3.820

7.620 9.400 2.91 12.4 3.3 3.010

9.144 5.800 4.50 11.4 2.4 2.440

10.668 3.900 6.30 10.7 1.8 2.080

12.192 2.800 8.50 10.8 1.5 1.840

13.716 2.100 10.80 11.7 1.2 1.670

15.240 1.650 13.30 12.8 1.1 1.550

16.764 1.350 16.00 14.1 1.0 1.470

18.288 1.130 18.90 15.0 0.9 1.400

19.812 0.960 22.00 15.6 0.9 1.350

21.336 0.830 25.20 16.1 0.9 1.308

22.860 0.730 28.50 16.6 0.9 1.275

24.384 0.650 31.80 17.1 0.9 1.248

25.908 0.580 35.40 17.6 0.9 1.224

27.432 0.520 39.20 18.0 0.9 1.202

28.956 0.470 43.10 18.4 0.9 1.184

30.480 0.430 47.00 18.8 0.9 1.170

32.004 0.400 50.90 19.2 0.9 1.159

33.528 0.370 54.80 19.6 1.0 1.149

35.052 0.350 58.70 19.9 1.0 1.140

36.576 0.330 62.60 20.2 1.0 1.133

38.100 0.310 66.50 20.5 1.0 1.126

39.624 0.292 70.40 20.8 1.0 1.119

41.148 0.275 74.30 21.1 1.0 1.112

42.672 0.259 78.30 21.4 1.0 1.106

44.196 0.244 82.30 21.7 1.1 1.100

45.720 0.230 86.30 22.0 1.1 1.094

47.244 0.218 90.30 22.2 1.1 1.089

48.768 0.208 94.30 22.4 1.1 1.085

50.292 0.200 98.40 22.6 1.1 1.082

51.816 0.192 102.50 22.8 1.1 1.079

53.340 0.185 106.60 23.0 1.1 1.076

54.864 0.178 110.70 23.2 1.1 1.073

56.388 0.171 114.80 23.4 1.2 1.071

57.912 0.164 118.90 23.5 1.2 1.068

59.436 0.157 123.00 23.6 1.2 1.065

60.960 0.151 127.10 23.8 1.2 1.062

62.484 0.146 131.20 23.9 1.2 1.060

64.008 0.141 135.40 24.1 1.2 1.058

65.532 0.136 139.60 24.2 1.2 1.056

67.056 0.131 143.80 24.3 1.3 1.054

68.580 0.127 148.00 24.4 1.3 1.053

70.104 0.123 152.20 24.5 1.3 1.051

71.628 0.120 156.40 24.6 1.3 1.050

73.152 0.116 160.60 24.6 1.4 1.048

74.676 0.113 164.80 24.7 1.4 1.047

76.200 0.110 169.00 24.7 1.4 1.046

Figure 3: Reference explosion. Point source, yield 1 t, standard atmosphere.

6

Figure B.2: Reference explosion. Point source, yield 1 tonne, standard atmosphere (Kinney, 1962).
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Appendix C

Fabrication and testing of metaconcrete

The numerical analyses of metaconcrete behavior presented in the previous chapters indicate that the in-

clusion of engineered aggregates can enhance the performance of a concrete slab through the absorption

of energy within the aggregates and a reduction in the stress present in the mortar matrix. This chap-

ter provides an outline of some of the practical considerations concerning the design and fabrication of

metaconcrete and metaconcrete aggregates for use in structures and systems under dynamic loading. We

also present a summary of an experimental test that is currently being developed for assessing the energy

trapping behavior of metaconcrete.

C.1 Practical design considerations and the fabrication of metacon-

crete aggregates

As briefly introduced in Chapter 2, standard concrete is a composite material used in many structural ap-

plications. Standard concrete generally consists of two primary constituents; a binding medium, such as

a portland cement paste, and an inert filler material or aggregate, which is generally a graded assortment

of stone, gravel, and sand fragments (Troxell et al., 1956; Mehta, 1986). The proportions of the principal

components are controlled by the need for a workable and placeable wet material, the desire for a hard-

ened mass that possesses the strength and durability required of the purpose, and the cost of the final

product (Troxell et al., 1956).

Roughly one–quarter of the concrete volume is filled with cement, water, and air voids. The cement–

water paste is the active component of the material, providing strength to the concrete in its final hard-

ened state. Concrete hardens, or ‘cures’, from a workable mix to a solid structural material through a

process called hydration (Troxell et al., 1956; McMillan and Tuthill, 1973). This chemical reaction occurs

when water reacts with the hydraulic cement, bonding the components together. Proper curing of regular

concrete to design strength therefore requires the surface to be continually moist, and it takes approxi-

mately 28 days to fully cure concrete so that the chemical reaction is complete (Troxell et al., 1956).

The other three–quarters of the concrete volume is made up of the aggregate material. The aggregates

serve a number of functions including providing a relatively cheap inert filler material, resisting the ac-

tion of applied loads, and reducing the effect of any volume changes resulting from the hardening process
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or changes in the moisture content of the cement-water paste. The properties and material character of

the aggregates result in different concrete properties, changing the workability of the freshly mixed ma-

terial and affecting the strength and durability of the final hardened material. Natural coarse aggregates

may consist of gravel or crushed stone; however, other materials can also be used, such as iron blast–

furnace slag, fly ash, cinders, burned clay, shale, or other artificial lightweight aggregates (Troxell et al.,

1956; Mehta, 1986).

In order to create an effective metconcrete, we therefore need a composite material consisting of meta-

concrete aggregates suspended in an matrix material that will act as a binder and that will also have the

ability to transmit the applied loading. The matrix material could consist of a mortar-like paste, using a

portland cement and water mix combined with a fine sand aggregate.

(a) (b)

Figure C.1: Mold used to cast three 24 mm diameter aggregates; (a) inside of casting mold, (b) closed
mold.

To test the manufacturability of metaconcrete we fabricate prototype metaconcrete aggregates using

a casting method. We specifically look at the aggregates investigated in the numerical simulations, and

fabricate prototype aggregates with the dimensions given by Configuration C described in Chapter 2. We

use a silicone rubber mold made specifically for the purpose, shown in Figure C.1. The flexible mold

material allows for easy release of the casted aggregates, maintaining its shape after every use by exhibiting

high tear resistance and low long term shrinkage which allows for many repeated castings.

To create the metaconcrete aggregate prototype we use a platinum–cure silicone rubber material for

the coating layer, the properties for which are given in Table C.1, layered over a spherical lead core. As

indicated by the transmission analyses of Chapter 3, this softer coating will provide a band gap at a lower

frequency and is therefore suitable for lower frequency applied loadings. We choose a fast cure translucent

rubber, which allows the aggregate to be easily cast in two stages. First a 3 mm deep section of coating
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Table C.1: Material properties of the silicone rubber aggregate coating.

Property Value

Mixed viscosity (cps) 11,000
Specific gravity (g/cm3) 1.08
Specific volume (m3/kg) 0.000925
Shore A hardness 20
Tensile strength (MPa) 2.896
100% Modulus (MPa) 0.324
Elongation at break (%) 470

material is poured into the mold. This is allowed to cure until it can suspend the weight of the core, after

which the spherical core is placed in the center of the mold, the mold is closed, and the rest of the coating

is cast. This method creates an aggregate with a 3 mm silicone rubber coating covering a 18 mm diameter

lead sphere. The cast aggregate along with a cross section are shown in Figure C.2.

(a)

silicone rubber
coating 

lead core

3 mm

18 mm

3 mm

(b)

Figure C.2: Metaconcrete aggregate of configuration type C with a silicone rubber compliant coating: (a)
cast aggregate shown alongside a lead core and an aggregate that has been cut in half, (b) cross section of
an aggregate showing the dimensions of the core and coating.

The numerical simulations considered metaconcrete slabs with 27-50% aggregates by volume. This

equates to between 37,000-69,500 24 mm diameter aggregates per cubic meter of metaconcrete material.

To cast metaconcrete for construction purposes, and to generate the energy absorption properties de-

sired, a very large number of aggregates would therefore be required. The casting method proposed here

could be used, or adapted, to manufacture the high volume of aggregates necessary with relative ease. It

would be possible to create molds for casting a larger number of aggregates and also to alter the mold so

that the aggregates could be cast in a single step. Specific molds could also be made to cast aggregates of

different sizes and coating materials, based on the required properties of the aggregate as recommended
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by a tuning assessment.

In the numerical simulations, a periodic array of aggregates was used to test the properties and per-

formance of metaconcrete. In the practical implementation of metaconcrete, a similar periodic structure

could be created using a grid or truss stucture to suspend the aggregates in the correct arrangement so

that the mortar can be poured around them. Alternatively, the aggregates could simply be mixed into

the mortar in the same way as the stone and gravel aggregates of regular concrete. A periodic arrange-

ment of aggregates in this case would not be possible, however, manufacturing metaconcrete in this way

would allow it to be mixed and poured as an alternative to standard concrete for the specific case where

resistance to dynamic excitation or impact is also required. In fact, in the study of acoustic crystals with

locally resonant inclusions, Mei et al. (2013) suggested that the periodicity of resonant inclusions may not

effect the band gap behavior and transmission attenuation properties of the material. It is therefore pos-

sible that an exactly periodic array of aggregates is not necessary to achieve the favorable behavior seen in

the numerical simulations of metaconcrete slabs. Although non–periodic arrangements of metaconcrete

aggregates have not yet been studied, this is certainly an area of future investigation that will aid in the

practical implementation of metaconcrete for construction.

A metaconcrete material consisting of the cast aggregates described above mixed into a sand–cement

paste could be poured and cast for use in many impact and blast protection applications. The wall panels

discussed in Chapter 1 utilized either standard or fiber reinforced concrete to absorb energy and reduce

the effect of blast loading. Metaconcrete could provide an alternative to these materials. Being specifi-

cally designed to absorb energy and reduce mortar stress, metaconcrete would greatly enhance the per-

formance of a blast or impact shielding panel. Metaconcrete could be poured or cast into a standard wall

panel, or it could replace the fiber reinforced layer used in a layered composite panel, such as those pro-

posed by Christian and Chye (2014). It may also be possible to use metaconcrete as a grout for the infill

of masonry walls that could be utilized in shielding or blast protection structures. Another possibility

would be to use a fiber reinforced cement matrix with the metacocncrete aggregates, thus combining the

advantageous properties of both materials.

Since it is possible for metaconcrete to be cast in place, it would also be viable to use metaconcrete

in combination with steel reinforced concrete sections. This would allow metaconcrete to be used for

structural purposes with the additional ability to provide protection from dynamic loading. In this case,

the size of the aggregate would need to be designed so that it is smaller than, and does not interfere with,

the reinforcing spacing.

Another important consideration is the amount of fracture and spalling of the concrete surface al-

lowed for the particular application being considered. Flying concrete fragments pose a significant safety

risk to building occupants and facilities. In the analysis of fracture behavior in Chapter 5 when lower

explosion yields are used the damage in the metaconcrete slab is limited to the volume near the front

exposed face and the aggregate are able and slow the propagation of the stress wave. This therefore im-
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plies that even with damage around the front section of the slab, the aggregates still perform well and can

absorb a significant fraction of the mechanical energy. Thus, for the practical implementation of meta-

concrete, it would be possible to use a protective coating on the front surface of the slab for larger yield

events. This would prevent excessive spalling and any catastrophic damage to the exterior of the slab,

enabling the metaconcrete section to maintain its structure while still performing its energy absorbing

function. This light protective barrier could be a carbon fiber reinforced polymer layer or a polyurethane

coating such as those discussed in Malvar et al. (2007), or a glass fiber reinforced coating such as those

successfully used by Garfield et al. (2011) in the investigation of wall panels under blast loading.

Other practical design considerations should also be evaluated before any large–scale manufacturing

of metaconcrete. The use of lead for the heavy core material poses a pollution issue, and may not be suit-

able for certain applications. Other materials with high density or metal alternatives may be appropriate.

In some cases, it may also be necessary to consider the use of a protective casing for the aggregate, e.g.,

steel or plastic, that will prevent any degradation of the coating or shape change of the aggregate when

mixed, poured, and stressed under self-weight or static loading conditions. The durability, compressive

strength, static properties, and the level of adhesion between the aggregates and the matrix are other fac-

tors that should also be considered.

C.2 A non–destructive experimental test

Metaconcrete has been shown to provide a beneficial transfer of energy and a reduction in mortar stress

when subjected to a blast wave profile in the elastic regime. In order to verify the energy trapping observed

in the numerical simulations, we design a simple experiment to non–destructively test a metaconcrete

specimen. The experiment intends to activate resonance and the energy trapping properties of the meta-

concrete aggregates by generating a loading between a striker bar and a metaconcrete specimen. The

geometry and elastic modulus of the coating material determine the resonant frequency of the aggregate

and thus the theoretical required wave frequency for energy absorption.

The experiment consists of a striker bar impacting on a cylindrical metaconcrete specimen. The spec-

imen is initially at rest and the system uses the pendulum arrangement shown in Figure C.3. The striker

bar is raised to a height h1 and then released from stationary so that it reaches the specimen with a veloc-

ity v−
1 , where the superscript indicates velocity before impact. The specimen then swings to a maximum

height h2 and the striker to a height h3, both of which are measured using a video camera. Therefore,

the known quantities are the mass of the striker and the specimen, m1 and m2, respectively, and the ex-

perimentally measured heights h1, h2, and h3. From this information, we compute the amount of energy

absorbed by the metaconcrete aggregates Ea , along with the efficiency of the metaconcrete sample, which

is based on a comparison of this result with the total input energy. Using an energy balance, the energy
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Striker
݉ଵ, ݄ଷ	ଵ,ݒ

Specimen
݉ଶ, ݄ଶ	ଶ,ݒ

݄ଵ

Figure C.3: Impact test pendulum experiment showing the striker bar, released from height h1, impacting
the specimen.

absorbed by the metaconcrete aggregates is given by

Ea = m1g (h1 −h3)−m2g h2. (C.1)

The efficiency can be expressed as the fraction of the supplied energy that is trapped within the metacon-

crete aggregates. The supplied energy is given by the total potential energy of the striker before release,

thus the efficiency is

Efficiency = Ea

g h1m1
. (C.2)

We can therefore compare the efficiency of a metaconcrete specimen to that of a regular mortar speci-

men by completing identical tests on the two samples. Any difference between the two results can be

attributed to the presence of resonant aggregates within the metaconcrete specimen and this will allow

us to approximate the amount of energy trapped by the metaconcrete aggregates.

A metaconcrete sample can be cast by arranging the aggregates shown in Figure C.2 in a cement–sand

paste that forms the mortar matrix. A sample excluding the aggregates can also be cast and used as a

comparison. For the particular experiment shown in Figure C.3 we use a 4"x6" standard concrete testing

cylinder to create both mortar and metaconcrete specimens. An example of a cast specimen is shown in

Figure C.4.

The experimental arrangement displaying the hanging test specimen and the striker bar in the release

position is shown in Figure C.5. The release mechanism for the striker bar is designed so that consistent

release heights can be obtained. A small diameter rope with a very low static elongation ratio is used to

suspend the striker bar. The rope is set at a fixed length so that the same release height can be achieved on

repeated runs. The rope is suspended from a pin which is quickly removed to initiate release and thus the

beginning of the experimental run. In this particular experiment a PVC striker bar was used to impact the
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Figure C.4: An example of a 4"x6" cylindrical test specimen.

specimen, with a length specified by the resonant frequency of the aggregate configuration considered.

Figure C.5: The experimental setup showing the release position of the striker bar and the rope and pin
mechanism.

Still images from test runs of the experiment are shown in Figure C.6. Figure C.6(a) shows that initially

at–rest test confgiuration and Figure C.6(b) shows the maximum swing height after impact for a striker re-

lease height of 30 cm. Heights are measured from the images by finding the distance between the marked

points on the specimen or striker at both the rest position and maximum height after impact, using a
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(a)

(b)

Figure C.6: Still images captured from an experiment test run using a metaconcrete specimen and a striker
bar with a release height of 30 cm: (a) initial at–rest configuration, (b) maximum specimen height after
impact.

calibration ratio along with the number of image pixels to compute vertical heights in centimeters.

Work on this experimental program is currently ongoing and it is hoped that further investigation will

lead to a greater depth of understanding which will aid in the design and practical implementation of

metaconcrete systems.
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