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EXPERIMENTAL. 
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INTRODUCTION. 

In October 1922, Arthur Compton discovered 

that monochromatic X radiation when scattered by elements of low 

atomic number contains longer wave lengths not originally present 

before scattering in addition to the initial primary line. This 

"softening" by scattering had been observed previously by absorp­

tion methods in a qualitative way, but Compton's discovery con­

sisted in showing quantitatively the precise nature of this 

shifted radiation, namely, that it appeared as a rather broad 

diffuse "line" differing in wave length .from the primary line b'y 

a wavelength difference of 

Subsequently other investigators, Compton and Woo,Webster,Ross, 

Becker,Sharp,Allison and Dua.ne,Dauvilliex and many others 

obtained both by photographic and ionization chamber methods 

definite evidence for the existence of the "shifted 11 line. 

Almost invariably this shifted line has appeared broader and more 

diffuse than the unshifted line which almost always accompanies 

it. The primary line generally used is the Ko( doublet with a 

separation between its componen..ts, of 4 X ,U.. The author knows 

of only one case in which this doublet appears even faintly 

resolved in the shifted position though it is almost always 

partially resolved in the unshifted positions. This exceptional 

case is a photograph taken by Ross of the scattered radiation 
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from a moleyqdenum target with alur::inu.'TI as the scatterer. This 

photograph remains unexplained today. It has not been 

reproduced •. 

EXPERIMENTAL CAUSES OF BREADTH OF THE SHIFTED LINE. 

The diffuse nature of the shifted line may either be 

ascribed wholly to experimental causes or it may be in part at 

least a natural breadth whose explanatton- must be sought in the 

process of scattering itself. Possible experimental causes are, 

1. Imperfections in the analyzing ccryst~i. 

2. "Cross .fire 11 (especially when combined with imperfections 

or distortions of the analyzing cr,tstal). By "cross 

fire 11 is meant the presence of rays whose reflection 

angles at any one point on the crystal lie in planes not 

mutually parallel. When the source of the radiation 

falling on the analyzing crystal is virtually. a point 

cross fire is unimportan~. With an extended source it 

assumes considerable importance. Consider for example a 

scattering body the source of scattered radiation sending 

radiation under the wedge of a Seeman t-ype crystal 

spectograph with a wedge length soriewhat less than the 

dimentions of the scatterer. Evidently every point on 

the photographic negative recdives nadiations from the 

entire height of the crystal over. the full length of the 

wedge. Those rays reflected under the wedge in a plane 

normal to the wedge will form a spectral line on the 

negative in a slightly different position from those 

reflected in planes oblique to the wedge. With a point 
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source this effect gives the spectral lines a slight 
·l 

curvature. They are in fact short segments of hyper-

bolae. With an extended sourcehov1ever the superposition 

o:f all such hyperbol,ic segments from all the points of 

the source results in a broadened line. Furthermore~if 

the crystal is inperfect either naturally or due to 

elastic strains introduced in mounting,a point source will 

give a slightly crooked line while an extended source will 

give a broadened line the result: of translating such a 

crooked line along the general direction of its own length. 

3 •. Inhomogeneity of scattering angle. Since the shift is 

lmown to depend on the scattering angle, inhomogeneity of 

scattering angle will result in inhomogeneity of shift and 

a consequent br•oadening of the shifted line. 

Of the three causes listed above evidently l and 2 affect the 

unshifted line to the same extent as the shifted line. They are 

not therefor sufficient to explain the greater breadth of the 

shifted line. As a matter of fact the writer has succeeded in 

obtaini11g unshifted scattered lines as sharp as the primary lines 

from a point source and the explanation for the diffuse unshifted 

so frequently observed is to be found under either cause i or 

cause 2. · Cause 3,however, must be eliminated before the dif'fuse 

charqeter of the shifted line can be established as an intrinsique 

effect of scattering. 

THE EFFECT OF A SCAT'PERING ANGIE OF APPROXIr."ATELY 180?. 

Since the shift is proportional to ( l - t:h<l (:) } where 8 is the 

scattering angle the shift is evidently a maximum when () -=I 80<!'. 
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Erom a cons idera ti on of the ace ompanying figure ( l) it becor'"1es 

evident that~ in the vicinity of f:) • 180° the inhomogeneity of 

shift due to a 'given inhomogeneity of sea tter ing angle is reduced 

to a very small rninimwn. There are 

tgus two reasons why this region 

is a desirable one for the study 

of Compton line structure. 

On the. other hand, the region 

near 180° is a difficult one to 

attain. Evidently exactly 180° is 

unattainable for here either the 

source of pr:Unary radiation inter­

f'eres with the returning sea ttered 
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beam or the spectrometer interferes with the primary bean. 11he 

primarw radiation is many thousand tirres more intense than the 

spectroscopically analysed scattered radiation. Evidently then 

with large angles of scattering very serious difficulties arise 

from the necessity of completely screening off this very intense 

primary radiation which would otherwise completely mask the 

spectrum to be studied. 

Inhomogeneity of scattering angle is unavoidable because the 

primary :radiation incident on the scatterer coming from t}4e source 

of X rays in order to possess any finite intensity nust subtend 

a finite solid angle at the source. 

'rhe great loss of intensity in the scattering process and in 

the subsequent spectral analysis makes very long exposures 

necessary even when any intense primary radiation is used. It is 

therefor desirable to have a maximum pr L"Tlary X-ray intensity 

incident on the scatterer. 
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The "Target Spectrometer" shown in Fig. (2) was developed to 

meet the general requirements and difficulties of the problem 

just discussed. Four such spectrometers were built during a 

period of two years before a s5~isfactory design was obtained. 

Some of the difficulties encountered" were, 

1. Mailtltaining the box containing the crystal and scatterer 

sufficiently cool not to damage either of thewe. 

2. Developing an adequate seal and support for the heavy 

target structure. 

3. Avoiding pitting of the molybdenum button with consequent 

cutting off of the radiation from the focal spot to the 

scatterer. 

4. Avoiding evaporation of the molybdenum and its subsequent 

deposition on the scatterer. 

5. Holding electrical conditions constant over long con­

tinuous exposures. 

6. Insuring that the radiation studied came from the scatterer 

only. 

7. Alignement of the camera. 

8. -Maintainence of high -vacuuin for long periods. 

9. Avoiding shifting or vibration of the spectral image on the 

film during prolonged exposures. 

10 .Focusing tre electron stream from t~e cathode on the opening 

of the target spectrometer box. 

At the atart great pains were ta.ken to minimize the effects of 

electrons reflected from the focal ppot of the target. It was 

feared that these would excite general radiation as they struck 

the scatterer and that this general radiation would completely 
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mask the er.feet saught. To avoid this the tube was originally 
~ 

designed with the target spectrometer box supported upon the 

target with several millimeters clearance by means o.f six 

insulating quartz studs. The box was then held at a potential 
I 

intermediate between cathode anqtarget of such a value that the 
. ' 

short wave limit of the continuous spectrum due to the bombard-

ment of the scatterer by reflected electrons fell outside the 

region to be studied. The intermediate potential was maintained 

through a third wire sealed in through the wall of the tube and 

connected at the proper point in a long high resistance shunted 

across the tube consisting of tap water running through a con-

siderable length of glass tubing. These precautions were found 

upon trial to be entirely unnecessary and were abandoned in 

subsequent designs. 

DETAILS OF TECHNIQUE. 

-The methods of overcoming the difficulties listed above 

will now be taken up in the order in which the difficulties were 

numbered. 

1. Cooling. The tap water for oo:Oling the tube was lead in 

through a length of 9 meters of i inch glass tubing in the shape 

of a zig~ag supported on a varnished redwood frame and the water 

discharged from the tube was led back to the grounded drain 

through a similar glass zigzag supported on the same frame. This 

arrangement permitted the water cooled anode of the tube to be 

raised to 30K.V. above ground with only a small current leak back 

through the colling water. The tube could thus be operated with 

ground potential half way between the potentials of anode and ca-

thode. 
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It was ~pund that even with the cathode beam well focused 

inside the hole provided for it in the target spectrometer box 

sufficient heat was developed by stray electrons impinging on 

the box to melt an aluminum scatterer and seriously damage the 

box. A shield shown in Fig. (2) was therefor provided and kept 

cool by means of auxil ia.ry copper tubing brought in through a 

hole in the water colled anode and soldered to the latter with 

silver solder. One end of this tubing opened directly into the 

hollow anode while the outlet end was lead ontside the tube 

through the anode alonside the main a.node intake tube. The 

cooling water thus had two parallel paths and to insure that 

flow was maintained in both simultaneously small glass Venturi 

tubes were employed in the two parallel water circuits just before 

these recombined to discharge through the long glass zigzag. 

Many exposures lasted more than a week running night and day. 

Any stoppage of the coOling water would result in destruction of 

the tube and to prevent this a protective device operated by the 

water pressure at the intake end of the glass zigzag was used. 

This consisted of a length of expansible copper "~ylphon" tubing 

arranged to hold open an electrical contact against the pressure 

of a spring when water pressure was admitted to the Sylphon. If 

the water was accidentally cut off the closing of the electrical 

contact threw a short circuit across a pair of electrical circuit 

breakers in the mains supplying current to the ent i:r•e set. 

A breakage in the glass intake zigzag would have the same effect 

since the pressure in the sylphon could only be built up 

sufficiently by the hydrod;rnamic resistance in both intake and 

outlet zigzags. 
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2. 'l'he seal. 1rhe first models of the target spectrometer 
~ 

tube were made with soda glass walls. The seal in this case 

was made directly to the thin platimrn cone silver soldered on 

the copper stem of the targets manufactured by the General 

Electric Co. In the course of modifying the original design tubes 

were blown in irregular assymetrical shapes. One of these #or 

example had a large dome shaped protuberance containing a CTagnetic 

vane which ·could be rota. ted from the outside by a magnet and 

which transmitted an axie.l sliding motion to the target spectro-

meter box so that the angle of scattering could be varied at 

will. All the tubes had to be provided with a depression in the 

glass on the side wher·e the spectrum issued from the tube and 

entered the ca.""!lera. This depression permitted close approach of 

the snall openi11g in the ca.;1era to the small opening in the 

spectron;eter box inside the tube. -Jithout such c+ose approach 

general radiation would filter into the camera and fog the ex-

posu:t"e. It was found very difficult to sucessfully blow ,assemble 

and seal such cor:iplicated and irregular tubes when soda glass 

was used. Also the baking out temperatuxes during evacuation 

could not be raised to satisfactory values wlthout danger of 

collapse with soda glass. For this reason the last two rr,odel.s 

were bui1t of pyrex glass and a large disc of copper silver 

soldered to the stem of the target was used as the seal. It was 

necessary to make the silver soldered joint after the glass to 

copper joint as the silver melted at lower temperature than pyrex 

gl~ss. To maintain the heavy target and spectrometer box 

accurately aligned in the tube so that the cathode rays would 

always enter the hole provided for them, a special steel cylin­

drical linernot shown in figure (2)~ was constructed in two 
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halves to be fitted. to the stem of the target at the proper 

stage in the assembly. A cross section of this lineris shown 

in Fig. (3)~ Slots cut in the cylindrical walls of this liner 

made it possible for the line(tto be in elastic contact with the 

glass walls without danger of· b!'ll:lking them. 
' 

3. and 4. The pitting and evaporation of the target 

material we~e found to be very troublesome, Through a small hole 

in the scatterer described below the aurface of the target could 

be exa~ined wihhout opening the tube by means of a short focus 

telescope. When serious pitting and sublimation on the scatterer 

had occured this would be detected also with a .fluoroscope b:y a 

considerable reduction in the intensity of X-rays filtering out 

through the scatterer. ay experiment in this way it was found 

unsafe to run the tube with more than 10 m. a. at 50 K. V. As the 

efriciency of production of X-rays is proportional to the voltage 

the great advanta.ge of high voltages is apparent when this 

limitation is placed on the power input. On the other hand 

exposures are at best so long and expensive(the continuous use of 

littuid air was required to ma:lntain vacuum) that the tube had to 

run as near the safe limit as possible. Great di~ficulty was 

encountered maintaining the current constant at 10 m.a • .for a 

week at a time without momenta.r•y increases which would instantly 

ruin the tube. The current through the tube depends very sensitively 

on the temperature of the cathode filament and hence on the 

current supplying that filament. Exposlires were too long to 

permit the use of storage cells alone for this purpose and the 

filament was supplied with alternating current through an insula­

tion transformer whose primary was connected to the supply mains. 



( 1 ,-, ) 
-.i- .. .:i 

rtlament Ly/Jt1i}9 Co!lnec/Jolls, 

Fig. ( 4) 



(13) 

Fluctuation in voltage of the supply mains of as: much as 10% 

between nigh€ and day at the most diverse and unexpected timew 

were encountered. These were quite sufficient to produce fluc­

tuations Of '-many milliampel"'0S in the tube current and On several 

occasions.several months work was ruined in a few seconds in this 

way. An induction voltage regulato:r:-- was resorted to to maintain 

constant supply voltage at first but subsequently a better method 

was found. · 

5. Method of holdJ.ng constant tube current. This consisted 

in supplying the filament of the tube with current from a battery 

of storage cells through a set of "ballast lamps 11
• These ballast 

lamps through change in their resistance with temperature tend 

to maintain constant current. The battery of storage cells was 

maintained in a fully charged state at all times by current from 

an insulating transformer rectified by a. tungar bulb. Resistances 

both in series and in parallel with the tube f ila.ment permitted 

adjustment of the tube current in spite of the constant current 

characteristic of the ballast lamps. Fig. (4) shows the connections 

diagrana tically. This scheme has proved most stable and satis­

factory. 

6. To insure that the spectrum incident on the film represents 

radiation coming only from the aluminum scatterer, four possible 

sources of trouble must be eliminated. First the cyrstal must 

be so oriented by turning the small cyiindrical housing that the 

spectral region to be studied (about lCDOX.U.on each side of' Mo l{o<) 

comes exactly from the center of the scatterer. This was accom­

plished at the proper stage in the assembly of the tube while 

the target spectrometer was still accessible by temporarily ren_oving 

the scatterer and covering the outside end of the scatterer 
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cha·mber with two tiny lead foil sheets ao as to define a 
~ 

narrow slit exactly in line with the center of the scatterer. 

X-rays f'rom another molybdenum tube were then caused to pass 

through thi·s slit and fall on the Seeman Spectrograph on the 

opp.as i te side of the target spectrometer box. The cylindrical 

crystal housing was then oriented by means of a long lever eh-

gaging in a small hole provided for this purpose until the 

line would be seen on a fluorescent screen pibaced in f'ront of' the 

target spectrometer. When the proper setting was obtained the 

cylindrical crystal housing was clamped in position with set screv1s 

and a photograph of the Mol\o< 1 ine as reflected from the crystal 

was taken a~ a check. The spectral band of continuous radiation 

defined by the width of the narrow slit between the two lead 

leaves ~cross the scatterer opening ~ould plainly be seen on 

these exposures and it was generally possible after a little 

practice to set the crystal so precisely that the Mol~line would 

fall quite accurately in the center of this region. The crystal 

used was a small piece of q~artz the reflecting face or which was 

a very good natural surface and the other five faces were ground 

to fit the recess in the housing. The wedge was of copper faced 

with platinum and approached the face of the crystal having an 

opening -of less than 0.1 mn'_. This combination gave extremely 

sharp lines. It was possible at a distance of 75 cm. to complete­

ly resolve the Mo Ko< doublet whose separation is 4 x.L.L. • 

Second, the direct radiations from the focal spot of the tube 

must be thoroughly sereened from the crystal and f'rom the opening 

of the camera. This was accomplished by means of the small 

piece of heavy sheet platinum bent into an,' L shape shown in 

Fig. ( 2). The inward 1 ip of this platinum ehee t was carefully 

placed so that no stray electrons fron the cathode ray beam 
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coµ.ld impinge upon it and excite primary X-rays which might 
.. * 

pass into the spectrograph. This sheet formed one of the walls 
. . 1 

of a shallow channel of rectangular cross section
1
-" x 
.6 

which the sc·attered radiation from scatterer dould pass 

!udown 
4 

to the 

spectrograph but whose alignment prevented the passage of any 

direct radiations. The other face of the platinum prevented 

any direct radiation from filtering through the copper housing 

into the camera. As a further precaution the face of the target 

l tr 
was turned off in the lathe to a depth of about except for a 

16 

button of molybdenum at the center about in in diameter. This 

projecting button was then filed off at an angle of about fifteen 

degrees facing away from the spectrograph and camera and toward 

the scatterer. The focal spot was in the center of this beveled 

face and or s omewha.t smaller diameter. 'I1hird, since the entire 

interior of the target sre ctrometer box is bathed in p:Dimary 

X-radiation the interior surfaces of copper will scatter X-rays 

of the same order of intensity asthe scatterer. By carerul 

attention to the geometrical design of this box,however, the 

possibility of any such scattered radiation from the copper 

interior getting to the spectograph was completely elL~inated. 

Four th, the glass walls of the tube and the outer surfaces of 

the target ape ctrometer box were found to be faint sources of 

X-rays during the operation of ~he tube. This was doubtless the 

result of stray and reflected electrons. This effect was 

minimized on the side toward the camergq by bringing the glass 

wall as close as possible to the copper target spectrometer box. 

The slit shaped opening in the camera through which the spectrum 

l" from the tube entered was made as small as possible, about i 6 wide 
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by t 1' long to minimize the amount of stray radiation which 
~ 

could enter the camera. To further reduce the intensity of this 

stray radiation entering through the small opening in the camera 

diaphragms were disposed inside the camera so as to cut off all 

radiation not propagated in the same direction as the spectrum 

itself. One of these diaphragms was removalble and the opening in 

it was provided with a thin piece of black paper opaque to iY'i.-ible 

, light but transparent to X-radiations. In this way the camera 

could be loaded with bare film without danger of fogGing by visible 

light entering through the small opening provided for the X-ray 

spectrum. This precaution was taken to avoid the scattering 

during prolonged exposures of X-radiation by a black paper envelope 

f;n c:iose proximity with the film which would be much more serious 

than scattering by the black paper diaphragm 70 cm. away. In the 

final improved design the camera was built 25 cm. longer than the 

distance from crystal to film required. This extra length was 

provided to reduce the scattering from the rear end of the camera 

back onto the film. Also the wooden back pressing against the 

film to hold it in place was abandoned and replaced by a. pair of' 

metal spring clips holding the film by two of its oppisite edges. 

Thus there was nothing behind the film except the lead back of the 

camera 25 cm. distant. ~bis lead back could not be omitted as the 

slight general X-radiation in the roorJ was found sufficient to f'dlg_ 

the film during long exposures. Indeed, the quthor discovered by 

accident in this way that the Kenetron rectifier tubes lilsed 
with 

in connectfumt:i. ::,· the set were faint sources of X-rays even when 
' '\., 

run with ample filament heating current so as to exceed by a 

liberal margin the emission of the X-ray tube. It was decided 
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that this was diue to def'ective vacuum in the Kanetrons. 
~ 

. 7. Alignment of the Camera. The above mentioned preca.utions 

for screening o:ff stray radiation (small C"lmera opening and 
. ' 

restr:i.ctive ·diaphragms) introduced difficulties in aligning the 

external lead camera with the spectrum emerging from the X-ray 

tube. It was very disappointing to find after a 100 hour 

e~oosure that the alignement of the camera had been.faulty. To 

. avoid this the scatterer was :nade in two equal halves with a 

slight opening between. The plane of this opening produced was 

at right angles to the wedge and the crystal and cut the wedge at 

its midpoint. Visible light could be projected through this 

opening from the scatterer side of the tube. 'I'his light was 

reflected on the crystal under the wedge in the same direction as 

the X-rays. Looking from the near end of the camera with the 

diaphragm and black paper at the front end T'emoved, this light 

could be seen as a bright point in the center of the small front 

opening in the csJnera when the correct alignement had been·attained. 

8. and 9.Maintenance of high vacuum in the X-ray tube by 

continuous operation of difrusion pumps was not feasable because 

of the vibration due 4io the btJiling mercury. During the long 

exposuT'es,vibrations or jars causing shifting of the spectrum 

relative· to the film:. we:t'e greatly to be feared. Also it was found 

that a higher vacuum could be maintained by baking out the tube 

with a side tube full of cocoanut c.harcoal heated to 350° c,then 

sealing off the pumps and keeping the charcoal in liquid air 

than by continuous operation of the pQmps. As either method 

would have required liquid air the charcoal tube was to be preferred. 

The danger of vibration during exposures we.s greatest at the time 
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when the liquid air had to be replenished, about twice a day • 
. , ~ 

It was found safer to cautiously remove the bottle .from the 

charcoal tube than to try to fill it in place with a syphon. 

10. Irr "the earlier designs the cathode beam was so large that 

a good proportion of the tube current went to the spectrometer box 

instead of entering the hole and impinging on the target itself. 

'J.'his caused exce1rsive heating o:f the edges o:f the hole and great 

loss of usef·ul intensity. In the design with irmulated spectrometer 

box this waste current could of course be meaeured and was ~ound 

to be 25~ of the total current. The useless radiation excited 

around the edges of the hole could be observed with a pinhole 

camera and .fluoroscope. This difficulty was finally corrected by 

enlarging the hole and by the use or a special sharp focus cathode 

kindly presented the author by Dr. Coolidge. of the General ~lectric 

Co. In t~e later models the edges of the defining hole in the 

water e::ooled shti.eld were protected with molybdenum. ··11he problerr: of 

aligning the cathode so as to aim the beam exactly in the center 

of this ho1e was purely a question of glass blowing techniqµ.e. 

'l'he success obtained by rr. Clancey in this direction is a tribute 

to his skill and ,judgement. 

EXPOSURES. 

In all about forty exposures were made with the target 

a.pectrometer tube var;ring in exposure time from tan to 100 hours. 

One two-hundred hour exposure was made. Two <lfif'fer.erlt., scattering 

materials ,Alu.111inum and tleryll ium, were used. Very satisfactory 

photographs of the Compton shifted radiation could be obtained in 

twelve hours with Beryllium, but· fifty to one-hundred hours was 

barely sufficient with Aluminum. Of all the exposures made only 

six were considered good enough for study. 'l'he lohger exposures 
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were subject to accidental shut-down ~t unexpected times fre-
~ 

quentlyin the night due to many causes such as temporary cut 

off of the water supply, shut down of the electrical power with 

opening of the breakers when the power came back, premature 

evapora.t:i!m of· the liquid air fo1lowed by gas-out from the 

charcoal and an arc ove:r in the tube, accidental .flash-over in 

the high tension parts of the fiquipment. Many of these interrup­

. tions did no .. damage to an exposure but merely amounted to so much 

ntime out". In order to ascertain the exact duration of an ex-

posure subject to interruption at unknown times, a special eight 

day exposure clock was built and mounted on the main switch hoard. 

Beside the hour and minute hands, this clock was provided with a 

day hand. An alternating current magnet in this clock held open 

a detent as long as power was on the switch board but any inter-

ruption in the operation of the set opening the breakers would 

cut off power from tb.e magnet and allow the detent to stop the 

balance wheel of the clock. If power merely was cut off and 

turned on again without opening the breaker•s the clock would stop 

and then start itself by the action o.f the de tent. 'rhe clock was 

set at zero when an exposure began and indicated not ti:re of day 

but net tnne of exposure. 

ANAI,YSIS OF FILMS. 

The fil:ns were analysed with a m;icrophotor,,eter constructed 

at this Institute and employing a bismuth-tin alloy thermo-couple 

pr·esented to the Institute through the kindness or jts constructor, 

Dr. Pettit of the tit. Wilson Observatory. The rricrophotometer was 

provided with two sets of slits before and behind the film to be 
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analysed. ~:.'he second slit greatly increases the sharpness of 
" 

definition. The light from the source, a 6 volt street lamp 

running on ~torage batteries for ccn stancy was condensed on the 

first slit. The image of this illuminated slit in turn was 

focused with a microscope objective on the film to be analysed. 

This image again was foo~uced by a second microscope objective on 

the second slit which was carefully set parallel to the first 

slit and exactly in the center of the iJltlminS.te"d 1.mage. The light 

from the second slit was finally condenead and minified down by 

a large aspherical J~ns to a spot sufficiently small to be 

entirely received on the lr:"m. diameter disc of the thermocouple. 

The principal requirements of this optical system were a long, 

narrow, intensely and uniformly illuminated slit image on the 

film and all o:f the light from this image concentrated finally 

on the lmm. diameter disc. of the therrriocouple. The a;uthor 

succeeded in obtaining slit images on the film 8mm. long, fulfilJ.-

ing these requirements. The long slit image was necessary on 

accoubt of the prominance of film grain. r11he spectral lines on 

fil>ms were about 25 mm. high. The accidental fluctuations in the 

r::icrophotoT'leter curves caused by the grain of tbe film tend to 

be averaged out with a sufficiently long slit image without any 

loss of definition in the spectral curve itself. In practice, 

the sJi t image 8 mm. high was made to explore the spectral distri-

bution in a number of different regions of the 25 mm. height of 

the lines on the f ilrr:s so as to obtain a number of different 

curves frorr. the sarre film. The accidental fluctuations on these 

films were then further reduced by taking the numerical average 
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.of the ordinates as read off the diffe1'ent curves. Ordinates 

were read at intervals of 1 ni.m. andin some cases every half mm. 

About 200 ordinates were generally ·pe·aa for .each microphotorueter 

curve. '.Chis' was done by laying the plate on which the micropho­

tometer curve appeared on a sheet of l mm. ruled cross section 

paper and estimating ordinate readin;:t:s to O.:}. mm. The work was 

a little hard on the eyes but with a well arranged light and an 

ordinary reading glass it could be done quite rapidly. 

The authOl" wishes to express his deep appreciation or the 

valuable assistance given him in this part of the work with the 

rr~icrophotorneter by Mr. Harry Kirkpatrick. 

The spectrai lines appear superposed on a rather heavy, 

smooth, continuous background. In the case of the curves from 

the alu..111inum sea tterer, the background diminished rather rapidly 

in intensity toward longer wave lengths. To avoid the dissymetry 

thus introduced in the line structure a smooth curve was drawn 

tfil>ough the backgnound with a spline and interpolated into the 

region of the Compton line. This curve was then subnracted rrom 

the observed line structure giving the curve shown in Fig. (5). 

'l.'his expedient was not necessary in the case of Beryllium as the 

background was sensibly uniform. 

'L'he. Alurrinum curve shown in Pig. ( 5) is the average of tein 

microphotometer curves taken on the best two films. The Berylli'Ur:l 

curve is the average of these microphotorroeter c'UJ'111es taken on one 

film. In the caue of Beryllium two other filns were obtained, 

both being in general agreement.with the one here shown. These 

two exposures were of longer duration than the one whose intensity 

curve is reproduced here. 'rhey were not used because they we1·e 
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ratrer dense and sone halation or mechanical shifting of the 

image ,or both,~ was suspected. They showed both ~nodified and 

unmodified line' structure slightly broader than the one ·here 

reproduced in ~,ig. (S). 

The relation between X-ray intensity and rr,icrophotorneter 

deflection (ordinates of the curves) over the small range invmlved 

in the curves shown is close) y linear. This was tested b;r means 

of calibration films on which appeared regionA of blackening corres-

ponding to equal steps of X-ra:y intensity taken from the spectral 

region near Mo Ko( • The equal steps were obtained by the use or 

an accurately cut exnosure disc arranged to rotate rapidly on a 

motor shaft in front .. : of the spectrum from a Seeman spectrograph 

so that in different regions of the film exposures of 0.1, 0.2, 

o.3,etc. up to full exposure time were obtained. 

I 

I 
--~----

&rpo.5t1re ..Ol~c. 

Fig. ( 6) 

Pig• ( 6) shows the shape of this exposure disc. By trial 

exposures could be timed in such a way as to make the range of 
from 

blackening on the calibration filmsAlightest to darkest overlap 
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the. r·ange of blackening of the §ompton line films to be studied. 

staircs.se calibration curves were then run through the 

microphotorueter from the calibration films immediately after 

running a curve on the Compton line without changing any of the 

constants or conditions on the microphotometer. It was found 

that over the sa111e 1•ange of microphoto:meter defJections as that of 

hhe films of the experiment the scale was sensibly linear. 

THE EXPE:RIJVJgNTA I, CUR VBS • 

r11he author calls attention first to the breadth of the curves 

obtained for the spectral distribution of the Compton n1odified 

re.diation as co:'::'pared to the narrow unmodified KtK , and Kv:.J... 
I 

lines on the same curves. 'rhe scatte1•ing a.ngle covered a. range of 

inhomogeneity so near 180° that the broadening due to inhomogeneity 

of scattering ang.le is quite negJi,gible. The first conclusion to 

be dr~ is therefore that the process of s:¢.attering x-radiailou by 

~ solid scatterer (Aluminum. and Beryllium) broa~ ~e Compton line 

more than the unmodified line. A theory to explain this broadening 

effect is developed in the next section of this thesis. 

·rhe small peaks x:1 and x2 in J:i'ig. (5) are not yet definitely 

accounted for. 'fhey are perhaps flourescence lines due to im-

purities in the Beryllium scattering block,possibly Strontium. 

If they correspond to Smeckal transitions such as those J•ecentl y 

observed by Bergen Davis (Phys. Hev. p.331,Sept. 1928} one would 

be obJ iged to suppose energy level differences in Beryll itun of 

much iJ;reater magnitude than we can yet explain. Moreover, the 

separation of x1 and x2 is about 8 x u. or about double the 

separation of the K o\ doublet of molybdenum. These lines 

appeared clearly in all the exposures made with the Beryllium 
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~catterer. 'fhe peaks in the Alurnim.un curve , although they 

resemble those of Beryllium, correspond to no very clearly 

defined lines on the film and it is safer to ascribe them to 

the accidents of film grain. 
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PART II. 

TlfE RELATION BET:"JEEN COMPTON LINE STHUJTURE 

AND ELEC'rtWN V'~LOC ITY DISTRIBUTION. 
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THE RELATION BE'rWEEN COMPTON LINE STRUCTURE AND ELECTRON 

VELOCITY DISTRIBUTION. 

The strue.t'l.U'e o:f thu modif'ied line is a key to the distribution 
~ 

of velocity of· the electrons which seatter the modified radiation, 

the line being broadened by the random motion of these electrons in 

a way similar to that of the Doppler broadening of optical lines 

emitted by moving atoms. It is shown by means of certain approxime.tiv~ 

" assumptions· in an appendix to this paper that an esemble of elec·trons 
J\ 

4 
all moving at one speed, v, in random directions will modi.f'y 

initially monochromatic radiation by scattering so as to give (as a 

first approximation} a spectral dist1'ibution consisting of' a shifted 

rectangular band with a r·1at top and vertical discontinuous lim:i.ts 

or edges, 

see. 'Fig.7A. 

The spectral 

Width of· 

the band 

is pro­

portion - ~ 

al to 

the speed 
-

v, of' the 

electrons. 

I. 
I 

·~ 
AnNl•J;.· . . I ~ -A>.•'61> .. 

I 

Fig. 7. 

.s 
. .f. 

.J 

.L 

.I 

0 41111n.· 

A 
l 

This band is nearly symmetrically distribttted about the shirted 

position corresponding to free stationary electrons. 
4 

Thoughout this paper the word "veloein" will be used to indic:at€ 
a vector quantity, while the word "speed 11 will be used to indiea te 
the absolute value of the velocity. 
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The approximation involves an error of" the order o:f /.3~ /unity 

( though t3 therefore need not be negligible compared to unity}. 

In partieular when the radiation is scattered at 180° or there-

abouts, the width due to such an ensemble is shown 

L\A = fl- r3 >t* 

where /\*=A~*c. and (3.=JL , the speed of' the electrons divided 
(__,,, 

_by the spee~ of' light. (The theory presented here is completely 

non-commital as to the mechanism of this so called Doppler broad­

ening and employs only the principles of eonservation of energy 

and momentum. It is not there:f"ore an at.tempt to explain the 

Compton ef'f"ect on elasaical principles.) The area of' the 

rectangular spectral band, Fig. 7 A, is pnoportional to the number 

of' electl•ons in the ensemble and to the time during- which they are 

e:x:posed :to the radiation if' we assume that all electrons have· the 

same A-priori probal>ility of scattering (see r·ootnote 12). 

We shall theref'ore choose an areaI~, corresponding to the area of 

the modified band produced by one ensemble o:f electrons, i having a 

standard population or say one electron per atom and correspond-

ing to the total time of the exposure. The height of the corres­

ponding rectangle is then given by I tj.ttt3 ;A,'*4 The choiee of .~r 1 
establishes the scale of ordinates (intensities) and is so 

ehosen as to normalize the final total computed curve with respect 

to the area under the experimentally observed ~urve. 

In order to eompute the shifted distribution produced by all 

ensembles of' elee~ons an assumption as to the :rt:tla~tv-e~ a-pr::toi'f_ · 

probabilitm of' scattering· by electrons in the di.f".f'erent ensembles 

or C'lasses must be made. We here assume these a-priori proba~-
1 ties the same for all electrons. 
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~ 

With these considerations and assmnptions we can compute a 

modi.f'ied distribution f'or the scs.ttered radiation f'rom any atom 

model. For example, for a Bohr hydrogen-like model, having 

elliptical orbits, account.1 ean be taken of the variable veloei ty 

in the Kepler motion by a study of the proportionate timestp/1:' spent 

by the electron in di.f':ferent speed ranges :<3 t"o /3 -rJtB 

between the ·maximum and minimum values !d,.,..,0 x ) t0m;vt (perihelion 

and aphelion), where r[ is the orbital period. The resulting 

distribution will be :formed o~ infinitesimal elementary rectangles 

as shown in fig. 7B. The widths or rectangles are made 

proportional to the speeds, and their areas are given by (~/r)l;_.. 
so as to make the area of the total C'.urved distribution equal 

to I. , 
A 

The height of each rectangle is given by (T;a/r)J;.·/~r6A.~ 

5 
This method of' treatment is slightly di.f'f'erent in form but 

identical in substance to the theory de9'e loped by G. E. M. Jauno:·ey 
(Phys, Rev. 25, 314-322 (1925) 723-1736 (1925) :tor co;~,lJUt:tng line 
struetures due to electrons in Kepler orbits. It is developerl in 
the rorm he:ee given to pePmit o.r ttxt.ension to 1.18.Ve-:11·;; 1~lu.niG'1l '•.t;o11 
Jrtodels·. The· author wishes· explicitly to acknowledge his· 
indebtedness to Dr. G. E. M. Jauncey. 
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The curve representing the shape or structure of the 

Compton modified line may then be obtained by assuming finite 

speed ranges and calculating finite rectangles to f"orm a 

staircase distribution whose discontinuities are f"inally 

smoothed out by drawing a smooth curve as shown in .Fig. 7B. 

·.n1ere practicable, however', it is better to obtain the 

Fig. 8 

curve 

by 

the 

f'ollowing 



~ ... ~. x "') . :1 f.I•b o. 1unc1.,ion Y:' Lu is supposec 

expresses the probability of encountering an elecrtron with sne0d 

between (3 and 3 +J.-:'.> as a £'"unction of J • 

T':le electron ense':1ble having t~is speed f3 and randomly dist::·i cl 

veloci t77 Ol'ientations contributes to t:re total line structure the 

elementary rec·te.ngl-e A 'Nhose area is proportional to 42 ( 3) i 3 

JL / ~ ) ,.j. and wJ::ose width is given as mentioned above b;r 7 /\ 'I1he area of 

this rectangle is therefore 

where k is a constant determining the scale of y, and -£-=-;(--). -.2 :1• VIC. 

is the abscissa of' the structure c·urve measured from its :nedian 

point. * .3 ;:;;_k_;'L/\ we can thus replace d./3 hy 

'l1he difTerential equation of the curve is given th;3refore h;-r 

-1 z f - /-<. p ( L/ 2>/') Lk/ ;1A' 

Di vi ding by - J_ l. and inte gr9. ting this from j' ;: OJ 1_. - _-:(, to ·- J.J ._,--,,J. 

v1e obtain the equation of the line struct1u•e cu..rve for continum.rn 

functions which vanish as _,{_ -7 o.--~" 

L=L 
( t') \ 

~, j I 
i.1. :::::; - /( I 
) J 

_./' 
)L .c. 00 

Pormula (2) pe:r:01its us eit'he:r• to start r!ith an obser~ed line 

str·u.cture and to 

function p(cJ)or 

deduce fror1 tr_j_s 
<£)tart' 

toAwith possible 

the electron velocity distributton 

assumed veloci t;r dis tr ibut~_ons 

cf' l") and compute ideal Jine structures for· CO'nparison with the 

observed structu-re. 'l'he line str•uctures so far determi·1ed ar•e not 

sufficiently well defi:'led to warr•nnt the first mentioned procedure 
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but many interesting aone.lusions can be drawn by :rollowing the second. 

GENERAL METHOD OF COMPUTING AND NORMALIZING LINE 

S TR UCirURE CURVES • 

Each electron class (1C~L;M, etc.) is assumed to aontribute 

to the total: line structure independently. Separate line s·tructure 

eurves are computed ~or each elass of electrons. The ordinate 

scales are so chosen ,as to make the~.area under each o"f' these eompon­

ent eurves proportional to the number o:f electrons responsible for 

that curve. These curves are then added to obta1nr,the total line 

structure. 

'l:he primary radiation is not truly monoehromatie but eonsists 

o:r a doublet ( f<or, 
1 

l"(q-'2-). Mo Koc,J- is+x. u. longer in wave-lenghh 

and half as intense as Mo K ~ • In order to render the e.omputed 

structure curves strictly eomparable with the observed curves the 

following procedure was followed in all eases. The total structure 

curve: was eumputed for a primary wave-length of '708 X. u. ( Mo I<~) 

and the se.ale of ordinates was so chosen as to make the area under 

this eurve equal to two thirds the aeea under the experimentally 

observed curve. This gives the contribution due to K vr, • To this 

we add a precisely similar curve shifted however 4 x.u. in the 

directioncdf longer wa'Ve-lengths and having ordinates half as great 

as those of the rirst curve. This gives the contribution of kor;;z_ 

The final curve has obviously an area just equal to the experimentally 

observed curve with whieh it is to be eompared. By f'ollowing this 
p.litocedure no arbitrary assumptions need be introduced as to 

absolute intensities and the ordinate scale is uniquely 

determined. 
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The ~·orrection for the doublet character of the primary 

radiation above mentioned, introduce• a plainly visible asymmetty 

in all of the computed eurves. 

ELECTRON VELOCITY DISTRIBUTIONS FOR WAVE MECHANIClL ATOM MODELS 

AND DERVIATION OF THE CORRESPONDING LINE STRUCTURE CURVES 

By means of the Dirac transf·ormation theory it is possible to 

obtain :t:Jle>&t>mentum distribution :f"or a wave meehanical atom model 

given the space distribution ( eigenfunction} f'or the same model. 

If' t9i>r-111..i f.3J are the eartesian coordinatus in the momentum S'Pace 

and x, )x~, X3 , the eartesian coordinates in ordinary apae'e then 

the probability of' encountering a momentum ( p 1 J pt;L.. J p 3 ) 

is given by the square of the absolute value of 
(3) 

-00 • 
The eig~nfunetions used are those given by L. Pauling.6 An 

ef'f'ee·tive atomie number Z i. corrected for sereening is compu:bed 

for each class of electrons i and applied in the eigenfunction f'or 

that class. The author realizes that this is only a rough ap­

proximation which neglects mutual perturbations. An exact solution 

( -ir possible ) would be very laborious and quite unwarranted ~or the 

purposes of this paper. 

Equation (3) in polar coordinates becomes, if If is independent 

o:r &,, and <j /and depends on r alone 
(4) 

00 7T' iJr . " 

¢ ( p) :f!{-1 -V[f pA."""" tl 'I c /'L )/1. ">_,_,,;.,, fJ 'di d tl ,,tp/ 
0 6 () 

6L. Pauling, Proc •. Royal Soc. All4, 184 (1927). 



( 34} 

<}(p) is generally a eomple.z quantity. The square of its absolute 

value . lq;if) r- gives the density in momentum or the probability 

or encountering· an eleetron with momentum in the range between 

The f"unction 

!f'lp) which represents the probability of encountering an;: electron 

with momentum between /p I a.nit If I+ f[pJ is obtained by multiply­

ing Jf (p) I~ by Jfrrp2. 

p (p) :=: J/-7Tp2 l ¢{,oJl2.. 

The resulting functions ~(f)can be easily expressed as 

f'unetions o:r (3 or J:~ by the relations 

p ==' nvt tr ===- (Y>1 /'3 c. =. t">'1-7 e ,,P/;i. r) *' 
The function $(t)thus determined is substt.tlited in the 

:formula (21) f'or the line structure curve. We tabulate below the 

e:leetron class, the corresponding eigenf"unetion, and the resul~ing, 

line structure curve f'Unction. Inessential multiplicative constants 

have been dropped since the line structure functions are to be 

subsequently normalized. 

Q~) I or lh (/l..)=_;:117,o"- ~ =(1-1-A 2 J..~T3 -
) I T ~() u •10 1.,0 

Q-)1 l,o. "{o(n.)= ...e.-~o/L(-.2+2crtY ~ =,1.5"(J+A:i. -l~-3-7.!i(i+A ::i. £)-f 
r:i,, ... 10 u!li> ~o :;l..Jb 

·. . ! -a:: I + b (I +- A~,,,-e."S
0 

- ~ ' -

QVf) 3) 0 I 1t
3 0

(-1_F,.t ~0 {6-12~tr.+1o7t~; 4 =4.701 (I +A 2.. ~~) ~37.b12(1-t-A .-iJ -If r:.., ~~o 3,0 'J, 03() 3,0 J '3 () 

l\ • l "+uo.32i(1-rA;0 ,.e)-~l'33.731(1+A: JL
2-X'-

I 3_,0 

' -t- 67.'3\3(1tA~...e~T7 _ 
~ 
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The ef'rective atomic numbers applied to these functions are as 

f'ollows: beryllium, z •.10 :::= 3 '8 l .J z,,}o == .2-

LINE STRUCTURE CURVE DUE TO SOMMERFIELD CONDUCTION ELECTRONS. 

By the applieation of the Fermi-Pauli statistics Sommwrf'eld 

has recently shown that the conduction electrons in metallic 

crystal lattices will have the following velocity distribution: 

<f>c v-> =I-< tr~ 

P(~)=o 

~ ivi<V <s) 

\v-1 >V 
where V is given by .J...· 

v =:*6r~(;)3 

n being the number of' metallic electrons per ce in the erystal 

la tt.ice and G .::::2. 

( FS) 
' -

( 7') 

Expressing this in terms of l and substituting in the :formula 

(2) f'or the line structure we obtain omitting a constant c·oef'ficient 

and using the indefinite integ?!al 

since y::O when 

or 

ia- = H'.J_ A"' vr,/c r -t £ 

\{ ::::. 0 

µi < ?-/i*Wc 

·* / lJ I >a_;\ V/c 

(8) 

(9) 

(10) 
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y lf'" 

Fig. 9. 

line structure. See Fig. 9. 

This is seen to be 

a line structure 

in the form of an 

inverted parabola 
,.\*V of base width11\C:-· 

Sonnnerfeld' s 

electrons have 

much higher 

vt;loc i ties than 

those required 

bye: e:lassieal 

statistics, and 

the result is 

a much broader 

LINE STRUCTURE CURVE DUE TO MAXWELr,.sBQI,TMANN DISTRIBUTION 

OF CONDUCTION ELECTRON VELOCITIES. 

This is obtained by the same method as the previous curves. 

In this case f"V>'\ V''"2. * z. _ ~(c.1../;i..Jt ) .... 
~( ) · 7- 2.k.T = (c.L/J-'A ) ,~ ;J... k T 

.';:::t:'.' \T :::::V;.....e.... 

Substituting in the Eq. (2) and integrating 
- .(!!"' (. e_ / ~ >.;N: ) 2. £ 

o--=JL 7-kT 

(11) 

This is a simple Gaussian error e,urve which for the temperature 

of' the experiment has a width of only O. 4. X. U. at l/e of' 
- ~. 

maximum value·~ 
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LINE STRUCTURE CURVES FOH KEPLER ORBITAL VELOCITY DISTRIBUTIONS. 

For the Oil§& o:r cire,ula!' orbits since (3 is constant the 

distribution.is evidently a simple rectangle as has been ~hown by 

G. E. M. Jauncey. Here p('lr) degenerates into a simple vertical 

ordinate at the proper value o:r v. 

For the ease of elliptical orbits the f'unction p (tr) is o:f 

.ratherl eompiicated form. For this reason the graphical method 

with finite speed intervals was resorted to. Fig. 7C shows a 

typical curve representing ~(y-) for a 2, orbit. The total speed 

range between maximum and minimum speed was divided into ten equal 

steps and the corresponding rectangles were plotted to obtain the 

e.omponent curves whose sum gave the structure curves shown in 

Fig. lOV. Attention is called to the general similarity existing 

between the structures due to wave mechanics and those due to the 

older Bohr-Sommerfeld Kepler orbits (see Pig. lOV and II~. The 

dif"'f"erence as would be expected is that the wave mechanics rounds 

of'r the sharp corners of the Kepler eurves. The wave mechanics 

also permits .sc!rtll~tslight intensity at very large, line breadths. 7 

This is dou.bt1ess the (::ixplunation J:'or the existence of an 

unshi~ted line in cases where Jauncey's theory based on Kepler 

orbits called for no unshifted line. 

7 The Bohr-Sonnnerfeld atom would also give a better fit if the 
azimuthal quantum number k were placed Qqual to (.Q.(1.+l))v~ however. 
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It is evident from a comparison of the observed and computed 

line structures that the asstunption of a elass of electrons with 

velocities in agreement with the Maxwell-Boltzmann equipartition 

of therm.al energy is untenable. 



{ 39) 

The two e.Xtrefnely tall and narrow peaks to sexpected on- this 

assumption are due to the K DI', and K O\" I&,_ lines o.f the primary 

radiation arid should be completely resolved as shown. We have in 

Curve (lV) Fig. 10, assumed the existence o.f two electrons per atom 

with such velocities. Even though .. this state were but one tenth or 

one twentieth as populous it would be easily detectable because of 

the na.rrowne.ss of the curves called .for by electrons with such slow 

velocities. Such narrow curves or peaks when normalized to give a 

total area equal to only a small fraction of the area under 'tbe ~-

observed cu:rve would still have very appreciable ol'dinates. 

The line structil.U1 e to be expected ri•om an atom with polnt; 

electrons executing Kepler orbital motions with its resulting 

angularities and discontinuities is also seen to be discordant with 

the experimentally observed structure (compare Fig. lOV and I). 

01" the two remaining, theorati&a.J: "-Cur .. :v:e III Fig .10, corresponds 

to the assumption that the electron momentum is distributed as it 

would be in a free atom of beryllium and hence neglects the per­

turb&ng e.ffect or the close proximity of the atoms in the crystal 

lattice. Curve II corresponds to the assumption that on ace:ount 

of the proximity of atoms two electrons per atom are not closely 

associated to any particular atom but constitute a degenerate 

electron gas while the remainder of the electrons are,;distributed 

a mome-n.tum·:-:%8 they would be in a .free atom of beryllium 

neglecting the perturbing effect of neighboring atoms. This 

arbitary division of electrons into two distinct classes is 

doubtless only a very rough approximation to the truth. It is 

highly probable that no sharp boundary divides the electron gas 

from the bound electrons there being an intermediate state in 

which electrons execute motions very different from those to be 
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expected in a single free unperturbed atom, but motions which 

nevertheless are to a large extent conditioned by the fields of 

one or more atoms. Such a class of electrons is neither completely 

:r?tee nor completely bound. It is dif~ioult to take account of this 
8 

intermediate class of electrons quantitively but it is easy to see 

qua.litatively the errect on the computed form of the line structure • 

. Attention is· called in Curve III Fig. ~O, to the sharp breaks at the 

two points where the parabolic structure due to the electrons of the 

degenerate gas state meets the broad bell shaped atructure due to the 

bound electrons. '!hese breaks would certainly be absent if it were 

posS'ible to take account of the continous nature of the transition 

between the bound electrons and those in the degenerate gas state. 

We now call attention to those parts of Curve II and III near 

the maximum. It is at once evident that Curve III is blunter and 

~roader than Curve II and that in this respect Curve III is in 

better accord with the observed line structure. It is p~cisely 

in this portion of the curve that we should expect the degenerate 

gas approximation to give a good re~entation of the facts. 

We may therefore conclude that the experimental curve supports 

the Sommerfeld theory of metallic electrons as a degenerate gas in 

just those regions f'o:r.' which this theory is designed to apply. 

It is notable alao that Curve III has a maximmm ordinate 

slightly higher than that experimentally observed. Were Curve III 

to be corrected in order to take account of the continous nature 

of the transition between the bounds electrons and those in the 
. -

degenerate gas state, it would be necessary to lower the maximum 

ordinate in order to matain a constant area without chang~ing the 

the shape of the peak. 
8 

Bloch. Zeits. f. Physik, Jan. i929. 
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This would doubtless improve the agt'eement of the observed and 

computed maximum ordinates. 

To sum up our conclusions then we may say: 

The Maxwell~Boltzma.nn atatistices applied to conduction elections 

give r·esul ts disco:t'dant with -::;he observed structure of the Compton 

line ~or scattering from beryllium. 

The el~ctron velocity distribution of the older Bohr-Sommerfeld 

atom model gives results discordant with the observed structure of 

the Compton line. 

Velocity distributions based on the wave mechanics of a 

beryllium atom on the one bland ~nd on the Sommerfeld theory of 

degenerate electron gas on the other give line structures in accord 

with the experimentally observed curves in the reg~ons to which 

these theories are in each case designed to be applicable • 
• 

It is interesting to note that the conclusions drawn from this 

work constitute confirmatory evidence for the Sormnerfeld theory of 

gas degeneration as applied to conduction el@o-.rona i~ ~ field of 

phenomena quite remotv from that .for which the theory was ~~e_l_~p_~~<!.__ 

~ 

A simple computation shows that the recoil momentum taken by any 

electron in the case here discussed is sufficient to throw that 

electron completely out o.f the range of velocities forbidden by the 

presence o.f other electrons according to the Pauli "Verbot". 

Work is now under way at this laboratory in an atteJll,pt to 

obtain experimental distribution curves with greater precision. 

A study of line structure scattered by nonconductors should prove 

interesting and is now being started. Work is being continued by, 

the double crystal method of' Bergen Pavis and also by means of a 

multiple crystal speetrograph recently constructed here which 

permits the use of converging x-ray beams. 
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APPENDIX. 
The explanation of Compton line breadth as a Doppler e.ffect of the 

i:p.otion of" bound and conduction electrons is an approximation. 
ft has the advantage of offering a familiar pictorial explanation 
of the facts, but the disadvantage of limited applicability. To 
treat the problem rigorously one must set up a wave function fon 
the crystal lattice and then compute the modif,ed radiation by a 
method similar to that of G. Wentzel.9 This no one yet has sueeeed­
ed in doing satisfactorily. 

The present approximate theory is applicable to low electronr' 
velocities, long primary wave lengbhs and relatively free electrons 
or exp~essed precisely {l2 ) 

u-<<. c. J 4'/rrnc. ~ A J EB/ER <SI 
E ;s is the binding energy of the electron, ER the energy received 
by the electron in the scattering process!_ 

E =-hf"-1·"r' = -hc.,(X->i) //\>.:' . ~ / (;l .fu..ne:h rr... 
For any particular level the ratio E.s/E: is ... evidently/\o.f Jl the 
absciesa .. w.e have used in describing the fine structlll"e. It increases 
in the direction of shorter wave lengths but over the region )I> 73oX.u. 
does not exceed 0.2 for any level. For most levels it is very small 
indeed. The region /\)13DX.U; includes all o.f the interesting 
portion of the modified line structure. 

For any particular level the modified spectral distribution 
becomes discontinuous to the left of the point where the ratio 
Ea/ER~\ • In18his region the Smekal lines recently observed by 
Bergen Davis appear. The unshifted line may be considered as a 
special case or these. In the cases here discussed this region is 
too close to the unshifted line to be resolved. 

The following assumptions which are all that are~necassary for 
the derivations of formulas used in this paper seem justified for 
the region of approximation defined by the three inequalities (12). 

(1). All electrons are assumed to hawe the same a-tD1or1 
probability of scattering independent or their veloci y or 
quantum state. 

For the region defined above the classical scattering formula 
giving the total scattered intensity proportional to the total 
number of electrons for a wide variet7 4£ atoms 1s known to hold.11 

(2). Conservation of momentum and energy is assumed in the 
interaction of light quanta and electrons taking into account only 
the momentum and energy of the electron in the atom or in the 
crystal lattice just before scattering and simil!r quantities for 
the scattered quantum and the recoil electron. The modifying 
effect on the shifted radiation of any momentum or energy transferred 
or otherwise given to the rest of the aton in the scattering 
process is neglected. 

9.G. Wentzel, Zeits. f. Physik 43,~-8 (1927);43,779-787(L927~ 
LO•Bergen Davis, Phy•, R•v.32 1 33 {1928). 
11 •Be -- 1 r_h -rgen ilav a, : ye. rtev.25, 737-739 (1925). 
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We f.irst investigate 
the general case or 
an initially mQvtng 
eleetron which 
scatters a quantum 
at an angle of' 
se,.attering B. Refer­
ring to Fig.11, 
let Y,; inital 
frequency of 
quantum propagated 
1nthhe direction 

. o(positive x-axis 
the interaction 
oc c::urr ing at the 
origin. Let (3, c_ 
be the speed of 
the electlton 
before interaction 
a • , b 1 , c \ , the 
direction cosines 
of' its velocity 
and a, = (AIU e, 
80 that e. is the 
angle between the 
electron's initial 
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Fig.lJ. 

velocity and x-axis. I.et the scattered quantum have a frequency~ 
and a direction of propagation defined by the direction cosines f!, 1.,n.. 
making angle ¢ with the initial velocity of the electron and an 
angle IJ with OX. Then 

C,V-0 p :::::; (QI r -/-' .A-j 1 T G f /t) 

p = Vv<JB 

I.et the recoil electron have a f'inal speed Pz.. c. in the direction 
defined by the cosines a.i. ,, ~ :> c'L. (Cf., de Broglie "Ondes et 
Mouvements" Fasicule 1 pp. 94-95). Assumption (1) gives us the 

four equations. J.. ./ 'l..// ,.)!I; 
flt1 +(rY10 C/(1-l3;)'l. ::::: ·hr't.. f-0noG/(1--t3'l 'J. (l

3
) 

ht1/c +(Pi0 !3,c./(1 -13i~y,~ a., ::::: (~ ~/c.)p +(rmor3~c/(1-r3:J:J~ (l4) 

~" (3,c/[i -r:f./"t.. J d. 1 = {td{ .. /c.) ~ + E;nof.311. c;t1 -r3~fajkiz. (lS) 

~o(3•cfi' --~~f:J a_3 ::::: (-h r~(c.)Jt +[rm0 f.3~c;{1-a~ri-J c-i. ( 16) 

Eliminating 61. > 6;.; l1. and t3'1... letting or=h../ /1>'>10 C}· we have 

~-= r: --- I __ ... _J_.;..,_~ __ e-;f~-----
z_ 

/ J -13
1 
~ ¢ +)... q (I -r3,3°)y~ ~~ .r_ ( 17) 

Substituting v'::::-c/A and neglecting 1J'J... in comparison to unity 
we have for the shift 

. ~ 
! 



in which the second term accounts f'or the simple "Compton Shift" 
and the first term represents the deviation from this shifted 
position caused by the electron's initial velocity. If now we 
substitute 

(19) 

so that the·new wave length coordinate .L has for its origin the 
"center" of the shifted line !position for scattering by free 
statione_ry electrons) we obtain for the shift away fron that new 
reference point 

This can 
based on 
electr<hn 

Let 

then 

A [ u,-o e, (Ii, +-2.cr/\, -~z-,t-) - ~ ¢;),] 
i- /3, ~e1 

be oonsiderab~ simplified by introducing a notation 
the special case or scattering by an initially stationary 
(Compton case). 
the shif'ted wave-length for the Compton case be 

>ic:.. = ~ , -t 'J-or A 1 ~ 2 -4 
_j_ = 4, £..<r? ~ t . . /\ (.. ~ (3 I fArO ¢ __ l:1_ 

I - 13, C..U--0 tfi ( 20 a) 

In Fig• (12) let OA 

--
----~,.._-:-::':;;~....__""'"""" ___ i::~ . ..A ---,,111)( 

---

be the direction of the 
inCident quantum, OB 
the direction of the 
scattered quantum, OC 
the direction of the 
electron's initial 
velocity. We make the 
vector O'f.. equal in 
length toA" c1"'d \~1-==A, 
We define a new wave­
length ~ 

------

Fig. 12. 

r;..l~ (II~ +1'~ -.2.'1c~\. ~e )'Z. 

represented in length 
by the vector AB. 
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We now note that the numerator in Eq.(2oa) can be represented 
in terms of the· vectors of Fig.12, (designated by their terminii) 
as the difference of two scalar products 

C. A- C. B 

C. (A-B). ~ 
Now the vector whose length is ;:z..j\ is precisely 

(A.._B). 

Hence if t' is the angle between oc and AB we have the identity 

(3, G.N--..J G, ~" - (3 1 Vs-? tj; A, -= 2. r3, (Aro f- A* 
so that we can write 

)_ (3 I (..AJ-? 0-- A ;I' 
I - f3 1 ur-a tJ, 

(~o) 

The direction AB is that of the vector dirrerence between the 
momenjru.m of the ineident quantum and the momentmn of the quantum 
scattered in the special Compton ease of a~nitially stationary 
electron. It is evident that AB is the appropriate rererence 
axis for the general case of an ini»ally moving electron. The 
shift .,f, is seen to be nearly proportional to the projection of the 
electron's initial velocity on this axis AB. It is important to 
note that this axis is fixed in space and that A* is a constant 
for,.,...any given angle of scattering & and initial wave-length )I 1 

In particular when the angle of scattering tJ :;;;;;./!JO 0 or nearly 
so we have ( the case of this experiment) 

c.ArO y-- := t:.ArV t3 I == - {Ar7J cJ 
).. !3, (_.,(r-'.) e, 
1 - 13, w---v e, 

where ).* = ("A + l, /rm c..) 
Holding /3, the initial speed of the electron constant and 

varying the directions of the electron's initial velocity defined 
by cos e, it is evident from lq.~21) that 

-J- r3, .A*< _,R_ .(... ::L 13, /I* ~ 1~, <L:::.1 (22 > 

. - \~ r.;'2.\* ..:(_ /J .:S ,.,R \-;/(- .riJ. \:f' 
or - 2. i 3," -t- l r ,,), /l ="' - .£1..1,11 +.lt-1 /l when (.3, is not small eompared 
to 1 but 13,'l.<<. t • ,R. ean therefore 'VS.ry over the wave-length range 

, given by:- ;t<- ( 23 ) 

t1 A :::::; Jfr3, ~ 

.:r-or electrons of constant initial speed (31 amt varying directions 6j 
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LINE STRUCTURE'ELEMENT FOR AN ENSEMBLE OF ELECTRONS ALL 
HAVING SPEED f3 AND RANDOM VELOCITY ORIENTATIONS. 

An ensemble of electrons of the type mentioned is represented 
in velocity space by vectors radiating from the origin and having 
their terminii distributed with uniform density over the surface 
of a sphere of' radius f3 with the origin as center. 

The probab11ity of an emeounter between a quantum and an electron 
such that the angle between the two trajectories is (j, (per unit 
small a.ng\lW.ar range d. {) 1 ) is 

F%, == -t/~&, 
(24) 

The probability P.£. of' a given shift, .l is obtained rrom equations 
{21)~ (24) and the derivative of (21) by eliminating &, and cLe-/4.&, 
as 

~-=.(Ji- 3/f~)-1(1+_Ch/i:r:)-z 

The error introduced by nep;lecting 1;).A .;\'- in comparison to 
unity is 3 per. cent for .f =J.SXTL, )("" = 738 X.U. and much lesS" :f"or the 
more important parts of the line structure. 
Hence p ~ /µ., ~* ..e - // . ,3/1 

and P£ is thus seen to be independent of.£ • Hence all shifts in the 
range permitted by inequalities (22) ~ve the same probal111ty, 
i.e. the distribution is rectangular. (See Fig. 7A). 

As indicated by inequalities (22) this rectangle is not quite 
symmetrically centered about the origin of wave-length abscissa_..e_ 
for very large values of /.3 but this slight correction has been 
neglected in the present paper. 

12.This statement is strictly true if the ordinates of the 
distribution function or line structure curve are understood to 
represent the fiumber of quanta. It' the distribution curve 
represents the energz, however a slight correction for the variation 
in the energy per quantum over the breadth of the line is necessary. 
The computed curves of this :faper represent the distribution of 
~number of quanta as a function of wave-length and not the ebergy. 
The microphotometer curves on the other hand represent energy 
rather than number quanta. No correction was made for this, 
however, as the discrepancy thereby introduced is much smaller 
than the experimental uncertainties and in no way a.f'f'ects the 
conclusions. 



( 48) 

SUMMARY. 

An x~ray tube designed especially for the study of the 

Compton Effect at large angles of scattering has been developed. 

This tube contains both scattering substance and Seeman 

spectrograph in a Slllall box inside the vacuum carried on the end 

of the antica.thode. 'llhe spectral distribution of Mo K radiation 

scattered at very nearly 1se0 
from metallic a.luminllr:l and 

berylli.um scatterers has been studied with this tube and the 

following conclusion has been made : 

The so-called Compton °shifted "line'' is a diffuse 
distribution with maximum intensity occuring e.t about the 
position required by the Compton formulae for shift after all 
experimental causes for such a bree.dth have been removed. 

A theory for the diffuse character of this radiation has 
been developed based only on the assumptions of conset>vation of 
energy and momentum in elementary scattering processes which ex­
plains the observed breadth and structure in terms of the 
distribution of electron velocities in the metallic scatterer. 
An equa. tion con nee ting e lee tr on velocity distribution and line 
structure has been derived making it possible to infer electron 
velocity .disiliributions from observed line structures. 

A comparison between theory and experime11-i- _ leads to the 
conclusion that the conduction electrons in metals obey the Ferr.J.i 
statistics. 'l1he wave r•echamical ::'lodel for t'ne bound electrons 
in the crystal lattice also appears more probabJe than the older 
type of Bohir-SoH1'".·erfeld atom with definite Kepler orbits. 
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