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ABSTRACT

Two different aspects of the behavior of soil as a two—phase medium

are studied, namely, the consolidation of soil and scaling relations for

soils in centrifuge testing.

PART A

First a consistent approach is presented that unifies all current
theories of consolidation of soil. For one-dimensional finite strain
consolidation, a Lagrangian finite element scheme is then given and
tested against three different experiments and found to give consistent
results, For a quick solution to a particular problem, the regular
perturbation method applied to the formulation in which the dependent
variable is the natural strain is shown to give the most consistent
reéults. For the Eulerian formulation, the material derivative contains
a convective term. This convective effect is then analytically studied
and found not to be negligible for a final natural strain greater than
10%. A method is then introduced that can account for both the moving
boundary and the convective effect. This method is tested in a finite
difference scheme and found to give identical results with the
Lagrangian finite element scheme for the one-dimensional case. Finally
the method is used for the axisymmetric problem of consolidation by
vertical drain. The solution to this case suggests that arching and

subsequent load redistribution should be considered.
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PART B

Conceptually, when a centrifuge is used to test models, the
centrifuge is assumed to produce an equivalent ng gravitational field
(as on another planet) and the behavior of the model in the ng field is
then assumed to be similar to that of the prototype. For most static
problems, the centrifuge does model the prototype well but for some
dynamic problems, these assumptions can break down. To investigate
this, the similarity requirements are examined for the case of a single
particle moving in a fluid. It is found that for the post-liquefaction
process and for seepage flow, unless the Reynolds number is much less
than one in both model and prototype, the centrifuge 1s-not a good simu-—
lation of the prototype situation. But, perhaps contrary to expecta-
tions, the breakdown is due to the fact that the behavior in the ng
planet is not similar to the prototype 1lg planet, whereas the centrifuge
does simulate the ng planet well, Further, it is shown that the concept
of ""modeling of models” can lead to misleading results. Lastly, for
cratering experiments, it is concluded that the centrifuge will only
model the crater shape just after an explosion and not the final crater

shape.
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CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

When a load is applied to a saturated soil, a two-phase medium
consisting of a soil phase and a fluid phase, it is borne by both the
fluid and the soil skeleton initially in proportion to their stiff-
nesses. But the increase in the pressure in the fluid and the gradients
will cause it to flow through the soil and transfer the excess of its
load over hydrostatic pressure to the soil skeleton. Therefore, the
occurrence of stress and thus strain in the soil skeleton is a time-
dependent process. For a very permeable soil, the time kequired for
fluid flow and the complete transfer of the load borne by the fluid to
the soil skeleton is so short that the problem is one of equilibrium;
that is, the problem is independent of time. However, for finer grained
soil such as clay (k* on the order of 10"4 cm/s or less), the time
required can be very significant and an analysis that will give the full
stress-strain-time relationship is needed (Bowles, 1982). This is the
problem known as "consolidation” in soil mechanices.

Consolidation holds a special place in the history of soil mechan-—
ies and foundation engineering. To most workers in this field,
Terzaghi's one-dimensional formulation of this problem and its success

in predicting the general progress of consolidation of soil is usually

* A list of symbols is given in Appendix A except for those that are
specifically defined in the text.
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considered to be the "birth of Soil Mechanics” and Terzaghi is referred
to as the "father of Soil Mechanics” (Lambe and Whitman, 1969).

There are two basic types of soil engineering problems in which
solutions to the problem of consolidation, that is, stress-strain-time
relationships, are needed. The first type involves prediction of dis-
placements or settlements and the second when there is danger of the
shearing stresses exceeding the shearing strength of the soil (Taylor,
1948), which is dependent on the time-varying pore water pressure. For
the first type, surface displacements, which result from integration of
the strains developed in the soil skeleton, are averaged quantities and
thus are insensitive to assumptions regarding the components of the soil
respoﬁse. For the second type of problem, a more refined model may be
needed to give an accurate prediction of the local behavior.

To solve the problem of consolidation in soil completely, that is,
to solve a three-dimensional finite strain dynamic case, is very
difficult even with today’s knowledge of numerical methods and the
availability of computers. This problem requires a knowledge of the
constitutive behavior of the soil skeleton and the fluid-soil interrela-
tionship, both under dynamic conditions. Each of these items is still a
much researched topic. To obtain some approximate solutions, many
assumptions have to be made so that a highly idealized but amenable
situation results.

Terzaghi’s one—dimensional infinitesimal strain formulation which
required many idealized and restrictive assumptions was first published

in 1923 (Terzaghi, 1923). Since then it has been extensively used in
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practice and is described in all soil mechanics texts (Terzaghi, 1943,
Taylor, 1948, Scott, 1963 and Lambe & Whitman, 1969) as the basis for
consolidation problems. As a result of this extensive usage, a lot of
engineering experience has been accumulated on methods of linearizing
the various parameters. Thus, despite its idealizations, acceptable
results often can be achieved in practice. Many efforts have been made
to extend this work to three dimensions and to relax some of the more
restrictive assumptions., But none has achieved the generality of use of
Terzaghi's highly idealized model. The reason is that most of the
medels are complicated; even the linear two- or three-dimensional models
are complex mathematically. Thus, only numerical solutions are avail-
able for these models in contrast with the simplicity and availability
of closed-form solutions for Terzaghi's formulation. An account of
these efforts will be given in Section 1.2 of this chapter.

Terzaghi’s one-dimensional solution has least applicability to soft
soils which exhibit large strains or compressions. The reason is clear,
since Terzaghi’s solution assumes infinitesimal strain. Another reason
for the breakdown of Terzaghi'’s solution is that in soft soil, often
consolidation due to its own weight is very significant and may be the
only load to cause consolidation. An example is consolidation of land
reclaimed using marine clay. However, this is neglected in Terzaghi’s
formulation.

Thus, in recent years the main effort has been to formulate and
solve the consolidation problem when the strains involved are very

substantial (of order of 30% or more) and to account for the self-weight
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if necessary. Because of the complexity of the problem, most of the
efforts have been concentrated on the one-dimensional case (Mikasa,
1965, Gibson et al., 1967, Lee & Sills, 1979). Naturally, this problem
can be formulated in either the Lagrangian or the Eulerian frame (Fung,
1965). It is a simple matter to transform from one formulation to the
other in the one-dimensional case. However, it is important to have a
clear idea of what each formulation encompasses. For example, in the
Eulerian formulation, the material derivative contains a convective term
which may not be negligible.

A much more difficult problem is the extension of large strain
effects to three dimensions. For the three-dimensional problem, the
governing equations obtained in an Eulerian formulation are simpler than
those obtained in a Lagrangian formulation. But in an Eulerian formula-
tion, one has to contend with moving boundaries and the existence of a
convective term in the material derivative. Another problem is that
some of the one—-dimensional work cannot be straightforwardly generalized
to three dimensions. The reason for this is that the constitutive rela-
tion used for the one-~dimensional problem has been specialized; for
example, only a void ratio versus effective stress relation is needed.
But for three—dimensional problems, a general constitutive relation is
needed in most instances.

Clearly, there is a need to have a consistent formulation that is
applicable to both one- and three-dimensional problems. Furthermore,
the effect of neglecting the convective term in the material derivative

needs to be studied. A method must be found that can account for the
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convective term in any numerical schemes that are used to solve the
problem in an Eulerian formuwlation. Also, to make the results
attractive to practising geotechnical engineers, some closed-form solu-
tions should be provided for the simpler problems. These are the
objectives of this study.

In Chapter II, the problem of consolidation will be formulated
without restriction to one dimension, infinitesimal strain or constant
material properties. Many of the special current theories will be
derived from this formulation and, where necessary, inconsistencies
will be pointed out. In Chapter III, a closed-form analytical solution
will be given for the nonlinear problem of one-dimensional finite strain
consoiidation of a semi-infinite layer. A perturbation method is also
suggested that will be shown to give good agreement with finite element
results generated for the one—~dimensional finite strain consolidation of
a finite layer. As a separate consideration the finite element program
is developed specifically for the one-dimensional problem and allows
variable material properties and self-weight consolidation. The effect
of neglecting the convective term is analytically studied for the
problem of consolidation of a semi-infinite layer and shown to be sig-
nificant for this case when the natural strain exceeds ten percent. A
concept that has the capability to include the convective term in the
Eulerian formulation will be introduced and its workability demonstrated
for the one-dimensional case using a finite difference scheme. The
attractiveness of this concept is that it can be applied to three-

dimensional problems. Since the general three-dimensional problem is
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still a very difficult problem, this concept, incorporated in a finite
element scheme, is applied to a special case of consolidation using a
vertical drain. This is an axisymmetric three-dimensional problem.
Having described the objectives of this study and given an outline
of the presentation of this report, in the next section an account of

the efforts made in the last 8ixty years towards solving the problem of

consolidation will be given.

1.2 HISTORICAL PERSPECTIVE

Terzaghi was the first to realize that, for a saturated soil, the
applied loads were borne by both the soil skeleton and fluid and that
the stfain developed in the soil skeleton was a result of the stress in
the soil skeleton only. Thus the concept of effective stress was born.

This concept, for one dimension, is given by:
6 = o' +p = o' + (u+ us) . (1.1)

He then applied this concept to establish the equation of one-
dimensional consolidation (Figure 1.1)*; he recognized the analogy to
the transient heat conduction problem and for constant applied total
pressure obtained an equation similar to the one-dimensional diffusion

or heat-conduction equation:

2
y Q—g = %% (1.2)
2z

* Figures are presented at the end of each chapter,
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where the diffusion constant or "coefficient of consolidation” is given

by

- Xk (1.3)

C
vy

Equation (1.1) and (1.2) together describe the problem of one-
dimensional consolidation. This work was presented in his classic text

Erdbaumechanik (Terzaghi, 1925). In his formulation, the following

assumptions were made:

(1) The soil layer thickness before and after consolidation
remains unchanged. He made reference to the problem of
heat conduction where the conducting medium was assumed to
remain undeformed, too. This implied that the deformation
that occurred had to be small and the strain infini-
tesimal.

(i1) The voids of the soil are completely filled with water.

(1ii) Both the water and solid constituents of the soil are
perfectly incompressible.

(iv) Darcy’s law is strictly wvalid.

(v) The coefficient of permeability k is a constant.

(vi) The time lag of consolidation is due entirely to the low
permeability of the soil.

(vii) For the range of pressure considered, the strain is
infinitesimal and the constitutive relation of the soil

structure linear and time-independent.
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(viii) Both the compression and the flow are one—dimensional.
Again following practice in heat conduction problems, the one-
dimensional consolidation equation that was derived by Terzaghi was
generalized to three dimensions (Rendulic, 1936 and Carrillo, 1942).

The isotropic equation obtained was of the form:

a__zu a.zu Qﬂ _ 8%u
e, 2 + 2 * T, = 3t (1.4)
ax 3y 0z

and for axisymmetrical problems in polar coordinates,

(1.5)

3

ar dz
Equaﬁion (1.5) was used to solve problems with radial flow (Carrillo,
1942 and Terzaghi, 1943). Because of the linearity of this equation,
Carrillo was able to show that three-dimensional radial flow as
described by equation (1.5) could be resolved into plane radial flow and
rectilinear one-—dimensional vertical flow.

In equations (1.2), (1.4) and (1.5), the interaction between the
fluid and soil skeleton and the stress—strain relation of the soil
skeleton are combined into one coefficient c, (equation 1.3). This
coefficient is normally determined experimentally. Also in these equa-
tions, the excess pore pressure of the fluid is the only dependent vari-
able. This arises if the total stress in equation (1.1) is a constant
with time and space. If the boundary conditions can be specified in
terms of the excess pore pressure also, then the problem becomes uncou-

pled. This is indeed the case for the one-dimensional problem (Figure
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1) and thus equation (1.2) is correct. But analogous to thermo-elastic
problems, the total stress is not a constant in general. This is easily
understood since during the process of consolidation, the soil deforms
and its properties change continuously. Thus equations (1.4) and (1.5)
are not strictly correct since in their derivation the total stress is
assumed to be constant.

Biot took a different approach. He assumed that the soil skeleton
was isotropic and linearly elastic and from the equations of continuity
and equations of equilibrium formulated a rigorous general theory of
three-dimensional consolidation (Biot, 1941a ). The anisotropic problem
was considered by him in a later paper (Biot, 1955). He used all of
Terzaghi's assumptions except for relaxing the requirement of an incom-
pressible fluid. For the isotropic case, he obtained a set of coupled
partial differential equations with two dependent variables, namely, the

excess pore water pressure and the volumetric strain:
- 98
e - 22 (1.6)
(A20)V%0 + Vp = 0 (1.7)
where the coefficient of consolidation, ¢, is now defined

e = (a20) £ . (1.8)
Te
Yoshikuni and Nakanodo (1974) have shown that equations (1.6) and (1.7)

can be reduced to a form similar to equations (1.4) and (1.5) in the

special case where the consolidation potential is a constant with time
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and space. They defined the consolidation potential, &, as:
éd = (A+2G)6 + p . (1.9)

For an irrotational problem, they showed that ¢ is a function of time
only.

Biot used equations (1.6) and (1.7) to solve a couple of two—
dimensional problems (Biot, 1941b; and Biot and Clingan, 1941). In
these, the surface settlement was the only quantity computed. Because
of this, it was left to Mandel to find that even if the applied load was
constant with time, the total stress at all points could change with
time (Mandel, 1953). This has become known as the "Cryer-Mandel’ effect
in the literature (Lambe and Whitman, 1969) though Cryer>found the vari-
able total stress effect at a much later date (Cryer, 1963). Mandel
found that for a finite layer of soil subjected to a constant load and
allowed to drain radially only, the total pore pressure at the center of
the layer first increased and then decreased. This physically very log-
ical phenomenon could not be predicted by Terzaghi’s work.

Cryer used both Terzaghi's and Biot's theories to predict the
behavior of a saturated sphere of soil subjected to a uniform
hydrostatic load and allowed to drain at the surface. He found that the
settlement behaviors as predicted by the two theories were similar.

But, he too found that, according to Biot's theory, the pore pressure at
the center of the sphere would first increase and then decrease whereas
the pore pressure would decrease right from the start according to

Terzaghi’s theory. The existence of the "Cryer-Mandel” effect implies
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that equations (1.6) and (1.7) should be used instead of equation (1.4)
or (1.5). However, because of its simplicity, equations (1.4) or (1.5)
continue to be used in the geotechnical profession and are the basis of
many studies (Barron, 1948; Richart, 1959; Davis & Raymond, 1965 and
Atkinson & Eldred, 1981).

As described, both Terzaghi'’s and Biot'’s work assumes that Darcy's
law is valid and the effective stress—strain relationship for the soil
is linear. However, there is evidence that flow through some clay may
be non-Darcian [see (Mitchell, 1976) for a brief survey]l. Also for
soil, a linear stress-strain relation is valid only if the strain is
very small. For the one-dimensional case, many efforts have been made
to eitend the classical Terzaghi'’s formulation to include more realistic
assumptions. For examples, Barden and Berry (1965) used a power law and
Elnaggar et al. (1973) used a four-parameter relation in place of
Darcy’s law; Davis and Raymond (1965) used an exponential rule for the
effective stress-void ratio relation. These researches were based on
Terzaghi’s concept which, as was explained, was valid only for
infinitesimal strain.

Mikasa (1965) and Gibson, et al. (1967) were the first to realize
that the investigation of the effect of non-linear soil behavior must be
done in the context of large strain since these non-linearities are
likely to be important only if the void changes and strains are appreci-
able [see Schiffman et al. (1984) for some examples]. They realized the
need to have a formulation that removed the limitation of infinitesimal

strain. Accordingly, they established the problem of "one—dimensional
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finite strain consolidation” and obtained:

Mikasa

in Eulerian frame

3 s\ 3| kx . (¥s _ T
% (o, 2 & (2 9l - % (1.10)

in Lagrangian frame

v da

20 (., 8\ _ 2 x{&_) _ ot
(4 ™ <c 33 { 1 = ; (1.11)
Gibson
in Lagrangian frame

(1. k .da . 3e _(&_)ﬁ.&. e _
az(yf 1+e  de az) 1 (fis) * 3¢ ° . 1.12)

Consolidation processes governed by equations (1.10)-(1.12) include the
effects of self-weight which are neglected in both Terzaghi'’s and Biot's
work. Another point to be noted is that Mikasa’s formulation in the
Eulerian frame [equation (1.10)] omits the convective term for the
material derivative of the dependent variable, the natural strain. This
has not been noted previously. Also, as noted by Pane and Schiffman
(1981), Mikasa's formulations are valid for uniform initial conditions
only; that is, all the dependent variables are constant spatially at
time t = 0, Such a restriction does not exist for Gibson's work.

In the Eulerian formulation, the problem involves moving

boundaries. For example, in the one—-dimensional problem (Figure 1.1)
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when a load is applied to the top surface, the soil skeleton begins to
deform with time. Thus the surface will settle continuously and its
settlement is the summation of the strain at each point. In an Eulerian
formulation, the surface at each instant is the boundary for that
instant and thus the problem involves a moving boundary. Further,
because every single point is moving with time, for the Eulerian formu-
lation, the material derivative involves a convective term. This
differs from the classical moving boundary heat conduction problem known
as Stefan's problem (Crank, 1975). Thus many of the numerical schemes
that were developed for the heat conduction problems (Crank, 1975) are
inapplicable. Also, moving boundaries are difficult to handle. For
these.reasons. most workers have used the Lagrangian formulation
(Gibson, et al., 1967; Monte & Krizek, 1976; Mikasa 4 Ohnishi, 1981 and
Gibson, et al., 1981). An exception to this was Lee & Sills (1979) who
vwere able to formulate the problem in an Eulerian frame and eliminate
the convective term in the material derivative. Their formulation was
thus similar to the classical Stefan’s problem and they were able to use
the Crank-Gupta method (Crank, 1975) to solve this one—dimensional case
numerically. But Lee and Sill’'s one-dimensional formulation cannot be
extended to three dimensions without introducing some convective effect.
In recent years, efforts have been made to extend the finite strain
theory to three dimensions (Carter et al., 1977 and 1979). This work
was formulated in the Eulerian frame since the governing equations are
simpler in this formulation. The finite element method was then used

for the spatial discretization and the difference method in the time
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domain. However, the use of the difference method does not account for

the convective term in the material derivative unless special procedures

not employed by Carter are introduced.

From the account just presented, it is clear that many different

models have been developed to solve the problem of consolidation. These

models are derived in different ways and based on different idealiza-

tions. In the next chapter, a consistent formulation is presented that

will unify all these models.
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CHAPTER II

THEORY OF CONSOLIDATION

2.1 INTRODUCTION

To derive the governing equations for the process of consolidation
requires a knowledge of the constitutive relation for the soil skeleton
and a relation governing the flow of fluid through the soil medium.
Also, since the consolidation process is time dependent, it is in
reality a dynamic problem. Clearly, this is an extremely difficult
situation.

In all the studies to date, the consolidation problem has been
treated as quasi-statie. That is, instead of the equations of motion,
the equations of equilibrium are used. The time variable is then intro-
duced through the equation of continuity. In the subsequent derivation,
the problem will be treated dynamically and formulated accordingly:; that
is, the equations of motion are used. This provides a basis for future
research where the dynamics of the problem may need to be considered.
However, in the current study solutions are developed for the gquasi-
static case only.

Constitutive relations for soil are still a much debated and
researched topic (Bardet, 1983). For consolidation, there are two ways
to deal with it. The first is to assume a constitutive model and
formulate the problem rigorously. Examples of such an approach are to
be found in Biot's formulation (Biot, 1941a and 1955) and Carter

et al.'s work (Carter et al., 1979). The second approach, which is more
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popular, is to lump all the material properties into the coefficient of
consolidation and this coefficient is then determined experimentally.
However, this approach is feasible for certain types of problems only
such as one-dimensional consolidation and consolidation using a vertical
drain with no lateral strain. Terzaghi’s formulation is a good example
of such an approach. Others who use this approach include Mikasa
(1965), Gibson et al. (1967) and Lee & Sills (1979). In this study,
when feasible, the second approach is preferred for two reasons. First,
the individual material property is difficult to determine whereas a
large amount of experience has been accumulated on the determination of
the coefficient of consolidation. Second, the variations of this
coefficient are less marked than are the changes of the individual com-
ponent of the material properties (Gibson et al., 1967; and Lee and
Sills, 1981). Thus, the determination of this coefficient is less
sensitive to error.

In most studies to date, Darcy's law is assumed to govern the flow
of fluid through the porous medium. This will be assumed too in this
study. However while formulating the problem, we will show how any
variant of Darcy’s law can be incorporated into the governing equations.
Even if Darcy’'s law is assumed, the determination of the coefficient of
permeability is difficult for soft clay (Pane et al., 1983). This is
another reason why the approach that lumps all the material properties
into a coefficient that is determined experimentally is preferred by

geotechnical engineers.
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In the current study, the soil skeleton will be thought of as a
fluid. In this way, the formulation is similar in many ways to that for
two—phase flow (Wallis, 1969). The three-dimensional case will be
formulated in the Eulerian frame as the governing equations are simpler
in this frame. For one-dimensional consolidation, it will be shown how

to transform this Eulerian formulation to the Lagrangian formulation.

2.2 GOVERNING EQUATIONS
Conservation of Mass

In this study, "soil” will be considered as a two-phase medium; the
"solid phase" refers to the soil grains and the "fluid phase” to the
fluid (usually water).

Let the porosity of the saturated soil be n. Then, the fluid will
occupy a fraction n of the volume of soil and the solid particles (1-n)
of the soil. Thus, if the equations of continuity are written for the
whole flow field in a manner analogous to two-phase flow (Wallis, 1969),
we can write:

conservation of the solid phase:

5% [p (1-m)] + V. [ps(l-n)zs] =0 ; (2.1)

conservation of the fluid phase:
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5%,: (pf.n) +V.(pfnzf) = 0 . (2.2)*

In equations (2.1) and (2.2), the V. is the divergence operator.
If both the solid phase and the fluid phase are assumed to be

incompressible, then equations (2.1) and (2.2) become:
conservation of the solid phase

- an - = ;
st T V. Q1 n)zs] 0 ; (2.3)

conservation of the fluid phase

an -
gtV (av) =0 . (2.4)

~f

Eliminating %% from equations (2.3) and (2.4) gives:

~f ~s ~s

Let
v = nlv -v) . (2.6)
~ ~f ~s

In soil mechanies, v is normally referred to as the approach velocity or

superficial velocity. Using equations (2.5) and (2.6) in equation (2.3)

gives:

* The subscripts s and f represent the solid and fluid phases,
respectively.
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where

Dn _
Dt

Observe that in equation (2.8)
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(1-n)V. v = 0 (2.7)
on v Vn (2.8)
at ~s ® i -

the velocity in the convective term of

the material derivative is the velocity of the solid phase. This fact

will be made use of at a later stage.

Conservation of Momentum

The momentum equations or
vectorial form as:

for the solid phase,

]

ov
(5., w
Ps\ at .

~s ~s

for the fluid phase,

(avf
p .l +v . W )
f\ at ~F ~F

]

In deriving equations (2.9) and
noted:
(1) b and b are the
~8 ~f
ponent, which act

* In accordance with soil mec
are positive and tensile st

the equations of motion can be written in

(three
]
E * f + Ve equations) ; (2.9
s s
(three
Ef * ff + Vp equations) (2.10)

(2.10), the following points are to be

body forces per unit volume of that com-

on each component.

hanics convention, compressive stresses
resses negative.
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Vp is an averaged gradient of pressure and is usually the

thermodynamic pressure of the fluid phase.

f and £ are, to quote Wallis (1969), "what is left over”
~s ~f

to balance the equations. The f's contain components due

~

to hydrodynamic drag, apparent mass effects during
relative acceleration, particle-particle forces (effective

stresses), and so on. In subsequent developments, f , the
~f

"balancing force” in the flulid phase is assumed to be due

to hydrodynamic drag only and f , the "balancing force’” in
~s

the solid phase, will comprise hydrodynamic drag and the

particle-particle forces (effective stress). If the

effective stress is o', then the contribution of particle-

~

particle forces to‘gs in a unit volume of soil is V.o'.

~

Further, let F and F be defined as the hydrodynamic drag
~8 ~f

per unit volume of soil acting on the solid and fluid

phase, respectively. Since in a unit volume of soil the

fluid phase occupies a fraction n of the volume, and the

solid phase, (1-n), and the f's are defined as force per

unit volume of the respective component, the following is

obtained:

f = - (2.11)
S
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(2.12)

and since hydrodynamic drag action and reaction are equal

and opposite, the following equality holds:

F = -F . (2.13)

(iv) In equation (2.11), the effective stress prineciple is
employed. This principle in its original form (Terzaghi,
1925) is a one-dimensional expression [equation (1.1)].
However, this has been generalized to three dimensions
(Biot, 1941a; Schiffman, 1970 and Garg and Nur, 1973). 1In

three dimensions, the principle is:

¢ = o' +pl . (2.14)

-~

Using equations (2.11)-(2.13) to eliminate fs and ff. the following

equation of motion for the composite medium is obtained:

av av
s . _-~f
ooy (G vy w e ey )
= b(l1-n) +bn+V. " +VW . (2.15)

Observe that if the inertia terms are neglected (the left-hand side
equals zero), then equations (2.15) are the equations of equilibrium in

terms of effective stresses and pore pressure (Scott, 1963).
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Flow Relation: Darcy’s Law
In equation (2.10), if the inertia terms are neglected and the

following relation is assumed for the hydrodynamic term:

£ = (yfk_ v o, (2.16)

then the following relation is obtained:

K
v = -— (Wpp+b) . (2.17)
~ Yf ~F

This is Darcy’s law as it is understood in soil mechanics. It was
orig;nally obtained experimentally for the one—-dimensional case by Darcy
in 1856. The use of equation (2.16) shows that Darcy’s law is based on
a linear viscous phenomenon. For soft clay there is evidence that flow
through a porous medium may not be Darcian (Scheidegger, 1974 and
Mitchell, 1976). Any variant of Darcy’s law, for example a power law or
an exponential law, can be easily substituted in equation (2.16) instead
of the linear relation used presently.

Consolidation Equations

In terms of the void ratio e, equation (2.7) can be rewritten as:

De -
bt T (1+e)V. Z = 0 (2.18)

where



e = 1., ° (2.19)

Using Darcy’s law [equation (2.17)] in equation (2.18), the following is
obtained:

k

~

= - De
(1+e)V. Ye (Vp + Ef) = Dt - (2.20)

If the inertia term is neglected, the equation of equilibrium is

obtained from equation (2.15):

Vo' +VYp+b(1-n) +bn = 0 . (2.21)

Equations (2.20) and (2.21) with an appropriate constitutive model
govern the process of consolidation. The two equations have been

derived without assuming infinitesimal strain,

2.3 SPECIFIC CONSOLIDATION THEORIES

Terzaghi'’s and Biot'’s Theories: Infinitesimal Theories

If we assume that the soil skeleton is isotropic and linearly elas-

tic, then the stress-strain relation is given by (Fung, 1965):
o' = A6 1 + 2G8 (2.22)

where § is the infinitesimal strain tensor and 8, the volumetric strain,

is the trace of the strain tensor and is related to the void ratio as

follows:
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e —e
= 2
6 1+e . (2.23)
o
Next we will assume that the coefficient of permeability is isotropic.

This implies that k in equation (2.20) is given by:

k = k1 . (2.24)

If the strain developed is assumed to be infinitesimal, then the dis-
tinction between the Eulerian and Lagranglian formulation disappears

(Fung, 1965). With the assumption of infinitesimal strain, the follow-

ing approximations are also true:

De , 2e
Dt at (2.25)
(1+e) = (1+eo) . (2.26)

Using equations (2.22)-(2.26) in equations (2.20) and (2.21) and

neglecting the body forces, the following is obtained:

K n2gvPe = & (2.27)
Tp at

Equation (2.27) together with the equilibrium equation (2.21)
[neglecting body forces] is Biot's formulation (Biot, 1941a). If the
problem is specialized to the one—dimensional case and use is made of
the fact that, in this special case, the total stress is a constant in

time and space if the applied load is constant with time, Terzaghi’s

formulation [equation (1.2)] is obtained.
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One-dimensional Finite Strain Consolidation
Equations (2.20) and (2.21) will now be specialized for the case of
one~dimensional finite strain consolidation. The concept of the natural

strain & is very useful in the Eulerian formulation and is defined in

differential form as:
ge = -4 (2.28)

where { is the current length of an element that has compressed by df.

Integration of equation (2.28) from time t = 0 to time t gives:

<1+eo>
e = f{n 1te . (2.29)

If eo is a constant, then using this definition in equation (2.18), the
relative velocity of the fluid with respect to the soil skeleton is

obtained:

av De

52 = Dt ° (2.30)

In Mikasa's formulation, it is here that the convective effect in the

material derivative is omitted (Mikasa, 1965; Mikasa and Ohnishi, 1981).
For the special case of constant eo, that is, uniform initial

condition and using the natural strain as the dependent variable, the

following equation is obtained from equations (2.20) and (2.21):

2 [L(.el(é_g_ _IsT)
L

. De
L Te L 1+e ] - pt ¢ (2.31)
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A relation is now needed to relate the effective stress with the
natural strain. In soil mechanics, it is generally accepted that the
effective stress is uniquely related to the void ratio if the loading is
monotonic (Schofield and Wroth, 1968). This is assumed throughout this
study. With this assumption and for constant eo, it is clear from equa-
tion (2.29) that the effective stress is uniquely related to the natural

strain. Thus, the following definition can be made:

do' _ _1
> o (0 (2.32)
and
o = K& ' (2.33)
v vfmv(e)

Using equations (2.32)-(2.33) in equations (2.31), the following is
obtained for the one-dimensional case:

—"—(ev-g-g-)—sa-é M%} - (2.34)
L "¢ €]

This is the same as Mikasa's formulation except for the fact that the

material derivative is used and not the local derivative with respect to

time,

For the one-dimensional problem, often it is easier to formulate
the problem in the Lagrangian formulation. Some workers (Gibson et al.,
1967; Lee and Sills, 1979; and Gibson et al., 1981) have introduced a
new independent variable z which identifies the volume of solids in a

prism of s0il of unit cross sectional area (sometimes referred to as the
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"equivalent height” of solid content) (see Figure 2.1). The relation
between the three different coordinates (the Lagrangian coordinate a,
the Eulerian coordinate &, and the new coordinate z that is referenced

in a Lagrangian frame) for the one-dimensional case in differential form

is as follows:

z = -4a _ 4L (2.35)

Using equation (2.35) in equations (2.20) and (2.21), and assuming

monotonic loading, the following is obtained:
5@-[—1‘@—)——99—'@]—(&-1)—3—&51192+9§=0 ) (2.36)

Z{ Yf(1+e) de dz ! Te 9z L1+e Joaz ~ at
This is Gibson's equation (Gibson et al. 1967). This formulation, which
uses the void ratio as the dependent variable, is no longer restricted
to the problem of uniform initial conditions.
Consolidation with Vertical Drain: Finite Strain

In practice, often the time required for the completion of the
natural consolidation process is too long. This can be costly as
construction normally cannot begin until the soil has consolidated. A
way to accelerate this process is to install vertical drains at equal
spacing in the area needed. This, in effect, reduces the drainage path
of the fluid and thus increases the rate of settlement. This case is

now presented for later study.
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The problem considered is illustrated in Figure 2.2, This is an
axisymmetric problem. In general, a full constitutive model is required
and equations (2,20) and (2.21) cannot be uncoupled. A general solution
would thus require a solution to the "equilibrium problem” at each
instant, a difficult problem on its own. In this study, the special
case where the vertical wall of the drain and the outer diameter of the
region are fixed in space and the applied load constant with time is
studied. For this special problem, if the strain is infinitesimal, it
has been shown that the Cryer-Mandel effect disappears (Yoshikuni and
Nakanodo, 1974); that is to say, the total stress is constant with time.
With this consideration equations (2.20) and (2.21) can be combined to

give:

(K D
v (Ypr) = o 2. (2.37)

This equation was also obtained by Mikasa and Ohnishi (1981) except that
again the convective term in the material derivative was neglected in
their formulation.

With the derivation of the governing equation for consolidation
using vertical drains, Chapter II is concluded. Thus far, a consistent
approach to formulating consolidation theory is presented. In Chapter
III, solutions and methods of solution will be given for various

consolidation problems governed by the equations just presented.
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CHAPTER ITI

SOLUTIONS AND RESULTS

3.1 INTRODUCTION

In Chapter II, the theory of consolidation was presented and the
governing equations derived. In this chapter, various solutions and
methods of solution will be given.

Since the one-dimensional case has been used most extensively in
practice, it will be studied in detail. First, an analytical solution
will be derived for the exact formulation of finite strain consolidation
of a semi-infinite layer (see Figure 3.1) including convection but
neglecting self-weight. Then an analytical solution is derived for the
same problem with the exception that the convective term is neglected.
The comparison of these two solutions will illustrate the significance
of the convective term.

Next, the finite element method is applied to the more realistic
case of consolidation of a finite layer. The governing equations are
formulated in the Lagrangian frame, and the finite element method is
used for the spatial discretization while the explicit forward differ-
ence method is used for the temporal discretization. As the Lagrangian
formulation is used, the finite element mesh does not need to be updated
each time step. Furthermore, the use of the explicit forward difference
method will yield a simple matrix equation. The elements used are
three-node linear elements. In this formulation, all properties are

allowed to be non-linear and the effect of self-weight is included.



- 33 -

To make the results of this study more attractive to geotechnical
engineers, some closed-form approximate solutions will be derived for
the consclidation of a finite layer neglecting self-weight. This is
achieved by applying the perturbation method to a particular formula-
tion. These approximate closed-form results will be compared with the
results generated by the finite element method.

In the multi-dimensional case, the governing equations are simpler
in the Eulerian formulation. However, this formulation involves moving
boundaries and a material derivative. The latter fact separates it from
the classical moving boundary heat conduction problem known as Stefan'’s
prob;em (Crank, 1975) in which the boundary moves, but the material
inside it does not deform. Thus, numerical methods developed for
Stefan’s problem cannot be used here.

A method is thus introduced that can be incorporated in a numerical
scheme to account for the convective effect and the moving boundary in
an Eulerian formulation for the finite strain consolidation problem.
This method, which in essence is similar to the updated Lagrangian
scheme (Bathe, 1982), is demonstrated for the one-dimensional case and
its validity verified. The attractiveness of this is that it can be
extended to multi-dimensional cases.

The method is then applied to the three-dimensional problem of
consolidation using a vertical drain subjected to the restriction of

zero lateral strain (Barron, 1948; Yoshikuni and Nakanodo, 1974).
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3.2 ONE-DIMENSIONAL FINITE STRAIN CONSOLIDATION

3.2.1 Analytical Solutions

Consolidation of a Semi-infinite Layer (see Figure 3.1)

Neglecting self-weight, the following equation with the void
ratio as the dependent variable and z the equivalent "height of solid

content” as the independent variable is obtained from equation (2.36):

a [ °y e e
— |l == = (3.1a)
0z l(1+e)2 azJ at
where
e = -k(l+e) 1 (3.1b)
v Te de )
do’

and together with the effective stress equation (equation (1.1)) govern
the consolidation process. Note that since z is referenced to a
Lagrangian frame, the material derivative is the same as the time
derivative. The definition of e, given by equation (3.1b) is exactly
equivalent to that given by equation (2.33). e, will be assumed to be a
constant. Equation (3.1a) is a Lagrangian formulation of the problem.
The boundary and initial conditions for this case are:

at z =0

e(0,t) = e (3.1c)
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at z = =
e(o,t) = e, (3.1d4)
at t =0
e(z,0) = e, (3.1e)
This

Equations (3.1) describe a non-linear diffusion-type problem.
particular formulation has been chosen because nonlinear equations of
this form are analytically solvable (Crank, 1975).

Using the following definitions:

e e
f = 92— (3.2a)
e —e
o f
e —-e
o f
B Tre (3.2b)
l+e
z‘ = 2 9 (3.2¢)
Z‘cht

equation (3.1a) can be reduced to an ordinary non-linear differential

equation:

*
d 1 de * de
pY [ P ‘] = -2z PO (3.3)
dz L(1-Be )© dz 1 dz

If the following definition is now made:



1te (3.4a)

and a new dimensionless variable w and an arbitrary parameter b are

introduced through the following specially defined relation:

d = b(1+f) , (3.4D)

then equation (3.3) becomes:

dar
2 ar
af afr _ ., * _dw
2 - [——dw 2z°b ] L (3.5a)

where f = f(w). From equations (3.1c¢)-(3.1e), the following boundary

conditions are obtained:

at w=mw
f = 0 ; (3.5Db)

at w= o
‘3‘5 =0 ; (3.5¢0)

at w =1
£ = I%E i (3.5d)

The solution to this problem is given by:

fw) = —-gﬁ exp (b2) [l—er'f (bw)] (3.6a)
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and w is related to z as follows:

2’ = f?% exp [b2(1-w?)] + bw(1+f) (3.6b)

where the parameter b is given by:

e—-

° ef

1+e
o}

Vab exp (b2)[1-erf (b)] (3.60)

Equations (3.18)-(3.20) provide the solution to the problem described by

equations (3.1)-(3.5). The settlement of the top surface is given by:

o

s(t) = f (eo-e)dz . (3.7a)
0

Using equations (3.6) and the definitions (3.2), and (3.4) in equation

(3.7a) gives:

s(t) = 2b \’cvt . (3.7b)

The solution as represented by equations (3.6) is shown in Figure 3.2

for typical values of €s.

Consolidation of a Semi-infinite Layer Neglecting Convective Effect

To solve this case, the Eulerian formulation is chosen since, with
the neglect of convection, this formulation resembles the classical
Stefan's moving boundary problem in heat conduction. The governing
equation comes from equation (2.34) with the body force and convective

term neglected and is given by:



2
9 8 de
c = = (3.8a)
v a§2 at

The boundary and initial conditions are:

at the top surface & = a(t)

g(s(t),t) = Es 3 (3.8b)

at § = =
g(=,t) = 0 ; (3.8¢)

at t =0
e(&,00) = 0 ., (3.8d)

With the way the problem is set up (see Figure 3.1), the coordinate
of the top surface is the same as the settlement of the surface s(t) and
thus is an unknown a priori. It is the existence of this unknown
boundary (to be determined from the solution), exemplified by equation
(3.8b) that causes the system to be non-linear despite the fact that the
governing equation (3.8a) is linear. For a prism of soil of unit cross-
sectional area, the settlement of the surface is the same as the amount

of fluid flowing out of the surface. Thus s(t) is given by:

t

s) = [l (3.9a)
0
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where v is the approach velocity of the fluid. Differentiating equation
(3.9a) with respect to time and using Darcy’s law [equation (2.17)] with

equations (2.32) and (2.33) to replace v, the following is obtained:

ds(t) _ _ ae
It e, a§|t=s(t) (3.9b)

and the initial condition for s(t) is:

at t =0

s =0 . (3.9¢)

Equations (3.8) with s(t) as defined in equations (3.9) describe a
problem that is mathematically similar to the classical moving boundary
heat conduction or Stefan’s problem (Crank, 1975). This problem is
solvable by using the method of similarity group which is akin to a
method suggested by Neumann to solve the Stefan'’s problem (Carslaw and

Jaeger, 1959)., Using this method, the solution is given by:

Y 4 oxp (%) ?
e(E,t) = “Eﬂ a exp (%r) erf(af2) - erf<'“—;-*' + ep (3.10a)
| 24je t/ |
L v
where a is the solution to the following equation:
2 2e
a \f _f
a exp 1-erf (a/2)} = (3.10b)
<4 )L ] i

and the settlement s(t) is given by:
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s(t) = a \fcvt . (3.10¢)

Equations (3.10) represent the solution to the finite strain
consolidation of a semi-infinite layer, neglecting the convective
effect. The comparison of this solution to that given by equations
(3.6) to (3.7) will illustrate the significance of neglecting the
convective effect. This comparison in terms of the settlement/\fz;z is
shown in Figure 3.3 and in terms of the natural strain in Figure 3.4.
As expected, when the strain is small (approaches infinitesimal strain),
there is little difference between the two solutions; that is, the
convective effect is negligible when the strain is small (final natural
strain of order of 0.10 or less). However, as the strain becomes
larger, the difference also becomes significant. For example, when the
final natural strain is 0.8, the difference between the two rates of
settlement is 130 percent.

This has serious implications. In some of the studies for multi-
dimensional finite strain consolidation problems, for example, Mikasa
and Ohnishi (1981), the problem is formulated in the Eulerian frame
neglecting the convective effect, while in other studies, for example,
Carter et al. (1977), a difference method is used for the temporal
discretization without any special procedure to account for the
convective term. This assumes implicitly that the convective effect is
negligible. For the one-dimensional case, it has been demonstrated that
for finite strain (the natural strain of order 0.1 or larger), the

convective effect is very significant. Clearly, it is to be expected
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that the same conclusion holds for multi-dimensional problems. Later

on, a method will be introduced to account for the convective effect in

a numerical scheme.

3.2.2 Finite Element Solutions
The more practical case of the finite strain consolidation of a
finite layer including self-weight is now considered. The governing

equation to be used, in a Lagrangian formulation, is obtained from equa-

tion (2.36):

(1+e (a))
3 o) de
{1+e (a)] - [c (e ———— =
° da Ly (1+e)2 an
4 fee) (X )] 2e L ze
+ [1ve ()] L |Kle (Y 1)f & - 2 g
L f J
Introducing the following dimensionless variables:
X = % (3.12a)
and
e (e(0,0))t c. t
T = X 5 = "‘2’ (say) (3.12b)
H H
equation (3.11) becomes:
c. (e) 1+e (x)
d v o) i d (7\de de
(1+e (x)) 7= { ’“] + (1+e_(x)) "(k)“‘ = (3.13a)
0 ax L %vo (1+e)2 axJ 0 de ax daT

where



- Y
ko= Koy (2 (3.13b)
vo ' Tf
The boundary and initial conditions are given by:
at x =0
e(0,t) = f£(t) (3.13¢)
at x = 1, the boundary forms an impervious base, so that
v = 0 ; (3.13d)
and, at t = 0
e(x,0) = eo(x) . (3.13¢e)

Using Darcy’s law [equation (2.17)]} and the equilibrium equation (2.21),
the impervious condition at x =1 [equation (3.13d)] becomes:

ae) Mg ge

ax x=1 - 1+e°(1) dO" . (3.13f)

Equations (3.13) will now be solved by the finite element method.
In essence, the method involves the discretization of the entire region
(where the problem is defined) into elements and the dependent variable
is then assumed to behave in a certain specified manner within each ele-
ment (linearly, if two nodes are used to define an element and quadrati-
cally if three nodes are used).

Using the Galerkin method and following standard procedures in

finite element formulation (Zienkiewicz, 1977), the following matrix
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equation 1s obtained:

Pl
|

+Kd = F . (3.14)

In equation (3.14), d is the vector of the nodal values of e; K is like

~

a stiffness matrix, C a damping matrix and F a loading matrix. The two

global matrices, K and C, are assembled from the element matrices. The

~ ~

element matrices are given by:

el el el
cy (e) . 1+e°(x) . { aNi el EEQ] aNl
[ =% 7 lre) G+ N ol o
vo (1+e) L J
el ve
k = (3.15a*)
1 —ef aNel
_ el de 3
I Ni (1+eo) de ax dx
ve
and
el _ el el
cqy - _[Ni NS ax (3.15b)
ve

where N are the shape functions (Zienkiewicz, 1977). In this study, a
three-node linear element is used and the shape functions are quadratic.

F comes from the boundary conditions and for the case under study, the

~

only contribution is from the impervious condition at x = 1 [equation
(3.131)]. Note that conceptually every internal element has two

boundary conditions, which cancel each other out. The boundary condi-

* The superscript el indicates value in an element.
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tion at the top surface (x = 0) is specified and will be included in the
assembly later on. However, conceptually, with the way the finite ele-
ment 1s formulated, it does not contribute to F as in equation (3.42).

Thus for F , the only value is:

2
+e_(1)]7 c_(e(1))
= 0 y de

Flast node = {t+e(1)] e ax 'x=1 ° (3.15¢)

vo

Using the explicit forward difference scheme to solve equation

(3.14), the following equation is obtained:

~ o~

C d(t+At) = F At + [C—K At]d(t) (3.16)
~ -~ ~ ) I
If the solution at time t, that is, ¢(t) is known, then the solution at
time (t+At) is obtained from equations (3.16). With the way the problem
has been formulated, it may be observed from equation (3.15b) that the
matrix C is symmetric and constant with time. This makes equation
(3.16) easy and cheap to solve.

As a check on the validity of this finite element formulation of
one~dimensional finite strain consolidation, the method is used to
compute the results of tests done by Croce, et al. (1984) and Mikasa and
Takada (1984).

The tests done by Croce et al. were conducted in the centrifuge at
the University of Colorado and were intended to simulate the self-weight
consolidation of a prototype layer of initial thickness of 5.0 meter

with an initial vold ratio of 2.86. The layer thickness was reduced
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from 5.0 meters to 3.3 meters during the process of consolidation.

Both the effective stress versus void ratio and permeability versus
void ratio relations of the soil used are highly nonlinear. These rela-
tions were experimentally determined by Croce et al. (1984) and are
shown in Figure 3.5. However, in their report no mathematical functions
to describe these relations were given.

Hence, in this study two trials were made to fit mathematical func-
tions to the given data. The functions used are:

Trial 1

for k versus e, (polynomial fit for [n k)

k = exp[-21.12 + 21.15¢ - 12.94¢> + 3.94¢° - 0.457¢4]
(k in m/day) ; (3.17a)
for e versus ¢’,
e = 2.14 - 0.409(nc’ + 0.117({ns’)% - 0.0455(fna")>

+0.00772(fne)* (o’ in W/m®) ; (3.17b)

Trial 2

for k versus e,

k = exp[—14.41 + 5.72e - 0.837e2] (k in m/day) ; (3.17¢)
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for e versus o',

e = 2.13 - 0.278 (n o' (o' in WN/m?) . (3.17d)

The coefficients necessary for the evaluation of the matrices K and C in

equations (3.15a) and (3.15b) are then deduced from these fitted func-—
tions.

The comparison of the dimensionless settlement (degree of settle-
ment) versus time calculated by the finite element method with the
experimental data is shown in Figure 3.6.

As can be seen from Figure 3.6, the computed results for both tri-
als give almost identical solutions. However, the fitting functions for
the second trial are simpler than that for the first trial. Of particu-
lar interest is the fact that the relation used for e versus o' in the
second trial (equation (3.17d)) is in a form generally suggested for
soils (Schofield and Wroth, 1968). Another interesting observation is
that the calculated results at long (prototype) time (over 500 days)
still agree with the experimental data. In a fileld situation, the
result from a consolidation theory incorporating time-independent soil
behavior is unable to predict the settlement after a long time since
over long intervals, creep (viscous flow) and not consolidation
dominates the prototype settlement behavior. However, creep is not
simulated in a centrifuge experiment, and therefore viscous flow of the
soil, which does occur in the model, develops only over the short model

time (minutes) rather than over a time corresponding to the prototype

situation.
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In the stﬁdy by Croce et al., the experimental data were also compared
to the results predicted by Terzaghi's theory. They concluded that
Terzaghi'’s theory was inadequate to predict the consolidation of a thick
layer and a finite strain theory was needed.

In the study by Mikasa and Takada (1984), tests were conducted in
the centrifuge at Osaka City University. Two sets of self-weight
consolidation tests were carried out; the first test was done on a soil
with an initial void ratio of 3.20 and the second with a void ratio of
3.98. The initial prototype thickness of layer these tests were |
intended to model is 10 m. For the first test, the final settlement was
equivalent to 2.45 m in the prototype and for the second test, the final
settlement was 3.45 m. The e versus o'’ but not the k-e relation was
given by the authors. For the purpose of this study, a trial function
for the k-e relation is constructed from data given by Mikasa and Takada
as follows:

For e, = 3.2

k versus e relation
k = exp (-26.90 + 5.96e - 0.628¢%) ; (3.18a)
e versus o' relation (as given by Mikasa and Takada)
e = 2.22 -0.31 {no' . (3.18b)

For eo = 3,98, the k versus e relation is the same as (3.18a). The e

versus o'’ relation is:
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e = 2,31 -0.334 (no’' . (3.18¢)

The finite element results based on these relations are compared
with the experimental results and shown in Figures (3.7) and (3.8). 1In
Figure (3.9), the void ratio versus depth behaviors for different times
is shown. Also shown in the figure is the measured void ratio distribu-
tion when the consolidation process has ended. The computed results in
both cases agree very well with the experimental data. Note too that
the observations made earlier on the Croce et al. study with regard to
the functional form for the e versus o’ relation and the behavior after
a long time are evident here too.

Clearly, the very good agreement of the predicted results as
compared to the experimental results gives confidence both in the
consolidation theory and the use of the finite element method for such a
theory. This study also suggests that a linear e versus ({n ¢') rela-
tion [basis of many constitutive laws (see Bardet, 1983), for examplel

will indeed describe one-dimensional soil behavior well.

3.2.3 Approximate Closed—form Solutions—Perturbation Method

In this section, approximate closed-form solutions are derived
for the finite strain condition using the perturbation technique. These
solutions are derived for the consolidation of a thin layer (that is,
for cases where the self-weight is significantly less than the applied
load) and will be useful to geotechnical engineers who may need a quick

and relatively accurate consolidation solutlon.
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The perturbation method will be applied to the Lagrangian formula-
tion in which the dependent variable is the natural strain e¢. Before
the perturbation method is actually carried out, it will be demonstrated
that this particular choice of formulation should produce the best
results. To do this, three different infinitesimal theories will be
used to predict the consolidation of a semi-infinite layer neglecting
self-weight and the results will be compared to the analytical solution
obtained in Section (3.2.1). The reason the infinitesimal theories are
used is that the first-order perturbation is actually the linearization
of the non—-linear problem. This linearization is equivalent to assuming

the strain is infinitesimal. The three theories to be used are:

(1) Terzaghi'’s theory

The governing equation is given by:

2
o 34 _ 8u (3.19a)
v aa2 Jat

where u is the excess pore pressure.
(ii) Infinitesimal theory from Lee and Sills’'s formulation (Lee
and Sills, 1979)

The following equation governs:

2
o &8 _ én (3.19b)
v aaz it

where n is the porosity.
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Infinitesimal theory from Mikasa's formulation (the formu-
lation which is used in this study)

This is given by:

2
e _ Qs

cv 2 = ot (3.19¢)
da

where ¢ is the natural strain.

The rate of settlement as predicted by the three infinitesimal

theories is compared to an analytical solution of the finite strain

theory (obtained from section 3.2.1). As can be seen in Figure 3.10,

the results as predicted by the infinitesimal theory based on Mikasa's

formulation gives the best result.

A reason is postulated to explain why this particular formulation

would give such a good result. It is seen from the study in Section

3.2.1 that Mikasa's formulation, neglecting the convective effect, gives

a rate of settlement that is greater than if the effect iz not neglected

(Figure 3.3).

This is obvious since the strain gradient [left-hand side

of equation (3.8a)] has to "drive’” a smaller material derivative (since

the convective part is neglected). However, the "Eulerian strain

gradient” in equation (3.8a) becomes a "Lagrangian strain gradient”

[equation (3.19)] after linearization and thus is reduced in value.

This seems to suggest that the errors involved in the linearization

process [neglecting the convective effect on the right-hand side of

equation (3.8a) and using a smaller strain gradient on the left-hand

side] tend to cancel each other out.
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The perturbation technique is powerful and can be applied to many
different nonlinear problems (including both geometrical and material
nonlinearities). To illustrate the procedure and to show the viability
of this method, it is now applied to the consolidation of a finite layer
neglecting self-weight and having a constant coefficient of consolida-
tion. The governing equation is equation (2.34) with the natural strain
as a dependent variable. It is then transformed to a Lagrangian form

using equation (2.35). The equation to be used is:

2 de] _ 3e
exp (s8) % [exp (e) ax} = T (3.20a)
cvt
where the dimensionless variables x = % and T = “?; are used. The ini-
H
tial and boundary conditions are given by:
at x =0
e(0,T) = ep (3.20b)
at x =1
e _ o ; (3.20¢)
ax
at t =0

e(x,0) = 0 . (3.204d)
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The settlement of the top surface is given by:

1
s(t) = H° f [1 - exp (—a)]dx . (3.21)
0

Since in equations (3.20), the final natural strain €p is the only

specified value, it is used to form the following approximation:
e = s8_e,(x,t) + 82 e, (x,t) + (3.22)
fl » f\ 2 » LI .

In most practical problems, it is rare for af to exceed one and thus we
can consider o to be ”small.” Following the standard procedure for reg-
ular perturbation (Ames, 1972), equation (3.22) is substituted into
equations (3.20), and, equating like powers of €ps the following systems

of equations are obtained:

order of af

3281 ael
5 = 3T (3.233a)
ax
with the following initial and boundary conditions:
at x =0
sI(O.T) = 1 3 (3.23b)
at x =1
ael
- ((,T) = 0 ; (3.23¢)

ax
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at t =1

sl(x.O) = 0 . (3.23d)

The settlement, to order of € is given by:

1

s(t) = H [ [1-exp (-eep)lax + 0(ed) . (3.24)
0

order of a%_l

The governing equation is:

2
8232 632 8231 (ael)
ax - 21 "1 2 "\%x A (3.252)
ax
and the initial and boundary conditions are:
at x =0
ez(O,T) = 0 ; (3.25b)
at x =1
682
- = 0 ; (3.25¢)
ax
at t =1
ez(x,O) = 0 . (3.254)

The settlement is now given by:
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1
s(t) = H°® j [1 -exp (- e_e, - eza Yldx + 0(33) (3.26)
-1 £°2 f * :

0
If a more accurate solution is needed, this method can be followed
through for as many orders as required, though the effort required to
solve the higher-order systems increases very significantly. Equations
(3.23) are mathematically similar to the classical one- dimensional heat
conduction or diffusion problem (see Crank, 1975 or Carslaw and Jaeger,

1959). The solution to equations (3.23) is as follows:

8

e,(x,T) = 1- 1_2__ exp (-A2T) sin (A _x) (3.27a)
n n
n=0 n
where
2n+1
A, = (—7;—) 1. (3.27b)

Using equations (3.27) for &, in equation (3.25a), the following

equation is obtained:

2 de ®
2’e 2 _ - 32
T 4) A exp (- AT) sin (A x)
ax m=0
- -] @«
+ ) 2 exp (-a;T) cos [(A -2 )x](2a,-1)
n=0 m=0
- -] ©
-} ) 2exp (-a;T) cos [(A A )x]1(2ay+1) (3.28a)
n=0 m=0

where a1 and a, are defined as follows:
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a, = 1n + xm (3.28b)
and
A
m

Using the eigenfunction expansion method (Hildebrand, 1976), the follow-

ing solution to equations (3.28) is obtained:

= 2
42: Ay T exp (- A T) sin (& x)

n=0
o
L

oo - - 2
Z: 2: (2a2—1) -x2 [exp (-a;T) - exp (—l‘T)] .
(=0 m=0 n=0 317 :
A
e, = {—Z—L;]sin (x,x) (3.29a)
1r7-azl
L F 3
+ 2: 2: 2: - (2a2+1) _Xz [exp (—alT) -~ exp (—x‘T)]
(=0 m=0 n=0 217
(]
| S aisin (hx)
lxl_a4|
L J
where
33 = lm - ln (3.29b)
a, = km + ln . (3.29¢c)
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In Figure:3.11. the solutions represented by equations (3.27) and equa-
tions (3.29) are compared to the solution generated by the finite ele-
ment method. It is clear that the perturbation method can offer a quick
and, in this case, very accurate solution. In fact, the method still
produces good results even when ee is not "small” (ef exceeds one).

This is best illustrated by considering the consolidation of a
semi-infinite layer where an analytical solution [equations (3.6)] is
available. Following the same procedure as above, the following solu-

tion is obtained:

8y = 1 - erf (x) (3.30a)
g, = {% - % - —5: X exp(—xz) + erf (x)}erf(x)
L T ]
2x 2 2 2
+ == exp (-x7) + = |1 - exp (-2x7)
Vi n [ ]

S [ erf (uw) exp (-ud)du (3.30b)
Va

QO oy M

where x = (a/2 \/cvt) For e = g 8, + O(ei)

s(t) = (3.30¢)

2 3
and for ¢ = e 8p + e,e, + O(ef).
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s(t) = [W’ R z)lef\,cvt . (3.30d)

The comparison of equations (3.30) with equations (3.6) is shown in
Figure 3.12. For g, = 1.2, the difference between the analytical solu-
tion and the second-order perturbation solution is only 3 percent. The
excellence of this method clearly cannot be explained by the perturba-
tion technique alone since for o greater than one, the arguments on
which the perturbation technique 1s based are invalid. The physical
reason postulated earlier, that errors caused by the linearization

process using the perturbation technique tend to cancel each other out,

must play a part.

3.2.4 Finite Difference Method: Accounting for the Convective
Effect in an Eulerian Formulation
In the Eulerian formulation with the natural strain as the

dependent variable [see equation (2.34)], the material derivative is

given by:

Q
i
QO
]

Ds
Dt

(1]
<
+
<
/]
&

(3.31)

It can be seen that in this definition the velocity of convection is the
velocity of the sclid phase. From this observation, a method that can
be incorporated in a numerical scheme to account for the convective term
is now introduced.

In all the consolidation theories considered thus far, the solid

phase has been assumed to be incompressible. This makes it possible to
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introduce” the concept of the "equivalent height’” of solid content (the
solid phase) z within a Lagrangian formulation [see equation (2.35)].
To extend this idea to the Eulerian formulation, an *"equivalent control
volume’ of solid content is introduced. For example, in the one-
dimensional case, consider an equivalent control volume Vs which has a
uniform void ratio of e, initially. The volume of soil that contains
such a control volume is Vs(1+eo). On consolidation, the soill layer is
deformed and the soil volume is reduced. Though the control volume will
also move correspondingly with the soil, its volume will remain
unchanged.

~The velocity of this control volume will be the velocity of the
solid phase. Thus if a point in this control volume is followed, then
the time derivative of the dependent variable at this point is
equivalent to the material derivative of the said dependent variable in
an Eulerian formulation by virtue of the definition given in equation
(3.31). This idea is conceptually similar to following a pathline or
material-line in fluid mechanics (Currie, 1974).

To illustrate the procedure, this idea will now be incorporated
into a finite difference scheme that was suggested, on an intuitive
basis, by R. F. Scott. The consolidation of a finite layer is
considered, with an impervious base, uniform initial condition, constant
coefficient of consolidation and absence of self-weight. These
constraints are not necessary but they are used here for ease in

illustrating the concept. The governing equation is obtained from equa-

tion (2.34) and is as follows:



(3.323)

v atz
and the initial and boundary conditions are:
at the top surface & = s(t)

e = e, ; (3.32b)
at ¢ =H

de  _

ot = 0o ; (3.32¢)
at t =0

g = 0.0 . : (3.32d)

Suppose at time t = 0, the layer of thickness H is divided into m
equal sections each of length A:o = % (see Figure 3,13), To predict the

value at time t = At, the following finite difference scheme is intro-

duced:

e(1,1) = e(1,0) + o Ak [e(i+1,0) - 28(1,0) + 3(1-1.o>] . (3.33)¢
v A§2
(o]

After the value of e has been determined for time t = At, it is
used to determine the nodal coordinates for the new grid to be used to
predict the value at the next time step. This is achieved by keeping
the volume of solid content between two nodal points constant at all

time. So the new spacing between nodes i-1 and i to be used for the

* g(i,3) denotes the value of node i at time t = jAt.
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next time step, A&i(At). is obtained from:
AZ,(At) = (exp [- 7 (e(4-1,1) + e(1,1))1)AE_ . (3.34)

If the bottom boundary is assumed to be fixed, the new coordinate of the

nodal point i (see Figure 15 for the numbering sequence) is given by:

m
LAY A7) = H - Z; A% (At) (3.35)
n=T+1

and the settlement of the top surface is given by:

ji:]
s(At) = 1 - g;l AL (At) . (3.36)

Thus, after consolidation has begun, the nodal coordinates of the grid
at each subsequent time step are determined solely from the computed
values of e. Obviously, the spacings between nodal points are unequal
after time t = 0, Since we are following the "equivalent control
volume,” the material derivative of the nodal values is the same as the
time derivative of these values. The explicit forward difference scheme
can thus be used to discretize the material derivative. The finite
difference scheme that was used was derived by using Taylor’'s expansion
and allowing for uneven nodal spacing. The scheme is presented below.
Let At be the time step and A§o the nodal spacing at time t = 0.

If the spacing between node i-1 and node i at time t = At is defined as:

AZ, (3AY) = n(1, DAL (3.37)
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then the finite difference scheme is as follows:

= _A_L §(i+1,,|2-§§1.,n - i - --1
(1,34 = egyt oo ac? [ n(i+1, ) n(1, J) 1 -
(o}
2
n(i+D)+a(1, ) (3.38a)

and the nodal spacing is given by

n(1,9) = exp [- I (s(i-1,9) +e(d, ] . (3.38b)

A method has thus been introduced that can be incorporated in a finite
difference scheme to account for the convective term.

The method as described above differs from those introduced by
Crank and Gupta for moving boundary diffusion problems ksee Crank, 1975)
and used by Lee and Sills (1979) to solve a specially formulated moving
boundary consolidation problem. Since the moving boundary diffusion
problem (or Lee and Sills’s formulation) does not involve a material
derivative, in their method no special procedure is needed to account
for the convective effect. Only the moving boundary has to be tracked
in their method.

The consolidation of a finite layer (neglecting self-weight) with
an impervious base is now solved by the finite difference scheme as
stated in equations (3.38) and the results compared to those generated
by the finite element method (see Figure 3-14). The very good agreement
between the two set of results indicates the validity of the concept

introduced. In the next section, this concept will be extended to a

three-dimensional case.
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3.3 CONSOLIDATION OF SOILS BY VERTICAL DRAINS

As explained earlier in Chapter II, this case has practical
importance, since vertical drains are often used to accelerate the
consolidation process. However, thus far, this problem has not been
considered within the context of finite strain. The problem dealt with
here is subjected to the realistic restriction of no lateral strain
since generally large numbers of vertical drains are used so that the
consolidation of each region dependent on a drain is identical. It is
recognized that the governing equation as given by equation (2.37) is
not strictly correct since the Cryer—-Mandel effect has been neglected.
However, the infinitesimal strain form of this equation has been used
extensively (Barron, 1948; Richart; 1959; and Yoshikuni and Nakanodo,
1974). Thus it is worth investigating the finite strain effect with
this assumption (neglecting Cryer-Mandel effect).

In practice, vertical drains are arranged in a hexagonal pattern.
However, for ease of mathematical modeling, this has been approximated
by a circle. Furthermore, the symmetry boundary condition at the exte-
rior boundary [equation (3.39¢c)] requires this boundary to be impervi-
ous,

The problem to be solved is shown in Figure 2.2. The governing

equation is (2.37) and for a symmetric problem is of the following

forms:

c c
X .2 du .1 .3u_ va au) _ Du
m ar'(mv ar) % r artnm (m ) (3.39a)

<
<
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where u i3 the excess pore pressure and the boundary and initial condi-

tions are:
at r=r
W
u = 0 (3.39b)
atr=r
e
du _ o (3.39¢)
ar
at £ = H
du _ .
ax 0o ; (3.394d)
at ¥ = s(r,t)
u = 0 ; (3.39¢)

u = u . (3.398)

Finite Element Method - Inclusion of Convective Effect

To solve equations (3.39) requires a numerical method. The
"equivalent control volume” concept suggested earlier will now be
incorporated into a finite element scheme that allows for variable
properties.

The finite element method involves discretizing the entire region
into elements (this time rectangular elements are used) and assuming

that the dependent variable behaves in a specified manner within each
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element. The formulation will make use of the fact that the problem is
axisymmetric., Using the Galerkin method and following standard

procedure (Zienkiewicz, 1977), the following matrix equation is again

obtained:

[N e
U' o
r jl e

+Kd = F (3.40a)

where C and K are assembled from element matrices defined as follows:

~ ~

for C
el = [ wol w®! rarae (3.40b)
i3 i 7j
ef
v
and for k
el
C oN
8 (v e[) o
J. By ar (m Ni ar T dr dg
e
of _ 7 (3.40¢)
kij ) c aNel e
(S el)___j.
) omy ag(mv Ny" )5 rar &t
ve

For the boundary conditions as specified in this case [see equations

3.39]; F, the vector on the right hand side of (3.40a) is identically

zero. If other boundary conditions are specified, they can be easily

included in F by following standard procedure in finite element analysis

(see Section 3.2.2 for example).
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To a¢count for the convective term on the right-hand side, the
concept of "equivalent control volume’” is employed. Because of the
assumption of no lateral strain, this concept is easier to apply since
there will not be any convective effect due to motion in the lateral
direction., In essence, this technique requires that, after each time
step, the mesh is updated to follow the "equivalent control volume.” The
actual process is described below.

Consider an element (see Figure 3.15) that has an initial void

ratio of e, (assume constant in this study). The "equivalent control

volume’” of s30lid content of this element is:

v - nA§°
s 1l+e
0

lar + wm?] . (3.41a)

Now suppose that the nodal values of this element are known at time
t = kAt. Since we are following the "equivalent control volume,” the
coordinates of the element at time t = kAt must be such that the volume

of solid content is equal to Vs implying that:

2 | 2-Q£—9§ = v . (3.41b)
S
el 1+e®

If the coordinates of the bottom two nodes (nodes 3 and 4 in Figure
3.15) are known, then we have two unknowns to determine with only one
equation (3.41b). A simple but approximate solution to this problem is
to assume that, for the element closest to the exterior boundary, the
lengths of the two vertical sides are préportional to their (1+e) values

calculated from the nodal excess pore pressure values as follows:
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{ {
—4 - 2 (3.41¢)
1+§ (e1+e4) 1+5 (e2+e3)

where e to e, are the nodal void ratio values (see Figure 3.15) for
nodal number). This is chosen because the displacement is expected to
be smallest at points furthest away from the well and thus the error
induced by this assumption is expected to be small.

With this setting and assuming that the bottom boundary is fixed,
calculation of the new mesh size will proceed from the bottom left hand
corner element (see Figure 3.15) and the lengths of its vertical sides
computed using equations (3.41b) and (3.41c). With this, the size of
the element on the right will be calculated next. Since the length of
the left vertical side is already known, we can use equation (3.41b) to
calculate the other side. The procedure is now repeated.

As can be seen, equation (3.41b) is an integral equation with the
region of integration the unknown. This is a difficult problem. For
this study, a simple approximation is made, that the value of (1+e) in
an element is constant and equal to the average of the nodal values.
For elements away from the drainage surface, this assumption is realis-
tic, for the variation of (1+e) within each element is expected to be
small. But for elements next to the drained boundary, this assumption
is unrealistic at small time where the value of (1+e) is expected to
vary like an error function. Since the error function is difficult to
fit and integrate, a hyperbolic function is assumed. Some simple calcu-
lations suggest that the errors induced in this assumption are small.

Nevertheless, it is reorganized that this is only an approximation.
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In the above, a method to incorporate the convective effect in a
finite element scheme using the concept of equivalent control volume”
is introduced. As is clear from the formulation, the above method can
incorporate nonlinear material properties. Note too that the self-
weight effect can be included in a manner similar to the procedure used

in Section 3.2.2 by adding its contribution to K (the governing equation

1s similar to equation (3.39a) but with body forces included).

Since there is a dearth of data with respect to this problem fqr
nonlinear properties, the above method will be illustrated for the
finite strain condition by solving the problem with mv and c, constant
(same assumptions as in infinitesimal theories like Barron’s and,
Yoshikuni and Nakanodo’s). The settlement of the top surface with time
is shown in Figure 3,16, It is clear from this analysis (see Figure
3.16) that arching will occur. In practice, this will cause some
redistribution of the load depending on the stiffness of the loading
platform. This effect was recognized by Barron (1948), but he
considered a case where arching would not redistribute the load; that
is, the platform 1is very flexible. This is the case considered here.
But in general, the method introduced here can be adapted to study the
case where a redistribution of load is allowed. It is very difficult to
compare the results obtained here to any existing studies since, in all
the studies cited in this section, the gquantity by which these authors
chose to present their results is the average consolidation degree (the
average over the entire region of the ratio of amount of pore pressure

dissipated at each point to the initial pore pressure). This has very
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little physical significance.
In this chapter, a number of interesting points have been made and
methods of solution to the problem of consolidation presented. These

will be summarized in the next chapter.
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Figure 3.1 One-dimensional consolidation of a semi-

infinite layer :
a ... Lagrangian coordinate
¢ ... Eulerian coordinate
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Figure 3.2  Analytical solutions to one-dimensional finite
strain consolidation of a semi~infinite layer
Dimensionless depth z* is defined in equation
(3.2d). Initial void ratio = 2.0
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Figure 3.4 1-D finite strain consolidation: Effect of
neglect of convection in terms of natural strain
distribution. z* defined in equation (3.2d)

Final natural strain = 0.4



74

2.20

Yoid Rat 1o

. TEST DATA .

0.Thoot

0. 0001 8. 001 0.0 0
Coefficrent of Permeability (m/day)

(a)

« TEST DATA

Figure 3.5

(b)

Input data and fitting curves for Croce et al.
a. e versus k
b. e versus o'



anﬁag

| U0 ieET]o5u0 )8

STl

Gs°0

<3

00°0_.

75

Time (days)
0.0 100. 0

1000. 0

o TEST RESULTS

Firal Settlement = 1.67

Inrtial Yoro Ratie = 2. 86

Initial Loyer Thickness = 5

Figure 3.6 One-dimensional self-weight consolidation
(singly drained) : Comparison of theoretical
and experimental results (Croce et el. tests)



(| uciyopiiosuny jo asdbag

ST

76

Tine (gays)
F;UQ.O 1000.0 10000.0 100000. 0
= Initial Vord Ratio = 3.2
Iritial Layer Thickness = 10 n
Final Settlemert = 2 4%

—— FEM RESULTS

. TEST RESULTS

Figure 3.7 One-dimensional self-weight consolidation
(singly drained) : Comparison of theoretical
and experimental results (Mikasa and Takada
tests)



[| UCT R esuc) Jo aaaba]

<3

0

Ll

120,

1000. 0

77

Time (ooys)
10000. 0 100000. U

. TEST RESULTS

Initial Yara Batio = 3.98
Initial Layer Thickness = 10 o

Final Settlement = 345

FEM RESULTS

Figure 3.8

One~dimensional self—weight consolidation

(singly drained)

: Comparison of theoretical

and experimental results (Mikasa and Takada

tests)



Figure 3.9

e
4.0 3.0 2.0
0 T
U=100%
5-0_ [} ——
——— FEM B
«  EXPERIMENT '
0.0 | .
(a) eo,=3.20
e
4.0 3.0 2.0
0 T
:U: 100 %

5.0

— FEM
EXPERIMENT
I

10.0

(b) e, =3.98

1-d self-weight consolidation (singly drained)
Typical void ratio distribution with Lagrangian
depth (in m). Experimental data shown are for 100%
consolidation.

a. Initial void ratio 3.2
b. Initial void ratio 3.98



SETTLEMENT

79

- FINITE STRAIN
——— = m— MIKASA
e w e LEE  and SILLS
— === TERZAGHI

| | |

0.2 0.4 0.6 0.8
FINAL NATURAL STRAIN

Figure 3.10 Comparison of Infinitesimal theories with exact
finite strain solution for one-dimensional
consolidation of a semi-infinite layer



80

Natural Strain

0.00 0. 10 0. 20 0.30 0.40

= I 1 L |
= _ IST APPROX.
= :\J"
> ¥
e
[
<
~
Sy
[Sai
= T
3= APPROX.
=
o
~
oo .

— FEM RESULTS
= Firal Natural Strage = 0. 405

[ire Factsr = 0,12

Uliegree of Lonseloaation = ST

Figure 3.11

One~dimensional finite strain consolidation of
a finite layer of initial thickness H :
Comparison of results by perturbation method
with FEM



SETTLEMENT

81

2.0

FINITE STRAIN
—— — — | ORDER APPROXIMATION
——=—— 2nd ORDER APPROXIMATION

] ]

O 0.4 0.8 1.2
FINAL NATURAL STRAIN

Figure 3.12 One~dimensional finite strain consolidation of
a semi-infinite layer : Comparison of results
of perturbation method with analytical results



82

], I
L ] { '3 s(jAf)
’ I
I—IQ-——-—T- ’
Ag,
i ¢ —1 Pi=1 9 —
A€ 1 n(i,j)ag,
. 1 ]—— R
i+ ¢ —I n{i+1,j) Ag,
i+1 ¢ L
¢
¢
! ¢
? ¢
] !
——‘——f:mA{ozH -—‘—-—{:H
t=0 t=jat

Figure 3.13 Schematic representation of mesh used for finite
difference method at time = 0 and time = j(At)
1-D finite strain consolidation of a finite layer



83

Natural Strain
0.00 0.10 Ui20 0.30 0.40

i

00°0

570

FINITE DIFFERENCE METHOD

H/ ‘q;daﬂ 5531U0I5UNI (]
0570

570

FEM

00l

Final Natural Strain = 0. 40%
Time Factor T =0.1¢

Degree of Lonsclidation = 50/

Figure 3.14 1-D finite strain consolidation of a finite
layer : Comparison of results of finite
difference method for an Eulerian formulation
with FEM for a Lagrangian formulation




84

e
— W f—
1 {1 { 11
1¢
LN
/] N
el
\\_//
—~— e
/—\\
(K )
N A Y S A/
FINITE ELEMENT MESH
et A Y e
2 3 [ Ar— 2
2
? { II |
A
[ 3 o
3 a 3T VIV T 4
3 4q
time=0 time=t
SINGLE ELEMENT CORNER ELEMENT

Figure 3.15 FEM mesh used for the axisymmetric problem of
finite strain consolidation by a vertical
drain (Eulerian formulation)



85

00°0

0970

)/ uawadu]dsi g
|

N

Distance from center / re

i

B/ re= 16

1,00 0f75 OESU 0,25 0.00
I j
—t = 0.004
t = 0.03
— t = 0.1
— ‘ J‘ i
Initial Excess Pore Pressure = 15,0 well
Final Natural Strain = 0. /5 boundary

Figure 3.16 Finite strain consolidation by a vertical
drain : Displacement of top surface with

time



- 86 -

CHAPTER IV

SUMMARY AND CONCLUSIONS

4.1 SUMMARY

The problem of finite strain consolidation of so0il, a two-phase
medium, is investigated in this study. In the study, a consistent
approach is presented that unifies all the current theories of consoli-
dation of soil., 1In the process, the assumptions these theories are
based on are pointed out. In particular, it is pointed out that in the
Eulerian formulation of the finite strain problem, the material
derivative includes a convective term. This has been neglected in many
of the studies.

The question of whether the convective term is negligible is then
addressed. An analytical study of the consolidation of a semi-infinite
layer neglecting self-weight and assuming uniform initial conditions and
constant coefficient of consolidation is carried out. Two cases (one
includes convection and the other neglects it) are studied and their
results compared to determine the significance of the convective effect.

Next, for the one—-dimensional case, a Lagrangian finite element
approach is presented that can include all non-linear geometric and
material properties. This formulation is used to compute the results of
self-weight consolidation tests done at University of Colorado and Osaka

City University.
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To make this study viable to geotechnical engineers, a regular
perturbation technique applied to the formulation where the dependent
variable is the natural strain is introduced.

A method that can be incorporated in a numerical scheme to account
for the convection in an Eulerian formulation is next introduced. This
method is demonstrated by incorporating it in a finite difference scheme
to solve the one—dimensional consolidation of a finite layer and the
results compared to that of a Lagrangian finite element formulation.

The method is then used in a finite element scheme to solve the
consolidation of a layer accelerated by the use of vertical drains.

A number of interesting conclusions can be made from this study and

these are given in the next section.

4,2 CONCLUSIONS

The finite strain consolidation theory has to be used when the set-
tlement involved is large and self-weight effect included. This is
demonstrated for the one—~dimensional case where the Lagrangian finite
element formulation of this theory is used to predict the results of
three tests done by other researchers. The very good agreement in these
cases demonstrate that the theory is a viable one. The finite element
formulation allows for both material and geometric non-linearities.

In the three cases studied, it is found that the linear void ratio
versus the logarithm of effective stress relation gives results that
correlate with the test data very well. This is another evidence in

support of this long suggested relation.
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For geetechnical engineers who need a quick and reasonably accurate
answer to one-dimensional consolidation, the regular perturbation
technique applied to the formulation using the natural strain as the
dependent variable can be used. This formulation is chosen because the
errors induced in the linearization process cancel each other out. This
fact is apparent for the perturbation results still agree very well with
the exact solution for the consolidation of a semi-infinite layer even
when the final natural strain, the variable used to form the asymptotic
sequence, exceeds one.

In the analytical study of the consolidation of the semi- infinite
layer, it is found that for small deformation (natural strain of order
of ten percent or smaller), the convective effect is negligible. How-
ever, for larger strain, the neglect of this effect will produce a rate
of settlement significantly higher than if the convective effect is not
neglected. For example, when the natural strain is 80 percent, the rate
of settlement when convection is neglected is 130 percent higher than if
it is accounted for. Clearly, for finite strain, convection has to be
accounted for,

Introduced in this study, a method based on the concept of an
"equivalent control volume”, is shown to be able to account for the
convective effect. This method can be incorporated into both the finite
difference and finite element methods. In the context of a numerical
scheme, the essence of this concept is to keep the volume of solid
content in an element termed the "equivalent control volume” a constant

as the scil deforms.
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By following this element, in actual fact, the solid phase is being
tracked. Thus, the material derivative of any dependent variable in
this element is the same as the time derivative since the "material
path” is followed. The attractiveness of this method is that it can be
used for three—dimensional problems.

Consolidation of a layer accelerated by the use of vertical drains
is studied for the first time within the context of finite strain using
the above method. Significant arching of the top surface is found. 1In
practice, this will cause a redistribution of load and has to be
accounted for. Also, this suggests that the significance of the Cryer-

Mandel effect ought to be investigated.
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APPENDIX A

NOTATION

Lagrangian coordinates
Coefficient of consolidation
Void ratio

Initial void ratio

Final void ratio

Thickness of layer
Coefficient of permeability
Coefficient of compressibility
Porosity

Shape functions

Pore pressure
Radial polar coordinate

Settlement of top surface
cvt
Time factor = —
2
H
Time
Excess pore pressure
Hydrostatic pore pressure
Approach velocity
Fluid velocity
Velocity of solid phase

Equivalent control volume of solid content
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APPENDIX A

NOTATION (CONT'D)

Equivalent length of solid content
(a coordinate in Lagrangian frame)

Unit weight of fluid
Unit weight of solid
Natural strain

Final natural strain
Compression ratio
Eulerian coordinate
Volumetric strain
Density of solid
Density of fluid
Total stress

Effective stress
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CHAPTER 1

INTRODUCTION

Testing of reduced scale models of soil structures in a centrifuge
has gained wide acceptance in recent years. Just in the last year,
three international symposiums* on geotechnical centrifuge modeling were
held. Researchers have used the centrifuge to study a wide variety of
soil problems; an idea of the problems studied can be found in the
survey done by Cheney (1984)%*

Many of the studies were on static or quasi-static problems.
Scaling relations for such problems have been established (see Appendix
A) based on the assumption that the centrifuge produces .an acceleration
field equivalent to that of an ng planet where n is the linear dimension
scaling factor (Rocha, 1957; Roscoe, 1968; Pokrovsky, 1975). Since
centrifugal acceleration is perpendicular to the axis of rotation and
proportional to the distance from the axis, the acceleration field in
the centrifuge diverges from that of an ng planet. However, if the size
of the test model is sufficiently small with respect to the centrifuge
dimension, such divergence is not significant for most soil tests
(Pokrovsky, 1975; Schofield, 1980).

Dynamic tests of soil models in the centrifuge where the soil is
considered as a single phase material have also been performed (Liu, et
al., 1978; Ortiz, 1982 and Hushmand, 1983). These comprise mostly

* : The symposiums were held in Tokyo, Japan; Manchester, UK and
Davis, USA in 1984.

** : References given at the end of thesis.
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dynamic shaking of structures in dry soil. In these tests, dynamic
effects dominate the mechanisms involved. For this class of problems,
the deviation from an ng planet due to Coriolis acceleration has to be
considered. For most of these dynamic tests, the soil does not move
much and it has been shown that such deviation has a small effect
(Pokrovsky, 1975 and Schofield, 1980) and is in fact negligible. For
tests where the soil may have significant relative velocity with respect
to the bucket such as model tests of landslides, the deviation may not
be negligible and needs to be considered. Scaling relations have been
established on the basis that Coriolis acceleration is negligible
(Pokrovsky, 1975) and are given in Appendix A.

A third class of tests, also dynamic, done in the centrifuge is
cratering experiments (Schmidt and Holsapple, 1980, and Holsapple and
Schmidt, 1982). A basic assumption in the establishment of scaling
relations for these experiments is that the position vector of a soil
mass in the model is scaled by a scalar to obtain the position vector of
the homogeneous so0il mass in the prototype (Schmidt and Holsapple,
1980). This assumption neglects the effects due to Coriolis accelera-
tion. Since Coriolis acceleration is important in the model whereas
there is no Coriolis acceleration in the prototype except for very large
craters, the trajectories of homologous soil masses will be different
and the associated position vectors will be vectorially different. Thus

the above assumption is invalid.
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The centrifuge has also been used to study the behavior of soil
when its response as a two-phase medium is important (Goodings, 1984;
and Mikasa and Takada, 1984). A significant aspect of such tests is the
flow of water through the soil. Here, it is assumed that Darcy’s law is
obeyed in both the model and prototype. Based on this assumption,
scaling relations have been established for consolidation tests (Mikasa
and Takada, 1984) and seepage flow through dams (Goodings, 1984; and
Cargill and Ko, 1983).

In recent years, many researchers have also used the centrifuge to
study the phenomenon of dynamically induced (earthquake induced)
liquefaction (reduction of effective stresses to zero) in soils (Lambe
and Whitman, 1982; Dean and Schofield, 1983; Schofield and Venter, 1984;
and Lee and Schofield, 1984). This is a very difficult problem at full
scale and the actual mechanism of liquefaction is still a much-debated
topic. When a soil structure is subjected to an earthquake, cyclic
shear stress is generated. For sand, this will cause the pore pressure
to increase. Simultaneously, diffusion will occur and this will cause a
decrease in pore pressure. For sufficiently fine sand, this decrease
will be less than the dynamically induced pore pressure. A net build-up
in pore pressure results. If the build-up is large enough to bring the
effective stresses to zero, liquefaction ensues. After liquefaction has
occurred, a sedimentation process dominates since the soil has
fluidized. This is demonstrated by experimental data which show that
pore pressure 1s constant with time immediately after liquefaction has

occurred (Dean and Schofield, 1983),
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According to current understanding of centrifuge scaling relations
(see Appendix A), if a model is subjected to an acceleration ng, dynami-
cally induced generation of pore pressure occurs n times slower than the
dissipation due to diffusion. This presents a difficulty for liquefac-
tion experiments where pore pressures are simultaneously generated
dynamically and dissipated by diffusion. Since Darcy’s law is assumed
to be valid which implies that diffusion depends linearly on the viscos—
ity of the fluid, one current practice in such cases is to use a model
fluid of viscosity n times that of the prototype. With such a fluid, it
is intended that the diffusion process will be slowed down n times.
Superficially, this seems to be a reasconable solution provided the
scaling relations currently used (Appendix A) are correét. The concept
of "modeling of models” sometimes is used to justify these scaling rela-
tions (Lambe and Whitman, 1982 and Cargill and Ko, 1983). 1In this
approach, a series of tests on models of different scales is conducted
at different accelerations in the centrifuge. The tests are scaled so
that each represents the same prototype. Results from each test are
then scaled according to the scaling relations adopted. If the scaled
values for these tests match, it is deduced that the behavior of the
centrifuge model satisfies similarity requirements and the scaling rela-
tions adopted are indeed correct. So far, adoption of this concept has
not produced any conclusive results on the validity of these scaling
relations (Lambe and Whitman, 1982 and Cargill and Ko, 1983). Even if
similarity is evident in these tests, it seems that only similarity of

behaviors of different models in a centrifuge has been established and
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not between the model and uniform g-—-field prototype behaviors.

Clearly, many questions about similarity requirements for testing
of models in a centrifuge still remain unresolved, particularly for
tests where the soll is saturated and different dynamic processes are
involved such as in liquefaction tests and seepage flows through dams.
Tt is natural then to ask how correct are the current scaling relations
(Appendix A)? What errors are generated in extending the results of
model tests to the prototype?

It is the purpose of this study to examine these questions in
detail, with particular reference to the problem of liquefaction.
Conceptually, when a centrifuge is used to test models, two simulations
are involved. First, the behavior of the prototype structure at 1g is
assumed to be similar to that of the model tested in a uniform ng gravi-
tational field. Then the centrifuge is assumed to produce an accelera-
tion field equivalent to the uniform ng gravitational field. Both
assumptions need to be valid before a model can be used with confidence
to study prototype behavior. The work to be described subsequently is

done within this conceptual framework.
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CHAPTER II

MODELING THE POST-LIQUEFACTION PROCESS FOR
SCALING STUDIES

2.1 INTRODUCTION

To examine the similarity requirement and to derive the correct
scaling relations for the modeling of liquefaction in a centrifuge, the
dynamics of liquefaction must be considered. Since the mechanics of
liquefaction are not yet well understood, a general formulation cannot
be attempted at present; in consequence, an analytical study of a sim-
plified situation is carried out to provide a first level of understand-
ing of this complicated problem.

Complete liquefaction herein is understood to mean that the soil
particles have lost contact with each other during the process. Thus,
the effective stresses are reduced to zero. Hence, on liquefaction, the
particles are suspended in the fluid and thereafter settle. It follows
that pore water pressure decay and surface settlement following lique-
faction are not represented by a consolidation process but rather by the
mechanics of sedimentation. This is the mechanism to be studied here.
Even this, sedimentation of a fluidized soil, is complicated to
represent. For the purpose of this study which is to examine similarity
requirements and check current scaling relations (Appendix A), the
dynamics of a single particle moving in a fluid is examined as a first

level of understanding.
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2.2 FORMULATION OF THE PROBLEM

We will consider the single sphere moving in a fluid under two

different conditions. They are:

(1) A sphere settling in a uniform ng field. (If n =1, it
represents the prototype situation.)

(i1) A sphere settling in a bucket subjected to centrifugal motion
such that the centrifuge acceleration at the initial position
of the sphere is ng (mzR = ng)*.

In both cases, the particle starts from rest with respect to the con-

tainer surrounding it.

2.2.1 A Sphere Settling in a Fluid in a Uniform ng Field

With no initial velocity of the particle relative to the fluid,
there is only one space coordinate, x, and the governing equation of

motion for the particle is:

Fe

L1 2/dx\2 Pt
vy(pgmp)ng - Cp * 5 pyma(GE)” = "sﬁz +pg) (2.1)

[ ]

de

. (o) =0 Sxl_
The initial conditions are: x(0) 0, at 1 x=0 0.

A number of assumptions were made to obtain equation (2.1). They

are:

(a) The added mass has been taken to be % VaPy which is the exact

value for rectilinear motion of a sphere in an ideal fluid

* : List of symbols given in Appendix B.
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: occupying an infinite domain (Yih, 1977). The assumption of

an infinite domain is reasonable since this study concerns a
sphere of diameter imm or less in a container tens of centi-
meters in dimension. Very difficult to assess is the assump-
tion of an ideal fluid since the fluid used is viscous.
Current data on this, the effect of viscosity on the added
mass, are limited and contradictory (Brennen, 1982). In this
study, the potential flow value is chosen. It is recognized
that this may be inaccurate and that pathological behavior
might occur in certain ranges of frequency (or typical times
of acceleration) and Reynolds number. However, it is the
only definite information available.

An approximate fitting of the sphere drag coefficient versus
Reynolds number (Re) curve (Schlichting, 1979) was employed.

The fit is given for different ranges of Re as follows:
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Re <:1.0

2p,a
c. =240 1 010.1875Re) where Re = —— 9X
D Re u dt

1.0 ¢ Re < 2000.0

CD = 28.5 - 24.0 [n Re + 9.176(lnRe)2 (2.2)
- 1.828 ({nRe)> + 0.1819 (fnRe)* - 0.007099 (fnRe)>
Re > 2000.0

CD = 0.40 .

It is recognized that the above data come from experiments on a
sphere in steady rectilinear motion. Because of this, later on in the
numerical analysis of equation (2.1), the problem has to be treated as

"quasi-steady” between time steps.

2.2.2 Sphere in a Fluid Subjected to Centrifugal Motion

As shown in Figure 2.1, A, the position of a particle at time t1
will be observed from a frame of reference (the centrifuge model frame)
attached to B, a point fixed to the centrifuge bucket. This frame of
reference rotates with the same angular velocity as B about the vertical
axis of the centrifuge. The origin is at B, the x-axis is taken per-
pendicular to the bucket base, and the y-axis is perpendicular to the x-

axis.

Analysis gives the acceleration of A, a , with respect to an
~A

inertia frame of reference (Meriam, 1971) as follows:
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2 2

a =<9—12‘- ~ w?R - 02x - 20 g—%)i +<§—32f - wly + 20 %’é)j . (2.3)

~A dt ~ \dt ~
The equation of motion is now given by:
ax , , dy 2
~A at”™ ~ 4t/ ~ ~ ~

(2.4)

Y2

<oy dogl (@0 ] fr g ]

The assumptions discussed with referente to equation (2.1) were
also used here. A number of other assumptions have also been made as
follows to obtain equation (2.4).

(a) It is assumed that the radius of the sphere is very small
compared to the length of the centrifuge arm. This is usually valid for
s0il tests as the centrifuge arm generally is lm or longer compared to
particle sizes of lmm or less. Thus, we can consider the mass and the
viscous reaction force to be concentrated at the center of the sphere.

(b) In general, there will be some rotation of the sphere, but it
is not expected to be appreciable. Thus, any effect due to rotation of
the sphere is assumed to be negligible.

(c) In computing the drag force, it is assumed that the form
obtained for rectilinear motion is still applicable. At each instant,
the velocity of the particle relative to the moving frame is used to
compute the Reynolds number and the associated drag coefficient. The
drag force is then computed and is assumed to act in a direction

opposite to the velocity.
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Using equation (2.3) for a in equation (2.4), we have:
~A
in the x-direction,

(o + PE oy Lot (@F - ()Y 8

dt dt dt dt
(2.5)
- o? - = - 2 . dy
o vs(ps p!)x = vs(ps pl)m R + VPg 20 at
and in the y-direction,
2
ﬂ!_)si_x .1 2/, dx\2 . ,dy\2\% dy
"s("s Y2 ) 2% 2P ((dt +(ae))" o
(2.6)
- o2 - = - . dx
© vs(ps pl)y = VPg 2w at

The drag coefficient functions given in equation (2.2) are again used

for CD'

2.3 NUMERICAL METHODS
To solve equations (2.1), and (2.5) and (2.6), the Kutta-Simpson’s
method (Hildebrand, 1976) for a system of first-order differential equa-

tions is used. Here, for equations (2.5) and (2.6)

%% = X (2.7)
%% = ¥ (2.8)

so that equations (2.5) and (2.6) become, respectively,
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dx PP 2p
s’( 2 S _
at <(ps+p,/2)>w (R+x) +<‘ps+p,/2;>wy1
lp naz (2.9)
- __.1_1_____~> h,
°p (v (pg*p /2) (x * y1)

dy PP 2p

21 =,<__§__1_)m2y - _____g___>wx

dt ps+pl/2 (ps+pl/2)

) (2.10)

2 Pqma > ya
(V (P +p1/2) (X + yl) .

Equations (2.7) to (2.10) constitute a system of first-order equa-
tions to be solved by the Kutta-Simpson's method. Equation (2.1) can be

rewritten as a system of two first-order equations in a similar manner.

2.4 VERIFICATION OF NUMERICAL ALGORITHM

The only case where equations (2.5) and (2.6) can be solved ana-
lytically is when the "fluid” is a vacuum. For this problem, Py = 0
Using the Laplace Transform Method in this case, the solutions to equa-

tions (2.5) and (2.6) are:

X = R{cos wt + wt sin ot - 1) (2.11)

and

y = R(ot cos wt — sin ot) . (2.12)

However (see Fig. 2.1), from the flight path of the released parti-
cle (a straight line perpendicular to the radius of the initial particle

position since the "fluid” is a vacuum) and the trajectory of the bucket
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(hence that of the moving reference frame), the motion of the released
particle with respect to the moving frame can be found geometrically.

It is described by equations (2.11) and (2.12) without recourse to equa-
tions (2.5) and (2.6). Thus, the correctness of equation (2.3) for the
acceleration term is assured.

Equations (2.5) and (2.6) are solved using the Kutta-Simpson’'s
method and the results compared to that from equations (2.11) and (2.12)
(see Figure 2.2). It appears that the numerical algorithm used is
indeed correct.

As a rough check on the validity of the solutions when the fluid is
not a vacuum, one displacement solution (an x versus y plot) is compared
with an actual particle flight path photographed (see Pléte 1) at the
Tokyo Institute of Technology (Kimura et al., 1982) for the case where
the fluid is air. The researchers at Tokyo Institute of Technology were
trying to construct a dry sand embankment while the bucket was in
fl.ght. The photograph was taken during the construction and it showed
the flight path of a stream of particles. If there were no particle
interaction and the air were still, then this flight path would be the
same as the trajectory of a single particle. Figure 2.3 compares the
calculated flight path with the actual flight path. It is seen that the
expected interactions do not seem to play a substantial part in modify-
ing the single particle trajectory. The numerical solutions obtained
above can thus be used in the placement of soil structures in flight,
which, as the researchers at Tokyo Institute of Technology have found,

is a difficult problem.
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Figure 2.2 Particle in a vacuum in an ng planet (n=1, 100)
versus centrifuge (w'R = 100g). Scales:
time = t .n, acceln = (acceln) /n, displ =
(displ) .n
Analytical solution for centrifuge only.
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Figure 2.3 Particle in air. Comparison of experimental
flight path and calculated flight path. (Refer
to figure 1 for definitions of x and v
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CHAPTER III
RESULTS AND CONCLUSIONS

3.1 INTRODUCTION

In modeling, there are two ways to examine the similarity require-
ments, namely, similarity analysis and dimensional analysis. There is
some overlap between the two analyses but, whenever possible, the simi-
larity approach is preferred (Yih, 1977) and will be employed here.
This preference comes from the fact that in similarity analysis, actual
governing equations are used and this offers a better understanding of
the scaling requirements. Another reason for this cholce is that, as
will be shown shortly, Reynolds numbers of the particle-in the model and
prototype can differ by as much as two orders of magnitude (100 times).
The use of dimensional analysis will give Reynolds number as one of the
dimensionless groups. Since viscous effect is not negligible, Reynolds
number has to be considered. But as the Reynolds numbers in the model
and prototype are different, therefore, dimensional analysis is not
feasible.

The ensuing analysis is done within the concept, as outlined in
Chapter I, that two simulations are involved in using a scaled model in
a centrifuge to study a prototype structuré. Also, the particle size is
assumed to remain the same in model and prototype; this follows the
general practice in centrifuge testing of using the same soil for both
model and prototype. The particle is considered to be attached to the

bucket and released.
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3.2 BEHAVIOR OF A SPHERE IN A UNIFORM ng FIELD

3.2.1 Problems with Current Scaling Relations

Current practice in centrifuge modeling involving liquefaction
uses the same soil in model and in prototype, but a model fluid n times
more viscous than that in the prototype. Assuming that the fluid
densities remain the same and using Appendix A, the following is

obtained for a single particle:

d
R ax
ERe;m 3y, (dg;)m m (3.1)%
e a ax p M
P p (dt)p P .
that is,
(Re)
m - . . . ']—" == l
(Re)p =ty n ° (22

Thus Reynolds number in the model is smaller than that in the pro-
totype. In soil mechanics, Darcy’s law is usually considered to be
valid if the Reynolds number (based on an average dlameter of particles
and the superficial velocity) is less than one (Muskat, 1946). This is
linked to the fact that for a single particle (microscopic level)
Stokes’'s flow is valid for Reynolds number less than one. Thus, prior
to liquefaction, if Darcy'’s law is considered to be valid in the proto-
type, then it is generally accepted to be valid in the model because of
equation (3.2) (Lee and Schofield, 1984, and Goodings, 1984). Despite
the difference in the Reynolds number, the coefficient of permeability

* subscripts m and p refer to model and prototype, respectively.
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is assumed to scale as follows:

. _1_ =
= n'1 n 1. (3.3)

Even for this scaling, there is some confusion in the literature (Tan
and Scott, 1985). It has to be realized that flow through soil as
described by Darcy's law is a linearly viscous phenomenon (Scheidegger,
1974 and Scott, 1963) and this, the assumption that the flow is linearly
viscous, is only an approximation. Furthermore, Darcy’s law, as is
understood in soil mechanics, links an averaged flow quantity (the
seepage velocity) with an averaged hydraulic gradient (Scott, 1963). On
liquefaction, Darcy’s law may or may not be valid in both model and pro-
totype since the mechanics of sedimentation governs the behavior. Even
if the averaged variables obey Darcy’s law, the dynamics of a single
particle (microscopic level) may be very different in model and proto-
type. Since the averaged variables are an integration of the micro-

scopic values, similarity may no longer be achieved. This is examined

subsequently.

3.2.2 Similarity Analyses

For the model, equation (2.1) gives:

2

dxm dzxm
A" ng + (CD)m B EE; = C 2 (3.4)

\
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= - = -1 2 -
where A ="V (p -p), B= -5 pma”, C = Vs(ps+p‘/2). and A, B and C have
the same values in both model and prototype provided the particle
radius, and particle and fluid densities in the model and prototype are
the same. Assuming this is the case at present, then for the prototype.

n =1 and equation (2.1) becomes

2 2
dx d'x
A g+ (C) '13(——2> = ¢+ —2 (3.5)
D’p dt 2
p dtp

If CD or B =0 in both model and prototype, as is the case, for
example when the particle moves in a vacuum, then it 1s observed that,
if the linear dimension is scaled as xp/xm = n, equatiqg (3.5) is
similar to equation (3.4), if tp/tm scales as n. This is the so-called
"dynamic time’” scaling.

However, if CD # 0 and B # 0, then for equations (3.4) and (3.5) to

be equivalent, both the following conditions must be met:
¢ = Ly (3.6)
m n
(CD)m = n(CD)p . (3.7

Equation (3.7) is a very difficult condition to achieve exactly
since the drag coefficient, CD' i3 a nonlinear function of Reynolds
number in general (see equation 2.2). Experimenters in fluid mechanics
recognize this difficulty and avoid it by scaling the object size and
fluid viscosity so that they only need to satisfy (CD)m = (CD)p. This

is the dynamic similarity requirement which is achieved if (Re)m = (Re)p
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(Batchelor, 1967). In soil mechanics, a similar approach is not feasi-
ble, since using soils of a different size will affect the constitutive
behavior which is normally required to be unchanged and which is
important for material behavior before liquefaction. Also, it is very
difficult to find soils that scale in grain dimension appropriately,

From equation (3.6) and xp/xm = n, velocity of the particle has to
be the same at homologous points in model and prototype. If the same
fluid is used in both model and prototype, Reynolds number is thus
unchanged and equation (3.7) is not satisfied. The consequence of this
violation in terms of acceleration is shown in Figure 3.1 where the same
fluid is used in all five cases (for n =1, 5,10,50,100). All the
results for n greater than 1 have been scaled to correspond to the pro-
totype situation. If exact similarity were achieved, all these curves
would lie on top of the n = 1 curve.

If for very low Reynolds number (Re << 1.0), we assume that

Stokes’s law is valid (Yih, 1977), we have:

c. = 24 . __24u (3.8)
D Re 20 .4 dx
Ped gt
dx dxm
Noting that if equation (3.6) holds, 352 = 77+ and inserting equation
p m

(3.8) in equations (3.4) and (3.5), respectively, the following equa-
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tions result:

2
i dx d'x
(equation(3.4)) Atg+ R 12B = - ¢ —2 (3.9)
Pe2 p dt
p
2
dx d'x
(equation(3.5)) Atgtg 1—% = - . (3.10)
P Py p dt

Clearly equations (3.9) and (3.10) are identical if Mg =0 . B
i.e., the model fluid has higher viscosity than the prototype fluid.
Here exact similarity is possible because drag force is linear with
respect to velocity (second term on LHS of equations (3.9) and 3.10)).
This situation would occur for Re <{ 1 only, that is, for particles of
size much less than 0.1 mm when the prototype fluid is water.

As the particle moves, its velocity and the associated Reynolds
number change continuously. Thus, for the usual case where the size of
the particle is greater than 0.1 mm, even if the model fluid viscosity
is n times that of the prototype, similarity is achieved only briefly
when the drag force is linear with respect to velocity (Re <C 1). Since
Reynolds number in the prototype is n times that in the model, the drag
force in the prototype will become nonlinear with respect to velocity at
a time when the drag force in the model is still linear with respect to
velocity. Thus, exact similarity cannot be achieved.

For example, consider the case where n = 100, the particle size is

0.25mm and the fluid is 100 times as viscous as water (Figure 3.4). In

this case, the Reynolds number of the particle in the model is much less
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than one over the entire range of velocities, reaching a terminal
velocity of 0.056 m/s and a Reynolds number of 0.14. But in the proto-
type (1g), Reynolds number is lesz than 1 for less than a millisecond
and reaches a terminal value of 8.4 at a velocity of 0.034 m/s. If
there were similarity in behaviors in model and prototype, then the
velocities shown in Figure 3.4 should be identical.

Figures 3.2, 3.3, 3.4 and 3.5 portray the effects of changing
particle size, with resulting variation in Reynolds number and drag
coefficient. These effects are illustrated in terms of different
velocities as a function of g-level and time. In the calculations, P
is set equal to npp (n=1,10,100) and the fluid densities are assumed to
remain the same., The particle diameters in the figures -range from 1mm
to 0.15mm. Note that the curves come closer together as the particle
size decreases. Complete similarity would require all curves to
coincide. This observation is supported by experimental evidence which
shows that similarity is better achieved with finer-grained samples
(Cargill, 1983).

It must be emphasized that these conclusions are derived from rela-
tions describing the motion of a single particle in fluid only. The
more general case of interest, of course, involves relative movement
between fluid and a mass of particles, in contact with each other or
not. This is the condition where Darcy'’s law is expected to apply. 1In
soil mechanics, Darcy's law, which represents a linear viscous phe-
nomenon is accepted to be valid for Re < 1.0 (Reynold’'s number is based

on any suitable average diameter of the sand grains (d50 in this study)
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and the superficial velocity of the fluid) (Muskat, 1946 and
Scheldegger, 1974). For a single particle moving in a fluid, Stokes's
law which represents a linear viscous flow is considered to be valid for
Re < 1.0 (Batchelor, 1967). Thus, Darcy’s law 1s valid if flow at the
microscopic level, that is flow about a particle, is linearly viscous.
Generally, this is true for flow through a stationary soil matrix
(seepage problem) (Goodings, 1984). However, as illustrated above, for
most soils on liquefaction, Reynolds number is less than 1 for less than
a millisecond. Typical experimental data indicate that the soil parti-
cles are suspended for tens of milliseconds (Dean and Schofield, 1983).
Cleaply, Darcy'’s law may not be valid in these experiments. Even if
Darcy’s law is approximately valid in both prototype aﬂd model, the
flows are not similar and the coefficient of permeability may not scale
as equation (3.3).

As pointed out, the above analysis assumes that the densities of
fluids in the model and prototype are the same. But for the model fluid
to be n times more viscous than the prototype fluid, a different fluid
such as a glycerine-water mixture has to be used. In such a case, the
model fluid density is also different from that in the prototype. Other
model fluids such as silicone o0il (Dean and Schofield, 1983) may be more
acceptable in terms of density equivalence. A difference in densities
can be significant and has to be accounted for.

Assuming that the fluld in the prototype is water (density = pw)'
then if Stokes's law is considered valid as in current practice instead

of scaling relations given in Appendix A, the following should be used:
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. Ya
: (p,+2p_) (p_~p.)
_ { 8. ’'s !,]
Defining A {(""‘*2"3”95“’1’1 , (3.11)
t
0 S .1
then ral A n (3.12)
P
g_’:g - %%‘3 (3.13)
m p
2 2
d xm 1. . d'x
dt A dt
m
M PP
2o, <—§-—1> L (3.15)
Ps'Pw n

P

Figure 3.6 illustrates the discrepancy if the difference is not
accounted for. Figure 3.7 shows the improved results when equations

(3.12) through (3.15) are used.

3.3 BEHAVIOR OF A SPHERE IN A CENTRIFUGE

3.3,1 Similarity Analysis: Papticle in Air

We observe from equation (2.5) that if %% >~ 0 and x is small
compared to R, then since sz = ng, equation (2.5) is the same as equa-
tion (2.1). However, when this is not the case, Coriolis acceleration
becomes significant and equation (2.5) is very different from equation
(2.1). Thus, the centrifuge will not correctly simulate the ng field.

Figure 2 where the "fluid” is a vacuum clearly illustrates this,
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If the sand grains are moving in air, again the Coriolis accelera-
tion is significant and, as shown in Figure 2.3, the particle path is
curved. Thus, in cratering experiments in a centrifuge, Coriolis
acceleration must be accounted for. This is a three—dimensional
problem. But for the purpose of illustrating the effects of Coriolis
acceleration on soil deposition in cratering experiments, the special
case of a two-dimensional problem, neglecting earth’s gravitational
field in comparison with the centrifugal acceleration, will be
considered.

The problem considered is that of two particles, one of which is
given an initial velocity relative to the bucket of 100 m/s at an angle
of 150 degrees with respect to the x—axis, the other 100 m/s at an angle
210 degrees with respect to the x-axis (see Figure 3.8). The centrifuge
will simulate an acceleration field of 450 g’s. These are typical
values for cratering experiments (Schmidt and Holsapple, 1978). In a
uniform ng field, the flight trajectories of the two particles will be
symmetrical. Clearly, this is not the case in the centrifuge as can be
seen from the flight trajectories in Figure 3.8. Also, for typical
bucket dimensions (0.4 m diameter for Schmidt's experiments (Schmidt and
Holsapple, 1978)), it is clear that the particles will not be deposited
in the bucket. This is evident from the experimental data which show
that the lip volume (volume of soil deposition) is only a small fraction
of the crater volume (Schmidt and Holsapple, 1978). This is in marked
contrast with the prototype (earth) situation where the soil is

deposited around the crater and modifies the final shape of the crater.
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It seems élear that the crater created in the centrifuge simulates that
of the crater in the prototype immediately after the explosion and prior

to the deposition of the soil, and not that of the final crater.

3.3.2 Similarity Analysis: Particle in Fluid

In general, in a liquid as opposed to a gas, grains with the usual
density of soil solids move in almost a straight line to the bottom of
the container in a centrifuge test. This is observed for a particle in
water at a nominal 100g in Figure 3.9. That is to say, the y-component
of motion is not very important.

For sand particles with sizes in the range considered here in a
fluid n times more viscous than the prototype, calculations show that
the centrifuge is an excellent simulation of the ng field. Figure 3.10
(100g/centrifuge curve) shows that the solutions to equation (2.11) for
n = 100, and equations (2.5) and (2.6) for sz = 100g are almost
identical. However, this does not mean that the centrifuge model is
correctly modeling the prototype behavior since it has been shown also
in Figure 3.10 that the behavior in an ng field may not be similar to
that of the 1g field.

A more pertinent question is whether the concept of modeling of
models as employed by Lambe and Whitman (1982), Cargill and Ko (1983),
and others is correct. That is, if the models simulate each other, do
they also simulate the 1g field prototype correctly? Is modeling of
models an adequate proof of the centrifuge results vis a vis the proto-

type? To investigate this problem, a particle of size 0.11 mm is chosen
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as in the’'soil used by Lambe and Whitman. The particle is then sub-
jected to a centrifugal acceleration of 35¢ to represent the so—called
"model” test. A centrifugal acceleration of 80g is used for the "model-
of-the—model” test, as Lambe employed. As Figure 3.11 illustrates, they
are very close. However, both behaviors deviate from the prototype 1g
situation for the reasons given above and because 35g is not much
different from 80g whereas 1g is, Clearly, the concept of modeling of
models does not automatically assure similarity between model and proto—

type.

3.4 CONCLUSIONS

The analysis presented is a simplistic one, 1In tﬁé real case, one
has to contend with the fact that there are many particles, some in
contact and some not. The development of pore pressure and its
subsequent dissipation is a very complicated process. However, for the
purpose of examining similarity requirements, it is clear from the argu-
ments given that conclusions drawn from this simple study can be
extended to the complicated real case. The conclusions are:

(1) Conceptually, there are two simulations involved in the model-
ing process. The first is the simulation of a 1g prototype using a
model in a uniform ng field and the second is the simulation of the
uniform ng field by the use of a centrifuge to produce similar
behaviors. Scaling relations (Appendix A) have been established for
centrifuge tests. They have been tested in this study. The analysis

presented here has demonstrated that, for soil particles larger than
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0.1mm in water, the centrifuge model does not simulate the prototype
situation well., But, perhaps contrary to expectations, the breakdown is
due to the fact that the behavior in a uniform ng field is not similar
to that in a 1g field. The difficulty in achieving similarity in the
two situations arises because, for centrifuge experiments in soil
mechanics as they are currently done, the drag coefficient must be n
times larger than that in the prototype. Owing to the complicated
nature of fluid behavior and the nonlinearity of the drag force with
velocity, this requirement at best is only approximately achieved. In
most cases, the centrifuge is actually an excellent simulation of the ng
fielq but neither represents the prototype situation.

(11) The value of experiments in a centrifuge is important but
universal advocacy of the use of centrifuge models to study "site-
specific” prototypes (Goodings, 1979 and Craig, 1984) is questionable in
cases involving water flow and dynamic testing when the important
feature of the soil is that it is a two-phase medium.

(iii) The concept of modeling-of-models does not always assure
correct modeling between the model and prototype.

(iv) In using a model fluid n times more viscous than water, the
density of the fluild may change and this change needs to be accounted
for using equations (3.12) through (3.15) for scaling dynamics
quantities.

(v) The paper by Kimura et al. (1982) demonstrates the difficulty
of constructing a dry soil structure while in flight. The difficulty

arises mainly because of the effect of the Coriolis force. The solution
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generated:and illustrated in Figure 2.3 can be used to design systems
for building a desired shape of soil structure in flight.

(vi) 1In general, if a structure (either single grain or a section
of failing slope, for example) has a significant velocity (of order of
10 m/s) relative to the bucket, the dynamics must include Coriolis
effects, and the scaling relations must take this into account

(Pokrovsky, 1975).
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Figure 3.1 Behaviour in a uniform ng field (n=1,5,10,50,100)

um = up. Scales : time = (time in model).n

acceln = (acceln in model)/n
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Figure 3.2 A 1.0 mm particie in a uniform ng field (n=1,10,
100). Um = n.up . Scales : time = (time in model).n

» velocity = velocity in model
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Figure 3.3 A 0.5 mm particle in a uniform ng field (n=1,10,

100). Mo = n.up. Scales same as in Figure 3.2
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Figure 3.4 A 0.25 mm particle in a uniform ng field (n=1,10,

100). M = n.up. Scales same as in Figure 3.2
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Figure 3.5 A 0.15 mm particle in a uniform ng field (n=1,10,

100). um = n.pp. Scales same as in Figure 3.2
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Figure 3.6 A 0.05 mm particle in a uniform ng field (n=1,100)
Difference in densities of fluid not accounted.

Scales same as in Figure 3.2
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Figure 3.7 A 0.05 mm particle in a uniform ng field (n=1,
100). Difference in densities of fluid accounted.
Scales as given by equations (3.11) -~ (3.15%5)
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Figure 3.8 Behaviors of a 0.5 mm particle in air in a

centrifuge and an ng planet (n = 450).
Displacements are actual displacements in model
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Figure 3.9 Trajectory of a 0.25 mm particle in water in a
centrifuge (w!R = 100g). Displacements are
actual displacements in model
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Figure 3.10 Behaviours of a 0.25 mm particle in a lg planet,
a 100g planet and a loog centrifuge.

Scales same as in Figure 3.2
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Figure 3.11 A 0.11 mm particle in a 35g centrifuge, a 80g
centrifuge and a lg planet.

Scales same as in Figure 3.2
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APPENDIX A

CURRENT SCALING RELATIONS

As in current practices, the following assumptions are made:

i) Linear dimension scaling is set as
- n . (Anl)

x
2 _
'

ii) The same soil is used in the centrifuge model as in the proto-

type. Thus
(ps)p
(Density) = 1 (A.2)
(ps)m
K
(Permeability) EQ =1 . (A.3)
i

iii) In the model, the soil structure is subjected to a gravita-

tional acceleration of ng giving:

(gravitational acceleration)p

et

(gravitational acceleration) = n (A.4)
The general equations of motion are given by:
dzu
Vosos+b = p— (4.5

where V. is the divergence operator, o the stress tensor, b the body

~

force per unit of volume and u the displacement vector. If b is due to
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gravitational forces, equation (A.4) gives:

. (A.6)

Clearly, for similarity of equation (A.5) in both model and proto-

type, the following must hold:

= 1 . (A.T)

gquq

which is the main objective of centrifuge experiments. Assumption (ii)
implies that the constitutive behavior remains the same in model and
prototype. Thus, with equation (A.7), the strain in both model and pro-

totype will also remain the same. As equation (A.1) must hold, this

implies:

= n . (A.8)

= n (A.9)
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which is the so-called "dynamic” time scaling.

In soil mechanics, the coefficient of permeability, k, is given by

kK = ﬂfK (A.10)

If the same fluid is used in model and prototype, equation (A.10)

yields:

. (4.11)

-2 _1l.,.y -1 (A.12)
n n .
m
Darcy’'s law implies that:
oo b
vy "k 1 . (A.13)
m m "m

. (A‘14)

Since v, the seepage velocity, has dimensions of length divided by

time (L/T), equations (A.1) and (A.14) will thus give:

= n . (A.IS)

the so-called "diffusional” time scaling.
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However, if a different fluid is used in the model so that

wp =0 * My then from equation (A.11), k is scaled as:

5
x = 1 (A.16)
m
and equation (A.13) gives
v
L -y, (4.17)
v
m
Thus,
t
'€E = n (A.18)
m

which corresponds with equation (A.9).
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APPENDIX B

NOTATION
property in the model g
property in the prototype p
density of sphere, or soil h
grain
density of fluid i
density of water k
radius of particle Y
mass of particle K
added mass of fluid CD
volume of particle Re

angular velocity of centrifuge i

length of arm of centrifuge J
scaling factor dSO
1l

acceleration of gravitational
field (=9.81 m/s)

pressure

total head

@
<[5

hydraulic gradient =
permeability

unit weight = pg
material permeability constant

k= &
n

drag coefficient

Reynold’s number
unit vector in x-direction

unit vector in y-direction
grain diameter whose size is
greater than that of 50% of
the particles by weight

viscosity of fluid



