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Curiosity demands that we ask questions, that we try to put things
together and try to understand this multitude of aspects as perhaps resulting
from the action of a relatively small number of elemental things and forces
acting in an infinite variety of combinations.

– Richard P. Feynman
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Pulsars emit radiation over an extremely wide frequency range, from radio through

gamma1. Recently, systems in which this radiation significantly alters the atmospheres

of low-mass pulsar companions have been discovered2. These systems, ranging from

ones with highly anisotropic heating to those with transient X-ray emissions, represent

an exciting opportunity to investigate pulsars through the changes they induce in their

companions. In this work, we present both analytic and numerical work investigating

these phenomena, with a particular focus on atmospheric heat transport, transient

phenomena, and the possibility of deep heating via gamma rays. We find that certain

classes of binary systems may explain decadal-timescale X-ray transient phenomena3,

as well as the formation of so-called redback companion systems4. We also posit an

explanation for the formation of high-eccentricity millisecond pulsars with white dwarf

companions5. In addition, we examine the temperature anisotropy induced by the
1A. Smith David. “Gamma Ray Pulsars with the Fermi LAT”. in: 3rd Fermi Symposium. May

2011. url: http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/session14/
Smith_FermiPSRs.pdf; H. et al Anderhub. “Search for Very High Energy Gamma-ray Emission
from Pulsar-Pulsar Wind Nebula Systems with the MAGIC Telescope”. In: The Astrophysical
Journal 710.1 (2010), p. 828. url: http://stacks.iop.org/0004-637X/710/i=1/a=828; T.
Padmanabhan. Theoretical Astrophysics. Vol. 2. ISBN: 978-0521566315. Cambridge University
Press, 2001. Chap. 6.

2Mallory S. E. Roberts. Surrounded by Spiders! New Black Widows and Redbacks in the Galactic
Field. 2012. eprint: arXiv:1210.6903. url: http://arxiv.org/abs/1210.6903; M. T. Reynolds
et al. “The light curve of the companion to PSR B1957+20”. In: Monthly Notices of the Royal
Astronomical Society 379.3 (2007), pp. 1117–1122. doi: 10.1111/j.1365-2966.2007.11991.x.
eprint: http://arxiv.org/abs/0705.2514. url: http://mnras.oxfordjournals.org/content/
379/3/1117.abstract.

3M. Linares. “X-Ray States of Redback Millisecond Pulsars”. In: The Astrophysical Journal 795,
72 (Nov. 2014), p. 72. doi: 10.1088/0004-637X/795/1/72. arXiv: 1406.2384 [astro-ph.HE].

4P. Podsiadlowski, S. Rappaport, and E. D. Pfahl. “Evolutionary Sequences for Low- and
Intermediate-Mass X-Ray Binaries”. In: The Astrophysical Journal 565 (Feb. 2002), pp. 1107–
1133. doi: 10 . 1086 / 324686. eprint: astro - ph / 0107261; P. Podsiadlowski. “Irradiation-
driven mass transfer low-mass X-ray binaries”. In: Nature 350 (Mar. 1991), pp. 136–138. doi:
10.1038/350136a0.

5B. Knispel et al. “Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric
Binary Orbit”. In: ArXiv e-prints (Apr. 2015). arXiv: 1504.03684 [astro-ph.HE].
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Pulsar in its companion, and demonstrate that this may be used to infer properties

of both the companion and the Pulsar wind. Finally, we explore the possibility of

spontaneously generated banded winds in rapidly rotating convecting objects.
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Motivation

If you haven’t found something strange during the day, it hasn’t been much
of a day.

– John Archibald Wheeler

Pulsars, highly magnetic compact stellar remnants, exhibit some of the most un-
usual behaviors in the universe by virtue of existing at length and energy scales where
general relativity and quantum field theory are both relevant. Pulsar gravitational
fields are typically so strong that in binary pairs they emit significant gravitational
radiation. The magnetic field near a pulsar’s surface is strong enough that the index
of refraction of the vacuum deviates significantly from unity, and particle pair creation
helps create an ionized wind which travels relativistically away from the pulsar7.

Most of what is known of pulsars comes from radio timing data8. Pulsars may be
thought of as spherical magnetic dipoles approximately 10km in radius with surface
magnetic fields between 108Gauss and 1015Gauss, spinning with periods between
millisecond and second timescales9. As a result of the large electric fields created by
the rotating magnetic dipole moment, particles are created and carry energy, both
kinetic and in the form of a Poynting flux, away from the pulsar. As these particles
move they also radiate gamma-rays. Observationally, this means that pulsars appear
in a wide band of radio frequencies as a periodic short pulse, while also being active
through very high energies. The timing of these pulses has informed much of what is
currently known about pulsars.

7Padmanabhan, op. cit.
8Dipankar Bhattacharya. “The Evolution of the Magnetic Fields of Neutron Stars”. In: J.

Astrophys. Astr. 16 (Mar. 1994), pp. 217–232. url: http://www.ias.ac.in/jarch/jaa/16/217-
232.pdf.

9Idem, “The Evolution of the Magnetic Fields of Neutron Stars”; José A. Pons et al. “Evidence
for Heating of Neutron Stars by Magnetic-Field Decay”. In: Phys. Rev. Lett. 98 (7 Feb. 2007),
p. 071101. doi: 10.1103/PhysRevLett.98.071101. eprint: http://arxiv.org/pdf/astro-
ph/0607583.pdf?origin=publication_detail. url: http://link.aps.org/doi/10.1103/
PhysRevLett.98.071101.
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More specifically, pulsars have masses and radii in a very small range constrained
by models of the degenerate nuclear equation of state10. From dispersion delay data
at different frequencies it is possible to determine the electron column density in
the interstellar medium between Earth and the pulsar, which can give a distance
estimate11. Measurement of the pulse period gives the angular frequency ω. Combined
with the mass and radius this gives the rotational energy of the pulsar:

E = 1
2Iω

2 = 1
5MR2ω2 (1)

Measurement of the rate at which the pulse period changes gives ω̇, which then gives
the rate at which the pulsar rotational energy changes:

Ė = 2
5MR2ωω̇ (2)

Equating this with the energy loss rate of a magnetic dipole then gives the surface
dipole magnetic field. Measurement of ω̇ can also give insight into the mechanisms
transferring angular momentum to or from the pulsar by giving an estimate of the
braking index12.

While these techniques give significant insight into the properties of the pulsar,
they give very little information regarding the surrounding environment. In particular,
the properties of the pulsar wind are currently not very well known. While it is
known that some fraction of the outgoing electromagnetic flux must be converted
into a particle flux at the light cylinder of radius

Rl = c

ω
, (3)

little is known of the nature of this conversion and the effect it has on the radiation
portion of the energy flux. Recently, a number of binary systems composed of a
pulsar and star orbiting it have been discovered in which the pulsar wind causes
observable changes in the companion star13. If the companion star has a mass less

10Padmanabhan, op. cit.; J. M. Lattimer and M. Prakash. “Neutron Star Structure and the
Equation of State”. In: The Astrophysical Journal 550.1 (2001), p. 426. eprint: http://arxiv.
org/abs/astro-ph/0002232. url: http://stacks.iop.org/0004-637X/550/i=1/a=426.

11Andrea N Lommen and Paul Demorest. “Pulsar timing techniques”. In: Classical and Quantum
Gravity 30.22 (2013), p. 224001. eprint: http://arxiv.org/abs/1309.1767. url: http:
//stacks.iop.org/0264-9381/30/i=22/a=224001.

12Padmanabhan, op. cit.
13R. P. Breton et al. “Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond

Pulsars”. In: The Astrophysical Journal 769 (2013), p. 108. url: http://arxiv.org/abs/1302.
1790.
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than the 0.08M� minimum required to sustain fusion, the system is known as a Black
Widow14, and if the pulsar wind heats the companion and causes it to swell to fill its
Roche lobe, the system is known as a Redback15.

In the vast majority of Black Widows, even heating is seen on the pulsar-facing
side16. There is one, however, known as PSR J1544-4937, in which the heating
appears to be highly concentrated towards a small set of points on the companion.
This indicates effects involving the interaction between the wind and the companion
magnetosphere.

In the case of Redbacks, it is possible that Roche lobe-filling companions can
begin an accretion process onto the pulsar as a result of heating from the wind. If
this occurs, the system can become an X-ray binary. There are several known cases
of X-ray binaries which turn on and off on timescales of ∼ 10yrs17. This may be due
to the accretion disk burying the magnetic field of the pulsar, allowing the companion
to cool and thereby halting the accretion process18. Under this model, when the
accretion rate drops sufficiently the process begins again.

Both kinds of systems offer an opportunity to learn more about the pulsar wind,
in particular as the effects of the wind on the companion are strongly influenced by
its composition. For typical low-frequency radiation (anything ranging up to X-rays
in energy), the region which the wind heats is in the upper atmosphere of the star,
near the photosphere. The result is that the radiation is just re-radiated without
significantly altering the structure of the atmosphere. The net effect is a rise in

14Roberts, op. cit.; D. J. Stevenson. “The search for brown dwarfs”. In: Annual Review of
Astronomy and Astrophysics 29 (1991), pp. 163–193. doi: 10.1146/annurev.aa.29.090191.
001115.

15Hai-Liang Chen et al. “Formation of Black Widows and Redbacks—Two Distinct Populations of
Eclipsing Binary Millisecond Pulsars”. In: The Astrophysical Journal 775.1 (2013), p. 27. eprint:
http://arxiv.org/abs/1308.4107. url: http://stacks.iop.org/0004-637X/775/i=1/a=27.

16Reynolds et al., op. cit.; Roger W. Romani et al. “PSR J1311–3430: A Heavyweight Neutron Star
with a Flyweight Helium Companion”. In: The Astrophysical Journal Letters 760.2 (2012), p. L36.
eprint: http://arxiv.org/abs/1210.6884. url: http://stacks.iop.org/2041-8205/760/i=
2/a=L36; M. H. van Kerkwijk, R. P. Breton, and S. R. Kulkarni. “Evidence for a Massive Neutron
Star from a Radial-velocity Study of the Companion to the Black-widow Pulsar PSR B1957+20”.
In: The Astrophysical Journal 728.2 (2011), p. 95. eprint: http://arxiv.org/abs/1009.5427.
url: http://stacks.iop.org/0004-637X/728/i=2/a=95.

17Icdem, B. and Baykal, A. “Viscous timescale in high mass X-ray binaries”. In: Astronomy and
Astrophysics 529 (2011), A7. doi: 10.1051/0004-6361/201015810. eprint: http://arxiv.org/
abs/1102.4203. url: http://dx.doi.org/10.1051/0004-6361/201015810.

18J. Hessels. “M28I and J1023+0038: The Missing Links Go Missing, but Provide a New Link”. In:
NS Workshop. Dec. 2013. url: http://www.astro.uni-bonn.de/NS2013-2/Hessel_M28i.pdf.
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temperature on the near-side according to the Stefan-Boltzmann law:

4πR2σT 4
new = 4πR2σT 4

old + Le. (4)

The far-side does not heat at all, as there is no time to move the absorbed heat
around the star before reemission occurs.

When the radiation is higher in energy, or is made of massive particles, the
situation is somewhat different. High energy radiation can penetrate quite deep into
the star, as will be discussed later. Massive particles can likewise make it quite far,
particularly if they are uncharged. Charged massive particles are, however, limited by
the ionization zone in how far they may travel. Regardless of the specific form of the
external heating, when it occurs at depth the picture is very different. In particular,
the heat has some time to be redistributed within the star rather than immediately
escaping to the near-side. The formal statement of this effect is that the time it takes
for the heat to be nontrivially redistributed is now comparable to or shorter than
the radiative relaxation time. Profound structural changes in the stellar atmosphere
may occur, including the excitation of gravity waves, strong zonal winds, tropical
hurricanes, and the inducement of swelling in the deeper regions of the atmosphere.
This last symptom of external heating may be responsible for the observed Roche-lobe
filling in certain Redback systems, with the eponymous thermal difference on the
surface between the two sides of the star being due to the non-penetrative flux of the
Pulsar wind.

As these phenomena couple heat transport, fluid mechanics, orbital mechanics,
and various pieces of thermodynamic microphysics, we will discuss the physics first,
and then the astronomy. Along the way, we will use examples from astronomy to
illustrate relations, gain intuition, and build models, but only at the end will the
astrophysical phenomena of interest be discussed in full.
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, .
There is geometry in the humming of the strings, there is music in the spacing of the
spheres.

– Pythagoras

The geometry of the situations of interest is outlined in Fig. 1.1. The companion
star and pulsar orbit their center of mass with angular velocity Ω. The companion is
tidally locked, and hence Ω is also its rotation rate. The pulsar, on the other hand,
has rotation rate ω � Ω. The two objects are separated by distance Ro, and have
masses Mp and M for the pulsar and companion respectively. The star has radius R.
Note that the relative distances depicted are not shown to scale. The heating zone is,
for any kind of radiation, the region surrounding the surface of unit optical depth. In
the cases of interest the source is positioned on one side of the companion and is far
enough away that it may be viewed as roughly a planar wavefront.

To determine where the heating zone lies, we must examine the optical depth
associated with various kinds of radiation incident on the surface of the star. Below
10keV, the chief scattering processes are resonant absorption and Rayleigh scatter-
ing1. Above this scale, Compton scattering becomes the dominant process,until
approximately 1MeV ∼ 2me, at which point the dominant process is pair production.
This state of affairs continues to arbitrarily high energies once the electron-positron
pair production threshold is crossed. The use of the pair production decay channel,
however, means that there will be more particles present after the initial scattering,
and these may continue moving through the star for some distance before further
scattering thermalizes them. If the resulting particles have energies above some
critical level, the dominant process once all channels and possibilities are accounted
for will continue to be pair production.

The net result of all of this is that for incident radiation below a critical energy, a
single scattering event suffices and the cross-section directly gives the depth at which
the radiation deposits heat. This gives

Σ = 1
κ
, (1.1)

where κ is the mass attenuation coefficient corresponding to the material and particle
kind. Above the critical energy, the resulting particles from the first scattering continue
to produce further particles until their descendents drop below the critical energy
and produce heat. At each stage in the shower, additional particles are produced
with energies approximately two times lower than what they started with, so if Eγ

1J. et al Beringer. “Particle Data Group”. In: Phys. Rev. D 86 (2012), p. 010001.
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R

Ro

Mp M

Ω

Heating Zone

Pulsar Companion Star

Ωω

Figure 1.1: Depiction of a pulsar and its companion. Note that none of the depictions
are to scale. The companion orbits with angular velocity equal to its rotational
angular velocities due to tidal locking effects. The pular and companion are separated
by a distance Ro. Their masses are Mp and M respectively. The star has radius R.
The heating zone is, for any kind of radiation, the region of unit optical depth given
that the radiation is incident from one side and that the source is far enough away
that it may be viewed as a planar wavefront.
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is the energy of the photon and Ecrit is the critical energy, a total of approximately
log2(Eγ/Ecrit) are created. If the scattering cross-section at each stage is roughly
constant, as is expected in the case of energies above GeV scales2, then this means
that the column density at which heat is produced should be

Σ = 1
κ

(
1 + log2

Eγ
Ecrit

)
,

The critical energy is given approximately3 in gases by

Ecrit = 710MeV
Z + 0.92 ,

where Z is the number of protons in a nucleus. For hydrogen this simplifies to

Ecrit = 370MeV.

Plots of κ−1 and the corresponding Σ are shown in Fig. 1.2 and Fig. 1.3 respectively.
For hydrogen, the value of κ−1 is approximately 100g/cm2 for all energies beyond

Ecrit which have been measured5, going up through 100GeV. Thus

Σ = 100 g
cm2

(
1 + log2

Eγ
370MeV

)
.

Typical pulsar photon energies in the upper end of the spectrum are of order hundreds
of GeV6. Substituting this in gives roughly

Σh = 103 g
cm2 . (1.2)

This is the column density at which a stellar companion transforms the pulsar’s
gamma rays into heat, and we will use this value in calculations involving the heating
depth. To most appropriately model the physical process of particle showers and
absorption, we will treat the incident luminosity as following

Le(Σ) = Lee
−Σ/Σh , (1.3)

2Ibid.
3Ibid.
5Ibid.
6A. Smith David. “Gamma Ray Pulsars with the Fermi LAT”. in: 3rd Fermi Symposium. May

2011. url: http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/session14/
Smith_FermiPSRs.pdf; H. et al Anderhub. “Search for Very High Energy Gamma-ray Emission
from Pulsar-Pulsar Wind Nebula Systems with the MAGIC Telescope”. In: The Astrophysical
Journal 710.1 (2010), p. 828. url: http://stacks.iop.org/0004-637X/710/i=1/a=828.

http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/session14/Smith_FermiPSRs.pdf
http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/session14/Smith_FermiPSRs.pdf
http://stacks.iop.org/0004-637X/710/i=1/a=828
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Figure 1.2: log κ−1 is plotted versus logE. The former is measured in g/cm2 and the
latter in eV. Data was extracted manually from plots in the Particle Data Group
book4, and so has some uncertainty associated with the conversion process.
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Figure 1.3: log Σ is plotted versus logE. The former is measured in g/cm2 and the
latter in eV.

where Le measures only the high-energy photons. Low energy photons are ignored,
as they are absorbed and reemitted soon thereafter in the photosphere.

Armed with this information regarding the structure of the heating zone, we
can in principle take a three-dimensional model of a star and compute the spatial
dependence of the heating. Again, in principle, this may be used to compute the
resulting effects on the star. For the purposes of gaining physical intuition, however,
this is not the most effective way to proceed, for there are many simplifications which
may save substantially on computational effort and may make clearer the relevant
physics.

The most basic model for the companion star which captures some of the physics
of interest is to treat it as one-dimensional, and ignore the azimuthal symmetry
breaking which results from the tidal locking. In this case, the star is parametrized by
a series of functions of the radial coordinate, such as temperature, pressure, and so on.
Though this model neglects a significant physical asymmetry, it is advantageous in its
mathematical and computational simplicity, and so will be our starting point. Within
the context of this model, we will treat all physical quantities as their averages over
the angular coordinates, such that the externally incident flux will sum up to the
same total luminosity. As a result, this model is often referred to as the plane-parallel
or isotropic atmosphere, for in it there is only one coordinate (depth) which matters.
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After this model, the next modification will be to examine higher-dimensional
models. We will examine both two-dimensional models which add just the azimuthal
coordinate φ and fully three dimensional models. In the former, we will treat all
quantities as their average over the spherical polar angle θ, while the latter holds the
full dimensionality of the system.

Beyond spatial dimensions, there is also the question of time. Initially we will
consider all solutions in the steady-state. After this, we will shift to considering the
time-dependence of these models, and exa mine both the stability of the steady-state
solutions and the means by which they are reached.
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One-Dimensional Model

There is a computer disease that anybody who works with computers knows
about. It’s a very serious disease and it interferes completely with the
work. The trouble with computers is that you "play" with them!

– Richard P. Feynman1

2.1 Equations of Stellar Structure
In the isotropic steady-state model, we treat all quantities in the companion as
functions of r, the distance from its center. No other independent variable enters in
this model, as t is forbidden by the steady-state assumption and θ and φ are forbidden
by the isotropy assumption. Thus we write temperature as T (r), pressure as P (r),
and so on.

To a very good approximation, we may neglect the variation in the composition
of the star with position. That is, we treat all compositional variables as global
constants, such that X(r) = X0, the hydrogen mass fraction in the star, and likewise
for all other such quantities. In making this approximation we mainly lose accuracy in
calculating the properties of convection zones, though there our accuracy is primarily
limited by the uncertainty in the choice of mixing length, and so this loss is acceptable.

The remaining spatial variables are then only thermodynamic ones. Of these,
one might pick as "fundamental" ones the pressure, temperature, density, and mean

1Richard P. Feynman. Los Alamos From Below. https : / / www . youtube . com / watch ?
v = 0ogSC6JKkrY. Feb. 6, 1975. url: http : / / calteches . library . caltech . edu / 34 / 3 /
FeynmanLosAlamos.htm.
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molecular weight2. All other quantities of interest may be derived from these. We
may, however, eliminate µ, for it is a direct function of T . This follows from the
fact that we have held compositional variables fixed, such that µ varies only through
ionization.3. This variation occurs mainly when kBT is comparable to 13.6eV , and is
generally taken to happen between 103.8K and 104.1K. The value of 13.6eV , of course,
is the ionization energy of hydrogen.

Using the equation of state, we may eliminate yet another function, to reduce
the total count of "fundamental" thermodynamic variables at each point to two. The
equation of state is most generally written as

P = f(ρ, T ), (2.1)

though it is usually well approximated by the form

µP = ρkBT + 1
3aT

4, (2.2)

where the second term is included to accommodate radiation pressure. At low
temperatures the second term may be dropped, yielding the familiar ideal gas law.
Regardless of the specific form, we will use the equation of state to eliminate the
density from consideration, and hence write

ρ = g(P, T ). (2.3)

Our ability to write it in this form comes from P being monotonic in ρ and T . We
choose ρ rather than T or P because we generally wish to compute heat transport
properties in terms of temperature, and in hydrostatic equilibrium the pressure is
computable by a straightforward integral. As a result, we are left with two basic
functions, P (r) and T (r), which fully characterize the star to within our various
approximations.

It will often be more convenient to replace r with m, the mass above a particular
radius, as the independent variable. As m is monotonically decreasing with r this
is a perfectly well-defined transformation. We thus write P = P (m), T = T (m). In
this language, the condition of hydrostatic equilibrium may be cast into a convenient
form, as

dP

dr
= −ρg → dP

dm
= g

4πr2 . (2.4)

Now over the depth ranges of interest, as will be verified later, r varies only slightly
relative to R. As a result, we may neglect its variation in computing quantities

2Other valid choices include specific energy, specific entropy, sound speed, etc.
3At high pressures it may also depend on pressure, and indeed we will account for this



2. ONE-DIMENSIONAL MODEL 16

in which r appears as a multiplicative factor. This is known as the thin-envelope
assumption, and has several useful implications. For instance, we may approximate
the gravity of the star as being fixed at

g ≡ GM

R2 . (2.5)

As a result, we may write the condition of hydrostatic equilibrium as

dP

dm
= GM

4πR4 . (2.6)

Using the boundary condition P (r =∞) = 0,m(r =∞) = 0 we find

P (m) = GMm

4πR4 . (2.7)

Note that we may also use the variable

Σ ≡ m

4πR2 (2.8)

as the independent variable. Given that this is the form in which we know the heating
depth, we will often switch to using this rather than m.

Given T (m), in addition to what we have found so far, we will know the structure
of the star to within the bounds of our approximations. As a result, we know that
T (m) must depend in some fashion on the luminosity of the star and on the external
illumination we hope to investigate, for these quantities appear nowhere else and they
seem quite important. To that end, consider the outer boundary condition on the
star. There are a variety of models for this4, but most treat the low-m regime by
some gas-radiation dilution model and use this to find the optical depth along the
radial direction. From there, it is typically asserted that

L = 4πR2σT 4 (2.9)

at the place where the optical depth τ = 2/3. This is just an application of the
Stephan-Boltzmann radiation law to a gray-body atmosphere, with an effective
treatment for the differing rates at which different frequencies of radiation escape at
low optical depth. We will not go into the specific details of the model we used, and
merely state that they are those described in Ref.5.

4B. Paczyński. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
5Ibid.
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From this upper boundary condition on T , we may integrate towards higher m
using the equation

dT

dm
=
(
d lnT
d lnP

)
T

P

dP

dm
= ∇T

P

dP

dm
, (2.10)

where the second equality defines the symbol ∇ and where the derivative with respect
to lnP is taken along the radial direction. This last point is not relevant in an
isotropic star, where ∇T and ∇p are aligned, but will become important when we
move to higher dimensional models.

Of course, there is no physical content in Eq. (2.10): it is simply a true statement
regarding differentiable functions. The reason we bother to cast the problem in this
form is that ∇ may often be expressed simply. In regions of the star where heat is
transported radiatively,

∇ = ∇rad = 3κPL
16πacGMT 4 , (2.11)

where κ is the Rosseland mean opacity of the stellar material, and is generally a
function of P and T . On the other hand, when the region of interest is unstable against
convection, the thermal gradient ∇ is somewhat more complicated. If convection is
efficient, then the convective gradient matches the adiabatic gradient, such that

∇ = ∇ad = d lnT
d lnP

∣∣∣∣∣
s

. (2.12)

This gradient is typically 0.4 for monatomic gas and for fully ionized gas, and drops
to 0.1 − 0.2 in the ionization zone. If, on the other hand, convection is inefficient,
then matters become somewhat more complex, as then both radiation and convection
contribute nontrivially to thermal transport. The full solution for the convective
gradient in this case is somewhat complicated, and involves the root of a cubic with
a closed form which does not yield much intuition. Various methods of numerical
solution have been developed6, and will be employed in the next section. As will be
shown later, however, convection is usually highly efficient in the cases of interest,
and so setting ∇ = ∇ad in convecting regions is generally accurate.

It is worth noting that the question of convective stability is much simpler in stars
than in other contexts. The microscopic viscosity of stellar atmospheres is generally
far too low to stop convection7. This is a statement about the typically large value of
the Rayleigh number whenever the radiative gradient exceeds the adiabatic one. Thus

6Ibid.
7This will be discussed at length when we examine the properties of fluids in motion for higher

dimensional heat transport
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in the absence of shear turbulence the primary criterion determining if convection
occurs is

∇rad > ∇ad. (2.13)

If this condition is satisfied then convection occurs. Loosely speaking this criterion
may be thought of as indicating that the temperature gradient needed to carry the
thermal flux through radiation is too high relative to the buoyancy experienced by
an adiabatically expanding packet of gas. The result is a convective instability.

The only remaining piece of physics we need to compute stellar structures with
the above equations is κ. This we take from tables such that those of OPAL8 and
Ferguson9, as discussed in Appendix B.1. A plot of the opacities produced by these
tables at X = 0.7, Y = 0.27, Z = 0.03 is shown in figure 2.1.

2.2 Simulations
Armed with the equations of stellar structure, we may simulate a variety of stars
numerically to see how they respond to different amounts of external illumination. The
purpose of these initial simulations is to gain intuition for the relevant phenomenology,
and to determine reasonable ranges for the various parameters such as temperature,
pressure, and so on.

Initially, all simulations were done using a modified version of the Gob software
package, originally written for Red Giant envelope integration10. The original and
modified codes may be found in Appendix C. A modern code known as Acorn was
then written as part of this thesis to incorporate recent advances in low-temperature
stellar opacity models. In addition, it uses a much finer adaptive mass grid, resulting
in more accurate and smoother stellar profiles11. This code was then verified in
the high-temperature limit against Gob, and the microphysical inputs were verified
independently in the low-temperature limit. The details of this code may be found in
Appendix B.2, with details on the opacity tables and associated interpolation routines
in Appendix B.1. The code solves precisely the same equations as Gob12, with the

8C. A. Iglesias and F. J. Rogers. “Updated Opal Opacities”. In: The Astrophysical Journal 464
(June 1996), p. 943. doi: 10.1086/177381.

9Jason W. Ferguson et al. “Low-Temperature Opacities”. In: The Astrophysical Journal 623.1
(2005), p. 585. url: http://stacks.iop.org/0004-637X/623/i=1/a=585.

10Paczyński, op. cit.
11The smoothness of the resulting profiles is particularly important, as we will use the output

from the steady-state code as the input to the transient code, which requires evaluating numerical
derivatives in mass.

12Paczyński, op. cit.

http://dx.doi.org/10.1086/177381
http://stacks.iop.org/0004-637X/623/i=1/a=585
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Figure 2.1: The vertical axis is log ρ (with ρ measured in g/cm3), the horizontal is
log T (with T measured in K), and the color represents log κ (with κ measured in
cm2/g. White regions are those without data.
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addition of the thin envelope assumption, such that M −m and r are taken not to
change, except where they appear explicitly as parameters for differentiation.

Though Acorn only computes stellar envelopes, this is more than enough to
examine the vicinity of Σh. The heat input was modeled by changing the luminosity
of the star as a function of column density, according to

L(Σ) = Lin + Lee
−Σ/Σh . (2.14)

A value of Σh = 103g/cm2 was used here, as per the discussion in Chapter 1.
To begin with, we consider models where the external illumination is imposed

whilst holding the star’s radius and intrinsic luminosity fixed. The following three
representative models for companion stars were chosen for the simulations:

• The Sun: M = M�,Lin = L�,R = R�

• Low-mass nuclear-burning: M = 0.3M�,Lin = 10−2L�,R = 0.43R�

• Brown dwarf: M = 0.02M�,Lin = 10−4L�,R = 0.14R�

The full output from Acorn for each of these cases for a variety of external luminosities
may be found in Appendix E.

The first aspect of these models worth investigating is the region of validity of
the thin-envelope approximation, which is the assumption that r ≈ R everywhere in
the envelope. To see where this holds, we have plotted the radius as a function of Σ
in figure 2.2. For the 1M� star, the thin-envelope approximation is good down to
Σ = 106g/cm2 or so, where deviations reach roughly 10%. For the 0.3M� star, the
approximation is valid everywhere with no external heating, down to Σ = 107g/cm2 for
Le = Li, and to Σ = 106g/cm2 for Le = 10Li. For both of these stars, deviations grow
rapidly past the regime of validity. Finally, for the 0.02M� star, the approximation is
typically only valid within 10% down to Σh. Past this, however, deviations grow much
more slowly than for the other two stars, and so the approximation may be safely
used down to around 105g/cm2, where deviations reach 15%. Fortunately there are
no phenomena which are both sensitive to the high-Σ failure of this approximation
and are of significant quantitative interest, so this approximation is a safe one to
make. Subsequent plots will be truncated in their range of Σ to that in which the
approximation is valid to within 50%.

We now turn to the thermal structure of the star. Figure 2.3 shows the log of
temperature versus the log of column density for nine scenarios. The three stars of
interest are represented by the columns, while three different external luminosities
are represented by the rows. The top row has no external illumination, the middle
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Figure 2.2: Radial coordinate (in cm) versus log of Σ (in g/cm2) for nine different
scenarios. Σ here is computed as the mass above the point of interest divided by
4πR2. The columns are the three different stars under consideration. Moving left to
right, they are M = M�,Lin = L�,R = R�, M = 0.3M�,Lin = 10−2L�,R = 0.43R�,
and M = 0.02M�,Lin = 10−4L�,R = 0.14R�. The rows represent different quantities
of external luminosity. From top to bottom, these are Le = 0, Le = L�

R2

R�

2
, Le =

10L� R2

R�

2. The vertical grey bar goes from the edge of the photosphere (where τ = 2/3)
to the heating depth (Σ = 103g/cm2). Blue regions are dominated by convective heat
transport, red by radiative transport.
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row has the illumination equal to L�R2/R2
�, and the bottom row has it equal to ten

times that. Note that for each mass, the radius was held constant. As a result, the
top row represents a nearly unmodified system, while the bottom row represents a
system dominated by the external heating.

Looking first at the sun, we see that adding external heating begins by shutting
down convection at the base of the envelope, and eventually leads to almost completely
radiative transport at high external luminosity. The only regions which remain
convective are those in the vicinity of the ionization zone, where the adiabatic
gradient is very low to begin with. This may be understood as a result of the external
heat decreasing the temperature gradient between the core and the heating depth,
while increasing it between this depth and the surface. In the former region this
suffices to switch the transport from convective to radiative, while the latter is very
stable against convection and so remains radiative. That the effect of the heating is
so much deeper than the heating depth may be viewed as due to the imposition of a
different boundary condition at this depth. In particular, the fact that we maintain a
fixed radius as we vary the flux means that the surface temperature scales as L1/4

net .
In the 0.3M� star we see the same thing, though with convection holding on in a
larger region in the middle plot. In the 0.02M� star, the same process is evidently
occurring, though the transition to radiative transport is not apparent until the final
plot. This is as we expect: at the lower temperatures which dominate in these stars,
radiative transport is less efficient and so the need for convective heat transport is
greater.

One interesting feature of note is the change in thermal gradient between T = 104K
and T = 104.5K. This occurs when the ionization zone is convective, which it almost
always is, and results from a decrease in the adiabatic gradient within the zone. The
reason this feature is not visible in each of the nine scenarios plotted in figure 2.3 is
that in not all scenarios does the ionization zone fall within the envelope.

The next aspect of these models worth examining is the pressure scale height, hs.
This sets the characteristic length scale for turbulence, wind shearing, and convective
motion, and so will be of interest at every stage of our analysis. The log of this height
is shown in figure 2.4. In each of the models, hs increases monotonically into the star
past the photosphere, starting around 106.5cm near the surface and reaching values
only a few orders of magnitude smaller than R at the base of the envelope. In general,
we expect hs to follow a power-law as a function of Σ, and indeed this is what we see.
Deviations from this are typically due to changes in the mode of heat transport, or
to the ionization of material at various points.

Now we may also compute the efficiency of convection, Γ, defined as the ratio
of the heat carried by a convecting gas packet to the heat lost radiatively along the
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Figure 2.3: Log of T (in K) versus log of Σ (in g/cm2) for the same nine scenarios
defined in figure 2.2. Σ here is computed as the mass above the point of interest
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bar goes from the edge of the photosphere (where τ = 2/3) to the heating depth
(Σ = 103g/cm2). Blue regions are dominated by convective heat transport, red by
radiative transport.
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nine scenarios defined in figure 2.2. The columns are the three different stars under
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way. While a variety of expressions exist for this, we will make use of the one used in
the Gob stellar integration code13. The results of doing so are shown in figure 2.5.
This quantity is of interest because it is a good indicator of the extent to which the
balance between convection and radiation has been altered by the external heating,
as well as because it indicates the extent to which the convective gradient deviates
from the adiabatic one. In each of the unperturbed stars, convection is either highly
efficient at the heating depth or becomes very efficient close to the heating depth. In
shallower regions the efficiency decreases until convection ceases, with a sharp drop in
efficiency at the boundary. Importantly, the region over which the efficiency is low is
very small, as the slope of Γ with respect to Σ is large near the radiative-convective
transition. In the perturbed stars, convection does not always occur in the same
region, as the additional heat may turn it off in the vicinity of the surface, but where
it does occur all of the same statements regarding its efficiency hold.

Finally, it is also useful to examine how κ varies through each of the stellar models
of interest, and so this is shown in figure 2.6. Referencing figure 2.1, we see a few
points worthy of discussion. First, many of the stellar tracks go outside of the known
opacity data. In most of these cases the stars are convective, with highly efficient
convection, and so the opacity is irrelevant. In every combination of the two low-mass
stars with the two lowest-heating values, however, we get a radiative region outside
of the known opacity data. In each case the issue arises because ρ is too large. The
opacity tables are internally stored using ρ/T 3 and T as the independent variables14.
Below 106K the tables form a rectangular grid in these variables. As a result, these
tracks have exceeded the maximum value of ρ/T 3 for which we have data, while
remaining in an acceptable temperature range. The simulation code in these cases
simply returns the opacity at the correct temperature and maximum value of ρ/T 3

for which data exists. Fortunately, however, examination of the corresponding regions
in figure 2.3 indicates that these regions are actually quite small in pressure-space,
and only appear stretched in this plot out because ρ changes more rapidly here.

The second feature worth noting is that the convergence of the various tracks
corresponding to the radiative atmospheres supports our conclusions regarding the
decay of heating into radiative zones. Likewise, the lack of convergence between the
analogous convective envelopes supports our conclusions regarding the continuation of
heating into convection zones. Additionally, the vast majority of each track, whether
measured by pressure-space or arc-length in log ρ, log T space, is spent in regions

13Ibid.
14The first of these, ρ/T 3, is often called R, and usually defined with ρ measured in units of

1g/cm3 and T measured in units of 106K.
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Figure 2.5: Log of convective efficiency (Γ, see text) versus log of Σ (in g/cm2) for the
same nine scenarios defined in figure 2.2. The columns are the three different stars
under consideration. The rows represent different quantities of external luminosity.
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are dominated by convective heat transport, red by radiative transport.
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where
∂κ

∂T

∣∣∣∣∣ < 0. (2.15)

This fact will become relevant later in the next section. Finally, the fact that the
minimum in κ lies at temperatures comparable to those in the ionization zone means
that ∇rad tends to peak where ∇ad is at a minimum, which encourages the formation
of a convection region around the ionization zone. This is seen even in the case of
heavy external illumination, which generally pushes stars towards radiative transport
even at depths much below where the additional heat is deposited.

2.3 Luminosity and Radial Variation
The simulations in the previous section were done with the radius and internal
luminosity of the star fixed. To be completely accurate, we should really do a
boundary condition matching between the photosphere and the nuclear burning
region, as is done in codes like MESA15. Instead, we will perform a much simpler
process, which consists of identifying roughly what the temperature change in the
bulk of the star is, and using that, along with the dependence of nuclear burning
on temperature, to estimate the balance between changing radius, changing surface
temperature, and changing internal luminosity.

To begin, let Pb be the pressure at which the star changes from being convective
to being radiative. We usually expect stars to be convective for P < Pb and radiative
for P > Pb

16. This is obviously not always the case, as there can be small regions
where convection turns on and off, but as a coarse view of things this is a good
approximation. Note that for fully radiative stars Pb = 0 and for fully convective
stars Pb = Pcore ≈ 2gsurfM

4πR2 . The mixed case, where 0 < Pb < Pcore, arises for stars of
mass M ∈ [0.43, 2]M�17.

15Bill Paxton et al. “Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations,
Rotation, and Massive Stars”. In: The Astrophysical Journal Supplement Series 208.1 (2013), p. 4.
url: http://stacks.iop.org/0067-0049/208/i=1/a=4.

16The reason we expect convection on top is that ∇rad decreases rapidly with temperature. In
an efficient convection zone T ∝ P∇ad , where ∇ad is usually around 0.4 except in the ionization
zone, where it drops to 0.1. ∇rad, on the other hand, usually goes roughly as PT−5 ∝ P 1−5∇ad

in the star’s interior. When we look past the ionization zone, the exponent is negative, and so
∇rad eventually drops below ∇ad at high pressure. There may of course be brief changes between
convective and radiative heat transport in the ionization zone, but below that region our arguments
should hold. Note that in computing ∇rad we have factored in the approximate dependence of the
opacity on temperature and pressure.

17Maurizio Salaris and Cassisi Santi. Evolution of stars and stellar populations. Vol. 1. ISBN:

http://stacks.iop.org/0067-0049/208/i=1/a=4
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If the star’s surface heats up by an amount ∆T , we may ask how much of a change
this causes in the matter below. In the radiation region, we know that

dT

dP
= 3κL

16πacGmT 3 , (2.16)

where m is the mass below the pressure of interest. If we perturb this equation by
letting T → T + δT , and assume that T (P ) is a solution to the equation, then

d(δT )
dP

= dT

dP

(
∂ ln κ
∂T

∣∣∣∣∣
P

− 3 1
T

)
δT. (2.17)

Now κ usually decreases with increasing temperature, at least once you look deeper
than the upper envelope, so the perturbation decreases exponentially as one goes to
higher pressures. This is consistent with the valve modelof radiative zones18. For
fully radiative stars, then, we expect as a result that keeping R and Lin fixed is
appropriate.

In the convecting region things are somewhat more complicated. We know that
T ∝ P∇c ≈ P∇ad . If the temperature at some pressure P0 is increased by T0, then the
temperature changes all the way from P0 to Pb following the convective gradient. For
stars which have some nontrivial convection zone, let ∆T0 be the temperature change
at P0, where we now restrict P0 < Pb and pick P0 at the lowest possible pressure
below the photosphere. Recall that the radius of the star obeys

dr

dm
= 1

4πr2ρ
. (2.18)

This may also be written as
dr3

dm
= 3

4πρ. (2.19)

Differentiating with respect to time gives

d

dm

(
dr3

dt

)
= −3

4πρ

(
d ln ρ
dt

)
= −dr

3

dm

(
d ln ρ
dt

)
. (2.20)

At fixed pressure, d ln ρ = −d lnT , neglecting the small space occupied by the
ionization zone, so

d ln ρ
dt

= −d lnT
dt

. (2.21)

0-470-09220-3. John Wiley Sons, 2005, pp. 138–140.
18H. Ritter, Z.-Y. Zhang, and U. Kolb. “Irradiation and mass transfer in low-mass compact

binaries”. In: Astronomy and Astrophysics 360 (Aug. 2000), p. 969. eprint: astro-ph/0005480.

astro-ph/0005480
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As a result,
d

dm

(
dr3

dt

)
= dr3

dm

d lnT
dt

. (2.22)

Integrating assuming fixed radius at the base of the convection zone allows us to write

dVc
dt

= Vc
d lnT
dt

, (2.23)

or
d lnVc
dt

= d lnT
dt

, (2.24)

where Vc is the volume of the convection zone. Integrating with respect to time yields

∆ lnVc = ∆ lnT. (2.25)

If the position of the base of the convection zone is fixed and near the core, then this
reduces to

∆ lnR = 1
3∆ lnT. (2.26)

In the case of fully convective stars a fixed base is a fine assumption: ∇rad is so
much greater than ∇ad that Pb is just the core pressure. In the case of fully radiative
stars, we are likewise fine: increasing T just lowers ∇rad, reinforcing the fact that
∇rad < ∇ad. Thus we do not expect that if Vc is zero for some T , it will become
nonzero at a larger T . Between these two cases, we may compute the change that a
temperature perturbation has on the convective-radiative boundary.

Suppose that T (P ) is the unperturbed state and δT (P ) is the perturbation. Then

∇ad = ∇rad (P ′b, T + δT ) = ∇rad (Pb, T ) , (2.27)

and so
∴ ∂P∇raddPb + ∂T∇rad∂PTdPb + ∂T∇radδT = 0. (2.28)

From this it follows that

dPb
dT

= −P
T

(
∂lnT∇rad

∂ln p∇rad +∇∂lnT∇rad

)
= −P

T

(
−3 + ∂lnT ln κ

1 +∇ (−3 + ∂lnT ln κ)

)
. (2.29)

As ∇ = ∇ad at the transition point, this simplifies to

dPb
dT

= −P
T

(
−3 + ∂lnT ln κ

1 +∇ad (−3 + ∂lnT ln κ)

)
. (2.30)
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Now ∂lnT ln κ (holding P fixed) at high temperature and pressure is generally around
−3, and ∇ad under the same conditions is usually around 0.4, so this expression is
actually negative, with magnitude roughly given by −4P/T . Thus

∇b ≡ −
d lnPb
d lnT ≈ 4. (2.31)

As lnT changes by the same amount everywhere in the convection zone, we may
substitute T0 for T and obtain the same result. This is consistent with what we see
in the top-left and middle-left of Figure 2.3, where log T changes by one near the
base of the sun’s envelope and logPb changes by five or so towards the surface.

We may now examine the behavior of the radius of the base of the convection
zone. Let this radius be Rbase, the initial temperature at P0 be T0,i, and the final
temperature at P0 be T0,f . Using this, we write

dRbase

d lnT0
= dRbase

d lnPb
d lnPb
d lnT0

= −∇adhs
d lnPf
d lnT0

= ∇ad∇bhs. (2.32)

Recalling that hs is a function only of T , we may find hs at the base using only
knowledge of the way the temperature at the base of the convection zone changes.
That is,

d lnTb
d lnT0

= ∂ lnTb
∂ lnT0

∣∣∣∣∣
Pb

+ ∂ lnTb
∂ lnPb

∣∣∣∣∣
T0

d lnPb
d lnT0

∣∣∣∣∣
T0

= 1−∇ad∇b. (2.33)

Thus
dhs
d lnT0

= hs (1−∇ad∇b) , (2.34)

and hence

hs,f = hs,i

(
T0,f

T0,i

)1−∇ad∇b
. (2.35)

Now the difference between Ri,0 and Rf, 0 is given by

Ri,0 −Rf,0 =
∫ Pf

P0

dr

dP
dP = hs,i

∇ad

1−
(
P0,i

Pb,i

)∇
ad

 , (2.36)
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so putting it all together we find

dR

d lnT0
= ∂R

∂Vc

∣∣∣∣∣
Rbase

dVc
d lnT0

+ dRbase

d lnT0
(2.37)

= ∂R

∂Vc

∣∣∣∣∣
Rbase

(
Vc − 4πR2

base
dRbase

d lnT0

)
+ dRbase

d lnT0
(2.38)

= R

3Vc

(
Vc − 4πR2

base
dRbase

d lnT0

)
+ dRbase

d lnT0
(2.39)

= R

3 + dRbase

d lnT0

(
1− R2

base
R2

)
(2.40)

= R

3 +∇ad (Ri,0 −Rf,0)
(
T0,f

T0,i

)1−∇ad∇b (
1− R2

base
R2

)
. (2.41)

Past the initial small changes in temperature, the second term is negligible, so we
find that we are actually justified in writing

∆ lnR = 1
3∆ lnT (2.42)

for convecting stars. To combine the cases of convection and radiation, we write

∆ lnR = min
( 1

12 ln Pb
P0
,
1
3∆ lnT

)
. (2.43)

The picture, then, is that fully radiative stars have fixed R,Lin, and fully convective
stars have ∆ lnR = 1

3∆ lnT . To determine the change in Lin for a fully convective
star, we note that nuclear burning typically scales as T β for some β > 0. Thus we
may write the energy balance in such a star as

4πR2σT 4
surf,new = Le + Lin,old

(
Tsurf,new

Tsurf,old

)β
, (2.44)

where we have made use of the fact that the surface temperature ratio between the
perturbed and unperturbed cases is the same as the core temperature ratio between
the two cases. Substituting in what we know for the dependence of R on T gives

4πR2
oldσT

4+2/3
surf,newT

−2
surf,old = Le + Li,old

(
Tsurf,new

Tsurf,old

)β
. (2.45)
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Figure 2.7: The log of f is plotted versus log(Le/Li,old) with β = 4 + 2/3 in orange
and β = 0 in blue. These solutions were determined numerically in Mathematica.

Using Li,old = 4πR2
oldσT

4
surf,old and letting f ≡ Tsurf,new/Tsurf,old, we find

Le
Li,old

= f 4+2/3 − fβ. (2.46)

Fully convective stars tend to be cooler ones, for which β ≈ 4, so we may numerically
solve this for a variety of cases. The results of this are shown in orange in figure 2.7.
Note that when the impact on nuclear burning is included in the solution, the result
exceeds what we would otherwise find. This aligns with our intuition that heating
the star causes it to burn faster, which causes it to heat more. The trend is close to
linear, past Le = Li,old, with a slope of roughly 1/6, so loosely speaking T ∝ L1/6

e ,
R ∝ L1/6

e , and Lin ∝ L2/3
e . In the case that the convection zone goes deep into the

star but does not reach near the nuclear burning region, we expect instead that Lin
will be constant and that R ∝ T ∝ (Le + Lin)3/14, as plotted in blue in figure 2.7.

Note that if β > 14/3 then Eq. (2.46) has no solutions. This reflects the fact that
in such a system, heating the star causes the nuclear burning rate to go up faster
than the surface flux can accommodate, further heating the star. The end of such a
process occurs by weakening the coupling between the surface and the core of the star
by turning off convection in the vicinity of the core. Further note that if the star is
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not heated by nuclear burning, the only thermodynamically allowed equilibrium has
the external illumination only stemming the loss of heat, not raising the temperature.

It appears, in summary, that the only stars which will respond to the external
illumination by swelling are those which are nuclear burning and mostly convective,
and that the response is greatest in those which are convective all the way down to
the nuclear burning regions. In these, the swelling is increased by the fact that the
nuclear burning increases in extent to match the hotter core temperatures.

In the next several chapters we will move to higher-dimensional models and
perform the same kind of analysis to determine what, if any, impact the anisotropy
in the external heating has, and how this impact depends on the parameters of the
system.
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3

Higher Dimensional Models

All of the analysis thus far has been one dimensional. We now describe a framework
for computing higher dimensional steady state effects in certain limits. Recall that in
hydrostatic equilibrium,

∇p = ρ (c− g) , (3.1)

where c captures all rotational acceleration effects. We also have that in steady state
and without any input heating or winds, the thermal flux obeys

∇ · F = 0. (3.2)

In the presence of an input heat power density ε, this changes to

∇ · F = ε. (3.3)

The boundary condition on this equation at the star’s edge is a free one, with the
flux at r =∞ dropping to zero. This results from the thermal flux proceeding out of
the star at the photosphere with no reflection. The star’s photospheric temperature
is determined by

σT 4 = F · n̂ (3.4)

at the photosphere’s base, usually defined as the point where τ = 2/3. Finally, if
winds are introduced, the flux divergence becomes1

∇ · F = ε− cpTv · (∇ lnT −∇ad∇ ln p) . (3.5)
1Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,

2012. isbn: 978-3-642-30304-3.

36
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Note that F includes convective and radiative effects only. Further note that ε must
include the effects of viscous dissipation on the winds in order for this formalism to
be self-consistent.

In general, we expect that we may write the thermal flux in terms of the tempera-
ture distribution as

F = −k∇T, (3.6)

where k may depend on the temperature, the pressure, and the gradients thereof.
Note that this holds even for convective flux, though in the case of convection the
thermal conductivity will be a rank two tensor, reflecting the potentially anisotropic
nature of the thermal diffusion supported by convection. It is tempting to argue
that this anisotropy may be handled by superposing an advective flow on top of the
underlying convection cell, and this is mathematically a valid option, but it leads to
multiple different advective terms of distinct physical origin, which is not an appealing
solution. Thus we will not hide from the complexity of anisotropic thermal conduction
by convection. Generally speaking the convective conductivity along ∇p will be given
by the usual expression, but with ∇ computed taking into account the angle α of
misalignment between the temperature and pressure gradients. More formally, ∇
may be defined in this context as

∇ ≡ ∂ lnT
∂ ln p , (3.7)

where the partial derivatives are taken following the pressure gradient. The transverse
components of the convective conductivity are then given by the transverse size of
the convection cell, as will be discussed in a later chapter. Qualitatively, everything
else remains the same for the convective aspect of the flow2.

In the case where k is a nontrivial tensor, it is not generally possible to avoid
using T as an intermediate result. Having said this, there are several things we can
determine which at least constrain the form of k. First, k must be invertible, as the
null space of k must consist solely of the trivial vector, or else arbitrary temperature
gradients along a given axis could result in no flux. Additionally, when ∇T and ∇p
align, the flux is entirely along the preferred direction this picks out. Similarly, if ∇T
is perpendicular to ∇p, the flux is entirely along ∇T . Thus k must be diagonal in

2Pierre Lesaffre et al. “A two-dimensional mixing length theory of convective transport”. In:
Monthly Notices of the Royal Astronomical Society (2013). doi: 10.1093/mnras/stt317. eprint:
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.full.pdf+
html. url: http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.
abstract.

http://dx.doi.org/10.1093/mnras/stt317
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.full.pdf+html
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.full.pdf+html
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.abstract
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.abstract
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any orthonormal basis which has one basis element parallel to the pressure gradient.
In this basis, k−1 is just the element-wise reciprocal of k along the diagonal.

In the case where k may vary spatially and is a scalar, ∇× F may be nonzero.
In particular,

∇× F = −k∇×∇T −∇k ×∇T = −∇k ×∇T = ∇ ln k × F , (3.8)

which allows F to be computed without computing T as an intermediate result, so
long as the functional form of k is known.

In general, a vector field may be written as the sum of a field with zero curl and
a field with zero divergence. Suppose that

∇ ·G = 0 (3.9)

and
∇×H = 0. (3.10)

Then we write
F = G+H . (3.11)

Thus all said we have, in the special case where k is a scalar,

∇ ·H = ε (3.12)
∇×H = 0 (3.13)

∇ ·G = 0 (3.14)
(∇−∇ ln k)×G = ∇ ln k ×H . (3.15)

The solution for H is given by the familiar electrostatics Green’s function as

H(r) =
∫
d3r′ ε(r′)(r − r′)

4π |r − r′|3
. (3.16)

In the case where winds are important, the appropriate substitution of must be made
to incorporate them into Eq. (3.16). Given k, then, this serves as the source term
which determines G.

There are several options to complete the solution given k. One is to directly
invert the differential operator acting on G. This may be done, for instance, via
eigenfunction expansion into either a plane wave basis or a vector spherical harmonic
basis. Another solution involves numerical inversion of the differential operator over
a spatial grid. Direct exact solutions, however, are of limited utility due to the fact
that k is ultimately a nonlinear and non-local function of F . Even if this were not
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the case for k, it would still be the case for the wind distribution. As a result, once
a ’good-enough’ approximation of the flux is obtained, k and the wind distribution
should be recomputed to allow for further refinement of F . It follows that an iterative
(perturbative) or quickly-converging eigenfunction expansion solution is preferred.

Suppose that k (scalar or tensor) is known as a function of T , ∇T , p, and ∇p.
If, additionally, the boundary of the star is a known surface ∂Ω with normal vector
n̂, then we may determine the temperature and pressure analogously to how Gob
or other atmospheric integration codes handle it. That is, we may first set ρ and
p in accordance with standard photospheric prescriptions on ∂Ω. The temperature
is set by Eq. (3.4). Given an estimate of F , Eq. (3.6) may be combined with the
hydrostatic equilibrium condition Eq. (3.1) to integrate the pressure and temperature
inward, recomputing the density at each stage. Using the new state of the star, k
may be recomputed and used to form a new estimate of F .

As an example of an iterative method for determining the flux, let G0 be the
solution to

∇×G0 = ∇ ln k ×H
and letting Gn be the solution to

∇×Gn = ∇ ln k ×Gn−1,

given by treating the right side as the source current for a Biot-Savart-like law. The
full solution may then be written as

G =
∞∑
n=0

Gn. (3.17)

Of course the convergence of this series is not guaranteed. In fact, as we will show
later, this series will generally not converge, so eigenfunction expansion is a more
promising route. The case may be improved by alternating iterations of this series
method with iterations of recomputing k, as this minimizes the distance that the
solution moves from self-consistency in any step, but ultimately other methods will
prove preferable.

3.1 Zero-Wind Analytic Model
Before doing anything as involved as the above process, it is worth extracting as
much information as possible analytically. As a toy model, suppose that k is a scalar
function of just T and p, and is a power-law thereof, such that

k = wT aP b. (3.18)
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The former assumption amounts to specifying that we are in the radiative zone,
while the latter amounts to specifying that we don’t cross between regions with
substantively different power laws. This is actually not very constraining, as may be
seen in figure 2.1. Furthermore, suppose that we neglect all wind effects. In later
sections we will remove this assumption.

Take the external heating to be put in at a point, which by choice of axis we set
to be at rh = rhẑ. Eq. (3.16) then gives

H(r) = 1
4π

(
Lir̂

r2 + Le(r − rh)
|r − rh|3

)
. (3.19)

The source term leading to G0 is then

∇ ln k ×H = (a∇ lnT + b∇ ln p)×H . (3.20)

To leading order, ∇T is parallel to H (treating G0 as a perturbation), so

∇ ln k ×H = b∇ ln p×H = b

hs
ĝ ×H . (3.21)

Rotational effects are a perturbation on ĝ so we take ĝ to be −r̂. As a result,

∇ ln k ×H = − b

hs
r̂ × 1

4π

(
Lir̂

r2 + Le(r − rh)
|r − rh|3

)
= bLer̂ × rh

4πhs |r − rh|3
= −brhLeφ̂

4πhs |r − rh|3
.

(3.22)

3.1.1 Iterative Method
Now suppose we adopt the iterative scheme described earlier. Then

∇×G0 = − brhLeφ̂

4πhs |r − rh|3
, (3.23)

where the scale height is to be evaluated at the sample place as the curl, given by
r. Outside of the star this quantity diverges, and so the curl of G0 becomes zero.
Note that the nonzero circulating flux outside of the star is not unphysical, though
the representation of the flux in this manner is somewhat nonstandard. For a simple
example, consider a planar light emitter which emits collimated light normal to its
surface, with flux which varies along the plane. The curl of the flux field above this
surface is evidently nonzero.
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From symmetry considerations it is evident that G0 describes a circulating flux
between the heating point and the opposing point on the star. The net flux transported
due to all G terms is zero due to their uniformly vanishing divergences. The primary
effect of these flux loops then is to change the distribution of heat in the interior. In
particular, suppose that b ≥ 03. The circulating flux lines then proceed toward the
point rh outside the star and away from it within the star.

We may compute the net flux which is transported from one side to the other
within the star. To do so, first note that G0 may be written as a curl of another
vector field due to its vanishing divergence. This vector field may be written as

A0(r) =
∫
d3r′

∇×G0

4π |r − r′| =
∫
d3r′

−brhLeφ̂
(4π)2hs |r − rh|3 |r − r′|

. (3.24)

From symmetry considerations we know that this will go along −φ̂ at r. The
magnitude will be dominated by contributions near rh, and so may be estimated as

A0 ≈
brhLe

(4π)2hs |r − rh|
(3.25)

up to corrections of order unity given roughly by the log of the ratio of r − rh to the
size of the heating region, which in practice will be finite. Note that the scale height
here is that at rh. The integrated flux through the star is therefore

Lint = −
∫
d2rẑ ·G0 = −

∫ 2π

0
dφrA0 · φ̂ = 2πrbrhLe

(4π)2hs
√
r2 + r2

h

. (3.26)

In general we expect rh ≈ r so

Lint ≈
rb

8
√

2πhs
Le. (3.27)

In general, hs � r and b is of order unity, so this significantly exceeds the input
luminosity, and indeed indicates that the circulating flux significantly exceeds the
conservative flux H. This indicates that the curl operator has eigenvalues which
are typically much less than those of the ∇ ln k× operator, invalidating an iterative
method of this form. This result is more general than the specific form of k used.
To see this, suppose we let b depend on P and T . None of the above results change
so long as |br/hs| � 1, for we only relied on local properties of b until performing

3This will generally be true, as can be seen by noting that at fixed T , ρ ∝ P , and by examining
figure 2.1. Note that k ∝ κP .
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integration, and in the integration procedure all symmetry constraints remain because
b reflects the underlying symmetry in T and P . As a result, all that changes is that
the integration replaces b with some weighted average of its value over the star at rh,
which cannot produce values orders of magnitude smaller than unity, given that b
undergoes no sign changes and is typically of order unity at the densities of interest.
Intuitively this result concerning the eigenvalues of ∇ ln k× arises because all material
properties of the star change on scales on the order of a pressure scale height, while
flux variations have a characteristic scale which goes as the stellar radius.

3.1.2 Eigenfunction Expansion
Having demonstrated that a straightforward iterative series expansion is invalid for
this kind of problem, we now turn to eigenfunction expansion. The most convenient
basis for doing this is that of vector spherical harmonics. These are defined as

Y lm = r̂Ylm (3.28)
Ψlm = r∇Ylm (3.29)
Φlm = r ×∇Ylm, (3.30)

where the gradient operators are constrained to the surface of the unit sphere, Ylm
are the usual scalar spherical harmonics, and −l ≤ m ≤ l as usual. These operators
are mutually orthogonal, and their norms are 1, l(l + 1), and l(l + 1) respectively.
Given a field A, we may write

A =
∞∑
l=0

l∑
m=−l

Alm,1Y lm + Alm,2Ψlm + Alm,3Φlm,

∇×A =
∞∑
l=0

l∑
m=−l

− l(l + 1)
r

Alm,3Y lm −
(
∂r + 1

r

)
Alm,3Ψlm

+
(
−Alm,1

r
+
(
∂r + 1

r

)
Alm,2

)
Φlm,

r̂ ×A =
∞∑
l=0

l∑
m=−l

−Alm,3Ψlm + Alm,2Φlm,

∇ ·A =
∞∑
l=0

l∑
m=−l

(
∂rAlm,1 + 2

r
Alm,1 −

l(l + 1)
r

Alm,2

)
Ylm.

(3.31)
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Note that the coefficients in these expansions are all functions just of r. Expanding
both H and G in this manner yields(

∇ + r̂b

hs

)
×G =

∞∑
l=0

l∑
m=−l

− l(l + 1)
r

Glm,3Y lm −
(
∂r + 1

r
+ b

hs

)
Glm,3Ψlm

+
(
−Glm,1

r
+
(
∂r + 1

r
+ b

hs

)
Glm,2

)
Φlm

= − b

hs

∞∑
l=0

l∑
m=−l

−Hlm,3Ψlm +Hlm,2Φlm.

(3.32)

Note that ∇ ×H = 0 implies that Hlm,3 = 0. The orthogonality of the vector
spherical harmonics, combined with the divergence-free nature of G, then allows us
to write

− l(l + 1)
r

Glm,3 = 0 (3.33)

−
(
∂r + 1

r
− b

hs

)
Glm,3 = 0 (3.34)(

∂r + 1
r
− b

hs

)
Glm,2 −

Glm,1

r
= − b

hs
Hlm,2 (3.35)

∂rGlm,1 + 2
r
Glm,1 −

l(l + 1)
r

Glm,2 = 0. (3.36)

The first condition gives us Glm,3 = 0. The second condition is then trivially satisfied.
The third and fourth conditions must be combined to obtain a solution. Using the
fourth to obtain the second coefficient, we write(

∂r + 1
r
− b

hs

)[
r

l(l + 1)

(
∂rGlm,1 + 2

r
Glm,1

)]
− Glm,1

r
= − b

hs
Hlm,2. (3.37)

Once a solution to this is known, the value of Glm,2 may be computed directly.
The differential equation of interest may be solved numerically without much

difficulty, given Hlm, but for the purposes of our rough calculations suppose we insist
that Glm,1 changes with characteristic scale of order the stellar radius. This amounts
to insisting that ∂r has eigenvalues of order 1/r. Given that hs � r we may write

− b

hs

(
r

l(l + 1)∂rGlm,1 + 2
l(l + 1)Glm,1

)
= − b

hs
Hlm,2, (3.38)
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or
r

l(l + 1)∂rGlm,1 + 2
l(l + 1)Glm,1 = Hlm,2. (3.39)

To simplify matters somewhat, we consider a modified version of the input heating
considered earlier. In this case, the input heat takes on the form

ε = δ(r − rh)
4πr2

h

[Le,0Y00 + Le,1 (Y1,−1 − Y1,1)] . (3.40)

This qualitatively reproduces the expected heating behavior, with preferential heating
on one side but without any net cooling, so long as Le,0 >

√
6Le,1. The heating all

occurs at a radius rh, with maximum heating on the positive x̂ side. The source term
∇ ln k ×H is not impacted in any way by the Y0,0 term, as this term produces a
radial flux field. The remaining terms give rise to a flux field which contributes to
the source term. The equations governing this field are given by

∂rH1,±1,1 + 2
r
H1,±1,1 −

2
r
H1,±1,2 = δ(r − rh)

4πr2
h

(∓Le,1) , (3.41)

H1,±1,3 = 0 (3.42)

−H1,±1,1

r
+
(
∂r + 1

r

)
H1,±1,2 = 0. (3.43)

The first of these relations arises from the divergence condition H , while the second
two arise from the requirement that the curl of H vanish. The general solution to
this set of equations is

H1,±1,1 = A

r3 +B + ∓Le,1(r3 + 2r3
h)Θ(r − rh)

12πr3r2
h

(3.44)

H1,±1,2 = − A

2r3 +B + ∓Le,1(r3 − r3
h)Θ(r − rh)

12πr3r2
h

(3.45)

H1,±1,3 = 0, (3.46)
where Θ(x) is the Heaviside step function and the constants A and B are to be fixed
by boundary condition considerations. In this case, we want the flux to drop to zero
at infinity, and we want it to be finite at finite radius. As a result, both constants are
zero and we have

H1,±1,1 = ∓Le,1(r3 + 2r3
h)Θ(r − rh)

12πr3r2
h

(3.47)

H1,±1,2 = ∓Le,1(r3 − r3
h)Θ(r − rh)

12πr3r2
h

(3.48)

H1,±1,3 = 0. (3.49)
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Using this to solve for G1,±1,1 in the simplified differential equation gives

G1,±1,1 = ∓Le,1(r − rh)2(r + 2rh)Θ(r − rh)
12πr3r2

h

, (3.50)

where we have already imposed the condition that this converge at the origin. To
obtain the flux from one side of the star to the other from this, we note that Glm,1
doesn’t contribute to the flux through a slice of the star which cuts it in half. The only
such contribution arises from the angular terms. We already know that Glm,3 = 0, so
we just need to compute Glm,2. This may be done as described previously, yielding

G1,±1,2 = ∓Le,1
12πr2r2

h

(
(r − rh)2(r + 2rh)δ(r − rh)

2 + (r3 − r3
h)Θ(r − rh)
r

)
. (3.51)

Only the portion of the vector field directed along φ̂ contributes to the flux through
the plane separating the two halves of the star, and this is given by

G±φ = ±
√

3
2π

Le,1
12πr2r2

h

(
(r − rh)2(r + 2rh)δ(r − rh)

2 + (r3 − r3
h)Θ(r − rh)
r

)
, (3.52)

where we have set φ = π/2. Integrating this over the plane of interest then yields

L =
∫ R

0
dr
∫ π/2

0
d(cos θ)r(Gφ −G−φ) = 4

∫ R

0
rGφ = (R− rh)2(R + 2rh)

2
√

6π3/2Rr2
h

Le,1, (3.53)

where R is the stellar radius and L is the total power flowing from one side of the star
to the other as a result of the circulation field. In typical situations, R− rh � R, so

L ≈ Le,1
1
20

(
1− rh

R

)2
. (3.54)

By comparison, the flux due to the curl-free term is given by the incident flux times
the ratio of the solid angle that the plane of interest sweeps as seen from the heating
point, which is roughly 2π/3, to the total solid angle of 4π, so in most cases this
term dominates over the circulation term. One important consequence of Eq. (3.54)
is that as the heat is deposited deeper, the flux which manages to find its way to the
opposing side increases as expected.

Interestingly, this result is independent of a, b. So long as they do not vary
substantially on a spherical shell, this independence should hold. Additionally, note
that the situation in any case is very different from that of an isotropic star, wherein
half of the heating flux is present on each side. This is a result of the fact that
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a spherically symmetric shell of heating cannot alter the flux inside it, while an
anisotropic heating shell can.

It is worth noting two effects which we have not considered here. The first is
the potential for a more complex thermal conductivity structure due to convection,
and the second is that of wind transport/dissipation. In the case of the former,
the key effect will be the potential for significantly greater conductivity gradients
misaligned with the thermal gradient. In the case of the latter, the key effect will be
additional heating terms, manifesting as regions of nonzero ε, even when no heating
is present at those locations. Finally, rotation plays a role in determining how these
complications alter the situation. Estimating the significance of these effects is the
subject of subsequent sections.

3.2 Zero-Divergence Wind Model
Suppose that we insist that the flux divergence be made zero by wind transport. This
represents the opposite limit of the previous section solution. This condition means
that we require

ε = cpTv · (∇ lnT −∇ad∇ ln p) . (3.55)
Recall that cp = γcv and that up to factors of order unity cv = kBT/µ, so

ε = γpv · (∇ lnT −∇ad∇ ln p) . (3.56)

This relation would be precisely correct if we neglected convection in computing F .
This is not how we are treating the heat flux, however, so we need to correct this
relation by subtracting out the convective term. The convective term arises from gas
traveling in a circulatory fashion up and down a pressure gradient. As a result, this
subtraction may be done by requiring v ⊥ ∇p. This is essentially the geostrophic
flow condition. One might object to this requirement by citing Kelvin-Helmholtz
instability, but such processes separate in our treatment to convection and advection,
as in a convective roll. Likewise one might object to this requirement by arguing that
winds can move along pressure gradients in radiative regions. While this is true, such
winds cannot be driven by thermal processes, as the region must, by definition, be
stable against convection. Objections case aside, we impose this requirement, and
the criterion reduces to

ε = γpv ·∇ lnT ∼ Σg
hs
v · êT , (3.57)

where êT is the unit vector along the thermal gradient. The approximate form comes
from noting that if the flux has zero divergence except in the core, then the thermal
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gradient must be purely radial. Now we know that neglecting viscous losses,

ε ≈ Le
2πR2 [1− exp (−Σ/Σh)] , (3.58)

where we are taking the illumination to occur on one side only. As a result,

v · êT ≈
Lehs

2πgΣR2 [1− exp (−Σ/Σh)] . (3.59)

Usually R ∼ 1010cm, hs ∼ 107cm, g ∼ 104cm/s2, Le ∼ 1033erg/s, and Σh = 103g/cm2,
so this has a maximum value of

v · êT ∼ 1012cm/s. (3.60)

This is an absurd value, greater than the speed of light, and indicates a breakdown in
the assumption that the divergence of the flux remains zero. In particular, it arises
from the characteristic scale over which T changes in the absence of a flux divergence
being much greater than the characteristic scale over which ε changes. As the wind
clearly cannot move enough heat to keep the divergence at zero, the temperature
profile will shift to accommodate the shorter length scale.

Evidently the true steady state, if one exists, lies somewhere in between the two
models considered thus far. The star likely adjusts its radial transport to handle
much of the flux divergence, and then sets up some non-radial flux transport, which
then allows the wind to move non-radially to dissipate some of the flux divergence.
As a result, the star must exhibit some anisotropy, but it is possible that below a
certain depth winds succeed in isotropizing the thermal structure. This model will
serve as a template for subsequent analyses.
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4

Review of Fluid Mechanics

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.

– Lewis Fry Richardson

To understand how wind flow works in stars, it is worth reviewing the basic fluid
mechanics involved. In general, fluid mechanics problems are exceedingly difficult to
solve, either analytically or numerically. As a result, we will exploit the fact that such
problems may often be broadly characterized by only a few dimensionless numbers.
This reduces the complexity of the problems, and allows us to reduce many scenarios
to the same mathematics. Before discussing these numbers, however, we must address
a dimensionful property of fluids: viscosity.

4.1 Microscopic Viscosity
Intuitively viscosity is a measure of the resistance of a fluid to shearing. The term
usually refers to a material property, rather than a property of fluid flow. As both
notions are important, viscosity as a material property and viscosity as a property of
fluid flow, we will use "microscopic viscosity" to denote the material property and
"turbulent viscosity" or "effective viscosity" to denote the flow property. The latter
will be discussed at length later in this chapter, while here we will focus on the former.

In this analysis, we take the companion stars of interest to be primarily hydrogen,
with some helium present in small quantities. At temperatures higher than those
in the ionization zone, in the regime where µ = 1

2mp, the Spitzer estimate gives the

49
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microscopic viscosity as1

ν = 5.2× 10−15 T
5/2

ρ ln Λ
cm2

s , (4.1)

where T is made dimensionless by dividing out by K, and likewise for ρ by dividing
out by g/cm3. The quantity ln Λ is given by2

ln Λ =

−17.4 + 1.5 lnT − 0.5 ln ρ T < 1.1× 105K
−12.7 + lnT − 0.5 ln ρ T > 1.1× 105K

, (4.2)

where everything is in the same units as before.
To obtain a broader range of microscopic viscosities, we turn to tables of this

value at various temperatures and pressures3. The results, computed for a mixture
of 85% hydrogen and 15% helium, indicate that ρν is roughly constant, ranging
from 3 × 106g/cm/s to 3 × 107g/cm/s. The tabulated data allows us to compute
ν for temperatures ranging from 3600K up to 105K, and pressures ranging from
103erg/cm3 up to 1011erg/cm3. Between this and the Spitzer estimate, then, we
have covered the entire range of interest for stellar atmospheres except for very low
temperatures in the outer regions of brown dwarfs. These regions, however, are not of
much interest, as the transport phenomena of interest occur much deeper in the star.
Furthermore, unlike the case for opacity, the underlying physics behind microscopic
viscosities is not expected to change significantly at these lower temperatures. Thus
reasonable extensions of the low-temperature viscosity model may be used, with the
understanding that they are only accurate as order-of-magnitude estimates.

Next we consider the viscosity of radiation, which was not included in either the
data table nor the Spitzer estimate. The radiative viscosity is given by4

νrad = aT 4

cκρ
. (4.3)

This is usually much smaller even than the microscopic viscosity of hydrogen. To see
this, we may non-dimensionalize T , κ, and ρ and evaluate the constant factors to find

νrad ≈ 3× 10−5T 4
5 ρ
−1
0 κ−1

0
cm2

s , (4.4)

1Daniel Kagan and J. Craig Wheeler. “The Role of the Magnetorotational Instability in the
Sun”. In: The Astrophysical Journal 787.1 (2014), p. 21. url: http://stacks.iop.org/0004-
637X/787/i=1/a=21.

2Ibid.
3F. N. Edmonds Jr. “The Coefficients of Viscosity and Thermal Conductivity in the Hydrogen

Convection Zone.” In: The Astrophysical Journal 125 (Mar. 1957), p. 535. doi: 10.1086/146327.
4Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,

2012. isbn: 978-3-642-30304-3.

http://stacks.iop.org/0004-637X/787/i=1/a=21
http://stacks.iop.org/0004-637X/787/i=1/a=21
http://dx.doi.org/10.1086/146327
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where factors with subscripts are given numerically by the quantity divided by ten to
the power of the subscript in the C.G.S.K unit system as usual. While this is much
less than the microscopic viscosity over the entire range of tabulated data, at high
temperatures it will overtake the Spitzer data due to a higher power of T appearing
in the numerator.

To compute ν over the entire range of available data, an interpolation code was
written which makes use of both the Spitzer form and the data tables. It returns an
error whenever the data is outside of the range of validity of both, taking the Spitzer
formula to be only valid above the ionization temperature 104.1K. In places where
both sources contained valid data, the tabulated version was used. In addition, it
computes the radiative viscosity and adds it to the viscosity obtained from the other
sources. The radiation merely provides an additional avenue for momentum transport,
and so linear combination is appropriate. The full code may be found in Appendix A.
The output from this code is shown in figure 4.1. Following the trajectories shown in
the one-dimensional modeling chapter, we see that the viscosity is typically between
1cm2/s and 104cm2/s, with higher temperature stars reaching at most 105cm2/s.

The one remaining question needed to determine the viscous microphysics of
interest is that of the impact of magnetic fields. At temperatures where the ionization
fraction is low, the magnetic field by and large does not interact with the gas, and
so at low temperatures the above results are accurate independent of the magnetic
field. The remaining effect of interest then is that of the solar magnetic field on
momentum transport in plasma. Once ionization occurs, the magnetic field can
introduce preferred directions of momentum transport, significantly altering the shear
properties of the medium. This occurs when the thermal gyroradius is less than the
mean free path of the ions. The intuition behind this is that it occurs when the
magnetic field has a chance to order the system in between randomizing collisions.

Detailed calculations of this effect have been done5, with the result that the
anisotropy in the viscosity is of order

t−2
ci ω

−2
ci , (4.5)

where tci is the self-collision time for positive ions and ωci is the gyrofrequency of these
same ions in the magnetic field. Both quantities are to be computed assuming thermal
equilibrium. More specifically, the quantity in Eq. (4.5) gives the approximate ratio of
the visocosity of a velocity gradient perpendicular to the velocity, holding the velocity
perpendicular to the magnetic field, to the viscosity in the absence of a magnetic

5Jr. Lyman Spitzer. Physics of Fully Ionized Gases. Vol. 1. ISBN 978-0-486-44982-1. Dover,
2006.
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Figure 4.1: The vertical axis is log ρ (with ρ measured in g/cm3), the horizontal is
log T (with T measured in K), and the color represents log ν (with ν measured in
cm2/s. White regions are those without data.



4. REVIEW OF FLUID MECHANICS 53

field. If this quantity exceeds unity then the magnetic field may be ignored, and the
anisotropy disappears.

To compute the anisotropy, then, we note that tci is given by the mean free path
of the ions divided by their typical thermal velocities. Thus

tci = λ√
〈v2〉

= ν

〈v2〉
. (4.6)

Note that in the final equality here, ν is the non-magnetic microscopic viscosity. The
thermal gyroradius is given by

rg =
muc

√
〈v2〉

qB
, (4.7)

Thus

ωci =

√
〈v2〉
rg

= qB

muc
. (4.8)

As a result, the anisotropy factor is

1
t2ciω

2
ci

= m2
uc

2〈v2〉2

q2B2ν2 = 9k2
BT

2c2

q2B2ν2 = 9p2µ2c2

ρ2q2B2ν2 . (4.9)

To produce a factor which has the appropriate temperature dependence at low
temperatures, we note that the anisotropy only impacts the ionized portion of the gas.
As a result, we may separate the gas into its ionized and neutral portions, compute
their viscosities, and then add them. The corrected anisotropy factor is then

m−1
p

(
2µ−mp + 2mp − µ

t2ciω
2
ci

)
. (4.10)

As an estimate of the magnitude of the anisotropy factor when µ = mp/2, we may
take typical values of ν to be ∼ ρ−1107g/cm/s, and hence

1
t2ciω

2
ci

∼ 9p2µ2c2

q2B21014 ∼
p2µ2c2

q2B21013 ∼
4× 10−21p2

B2 . (4.11)

where all units have been omitted for clarity. As usual all quantities are in measured
C.G.S.K units. In most stars of interest, g ∼ 104cm/s2, so near the surface this may
be written as

1
t2ciω

2
ci

∼ 4× 10−13Σ2

B2 . (4.12)
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As a quick estimate, suppose we plug in the sun’s magnetic field of ∼ 10−2G. This
yields an anisotropy factor of 4×10−9Σ2. Thus the viscosity is significantly anisotropic
for Σ < 6 × 103g/cm2. The viscosity code in Appendix A is capable of computing
the minimum B field requires to induce significant anisotropy. In convection zones
this is often irrelevant: the convective viscosity far exceeds the molecular viscosity.
In radiative zones, the microscopic viscosity will play a role in determining the
characteristic scale of turbulence6. In cases where the microscopic viscosity does
matter in a regime in which there is magnetically-induced anisotropy, we will hold
the field to be that inside a dipole, aligned with the star’s rotation axis, and so
the microscopic viscosity is just multiplied by the anisotropy factor. The code in
Appendix A accepts an optional argument specifying this factor. In its absence,
isotropy is assumed.

The anisotropy factor is shown for B = 10−2G in figure 4.2 and B = 103G in
figure 4.3. In the first case the anisotropy is minimal for most density-temperature
combinations of interest, while the latter shows significant anisotropy in a wide enough
range of densities and temperatures that most scenarios of interest are covered. The
regions of greatest anisotropy are subject to some numerical noise, resulting from a
breakdown in the assumption that all ionization is hydrogen ionization.

4.2 Reynolds Number
The first of our dimensionless numbers is the Reynolds number, defined as

Re ≡ vl

ν
, (4.13)

where v is a characteristic velocity scale for a shear flow, l is a characteristic length
scale, and ν is the viscosity of the fluid. The precise meaning of ν in this context is
somewhat complex, so we will discuss it further later on. The Reynolds number in
non-stratified flow is the quantity which determines whether or not a flow is shear
turbulent. Barring stabilizing factors which will be discussed below, the flow is
turbulent when

Re > Rec
for some critical Reynolds number Rec. Typical values of this number are of order
103.

6This is a result of our use of the more modern Richardson criterion modified to incorporate the
effect turbulence plays in aiding thermal diffusion.
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Figure 4.2: The vertical axis is log ρ (with ρ measured in g/cm3), the horizontal is
log T (with T measured in K), and the color represents the log of the anisotropy
factor A. White regions are those without data.
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Figure 4.3: The vertical axis is log ρ (with ρ measured in g/cm3), the horizontal is
log T (with T measured in K), and the color represents the log of the anisotropy
factor A. White regions are those without data.
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4.3 Rayleigh Number
In addition to shear instability, it is possible for a fluid to be convectively unstable.
This instability is quantified by the Rayleigh number, defined as

Ra ≡ βgl3∆T
αν

, (4.14)

where β is the thermal expansion coefficient and α is as defined previously. Convective
instability occurs when ∇rad > ∇ad and the Rayleigh number exceeds the critical
Rayleigh number Rac, typically of order 103. The former condition is necessary for
adiabatic expansion to lead to growing buoyant perturbations, while the latter is
necessary for this expansion to not be overcome by viscous dissipation.

We claim that the Rayleigh number is typically so large that whenever the former
condition is satisfied in a star the latter is as well. To begin, we write the Rayleigh
number as

Ra ≈ βgℵ3h3
sT∆ lnT
αν

. (4.15)

Over a scale height, which is roughly what we expect the convection cell size to be,
P changes by a factor of e and, we expect T to change by a multiplicative factor of
similar magnitude. Thus ∆ lnT is of order unity, so

Ra ≈ βgℵ3h3
sT

αν
. (4.16)

Now β is typically of order T−1, equaling

β = 1
V

(
∂V

∂T

)
p

∼ 1
T

so long as the ideal gas law holds. This only fails in the ionization zone, where β will
be somewhat lower. Keeping this in mind, we find

Ra ≈ ξgℵ3h3
s

αν
, (4.17)

where ξ is the dimensionless constant giving the ratio of β to T−1. Typical scale
heights are around 300km, and typical values of g are around 104cm/s2, so

Ra ≈ 3× 1026 ξℵ3

αν
, (4.18)
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with all remaining quantities given in the usual c.g.s.k unit system. Now

α = krad
ρcp

, (4.19)

so
Ra ≈ 3× 1026 ξℵ3ρcp

kradν
. (4.20)

We expect cp to be of order kB/µ ≈ ρ108erg/K/cm3, so

Ra ≈ 2× 1034 ξℵ3

kradν
. (4.21)

Typical values of ℵ are between unity and two. Taking the lower end gives

Ra ≈ 2× 1034 ξ

kradν
. (4.22)

As was argued earlier, the maximum value of ν for the stellar models of interest is
around 105cms, so in a worst case scenario

Ra ≈ 2× 1029 ξ

krad
. (4.23)

Now krad may be computed directly as

krad = 4acT 3

3ρκ , (4.24)

where κ is within a few orders of magnitude of 1cm2/g. Thus

krad = 108T
3
4
ρ1
, (4.25)

where T4 is T/104K and ρ1 is ρcm3/g. It follows that, again in a worst case,

Ra ≈ 2× 1021 ξρ1

T 3
4
. (4.26)

Even supposing that ξ and ρ1 are both quite a few orders of magnitude below unity,
and taking T to be 106K, the Rayleigh number still exceeds its critical value. Thus
we are safe assuming that whenever convection is indicated by the thermal gradient
criterion it occurs.
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4.4 Richardson Number
The next dimensionless number of interest is the Richardson number, defined as

Ri ≡ N2

(dv/dz)2 , (4.27)

where
N2 = g

d ln ρ
dz

(4.28)

defines the Brunt-Vaisala frequency N and dv/dz is the vertical velocity shear. The
Richardson number quantifies the competition between buoyant stabilizing forces and
shear instability. In particular, an oft-cited7 necessary but not sufficient criterion for
instability is that

Ri < Ric ≈ 0.25. (4.29)

There is, however, significant evidence, both experimental and theoretical, against
this criterion8. There are two problems. The first is that turbulence mixes the fluid,
which counteracts the entropic stratification that would otherwise stabilize it. As
a result, the fluid is actually unstable over a wider range of parameter space than
this criterion indicates. The second is that more modern experimental evidence
suggests that even when this mixing is minimal, the critical value should be closer to

7Richard Lyons, A. H. Panopsky, and Sarah Wollaston. “The Critical Richardson Number and
Its Implications for Forecast Problems”. In: Journal of Applied Meteorology 3 (Jan. 1964), pp. 136–
142. url: http://journals.ametsoc.org/doi/pdf/10.1175/1520-0450(1964)003%3C0136:
TCRNAI%3E2.0.CO;2.

8E. Schatzman, J.P. Zahn, and P. Morel. “Shear turbulence beneath the solar tachocline”. In:
Astronomy and Astrophysics (Oct. 2000). eprint: http://arxiv.org/pdf/astro-ph/0010543v1.
pdf; E. C. Itsweire, K. N. Helland, and C. W. Van Atta. “The evolution of grid-generated
turbulence in a stably stratified fluid”. In: Journal of Fluid Mechanics 162 (Jan. 1986), pp. 299–338.
issn: 1469-7645. doi: 10.1017/S0022112086002069. url: http://journals.cambridge.org/
article_S0022112086002069; A. Maeder. “Stellar rotation: Evidence for a large horizontal
turbulence and its effects on evolution”. In: Astronomy and Astrophysics 399.1 (2003), pp. 263–269.
doi: 10.1051/0004-6361:20021731. eprint: http://arxiv.org/abs/astro-ph/0301258. url:
http://dx.doi.org/10.1051/0004- 6361:20021731; Prat, V. and Lignières, F. “Turbulent
transport in radiative zones of stars”. In: Astronomy and Astrophysics 551 (2013), p. L3. doi:
10.1051/0004- 6361/201220577. eprint: http://arxiv.org/abs/1301.4151. url: http:
//dx.doi.org/10.1051/0004-6361/201220577; S. Mathis, A. Palacios, and J.-P. Zahn. “On
shear-induced turbulence in rotating stars”. In: Astronomy and Astrophysics 425.1 (2004), pp. 243–
247. doi: 10.1051/0004-6361:20040279. eprint: http://arxiv.org/abs/astro-ph/0403580.
url: http://dx.doi.org/10.1051/0004-6361:20040279.
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unity than to 0.259. In convection zones this may be remedied by setting the critical
Richardson number to

Ric = max
(

1, 1
Pe

)
, (4.30)

where Pe is the Péclet number, defined in this context as

Pe = vcl

α
(4.31)

and α is the thermal diffusivity. Outside of convective layers, the criterion may
be modified by replacing the Péclet as written above with one computed using
the characteristic velocity and length scale of turbulent eddies.10 In both cases,
this criterion takes into account the action of heat transport to lower buoyant
effects. Notice that this criterion in the non-convecting case presumes the existence
of turbulence from the start, and is primarily making a statement regarding the
characteristic scale of the turbulence. This, in effect, neglects the microscopic viscosity
of the fluid, which is akin to arguing that

ν � v∆z, (4.32)

where v and ∆z are the maximum turbulence speed and size allowed by the modified
Richardson criterion. This condition is satisfied by taking

ν

v∆z ≤
1

Rec
� 1. (4.33)

Should this condition fail, the flow cannot be turbulent anyway via the Reynolds
criterion, as the turbulence velocity and length scale cannot be smaller than those of
the shear which produces it, and so it suffices to require both the Reynolds criterion
and the Richardson criterion, without having an additional condition regarding the
microscopic viscosity.

At this stage it is worth introducing the idea of an effective viscosity. This is
the viscosity that one would measure in a turbulent flow by using the definition of
viscosity as the force per unit area per unit shear across a fluid. A key property of an
effective viscosity, as will be discussed at length in the following sections, is that it
is dependent on the length scale over which the shear occurs. In the context of the
Reynolds criterion, the question of stability becomes one of the effective viscosity of

9V. M. Canuto. “Turbulence in Stars. II. Shear, Stable Stratification, and Radiative Losses”.
In: The Astrophysical Journal 508.2 (1998), p. 767. url: http://stacks.iop.org/0004-
637X/508/i=2/a=767.

10Ibid.

http://stacks.iop.org/0004-637X/508/i=2/a=767
http://stacks.iop.org/0004-637X/508/i=2/a=767
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any non-shear turbulent processes. In the context of the Richardson criterion, what
occurs is the production in any Reynolds-unstable flow of turbulence up to a critical
effective viscosity scale, defined by the criterion, and it is this effective viscosity which
is seen by the large-scale flow. Thus the Richardson criterion is perhaps better viewed
as setting a viscosity scale than making definitive statements about flow stability.

This is not the end of the story of the Richardson criterion, however. The actual
Richardson criterion must account for the fact that in a stratified flow, there is
a difference between the horizontal turbulent viscosity and the vertical turbulent
viscosity. In order to accommodate this, we use as our criterion11:

v∆z
(krad + νh)

N2
T + v∆z

νh
N2
µ <

(
dv

dz

)2

, (4.34)

where v and ∆z are the speed and size of the largest eddies which are isotropic,
νh is the turbulent viscosity for horizontal motions, krad is the thermal diffusivity
due to radiation transport, and NT and Nµ partition the Brunt-Vaisala frequency
into pieces corresponding to the thermal and chemical gradients respectively. This
takes into account all of the effects discussed thus far. We will examine in detail the
computation of this criterion in the section on vertical shear.

4.5 Rossby Number
The next dimensionless number of interest is the Rossby number, which determines
the circumstances under which the Coriolis force has a significant impact on the
motion of a fluid. Given a characteristic speed v and a characteristic length scale x,
the Rossby number is defined as

Ro ≡ v

2xΩ sin θ , (4.35)

where Ω and θ are defined as usual. Note that v is defined in a reference frame
rotating at Ω, as fluid at rest in the rotating frame does not experience a Coriolis
force. When this number is large relative to unity, the Coriolis force is negligible and
so may be neglected. In the opposing limit, the Coriolis force dominates the flow,
and geostrophic balance is likely. When the Rossby number is of order unity, the
Coriolis force must typically be taken into account, but need not be the dominant
effect. We will usually use x = R, such that the Rossby number refers to motion
around the star.

11S. Mathis, A. Palacios, and J.-P. Zahn, op. cit.
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4.6 Mach Number
The final dimensionless number of interest is the Mach number, defined as the ratio
of the flow speed to the fluid’s sound speed. That is,

Ma ≡ v

vs
. (4.36)

The sound speed is generally given as

vs =
√
P

ρ
, (4.37)

where
γ = cp

cv
(4.38)

is the adiabatic index of the fluid. For a monatomic gas outside of the ionization
zone, this is 5/3. Inside the ionization zone, it falls to roughly unity12. From our
perspective, the Mach number is important primarily because for Ma > 1, turbulent
losses become extreme, so we may safely assume that v < vs.

12Donald D. Clayton. Principles of Stellar Evolution and Nucleosynthesis. Vol. 1. ISBN: 978-
0521566315. University of Chicago Press, 1968.
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5

Stability and Turbulence

When I meet God, I am going to ask him two questions: Why relativity?
And why turbulence? I really believe he will have an answer for the first.

– Werner Heisenberg

The key problem of interest in this chapter is that of determining the local flow
patterns that stars may exhibit, with a particular eye to questions of viscous and
turbulent losses as well as flow stability. In the fluid mechanics discussed thus far, only
one kind of instability was considered at a time. This turns out to be insufficiently
general. In the various stellar models under consideration, Σh is sometimes within the
unperturbed convection zone and sometimes not. The latter case may be analyzed by
only considering shear instability, but the former requires understanding how shear
and convective instabilities interact. To understand this, we will consider a model of
shear flow with convection and analyze it in general. We will then proceed to look
at the case of shear flow alone, as the difference in stability criteria between vertical
and horizontal shear is significant there. The next chapter will then take a broader
view of wind in stars, and will piece together a global picture from these local parts.

In analyzing the stability of different kinds of flows in this chapter we will keep
the thin-envelope approximation made in our earlier one-dimensional model. This is
justified by the same reasoning used there, and allows us to assume that the regions of
interest are always thin relative to R. This means that g is a constant in the regions
of interest, and that the curvature of these regions may be neglected. It further tells
us that the pressure in each region is just what is required to hold up the material
above it.

In addition to the above conditions, we take the shear in all cases to be an amount
v0 over a convective mixing length l = ℵhs, where ℵ > 1 is of order unity. When
convection occurs, we will take its eddy velocity to be vc.

65
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5.1 Sheared Convection
In the analysis to follow, we work within a single convection cell of linear dimension
l. Additionally, we take the forces resulting from microscopic viscosity to be small
relative to those resulting from the buoyancy which drives convection. This is justified
by our argument in the previous chapter that in stars the Rayleigh number is large
relative to its critical value.

Note that since, by assumption, the flow is convectively unstable, the Richardson
criterion is automatically satisfied: N2 < 0. There are several limits which are
easily analyzed. First, suppose that v0 � vc, and that Re > Rec. In this case, the
convection acts as a perturbation to the shear turbulence: existing eddies due to the
shear suffice to carry the convective heat flux with only minor additional anisotropy.
This scenario will be stable then against convective turbulence, as the shear will carry
the needed flux, but will be unstable against shear turbulence. On the other hand, if
vc � v0 and Re < Rec, the shear acts as a perturbation to the convective turbulence:
the convective eddies suffice to carry the necessary momentum flux, again with only
minor additional anisotropy. This scenario is thus stable against shear turbulence yet
unstable against convective turbulence.

Another straightforward limit is that in which Re < Rec and v0 � vc. In this
case, shear due to v0 is insufficient on its own to cause an instability: the viscosity
is high enough that the turbulence is dissipated as heat faster than it is created.
If the flow is stable against shear turbulence, however, the thermal flux must be
carried by convection. As vc � v0, the convection appears as a perturbation against
the background shear and so the flow will remain shear-stable with a background
convective instability. The convection will increase the effective viscosity of the flow,
but this only serves to further reduce Re and hence further stabilize the shear flow.
Thus in this case the flow is shear stable and convectively turbulent. This flow pattern
is like that known in meteorological work as a longitudinal roll1.

Likewise, in the case where Re� Rec and vc � v0, there will be shear turbulence
which provides a perturbative background for convective turbulence. That is, the
convection is necessary and proceeds effectively unimpeded, yet the shear flow ex-
periences turbulence nonetheless. Each kind of turbulence will cause an increased

1S. Mergui, X. Nicolas, and S. Hirata. “Sidewall and thermal boundary condition effects on the
evolution of longitudinal rolls in Rayleigh-Bénard-Poiseuille convection”. In: Physics of Fluids (1994-
present) 23.8, 084101 (2011), pages. doi: http://dx.doi.org/10.1063/1.3605698. url: http:
//scitation.aip.org/content/aip/journal/pof2/23/8/10.1063/1.3605698; R. A. Brown.
“Longitudinal instabilities and secondary flows in the planetary boundary layer: A review”. In:
Reviews of Geophysics 18.3 (1980), pp. 683–697. issn: 1944-9208. doi: 10.1029/RG018i003p00683.
url: http://dx.doi.org/10.1029/RG018i003p00683.

http://dx.doi.org/http://dx.doi.org/10.1063/1.3605698
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effective viscosity seen by the other, and so here, by requiring Re to be large, we
really mean the effective Re taking into account the convective viscosity.

The four cases considered so far characterize the extreme possibilities. The
remaining scenarios lie in the interior of the (Re, vc/v0) space. Starting with vc � v0
and Re� Rec and moving towards increasing Re, we see that the flow must transition
from shear stable and convectively unstable to shear unstable and convectively stable.
If we move instead in the direction of increasing vc, there is no such transition, as
the kind of instabilities remain the same in the low Re limit. On the other hand, in
the high Re limit, moving from low vc to high vc causes a convectively stable flow
to become convectively unstable. We expect then a rich set of transitions in the
intermediate values of Re and v0/vc.

To fill in our understanding of this space, the scaling forms of different instabilities
will be useful. These have historically been understood as energy transport relations in
momentum-space, though they may also be viewed as a result of the application of the
Momentum-Shell Renormalization Group methodology to fluid mechanics2. In this
context, the RG flow amounts to an increase in viscosity with length scale, conditioned
upon the existence of turbulence. The Kolmorogov relation plays the role of a trivial
fixed point3, as expected given its assumption of isotropy and scale-invariance.

Regardless of the interpretation, the key differences between convective and shear
instabilities lie in how energy is transferred to different length scales. In a shear
instability, energy begins on long scales and is transferred to short scales, where it is
eventually dissipated. In a convective stability, on the other hand, the energy begins
on all scales and is merely redistributed. This difference results in a difference in
the scaling form of the resultant eddy velocity. Furthermore within a convective
instability the scaling form varies as a function of length scale. Specifically, if εµ is the
rate of viscous energy dissipation per unit mass, εT is the rate of thermal dissipation

2Victor Yakhot and StevenA. Orszag. “Renormalization group analysis of turbulence. I. Basic
theory”. English. In: Journal of Scientific Computing 1.1 (1986), pp. 3–51. issn: 0885-7474.
doi: 10.1007/BF01061452. url: http://dx.doi.org/10.1007/BF01061452; Ye Zhou, David
W. McComb, and George Vahala. “Renormalization Group (RG) in Turbulence: Historical and
Comparative Perspective”. In: (Aug. 1997). url: http://ntrs.nasa.gov/archive/nasa/casi.
ntrs.nasa.gov/19970028852.pdf; Dirk Barbi and Gernot Munster. Renormalization Group
Analysis of Turbulent Hydrodynamics. May 2013. url: http://arxiv.org/abs/1012.0461;
L. Ts. Adzhemyan et al. “Renormalization-group approach to the stochastic Navier Stokes equation:
Two-loop approximation”. In: International Journal of Modern Physics B 17.10 (2003), pp. 2137–
2170. doi: 10.1142/S0217979203018193. eprint: http://www.worldscientific.com/doi/pdf/
10.1142/S0217979203018193. url: http://www.worldscientific.com/doi/abs/10.1142/
S0217979203018193.

3Yakhot and Orszag, op. cit.; Barbi and Munster, op. cit.
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per unit mass, and r is the length scale of interest, then4

vconvectivesmall ∼ (εµr)1/3,

vconvectivelong ∼ (ε2Tβ4g4r3)1/5,

vshear ∼ (εµr)1/3,

where β is the thermal expansion coefficient. For an ideal gas, β = T−1. The crossover
between the two behaviors for convection typically occurs at the Bolgiano length,
given by5

LB = ε5/4µ ε
−3/4
T (βg)−3/2. (5.1)

That is, the small-scaling is expected for r < LB and the long scaling for r > LB.
Now the scaling relations may also be written in terms of macroscopic quantities as

vconvectivesmall ∼ vc

(
LB
l

)3/5 ( r

LB

)1/3
,

vconvectivelong ∼ vc

(
r

l

)3/5
,

vshear ∼ v0

(
r

l

)1/3
.

Note that the scaling forms are only precise when the length scale is much smaller
than any large-scale features of the flow. The primary large-scale flow length scale in

4Emily S. C. Ching et al. “Scaling behavior in turbulent Rayleigh-Bénard convection revealed
by conditional structure functions”. In: Phys. Rev. E 87 (1 Jan. 2013), p. 013005. doi: 10.
1103/PhysRevE.87.013005. url: http://link.aps.org/doi/10.1103/PhysRevE.87.013005;
F Rincon. Theories of convection and the spectrum of turbulence in the solar photosphere. Tech. rep.
astro-ph/0611842. Contribution to the proceedings : 239 Convection in Astrophysics, International
Astronomical Union., held 21-25 August, 2006 in Prague, Czech Republic. Nov. 2006. eprint:
http://arxiv.org/pdf/astro-ph/0611842.pdf. url: http://cds.cern.ch/record/1001690/
files/0611842.pdf; Dan Škandera, Angela Busse, and Wolf-Christian Müller. Scaling Properties
of Convective Turbulence. English. Ed. by Siegfried Wagner et al. Springer Berlin Heidelberg,
2009, pp. 387–396. isbn: 978-3-540-69181-5. doi: 10.1007/978- 3- 540- 69182- 2_31. url:
http://dx.doi.org/10.1007/978-3-540-69182-2_31; Detlef Lohse and Ke-Qing Xia. “Small-
Scale Properties of Turbulent Rayleigh-Benard Convection”. English. In: Annual Review Of Fluid
Mechanics. Annual Review of Fluid Mechanics 42 (2010), pp. 335–364. issn: 0066-4189. doi:
10.1146/annurev.fluid.010908.165152; G Boffetta et al. Kolmogorov and Bolgiano scaling in
thermal convection: the case of Rayleigh-Taylor turbulence. Tech. rep. arXiv:1101.5917. Comments:
4 pages, 5 figures. Feb. 2011. url: http://arxiv.org/pdf/1101.5917.pdf.

5Ching et al., op. cit.; Lohse and Xia, op. cit.; Boffetta et al., op. cit.
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this problem is the pressure scale height, or equivalently the size of the convection
cell, so use of these relations in the vicinity of the convection scale should be treated
with some caution. Having said that, this warning is most applicable in cases with
fixed boundary conditions constraining the flow. In stars, where the boundaries are
typically free and the fluid properties are continuous, the scale at which boundary
effects on the scaling must be considered is somewhat larger relative to l. As a result
the line between large-scale flow and turbulent scaling is somewhat more blurred
than usual, so the use of these equations in the vicinity of a scale or convective height
is safer than might otherwise be expected.

As a rough model, then, we take the kind of turbulence present at any length scale
to be the kind with the greatest eddy velocity at that scale. In computing stability
criteria, we use the effective viscosity due to the effect we are not considering. This
model is convenient in that it provides a way to deal continuously with the empty
sections in the table classifying flow phases: effectively as one or the other parameter
changes the length scales are shuffled around to determine the flow properties.

Within the context of this model, and in the case where both types of turbulence
are present, there are three possibilities. Either the shear velocity curve intersects
the long convective velocity curve above r = l, or the shear curve falls below both
convective curves, or it intersects the convection curves below r = l. In the first
case, shear turbulence dominates and the convective turbulence manifests as a slight
anisotropy in the shear turbulent flow. In the second case, convection dominates
and the shear turbulence manifests as a slight anisotropy in the convection. In
the final case, convective turbulence dominates on long scales, shear turbulence on
intermediate scales, and convective turbulence on shorter scales. Each of these cases
may be analyzed separately for stability.

5.1.1 Shear-dominated flow
In the first case, the Reynold’s number is given by

Re = v0l

νeff
. (5.2)

Now the tricky part here is determining a choice of νeff . It is tempting to declare
the convective eddies irrelevant, as they are subdominant on all length scales. The
problem with this is that stability is determined in the absence of the instability of
interest. Thus we take the effective viscosity here to be that due to the convective
eddies, and hence

Re = v0l

vcl
= v0

vc
. (5.3)
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Furthermore, by virtue of us considering this case we must have

v0

(
r

l

) 1
3
> vc

(
r

l

)3/5
∀r < l→ v0

vc
>
(
r

l

) 4
15
∀r < l→ v0

vc
> 1. (5.4)

As a result, for turbulent flow to arise from shearing we must have v0 > Recvc, which
trivially satisfies the condition that v0 > vc because Rec ≈ 103. The full criterion for
this case to arise, then, is

v0

vc
> Rec. (5.5)

The dissipation in this case is

Power
Area = Fv0

Area = v0νeffρ
dv

dz
= v2

0νeff
ρ

l
. (5.6)

Once more we must pick an effective viscosity. Here, however, the effective viscosity
is that due to the turbulence itself. Using the simple Prandtl model, this is given by

νeff = lv0. (5.7)

As a result,
Power
Area = v0νeffρ

dv

dz
= ρv3

0. (5.8)

As the energy density of the wind is ρv2
0, the time over which it dissipates in the

absence of a driving force is l/v0 and the distance it travels is l.
Note that in this case the heat flux is entirely carried by the turbulent motion the

shear generates. This is much faster than the convective flux, and so the associated
temperature gradient will be lower. This will cause the layer to become convectively
stable, leaving shear instability as the only remaining form of turbulence. Of course,
should the turbulence stop the layer will become convectively unstable on the cooling
timescale of the layer, though for this to happen the shear velocity must slow down
tremendously to accommodate the much lower molecular-scale viscosity.

Finally, note that stability of shear flow on one length scale does not guarantee
stability on another, and likewise with instability. In particular, the numerator of the
Reynold’s number scales as r2, while the denominator scales as r1+ε, ε ∈

{
1
3 ,

3
5

}
. As a

result, Re ∼ rε
′
, ε′ ∈

{
2
3 ,

2
5

}
.

As ε′ > 0, it is possible for a shear flow which is unstable on long length scales
to stabilize on short ones. This could occur if the larger scale shear flow breaks up
into bands smaller than a pressure height, each of which is internally laminar with a
turbulent region in between. The bulk convective motion is then restricted to work
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on this new scale. One might expect vc to drop as a result, as the gas packets have
less time to accelerate before turning around. More specifically, one would expect
vc ∝

√
l. This decrease, however, will lower the flux that the convection can carry,

leading to an increase in the thermal gradient across the region. The flux carried
goes as

Fc ∝ cpvc
dT

dz
∝ ρvc

dT

dz
∝ ρl

dT

dz

√√√√(dT
dz

)
−
(
dT

dz

)
ad

. (5.9)

As a result, decreasing l results in a necessary increase of the temperature gradient
to carry the same flux. Now recall that

dT

dz
= Td lnT
Pd lnP

dP

dz
= −gρT

P
∇ = −gµ

kB
∇, (5.10)

so
Fc ∝ l∇

√
∇−∇ad. (5.11)

The corresponding differential form is

dFc ∝ ∇
√
∇−∇addl + l

3∇− 2∇ad

2
√
∇−∇ad

d∇. (5.12)

Setting this to zero yields
d∇
dl

= 2∇(∇−∇ad)
l(2∇ad − 3∇) . (5.13)

This is a negative quantity, as ∇ ≈ ∇ad, so decreasing l increases ∇ as expected.
Recalling that

vc ∝ l
√
∇−∇ad, (5.14)

we find
dvc
dl
∝
√
∇−∇ad

(
1 + ∇

2∇ad − 3∇

)
=
√
∇−∇ad

(
1 + 1

2∇ad∇ − 3

)
. (5.15)

In general we expect ∇ > ∇ad and ∇ ≈ ∇ad in a convection zone, so we expect
∇ad/∇ = 1− δ for small positive δ. Thus

dvc
dl
∝
√
∇−∇ad

(
1 + 1
−1− 2δ

)
≈ 2δ

√
∇−∇ad ≈ 2δ3/2. (5.16)

This quantity is positive, so vc decreases as the length scale drops. This raises the
Reynold’s number for the flow and destabilizes it, so we expect the flow to actually
be unstable on all length scales despite the fact that ε′ = 2

3 . The effective viscosity
will be similar to the general case of shear turbulent flow.



5. STABILITY AND TURBULENCE 72

5.1.2 Convection-dominated flow
In the second case, convection dominates on all length scales. The instability criterion
for convective flow is that

Ra ≡ βgl3∆T
αν

> Rac. (5.17)

Now recall that
β ≡ ∂ ln V

∂T
|P . (5.18)

We expect that at fixed pressure, increasing the temperature of a gas always increases
its volume, even when ionization effects are present6. In the ionization zone this may
be a relatively small increase due to the fact that increasing T there leads primarily
to an increase in ionization, and hence to a decrease in µ which partially offsets the
decrease in P . Without going into detail in analyzing the equation of state there
is not much more that can be said, so we simply remark that β will typically be a
number of order T−1. As ∆T is of order T on a scale height, these two will roughly
cancel, leaving

gl3

αν
> Rac. (5.19)

The viscosity here once more should not be the molecular viscosity, but rather the
turbulent viscosity due to the shear flow in the absence of convection. This viscosity
is given on the scale of interest by

ν = lv0, (5.20)

so
gl2

αv0
> Rac. (5.21)

Now the thermal diffusivity α will be dominated by the shear turbulence, and so is
roughly equal to lv0. As a result,

gl

v2
0
> Rac. (5.22)

This is the necessary criterion for convection to dominate over an otherwise shear-
turbulent flow.

6The fact that this does not hold for solids is a result of the global symmetry changes which can
occur in phase transitions.
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Given that this is the case, we also know that

vshear ∼ v0

(
r

l

)1/3
< vconvectivesmall ∼ vc

(
LB
l

)3/5 ( r

LB

)1/3
, (5.23)

and hence
v0

vc
<
(
LB
l

)3/5 ( l

LB

)1/3

=
(
LB
l

)4/15
. (5.24)

Now LB is generally a small length scale, much smaller than l, such that the
regime ’visible’ to the turbulence has no externally imposed length-scale. As a result,
we require

vc � v0. (5.25)
In this case the dissipation of the shear is given by the convective viscosity, which
serves to transport momentum efficiently around the region. Thus

Power
Area = Fv

Area = v0νeffρ
dv

dz
= v2

0νeff
ρ

l
= v2

0vcl
ρ

z0
= vc

(
ρv2

0

)
. (5.26)

We recognize the final quantity in parentheses as the energy density of the wind. The
time the wind may travel before running out of energy is then this divided by the
volumetric power loss, and so is l/vc. As vc � v0 we expect then that the wind loses
energy comparable to what it carries over a distance much shorter than l.

5.1.3 Mixed shear-convective flow
In this case, the convective and shear velocities are such that

vc > v0, (5.27)

v0

(
r

l

)1/3
= vc

(
r

l

)3/5
, r > LB. (5.28)

This implies that

1 > v0

vc
>
(
LB
l

) 4
15
. (5.29)

A result of this is that the system is convective on long scales and experiences shear
turbulence on short scales. The length scale of the transition is given by

rcrit = l
(
v0

vc

) 15
4

(5.30)
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In order for the shear to be unstable below this length scale, we require as before

Re =

(
v0
l

)
rcrit

vc
(
rcrit
l

) 3
5

= v0

vc

(
rcrit
l

) 2
5
> Rec →

(
v0

vc

) 5
2
> Rec (5.31)

We therefore have
1 > v0

vc
> Re

2
5
c . (5.32)

As Rec ∼ 103, this is a contradiction, so it appears that this crossover behavior cannot
happen. This could just be a result of one of our assumptions being too strong,
however: we have taken the onset of shear turbulence to occur precisely at the point
where, were it to happen, it would be dominant over convective turbulence. The
necessary assumption, however, is only that it occurs below the scale at which it
takes over and above the scale of LB. Thus the criterion should be

rcrit < l
(
v0

vc

) 15
4
→ rcrit = ξl

(
v0

vc

) 15
4
, ξ ≤ 1 (5.33)

Re =

(
v0
l

)
rcrit

vc
(
rcrit
l

) 3
5

= v0

vc

(
rcrit
l

) 2
5
> Rec → ξ

2
5

(
v0

vc

) 5
2
> Rec (5.34)

∴ ξ > Re5/2
c

(
v0

vc

)−25/4
→ rcrit = l

(
Rec

vc
v0

)5/2
, (5.35)

with the condition that the crossover behavior occurs only when

rcrit ≥ LB, 1 ≥ ξ > Re5/2
c

(
vc
v0

)25/4
. (5.36)

Using Rec ∼ 103 we find roughly

1 ≥ ξ > 10
(
vc
v0

)25/4
. (5.37)

Given that vc > v0 we find that the above is a contradiction, and hence that the
crossover behavior cannot happen. This confirms the conclusion from our earlier,
somewhat simpler analysis.
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5.2 Non-Convective Shear
Consider now the regime of shear flow in the absence of convection. Let the vertical
shear be v0 across a scale height, and let the horizontal shear be vx across a distance
x.

Suppose first that the flow is shear-unstable. This is a common state of affairs in
the radiative zone7, mainly due to the absence of a large turbulent viscosity. Recall
that the Richardson criterion is

v∆z
(α + νh)

N2
T + v∆z

νh
N2
µ <

(
dv

dz

)2

, (5.38)

where v and ∆z are the speed and size of the largest eddies which are isotropic, νh is
the turbulent viscosity for horizontal motions, α is the thermal diffusivity, and NT and
Nµ partition the Brunt-Vaisala frequency into pieces corresponding to the thermal
and chemical gradients respectively. Using the usual approximation of derivatives as
quotients and rearranging terms gives

1
(α + νh)

N2
T + 1

νh
N2
µ <

1
v∆z

(
v0

hs

)2
. (5.39)

The frequency components may be computed as8

N2
T = g

hs
(∇ad −∇)

(
∂ ln ρ
∂ lnT

)
p,µ

= g

hs
(∇ad −∇) (5.40)

and
N2
µ = g

hs

(
∂ ln ρ
∂ lnµ

)
p,T

(
d lnµ
d ln p

)
= g

hs

(
d lnµ
d ln p

)
. (5.41)

Note that the derivatives involving µ here are compositional derivatives, taken ignoring
ionization effects. As we are generally neglecting compositional effects, we may just
set N2

µ = 0.
7S. Mathis, A. Palacios, and J.-P. Zahn. “On shear-induced turbulence in rotating stars”.

In: Astronomy and Astrophysics 425.1 (2004), pp. 243–247. doi: 10.1051/0004-6361:20040279.
eprint: http://arxiv.org/abs/astro- ph/0403580. url: http://dx.doi.org/10.1051/
0004-6361:20040279; A. Maeder. “Stellar rotation: Evidence for a large horizontal turbulence
and its effects on evolution”. In: Astronomy and Astrophysics 399.1 (2003), pp. 263–269. doi:
10.1051/0004- 6361:20021731. eprint: http://arxiv.org/abs/astro- ph/0301258. url:
http://dx.doi.org/10.1051/0004-6361:20021731.

8V. M. Canuto. “Turbulence in Stars. II. Shear, Stable Stratification, and Radiative Losses”.
In: The Astrophysical Journal 508.2 (1998), p. 767. url: http://stacks.iop.org/0004-
637X/508/i=2/a=767.

http://dx.doi.org/10.1051/0004-6361:20040279
http://arxiv.org/abs/astro-ph/0403580
http://dx.doi.org/10.1051/0004-6361:20040279
http://dx.doi.org/10.1051/0004-6361:20040279
http://dx.doi.org/10.1051/0004-6361:20021731
http://arxiv.org/abs/astro-ph/0301258
http://dx.doi.org/10.1051/0004-6361:20021731
http://stacks.iop.org/0004-637X/508/i=2/a=767
http://stacks.iop.org/0004-637X/508/i=2/a=767
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Putting all of this in the Richardson criterion yields
(∇ad −∇)
(α + νh)

<
hs

gv∆z

(
v0

l

)2
. (5.42)

The vertical viscosity, νv may be viewed as set by saturating this criterion with v∆z,
as this sets the size of the largest isotropic eddies. In the context of our previous
scaling arguments this may be viewed as one of the fixed points of the renormalization
process. Thus,

νv = hsv
2
0

gl2
α + νh
∇ad −∇

. (5.43)

The interpretation of this result is somewhat subtle, and hence worth examining
in detail. Suppose first that a flow has a velocity shear which makes it Reynolds
unstable in both the vertical and horizontal directions. The Richardson criterion
as stated indicates that there will be turbulence, but that the vertical action of the
turbulence will be limited in its viscosity by the requirement that the criterion hold.

Now suppose that the shear is insufficient make the system unstable vertically in
the Reynolds sense, but sufficient to make it unstable horizontally in the same sense.
The vertical viscosity will then be the maximum of the turbulent viscosity again from
the Richardson criterion and the microscopic viscosity. Here the Richardson criterion
plays the role of suppressing the vertical extent of the turbulent eddies created by
the horizontal shear.

Now if the horizontal shear is insufficient to make the system Reynolds unstable
but the vertical shear is, the eddies will be dominated by the vertical shear. The
anisotropy which forced us to consider the horizontal viscosity separately from the
vertical value is not relevant in this case, as horizontally-generated turbulence must
fight the buoyant effects in one direction and not in the other, while vertically
generated turbulence is from the start fighting these effects. Setting νh = νv yields
then

νh = αv2
0

N2
T l

2 . (5.44)

If neither shear suffices to make the system Reynolds unstable, then the viscosity
in both directions is just the microscopic viscosity.

As a final note, whenever the horizontal viscosity is not simply the microscopic
value, we need to specify it to close the equation specifying the vertical viscosity.
This is done by letting

νh = vhx, (5.45)
though it is left to the specific physical circumstances to determine x and vh. We will
address this question as it arises.
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6

Global Wind Patterns

More is different.
– P.W. Anderson

In the previous chapter we discussed notions of local stability in an attempt to
determine the properties of winds on length scales of order l and below. We now turn
to length scales of order R to determine the global flow pattern. We will use as our
building blocks the flow patterns at scales of order l.

6.1 Turbulent Zonal Flow
It has long been known that the gas giant planets in our own solar system organize
their winds, at least on the surface, into zonal jets. These jetstreams are both
stable against perturbations with spherical harmonic number m 6= 0 and exhibit
a characteristic energy scaling in the total spherical harmonic number n, namely
as n−51. Note that m and n are defined as in the spherical harmonic Y m

n , such
that −n ≤ m ≤ n. This phenomenon was first explained by Peter Rhines2 in the

1Boris Galperin, Semion Sukoriansky, and Huei-Ping Huang. “Universal n-5 spectrum of zonal
flows on giant planets”. In: Physics of Fluids (1994-present) 13.6 (2001), pp. 1545–1548. doi:
http://dx.doi.org/10.1063/1.1373684. url: http://scitation.aip.org/content/aip/
journal/pof2/13/6/10.1063/1.1373684; Semion Sukoriansky, Boris Galperin, and Nadejda
Dikovskaya. “Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere and Some
Basic Features of Atmospheric Circulation on Giant Planets”. In: Phys. Rev. Lett. 89 (12 Aug.
2002), p. 124501. doi: 10.1103/PhysRevLett.89.124501. url: http://link.aps.org/doi/10.
1103/PhysRevLett.89.124501.

2Peter B. Rhines. “Waves and turbulence on a beta-plane”. In: Journal of Fluid Mechanics
69 (03 June 1975), pp. 417–443. issn: 1469-7645. doi: 10.1017/S0022112075001504. url:
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http://dx.doi.org/http://dx.doi.org/10.1063/1.1373684
http://scitation.aip.org/content/aip/journal/pof2/13/6/10.1063/1.1373684
http://scitation.aip.org/content/aip/journal/pof2/13/6/10.1063/1.1373684
http://dx.doi.org/10.1103/PhysRevLett.89.124501
http://link.aps.org/doi/10.1103/PhysRevLett.89.124501
http://link.aps.org/doi/10.1103/PhysRevLett.89.124501
http://dx.doi.org/10.1017/S0022112075001504
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paper which established the Rhines arrest of the inverse energy cascade characterizing
Kolmogorov turbulence. This has been investigated in a variety of contexts, ranging
from experimental3 to simulational4, and has been found to be a universal property
of quasi two-dimensional turbulence on a rotating sphere. The arrest is, contrary
to the original claims by Rhines, not quite a halting of the cascade. Rather, in the
absence of friction, the β effect merely slows the cascade of energy to longer length
scales. Frictional effects have been found5 to be responsible for the actual halting of
the energy flow. The properties of the Rhines spectrum, as well as the conditions
under which it arises, are the subject of this section.

The Rhines wavenumber is defined as6

kR ≡
√

Ω
Rv0

, (6.1)

and the β-effect wavenumber is given by

kβ ≡
(

Ω3

R3ε

)1/5

, (6.2)

where ε is the energy input per unit mass into the system. The driving force is
typically assumed to be present either at all length scales, or just at the smallest
length scales. Historically there has been some uncertainty as to which of kR and kβ
http://journals.cambridge.org/article_S0022112075001504.

3J.M. Nguyen Duc, Ph. Caperan, and J. Sommeria. “An Experimental Study of the Inverse
Cascade of Energy in Two-Dimensional Turbulence”. English. In: Advances in Turbulence. Ed. by
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actually controls zonal flows, but this is actually a misguided question, for there is
another quantity which plays a significant role. This is the frictional wavenumber,
given by

kfr ≡ (3Ck)3/2
(
λ3

ε

)1/2

, (6.3)

where Ck is a constant, roughly equal to 67, and

λ ≡ d lnE
dt

, (6.4)

with E being the specific kinetic energy of the wind and the time derivative being
taken assuming no power input into E. It is actually the combination of the frictional,
Rhines, and β effect wavenumbers which controls the properties of zonal flows8.

The Rhines cascade is then understood in the following way. Energy is injected
at very short length scales (large k). Energy present at the length scale set by kβ
or above (k < kβ) proceeds to march to longer length scales in the inverse cascade.
This process halts when the energy reaches kfr, for there the energy is transported to
k > kβ and hence transformed into heat. As a result, if kβ > kfr, we expect energy
to pile-up near kfr. It can be shown that the pile-up actually occurs at kR, which
is proportional in the steady-state to kfr with proportionality constant quite close
to unity9. Due to anisotropy in the cascade, this energy preferentially piles up in
the m = 0, n = Rkfr mode, leading to jetstreams following lines of constant latitude
circling the star. On the other hand, if kβ < kfr, the inverse cascade cannot proceed,
for all of the modes which would undergo it have lost their energy to friction. In this
case, Kolmogorov-style turbulence dominates at all scales.

There are two reasons that we are careful to make a distinction between kR and
kfr despite their general steady-state interchangeability. The first is that physically,
the distinction reveals that the underlying cause of the arrest of the inverse cascade
lies with friction, rather than Rossby wave instability10. The second is that while
they are close in the steady-state, the transient case with ε making a sudden change
and then remaining constant reveals that they are not always the same. In particular,
upon making a change to the driving force, it takes some time for the velocity profile
to adapt. During this time, kR and kfr will disagree quite strongly, for the former

7Ibid.
8Idem, “Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere and Some

Basic Features of Atmospheric Circulation on Giant Planets”; Sukoriansky, Dikovskaya, and Galperin,
op. cit.

9Idem, “On the Arrest of Inverse Energy Cascade and the Rhines Scale”.
10Ibid.
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tracks the velocity profile while the latter tracks the driving force. The two come
to terms on timescales of order λ−1, and so on timescales shorter than these the
number of bands, determined by kR, may deviate significantly from the steady-state
value suggested by kfr11. Generally, this manifests as kR beginning very large and
then shrinking to assume the proper proportionality with kfr, at which point the
final number of bands is achieved. In all problems of interest, we will verify that the
relevant transient timescales are greater than λ−1, and hence that we may neglect
this effect.

In addition to being careful about timescales, we must also be cautious regarding
dimensionality. A key assumption underlying the Rhines cascade is that the flow
is quasi-two-dimensional. This assumption is valid in any system with significant
pressure stratification, such that we do not expect winds which go significantly against
the pressure gradient. To state this formally, suppose that we follow the path of some
fluid as it performs a closed loop around the star. Let the mean pressure of the fluid
along the loop be P0. Let ∆s be the maximum distance between the path of the fluid
and the isobaric surface at P0. We require then that

∆s� R, (6.5)

such that the deviations are not relevant on the global scale. Note that we have
implicitly treated the flow as occurring on top of an averaged flow background in
speaking of isobaric surfaces. This is the usual way to examine fluctuations in a
renormalized theory, but it can lead to incorrect conclusions when not kept in mind.

Now we may estimate ∆s as

∆s ≈ ρv2
0

|∇P |
= l

ρv2
0

P
= lγ

v2
0
v2
s

. (6.6)

As l� R, γ is of order unity, and v0 < vs, the last of these coming from the immense
shock losses associated with supersonic flow, we find that the criterion in Eq. (6.5)
will always be satisfied. Thus it is only the transient criterion we ever need check.

6.2 Alternative Patterns
In the case where kβ < kfr, and in the presence of turbulence, there is no energy
available at the modes which may contribute to the Rhines cascade. As a result,
no pile-up of energy occurs at kR. Additionally, the lack of an anisotropic cascade

11Ibid.
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in momentum-space means that the turbulence ought to be isotropic except on the
largest scales, where the pattern of flow is determined by the driving force. Likewise,
if there is no turbulence, the flow is just determined by the driving and boundary
conditions at length scales of order R.

Given that we are interested in cases where a star is being heated on one side
but not the other, we expect that the tendency will be to have wind flow in the φ̂
direction, driven by a temperature differential. Precisely what happens is determined
by the Rossby number, which supports two distinct limits. For Ro� 1, taking the
length scale to be R, the Coriolis force is negligible on the scale of the star, and so
the wind can simply flow around along φ̂. On the other hand, if Ro� 1, once more
taking the length scale to be R, the Coriolis force is important, and will tend to wrap
the wind into hurricanes. If the flow is turbulent, we will refer to these as Kolmogorov
hurricanes, for then they support the familiar structure of nested vortices on many
length scales.

6.2.1 Large Rossby Number
When the Rossby number is large, the wind moves in an essentially ballistic manner.
As we have argued in discussing the Rhines scale, the flow may be considered to
be quasi-two-dimensional, as we take the wind to move along isobars. Note that in
this limit the rotation of the star is largely irrelevant. As a result, the system is
axisymmetric about the line connecting the pulsar and the companion. In analyzing
this case, then, we eschew our standard conventions for ẑ and instead take ẑ to lie
along this line. The angular coordinates θ and φ are then redefined accordingly, so vθ
is now the wind speed from one side of the star to the other, while vφ measures the
wind speed along the symmetric direction.

Suppose that the star has some temperature differential ∆T between the day and
night sides12. Then in moving around the star, the wind acts as a heat engine. The
specific power it moves is given by

ε′ = cpv ·∇T. (6.7)

Now the rate at which the wind may extract work from this process is just the heat
engine efficiency multiplied by the specific power. Using the endoreversible heat
engine efficiency, a common approximation used in place of the maximal Carnot

12This is equivalent to speaking about the amplitude of the first nontrivial spherical harmonic.
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efficiency for real-world systems, we find that

Ẇ =
1−

√
1− ∆T

T

 (cpv ·∇T ) ≈ ∆T
2T (cpv ·∇T ) , (6.8)

and so approximating the gradient yields

Ẇ = cpvθ∆T 2

2πRT = v2
svθ

2πR

(
∆T
T

)2 (
kB
cvµ

)
, (6.9)

where the final term on the right is 3/2 for an ideal gas and of order unity generally.
The intuitive picture here is that the wind moves to the hot side of the star, picks up
heat, and then moves to the cold side to release it. It then moves back to the hot
side to warm up again, and the process repeats.

There are a variety of structures that the global flow could take on. One would
simply be to set vθ to some uniform nonzero value. Given that there is nothing
driving the flow in the φ̂ direction, and no spontaneous symmetry breaking, we may
then set vφ = 0 up to turbulent corrections. This has the disadvantage of causing a
net mass flux across the star. This could be remedied by setting vθ to some value
which varies as a periodic function of φ, spontaneously breaking the axisymmetry.
There is, however, no physical process giving the φ scale for this symmetry breaking.
Additionally, this solution leads to a singularity in the continuity equation near the
poles, which is somewhat harder to remove.

There are two natural ways to correct the problems uncovered in the previous
examples. The first would be to make use of Hadley cells. These preserve axisymmetry
and require no additional length scale. They respect the isobaric nature of the flow
up to corrections of order hs13, but have the advantage that there is no longer a
singularity in the continuity equation. The other possibility is to assume once more
circumferential transport. The axis along which the the transport aligns would be
set by some combination of the weak residual effects of rotation and the magnetic
anisotropy in the underlying microscopic viscosity, both of which will tend to weakly
align it with the star’s rotation axis. The question is then of whether or not all of the
gas moves with the same handedness around the star. There is no physical process
which breaks the symmetry here, so if there are zones with alternating handedness
we expect the scale of alternation to be R. In either case, we refer to the relevant
speed as vθ.

13That is, they have deviations of order hs.
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Using the above results, we may equate Ẇ totaled over a spherical shell of thickness
l with the specific power lost to viscous drag, giving

4πR2l
vθv

2
s∆T 2

2πRT 2 = v2
θ

(
4πR2νvl

−1 + 2πRlv2νhR
−1
)( kB

cvµ

)
(6.10)

= 2πlνhv2
θ

(
1 + 2

(
R

l

)2 νv
νh

)(
kB
cvµ

)
(6.11)

∴ Rv2
s

∆T 2

πT 2 = νhvθ

(
1 + 2

(
R

l

)2 νv
νh

)(
kB
cvµ

)
. (6.12)

Note that because Ẇ is always a small fraction of ε, we do not need to worry about
including heat produced by viscous effects in the calculation of heat transport.

We must now consider the radiative and convective cases separately. In the
radiative case,

νh = vθR (6.13)

and
νv = v2

θ

α + νh
glℵ (∇ad −∇) . (6.14)

As a result, we may write

v2
s

∆T 2

πT 2 = v2
θ

(
1 + 2

(
R

l

)2 (
1 + α

vh

)(
v2
θ

gℵl

))(
kB
cvµ

)
(6.15)

= v2
θ

(
1 + 2

(
R

l

)2 (
1 + α

νh

)(
v2
θ

v2
s

)(
γ

ℵ2

))(
kB
cvµ

)
(6.16)

= v2
θ

(
1 + 2

(
R

l

)2 (
1 + k

ρcpvθR

)(
v2
θ

v2
s

)(
γ

ℵ2

))(
kB
cvµ

)
. (6.17)

Now note that

k

ρcpvθR
= F

ρcpvθR|∂rT |
= FP

ρcpvθR∇T |∂rP |
= Fhs
ρcpTvθR∇

= F

vθgRρ∇

(
kB
µcp

)
.

(6.18)
The last term and ∇ are both of order unity. The flux is generally within two orders
of magnitude of 1012erg/cm2, R is within an order of magnitude of 1010cm, g is close
to 104cm/s2, so this term may be written roughly as v−1

θ ρ−110−2g/cm2/s. In the
limit of fast winds, we expect this to be small, and hence may neglect the vertical
shear, while for slower winds or lower densities we may neglect the horizontal shear.
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Regardless, solving for vθ yields

vθ =

√√√√√√√√
√

1 + 8v2
s

∆T 2

πT 2

(
cvµ
kB

) (
R
l

)2 (
1 + k

ρcpvθR

)(
v2
θ

v2
s

) (
γ
ℵ2

)
− 1

4
(
R
l

)2 (
1 + k

ρcpvθR

)(
v2
θ

v2
s

) (
γ
ℵ2

) . (6.19)

This may be simplified by dropping factors of ℵ, γ, cvµ/kB, all of which are quite
close to unity, and by assuming ∆T/T to be small. Doing so yields

vθ = vs
∆T
πT

. (6.20)

The heat transported is therefore

ε′ = vθcp
∆T
πR

= 1
πR

vscpT

(
∆T
T

)2

≈ v3
s

πR

(
∆T
T

)2

. (6.21)

On the other hand, in the convective case

νv = lmax (vc, vθ) , (6.22)

while
νh = max (lvc, Rvθ) . (6.23)

As R > l, their ratio is 1 for lvc < Rvθ, R/l for vθ > vc, and Rvθ/lvc in between. As
R� l, then, the term (R/l)2νh/νv is always dominant over unity, so we may write

Rv2
s

∆T 2

2πT 2 = νvvθ

(
R

l

)2 ( kB
cvµ

)
. (6.24)

Once more we will drop the rightmost term, for it should be very close to unity. This
done, we may substitute in the expression for νv and find

v2
s

(
∆T
T

)2 (
l

R

)
= 2πvθ max (vc, vθ) . (6.25)

To solve this, we first assume vc > vθ. This yields

vθ = v2
s

2πvc

(
∆T
T

)2 (
l

R

)
. (6.26)



6. GLOBAL WIND PATTERNS 87

If this exceeds vc then we next take vc < vθ and find

vθ = vs
∆T
T

√
l

2πR. (6.27)

If vc > vθ then

ε′ = vθcp
∆T
πR

= v2
scpT

2πRvc

(
l

R

)(
∆T
T

)3

≈ v4
s

2πRvc

(
l

R

)(
∆T
T

)3

, (6.28)

while in the other case

ε′ = vθcp
∆T
πR

= vscpT

πR

(
∆T
T

)2√
l

2πR ≈ 2l−1v3
s

(
l

2πR

)3/2 (∆T
T

)2

. (6.29)

The similar structure of all of the heat transport equations indicates that we may
simplify, and write them each as

ε′ = ξl−1v3
s , (6.30)

where ξ is a dimensionless quantity given in the radiative case as

ξ = 2
(

l

2πR

)(
∆T
T

)2

, (6.31)

in the convective vc > vθ case as

ξ = 2πvs
vc

(
l

2πR

)2 (∆T
T

)3

, (6.32)

and in the convective vc < vθ case as

ξ = 2
(

l

2πR

)3/2 (∆T
T

)2

. (6.33)

From the form of ξ we may gain some intuition about the system. To begin, note
that ξ/l depends on l only in the convective case. This is because in the convective
case the nature of the turbulence which resists moving heat circumferentially depends
on l, whereas in the radiative case this dependence is not there, for the turbulence
there depends only on the Richardson viscosity scale. Additionally, l/2πR is typically
of order 10−3, while vs/vc is typically of order 103. If ∆T/T is smaller than unity,
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we see that the most efficient transport comes when the turbulence is suppressed by
entropic stratification, as in the radiative case.

Note that the above expressions were derived assuming ∆T/T is somewhat
smaller than unity. The functional forms become somewhat more complicated as
the temperature difference increases, so we will keep in mind that there could be
deviations from the above behavior and use them primarily as guidelines for intuition
and estimation. Having said that, note that l/R is generally on the order of 10−3, and
vs/vc is generally not more than 103, so all of the cases considered thus far indicate
that vθ approaches vs as ∆T approaches T . This behavior is expected regardless of
the underlying turbulent model, so the fact that it occurs in all of the cases indicates
that we are not missing substantial qualitative physics. Furthermore, when vθ > vs,
we simply substitute vθ = vs to get the correct physics, for winds generally cannot
travel much above the sound speed without incurring tremendous losses. In this case,

ε′ = vθcp
∆T
πR
≈ v3

s∆T
πRT

. (6.34)

6.2.2 Small Rossby Number
When the Rossby number for motion on scales of order R is small, the Coriolis force
is extremely important, and will generally deflect winds into hurricanes. To see
this, suppose that a wind is flowing with velocity v. The Coriolis acceleration it
experiences is

a = 2v ×Ω, (6.35)

where Ω is the angular velocity of the region of the star of interest about the stellar
rotation axis, neglecting the contribution of the wind. As the wind follows isobaric
surfaces, this acceleration must be projected onto these surfaces. This yields circular
motion, for the acceleration is always perpendicular to the motion as a result of the
cross product, and the radius is given by

rrot = v

2Ω cos θ . (6.36)

The resulting motion is a hurricane with a Rossby number of one. As the star will be
dominated by these storms in this limit, we are looking at a diffusive process with
thermal diffusion constant

k = ρcpvrrot = ρcpv
2

2Ω cos θ . (6.37)
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The flux is k∇T . The circumferential part of this is

F ≈ k
∆T
πR

. (6.38)

A spherical shell of thickness dz then transmits power 2πRdzF . Averaging this over
the mass of the shell gives

ε = 2πRdzF
2πR2ρdz

= k∆T
ρπR2 = cpvrrot∆T

πR2 ≈ rrotvv
2
s∆T

πR2T
. (6.39)

Note that the factor of two in the denominator rather than four arises because ε is
the specific power removed from one side of the star and added to the other, so we
use half of the area of the star.

Before addressing the problem of determining v, it is worth discussing the diver-
gence of all of our expressions at θ = π/2. At the equator of the star, geostrophic winds
experience no Coriolis force. As a result, this region is automatically excluded from
the low Rossby number regime, and so our results from the previous section should
be used for low latitudes. To be formal, let θ± be the angles at which v/2ΩR cos θ
equals unity. Between these angles, we should use the ballistic high-Rossby number
results. Outside of this range, the hurricane diffusion result should be used.

Returning, then, to the question of v, we must once more compute a balance
between the work the wind may extract as it shuffles heat around and the power lost
to viscous effects. By the same reasoning in the previous section, we find that

Ẇ = v2
sv

2∆T 2

4πRT 2Ω cos θ . (6.40)

As rrot � R, we compute the viscous losses over a single hurricane, giving

2rrotl
v2
sv

2∆T 2

4πRT 2Ω cos θ = v2
(
πr2

rotνvl
−1 + 2πrrotlνhr−1

rot

)
(6.41)

∴
v2
s∆T 2

2π2RrrotT 2Ω cos θ =
(
νvl
−2 + 2νhr−2

rot

)
. (6.42)

Here 2rrotl is the area of the surface that the flux passes through, πr2
rot is the area

associated with bottom drag, and 2πrrotl is the area associated with shearing along
the isobar. Now we recognize that 2rrotΩ cos θ = v, so

v2
s∆T 2

π2RT 2 = v
(
νvl
−2 + 2νhr−2

rot

)
. (6.43)
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We must now once more consider the radiative and convective cases separately.
In the radiative case, the horizontal viscosity is

νh = vrrot = v2

2Ω cos θ . (6.44)

The vertical viscosity is then

νv = v2 α + νh
glℵ (∇ad −∇) = v2 α + v2

2Ω cos θ
glℵ (∇ad −∇) , (6.45)

so the power balance is

v2
s∆T 2

π2RT 2 = v
(
νvl
−2 + 2νhr−2

rot

)
(6.46)

= v
(
νvl
−2 + 2vr−1

rot

)
(6.47)

= v
(
νvl
−2 + 4Ω cos θ

)
(6.48)

= v

v2 α + v2

2Ω cos θ
gl3ℵ (∇ad −∇) + 4Ω cos θ

 . (6.49)

This equation is quintic and unfortunately has no analytic roots. For small ∆T/T , a
linear expansion suffices, yielding

v = v2
s∆T 2

4π2RT 2Ω cos θ (6.50)

and
ε′ = rrotvv

2
s∆T

πR2T
= v2v2

s∆T
2ΩπR2T cos θ = v6

s∆T 5

32Ω3π5R4T 5 cos3 θ
. (6.51)

Note that the angles θ± may be computed roughly as π/2 ± sin−1 (v/ΩR). In
computing ε′, we should be averaging over θ outside of this range. Equivalently, we
should be requiring that v/2ΩR ≤ cos θ, so we should average cos−3θ over the range
from cos θ = 1 to cos θ = v/2ΩR. As the integration measure on a sphere is −d(cos θ),
we need only multiply ε′ by

−
∫ 1

v/2ΩR
u−3du = 1

2

(
1− v2

4Ω2R2

)
. (6.52)

For small v this is generally 1/2, but for large v it approaches zero and then becomes
negative, an indicator that the high Rossby number calculations are more appropriate.
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We now turn to the convective case. If v > vc, both the horizontal and vertical
viscosities are dominated by the shearing14. The length scale in the vertical direction
remains l, but in the horizontal direction is now rrot. As a result,

v2
s∆T 2

π2RT 2 = v
(
νvl
−2 + 2νhr−2

rot

)
(6.53)

= v
(
vl−1 + 2vr−1

rot

)
(6.54)

= v2
(
l−1 + 2r−1

rot

)
(6.55)

= v2l−1 + 4Ωv cos θ (6.56)

∴ v = 2Ωl cos θ
√1 + v2

s∆T 2

4Ω2π2RlT 2 cos2 θ
− 1

 ≈ v2
s∆T 2

4π2RT 2Ω cos θ . (6.57)

This is precisely the result from the radiative case, and the power transmitted is the
same. This is a result of the shear turbulence dominating over convection, and of the
Richardson viscosity being a higher order correction in ∆T/T to v.

Now suppose that v < vc. The diffusion of heat is then convection dominated
even in non-radial directions. As a result, the diffusion constant is just vc times
the horizontal length scale. In the model of isotropic turbulence, we expect the
characteristic length scale to be l. On the other hand, if the star is rotating very
rapidly, the Coriolis effect may make this impossible. Rapid rotation can introduce
an anisotropy in the convection cells15, and so we will take the scale of this turbulence
to be the minimum of rrot and l, where the former is computed for vc. First suppose

14We call this a Kolmogorov hurricane, for it is a hurricane which exhibits Kolmogorov turbulence
at all but the largest scales. This is in contrast to in the radiative case where significant anisotropies
are present across many scales, and to the convective case with vc > v, which is just convective
diffusivity.

15H. Köhler. “Differential Rotation Caused by Anisotropic Turbulent Viscosity”. In: Solar Physics
13 (July 1970), pp. 3–18. doi: 10.1007/BF00963937; Pierre Lesaffre et al. “A two-dimensional
mixing length theory of convective transport”. In: Monthly Notices of the Royal Astronomical Society
(2013). doi: 10.1093/mnras/stt317. eprint: http://mnras.oxfordjournals.org/content/
early/2013/03/20/mnras.stt317.full.pdf+html. url: http://mnras.oxfordjournals.
org/content/early/2013/03/20/mnras.stt317.abstract; P. Garaud et al. “A model of the
entropy flux and Reynolds stress in turbulent convection”. In: Monthly Notices of the Royal
Astronomical Society 407 (Oct. 2010), pp. 2451–2467. doi: 10.1111/j.1365-2966.2010.17066.x.
arXiv: 1004.3239 [astro-ph.SR]; Richard J.A.M. Stevens, Herman J.H. Clercx, and Detlef Lohse.
“Heat transport and flow structure in rotating RayleighâBÃ c©nard convection”. In: European
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that rrot is larger than l. This is the case, for instance, on the sun, which is known to
exhibit giant convection cells16. Then the diffusivity is just vcl, so the heat transported
is

ε′ = vclv
2
s∆T

πR2T
. (6.58)

Now suppose that l is the larger. Then

ε′ = vcrrotv
2
s∆T

πR2T
= v2

cv
2
s∆T

2ΩπR2T cos θ . (6.59)

Now when ∆T ∼ T , it would appear that none of the above expansions are
sufficient even qualitatively, for certain effects (such Richardson stabilization) do not
appear to leading order. However, all of the models under consideration give in this
case

v ∼ v2
s

RΩ . (6.60)

In other words, the Mach number17 reduces to the sound speed Rossby number18.
To get a feel for these Mach numbers, let us write R in units of R�, Ω in units of
2π/1hour, and vs as 106T

1/2
4 cm/s, where T4 is the surface temperature measured in

units of 104K. Note that we use a sound speed which is a factor of a few higher
than that corresponding to 104K, as the temperature in the regions which transport
significant heat by sonic winds is typically somewhere between a factor of one and
ten higher than that at the surface. Using these values, we find that

v

vs
∼ T

1/2
4 Phour

50(R/R�) , (6.61)

where Phour is the orbital period measured in hours. As a result, we see that only
for very short orbital periods can ∆T/T be of order unity with v/vs not of the same
order. If such cases arise and are of interest, they may be handled by extrapolating
the scaling with ∆T/T to the point where v/vs is of order unity. We expect to incur
minimal error by doing this, as the dynamic range of this scaling is at most 50.

6.3 Deciding
We are now interested in determining when to expect Rhines scaling and when an
alternate wind pattern is applicable. The condition for Rhines jetstreams is kβ > kfr.

16D. H. Hathaway, L. Upton, and O. Colegrove. “Giant Convection Cells Found on the Sun”. In:
ArXiv e-prints (Jan. 2014). arXiv: 1401.0551 [astro-ph.SR].

17This is the ratio v/vs.
18This is the ratio vs/RΩ

http://arxiv.org/abs/1401.0551
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Using the definition of each wavenumber we find(
Ω3

R3ε

)1/5

> (3Ck)3/2

√
λ3

ε
. (6.62)

Now making use of
Ė = ε− λE (6.63)

and
E = 1

2v
2
φ, (6.64)

we find that in steady-state
ε = 1

2λv
2
φ, (6.65)

and hence our condition is (
2Ω3v3

φ

R3λ

)1/5

> (3Ck)3/2√2λ. (6.66)

The Rossby number for flow around the star is roughly

Ro = vφ
2πRΩ . (6.67)

Using this we may write vφ = 2πRΩRo, such that
(

16π3Ω6

λ6

)1/5

Ro3/5 > (3Ck)3/2√2. (6.68)

Evaluating the numerical constants yields roughly

Ro > 100
(
λ

Ω

)2

. (6.69)

Intuitively what this means is that the more the Coriolis force deflects the wind as it
travels around the star, the faster the star needs to dissipate the winds in order to
prevent bands from forming.

It is now worth examining how to compute the various quantities mentioned
in discussing the Rhines formalism. Many of them have simple definitions but are
nontrivial to arrive at from the externally specified fluid parameters, and so this is a
somewhat tricky procedure.
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To begin with then, consider λ. This may be interpreted as the timescale over
which a wind dies down due to drag effects. Given that the Rhines cascade uses a
quasi two-dimensional flow, the characteristic scale for the associated sheer will be
the pressure scale height, and so λ may be estimated as

λ = Ė

E
≈
νvv

2
φ/h

2
s

v2
φ

= νv
h2
s

, (6.70)

where νv is the effective vertical viscosity on length scales of hs. Note that we neglect
the viscosity in the horizontal direction, as this is already accommodated by the
formalism of the Rhines arrest.

In the convection zone, νv = lmax (vc, vφ), so

λ = ℵ
hs

max (vc, vφ) . (6.71)

In the radiation zone, on the other hand, νh = v/kR, and so

νv =
v2
φ (α + vφ/kR)
glℵ (∇ad −∇) =

v2
φ

(
α +

√
v3
φR/Ω

)
glℵ (∇ad −∇) , (6.72)

∴ λ =
v2
φ

(
α +

√
v3
φR/Ω

)
gl2hs (∇ad −∇) . (6.73)

The next quantity of interest is ε. This is distinct from the ε used in the previous
section, for here it is the power driving the wind, rather than the power the wind
moves. Neglecting external heat input, in a steady state this will be the power lost by
turbulence to drag, which is given by Ė. This may be computed as in the previous
paragraph. When external heat is included, however, some fraction of it should be
counted towards this quantity. As discussed in Chapter 3, much of the external
heating goes towards inducing a divergence in the flux. To compute the amount
that goes towards ε, we use the same method as before, computing a power balance
between the work extracted by the wind and the losses to bottom drag. The work
extracted is, as usual,

Ẇ = v2
svφ∆T 2

2πRT 2 . (6.74)

The power lost is
Ė = λE = ε = 1

2v
2
φλ, (6.75)
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where in the second equality we have assumed that the wind is in power equilibrium.
Setting Ė equal to Ẇ yields

1
2v

2
φλ = v2

svφ∆T 2

2πRT 2 (6.76)

∴ vφλ = v2
s∆T 2

πRT 2 . (6.77)

In the radiation zone this means that

v3
φ

(
α +

√
v3
φR/Ω

)
gl2hs (∇ad −∇) = v2

s∆T 2

πRT 2 . (6.78)

A series expansion of this around ∆T/T = 0 yields

vφ =
(
v2
s∆T 2gl2hs (∇ad −∇)

πRT 2α

)1/3

. (6.79)

This may be simplified by noting that

α = k

ρcp
= − F

ρcp∂rT
= F

ρ2gcp∂PT
= FP

ρ2gcpT∇R

= Fhs
ρcpT∇R

≈ Fhs
P∇R

. (6.80)

In the thin-shell approximation, we may write P = Σg and find

α = Fhs
Σg∇R

. (6.81)
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Substituting this into the equation for vφ yields

v3
φ = v2

s∆T 2gl2hs (∇ad −∇)
πRT 2α

(6.82)

= v2
s∆T 2g2Σ∇Rl

2hs (∇ad −∇)
πRT 2Fhs

(6.83)

= v2
s∆T 2g2Σ∇Rl

2 (∇ad −∇)
πRFT 2 (6.84)

= v2
s∆T 2ℵ2P 2Σ∇R (∇ad −∇)

πRρ2FT 2 (6.85)

= v6
s∆T 2ℵ2Σ∇R (∇ad −∇)

πRγ2FT 2 (6.86)

= v6
s∆T 2ℵ2Σ∇R (∇ad −∇R)

πRγ2FT 2 (6.87)

≈ v6
s∆T 2Σ∇R

πRFT 2 , (6.88)

(6.89)
where in the last line we have dropped some dimensionless constants of order unity.
As a result, we may write

λ =
v2
φ

(
α +

√
v3
φR/Ω

)
gl2hs (∇ad −∇) (6.90)

=
(
v6
s∆T 2Σ∇R

πRFT 2

)2/3
(
α +

√
v3
φR/Ω

)
gl2hs (∇ad −∇) (6.91)

≈
(
v6
s∆T 2Σ∇R

πRFT 2

)2/3
(
α +

√
v3
φR/Ω

)
gh3

s

(6.92)

≈ v2
s

(
∆T 2Σ∇R

πRFT 2

)2/3
(
α +

√
v3
φR/Ω

)
h2
s

(6.93)

≈ v2
s

(
∆T 2Σ∇R

πRFT 2

)2/3
(

Fhs
Σg∇R +

√
v6
s∆T 2Σ∇R
πΩFT 2

)
h2
s

. (6.94)

(6.95)
When ∆T/T is small, this simplifies to

λ =
(

F∆T 4

π2R2ΣT 4∇R

)1/3

. (6.96)



6. GLOBAL WIND PATTERNS 97

The criterion for the Rhines scale to be in effect is then

Ro > 100
(
λ

Ω

)2

(6.97)

∴
vφ

2πRΩ > 100
(

F∆T 4

π2R2ΣT 4∇RΩ3

)2/3

(6.98)

∴
1

2πRΩ

(
v6
s∆T 2Σ∇R

πRFT 2

)1/3

> 100
(

F∆T 4

π2R2ΣT 4∇RΩ3

)2/3

(6.99)

∴
1

8π3R3Ω3

(
v6
s∆T 2Σ∇R

πRFT 2

)
> 106 F 2∆T 8

π4R4Σ2T 8∇2
RΩ6 (6.100)

∴
1

8Ω3

(
v6
s∆T 2Σ∇R

FT 2

)
> 106 F 2∆T 8

Σ2T 8∇2
RΩ6 (6.101)

∴
1
8

(
v6
s∇R

F

)
> 106 F 2∆T 6

Σ3T 6∇2
RΩ3 (6.102)

∴ v6
s > 107 F 3∆T 6

Σ3T 6∇3
RΩ3 (6.103)

∴ v2
s > 100 F∆T 2

ΣT 2∇RΩ (6.104)

∴ T4 > 10−3 F∆T 2Σh

F�T 2Σ∇RΩ (6.105)

∴ T4 > 100 F∆T 2Σh

F�T 2ΣΩ−4
. (6.106)

When it is in effect, the heat transported is

ε′ = cpvφ
∆T
πR
≈ 1
πR

v2
svφ

∆T
T

= v3
s

(
16v3

sΣ∇R

l4F

)1/3 (
l

2πR

)4/3 (∆T
T

)5/3

. (6.107)
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Recalling the definition of ∇R, this becomes

ε′ = v3
s

(
16v3

sΣ∇R

l4F

)1/3 (
l

2πR

)4/3 (∆T
T

)5/3

(6.108)

= v3
s

(
16v3

sΣ3κLP
16πacGMT 4l4F

)1/3 (
l

2πR

)4/3 (∆T
T

)5/3

(6.109)

= v3
s

πR

(
2v3

sΣ3κLP
16πacGMT 4lF

)1/3 (
l

2πR

)1/3 (∆T
T

)5/3

(6.110)

= v3
s

πR

(
2v3

sΣ3κLP
16πacgR2T 4lF

)1/3 (
l

2πR

)1/3 (∆T
T

)5/3

(6.111)

= v3
s

πR

(
2v3

sΣ3κ4πR2P

16πacgR2T 4l

)1/3 (
l

2πR

)1/3 (∆T
T

)5/3

(6.112)

= v3
s

πR

(
2v3

sΣ3κP
4acgT 4l

)1/3 (
l

2πR

)1/3 (∆T
T

)5/3

(6.113)

= v3
s

πR

(
3v3

sΣκP
8σgT 4l

)1/3 (
l

2πR

)1/3 (∆T
T

)5/3

(6.114)

= v3
s

πR

(
3vsΣκPγ

8σT 4ℵ

)1/3 (
l

2πR

)1/3 (∆T
T

)5/3

. (6.115)

(6.116)

When ∆T/T is large, on the other hand,

vφ
vs

=
(
v3
s∆T 2Σ∇R

πRFT 2

)1/3

∼

T 3/2
4 ΣF�R�∆T 2

ΣhFRT 2

1/3

, (6.117)

so we expect vφ to be of order vs. Note that if this formula indicates a speed greater
than the sound speed we truncate it as usual to the sound speed. Using vφ ∼ vs, we
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find

λ =
v2
φ

(
α +

√
v3
φR/Ω

)
gl2hs (∇ad −∇) (6.118)

≈
v2
φ

(
α +

√
v3
φR/Ω

)
v2
sh

2
s

(6.119)

≈
v2
s

(
α +

√
v3
sR/Ω

)
v2
sh

2
s

(6.120)

≈ h−2
s

α +
√
v3
sR

Ω

 (6.121)

≈ h−2
s

 Fhs
P∇R

+
√
v3
sR

Ω

 (6.122)

≈ h−2
s

(
109 FhsΣhg�

107cmF�Σg + 1016T 3/4
4

√
Ω−1
−4

R

R�

)
(6.123)

≈

√√√√v3
sR

h4
sΩ
. (6.124)

The criterion for the Rhines scaling is then

vs
2πRΩ > 100 v

3
sR

h4
sΩ3 ∴ 1 > 200πv

2
sR

2

h4
sΩ2 ∴ 1 > 200πg

4R2

v6
sΩ2 . (6.125)

As a rough estimate, the right side should be 109 or so for a sun-like star with
Ω = 10−4s−1, so this case does not concern us.

We may now perform the same procedure for convecting regions, where

vφ
ℵ
hs

max (vc, vφ) = v2
s∆T 2

πRT 2 . (6.126)

To solve this, we first assume vc > vφ and write

vφ = hsv
2
s∆T 2

vcℵπRT 2 . (6.127)

If this exceeds vc, then we instead use

vφ =
√
hsv2

s∆T 2

ℵπRT 2 . (6.128)
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We then have
ε′ = vφcp∆T

πR
. (6.129)

Once more λ and ε may be computed from these results. If vc > vφ, λ is a constant
and ε goes as ∆T 4. Otherwise, λ goes as ∆T and ε goes as ∆T 3.

6.4 Convective Reynold’s Stress
In addition to being powered by temperature differentials, circumferential flows may
be powered by rotation-induced anisotropy in convecting regions. To model this, we
treat convection zones via the mean field theory of Reynolds stress. The Navier-Stokes
equation, written with the Reynolds stresses in place, is

ρ∂tv + ρv ·∇v = −∇p+ F + F visc − êi∂j(ρRij), (6.130)
where there is an implied summation over repeated indices and where Rij are the
components of the Reynolds stress. If we take the body force to be gravitational, and
further take this to be precisely canceled by the unperturbed pressure, then

ρ∂tv + ρv ·∇v = −∇δp+ F visc − êi∂j(ρRij). (6.131)
If we approximate the velocity as constant then

ρv ·∇v = −∇δp+ F visc − êi∂j(ρRij). (6.132)

Now suppose that the only non-turbulent velocity is along φ̂. Then
ρvφR

−1∂φv = −∇δp+ F visc − êi∂j(ρRij). (6.133)

This may be further simplified, for F visc will go parallel to φ̂ and opposing v in this
case, so

ρvφR
−1∂φv = −∇δp− v̂Fvisc − êi∂j(ρRij). (6.134)

We generally expect that only a fraction of the convective energy may be diverted
into powering a horizontal wind. As a result, the viscosity is just the convective
turbulent viscosity, so

ρvφR
−1∂φv = −∇δp− v̂

(
ρ
vφ
l2

(vcl) + ρ
vφ

(ξR)2 (vc min(l, rrot))
)
− êi∂j(ρRij) (6.135)

= −∇δp− v̂
(
ρvφÑ + ρ

vφ
(ξR)2 (vc min(l, rrot))

)
− êi∂j(ρRij) (6.136)

= −∇δp− v̂ρÑvφ
(

1 + lmin(l, rrot)
(ξR)2

)
− êi∂j(ρRij), (6.137)
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where ξR is the length scale for shearing within isobars. In the absence of Rhines
scaling, we expect ξ to be of order unity and hence the second term in parentheses
may be dropped, for l� R. In the presence of Rhines scaling, ξR = k−1

R =
√
Rvφ/Ω.

The second term in parentheses is then

lmin(l, rrot)
(ξR)2 = Ωlmin(l, rrot)

Rvφ
. (6.138)

As will be argued later, vφ should be of order
√

Ωlvc, so we may write

lmin(l, rrot)
(ξR)2 = min(l, rrot)

R

√
Ω
Ñ
. (6.139)

The first term is at most 10−2. At the depths of interest, Ñ is never less than 10−5,
and in no case do we consider Ω > 10−4, so the second term is at most of order unity.
As a result, we may neglect the product of these two and write

ρvφR
−1∂φv = −∇δp− v̂ρÑvφ − êi∂j(ρRij), (6.140)

and hence
ρvφR

−1∂φv = −∇δp− φ̂ρvφÑ − êi∂j(ρRij). (6.141)

Note that in the bottom friction term we have assumed vφ > 0. Once more making
use of the expected direction of the motion, we find

ρvφR
−1∂φvφ = −R−1∂φδp− ρvφÑ − ∂j(ρRφ,j). (6.142)

Typically we expect band speeds to not vary too much across the system, so ∂φvφ ≈ 0.
We may average the equation then over φ to find

0 = −ρvφÑ − ∂j(ρRφ,j). (6.143)

This may be written as

− ∂jRφ,j −Rφ,j∂j ln ρ = vφÑ . (6.144)

If we take θ derivatives to be small and once more average over φ we find that only
the radial derivatives survive. Thus

− ∂rRφ,r −Rφ,r∂r ln ρ = vφÑ . (6.145)
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We now need an expression Rij. In a rotating system, and to linear order in the
inverse of the Rossby number, we have19

R̄0 = 2
c1c6

(
c1

c7
+ 3c1 + c2

3(c1 + c2)

)
L2Ñ2, (6.146)

Rφφ,0 = Rθθ,0 = R̄0

3

(
c2

c1 + c2

)
, (6.147)

Rrr,0 = R̄0

3

(3c1 + c2

c1 + c2

)
, (6.148)

Fr,0 = −c1R̄
3/2
0

2lÑ2

(
dT

dr

)2

, (6.149)

Rφr = −2l2Ñ2Ro−1 sin θ

−Fz,0l−2Ñ−1 dr
dT

+ c6

√
R̄0

l3Ñ3 (Rzz,0 −Rxx,0)
1 + 2(c1 + c2)/c7 + 2c2/3c1

 . (6.150)

where

Ñ2 = v2
c/l

2, (6.151)
c1 = 0.4, (6.152)
c2 = 0.6, (6.153)
c6 = 1.4, (6.154)
c7 = 1.4. (6.155)

As a result, we may write

Rφr = −2l2Ñ2 Ω
Ñ

sin θ

−Fz,0l−2Ñ−1
(
dT
dr

)−1
+ c6l

−3Ñ−3R̄
3/2
0

(
1

c1+c2

)
1 + 2(c1 + c2)/c7 + 2c2/3c1

 (6.156)

= −2l2Ñ2 Ω
Ñ

sin θ

 c1R̄
3/2
0

2l3Ñ3 + c6l
−3Ñ−3R̄

3/2
0

(
1

c1+c2

)
1 + 2(c1 + c2)/c7 + 2c2/3c1

 (6.157)

= −2R̄3/2
0

Ω
lÑ2

sin θ
( c1

2 + c6
c1+c2

1 + 2(c1 + c2)/c7 + 2c2/3c1

)
(6.158)

= −2
(

2
c1c6

(
c1

c7
+ 3c1 + c2

3(c1 + c2)

))3/2

l2ΩÑ sin θ
( c1

2 + c6
c1+c2

1 + 2 c1+c2
c7

+ 2c2
3c1

)
(6.159)

= −5.25l2ΩÑ sin θ = −5.25lΩvc sin θ. (6.160)
19Garaud et al., op. cit.
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Note that we have made all of the appropriate substitutions required to make this
result applicable for compressible systems, including identification of Ñ with the
convective turnover frequency and identification of the characteristic length scale with
the convective scale of mixing length theory. Note also that by choice of convention in
the Navier-Stokes equation we have taken R to have units of velocity squared rather
than energy density.

Using our expression for the Reynolds stress in our approximated and averaged
Navier-Stokes equation, we may write that

5.25Ω sin θ
(
∂r
(
l2Ñ

)
+ lÑ

)
= vφÑ , (6.161)

where we have taken ∂r ln ρ to be roughly an inverse scale height. Dividing through
by Ñ yields

5.25Ω sin θ
(
l2∂r ln Ñ + ∂r l̃2 + l

)
= vφ. (6.162)

The middle term may be evaluated as

∂rl
2 = 2l∂r

p

ρg
= −ρg

ρg
− p

ρg
∂r ln ρ = 2l1− γ

γ
, (6.163)

where we have made use of the near adiabaticity of efficient convection. Thus

5.25Ω sin θ
(
l2∂r ln Ñ + l

(
2
γ
− 1

))
= vφ. (6.164)

Using γ ≈ 5/3 this becomes

5.25Ω sin θ
(
l2∂r ln Ñ + l

5

)
= vφ. (6.165)

In the stellar models of interest, ln Ñ increases by about two orders of magnitude
over around seven scale heights, and it increases typically in the radially outward
direction. Thus we may write the first derivative as roughly 2/7l, and hence

vφ ≈ 2.6Ωl sin θ. (6.166)

In the ionization zone this should increase somewhat, as γ increases there, but
otherwise it should be fairly universal.

If we average the square of this over θ we find that the typical scale of the velocity
is

vφ = 1.3Ωl ≈ Ωl, (6.167)
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and so
ε = Eλ = 1

2v
2λ = 1

2Ω2l2Ñ = 1
2Ω2lvc. (6.168)

Now should the viscosity be due to shearing rather than convection this result must
be amended accordingly. This may occur if a combination of a heat engine and this
anisotropy are responsible for driving the wind. In this case, λ = vφ/l and it can be
shown that the wind speed goes as

v2
φ = v2

s

(
∆T
T

)2
l

2πR + vφΩl, (6.169)

for the force associated with the Reynolds stress goes as Ωl, so the power goes as vφΩl.
The specific form follows because the right side of this equation is just a rescaled
version of the power input, and the left side is a similarly rescaled version of the power
removed by turbulence. As a result of the above equation for vφ, the contribution to
ε of the convective anisotropy depends on the thermal driving, for

εanis = 1
2v

3
φl
−1 − 1

2v
3
φ,0l
−1 =

v3
φ − v3

φ,0

2l , (6.170)

where vφ,0 is the solution in the absence of convective anisotropy. As vφ has a
nontrivial and non-polynomial dependence on Ωl, this expression does not reduce to
something independent of vφ,0. The problems are coupled, therefore, with thermal
driving diminishing the significance of convective anisotropy.

Finally, note that the convective Reynolds stress produces in the low thermal
anisotropy regime a wind speed of roughly Ωl. This leads to transport of the form

ε′ = Ωlcp
∆T
πR

= Ro−1
s

v3
s

πR

(
l

2πR

)
, (6.171)

where Ros is the sonic Rossby number.

6.5 Summary of Results
Our analysis of large Rossby number transport suggests that all of the transport
expressions may be written in the same general form. Neglecting convective Reynolds
stresses and working in the limit of small ∆T/T , we may write

ε′ = y
v3
s

πR

(
∆T
T

)q (
l

2πR

)a
Robs. (6.172)
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This may also be put in the form

ε′ = y′T
3/2
4

(
R�
R

)(∆T
T

)q ( 104l

2πR

)a
Robs

(
F�
Σh

)
. (6.173)

The dimensionless quantities y, y′, q, a, b are given in table 6.1. Note that in computing
y′, we have used the following relations (and all approximations which accompany
them):

F = ρv3
c (6.174)

P = gΣ (6.175)

Case y y′ q a b
Radiative v > 2πΩR 1 10 2 0 0
Radiative v < 2πΩR 1

4π 1 5 0 3

Radiative Rhines
(

3vsΣκP
8σT 4

)1/3
(

κ1MR2
�Σ

M�R2ΣhT
7/2
4

)1/3
5
3

1
3 0

Convective v > 2πΩR, vc π
(
vs
vc

)
10−2T

1/2
4

(
FΣh
F�Σ

)−1/3
3 1 0

Convective vc > v > 2πΩR 1 10−1 2 1
2 0

Convective 2πΩR > v > vc
1

4π 1 5 0 3

Convective v < 2πΩR, vc 2π vc
vs

min
(
1, vcΩl

)
10−3

FΣh min
(

1, v
3
c

Ω3l3

)
F�ΣT 3/2

4

1/3

1 1 0

Convective Rhines, v > vc
√

2 10−1 2 1
2 0

Convective Rhines, v < vc 2vs
vc

10−2
(

FΣh
F�ΣT 3/2

4

)−1/3
3 1 0

Convective Reynolds 2πRΩ
vs

10−3 RΩ−4

R�T
1/2
4

1 1 0

Table 6.1: Computed parameterization of circumferential heat transport by winds.
The first column specifies what case is under consideration. All possible cases are
enumerated here. The remaining columns specify y, a prefactor on the transport as
well as q, a, b, the exponents on ∆T/T , l/2πR, and Ro respectively. Note that factors
of γ and ℵ have been neglected in assembling this table.

The quantity y′ has a clear physical interpretation: y′ is the fraction of a solar
luminosity which, up to powers of the Rossby number and temperature anisotropy,
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may be moved from one side of the sun-like star to another over a change in depth of
Σh. We immediately see that radiative stars are orders of magnitude more efficient at
transporting heat circumferentially, particularly when the Rhines cascade is relevant.
This is a result of the larger turbulent viscosity associated with convection in most
cases. Additionally, it is clear that stars with low Rossby number are less efficient
at this task than those with high Rossby number. This is because, as the Rossby
number is lowered, the problem transitions from being one of ballistic transport to
being one of diffusion. The former is much more efficient than the latter, just as a
directed walk moves away from its origin faster than a random walk.

Now recall that

v = πR

cp∆T
ε′ = ε′

v2
s

πR

(
∆T
T

)−1

. (6.176)

This may be written as

v = vs10−1y′
(

∆T
T

)q−1

Robs. (6.177)

Recalling that the Mach number is expected to be at most one, a good approximation
is to use the form in Eq. (6.173) until

(
∆T
T

)
c

=
(

10
y′Robs

) 1
q−1

, (6.178)

at which point the wind reaches the sound speed and ceases to grow with increasing
temperature anisotropy. Table 6.2 lists the critical anisotropy values at which this
occurs. Note that not all cases appear in the table, for vc is generally quite subsonic,
so v = vs implies that v > vc. Additionally, the Reynolds stress case only occurs
when ∆T/T is small, and even in the fastest-rotating cases of interest we have argued
that the Rossby number is at least unity, so the low-Rossby number cases have been
omitted.
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Case (∆T/T )c
Radiative v > 2πΩR 1

Radiative Rhines 30
(

κ1MR2
�Σ

M�R2ΣhT
7/2
4

)−1/2

Convective v > 2πΩR, vc 30T−1/4
4

(
FΣh
F�Σ

)1/6

Convective Rhines, v > vc 102

Table 6.2: Critical thermal anisotropy values are listed for each case of interest. Note
that factors of γ and ℵ have been neglected in assembling this table.
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7

Higher Dimensional Models with
Transport

... très souvent les lois particulières déduites par les physiciens d’un grand
nombre d’observations ne sont pas rigoureuses, mais approchées.
... very often the laws derived by physicists from a large number of
observations are not rigorous, but approximate.

– Augustin Louis Cauchy

In this chapter we will put all of the pieces other than time dependence together.
The addition of time is left for the next chapter, and so for the moment we maintain
the steady-state approximation.

For simplicity, suppose that we represent a star by two temperature profiles, one
for the hot side and one for the cold. This may be understood as representing the
amplitude of the lowest order spherical harmonic which is symmetric about the line
connecting the pulsar and its companion star. We refer to the hot side temperature
as Th, and the cold side temperature as Tc. The subscripts h and c will be attached
to other quantities as needed to describe the same distinction. Quantities lacking
subscripts are taken to be averaged between the two sides.

In this context the quantity ∆T discussed previously is the difference between
the two temperatures at the same pressure. In general, we define

∆A ≡ Ah − Ac, (7.1)

where both quantities on the right are evaluated at the same pressure. The isobaric
condition is required by our usage of ∆T as the temperature difference experienced
by winds moving around the star.

110
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Note that we will neglect gravity modes as a means of energy transfer, as they are
only excitable by convective zones and only transferrable over long distances through
radiative zones, leaving only the narrow interfaces between these regions as conduits1.
As a result, they carry relatively little flux compared to the thermal anisotropies of
interest2.

7.1 Radiative Stars
If we take k to be a scalar, neglect winds, and assume that all of one side of the
companion experiences heating while the entirety of the other side does not, we know
from Chapter 3 that somewhere between 1/6 and 1/2 of the input flux exits on the
cold side. The remainder of the input flux exits on the hot side. The assumption
that k is a scalar is always valid in radiative stars, and the assumption regarding the
geometry of heating is well justified per Chapter 1, so the key assumption which fails,
then, is the neglecting of wind. Given that the effect of circumferential wind in a star
is to make the flux divergence more isotropic, we expect that there will be a column
density at which the wind achieves this, and beyond which the star is isotropic. As a
result, we do not expect that such a large fraction of the flux will generically escape
to the cold side.

To understand this more thoroughly, note that the flux divergence differs between
the two sides of the star as

∇ · F h = ρ (ε− ε′wind) , (7.2)
∇ · F c = ρε′wind, (7.3)

where ε is the usual input heat. As we are treating the star as being two one-
dimensional stars stuck together, we may also write this as

∂rFh = ρ (ε− ε′wind) , (7.4)
∂rFc = ρε′wind, (7.5)

1Y. Wu and P. Goldreich. “Gravity Modes in ZZ Ceti Stars. IV. Amplitude Saturation
by Parametric Instability”. In: The Astrophysical Journal 546 (Jan. 2001), pp. 469–483. doi:
10.1086/318234. eprint: astro-ph/0003163; C. C. Mei and T. Y.-t. Wu. “Gravity Waves due
to a Point Disturbance in a Plane Free Surface Flow of Stratified Fluids”. In: Physics of Fluids 7
(Aug. 1964), pp. 1117–1133. doi: 10.1063/1.1711351; A. J. Brickhill. “The pulsations of ZZ Ceti
stars. III - The driving mechanism”. In: Monthly Notices of the Royal Astronomical Society 251
(Aug. 1991), pp. 673–680.

2J. H. Shiode et al. “The observational signatures of convectively excited gravity modes in
main-sequence stars”. In: Monthly Notices of the Royal Astronomical Society 430 (Apr. 2013),
pp. 1736–1745. doi: 10.1093/mnras/sts719. arXiv: 1210.5525 [astro-ph.SR].

http://dx.doi.org/10.1086/318234
astro-ph/0003163
http://dx.doi.org/10.1063/1.1711351
http://dx.doi.org/10.1093/mnras/sts719
http://arxiv.org/abs/1210.5525
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Switching to column density as the independent variable, this becomes

∂ΣFh = − (ε− ε′wind) , (7.6)
∂ΣFc = −ε′wind, (7.7)

Using the radiative equilibrium relation, we get

F = −k∂rT = −4acT 3

κρ
∂rT = 4acT 3

κ
∂ΣT = ac

κ
∂ΣT

4. (7.8)

Now for T > 104K, the key regime of interest for radiative stars, κ doesn’t vary much
with T or ρ except at unphysically high densities3. As a result, we may write

∂ΣFh = − (ε− ε′wind) = acκ−1∂2
ΣT

4
h , (7.9)

∂ΣFc = −ε′wind = acκ−1∂2
ΣT

4
c . (7.10)

Note that we have made an additional approximation in writing the differential
equation governing the flux, for we have neglected the heat moved by circumferential
radiative transport. To justify this, note that the circumferential transport by
radiation should have

Lc = 2πRdzk∆T
πR

= 2dzk∆T ∴ ε′rad = 2kdz∆T
2πR2dzρ

= k∆T
ρπR2 ≈

(
l

R

)
fF

ρπR
, (7.11)

where f ≡ ∆T/T . Taking F ∼ 1012erg/cm2/s, R ∼ 1010cm, l ∼ 107cm, and
vs ∼ 107cm/s, we find that ε′wind ∼ 108f 2erg/g while ε′rad ∼ 10−1ferg/g. As the wind
carries far more heat than the circumferential transport, we are justified in neglecting
the latter.

In all radiative models considered, regardless of the Rossby number, we found
that for ∆T/T < 1,

ε′ = y′T
3/2
4

(
R�
R

)(∆T
T

)q ( 104l

2πR

)a
Robs

(
F�
Σh

)
. (7.12)

This is just Eq. (6.173). The dimensionless quantities y′, q, a, b may be found in
table 6.1. Up to minor corrections of order unity, this form should hold until the
critical temperature anisotropy is reached. The values associated with this are given
in table 6.2.

3We are really comparing 4 lnT to κ when we say that the latter doesn’t vary significantly.
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Using these results, we find that the anisotropy of the flux at the star’s surface is

∆F = Fe − 2
∫ Σh

0
ε′winddΣ. (7.13)

We only integrate to Σh because, as we showed in our one-dimensional model, the
temperature difference induced by the flux drops off exponentially below that depth.
Now from our one-dimensional simulations, we know that ∆T/T is roughly a constant
over the range Σ = 0 to Σ = Σh, changing only by a factor of two or so. As a result,
we may estimate for low input luminosities that

∆T
T
∼ ∆F

4F = ∆F
2Fe + 4Fi

≈ ∆F
4Fi

, (7.14)

and estimate the integral as

∆F = Fe − 2
∫ Σ

0
hε
′
winddΣ (7.15)

≈ Fe − 2Σhε
′
wind (7.16)

≈ Fe − 2Σhy
′T

3/2
4

(
R�
R

)(∆T
T

)q ( 104l

2πR

)a
Robs

(
F�
Σh

)
(7.17)

≈ Fe − 2y′T 3/2
4

(
R�
R

)(∆T
T

)q ( 104l

2πR

)a
RobsF� (7.18)

≈ Fe − 2y′T 3/2
4

(
R�
R

)(∆T
T

)q ( 104l

2πR

)a
RobsF�. (7.19)

Now in estimating the integral we should multiply the wind solution by a few to
accommodate the fact that T typically varies by around a factor of 5 over the
integration regime. This allows us to use the surface values for thermodynamic
quantities later on. Thus

∆F
Fi

= Fe
Fi
− 5y′T 3/2

4

(
R�
R

)(∆T
T

)q ( 104l

2πR

)a
Robs

F�
Fi
. (7.20)

This may also be written as
u = r − tuq, (7.21)

where r, t > 0, r < 1. Here r is the ratio of external to intrinsic illumination and t is a
dimensionless parameter giving the efficacy of the winds in transporting heat relative
to the intrinsic flux. In general we may solve this numerically, but it is also worth
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examining the behavior of the solution in various limits. For r � t, a perturbative
expansion may be used to find

u ≈ r − trq. (7.22)

Physically, this means that the anisotropy is just the maximum allowed minus a small
contribution due to the action of winds. For t� r, we may neglect the linear term
in u to find

u ≈
(
r

t

) 1
q

. (7.23)

In this limit the dominant effect is that of the wind, and the result is just a balance
reflecting the fact that the wind needs some anisotropy to function. Except for small
y′, this last limit is generally not accessible while maintaining the small anisotropy
approximation. As a result, we generally expect to be in the former limit with
radiative stars, and only expect to be in the latter in convective stars with just the
right amount of external illumination.

Now suppose that ∆T/T is large relative to the critical value. Once more we
write

∆F = Fe − 2
∫ Σh

0
ε′winddΣ ∼ Fe − 2Σhε

′
wind. (7.24)

Here, ∆T/T corresponds more closely to (∆F/σ)1/4T−1 than to ∆F/4F , for the
critical ∆T/T is at least unity, so

ε′wind = v3
s

πR

(
∆T
T

)
, (7.25)

and hence

∆F = Fe −
2Σh

πRT
v3
s

(
∆F
σ

)1/4

= Fe − 10F�T 1/2
4

(
R�
R

)(∆F
F�

)1/4

. (7.26)

Performing the adjustment to allow us to use all quantities near the surface, we get

∆F = Fe − 20F�T 1/2
4

(
R�
R

)(∆F
F�

)1/4

. (7.27)

Now in this regime, the quantity of interest really should be ∆F/Fe, not ∆F/Fi.
Casting the equation into this form gives

∆F
Fe

= 1− 20F�T 1/2
4

(
R�
R

)(∆F
Fe

)1/4 (
Fe
F�

)−3/4

. (7.28)
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Recalling that the temperature goes as F 1/4, and that the flux should be of order Fe,
we expect that

∆F
Fe

= 1− 20
(
R�
R

)(
Fe
F�

)−5/8 (∆F
Fe

)1/4

. (7.29)

This equation may be solved numerically as a function of the coefficient of the second
term. At very large Fe, the anisotropy is once more near unity. As Fe is lowered, a
perturbative expansion shows that the anisotropy goes as

∆F
Fe
∼ 1− 20

(
R�
R

)(
F�
Fe

)5/8
. (7.30)

At small Fe relative to 208/5F� ∼ 100F�, the solution goes as

∆F
Fe
∼ 10−5

(
R

R�

)4 (
Fe
F�

)5/2

. (7.31)

7.2 Convective Stars
We now turn to the case of circumferential heat transport in fully convective stars.
Suppose first that the star has an active nuclear-burning core. By our arguments
in Chapter ?? convection will continue, but it will carry less heat to the surface. If
Le < Li/2, the reduction in heat carried from the core to the surface will be Le, and
the surface temperature will not change, for the external illumination makes up the
difference. Otherwise the reduction will be Li/2, and the surface temperature will
change on the illuminated side to match Le. 4. In either case, the reduction in heat
transport results in an increase in the temperature of the core, and hence an increase
in the intrinsic luminosity of the star. This increase will generally raise Li by an
amount comparable to Le. As this change occurs at the core, the resulting changes
in stellar structure should be isotropic. The only way for this to not be the case is
if the core heats anisotropically and therefore loses heat preferentially to one side.
To show that this is not the case, consider just the circumferential transport due to
convection-driven turbulent diffusion. As it will be quite slow near the core, we take
the Rossby and Mach numbers to be small. Matching the wind transport with the

4The factor of two in the comparison of Le to Li is of geometric origin: it reflects the fact that
the external illumination only comes in on one side. In reality the factor should not be precisely 2,
but this is accurate to the degree of precision present in our models.
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flux anisotropy yields

ε = vclv
2
s∆T

πR2T
= min (Le, Li/2)

2πR2ρ
(7.32)

∴
vclv

2
s∆T
T

= min (Le, Li/2)
2ρ (7.33)

∴
vcl∆T
T

≈ min (Le, Li/2)
2P (7.34)

∴
(Fi/ρ)1/3l∆T

T
≈ min (Le, Li/2)

2P (7.35)

∴
(Fiv2

s/P )1/3l∆T
T

≈ min (Le, Li/2)
2P (7.36)

∴
(Fiv2

s)1/3l∆T
T

≈ min (Le, Li/2)
2P 2/3 (7.37)

∴
∆T
T
≈ min (Le, Li/2)

2(Fiv2
s)(1/3)lP 2/3 . (7.38)

Here we have made use of the usual result that Fconv ∼ ρv3
c . At these depths,

T ∼ 106K, so v2
s ∼ 107cm/s. Additionally, l ∼ R here so l ∼ 1011cm. We may

estimate the pressure as P ∼ GM2/R4 ∼ 1017erg/cm3. Finally, we estimate that
Fi = Li/(4πR2

core) ∼ 100Li/(4πR2) ∼ 10−21Li. Thus the temperature difference is
expected to be

∆T
T
∼ max (Le, Li/2)

1020Li
. (7.39)

This is minuscule for any conceivable flux anisotropy, confirming our assumptions
and yielding an isotropic star. All of our conclusions about stars of this type from the
one-dimensional analysis therefore hold in the steady-state. Of course in the transient
case the star can still be anisotropic. As we will see, the transient response of nuclear
burning stars is the same as the steady-state response for non-burning stars.

Now suppose that the star is not nuclear burning. The same arguments regarding
lowering heat transport from the core apply, but now the core simply responds to
different heat transport by matching it. As a result, if Le < Li/2, there should be no
visible changes: the star will cool more slowly, but the surface flux will remain the
same and the star will remain isotropic. On the other hand, if Le > Li/2, the star
may be isotropic. This is because the heating cannot run uphill: we cannot put heat
in at one temperature and have the energy move towards higher temperatures. As a
result, the surface temperature will necessarily rise in the absence of circumferential
transport to match the flux associated with Le. This requires a shallower thermal
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gradient than convection can support, and so will result in radiative transport for at
least some of the range Σ < Σh. As we saw in table 6.1, radiative zones are orders of
magnitude more efficient than convection zones at transporting heat circumferentially.
This means that the limiting factor is the distance that the heat has to traverse in
the convection zone on the cool side.

Consider a wind being pushed from one side to the other by a thermal gradient.
When this wind reaches the convecting regions, it encounters an increase in resistance,
and so slows down. This leads to an accumulation of hot material on the interface
between the radiative and convective regions, which will shut down convection in
a larger region than that covered by the external heating. This will continue until
there is insufficient flux being transported to accommodate a larger radiative zone.
We may calculate the area of the new radiative zone roughly as

Arad = 2πR2
(

1 + min
(

1, 4πR2Σhε
′
wind

Li

))
, (7.40)

where ε′wind is to be calculated using the y′ values for radiation, not convection. Within
this zone, the temperature and flux anisotropies may be computed as before. Inside
the remaining convection zone, the flux is just Fi. In principle one might multiply y′
by the ratio of the linear dimension of the radiative transport regime to 2πR, but
this correction is a small factor of order unity in all cases, and therefore does not
justify the complexity associated with performing a self-consistency calculation for
the area of the radiative zone.

7.3 Crossover Behavior
The final case to consider is that where the star is convective for Σ < Σc and radiative
otherwise. This case is like the nuclear burning convective case, in that there is
an intrinsic flux which can be bottled up. On the other hand, the exponential
suppression of changes in thermal structure characteristic of radiative zones means
that we generally do not have the ability to change the core temperature of these
stars. As a result, the problem of determining whether or not the thermal structure
is strongly anisotropic is actually somewhat nontrivial.

To begin with, suppose that the thermal anisotropies are small enough that all
winds are subsonic. Initially, the external illumination will not alter the size of the
convection zone. All that changes is that the flux carried by the convection zone
decreases. As there is no significant heating in this region, the flux differential will be
preserved down to the base of the convection zone. When it reaches the radiation
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zone, it will cause changes in thermal structure which will damp exponentially in Σ.
As a result, the core will be unchanged, so the intrinsic flux will still emerge. This
means that the surface temperature must be sufficient to accommodate the increased
flux. As the convection zone requires that specific entropy be constant, the fractional
change in temperature which results will be the same throughout the zone. This
temperature differential will drive a wind which attempts to equalize the flux between
the two sides of the star. In equilibrium, this provides the self-consistency relation

4∆T
T

= Fe −
∫ Σc

0 ε′winddΣ
Fi

(7.41)

= Fe
Fi
−
(
F�
Fi

)(∆T
T

)q ∫ Σc/Σh

0
y′T

3/2
4

(
R�
R

)( 104l

2πR

)a
Robsdx, (7.42)

where
x ≡ Σ

Σh

. (7.43)

There are several ways to simplify the self-consistency relation. To begin with, we
may neglect the variation in R, as this is of order unity across any integration range
which does not reach the core. This allows us to write

4∆T
T

= Fe
Fi
−
(

∆T
T

)q ( 104l

2πR

)a (
F�
Fi

)(
R�
R

) ∫ Σc/Σh

0
y′T

3/2
4 Robsdx. (7.44)

Recalling that we may write the sonic Rossby number as

Res = vs
2πRΩ , (7.45)

we find that

4∆T
T

= Fe
Fi
− 10−1

(
F�
Fi

)(
R�
R

)1+b
Ω−b−4

∫ Σc/Σh

0
y′T

3/2+b
4 dx

(
∆T
T

)q ( 104l

2πR

)a
. (7.46)

Note that in convection zones y′ may be put in the form

y′ = 10w1

(
R

R�

)w2 ( F

F�

)w3 ( Σ
Σh

)w4

Tw5
4 Ωw6 , (7.47)

where wi are constants. The one case which this doesn’t handle is that with v >
2πΩR, vc. There some of the powers wi must be modified when Ωl = vc. This



7. HIGHER DIMENSIONAL MODELS WITH TRANSPORT 119

introduces a variation of up to ±0.5 in the exponents here, and we will find such
variation to be unimportant. As a result, we may write

y′ = y0x
w, (7.48)

where w = w4 + w5 is in the range [−1/2, 1] and y0 is the value of y′ at Σ = Σh.
Additionally, we may substitute T0(P/P0)1+1/γ for T . Though the thin-atmosphere
approximation is not guaranteed to hold in all regions of interest, we make errors
only of order unity by using it so we further substitute P = Σg. This yields

4∆T
T

= Fe
Fi
−y010−1

(
F�
Fi

)(
R�
R

)1+b
Ω−b−4

(
Σc

Σh

)(3/2+b)(1+1/γ)+w+1

T4,0

(
∆T
T

)q ( 104l

2πR

)a
,

(7.49)
where T4,0 is the temperature at the heating depth, and where we have dropped the
order unity factors produced by the integration process. This may be approximated
as

4∆T
T

= Fe
Fi
− 10[−3.5,0]Ω−b−4

(
F�
Fi

)(
R�
R

)1+b (Σc

Σh

)3 (∆T
T

)q ( 104l

2πR

)a
. (7.50)

In the cases of interest, Σc � Σh, for otherwise our arguments in the one-dimensional
model indicate that the convection zone will disappear just from the required surface
temperature changes. As a result of this and the other prefactors either being large
or near unity, there is some positive n for which we may write

4∆T
T

= Fe
Fi
− 10n

(
∆T
T

)q
. (7.51)

When q = 1 the solution is roughly

4∆T
T
∼ Fe
Fi10n . (7.52)

When q > 1 there is a competition between the linear and nonlinear terms. The two
terms are roughly equal when

Fe
Fi
∼ 10−

n
q−1 . (7.53)

For larger fluxes, the nonlinear term dominates and

∆T
T

=
(

Fe
4Fi10n

)1/q
. (7.54)
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For smaller ones, the linear term dominates and

∆T
T

= Fe
4Fi

. (7.55)

Note that n goes roughly as 3 log Σc/Σh, so in all cases with very deep convection
zones we reproduce our result of high isotropy.

Note that in assuming that radial lines are isentropes, we are requiring that the
characteristic timescale of convection be shorter than that of the winds5. If this fails,
then the winds may circle the star without coming into local equilibrium with any
radial lines, and hence a better approximation is that surfaces of fixed r are isentropes.
This case is not, however, physically realistic. To see this, first note that for the
criterion to assume radial isentropes is

l

vc
<

2πR
v
. (7.56)

Rearranging gives
v/vc < 2πR/l. (7.57)

This is roughly
v/vc < 103(Σ/Σh)( − 1− 1/γ). (7.58)

Now
vc ∼ 105(F/F�)1/3(Σ/Σh)1/3γ, (7.59)

so
v < 108(F/F�)1/3(Σ/Σh)−1−2/3γ. (7.60)

For the stars of interest, the first factor is generally of order 1/3, and the sound speed
is roughly 106cm/s even at large depths, so subsonic violation of this criterion only
becomes possible at Σ ∼ 30Σh. Now the critical thermal anisotropy to get sonic
winds in a convection zone is

∆T
T
∼ 30T−1/4

4

(
FΣh

F�Σ

)1/6

. (7.61)

5The assumption takes this form in regions of high convective efficiency. Were this not to hold,
we would need to consider the timescale for material coming into radiative equilibrium as well.
Fortunately only a small portion of each convection zone exhibits inefficient convection, as was
discussed in Chapter 2, so we need not deal with the inefficient limit.
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As the anisotropy is damped into the star by the winds, we may take this as a lower
bound on the anisotropy above the point where the radial isentrope assumption fails,
so the flux transported is

ε′wind = vscp∆T
πR

(7.62)

= v3
s∆T
πRT

(7.63)

≥ 30 v
3
s

πR
T
−1/4
4

(
FΣh

F�Σ

)1/6

(7.64)

= 1010T
5/4
4

(
FΣh

F�Σ

)1/6

erg/g/s (7.65)

= 2× 102F�
Σh

T
5/4
4

(
FΣh

F�Σ

)1/6

. (7.66)

Integrating this gives

Fwind =
∫ 30Σh

0
dΣε′wind (7.67)

≥
∫ 30Σh

0
dΣ2× 102F�

Σh

T
5/4
4

(
FΣh

F�Σ

)1/6

(7.68)

=
∫ 30

0
dx2× 102F�T

5/4
4

(
F

F�x

)1/6

(7.69)

= 2× 102T4,0F
5/6
� F 1/6

∫ 30

0
dxx

5
4 (1+1/γ)− 1

6 (7.70)

∼ 2× 102T4,0F
5/6
� F 1/6 303

3 (7.71)

∼ 2× 106T4,0F
5/6
� F 1/6 (7.72)

∼ 2× 106T4,0F�. (7.73)

As this lower bound is well in excess of the Eddington luminosity for any convective
star, an anisotropy in the flux that large would ablate the star to nothing on short
timescales, and is therefore not a case of interest.

Now if ∆T/T approaches or exceeds unity, then we must instead write

∆F
Fi

= Fe
Fi
− 10n

(
∆T
T

)q
. (7.74)
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Recalling that ∆F ∼ σ(∆T )4 in this case,

∆F
Fi

= Fe
Fi
− 10n

(
∆F
Fi

)q/4 (
Ti
T

)q
. (7.75)

As the flux has raised the mean temperature by approximately (Fe/Fi + 1)1/4,

∆F
Fi

= Fe
Fi
− 10n

(
∆F
Fi

)q/4 (
Fe
Fi

+ 1
)q/4

. (7.76)

As Fe must be large relative to Fi to bring about a change of this magnitude, the
factor of unity at the end may be removed, giving

∆F
Fi

= Fe
Fi
− 10n

(
∆F
Fi

)q/4 (
Fe
Fi

)q/4
. (7.77)

The nature of the solutions is the same as the nature of the solutions in the previous
section, just with

q → q

4 (7.78)

n→ n+ q

4 log Fe
Fi

(7.79)

∆T
T
→ ∆F

Fi
. (7.80)

As in the previous section, it is now more appropriate to speak of the flux anisotropy
as ∆F/Fe, so

∆F
Fe

= 1− 10n
(

∆F
Fe

)q/4 (
Fe
Fi

)q/2−1
. (7.81)

For external luminosities, we require

∆F
Fe

= 10−
4n
q

(
4− 2q
q

)
, (7.82)

while for large external luminosities we have

∆F
Fi

= Fe
Fi
− 10n

(
Fe
Fi

)q/4
. (7.83)

Here large and small are of course referenced to 104n/qFi.
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Finally, if the thermal and flux anisotropies are large, the wind is sonic and we
expect y′ = 10, q = 1, a = 0, and b = 0. This greatly increases the efficiency of
circumferential transport, and results in n increasing by an additive factor somewhere
between 1 and 4. This pushes us further into the regime where our assumption that
a > 0 holds, and the remainder of the above analysis is unchanged.

It is worth noting that in all of the cases above, we saw no transition from
convective to radiative behavior. This is because increasing the requisite flux does not
force this transition. Rather, it is increasing the flux while at the same time insisting
that the ratio of the temperature at the base of the convection zone to that at the
top of the convection zone remain invariant. Of course if Σc is small, then increasing
the luminosity results in shrinking the convection zone appreciably in relative terms.
This can, as in the case of our one-dimensional model of the sun, cause the convection
zone to disappear.
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8

Time Dependence

It is all a matter of time scale. An event that would be unthinkable in a
hundred years may be inevitable in a hundred million.

– Carl Sagan

The results of our one-dimensional model indicate that there are two modes of
behavior for stars in the presence of external illumination, and that stars pick one
or the other on the basis of being predominantly radiative or convective. In this
chapter we will analyze these behaviors in the transient case through a combination
of numerics and analytics. We begin by describing the numerical methods used, and
then proceed to introduce the cases of fully radiative, fully convective, and mixed
radiation-convection stars.

8.1 Assumptions and Computational Methods
The time-dependent portion of Acorn represents a compromise between the simplicity
of time-independent codes like Gob and the complexity of modern time-dependent
codes like MESA. The equation of state used is the same one present in Gob and
in the time-independent portion of Acorn, incorporating at leading order various
ionization effects as well as radiation pressure. The opacity is the same as that used
in Acorn, a mix of the OPAL1 and Ferguson2 tables. The thin shell approximation is
used everywhere, and only envelope evolution is considered. Hydrostatic equilibrium

1C. A. Iglesias and F. J. Rogers. “Updated Opal Opacities”. In: The Astrophysical Journal 464
(June 1996), p. 943. doi: 10.1086/177381.

2Jason W. Ferguson et al. “Low-Temperature Opacities”. In: The Astrophysical Journal 623.1
(2005), p. 585. url: http://stacks.iop.org/0004-637X/623/i=1/a=585.
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is assumed at all times. Finally, it is assumed that convection adjusts to the changing
flux being carried faster than the thermal adjustment timescale of the envelope, and
hence that it may be assumed that the convective gradient is the gradient required
to carry the appropriate flux in steady-state. This last assumption will be justified
later on.

Assuming hydrostatic equilibrium only, the time-dependent equations of stellar
structure are3

∂r

∂m
= − 1

4πr2ρ
, (8.1)

∂P

∂m
= Gm

4πr2 , (8.2)
∂L

∂m
= −ε+ cp

∂T

∂t
− δ

ρ

∂P

∂t
, (8.3)

∂T

∂m
= GmT

4πr4P
∇, (8.4)

where ε is the power per unit mass being deposited by external illumination, and the
signs have been chosen such that the mass coordinate is the mass above the point in
question. Note that we include the equation governing r for purposes of tracking how
r changes as the other quantities vary, but we do not allow it to produce feedback
with the other equations. Note also that the time derivatives are to be taken at fixed
mass, not at fixed spatial coordinate. Now the condition of hydrostatic equilibrium
means that ∂P

∂t
= 0, so we may drop this term.

We now make the substitution

P = mg

4πr2 , (8.5)

in accordance with the thin-shell approximation. This, combined with the previous
arguments regarding time derivatives, allows us to eliminate P and write

P = mg

4πr2 , (8.6)
∂r

∂m
= − 1

4πr2ρ
, (8.7)

∂L

∂m
= −ε+ cp

∂T

∂t
, (8.8)

∂T

∂m
= T

m
∇. (8.9)

3Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,
2012. isbn: 978-3-642-30304-3.



8. TIME DEPENDENCE 127

In order to fully specify the system, we must of course specify boundary conditions.
For the t = 0 boundary, we specify that ε = 0 and that ∂tT = 0. When the mass
coordinate equals the envelope mass, i.e. m = Me, we choose to hold T constant.
Physically this choice simply means that we must only consider timescales shorter
than the thermal timescale of the envelope, given by

te = cpT (Me)Me

Lin
≈ 7× 1012sT5

MeL�
M�L

. (8.10)

The envelope mass was generally chosen to optimize convergence of the time-stepping
code and to stay carefully within the realm of validity of the opacity and equation of
state microphysics. As a result, typical values were 3×10−3M . Typical envelope-base
temperatures are T ≈ 105K, and generally ML�

M�L
≈ 1, so the timescales the code may

investigate with this boundary condition are those shorter than 2×109s, which should
be long enough to see the transient effects of interest. Note that in considering ∇
to respond immediately, we are also imposing a minimum timescale over which the
results may be taken seriously. This timescale is given roughly by the convective
turnover time, l/vc, or around 106s at the base of the envelope and 103s where
convection begins. As a result, time steps will usually be chosen at 106s.

The remaining boundary condition we use to set

4πr2σT 4 = wL, (8.11)

where all quantities are evaluated at the mass corresponding to τ = 2/3 and w is a
fudge factor obtained from the steady state evolution which makes this relation true
at t = 0. Note that this means that we only track the mass in the star at τ > 2/3.
This helps with numerical stability, as it reduces the range of densities to consider,
which drastically improves the condition number of the linear algebra problems solved
in the time-stepping process.

In typical simulations, w was found to be roughly 0.5. This is not a matter of a
misplaced factor of two in the surface temperature determination. Rather, it is due
to well-documented approximations made in Gob’s, and hence Acorn’s, method for
computing the effects of radiation dilution in the photosphere4. It is clear that these
boundary conditions are sufficient, for L and T are the only variables involved, all
others being determined by either the approximations made or the equation of state,
and we now have two first order differential equations with one boundary condition
each in one dimension.

4B. Paczyński. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
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For the starting state, we use the steady state solution. This additionally defines
the mass grid used to discretize the problem. Note that this produces N + 1 points
for L and N points for T , such that the temperature is defined only between pairs
of points at which the luminosity is defined. For the sake of writing down the
discretization, let there be 2N + 1 points in the mass grid numbered 0 through 2N .
Define L on all even-numbered points and all other quantities on the odd-numbered
points. The equations of interest are then:

∂tρ2i+1 = ∂ρ2i+1

∂T
|P∂tT2i+1 (8.12)

(i 6= N)∂tT2i+1 = 1
cp(2i+1)

[
ε2i+1 −

L2i+2 − L2i

m2i+2 −m2i
− cp(2i+1)

vφ(2i+1)

R
∂φT(2i+1)

]
(8.13)

(i 6= 0) T2i+1 − T2i−1

m2i+1 −m2i−1
= ∇2i+1

T2i+1

m2i+1
(8.14)

∂tT2N−1 = 0 (8.15)
∂tL0 = 16wπR2σT 3

1 ∂tT1 (8.16)

Note that the boundary conditions are enforced in differential form. In addition, note
that our use of asymmetric differences in places should not matter in the limit of
large N .

The equations complete and discretized, we turn to the method of solution.
For numerical stability the backwards Euler method was used, such that all time
derivatives were written in the form

∂tA(t) = A(t+ dt)− A(t)
dt

. (8.17)

Thus the equations solved were of the form

f(t+ dt) = f(t) + dt
df

dt
|t=t+dt. (8.18)

This method is particularly appropriate given the stiff nature of ∇ in convection
zones, a fact that will be discussed at length later on. As the backwards Euler method
is an implicit integrator, it requires knowledge of all relevant derivatives evaluated in
the future. To solve for these self-consistently, a damped version of Newton’s method
was implemented. The Jacobian was constructed analytically, with the exception
of parts involving ∇, which were computed numerically. This then allowed for an
iterative solution of the form

f i+1(t+ dt) = f i(t+ dt) + λδ, (8.19)



8. TIME DEPENDENCE 129

where λ is an adaptively chosen damping parameter beginning at 0.3 for i = 0 and
then reduced geometrically whenever slow convergence was indicated. Here δ is the
solution to the equation

Ĵδ = −b, (8.20)
where b is a vector formed by subtracting the right side of each of the discretized
equations from the left and Ĵ is the operator formed from the derivatives of b’s
components with respect to the entries in f . The latter is fortunately sparse, and
so the equation does not require an explicit matrix inversion and hence is fast to
solve. The above procedure is iterated in the code until the error, as measured by b,
falls below a critical threshold, usually defined as 10−4 relative to f . Given a desired
time-step, this procedure was attempted first for the full step. If the solution proves
numerically unstable, the step is divided in two and attempted again. This is done
recursively until the full requested step has completed or until a certain number of
failures are reached, at which point an error is generated and the program exits.

It is finally worth noting that an initial settling period is allowed, generally twenty
time-steps, over which any deviations due to numerical imprecision in the steady
state solution are worked out and allowed to come to equilibrium. This generally
results in the luminosity of the star shifting by as much as several percent.

8.2 Fully Radiative Stars
The first model of interest is that of a completely radiative star, such that we
may verify our claim that such stars are only heated significantly at depths above
the heating one. Figure 8.1 shows the time evolution of just such a star, with
M = M�, R = R�, L = 100L�. From the figure it is clear that the change in
temperature does indeed drop off exponentially for Σ = Σh, as predicted. Additionally,
the value of ∆T/T at the surface, roughly 0.19, matches our expectation of

∆T
T0

=
L

1/4
f − L

1/4
i

L
1/4
i

=
(
Lf
Li

)1/4
− 1 = 21/4 − 1 = 0.19. (8.21)

To verify that the star was indeed in equilibrium at the end of this simulation, the
same scenario was run again with twice the total time interval, such that the final
108s had constant luminosity. The results of this are shown in figure 8.2. The good
agreement between the two simulations indicates that the star is indeed in equilibrium
at the end of the first one.

Now in many cases we are actually interested in the case where the star is initially
illuminated from without and that illumination is turned off. The results of simulating
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Figure 8.1: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star
of mass M�, radius R�, and luminosity 100L�. The external heat was put in at
Σ = 103g/cm2 and linearly increased from zero to 100L� over the course of 108s,
which is where the simulation ends. Color represents time, with the simulation
beginning at violet and ending with red.
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Figure 8.2: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star
of mass M�, radius R�, and luminosity 100L�. The external heat was put in at
Σ = 103g/cm2 and linearly increased from zero to 100L� over the course of 108s, after
which the simulation continued for another 108s to allow for equilibration. Color
represents time, with the simulation beginning at violet and ending with red.
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this scenario on the same radiative star as before are shown in figure 8.3. The trend is
just the same as before, with the temperature falling by the same amount it initially
rose, and the luminosity falling everywhere back down to the internally generated
value.

These results confirm that radiative stars exponentially damp temperature differ-
ences as a function of depth. Additionally, the quick response of radiative stars to
changes in external illumination mean that they track the present-day properties of
the pulsar wind. This, combined with possible anisotropies in their thermal profiles,
means that they may still be useful for exploring the environments pulsars produce.

8.3 Fully Convective Stars
We now turn to fully convective stars. Figure 8.4 shows a fully convective star with
M = 0.3M�, Lin = 0.1L�, R = 2.65R�. The star was initially subjected to external
illumination equal to its intrinsic illumination, and this was then turned off over the
course of 108s. To verify that the final state is indeed an equilibrium solution, this
scenario was then run for an additional 108s, with the results shown in figure 8.5.
The good agreement between these two figures indicates that 108s suffices to compute
an equilibrium, though the question of what is meant by equilibrium is actually quite
subtle in this case. As specified in the differential equations being solved, the solution
is in equilibrium. That is, all time derivatives are zero within the envelope. This does
not, however, mean that the solution describes an equilibrium scenario for the star
in question. This is because the luminosity at the lower boundary has adjusted up
to match the initial outer boundary luminosity. As a result heat is exiting the star
below this envelope faster than it is being produced by nuclear burning. This effect
is also seen in cases with much higher external luminosities, as shown in figure 8.6,
where Le = L�. To understand this, we must examine in more detail the structure of
∇ as a function of L.

In radiative zones, ∇ ∝ L, and so both lnT and L adjust to similar degrees
to changing circumstances. In convective regions, on the other hand, ∇ is nearly
independent of L, and so the equations become stiff in lnT relative to L. In the case
of a fully convective envelope, then, to a good approximation, T may be treated as
fixed, while L is allowed to vary. The surface temperature sets the outer boundary
condition on L, and so this leads to L rising in the interior to meet the outgoing flux
at the surface, rather than the surface flux falling to match that of the interior.

The process outlined above cannot happen instantaneously. Rather, the timescale
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Figure 8.3: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star
of mass M�, radius R�, and luminosity 100L�. The external heat was put in at
Σ = 103g/cm2 and linearly decreased from 100L� to zero over the course of 108s.
Color represents time, with the simulation beginning at violet and ending with red.
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Figure 8.4: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star of
mass 0.3M�, radius 2.65R�, and luminosity 0.1L�. The external heat was put in
at Σ = 103g/cm2 and linearly decreased from 0.1L� to zero over the course of 108s.
Color represents time, with the simulation beginning at violet and ending with red.
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Figure 8.5: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star of
mass 0.3M�, radius 2.65R�, and luminosity 0.1L�. The external heat was put in
at Σ = 103g/cm2 and linearly decreased from 0.1L� to zero over the course of 108s.
The simulation was then run for an additional 108s with no external heating. Color
represents time, with the simulation beginning at violet and ending with red.
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Figure 8.6: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star of
mass 0.3M�, radius 2.65R�, and luminosity 0.1L�. The external heat was put in
at Σ = 103g/cm2 and linearly decreased from L� to zero over the course of 108s.
The simulation was then run for an additional 108s with no external heating. Color
represents time, with the simulation beginning at violet and ending with red.
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of adjustment for L in a convection cell is set by the convective turnover time l/vc5,
and so what occurs is that the temperature adjusts due to the nonzero slope of L
in m for a time l/vc, after which the flux has uniformly risen to match the outer
boundary condition. At this point and in this region, the flux ceases to vary, and
hence ∂tT falls to zero. The expected change in T is then expected to be roughly

δT ≈ ∂tTδt ≈
∆L
cpδm

δz

vc
= ∆L

4πr2ρcpvc
, (8.22)

where δm and δz refer to the mass and thickness of a spherical shell of material, and
∆L is the change in luminosity, which should be equal to the external luminosity.
Now the convective flux may be written as

Fc ≈ ρv3
c ≈

Lin
4πr2 , (8.23)

so

δT ≈ Le
4πr2ρcp

(
Lin

4πr2ρ

)−1/3

= 1
cp

(
Le

4πr2ρ

)2/3 (
Le
Lin

)1/3
. (8.24)

This may also be written as

δ lnT ≈ δT

T
≈ v2

c

v2
s

(
Le
Lin

)
. (8.25)

Near the surface of a fully convective star, we usually have vc ≈ vs/10, so for Le = Lin
we expect δT/T ≈ 10−2. Furthermore, at higher pressures the sound speed rises
relative to the convection speed, and so the difference drops off. This may be
understood as following from the above result that δT ∝ ρ−2/3. The endpoint of this
process occurs when the moving "wavefront" of the flux change reaches the nuclear
burning regime. At this stage the temperature will drop significantly more, for there
is nowhere else for the wavefront to go.

To understand what happens next, we first remark that the convection zone will
adjust to maintain an adiabatic gradient on a timescale set by the convective turnover
rate. As a result, the timescale for the entire star to adjust to maintain this gradient
is

τadj =
∫ dr

vc
=
∫ 1
ρvc

dΣ ≈
∫
ρ−1

(
F

ρ

)−1/3

dΣ = F−1/3
∫
ρ−2/3dΣ, (8.26)

5Recall that this is why Acorn only takes time-steps which are at least max(l/vc) in size.
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where the integral is taken over the entire star. In a convective atmosphere, P ∝ ργ,
so ρ ∝ P 1/γ. If we make the thin atmosphere approximation throughout the star,
just to gain an order-of-magnitude estimate, then P = gΣ, and so

τadj ≈ g−1F−1/3
∫
ρ−2/3dP = g−1F−1/3ρ

−2/3
0

∫ (
P

P0

)−2/3γ
dP (8.27)

= 1
1− 2

3γ
g−1F−1/3ρ

−2/3
0 P

2/3γ
0

(
P

1−2/3γ
f − P 1−2/3γ

0

)
. (8.28)

Now γ is typically 5/3 outside of the ionization zone, so 2/3γ=2/5, and hence

τadj ≈
5P 2/5

0

3gF 1/3ρ
2/3
0

(
P

3/5
f − P 3/5

0

)
≈

5P 2/5
0 P

3/5
f

3gF 1/3ρ
2/3
0

=
5v2

s,0

3γgvc,0

(
Pf
P0

)3/5
=

v2
s,0

gvc,0

(
Pf
P0

)3/5
,

(8.29)
where we have made the approximation that the core pressure vastly exceeds the
pressure at the top of the convection zone. Now vc,0 is typically around vs,0/10, and
vs,0 is typically around 106cm/s ≈ 100sg, so the prefactor is around 103s. Typically
P0 ∼ 105erg/cm3, and Pf ∼ gM/(4πR2) ∼ 1015erg/cm3 for the sun, so the overall
timescale is around 103+6 = 109s, scaling roughly as M6/5R−12/5. For the fully
convective star considered in simulation, M = 0.3M� and R = 2.65R�, so this
timescale is smaller by a factor of 25, giving around 4× 107s, or roughly a year.

On the other hand, the core adjusts its temperature in time

τcore = mcorecpTcore
Le

= fM
Lin
Le

τK = fM
GM2

2RLe
, (8.30)

where fM ≈ 1/10 is the fraction of the star’s mass in the core and τK is the Kelvin
timescale for the star. This is typically of order ten million years, and so if Le = Lin
the core’s adjustment timescale is of order a million years. As this is much shorter
than the timescale required to maintain adiabaticity, the star may be approximated
as being adiabatic at all times after the cooling wavefront reaches the core.

8.4 Mixed Stars
For stars with a convection zone above a radiative region, there are two considerations
which our steady-state analysis leads us to expect to differ from the fully convective
case. First, any bloating effects are limited to the convection zone, and so the extent
of bloating is decreased proportional to the size of the zone. Additionally, the nuclear
burning of the core is unchanged by the addition or removal of external illumination
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in these stars, meaning that the bloating effect is further decreased by the amount
given in figure 2.7.

To investigate these effects in the transient case, we first simulated a sun-type
star initially illuminated by Le = L� and watched as the illumination was turned
off. The results of this are shown in figure 8.7. The key feature we see here is
that the luminosity sits fixed near the initial steady-state value at the surface, and
that the main effect of time evolution is to push the transition between this value
and the nuclear-burning value deeper into the star. The depth at which this occurs
is between Σ = 104g/cm2 and Σ = 105g/cm2, just slightly deeper than the point
in our steady-state calculations where the radiative-convective transition arises in
illuminated equilibrium in this sort of star. This feature is not unique to stars of
M = M�. Figure 8.8 shows a star of the form examined in the preceding section,
but with Le = 10L�. This star exhibits a similar transition between radiative and
convective heat transport in the steady state and hence exhibits a similar transient
adjustment process. The story behind the evolution of stars such as these is then
that the external illumination shuts off convection beyond a certain depth. When
the illumination is removed, that radiative region dampens the resulting change in
temperature exponentially into the star, while the convective region maintains a
luminosity close to the initial steady-state value. This is precisely what we see, but we
can further test this notion by examining the star on longer timescales. If this story
is correct, the star will slowly turn the radiative zone back into a convection zone,
and in the process the luminosity profile will settle down to have L = L� everywhere.

To determine if this is the case, the simulation was run for another 108s and found
indeed to be out of equilibrium, a feature not seen in any of the previous scenarios
considered. The results of the longer simulation are shown in figure 8.9. Note that as
the luminosity transition region pushes deeper into the star, the magnitude of the
transition falls. Over even longer timescales, the equilibration continues but slows
down somewhat, as shown in figure 8.10. The adjustment time for this process is on
the order of the thermal timescale for the entire region in which the mode of heat
transport shifted from being convective to being radiative, perhaps decreased by a
factor of 10 to account for the relatively small temperature changes required to do
this at high Σ. As a result, the full adjustment process requires timescales beyond the
realm of validity of our lower boundary condition on T . Fortunately all that matters
for our purposes are the trend and timescale involved, which are clearly seen in the
simulations which are accessible.
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Figure 8.7: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star of mass
M�, radius R�, and luminosity L�. The external heat was put in at Σ = 103g/cm2

and linearly decreased from L� to zero over the course of 108s. Color represents time,
with the simulation beginning at violet and ending with red.
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Figure 8.8: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star of
mass 0.3M�, radius 2.65R�, and luminosity 0.1L�. The external heat was put in
at Σ = 103g/cm2 and linearly decreased from 10L� to zero over the course of 108s.
The simulation was then run for an additional 108s with no external heating. Color
represents time, with the simulation beginning at violet and ending with red.
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Figure 8.9: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star of mass
M�, radius R�, and luminosity L�. The external heat was put in at Σ = 103g/cm2

and linearly decreased from L� to zero over the course of 108s. It was then run for
another 108s at that value. Color represents time, with the simulation beginning at
violet and ending with red.
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Figure 8.10: ∆T/T0 (top) and L/L� (bottom) versus log Σ (in g/cm2) for a star
of mass M�, radius R�, and luminosity L�. The external heat was put in at
Σ = 103g/cm2 and immediately decreased from L� to zero over the course of 108s
before being run for another 109s. Color represents time, with the simulation beginning
at violet and ending with red.
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9

X-Ray Binaries

You know, you blow up one sun and suddenly everyone expects you to
walk on water.

– Lt Col. Samantha Carter, Stargate SG-1 Season 8 Episode 17

The results presented thus far have been general, in the sense that while there
were motivating examples of phenomena of interest, many avenues were pursued
to provide a picture of the phenomenology of pulsar-companion systems. We are
now interested in examining the specific case in which the pulsar interacts with its
companion to produce transient X-ray emissions. This case has long been studied1,
though conclusions have proven scarce. In addition, while in previous chapters the
companion was a passive agent, here we will consider the role it plays in influencing
its own fate. The first section deals with the isotropic illumination case, while the
second discusses the effects of anisotropy.

9.1 Accretion rate
The initial heating of the star causes it to expand at some rate Ṙ. This rate is
everywhere the same in the atmosphere due to the expansion being driven by deep
heating, as discussed earlier. As the atmosphere of the star falls off exponentially

1J. C. Brown and C. B. Boyle. “An exploratory eccentric orbit ’Roche lobe’ overflow model
for recurrent X-ray transients”. In: Astronomy and Astrophysics 141 (Dec. 1984), pp. 369–375;
H. Ritter, Z.-Y. Zhang, and U. Kolb. “Irradiation and mass transfer in low-mass compact binaries”.
In: Astronomy and Astrophysics 360 (Aug. 2000), p. 969. eprint: astro-ph/0005480; A. R. King
et al. “Mass Transfer Cycles in Close Binaries with Evolved Companions”. In: The Astrophysical
Journal 482 (June 1997), pp. 919–928. eprint: astro-ph/9701206.
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in the radial coordinate above the photosphere, no significant accretion is expected
until this region approaches the Roche lobe radius Rb. The accretion rate is expected
to be2

Ṁ =
√

2πRhsvsρ(Rb). (9.1)
Here hs ≈ Rv2

s/v
2
0, where v0 is the orbital velocity of the star. This is due to the fact

that in the vicinity of the Roche lobe, the pressure profile is set by orbital parameters
rather than the thermal structure of the star. As a result, we may write

Ṁ ≈
√

2πR2v−2
0 v3

sρ(Rb). (9.2)

If the accretion rate is low3, it typically means that ρ is low at Rb, the Roche
radius, and hence that we are in the upper portion of the atmosphere. This allows us
to make use of ρ ∝ exp(−r/hs) and write

Ṁ ≈
√

2πR2v−2
0 v3

sρ0 exp
(
rv2

0
Rv2

s

)
=
√

2πΩ−2v3
sρ0 exp

(
rR2

0Ω2

Rv2
s

)
, (9.3)

where ρ0 is chosen to make this relation true and r is a Lagrangian quantity. For
the accretion to be significant we must have R ≈ Rb, for R,Rb � hs because
v0 ≈ 107cm/s� 105cm/s ≈ vs. Thus

Ṁ ≈
√

2πΩ−2v3
sρ0 exp

(
rR2

0Ω2

Rbv2
s

)
. (9.4)

In Part 1, we found that only stars with deep convection can swell to the point where
R ∼ Rb, so we restrict ourselves to stars of this form. As a result, M < 1.2M�. Using
Mp ≈ 2M�, we may approximate4

Rb ≈ 0.46R0

(
M

M +Mp

)1/3

, (9.5)

yielding

Ṁ ≈
√

2πΩ−2v3
sρ0 exp

(
2rR0Ω2(M +Mp)2/3

M2/3v2
s

)
, (9.6)

2Brown and Boyle, op. cit.
3Using Eq. (9.2), we find that Ṁ ∼ 1024ρcm3/s. Based on the data in Appendix E, the exponential

atmosphere assumption holds at least up to ρ ∼ 10−8g/cm3, so we are safe making this assumption
if Ṁ < 1016g/s. As will become clear subsequently, this is much larger than the typical values we
will encounter.

4B. Paczyński. “Evolutionary Processes in Close Binary Systems”. In: Annual Review of
Astronomy and Astrophysics 9 (1971), p. 183. doi: 10.1146/annurev.aa.09.090171.001151.

http://dx.doi.org/10.1146/annurev.aa.09.090171.001151
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where

R0 =
(
G(M +Mp)

Ω2

)1/3

. (9.7)

Typical atmospheric temperatures are such that µ = mp, so γ = 5/3 and

v2
s = 5kBT

3mp

. (9.8)

Thus we can compute all of the quantities in the exponential.
Now we haven’t yet fixed r or ρ0, and so we actually have the freedom to absorb

any constants we wish. Furthermore, relative to the exponential the dependence on
T is negligible, so we may let T → T0 for some reference photospheric temperature
T0 and absorb it as well. Thus we will write instead

Ṁ ≈ exp
(

2rR0Ω2(M +Mp)2/3

M2/3v2
s

)
. (9.9)

We now no longer have the freedom to pick the zero-point of r. Rather, it is uniquely
determined given Ṁ at some time. Without solving for it, though, we may write

M̈ = 2R0Ω2(M +Mp)2/3

M2/3v2
s

ṙṀ . (9.10)

Using ṙ = Ṙ and dividing through by Ṁ yields

∂t ln Ṁ = 2rR0Ω2(M +Mp)2/3

M2/3v2
s

Ṙ. (9.11)

This equation is independent of the zero-point of r, for r no longer appears anywhere
in it. Given ln Ṁ at some point in time, we may use this relation to determine it at
any subsequent point so long as we know Ṙ.

9.2 Pre-Roche Expansion
Recall that the radius of the star obeys

dr

dm
= 1

4πr2ρ
. (9.12)

This may also be written as
dr3

dm
= 3

4πρ. (9.13)
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Differentiating with respect to time gives

d

dm

(
dr3

dt

)
= −3

4πρ

(
d ln ρ
dt

)
= −dr

3

dm

(
d ln ρ
dt

)
. (9.14)

At fixed pressure, d ln ρ = −d lnT , neglecting the small space occupied by the
ionization zone, so

d ln ρ
dt

= −d lnT
dt

. (9.15)

As a result,
d

dm

(
dr3

dt

)
= dr3

dm

d lnT
dt

, (9.16)

and hence
dR3

dt
= R3d lnT

dt
. (9.17)

Note that we have assumed here that the majority of the star, as measured by
the radial coordinate cubed, is convective. This is equivalent to assuming that the
majority of the volume of the star is convective. This must be true in order for us to
get the expansion of interest, and so may be thought of as a condition on the star,
rather than an assumption to be tested later on. Though in equilibrium many stars
become fully radiative, as we found in Chapter 2, during the initial expansion the
star remains convective for quite a while. For many systems the equilibrium state is
never reached, as the Roche lobe overflows well before this occurs, and so we may
safely assume that a substantial convection zone remains.

Now the convective turnover timescale of the star is given by Eq. (8.29) as

τadj =
v2
s,0

gvc,0

(
Pf
P0

)3/5
, (9.18)

where vc,0 is the convection speed near the top of the efficient convection region (i.e.
where Γ ∼ 10), vs,0 is the sound speed at the same location, P0 is the pressure at
the same location, and Pf is the pressure at the base of the convection zone. The
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thermal adjustment time, on the other hand, is

τ ′adj =
∫
conv cpTdm

(Li + Le − Lsurface)
(9.19)

=
∫
conv cpT4πr2dp

g (Li + Le − Lsurface)
(9.20)

≈ 4πR2cpT0P0 (Pf/P0)∇ad+1

g(∇ad + 1) (Li + Le − Lsurface)
(9.21)

=
4πR2v2

s,0P0 (Pf/P0)∇ad+1

gγ(∇ad + 1) (Li + Le − Lsurface)
(9.22)

= 4πR2τadjvc,0P0 (Pf/P0)∇ad+2/5

γ(∇ad + 1) (Li + Le − Lsurface)
(9.23)

= 4πR2τadjvc,0P0 (Pf/P0)∇ad+2/5

γ(∇ad + 1) (Li + Le − Lsurface)
(9.24)

∴
τ ′adj
τadj
≈ 4πR2P0vc,0 (Pf/P0)∇ad+2/5

γ(∇ad + 1) (Li + Le − Lsurface)
. (9.25)

Note that we have made use of the fact that the heat being bottled up is Li + Le −
Lsurface, where Li is a time-dependent quantity in the case that the core is heated. This
is the isotropic expression, as we are assuming deep convection. Now R ∼ 1011cm,
vc,0 is generally between 104cm/s and 105cm/s, P0 ∼ 105erg/cm3, Li < 1035erg/s, so
this ratio is at least

τ ′adj
τadj

= 10−7 (Pf/P0)∇ad+2/5 ∼ 10−7 (Pf/P0)4/5 . (9.26)

As long as Pf > 108P0 the thermal adjustment time is greater than the convective
adjustment time, and we may take the convective gradient to hold everywhere. This
will always be the case in the stars of interest: if it does not hold, a substantial
fraction of the convection zone will disappear when the heating is introduced, as
discussed in Chapter 2.

Our result involving R3 may now be cast as a result involving R, giving

Ṙ = R

3
d lnT
dt

. (9.27)

Now the characteristic timescale defined by d lnT/dt is just τ ′adj, so

Ṙ = R

3
d lnT
dt

= R

3τ ′adj
= gγ(∇ad + 1) (Li + Le − Lsurface)

12πRv2
s,0P0 (Pf/P0)∇ad+1 . (9.28)
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Note that we have neglected the gravitational potential energy associated with the
change in radius. By the virial theorem, we expect that the fraction of the input
energy which goes into changing the gravitational potential is half that which goes
into changing the temperature. As this is an order unity correction we are justified
in neglecting it.

Now there are three possible cases. First, the Roche radius may exceed the
maximum possible radius the star can expand to. In this case no accretion is observed.
Second, the Roche radius may be smaller than the main sequence radius of the star.
In this case we expect the star to cataclysmically accrete onto the companion. This
possibility has been extensively studied elsewhere and is not the focus of this text.
Finally, the Roche radius may lie between the main sequence radius of the companion
and the maximum possible radius the companion can expand to. It is this final case
which is of interest in this chapter.

To examine the case of interest, we need to compute the maximum possible
post-expansion companion radius. Formally, the problem of interest is to determine
the maximum R consistent with the constraint that R = Rb and with the incident
external illumination Le. To do this, we must first determine the depth of the base
of the convection zone. In the region deeper than the ionization zone, the Kramer
opacities are valid and we may write

κ = βPT−4.5, (9.29)
where β is a constant independent of pressure or temperature. As we are interested
in the expansion of the entire star, we may focus on this region and neglect effects
near the surface. The base of the convection zone is the location where

∇ad = ∇rad. (9.30)
Solving this with the known form of ∇rad gives

T 9.5 = 3βP 2L

16πacGM∇ad

. (9.31)

As we are working deep in the star, ∇ad is a constant, and so we know that there is
only one solution. Now at any given pressure in the convection zone,

T = T0

(
P

P0

)∇ad
, (9.32)

where T0 and P0 are just the temperature and pressure at some reference position in
the convection zone. Using this we may solve for the base of the convection zone as

Pf = P0

(
∇rad(P = P0)

∇ad

) 1
9.5∇ad−2

. (9.33)
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Using ∇ad = 0.4, the exponent may be evaluated as 0.56. Thus

Pf = P0

(
∇rad(P = P0)

∇ad

)0.56

. (9.34)

What this means is that we may compute a stellar envelope down to some position
deeper than the ionization zone and determine the position of the base of the convection
zone from local thermodynamic quantities in the envelope. This means that if the
computed Pf is smaller than P0, we know that the envelope is radiative through the
reference pressure. We will pick P0 as shallow as possible while remaining deeper
than the ionization zone, such that this allows us to classify the entire envelope minus
the portion very close to the surface. In practice this amounts to picking a test P0
above the ionization zone, and then increasing it geometrically until a well-converged
envelope matching the self-consistency conditions is achieved.

Using our knowledge of Pf , along with our equations giving Ṙ in terms of it, we
may compute the radius of a star as a function of its main sequence and current Pf
values. This is just given by

R(P ′f ) = R(Pf ) max
(

1, Pf
P ′f

) 2
3∗9.5

, (9.35)

where we have once more made use of Kramer’s opacities in the deep stellar inte-
rior. We see that this provides a self-consistency relation which must be evaluated
numerically. To solve this, an add-on to the core Acorn code was developed. The
full code is shown in Appendix B.2. It begins by computing for a given star and a
given pulsar luminosity the maximum radius the star may achieve through thermal
expansion. This accounts for the fact that the orbital position is not independent of
the Roche radius, as well as the fact that the incident flux is not independent of the
orbital position. A shooting method is used in these computations, where a guess
of P ′f is used to compute a new value of it. The resulting radius is averaged with
that of the previous guess, and used as input for the next iteration. Convergence is
achieved when the radius changes by less than 10−3R� per iteration. To determine
the surface luminosity of stars with radii between the main sequence radius and the
maximum radius, binary search is used. The algorithm tracks a lower and upper
bound on the luminosity, initially between Le and Le + Li. Given such an interval,
the radius resulting from the midpoint luminosity is computed. If this is larger than
the desired radius, the upper bound on the interval is set to the midpoint. Likewise
if it is smaller than the desired radius, the lower bound is set to the midpoint. The
algorithm converges when the computed radius minus the main sequence radius is
within one part in one thousand of the desired difference.
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Putting all of this together, we can compute the characteristic timescale τexp =
hs/Ṙ over which Ṁ increases by a factor of e. A plot of this is shown in figure 9.1.
Note that low mass stars have a much easier time expanding, both because they have
lower thermal content and because they both can be and have to be much closer to
the pulsar to satisfy the expansion criteria.

9.3 Post-Roche Accretion
From the previous section, we know that the characteristic increase timescale τexp
for Ṁ is of order of a century for most stars. This exponential increase in Ṁ clearly
cannot continue indefinitely. There are three processes which may interrupt it. First,
the star could continue expanding until it all overflows the Roche lobe. This is unlikely
given that long before that happens the pulsar’s radiation will be blocked by the
accreting material. This is the second possibility: the accreting material can prevent
the heating from continuing, putting an upper limit on Ṁ . Finally, the star can reach
a balance where the amount of heat being removed by the accreting material equals
the input heat.

Ignoring the first possibility, we turn to the second. Let r be distance from the
pulsar. The pressure exerted by the pulsar wind is

Pw = Lp
4πr2c

. (9.36)

The pressure exerted by the accreting material is given roughly by ρv2
r , where vr

is the radial velocity. If we assume that the accreting material spreads out in all
directions by the time it reaches the pulsar, then

Ṁ = 4πr2ρv. (9.37)

Now v should be roughly the free-fall velocity onto the pulsar, given by

v ∼ GMp

r
, (9.38)

so assuming spherical accretion yields

Pacc =
Ṁ
√
GMp

4πr5/2 . (9.39)

Equating this with the pulsar wind pressure, we find

req = GMpc
2

L2
p

Ṁ2. (9.40)
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Figure 9.1: The vertical axis is logP in seconds, the horizontal axis is the com-
panion mass M in solar masses, and the color represents the log of the expansion
timescale hs/Ṙ in seconds. The four different plots correspond to four different pulsar
luminosities.
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If this radius falls within the Pulsar’s light cylinder it will bury the magnetic field5.
This occurs when

Ṁc = Lp√
ωGMpc

= 5× 1013P1/2
p,−3

Lp
L�

g/s, (9.41)

where Pp,−3 is the pulsar period measured in milliseconds. We may compute the
thermal energy lost when this mass leaves the star at ∼ 104K. The result is roughly
3 × 10−8Lp. As the input heat is expected to be only a few orders of magnitude
below Lp, this effect is negligible. Thus we expect the limiting factor in the accretion
process to be that the heat coming from the pulsar is blocked above a certain Ṁ .

Now at the accretion rate Ṁc we may estimate the structure of the accretion disk
which forms. The accretion luminosity is

Lacc = GMpṀ

R0/2
. (9.42)

We may equate this with the heat flux of the disk as a black body, giving

T =
(
GMpṀ

πR3
0σ

)1/4

. (9.43)

If the disk is optically thin, then the temperature gradient in the vertical direction is
negligible. We will assume that this is the case, and later demonstrate its consistency
in the regimes of interest. The remaining structural equations which must be solved

5There is some evidence that the actual radius to compare to is smaller than the light cylinder
radius by a factor of 20 or so (Unal Ertan. “Inner disk radius, accretion and the propeller effect in
the spin-down phase of neutron stars”. In: []. eprint: http://arxiv.org/pdf/1504.03996v1.pdf).
As this work is only suggestive, we proceed with the currently accepted model. If it turns out that a
smaller radius is necessary, the critical accretion rates and associated luminosities will be reduced,
which would mean a higher disk timescale and hence more type 1 cycles, as will be explained in
subsequent sections. If the increase in timescale is sufficient, it could even allow asteroids and other
similar objects to form in the disk, providing an explanation for some of the timing noise in pulsars
with known companions.

http://arxiv.org/pdf/1504.03996v1.pdf
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are6

hs = vsR
3/2
0√

GMp

(9.44)

v2
s = P

ρ
(9.45)

αvshsΣ = Ṁ

3πf, (9.46)

where α is a dimensionless parameter less than unity relating the viscosity of the
disk to the product of hs and vs, and f is a dimensionless parameter equal to
(1−

√
Rinner/R0)1/4 ≈ 1. Solving for Σ yields

Σ ≈ 2Ṁmp

3αkBTP

√
M

2 +M
, (9.47)

where M is measured in solar masses. Plugging in Ṁ = 1013g/s, P ∼ 104s, and
α > 10−2 yields Σ < 2g/cm2. Low-temperature opacities tend towards ∼ 1cm2/g, so
for this Ṁ the optically-thin assumption is valid. The worst case scenario for this
assumption while still keeping Ṁ sub-critical occurs when T ∼ 103K. For hotter disks,
the opacity drops off by several orders of magnitude7. When T is 103K, Σ is between
0.2g/cm2 and 20g/cm2, depending on the chosen value of α. Here τ can be as great
as 10, so taking the system to be optically thin is perhaps not a good assumption. On
the other hand, the ratio of the disk interior temperature to the surface temperature
goes as the optical depth to the one-fourth power, and this ratio is the resulting error
in the scale height and squared sound speed, so even an optical depth of 10 does not
incur error in Σ greater than the existing error due to the uncertainty in α. Thus we
will proceed with the optically-thin assumption.

Now the radial velocity of the accreting material is determined by the timescale
over which viscosity dissipates angular momentum. This is given by8

τdisk = R2
0
ν

= R2
0

αhsv0
= R0

α

√
mp

kBT
∼ 3× 105sR5/8

0 Ṁ
−1/8
13.7 , (9.48)

6T. Padmanabhan. Theoretical Astrophysics. Vol. 2. ISBN: 978-0521566315. Cambridge
University Press, 2001. Chap. 6.

7Jason W. Ferguson et al. “Low-Temperature Opacities”. In: The Astrophysical Journal 623.1
(2005), p. 585. url: http://stacks.iop.org/0004-637X/623/i=1/a=585.

8D. Lynden-Bell and J. E. Pringle. “The evolution of viscous discs and the origin of the nebular
variables.” In: Monthly Notices of the Royal Astronomical Society 168 (Sept. 1974), pp. 603–637.

http://stacks.iop.org/0004-637X/623/i=1/a=585
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where R0 is measured in solar radii. At the critical accretion rate, this is

τdisk,c = 3× 105sL−1/8
p P−1/16

p,−3 R
5/8
0 , (9.49)

where Lp is measured in solar luminosities, R0 is in solar radii, and P is measured in
seconds. This timescale may be viewed as the time over which material falling onto
the outer edge of the disk travels to the inner edge when the accretion rate is near
the critical value. We see that in most cases this is quite short, only of order one
hundred orbits.

It is extremely important to note in this analysis that the pulsar field only turns
off when the mass loss rate on the inner edge of the disk reaches the critical value.
In the event that the disk forms quickly relative to τexp, this Ṁ is the same as the Ṁ
which fell onto the disk a time τdisk earlier, so there is a time delay associated with
waiting for the material to reach the pulsar. This has two key impacts on our system.
First, it introduces the possibility of limit-cycles by building in a characteristic delay
timescale, and second it allows the mass loss rate to continue to grow after Ṁc has
been reached at the companion. When the disk timescale is not too much longer than
the expansion timescale, the typical overshoot in mass loss associated with this delay
is

∆ ln Ṁ = τdisk

τexp
. (9.50)

We can plot this using our numerical results for τexp. In figure 9.2 we have done this
for a variety of Lp values with Pp = 10−3s. Examining the figure, we see in all cases
that the growth is negligible, so the limit-cycle possibility is the key impact of the
disk clearing time.

Of course, in the event that the disk forms slowly, the disk forming time may
become the relevant parameter. In this case, we expect

∆ ln Ṁ = τspread

τexp
, (9.51)

where τspread is the time the disk takes to form and spread once the companion star
overflows the Roche radius. We will consider this timescale in more detail in later
sections.
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Figure 9.2: The vertical axis is logP in seconds, the horizontal axis is the companion
mass M in solar masses, and the color represents the log of τdisk/τexp. The four plots
correspond to different pulsar luminosities.
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9.4 Critical Accretion Dynamics
Once the accretion rate reaches the critical rate, the heating stops on a very short
timescale9. At this point, the short time dynamics of the star are important. The
envelope has some momentum, as Ṙ was 2× 10−3cm/s prior to the heating ceasing.
This will continue at a minimum until a wave traveling at the sound speed traverses
the star, which takes time R/vs ∼ 105s. More importantly, the deep convective and
shallow regions have characteristic adjustment timescales which exceed this.

As discussed in Chapters 2 and 8, the convection zone cannot adjust on timescales
shorter than the eddy turnover time. This was determined in Chapter 2 to be

τeddy ∼
v2
s,0

gvc,0

(
Pf
P0

)3/5
(9.52)

=
v2
s,0

gvc,0

(
Pf
Pc

)3/5 (Pc
P0

)3/5
(9.53)

= 5× 108 M1/5T0,4

R2/5P
3/5
0,5 vc,0,5

min
(

1, 1
2M

−4/5
)
, (9.54)

where P9 is the pressure at the top of the convection zone, T0 is the corresponding
temperature, vc,0 is the convection speed at the top of the efficient portion of the
convection zone, and M and R are measured in solar units. This sets a lower bound
on the adjustment timescale for the convection zone. In the event that this is longer
than the thermal adjustment timescale, then eddy turnover is the limiting factor
and we expect this to be the relevant timescale. If, on the other hand, adjusting the
thermal profile to match the new flux profile takes longer, then the time that takes is
the relevant timescale.

To quantify the thermal adjustment timescale, we first compute ∂L∇. Note that
the thermal gradient needs very little correction, as ∇ is very nearly independent of
L. Making use of the mixing length theory from Gob10, we may write

∇ = ∇ad + (∇rad −∇ad) y(y + V ), (9.55)

2A
V
y3 + y2 + V y − 1 = 0, (9.56)

9Naively one might expect this to be R0/c, typically of order one second. There are, however,
geometric factors involved which adjust on the star’s orbital period, so a few hours is probably a
better estimate.

10B. Paczyński. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
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and
V = 1

γ0

√
C (∇rad −∇ad)

, (9.57)

where A,C, γ0, and ∇ad are parameters independent of L and where V is typically
within an order of magnitude of unity. Implicit differentiation of the second equation
yields

6A
V
y2∂Ly −

2A
V 2 y

3∂LV + 2y∂Ly + y∂LV + V ∂Ly = 0, (9.58)

and hence

∂Ly =
2A
V 2y

3∂LV + y∂LV

V + 2y + 6A
V
y2 = −

(
V

2(∇rad −∇ad)

) 2A
V 2y

3 + y

V + 2y + 6A
V
y2∂L∇rad. (9.59)

This may be used to compute ∂L∇ as

∂L∇ = y(y + V )∂L∇rad + (∇rad −∇ad)2y∂Ly + (∇rad −∇ad) (V ∂Ly + y∂LV )

(9.60)

=
(
y(y + V )−

2A
V 2y

3 + y

V + 2y + 6A
V
y2

[
V y + V 2

2

]
− yV

2

)
∂L∇rad (9.61)

=
(
y2(V + 2y)(V + 2Ay)
V 2 + 2V y + 6Ay2

)
∂L∇rad. (9.62)

Now (∇rad −∇ad)y(y + V ) is a measure of the superadiabaticity of the convection.
Denote this by P. Then in efficient convection we expect P � 1, and hence y(y+V )�
1, as ∇rad −∇ad is typically at least of order 0.1 in convection zones. Thus y � 1, so

∂lnL ln∇ ∼ y2∂lnL ln∇rad. (9.63)

We can relate y to vc as11

vc = yvs

√
∇rad −∇ad

8 ∼ 1
3yvs∇

1/2
rad. (9.64)

The ratio of the time dt over which the thermal structure in a layer adjusts to the
thickness dr of the layer is

vadj = Fe
ρcpT∆ (∇ad)

= Fi
ρcpTy2∇rad

= v3
c

v2
sy

2∇rad

= 1
30yvs∇

1/2
rad = vc

10 . (9.65)

11Ibid.
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whereas the corresponding rate for eddy adjustment is just vc. Thus the true timescale
over which the convection zone "notices" that the heating has been turned off is ten
times the eddy timescale. The change in temperature is just

∆T = ∆L
4πR2ρvadjcp

. (9.66)

The resulting rate at which R changes is

Ṙ = vadj
∆T
T

= ∆L
4πR2ρcpT

= ∆L
10πR2P

, (9.67)

where here ρ is evaluated at the location of the advancing flux adjustment wave and
∆L is Le + Li − Lsurface. Using P ∼ exp(vadjt/l), we may write

Ṙ = vadj
∆T
T

= ∆Le−vct/10

4πR2P0
, (9.68)

where P0 is the pressure at the shallowest point in the convection zone above the
ionization zone. When the adjustment wave reaches the base of the convection zone,
Ṙ approaches the negative of the expansion rate.

We now turn to the shallow case. When the external illumination is turned off the
upper envelope temperature drops due to ∂mL− ε being nonzero in the heating zone.
Simultaneously, the convection zone adjusts to provide the flux needed to match the
surface temperature. The boundary condition which reconciles these two is that the
convection zone maintains an adiabatic gradient, and so deeper than the ionization
zone its temperature must be effectively unchanged. The code we have used to
compute the various expansion plots shown previously has a module which computes
this process, once more using binary search. Here the objective is to minimize the
deviation in the convection zone temperature in the parts deeper than the ionization
zone from the heated value, and the free parameter is the surface temperature. The
resulting stellar structure allows us to compute the extent of the fast contraction,
occurring on a thermal timescale for the heating zone, for each heated stellar model.
The results of this calculation are shown in figure 9.3. Note that this contraction does
not just occur on the day side of the star. In cases where substantial bloating has
occurred, the flux profile has been altered by winds, so turning off the illumination
does precisely what would be expected from these calculations. The characteristic
timescale for adjustment of the day-side surface region is just

τrad ∼
4πR2ΣhcpT

∆L = Li
∆L

(
Σhcp
T 3σ

)
= 104 Li

(T/T�)3∆Ls. (9.69)
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Figure 9.3: The vertical axis is logP in seconds, the horizontal axis is the companion
mass M in solar masses, and the color represents the log of the ratio of the quick
contraction length to the scale height. The four plots correspond to different pulsar
luminosities.
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Figure 9.4: The vertical axis is logP in seconds, the horizontal axis is the companion
mass M in solar masses, and the color represents the log of the contraction timescale.
The four plots correspond to different pulsar luminosities.

Now only the irradiated side can adjust this quickly: the other side, if radiative,
will adjust on the wind timescale, typically an order of magnitude longer than the
sound speed timescale. Thus 106s is an upper bound on the timescale associated
with radiative envelope adjustments. This is much faster than the eddy or convective
thermal timescale, both at least four orders of magnitude larger, and so this will be
the dominant timescale where applicable.

Putting it all together, we may compute the expected timescale over which the
accretion rate drops by a factor of ten when the heating turns off. This is shown
in figure 9.4. We see that for most stars, the time is quite short. For those which
have the least sudden contraction, the timescale is longest, as expected. The divide
is primarily one of mass, indicating that companion mass is the primary determining
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factor in the accretion response of the companion.
One thing worth noting is that the computed contraction timescales are, to leading

order, the same as the expected expansion timescales if the pulsar is turned off and
then back on. The ratio of the disk time to the contraction time can then provide a
measure of Ṁ overshoot, and is shown in figure 9.5.

9.5 Limit Cycles
Having now characterized the initial heating, post-Roche processes, and accretion
disk dynamics, we now turn to the possibility of a limit cycle. The general picture is
this:

1. The initial heat goes on until the star overflows its Roche-lobe.

2. The resulting accretion builds up a disk.

3. When Ṁ = Ṁc at the inside of the disk, a time τdisk after Ṁ on the star reaches
this value, the pulsar shuts off.

4. The accretion turns off as the companion cools.

5. The accretion disk clears after time τdisk, after which the pulsar turns back on.

6. Accretion begins rapidly, as the radiative zone expands once more and begins
to build a disk.

7. Time τdisk later, the material reaches the pulsar and it turns off. The process
then repeats.

There are four timescales which are potentially of interest for these cycles:

1. τdisk - The time over which the equilibrium disk adjusts to perturbations.

2. τspread - The time over which a disk forms and spreads to the pulsar.

3. τM - The timescale over which Ṁ changes by a factor of e prior to the limit
cycle. Note that this is the same as τexp.

4. τM,L - The timescale over which Ṁ changes by a factor of e inside the limit
cycle. Note that this is what we have previously been calling τcontraction, as the
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Figure 9.5: The vertical axis is logP in seconds, the horizontal axis is the companion
mass M in solar masses, and the color represents the log of the ratio of the critical
disk viscous timescale to the contraction timescale. The four plots correspond to
different pulsar luminosities.
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corresponding timescale for expansion when the pulsar turns on is the same to
leading order12.

To investigate the properties of these limit cycles, we begin by computing τspread,
as it is the only timescale of interest which we have not determined. To that end,
suppose that we have a disk with inner radius Ri and outer radius equal to the
companion orbital radius R0. The area of the disk is then

A = π
(
R2

0 −R2
i

)
, (9.70)

and the accretion luminosity is

La = GMpṀ

Ra

, (9.71)

where
Ra ≡

R0 +Ri

2 (9.72)

is the mean radius. If the disk thermally equilibrates on timescales short relative to
τspread, as we will verify is the case, then

T =
(
La

2Aσ

)1/4
. (9.73)

We will later verify that Σ monotonically approaches its equilibrium value, such
that our prior calculations showing that the surface and interior temperatures of
equilibrium disks applies here as well. Assuming this for the moment, we find that
the viscous timescale for the disk is

τvisc = R2
0
ν

= 3πR2
0vsΣ

Ṁfv0
, (9.74)

where v0 is mean orbital speed, vs is the mean sound speed, Σ is the mean column
density, and f is given by

f ≡
(

1−
√
Ri

R0

)1/4

. (9.75)

In the limit where R0 −Ri � R0, we may write

R0 −Ri = εR0. (9.76)
12There is a small discrepancy due to the changed thermal properties of the star, but this is

irrelevant at the level of estimation being used here.
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In this regime,

f =
(
ε

2

)1/4
(9.77)

A = 2πR2
0ε (9.78)

vs
vs,0

=
(
A

A0

)−1/8
= (2ε)−1/8, (9.79)

where vs,0 is the equilibrium mean sound speed and vs is the instantaneous mean
sound speed. Using these approximations, as well as our expression in Eq. (9.48) for
τdisk, we may expand τvisc as

τvisc = 1
23+1/8 τdiskε

−11/8, (9.80)

where τdisk is the timescale for the equilibrium disk at this Ṁ . Note that in performing
this expansion, we made use of the fact that the mean orbital radius and mean sound
speed both depend on ε. The differential equation for the evolution of ε is therefore

∂tε = 23+1/8τ−1
diskε

11/8, (9.81)

and hence
ε =

(
ε
−3/8
0 − 3× 21/8 t

τdisk

)−8/3
. (9.82)

Setting this equal to unity, we see that

τspread

τdisk
= ε

−3/8
0 − 1
3× 21/8 . (9.83)

This method of solution is justified by the fact that τvisc diverges at small ε, and hence
we may focus on the time spent in that regime. Now typically we expect ε0, which
measures the initial disk width in units of R0, to be comparable to the atmospheric
scale height of the companion. This is given by Rbv

2
s/v

2
0, so

ε0 = Rb

R0

(
vs
v0

)2
= 0.46

(
M

M +Mp

)1/3 (
vs
v0

)2
. (9.84)

For an order of magnitude estimate, we note that M ∼ M�, Mp ≈ 2M�, and
vs ∼ v0/10, giving ε0 ∼ 1/300. As a result, we may write simply

τspread

τdisk
≈ 2

5

( M

M +Mp

)1/3 (
vs
v0

)2
−3/8

. (9.85)
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This tells us that the spreading time always exceeds the equilibrium disk viscous time.
The factor by which this occurs is typically of order a few, and so does not change
the conclusion that the accretion rate does not change substantially from the critical
value before the heating turns off.

To tie up loose ends, we now must verify some assumptions. First, consider the
question of the monotonicity of Σ. We may write

Σ̇ = ∂

∂t

(
Ma

A

)
= Ṁ

A
− MaȦ

A2 = Σ (∂t lnMa − ∂t lnA) , (9.86)

where Ma is the disk mass. Now initially ∂t lnA is roughly τ−1
spread and ∂t lnMa

is infinite. Thus Σ̇ begins positive. Now Ma increases monotonically, so ∂t lnMa

decreases monotonically if Ṁ is fixed. This decrease ends with a sharp drop to
zero, coinciding with the time when the increase in A ends, as then the steady-
state is achieved. Right before that time, Ma = Ṁτspread, so at all times before
this ∂t lnMa ≥ τ−1

spread. As a result, Σ is monotonically increasing in time prior to
equilibrium being established.

Next consider the question of thermal equilibration. The relevant dimensionless
quantity of interest is Macp∂tT/La, where the time derivative is computed assuming
thermal equilibrium. If the magnitude of this is less than unity then it is valid to
assume thermal equilibrium. The rate at which T changes is given by

∂tT = −1
4T∂t lnA = − T

4τspread
. (9.87)

As a result, our dimensionless quantity is roughly Mav
2
s/4La. The numerator is

maximized in equilibrium, where Ma = Ṁτspread, for v2
s ∝ T ∝ A−1/4, whereas

Ma = ΣA scales at least as A, as Σ increases monotonically in A. The denominator is
maximized initially, as La ∝ R−1

a , so we may upper bound the quantity of interest by

τspreadv
2
sR0

4GMp

. (9.88)

For an order of magnitude estimate, R0 ∼ 1011cm, v2
s ≤ 3×1010cm2/s2,Mp ∼ 4×1034g,

4G ∼ 3× 10−7cm3/g/s2, so this quantity is at most 3× 10−7τspreads−1. From the last
section, we know that τdisk ∼ 3× 105s, so really we are interested in the quantity

2
50

( M

M +Mp

)1/3 (
vs
v0

)2
−3/8

. (9.89)
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We may determine the maximum value of v0/vs by setting this equal to unity, giving
a ratio of 2000. Typically v0/vs is at most 100, so we are safe in assuming thermal
equilibrium.

Having determined that the spreading time exceeds the equilibrium viscous time,
and having satisfied our various assumptions, we note that there are three possible
limit cycle cases to consider:

1. τspread > τdisk > τM,L

2. τspread > τM,L > τdisk

3. τM,L > τspread > τdisk

We have not included τM in these orderings because it is only relevant in determining
how long the cycle takes to begin, and because it is typically much larger than the
other three timescales.

Examining the timescales involved, we may classify regions of phase space into
the different kinds of limit cycle. This is done in figure 9.6. The first thing to note
about this plot is that as the pulsar luminosity increases, the low mass companions
lose the possibility of a type 2 cycle. This results from the adjustment of the upper
radiative zone increasing with Lp, thereby reducing τM,L. That the type 2 cycles also
disappear as we go to higher M at fixed Lp results from the deepening of the upper
radiative layer as we approach the main sequence line.

The transition from type 1 to type 3 around 0.6M� is due to the shrinkage
and eventual disappearance of the heating-induced radiative zone. The radiative-
convective transition is set by the condition that ∇ad = ∇rad. In the upper layers of
the star, this requires that the escaping luminosity be Lesc � Lin, which makes the
transition quite sharp. Additionally, the transition depends on the microphysics of
opacity and ionization. These phenomena are often exponentially dependent on the
thermal structure of the outer layers of the star, which further sharpens the change.

The transition from type 3 to type 2, and eventually to type 1 as M increases is
just due to the convection zone shrinking, which reduces τM,L by reducing the relevant
thermal mass. The thermal mass goes roughly as the convective base pressure Pf to
the three-fifths power13. If we hold the period fixed, then to a good approximation
R is fixed. As a result, the thermal mass just scales as M6/5. We expect that τM,L
will be proportional to this. At the same time, the scale height is increasing, which
counteracts this effect. We may compute the scaling as

hs = R0
v2
s

v0

2

∼ v2
s ∝ T ∝ L1/4

R1/2 ∝
M2.3/4

M0.9/2 ∝M0.13. (9.90)

13This is set by the adiabatic constant γ.
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Figure 9.6: The vertical axis is logP in seconds, the horizontal axis is the companion
mass M in solar masses, and the color represents the type of limit cycle. Blue is type
1, Green is type 2, Maroon is type 3. The four plots correspond to different pulsar
luminosities.
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As this is a much lower power of M , we expect that τM,L ∝ hs/M
6/5 will decrease as

we move to higher mass.
Having established which kind of cycle occurs in which regime, it is worth con-

trasting the various kinds of cycles. The first case corresponds to the fast expansion
case. Based on figure 9.2, this case matters in a fairly wide regime. Here the limit
cycle time is set by 2τspread + 2τM,L. This may be seen by noting that when accretion
begins, it takes time τspread for material to reach the pulsar. It then takes time τM,L
for the accretion rate at the pulsar to reach the critical value, assuming that in the
previous cycle it reached the critical value. It then takes time τM,L for the accretion to
halt. Finally, it takes time τspread for the disk to clear, allowing the process to begin
again. The reason τspread is relevant here is that the disk is never near equilibrium
at any stage of the process. Given the orderings of timescales, we make at most a
factor of two error by writing the full timescale as 2τspread. Naively, one might expect
the corresponding overshoot in Ṁ to be exp (τspread/τM,L). In practice this is not the
case. To see why, note that τspread and τdisk both decrease with T , the latter as T−1/2

and the former as T−7/8. As a result, as T increases, the disk spreads faster, and so
when τspread is considerably larger than τM,L, the increase in Ṁ will be that required
to set the relevant timescale connecting the outer and inner portions of the disk to
τM,L. As that timescale is τspread in this case, and as T ∝ Ṁ1/4 and τspread ∝ Ṁ−1,
we see that Ṁ will increase by a factor of (τspread/τM,L)15/8 over the critical value.
This typically involves just a few extra scale heights of motion, and so we do not
expect the timescale τM,L to be off by too much from the actual timescale over which
the mass loss rate adjusts, and at any rate the limit cycle timescale is dominated by
τspread, so any corrections to the adjustment timescale effect are not relevant.

Now consider the second case. Here the limit cycle time is set by τspread + τdisk +
2τM,L. This may be seen by noting that when accretion begins, it takes time τspread
for material to reach the pulsar. It then takes time τM,L for the accretion rate at the
pulsar to reach the critical value, assuming that in the previous cycle it reached the
critical value. It then takes time τM,L for the accretion to halt. Finally, it takes time
τdisk for the disk to clear, allowing the process to begin again. To good approximation,
given this ordering, we may simply say that the limit cycle takes time τspread, and
thereby incur error of at most a factor of two given the large disparity between τspread
and τdisk. The overshoot is given by the same expression as in the first case, for once
more the disk is out of equilibrium the entire time.

In the third case, the expansion is slow, and so the spreading time is irrelevant to
the overshoot. The limit cycle time is once more set by τspread + τdisk + 2τM,L. Given
the ordering of timescales, we may approximate this as 2τM,L, and thereby at most
a 50% error. The overshoot in Ṁ is exp (τdisk/τM,L), for now τdisk is the timescale



9. X-RAY BINARIES 171

mediating the delay between the companion and the accretion onto the pulsar.
In summary, then, we expect that there are three kinds of accretion disk limit

cycles which are unique to these illuminated companion systems. These cycles are
characterized by the relative orderings of the companion atmospheric timescale, the
critical accretion disk formation timescale, and the equilibrium critical accretion disk
viscous timescale. The cycles range in timescale from days to years, with on-off times
typically measured in days. The key difference between the cycles is generally the
process modulating them, either atmospheric effects or disk dynamics, as well as
the scales of these effects. The luminosity of the accretion disk in each case is given
approximately by the accretion luminosity of the mid-disk ring, and corresponds to
a mass loss rate on the order of 1014±1g/s. This puts the accretion disk radiation
somewhere between the IR and soft X-Ray bands, depending on the precise system
parameters. The luminosity of the accreting material at the pulsar is therefore of
order 1035±1erg/s. This radiation is expected to be mostly X-Rays, as is typical of
accreting magnetic neutron stars.
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Accretion Induced Collapse

... being nine years old, I’m enthusiastic about a lot of things.
– Thomas A. Tombrello1

Recently, a number of millisecond pulsars with white dwarf companions and high
eccentricities have been discovered2. The observed eccentricities exceed the period-
eccentricity relations for accreting red giants by several orders of magnitude3. It has
been proposed that these systems are a result of rotationally delayed accretion induced
collapse4, though this model has difficulty explaining the relatively small magnetic
fields these pulsars are observed to have. It has also been proposed that these systems
are formed by the spin-up of an accreting neutron star with a circumbinary disk,
but the lack of longer period systems of this sort, which support a higher Ṁ , runs
counter to this model. Kozai encounters in triple star systems may also explain these
systems, but the expected mass distribution of companions after one star is ejected is
substantially different than what is observed.

Here we propose a different model for the formation of high eccentricity millisecond
pulsar-white dwarf systems. In this model, accretion from a red giant onto a white

1Thomas A. Tombrello. Caltech Oral History. Dec. 2012. url: http://resolver.caltech.
edu/CaltechOH:OH_Tombrello_T.

2B. Knispel et al. “Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric
Binary Orbit”. In: ArXiv e-prints (Apr. 2015). arXiv: 1504.03684 [astro-ph.HE].

3E. S. Phinney. “Pulsars as Probes of Newtonian Dynamical Systems”. In: Royal Society of
London Philosophical Transactions Series A 341 (Oct. 1992), pp. 39–75. doi: 10.1098/rsta.1992.
0084.

4P. C. C. Freire and T. M. Tauris. “Direct formation of millisecond pulsars from rotationally
delayed accretion-induced collapse of massive white dwarfs”. In: Monthly Notices of the Royal
Astronomical Society 438 (Feb. 2014), pp. L86–L90. doi: 10 . 1093 / mnrasl/ slt164. arXiv:
1311.3478 [astro-ph.SR].
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dwarf induces the dwarf’s collapse into a pulsar. The pulsar wind then irradiates the
red giant, forcing it to bloat and lose its upper atmosphere on timescales shorter than
the tidal circularization time.

In order for this to occur, the timescale over which the envelope is lost must be
short relative to the orbital circularization time, given as5

τc ∼
(
R0

R

)8 (Mc

Mp

)2 (
Mp

Mc +Mp

)
Mc

Menv

(
R2Menv

Li

)1/3

. (10.1)

Letting Mp ∼ 2 and working in solar units, we find that

τc = 7× 1017s
(M + 2)1/3P2/3

6
R

8 (
Mc

2

)2 ( 2
Mc + 2

)
Mc

Menv

(
R2Menv

Li

)1/3

. (10.2)

At the end of the day, we want a white dwarf core left over with mass ∼ 0.25M�, so
we set Mc = 0.25. This yields

τc = 2× 1016sP32/3
6 M−2/3

env R−22/3L
−1/3
i . (10.3)

In order for the red giant to have evolved in at most the age of the universe, we must
have Mc + Menv > 1, and in order to have red giants with a helium flash at all we
must have Mc +Menv < 2.56. Thus Menv is within a factor of two of M�. As a result,
we will write

τc = 2× 1016sP32/3
6 R−22/3L

−1/3
i . (10.4)

If the envelope will be bloated away, the characteristic timescale for this process to
occur is

τe = MenvcpT

Le
= 5× 1012sMR−2Li

Le
, (10.5)

where Le is the luminosity arriving from the pulsar at the companion. Note that we
are assuming that Li > Le in this analysis, such that all of the heat arriving at the
companion is bottled up by its convective envelope. Further note that this timescale
relies on the fact that the scale height is approximately R, and hence we only need
to achieve a bloating of a single scale height. Thus

τe
τc

= 2.5× 10−4P−32/3
6 R16/3ML

4/3
i L−1

e . (10.6)

5Phinney, op. cit.
6Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,

2012. isbn: 978-3-642-30304-3.
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Making use of Le = LpR
2/R2

0 = LpR
2(M + 2)−2/3P−4/3

4 , we see that

τe
τc

= 10−1P−28/3
6 R10/3M(M + 2)2/3L

4/3
i L−1

p . (10.7)

Now we may find Li by7

Li = 105.3(Mc/M)6

1 + 100.4(Mc/M)4 + 100.5(Mc/M)5 ∼ 50M−6. (10.8)

Likewise8,
R = 3.7× 103(Mc/M)4

1 + (Mc/M)3 + 1.75(Mc/M)4 ∼ 14M−4. (10.9)

Thus
τe
τc

= 10−4
(P6

2

)−28/3 (M
2

)−20.3
(M + 2)2/3L−1

p . (10.10)

As a result, for the observed periods of ∼ 20days and total masses near M = 2M�,
the time for the envelope to be swept away, if it is swept away, is well below the orbit
circularization time.

Of course in order for this process to occur, the envelope must be lost in much
less than the timescale over which the core grows by fusion. Otherwise the envelope
will be replenished faster than it is lost. This timescale is given by9

dMc

dt
∼ Li

0.007c2 → τf ∼
0.007Mcc

2

Li
∼ 2.5× 1014s

(
M

2

)−6
. (10.11)

By comparison, the timescale τe is

τe ∼ 5× 1015s
(
M

2

)11
L−1
p (M + 2)2/3P4/3

6 . (10.12)

The timescale ratio is therefore

τe
τf

= 50
(
M

2

)17
L−1
p (M + 2)2/3

(P6

2

)4/3
. (10.13)

7P. C. Joss, S. Rappaport, and W. Lewis. “The core mass-radius relation for giants - A new
test of stellar evolution theory”. In: The Astrophysical Journal 319 (Aug. 1987), pp. 180–187. doi:
10.1086/165443.

8Ibid.
9S. Refsdal and A. Weigert. “Shell Source Burning Stars with Highly Condensed Cores”. In:

Astronomy and Astrophysics 6 (July 1970), p. 426.

http://dx.doi.org/10.1086/165443
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Define
c ≡ log Lp

50(M + 2)2/3 (10.14)

and
d ≡ log 104Lp

(M + 2)2/3 . (10.15)

In order for both timescale ratios to be less than unity, we need to have

log M2 <
21c+ 3c

170 (10.16)

−61 log M
2 − 3d

28 < log P6

2 <
−33 log M

2 + 3c
4 . (10.17)

There generically exist solutions to these conditions. For instance, for Lp = 50, any
mass up to M ∼ 2 supports solutions, with the period converging to 17days. At
M = 1, the supported periods range from 50days up to just under a century. Thus
the relevant parameter space is not disallowed by these timescale considerations.

The one remaining condition which must be satisfied is that the requisite expansion
actually be possible. For M ∼ 2 and P6 ∼ 2, the Roche radius is ∼ 30R�. Using a
star tracking script included in Appendix B.2, the maximum post-expansion radius
was computed for a variety of core and total masses. The ratio of this to 30R�
is shown in Figure 10.1 From this, we see that for cores above Mc ∼ 0.24M�, the
envelope expands to several times the Roche radius, and hence either blows away
or accretes onto the pulsar. In either case, the envelope is gone, and this may be
achieved on a timescale shorter than both the circularization time and the fusion
growth time.

This process for forming high eccentricity millisecond pulsar-white dwarf systems
preserves the initial eccentricity of the system immediately post-accretion induced
collapse. This mechanism predicts, as observed, that the pulsars in these systems
should appear like typical recycled pulsars in terms of period and magnetic field,
as the collapse need not be rotationally supported. It also predicts companion core
masses which match the observed white dwarf masses well.
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Figure 10.1: The vertical axis is M/M�, the horizontal axis is Mc/M�, with both
axes log-scaled. The color represents the ratio Rmax/30R�, the denominator being
the approximate Roche radius for the period and mass range of interest, and the
numerator being the post-expansion radius of the red giant of interest.
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Spotted Black Widows

The universe is asymmetric and I am persuaded that life, as it is known
to us, is a direct result of the asymmetry of the universe or if its indirect
consequences.

– Louis Pasteur, Comptes Rendus de l’Acadmie des Sciences

In this chapter we will examine the question of observable thermal anisotropy in
pulsar companions. The methods developes here are also of potential interest for
exoplanets1 The objects under consideration will be either radiative or convective for
Σ < Σh. We need not consider the in-between cases, as the transition in this region
between the two modes is sharp, and as whichever mode holds near the base of this
region will dominate the heat transfer. Except for at low mass, all stars considered
will be on the main sequence. For the deep convective stars, we will consider both
main sequence objects and brown dwarfs with negligible intrinsic luminosity.

Throughout this chapter all masses, luminosities, fluxes, and distances will be
1A. Roy, J. T. Wright, and S. Sigurðsson. “Earthshine on a Young Moon: Explaining the

Lunar Farside Highlands”. In: The Astrophysical Journal 788, L42 (June 2014), p. L42. doi:
10.1088/2041- 8205/788/2/L42. arXiv: 1406.2020 [astro-ph.EP]; V. Parmentier, A. P.
Showman, and Y. Lian. “3D mixing in hot Jupiters atmospheres. I. Application to the day/night
cold trap in HD 209458b”. In: Astronomy and Astrophysics 558, A91 (Oct. 2013), A91. doi:
10.1051/0004-6361/201321132. arXiv: 1301.4522 [astro-ph.EP]; B. Hansen et al. Day and
Night on Hot Jupiters. Spitzer Proposal. June 2005; A. P. Showman, K. Menou, and J. Y.-K. Cho.
“Atmospheric Circulation of Hot Jupiters: A Review of Current Understanding”. In: Extreme Solar
Systems. Ed. by D. Fischer et al. Vol. 398. Astronomical Society of the Pacific Conference Series.
2008, p. 419. arXiv: 0710.2930; T. Kataria et al. “The Atmospheric Circulation of the Hot Jupiter
WASP-43b: Comparing Three-Dimensional Models to Spectrophotometric Data”. In: AAS/Division
for Planetary Sciences Meeting Abstracts. Vol. 46. AAS/Division for Planetary Sciences Meeting
Abstracts. Nov. 2014, 104.03.
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given in solar units. Speeds will be given in cm/s, temperatures in K, and times in
seconds. Subscript notation will be used, as usual, to denote an exponent to divide
out.

11.1 Setup
Recall from Chapter 7 that

∆F
Fi

= Fe
Fi
− 5y′T 3/2

4 R−1
(

∆T
T

)q ( 104l

2πR

)a
RobsF−1

i , (11.1)

where the rightmost term is twice the flux transported by the wind. Once more Ros
is the sonic Rossby number, l is the convective mixing length, Fe is the flux which
impinges on the star averaged over the pulsar-facing (day) side, ∆F is the difference
in the flux emerging from the day and night sides, Fi is the intrinsic flux, R is the
companion radius, T4 is the mean surface temperature measured in units of 104K, and
a, b, q, and y′ are dimensionless constants characteristic of the wind pattern of interest,
to be determined self-consistently. Actually, as we learned in Chapter 8, this is not
quite right on timescales shorter than the star’s thermal timescale, as convection
zones may absorb some of the external flux. Thus the relation really should be

∆F
Fi

= Fe − Fbottle

Fi
− 5y′T 3/2

4 R−1
(

∆T
T

)q ( 104l

2πR

)a
RobsF−1

i , (11.2)

where Fbottle is the bottled flux of the convection zone. We may solve this equation if
we note that

T4 = 0.3
(
F

1/4
day + F

1/4
night

)
(11.3)

and
∆T
T

= 2
F

1/4
day − F

1/4
night

F
1/4
day + F

1/4
day

. (11.4)

Note that we do not simplify this last expression yet, as we may need to deal with flux
anisotropies which push this relation outside of the linear regime. Further note that
because we have been more careful than before in letting T be the average surface
temperature, we do not need to deal with the case of supersonic winds: the formalism
automatically precludes them. The day and night fluxes are related by

Fday − Fnight = ∆F, (11.5)
Fday + Fnight = Fe + 2Fi − Fbottle, (11.6)
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As this quantity is uniquely determined by the flux carried by the wind, our equation
is closed and may in principle be solved.

The first step to a solution is eliminating as many variables as possible. To that
end, note that

Ros = vs
2πRΩ ≈ 0.012T 1/2

4 P4R
−1, (11.7)

104l

2πR = 104v2
s

2πRg ≈ 2T4RM
−1, (11.8)

Fday = Fi + 1
2 (Fe − Fbottle + ∆F ) , (11.9)

Fnight = Fi + 1
2 (Fe − Fbottle −∆F ) , (11.10)

Fe = Lp
2R2

0
, (11.11)

R3
0
P2

4
= M + 2, (11.12)

where R0 is the orbital radius and is as usual measured in solar units. Note that
the final relation here is only a good approximation at low orbital eccentricity. At
high eccentricity, it gives the approximate mean distance, the inverse square of which
may deviate somewhat from the relevant mean inverse square distance. To order
of magnitude, however, this should not matter significantly. Additionally, pulsar-
companion systems are not generally expected or observed to have high eccentricities,
so we will proceed with this approximation. Making use of these substitutions leaves
as variables only Fbottle, ∆F , and the various dimensionless constants characteristic
of the wind.

We now wish to compute the bottled flux in convective stars. For these objects
there are two possibilities: either the flux reaching the convection zone exceeds the
intrinsic flux, or it does not. If it does not exceed the intrinsic flux, then the fact
that the non-irradiated ∇rad � ∇ad implies that the star remains convective, and
the resulting stiffness of ∇ in L implies that the star’s surface temperature goes
unchanged except over thermal timescales. As a result, when Fe < Fi, the full flux is
bottled, giving Fbottle = Fe.

In the opposing case, where Fe > Fi, the irradiated side of the star should become
radiative, as ∇rad becomes negative and hence trivially falls below the always-positive
∇ad. This will once more bottle up heat and lead to swelling, but now some of the
excess Fe−Fi may escape, raising the surface temperature on the day side. This may
then drive a wind, heating the night side. As discussed in Chapter 7, this wind leads
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to an increase in the area over which the star bottles heat, such that the bottled heat
is

Fbottle = A

4πR2Fi. (11.13)

The area fraction is given by
A

4πR2 = min
(

1, 1
2

(
1 + W

Fi

))
, (11.14)

where W is the flux transported by the winds. This relation, which effectively states
that the winds organize to maximize bottling, fundamentally results from the wind
moving more easily through radiative zones than through convection zones. Putting
all of this together, we see that

Fbottle = min
(
Fe, Fi min

(
1, 1

2

(
1 + W

Fi

)))
. (11.15)

Now we have all relevant quantities except for the wind constants. These may be
found in Table 6.1. As the convection zone always has a significantly higher viscosity
than the radiation zone, the winds will always move around any residual convection
zone. Thus we may focus on the radiative wind cases. There are mercifully only three
of these: ballistic, hurricanes, and Rhines. The decision between the first two is made
based on the Rossby number. This is a function of the flux anisotropy, of course, and
so a solution must be found self-consistently. In cases where the criteria for Rhines
scaling are satisfied and where the full area of the star is radiative, this model is used.
We require that the full star be radiative for this because Rhines transport works by
forming continuous bands around the star.

The driving turbulence in the Rhines case is the primarily horizontal turbulence
that the wind itself produces. The condition we derived for this to occur is given by
Eq. (6.106) as

T4 > 100F
(

∆T
T

)2

Σ−1Ω−1
−4, (11.16)

where F is the mean flux over the surface of the star and column density is measured
in units of Σh. This relation may also be written as

T4 > 16F
(

∆T
T

)2

Σ−1P4. (11.17)

Recalling that T4 here refers to the typical temperature for Σ < Σh, we may write
T4 ∼ 0.6F 1/4. This yields

1 > 25F 3/4
(

∆T
T

)2

Σ−1P4. (11.18)
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The best case scenario for this inequality is when Σ = Σh, which gives

1 > 25F 3/4
(

∆T
T

)2

P4. (11.19)

Fortunately we don’t need to consider the edge case where the inequality holds for
some Σ < Σh but not for all. This is because to leading order the majority of the
heat is carried at larger Σ due to vs and ρ being so much greater. Thus we will ignore
the edge case, as the strong depth dependence of heat transport makes the transition
between Rhines and non-Rhines transport sharp. Note that κ, the opacity, is required
to compute y′ for Rhines scaling. In the majority of the heating zone these stars are
hot enough to fully ionize, so we may use the Kramer opacity2

κ1 ∼ 4× 1010(1 +X)(Z + 10−3) ρ0

T 3.5
4
, (11.20)

where κ1 is the opacity measured in units of 10cm2/g and where we will generally
use X ∼ 1 and Z ∼ 10−2. The full expression may be evaluated by making use of the
relation

ρ = P/v2
s = Σg/v2

s . (11.21)

11.2 Main Sequence Solutions
The equations described in the previous section are nonlinear and involve many cases.
As a result, a numerical approach was used rather than an analytic one. The complete
code used may be found in Appendix D. The space of possible systems was discretized
in Lp, P, and M . The discretization in Lp was done with the usual four values of
1, 10, 25, 50L�, with dense grids in the other quantities. This grid was then expanded
to include as a dimension ∆F/Fi. This dimension scales from 0 to Fe/Fi, with 0
prepended to an exponentially spaced grid.

The main sequence scaling laws were used to fill in R and Li. The specific relations
used were3

Li =


24−3.6M3.6 if 2 < M < 20
M4 if 0.43 < M < 2
0.434−2.3M2.3 if 0.08 < M < 0.43

(11.22)

2Bradley W. Carroll. An Introduction to Modern Astrophysics. Vol. 1. Addison-Wesley, 1996,
p. 274.

3Maurizio Salaris and Cassisi Santi. Evolution of stars and stellar populations. Vol. 1. ISBN:
0-470-09220-3. John Wiley Sons, 2005, pp. 138–140; O. Demircan and G. Kahraman. “Stellar
mass-luminosity and mass-radius relations”. In: Astrophysics and Space Science 181 (July 1991),
pp. 313–322. doi: 10.1007/BF00639097.

http://dx.doi.org/10.1007/BF00639097
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and

R =

20.72−0.57M0.57 if 2 < M < 20
M0.57 if 0.08 < M < 2

(11.23)

Masses from 0.08M� to 20M� were considered, with the lower end chosen due to
its role in separating the main sequence from brown dwarfs4. Periods ranging from
3 × 103s up to 107s were considered. This range was chosen to capture all of the
relevant physics after examining several different ranges.

At each point in the grid, the dominant kind of wind transport was computed,
and from this the squared violation of the anisotropy relation. As the area fraction
depends on W , and W depends on the area fraction through T , an iterative approach
was used, treating the area fraction first as 0, computing W , then updating A, then
updating W , and so on. This method converges in only a few iterations due to the
small allowed range for A.

The wind calculations were handled carefully in these numerics. The number of
cases was reduced by smoothly interpolating between ballistic and hurricane winds.
This was done because these cases do not precisely match at their boundary as
parametrized. The interpolation was done by letting each of a, b, q, and y′ vary as
tanh(Ro)2. The tanh function was chosen because an exponential variation is expected.
This was squared because Ro depends on v = |v|, and the physical constructions
depending on a single vector are generally even rather than odd. Note that the
Rossby number was computed as

Ro = v

2πRΩ . (11.24)

Rhines scaling was examined at each grid point, but never produced self-consistent
solutions. This is due to Rhines scaling being more prevalent at low P, but being
unable to carry the increased flux associated with the companion being closer to the
pulsar.

Note that we must filter for companions with Roche radii exceeding their main
sequence radii. This is done by noting that the Roche radius for such stars is5

Rb =
(

0.38 + 0.2 log M2

)
R0 =

(
0.38 + 0.2 log M2

)
(M + 2)1/3P2/3

4 . (11.25)

4D. J. Stevenson. “The search for brown dwarfs”. In: Annual Review of Astronomy and
Astrophysics 29 (1991), pp. 163–193. doi: 10.1146/annurev.aa.29.090191.001115.

5B. Paczyński. “Evolutionary Processes in Close Binary Systems”. In: Annual Review of
Astronomy and Astrophysics 9 (1971), p. 183. doi: 10.1146/annurev.aa.09.090171.001151;
P. P. Eggleton. “Approximations to the radii of Roche lobes”. In: The Astrophysical Journal 268
(May 1983), p. 368. doi: 10.1086/160960.

http://dx.doi.org/10.1146/annurev.aa.29.090191.001115
http://dx.doi.org/10.1146/annurev.aa.09.090171.001151
http://dx.doi.org/10.1086/160960
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Below the Roche cutoff we get into murky territory. Radiative stars, as well as
some convective ones, are often catastrophically unstable in this regime. Should a
case below the Roche cutoff be of interest, nothing precludes applying the methods
described here below the cutoff.

Using all of these results, we may finally compute the anisotropy. Figure 11.1
shows the ratio Fday/Fnight over the mass and radius range of interest. This decreases
as P increases, for this corresponds to the companion being placed further from the
pulsar. It also increases as the pulsar luminosity increases, again in accordance with
expectations. Similarly, as the companion mass increases, this ratio decreases. This is
because the scaling relations indicate that Fi increases with M , for Li increases faster
than R2. The maximum anisotropy is quite large, of order several hundred. This is
because at low M , Fe may be thousands of times Fi, a difference which significantly
exceeds the heat transport capacity of even a sonic wind.

At first glance, it appears that only low-period low-mass convective companions
exhibit interesting anisotropy physics, with a small blip near M = 2. To dispel this
notion, we turn to the quantity ∆F/F , shown in Figure 11.2. In this plot, white
regions above the Roche cutoff are those where ∆F = 0 due to complete heat bottling.
It is apparent that there are three distinct regions here. First, there is the convective
regime on the left where not all of Fe is bottled. This corresponds to the significant
anisotropy we saw in Figure 11.1. The size of this region depends on Lp as expected,
as it is easier to have unbottled heat with higher values of Fe.

On the right there is the radiative regime where no heat is bottled. The anisotropy
is small in this regime cases, peaking at a few percent, just at the edge of what can
be observed. Note that the transition between the white region and the radiative
one is shown as being infinitely sharp here. This is not quite accurate; there is an
exponential transition as the convection zone disappears. This transition is coupled
to the timescale of interest; as the convection zone disappears, the timescale over
which heat bottling occurs drops, until in the radiative case it reaches the thermal
timescale for the heating layer. As a result the precise smearing is not well defined,
and the relevant physics is well represented by a sharp boundary.

The data presented thus far say little directly about the effect of winds. The
relevant quantities here are the difference between the anisotropy with and without
winds. To that end, Figure 11.3 shows the ratio Fday/(Fi + Fe). This is what we
expect observation to see. The ratio deviates most from unity near the bottling
boundary. This is just a result of the bottled heat being a maximum possible fraction
of Fe + Fi at this boundary.

To examine the effect of the wind on the day side separately, we now consider
the quantity W/(Fi + Fe). This is shown for the day side in Figure 11.4. Here we
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Figure 11.1: The vertical axis is P in seconds, the horizontal axis is the companion
mass in solar masses, with both axes log-scaled. The color represents the log of
the day/night flux ratio logFday/Fnight. The four different plots correspond to four
different pulsar luminosities. The black line corresponds to the Roche cutoff.



11. SPOTTED BLACK WIDOWS 187

10-1 100 101

104

105

106

107

P
 (

s)

Lp =1

10-1 100 101

104

105

106

107 Lp =10

10-1 100 101

M (M¯)

104

105

106

107

P
 (

s)

Lp =25

10-1 100 101

M (M¯)

104

105

106

107 Lp =50

8

7

6

5

4

3

2

1

0

lo
g∆
F
/F

Figure 11.2: The vertical axis is P in seconds, the horizontal axis is the companion
mass in solar masses, with both axes log-scaled. The color represents the log of the
day/night flux ratio log ∆F/F . The four different plots correspond to four different
pulsar luminosities. The black line corresponds to the Roche cutoff. The white regions
above the Roche cutoff have ∆F = 0 due to heat bottling.
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Figure 11.3: The vertical axis is P in seconds, the horizontal axis is the companion
mass in solar masses, with both axes log-scaled. The color represents the log of the
day/night flux ratio logFday/(Fi + Fe). The four different plots correspond to four
different pulsar luminosities. The black line corresponds to the Roche cutoff.
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Figure 11.4: The vertical axis is P in seconds, the horizontal axis is the companion
mass in solar masses, with both axes log-scaled. The color represents the log of the
day/night flux ratio logW/(Fi + Fe). The four different plots correspond to four
different pulsar luminosities. The black line corresponds to the Roche cutoff. Note
that the white region above the Roche cutoff corresponds to the case W = 0
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see that the winds transport up to ∼ 10% of the flux. Except for the dimmest Lp
considered, the transported fraction is not maximized when P is minimized as one
might expect. This is because at low P the winds are solidly in the hurricane regime,
where the transported flux goes as P3. Thus a balance between maximizing ∆F/F
and maximizing P is struck. In the case of very low Lp, the optimum does actually
occur at the minimum P , but this is because the Fe curve is pushed down in P until
it runs up against the Roche cutoff.

On the night side, the relevant ratio is Fnight/Fi, as we need not worry about
handling bottled flux in the denominator, and this is the directly observable quantity.
This ratio is shown in Figure 11.5. Here we see that the winds make a tremendous
difference, up to a factor of 30. Here we see the maximum impact made at the
lowest P values. The difference between the day side and the night side in this
regard is entirely that the night side’s windless flux does not become greater as Fe
increases, and so the function being maximized looks like FeP3(∆F/F )q rather than
FeP3(∆F/F )q.

If this analysis were done on the swollen stars discussed in the X-ray binary
context, the key difference would be that R would not match the main sequence.
This has the effect of pushing the radiative-convective boundary towards lower M ,
with the fully-swollen stars being radiative at all M . In that limit, the bottled flux
vanishes and the swelling ceases. An interesting extension of this work would be to
couple the code which computes swelling to the code which computes anisotropy to
determine the difference that wind transport makes to the swelling timescale. This
effect is unlikely to change the estimated order of magnitude of the swelling time, so
we neglect it here.

11.3 Brown Dwarfs
Brown dwarfs typically have 10−2 < M < 0.08 and so are not nuclear burning.
This means that there is no mass-radius or mass-luminosity relation for brown
dwarfs, as these properties are history-dependent. Importantly, if heating changes the
upper atmospheric boundary condition, the core luminosity adjusts on the convective
timescale of a few decades. This, combined with Fi generally being of order 10−3,
means that the core luminosity is not a relevant variable. Rather, we ought to view
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Figure 11.5: The vertical axis is P in seconds, the horizontal axis is the companion
mass in solar masses, with both axes log-scaled. The color represents the log of the
day/night flux ratio logFnight/Fi. The four different plots correspond to four different
pulsar luminosities. The black line corresponds to the Roche cutoff.
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the outer boundary conditions as being set by the illumination. To be quantitative,

Fday = Fi + 1
2 (Fe − Fbottle + ∆F ) = 1

2(Fe + ∆F ), (11.26)

Fnight = Fi + 1
2 (Fe − Fbottle −∆F ) = 1

2(Fe −∆F ). (11.27)

Note that we have dropped Fbottle, as it is bounded above by Fi. The wind equation
may now be written as

∆F = Fe − 5y′T 3/2
4 R−1

(
∆T
T

)q ( 104l

2πR

)a
Robs. (11.28)

Noting that

Ros = vs
2πRΩ ≈ 0.012T 1/2

4 P4R
−1, (11.29)

104l

2πR = 104v2
s

2πRg ≈ 2T4RM
−1, (11.30)

(11.31)

we find that

∆F = Fe − 5y′T 3/2
4 R−1

(
∆T
T

)q (
2T4RM

−1
)a (

0.012T 1/2
4 P4R

−1
)b
. (11.32)

This may also be written as

Fday = 0.4y′
(
F

1/4
day + F

1/4
night

)
R−1

2
F

1/4
day − F

1/4
night

F
1/4
day + F

1/4
day

q (2T4RM
−1
)a (

0.012T 1/2
4 P4R

−1
)b
.

(11.33)
If we assume that hurricanes are the dominant transport mechanism, then

∆F = Fe −
5T 3

4P3
4

106R4

(
∆T
T

)5

. (11.34)

Now note that
T4 ∼ 0.6

(
Fe
2

)1/4
. (11.35)

This is true to within 40% in the Fi → 0 limit regardless of ∆F . Thus

∆F = Fe −
2.5F 3/4

e P3
4

106R4

(
∆T
T

)5

= Fe

1− 4P10/3
4

106L
1/4
p R4

(
∆T
T

)5
 . (11.36)
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This may also be written as

∆F
Fe

= 1− χ
(

∆T
T

)5

, (11.37)

where

χ = 4P10/3
4

106L
1/4
p R4

= P10/3
4

25L1/4
p R4

−1
. (11.38)

There is now only one relevant parameter, χ. The solutions for ∆F/Fe and Fday/Fnight
as functions of χ are shown in Figure 11.6. Low values of χ, corresponding to short
orbital periods and bright pulsars, exhibit unbounded anisotropies. As χ increases
past unity, the anisotropy drops rapidly. Noting that R−1 is close to the smallest
radius a brown dwarf can achieve6, we see that for the pulsar luminosities of interest
the small-χ regime is characterized by P < 3× 104s.

It is worth noting that in all cases, the wind speed is comparable to the sound
speed, for ∆T/T is of order unity for these objects so long as Fe � Fi. As a result,
the Rossby number is just the sonic Rossby number to good approximation. This
may be written as

Ros ∼
Lp

40R−1P1/3
4

. (11.39)

Thus the hurricane model holds down to periods of

P ∼ 150
(
Lp
10

)3
s. (11.40)

Given that these objects cannot have periods much less than 3× 103s, we expect any
regions where the Rossby number exceeds unity to be small enough that extrapolation
from the hurricane regime is appropriate. Note that the condition for Rhines scaling
reduces in this case to

4 > 25L3/4
p

(
∆T
T

)2

. (11.41)

This is unlikely to be satisfied, given that ∆T ∼ T .
In summary, we have computed the anisotropy of flux between the pulsar-facing

(day) and night side of both main sequence and brown dwarf stars. These results
6Adam Burrows et al. “The theory of brown dwarfs and extrasolar giant planets”. In: Rev. Mod.

Phys. 73 (3 Sept. 2001), pp. 719–765. doi: 10.1103/RevModPhys.73.719. eprint: http://arxiv.
org/pdf/astro-ph/0607583. url: http://link.aps.org/doi/10.1103/RevModPhys.73.719;
Stevenson, op. cit.

http://dx.doi.org/10.1103/RevModPhys.73.719
http://arxiv.org/pdf/astro-ph/0607583
http://arxiv.org/pdf/astro-ph/0607583
http://link.aps.org/doi/10.1103/RevModPhys.73.719
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deviate substantially in many cases from the usual predicted black body values. This
is a result of our use of a realistic wind transport model. It is worth noting that
these results depend on the flux of high energy particles Lp, as well as on their energy,
which determines the absorption column density. The former we have carried around
as an explicit functional dependence, while the latter we have set to a specific value.
These calculations may be redone at any Σ, however. To leading order, the wind flux
goes as Σ1+3∇/2, with the dependence on ∇ arising from averaging T 3/2 ∼ v3

s over the
heating depth. As the dependence on Lp is distinct from the dependence on Σ, a series
of observations of different systems may reveal Σ, so long as any interdependence
between the total power output of the pulsar and the individual particle energies
is known. This model, therefore, allows us to place an additional constraint on the
pulsar wind, but does not on its own tell us everything that there is to know.
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Banded Stars

The goal of this chapter is to examine the case where spontaneous atmospheric banding
occurs in an axisymmetric star. This effect has been seen in limited circumstances in
simulations1, though analytic understanding has proven elusive. Though this does not
relate to the question of pulsar-companion interactions, the possibility is suggested
by our analysis in Chapter 6.

To begin, we are interested in lone stars which are axisymmetric and do not
experience external heating. Recall that

kfr =

√√√√ Ω
Rvφ

=
√

1
Rl
, (12.1)

kβ =
(

Ω3

R3ε

)1/5

=
(

Ω3

R3v2
φÑ

)1/5

=
(

Ω
R3lvcr

)1/5

. (12.2)

The criterion for the Rhines cascade to be in effect is that kβ > kfr, so

1
R5l5

<
Ω2

R6l2v2
cr

(12.3)

∴
v2
cr

l3
<

Ω2

R
. (12.4)

1U. R. Christensen. “Zonal flow driven by strongly supercritical convection in rotating spher-
ical shells”. In: Journal of Fluid Mechanics 470 (Nov. 2002), pp. 115–133. doi: 10 . 1017 /
S0022112002002008.
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http://dx.doi.org/10.1017/S0022112002002008
http://dx.doi.org/10.1017/S0022112002002008
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The critical Ω at which the star cannot hold itself together is Ωcrit ≈
√
g/R. Thus

v2
cr

l3
<

(
Ω

Ωcrit

)2
g

R2 (12.5)

∴
F 2/3

ρ2/3l3
<

(
Ω

Ωcrit

)2
g

R2 . (12.6)

(12.7)

The rotation rate is often close to criticality for stars of mass outside the range
[0.5, 2.0]M�. This is because stars below this range do not have substantial winds
with which to spin down, while those above it lack the convectively-driven magnetic
field needed to exert a substantial torque2. Letting Ω = Ωcrit then yields

F 2ρ−2l−9R6g−3 < 1. (12.8)

This may also be written ass
F 2(GM)6

R6P 4C
< 1, (12.9)

where Ts is the surface temperature and C ≡ P 5ρ−7 is the constant determining the
polytrope of interest. We may estimate this using the central density and pressure.
The central density is roughly twice the average, and the central pressure is roughly3

Pc ∼ 2ρavggavgR = 2 3M
4πR3

(
GM

R2

)
R = 3GM2

2πR4 . (12.10)

Thus

C = P 5ρ−7 =
(

2πR3

3M

)7 (3GM2

2πR4

)5

= 4π2

9 G5M3R. (12.11)

Using this, our condition becomes

9F 2GM3

4π2P 4R7 < 1, (12.12)

or
P > 2× 109F 1/2M3/4R−7/4, (12.13)

2J. B. Stauffer and L. W. Hartmann. “The rotational velocities of low-mass stars”. In:
Astronomical Society of the Pacific, Publications 98 (Dec. 1986), pp. 1233–1251. doi: 10.1086/
131926.

3E. Böhm-Vitense. Introduction to Stellar Astrophysics. Vol. 3. ISBN 0521344042. Cambridge
University Press, 1992.

http://dx.doi.org/10.1086/131926
http://dx.doi.org/10.1086/131926
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where P is measured in erg/cm3 and the remaining quantities are all in solar units.
Given the scaling of the quantities on the right, we expect most objects exhibiting
spontaneous banding near the surface to be low-mass stars. Using the scaling relations
for mass and luminosity for this sort of object as well as the fact that M ∝ R for
M < M� we find4

P > 3× 108M−0.85. (12.14)
This may be phrased in terms of Σ in the thin-envelope limit as

Σ > 104M0.15. (12.15)

Note that in this derivation we have assumed that the object remains nuclear burning.
From this it is clear that convection alone can drive a banded structure. The number
of bands is expected to be

n = Rkβ =
(

ΩR2

lvc

)1/5

. (12.16)

In the low mass stars which exhibit these properties, Ω ∼ 10−4s−1, vc ∼ 104cm/s,
l ∼ 108cm, and R ∼ 1010cm, so n ∼ 10.

As a result of all of this, our first prediction regarding these stars is that they
will be banded, and that the depth of the bands will be roughly 3× 103g/cm2. The
number of bands ought to be on the order of 10. In many cases this is close enough
to the photosphere that the structure may reasonably be expected to be observable.
While it will be difficult to observe this structure using doppler spread measurements,
the case is somewhat better if there is a transiting planet. As the planet blocks a
different portion of the star at different times, and may be tracked across the star, the
change in the doppler spread over the course of the transit may be used to determine
the presence of bands.

In addition, for Jupiter-type planets the bands will be much more easily visible.
With F ∼ 10−6F�, M ∼ 10−3M�, and R ∼ 10−1R�, the lower bound on Σ is just
250g/cm2. At and near optical frequencies this is well above the photosphere, and so
should be observable. The expected number of bands for a cold Jupiter is similar to
what we expect for stars5. The precise number may be computed via Eq. (12.16). For
hot Jupiters, the temperature anisotropy dominates over the spontaneous banding

4Maurizio Salaris and Cassisi Santi. Evolution of stars and stellar populations. Vol. 1. ISBN:
0-470-09220-3. John Wiley Sons, 2005, pp. 138–140.

5Roughly half of the driving force for Jupiter’s bands comes from its temperature asymmetry.
The remainder comes from convective anisotropy. Thus these objects should have a similar number
of bands to Jupiter, with somewhat faster rotation but no temperature anisotropy
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effect. Once more transiting objects such as moons provide an easier test than just
measuring the doppler spread.
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Appendix A

Viscosity Code

The code used to interpolate the viscosity of a star is shown below. It makes use of tabulated data1 as
well as analytic results2, choosing between them based on the range of validity of each. Within the range
of the tabular data, multilinear interpolation in temperature and log-pressure space is used. Above the
maximum temperature covered by this table, which roughly aligns with the bottom edge of validity of
the analytic results, the analytic results are used. There are regions at low temperature and very high
pressure where neither result is valid, and in these the code returns the IEEE NaN value. Note that this
code requires Python, NumPy, and SciPy, and was tested with versions 2.7, 1.9.0, and 0.14.0 respectively.

Viscosity Interpolation Code: viscosity.py

1 import numpy as np
2 import cons tant s
3 from sc ipy . i n t e r p o l a t e import Regu la rGr id Inte rpo la to r
4
5 naan = f l o a t ( ’ nan ’ )
6
7 va lue s = np . array ( [
8 34 . 1 , 34 . 1 , 34 . 1 , 34 . 1 , 34 . 1 , 34 . 1 , 34 . 1 , 34 . 1 , naan , naan , naan , naan ,
9 38 . 1 , 38 . 1 , 38 . 1 , 38 . 1 , 38 . 1 , 38 . 1 , 38 . 1 , 38 . 1 , naan , naan , naan , naan ,

10 43 . 5 , 43 . 5 , 43 . 5 , 43 . 5 , 43 . 5 , 43 . 5 , 43 . 5 , 43 . 5 , 43 . 5 , naan , naan , naan ,
11 51 . 5 , 51 . 5 , 51 . 5 , 51 . 5 , 51 . 5 , 51 . 5 , 51 . 5 , 51 . 5 , 51 . 5 , naan , naan , naan ,
12 52 . 7 , 62 . 6 , 62 . 0 , 63 . 2 , 63 . 2 , 63 . 2 , 63 . 2 , 63 . 2 , 63 . 2 , naan , naan , naan ,
13 12 . 5 , 16 . 2 , 22 . 4 , 31 . 3 , 44 . 5 , 56 . 4 , 66 . 3 , 82 . 2 , 82 . 5 , naan , naan , naan ,
14 3 . 98 , 7 . 61 , 12 . 2 , 15 . 9 , 18 . 6 , 23 . 6 , 32 . 1 , 61 . 2 , 85 . 8 , naan , naan , naan ,
15 2 . 84 , 3 . 05 , 3 . 26 , 3 . 56 , 4 . 83 , 9 . 67 , 21 . 5 , 27 . 8 , 61 . 3 , 97 . 1 , 117 , naan ,
16 4 . 74 , 6 . 31 , 6 . 80 , 7 . 29 , 7 . 87 , 8 . 46 , 9 . 24 , 13 . 3 , 29 . 1 , 79 . 6 , 109 , 159 ,
17 9 . 76 , 10 . 3 , 10 . 9 , 11 . 6 , 12 . 5 , 14 . 1 , 17 . 3 , 26 . 7 , 33 . 0 , 46 . 1 , 100 , 163 ,
18 22 . 0 , 23 . 2 , 24 . 4 , 25 . 8 , 27 . 4 , 28 . 6 , 30 . 7 , 37 . 5 , 52 . 6 , 86 . 6 , 119 , 185 ,
19 47 . 9 , 50 . 8 , 53 . 3 , 56 . 1 , 59 . 7 , 63 . 3 , 67 . 3 , 77 . 4 , 91 . 2 , 112 , 198 , 284
20 ] ) # dynamic v i s c o s i t y
21
22 theta = np . array (
23 [ 1 . 4 , 1 . 2 , 1 . 0 , 0 . 8 , 0 . 6 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 15 , 0 . 1 , 0 . 07 , 0 . 0 5 ] )
24 t s = 5040 . / theta
25 tmax = max( t s )
26 logp = np . array ( [ 3 , 3 . 5 , 4 , 4 . 5 , 5 , 5 . 5 , 6 , 7 , 8 , 9 , 10 , 1 1 ] )

1F. N. Edmonds Jr. “The Coefficients of Viscosity and Thermal Conductivity in the Hydrogen Convection Zone.” In:
The Astrophysical Journal 125 (Mar. 1957), p. 535. doi: 10.1086/146327.

2Daniel Kagan and J. Craig Wheeler. “The Role of the Magnetorotational Instability in the Sun”. In: The Astrophysical
Journal 787.1 (2014), p. 21. url: http://stacks.iop.org/0004-637X/787/i=1/a=21.
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http://dx.doi.org/10.1086/146327
http://stacks.iop.org/0004-637X/787/i=1/a=21
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27 in t e rp = Regu la rGr id Inte rpo la to r ( ( ts , logp ) ,np . reshape ( values , ( 1 2 , 1 2 ) ) , bounds_error=False ,
f i l l _ v a l u e=np . nan )

28
29 de f i n t e r p o l a t e ( t , p , rho ) :
30 re turn 1e−5∗ i n t e rp (np . t ranspose ( [ t , np . log10 (p) ] ) ) / rho
31
32 de f loglam ( t , rho ) :
33 d0 = −17.4 + 1 .5 ∗ np . l og ( t ) − 0 .5 ∗ np . l og ( rho )
34 d1 = −12.7 + np . l og ( t ) − 0 .5 ∗ np . l og ( rho )
35 boo l a r r = 1 .0 ∗ ( t < 1 .1 e5 ∗ np . ones ( t . shape ) )
36 re turn d0 ∗ boo l a r r + d1 ∗ (1 − boo l a r r )
37
38
39 de f s p i t z e r ( t , rho ) :
40 re turn 5 .2 e−15 ∗ np . power ( t , 5 . / 2) / ( rho ∗ loglam ( t , rho ) )
41
42 de f o v e r a l l ( t , p , rho , kappa , an i s=1) :
43 t = np . array ( t )
44 p = np . array (p)
45 rho = np . array ( rho )
46 # Fir s t , produce nu from actua l data
47 d0 = i n t e r p o l a t e ( t , p , rho )
48 # Next , compute Sp i t z e r va lue s
49 d1 = s p i t z e r ( t , rho )
50 # Replace Sp i t z e r va lue s with NaN i f they aren ’ t above the i o n i z a t i o n zone
51 d1 [ t <10∗∗4.1] = np . nan
52 # Replace data va lue s with Sp i t z e r va lue s i f they are NaN
53 d0 [ np . i snan ( d0 ) ] = d1 [ np . i snan ( d0 ) ]
54 d0∗=an i s
55 re turn d0
56
57 q = 4.80320451 e−10
58 c = 29979245800.
59 de f i s o t r op i cB ( t , p , rho ,mu) :
60 nu = ov e r a l l ( t , p , rho )
61 re turn 3∗p∗mu∗c /( rho∗q∗nu)



APPENDIX A. VISCOSITY CODE 206

References
Edmonds Jr., F. N. “The Coefficients of Viscosity and Thermal Conductivity in the Hydrogen Convection

Zone.” In: The Astrophysical Journal 125 (Mar. 1957), p. 535. doi: 10.1086/146327 (cit. on p. 204).
Kagan, Daniel and J. Craig Wheeler. “The Role of the Magnetorotational Instability in the Sun”. In: The

Astrophysical Journal 787.1 (2014), p. 21. url: http://stacks.iop.org/0004-637X/787/i=1/a=21
(cit. on p. 204).

http://dx.doi.org/10.1086/146327
http://stacks.iop.org/0004-637X/787/i=1/a=21


Appendix B

Acorn Stellar Integration Code

B.1 Opal and Ferguson Opacity Table Parser
To support the Acorn stellar integration code, modern tables of the Rosseland mean opacity were needed
over a wide range of temperatures and densities. In particular, at low temperatures molecular effects
become significant, something opacity tables have historically lacked. For this purpose, an interpolation
routine was written which uses the OPAL1 and Ferguson2 opacity tables. The former is good at high
temperature, the latter at low temperature. The OPAL Type 1 and Ferguson 05 tables were used with
the GS98 solar composition for this purpose, though other choices are also valid. The code used in this
routine is shown below, along with an example of its usage. Note that interpolation proceeds first over
stellar composition (X and Y ) and then over log T and the factor logR, defined as log ρ− 3 log T6, where
ρ is in cgs units and T6 is defined as the temperature measured in units of 106K. When R exceeds the
maximum tabulated R, the maximum tabulated R is used instead. This was found to not matter in
most cases, as it only occurred well within highly efficient convection regions where the opacity is largely
irrelevant. Multilinear interpolation is used at each step, and the output is the logarithm of the opacity.
Note that this code requires Python, NumPy, and SciPy, and was tested with versions 2.7, 1.9.0, and
0.14.0 respectively.

Opacity Interface (opacity.py)

1 import s c ipy . i n t e r p o l a t e as s i n
2 import numpy as np
3 import os
4
5 de f i n t e rp ( data , x0 , y0 ) :
6 # Now we ’ re going to assume that rRange and tRange are the same ac ro s s a l l t a b l e s .
7 # Fi r s t , i n t e r p o l a t e the 2D R vs . T gr id a c ro s s the X,Y va lues o f i n t e r e s t .
8 x = [ i [ 0 ] f o r i in data ]
9 y = [ i [ 1 ] f o r i in data ]

10 z = [ i [ 4 ] f o r i in data ]
11 tab l e = s i n . g r iddata ( ( x , y ) , z , ( x0 , y0 ) )
12 re turn tab l e
13
14 de f b i l i n e a r_ i n t e r p o l a t o r ( data , xPts , yPts ) :

1C. A. Iglesias and F. J. Rogers. “Updated Opal Opacities”. In: The Astrophysical Journal 464 (June 1996), p. 943.
doi: 10.1086/177381.

2Jason W. Ferguson et al. “Low-Temperature Opacities”. In: The Astrophysical Journal 623.1 (2005), p. 585. url:
http://stacks.iop.org/0004-637X/623/i=1/a=585.
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15 return s i n . Regu la rGr id Inte rpo la to r ( ( xPts , yPts ) , data , bounds_error=False , f i l l _ v a l u e=np .
nan )

16
17 c l a s s opac :
18
19 de f __init__( s e l f , opalName , fergName , x , y ) :
20 s e l f . a = opacInt ( opalName , x , y , " opal " )
21 s e l f . b = opacInt ( fergName , x , y , " f e r g " )
22
23 de f opac i ty ( s e l f , t , rho ) :
24 i f not i s i n s t a n c e ( t , np . ndarray ) :
25 op = s e l f . b . opac i ty ( t , rho ) [ 0 , 0 ]
26 i f np . i snan ( op ) :
27 op = s e l f . a . opac i ty ( t , rho ) [ 0 , 0 ]
28 e l s e :
29 op = s e l f . b . opac i ty ( t , rho )
30 whereNan = np . where (np . i snan ( op ) )
31 op [ whereNan ] = s e l f . a . opac i ty ( t [ whereNan [ 0 ] ] , rho [ whereNan [ 1 ] ] )
32 re turn op
33
34 de f dkdT( s e l f , t , rho , eps=1e−3) :
35 k0 = 10∗∗ s e l f . opac i ty ( t∗(1− eps ) , rho )
36 k1 = 10∗∗ s e l f . opac i ty ( t ∗(1+eps ) , rho )
37 re turn ( k1−k0 ) /(2∗ t ∗ eps )
38
39 de f dkdRho( s e l f , t , rho , eps=1e−3) :
40 k0 = 10∗∗ s e l f . opac i ty ( t , rho∗(1− eps ) )
41 k1 = 10∗∗ s e l f . opac i ty ( t , rho∗(1+eps ) )
42 re turn ( k1−k0 ) /(2∗ rho∗ eps )
43
44
45 c l a s s opacInt :
46
47 de f __init__( s e l f , fname , x , y , opalFerg ) :
48 s e l f . c u t o f f = 0
49 s e l f . data = None
50 i f opalFerg==" opal " :
51 s e l f . c u t o f f = 10
52 s e l f . data = readOpalTables ( fname )
53 e l i f opalFerg==" f e r g " :
54 s e l f . c u t o f f = 12
55 s e l f . data = readFergTables ( fname )
56 e l s e :
57 r a i s e Exception ( "No␣ tab l e ␣ type␣ s p e c i f i e d . " )
58 s e l f . interpData = in t e rp ( s e l f . data , x , y )
59 s e l f . i n t e r p o l a t o r = b i l i n e a r_ i n t e r p o l a t o r ( s e l f . interpData , s e l f . data [ 0 ] [ 3 ] , s e l f .

data [ 0 ] [ 2 ] )
60
61 de f opacityTR ( s e l f , t , r ) :
62 t t = np . copy ( t )
63 t t [ tt <600] = 600 .
64 t t = np . log10 ( t t )
65 r = np . log10 ( r )
66 r = np . array ( r )
67 r [ r >1] = 0 .99
68 k = s e l f . i n t e r p o l a t o r (np . dstack ( ( tt , r ) ) )
69 k [ np . i snan (k ) ] = 2∗ s e l f . c u t o f f
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70 k [ k>s e l f . c u t o f f ] = np . nan # Each tab l e has a maximum value , so t h i s cuts o f f
i n t e r p o l a t i o n there

71 re turn k
72
73 de f opac i ty ( s e l f , t , rho ) :
74 r = rho / ( t ∗ 1e−6) ∗∗ 3
75 return s e l f . opacityTR ( t , r )
76
77 # Method f o r read ing in non−enr i ched OPAL tab l e s ( i . e . j u s t X,Y,Z are
78 # nonzero , no dXc or dXo) . Tested on l a t e s t ( as o f August 2014)
79 # GS98 compos it ion t ab l e s .
80
81
82 de f readOpalTables ( fname ) :
83 f = open ( fname )
84 # checks i f we ’ re in the zone where the t ab l e s are ( as opposed to the
85 # header )
86 t ab l e s = False
87 x = 0
88 y = 0 # note that z = 1−x−y by d e f i n i t i o n
89 data = [ ]
90 f o r l i n e in f :
91 l i n e = l i n e . r s t r i p ( ’ \n ’ ) # remove newl ines
92 i f t ab l e s and l en ( l i n e ) > 2 : # e l im ina t e s empty l i n e s
93 i f ’TABLE’ in l i n e : # reads in x , y , z f o r the t ab l e
94 s = l i n e . r ep l a c e ( ’=’ , ’ ␣ ’ ) . s p l i t ( ’ ␣ ’ )
95 f o r i , a in enumerate ( s ) :
96 i f a == ’X ’ :
97 x = f l o a t ( s [ i + 1 ] )
98 e l i f a == ’Y ’ :
99 y = f l o a t ( s [ i + 1 ] )
100 data . append ( [ x , y , [ ] , [ ] , [ ] ] )
101 e l i f ’ logT ’ in l i n e : # reads in the logR va lue s f o r the t ab l e
102 s = l i n e . s p l i t ( ’ ␣ ’ )
103 rRange = [ f l o a t ( a ) f o r a in s [ 1 : ] i f l en ( a ) > 0 ]
104 data [ −1 ] [ 2 ] = rRange
105 e l i f ’R ’ not in l i n e : # reads in the tab l e
106 s = l i n e . s p l i t ( ’ ␣ ’ )
107 s = [ i f o r i in s i f l en ( i ) > 0 ]
108 t = f l o a t ( s [ 0 ] )
109 s = s [ 1 : ]
110 data [ − 1 ] [ 3 ] . append ( t )
111 data [ − 1 ] [ 4 ] . append ( [ ] )
112 f o r i , a in enumerate ( s ) :
113 data [ −1 ] [ 4 ] [ −1 ] . append ( f l o a t ( a ) )
114 i f l en ( s ) < len ( data [ − 1 ] [ 2 ] ) :
115 f o r i in range ( l en ( data [ − 1 ] [ 2 ] ) − l en ( s ) ) :
116 data [ −1 ] [ 4 ] [ −1 ] . append (1 e10 ) # absurd value
117 i f ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ in l i n e :
118 t ab l e s = True
119 f o r i in range ( l en ( data ) ) :
120 data [ i ] [ 4 ] = np . array ( data [ i ] [ 4 ] )
121 re turn data
122 # Note that the re i s some redundancy , as rRange and tRange are expected to
123 # be the same f o r each tab l e . We l eave the par s e r more genera l , however , as the
124 # wasted space i s minimal .
125



APPENDIX B. ACORN STELLAR INTEGRATION CODE 210

126 # Method f o r read ing in Ferguson t ab l e s . Tested on l a t e s t ( as o f August 2014)
127 # GS98 compos it ion t ab l e s .
128
129
130 de f readFergTable ( fname , x , y ) :
131 # These t ab l e s are pre−s p l i t by (X,Z) value , so we can j u s t f o cus on the
132 # read ing part .
133 f = open ( fname )
134 # We’ re i n t e n t i o n a l l y keeping the format the same as the opa lParser format .
135 data = [ x , y , [ ] , [ ] , [ ] ]
136 f o r l i n e in f :
137 l i n e = l i n e . r s t r i p ( ’ \n ’ ) # remove newl ines
138 i f ’ l og ␣T ’ in l i n e : # reads in the logR va lue s f o r the t ab l e
139 s = l i n e . s p l i t ( ’ ␣ ’ )
140 rRange = [ f l o a t ( a ) f o r a in s [ 2 : ] i f l en ( a ) > 0 ]
141 data [ 2 ] = rRange
142 # reads in the tab l e
143 e l i f ’R ’ not in l i n e and l en ( l i n e ) > 1 and ’Grev ’ not in l i n e :
144 s = l i n e
145 t = f l o a t ( s [ : 5 ] )
146 s s = [ ]
147 counter = 6
148 whi l e counter < len ( s ) :
149 s s . append ( s [ counter : counter + 7 ] )
150 counter += 7
151 data [ 3 ] . append ( t )
152 data [ 4 ] . append ( [ ] )
153 # Now we need to f i l t e r f o r columns which merged due to Fortran
154 # formatt ing
155 s = s s
156 f o r i , a in enumerate ( s ) :
157 data [ 4 ] [ − 1 ] . append ( f l o a t ( a ) )
158 i f l en ( s ) < len ( data [ 2 ] ) :
159 f o r i in range ( l en ( data [ 2 ] ) − l en ( s ) ) :
160 data [ 4 ] [ − 1 ] . append (1 e10 ) # absurd value
161 data [ 4 ] = np . array ( data [ 4 ] )
162 data [ 4 ] = data [ 4 ] [ : : − 1 ]
163 data [ 3 ] = np . array ( data [ 3 ] )
164 data [ 3 ] = data [ 3 ] [ : : − 1 ]
165 re turn data
166
167
168 de f readFergTables ( dirName ) :
169 data = [ ]
170 f o r f i l ename in os . l i s t d i r ( dirName ) :
171 s = f i l ename [ 4 : ] # remove the ’ g ’ from the beg inning
172 s = s . s p l i t ( ’ . ’ )
173 x = f l o a t ( s [ 0 ] ) / 10 ∗∗ l en ( s [ 0 ] )
174 z = f l o a t ( s [ 1 ] ) / 10 ∗∗ l en ( s [ 1 ] )
175 y = 1 − x − z
176 data . append ( readFergTable ( ( dirName + f i l ename ) , x , y ) )
177 re turn data

Usage Example (opacityTest.py)

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
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3 from opac i ty import ∗
4 a = opac ( ’ . . / Opacity␣Tables /Opal/GS98 . txt ’ , ’ . . / Opacity␣Tables /Ferguson/ f05 . gs98 / ’ , 0 . 7 ,

0 . 2 8 )
5 tRan = [10 ∗∗ ( i / 2 0 . ) f o r i in range (60 , 180) ]
6 rRan = [10 ∗∗ ( i / 2 0 . ) f o r i in range (−200 , 120) ]
7 t , r = np . meshgrid ( tRan , rRan )
8 z = a . opac i ty ( t , r )
9 bigR = r /( ( t /1 e6 ) ∗∗3)

10 z [ bigR>10] = np . nan
11 p r i n t t . shape
12 p r i n t r . shape
13 p r i n t z
14 p r i n t z . shape
15 p l t . imshow ( z , extent =[3 , 9 , −10, 6 ] , o r i g i n=’ lower ’ , a spect =0.3)
16 cb = p l t . c o l o rba r ( )
17 cb . s e t_ labe l ( ’ l og ␣$\kappa$ ’ )
18 p l t . y l ab e l ( ’ l og ␣$\\ rho$ ’ )
19 p l t . x l ab e l ( ’ l og ␣T ’ )
20 p l t . show ( )
21 cs = p l t . contour f (np . log10 ( tRan ) , np . log10 ( rRan ) , z )
22
23 cb . s e t_ labe l ( ’ l og ␣$\kappa$ ’ )
24 p l t . y l ab e l ( ’ l og ␣$\\ rho$ ’ )
25 p l t . x l ab e l ( ’ l og ␣T ’ )
26 p l t . show ( )

B.2 Stellar Integration Code
The thermodynamics functions from the Gob stellar integration code3 were translated into Python, and
subsequently into Cython. This is the first file shown below. The next file contains caching routines which
precompute the equation of state and perform high-speed vectorized interpolation. These routines have
been verified to an accuracy of one part in 104, though higher accuracy may be achieved by adjusting
the various resolution parameters they accept. The third file simply contains various physical constants.
The fourth file contains both a steady-state stellar integrator and a time-dependent stellar code. These
provide an interface which accepts as input the macroscopic stellar quantities such as luminosity, external
illumination, mass, and radius, and computes the steady-state structure. From there, the time-dependent
code may be used to evolve the star, accepting a new external illumination at each time step. The next
file provides an example of the usage of the whole package. The next three files provide the addon used
to compute self-consistent companion radii as well as the scripts which call it and analyze the resulting
output. The final two files provide a caller script and analyzer script for examining accretion induced
collapse in red giant systems. Note that this code requires Python, Cython, gcc, NumPy, and SciPy, and
was tested with versions 2.7, 0.21, 4.9.0-20130929, 1.9.0, and 0.14.0 respectively.

Thermodynamic Methods (gob.pyx)

1 #cython : c d i v i s i o n=True
2 #cython : in f e r_types=True
3 import numpy as np
4 from numpy import exp
5 from numpy import sq r t

3B. Paczyński. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
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6 from sc ipy . i n t e r p o l a t e import gr iddata
7
8 # Use fu l cons tant s
9 # −−−−−−− s e t the va lue s o f c r i t i c a l d e n s i t i e s f o r p r e s su r e i o n i z a t i o n :

10 # " rhc1 " , " rhc2 " , " rhc3 "
11 # −−−−−−− the value o f c r i t i c a l second helium i o n i z a t i o n : " hel im2 "
12 # −−−−−−− and the average charge o f " metals " : " zav " .
13 cde f double rhc l 1 = −1.0
14 cde f double rhc l 2 = −0.5
15 cde f double rhc l 3 = 0 .0
16 cde f double he2l im = 0.99
17 cde f double zav = 10 .0
18 cde f double rhc1 = 10 .0 ∗∗ rh c l 1
19 cde f double rhc2 = 10 .0 ∗∗ rh c l 2
20 cde f double rhc3 = 10 .0 ∗∗ rh c l 3
21
22 # p = pre s su r e ( cgs )
23 # ro = dens i ty ( cgs )
24 # u = energy dens i ty per un i t mass ( cgs )
25 # x = hydrogen mass f r a c t i o n
26 # y = helium mass f r a c t i o n
27 # Returns p , u , as we l l as
28 # xh1 hydrogen i o n i z a t i o n f r a c t i o n
29 # xhe1 helium f i r s t i o n i z a t i o n f r a c t i o n
30 # xhe2 helium second i o n i z a t i o n f r a c t i o n
31
32
33 cde f energ ( double ro , double t , double x , double y ) :
34 # rhc1 , rhc2 , rhc3 are c r i t i c a l d e n s i t i e s f o r " p r e s su r e i o n i z a t i o n "
35 cde f double t e ta = 5040 . / t
36 cde f double dm = 2.302585
37 cde f double tm = 1 / te ta / dm
38 cde f double l o g t = np . log10 ( t )
39 cde f double mue = ( 1 . + x ) / 2 .
40 cde f double h = 1.6734 e−24
41 cde f double nh = x ∗ ro / h
42 cde f double nhe = 0.25 ∗ y ∗ ro / h
43 cde f double nmet = 1 . / zav / 2 . ∗ ( 1 . 0 − x − y ) ∗ ro / h
44 # Assume metals f u l l y i on i z ed
45 cde f double nmetel = nmet ∗ zav
46 cde f double ne = 0 .0
47 cde f double nhi = nh
48 cde f double nh i i = 0 .0
49 cde f double nhei = nhe
50 cde f double nh e i i = 0 .
51 cde f double n h e i i i = 0 .
52 cde f double xh1 = 0 .0
53 cde f double xhe1 = 0 .0
54 cde f double xhe2 = 0 .0
55 cde f double f ac1 = 0 .0
56 cde f double f ac2 = 0 .0
57 cde f double f ac3 = 0 .0
58 # Hydrogen i o n i z a t i o n
59 cde f double h i1 = 13.595
60 cde f double h i = hi1 ∗ (1 − ro / rhc1 ∗ (1 + tm / hi1 ) )
61 cde f double f h l = np . log10 (nh)
62 cde f double b10 = 15.3828 + 1 .5 ∗ l o g t − hi ∗ t e t a − f h l
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63 i f b10 > 10 . 0 :
64 b10 = 10 .0
65 i f b10 > −10:
66 b = 10 .0 ∗∗ b10
67 c = b
68 fac1 = c ∗ nh
69 bc = 0 .5 ∗ b / c
70 xx = 1 .0 / ( sq r t ( bc ∗ bc + 1 .0 / c ) + bc )
71 # xx i s the p o s i t i v e root o f equat ion : xx∗∗2 + b∗xx − c = 0
72 xx1 = 1 .0 − xx
73 i f xx1 < 1 .0 e−10:
74 xx1 = 1 .0 e−10
75 nh i i = nh ∗ xx
76 ne = nh i i
77 nhi = nh ∗ xx1
78 xh1 = xx
79 # Helium i o n i z a t i o n
80 hi2 = 24.580
81 h i = hi2 ∗ (1 − ro / rhc2 ∗ (1 + tm / hi2 ) )
82 f h e l = np . log10 ( nhe )
83 b10 = 15.9849 + 1 .5 ∗ l o g t − hi ∗ t e t a − f h e l
84 i f b10 > 10 . 0 :
85 b10 = 10 .0
86 i f b10 > −10:
87 c = 10 .0 ∗∗ b10
88 b = c + ne / nhe
89 fac2 = c ∗ nhe
90 bc = 0 .5 ∗ b / c
91 xx = 1 .0 / ( sq r t ( bc ∗ bc + 1 .0 / c ) + bc )
92 xx1 = 1 .0 − xx
93 i f xx1 < 1e−10:
94 xx1 = 1e−10
95 nh e i i = nhe ∗ xx
96 ne = ne + nhe i i
97 nhei = nhe ∗ xx1
98 xhe1 = xx
99 # Second Helium i o n i z a t i o n
100 hi3 = 54.403
101 h i = hi3 ∗ (1 − ro / rhc2 ∗ (1 + tm / hi3 ) )
102 f h e l = np . log10 ( nh e i i )
103 b10 = 15.3828 + 1 .5 ∗ l o g t − hi ∗ t e t a − f h e l
104 i f b10 > 10 :
105 b10 = 10
106 i f b10 > −10:
107 c = 10 .0 ∗∗ b10
108 b = c + ne / nhe i i
109 fac3 = c ∗ nhe i i
110 bc = 0 .5 ∗ b / c
111 xx = 1 .0 / ( sq r t ( bc ∗ bc + 1 .0 / c ) + bc )
112 xx1 = 1 .0 − xx
113 i f xx1 < 1e−10:
114 xx1 = 1e−10
115 n h e i i i = nhe i i ∗ xx
116 ne = ne + nh e i i i
117 nh e i i = nhe i i ∗ xx1
118 xhe2 = xx
119 f1 = fac1 / ne
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120 f2 = fac2 / ne
121 f3 = fac3 / ne
122 f4 = nh / ne
123 f5 = y / 4 / x
124 zz = 1 .0
125 zz = f z z ( zz , f1 , f2 , f3 , f4 , f 5 )
126 ne = ne ∗ zz
127 xh1 = f1 / (1 + f1 )
128 xhe1 = f2 / (1 + f2 ∗ (1 + f3 ) )
129 xhe2 = xhe1 ∗ f 3
130 nhi = nh ∗ (1 − xh1 )
131 nh i i = nh ∗ xh1
132 nhei = nhe ∗ (1 − xhe1 − xhe2 )
133 nh e i i = nhe ∗ xhe1
134 n h e i i i = nhe ∗ xhe2
135 nh2 = 0 .0
136 i f nhi > 0.001 ∗ nh and t < 20000:
137 f a c = 28.0925 − t e t a ∗ (4 .92516 − t e t a ∗ (0 .056191 + te ta ∗ 0 .0032688) ) − l o g t
138 i f t < 12000 :
139 f a c = fac + ( t − 12000) / 1000 .
140 f a c = exp (dm ∗ f a c )
141 i f f a c > 1e−20 ∗ nhi :
142 b = fac / nhi
143 bc = 0 .5
144 xx = 1 .0 / ( sq r t ( bc ∗ bc + 1 .0 / b) + bc )
145 nh2 = 0 .5 ∗ nhi ∗ (1 − xx )
146 nhi = nhi ∗ xx
147 e l s e :
148 nh2 = 0 .5 ∗ nhi
149 nhi = 0 .0
150 # Correc t ion f o r s l i g h t e l e c t r on degeneracy
151 nedgen = ( nmetel + ne ) ∗ ( 1 . + 2 .19 e−2 ∗ ( ro / mue) ∗ ( t / 1 . e6 ) ∗∗ (−1.5) )
152 nt = nh − nh2 + nhe + nedgen + nmet
153 pg = 1.3805 e−16 ∗ nt ∗ t
154 pr = 2.521922460548802 e−15∗ t ∗∗4
155 p = pg + pr
156 uh2 = t ∗ ( 2 . 1 + t ∗ 2 .5 e−4)
157 i f t > 3000 :
158 uh2 = −1890. + t ∗ ( 3 . 36 + t ∗ 0 .4 e−4)
159 u = (1 . 5 ∗ pg + 3 . ∗ pr + 1.3805 e−16 ∗ nh2 ∗ uh2 + 3.585 e−12 ∗ nhi + 25 .36 e−12 ∗ nh i i

+
160 39 .37 e−12 ∗ nhe i i + 126 .52 e−12 ∗ n h e i i i ) / ro
161 re turn p , u , xh1 , xhe1 , xhe2
162
163 # input :
164 # zz = a guess o f c o r r e c t i n g f a c t o r to the e l e c t r on dens i ty (=1.0)
165 # f1 , f2 , f 3 = i o n i z a t i o n f a c t o r s d iv ided by e l e c t r on dens i ty
166 # f4 = number dens i ty o f hydrogen ions and atoms / e l e c t r on number dens i ty
167 # f5 = r a t i o o f helium to hydrogen nu c l e i
168 # output :
169 # zz = the i t e r a t e d value o f the c o r r e c t i n g f a c t o r
170 # f1 , f2 , f 3 = i o n i z a t i o n f a c t o r s d iv ided by the co r r e c t ed e l e c t r on dens i ty
171 # Helper method f o r c o r r e c t i n g e l e c t r o n dens i ty
172
173
174 cde f double f z z ( double zz , double f1 , double f2 , double f3 , double f4 , double f5 , double de l t a

=0.001 , double acc =0.00001 , i n t itmax = 30) :
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175 cde f i n t i t e r a t i o n s = 1
176 f z = funzz ( zz , f1 , f2 , f3 , f4 , f 5 )
177 whi l e abs ( f z ) > acc and i t e r a t i o n s <= itmax :
178 zz1 = zz + de l t a
179 f z1 = funzz ( zz1 , f1 , f2 , f3 , f4 , f 5 )
180 dz = de l t a ∗ f z / ( f z − f z 1 )
181 zz = zz + dz
182 i t e r a t i o n s += 1
183 f z = funzz ( zz , f1 , f2 , f3 , f4 , f 5 )
184 i f i t e r a t i o n s == itmax :
185 p r i n t ’Warning : ␣ f z z ␣ i t e r a t i o n s ␣do␣not␣ converge . ’
186 re turn zz
187
188
189 cde f double funzz ( double zz , double f1 , double f2 , double f3 , double f4 , double f 5 ) : # Helper

method
190 return f1 / ( f 1 + zz ) + f5 ∗ f 2 ∗ ( zz + 2 ∗ f 3 ) / ( zz ∗ zz + f2 ∗ ( zz + f3 ) ) − zz /

f4
191
192 # input :
193 # ro dens i ty ( c . g . s . )
194 # t temp(k )
195 # x hydrogen mass f r a c t i o n
196 # y helium mass f r a c t i o n
197 # typ con t r o l v a r i ab l e :
198 # > 0 inc lude r ad i a t i on in i o n i z a t i o n r eg i on
199 # <=0 neg l e c t r ad i a t i on in i o n i z a t i o n r eg i on
200 # output :
201 # q −(d ln rho /d ln t )p |
202 # cp (du/dt )p s p e c i f i c heat cap . at const p |
203 # gradad (d ln t /d ln p) s ad i aba t i c g rad i ent |
204 # p pre s su r e ( c . g . s . ) |
205 # dpro (dp/drho ) t |−−> c . g . s . k .
206 # dpt (dp/dt ) rho |
207 # u s p e c i f i c i n t e r n a l energy |
208 # dut (du/dt ) rho s p e c i f i c heat cap . at const vo l . |
209 # vad ad i aba t i c sound speed |
210 # e r r o r l og ( e r r o r )
211 # xh1 hydrogen i o n i z a t i o n f r a c t i o n
212 # xhe1 helium f i r s t i o n i z a t i o n f r a c t i o n
213 # xhe2 helium second i o n i z a t i o n f r a c t i o n
214 # an adjustment i s made to take in to account weak e l e c t r o n degen . ,
215 # here f o r f u l l i on i z a t i on , in energ f o r p a r t i a l i o n i z a t i o n
216
217
218 cpdef termo ( double ro , double t , double x , double y ) :
219 p , u , xh1 , xhe1 , xhe2 = energ ( ro , t , x , y )
220 z = 1 . − x − y
221 i f xhe2 >= he2lim :
222 xh1 = 1 .0
223 xhe1 = 0 .0
224 xhe2 = 1 .0
225 # f u l l i o n i z a t i o n
226 n e l e c t = (x + y / 2 . + z / 2 . )
227 nnucl = (x + y / 4 . + z / zav / 2 . )
228 mue = ( 1 . + x) / 2 .
229 ndgen = ne l e c t ∗ ( 1 . + 2 .19 e−2 ∗ ( ro / mue) ∗ ( t / 1 . e6 ) ∗∗ (−1.5) )
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230 # p1 i s f o r p a r t i c l e s , p2 i s f o r photons
231 p1 = 0.825075 e8 ∗ ( ndgen + nnucl )
232 p2 = 2.523 e−15 ∗ t ∗∗ 3 / ro
233 p = (p1 + p2 ) ∗ ro ∗ t
234 u = (1 . 5 ∗ p1 + 3 . ∗ p2 ) ∗ t + 1.516 e13 ∗ x + 1.890 e13 ∗ y
235 dpro = p1 ∗ t
236 dpt = (p1 + 4 . ∗ p2 ) ∗ ro
237 duro = −3. ∗ p2 ∗ t / ro
238 dut = 1 .5 ∗ p1 + 12 . ∗ p2
239 e l s e :
240 # pa r t i a l i o n i z a t i o n o f hydrogen and helium
241 p1 , u1 , xh1 , xhe1 , xhe2 = energ ( ro , 0 .999 ∗ t , x , y )
242 p2 , u2 , xh1 , xhe1 , xhe2 = energ ( ro , 1 .001 ∗ t , x , y )
243 p3 , u3 , xh1 , xhe1 , xhe2 = energ (0 . 999 ∗ ro , t , x , y )
244 p4 , u4 , xh1 , xhe1 , xhe2 = energ (1 . 001 ∗ ro , t , x , y )
245 p = (p1 + p2 + p3 + p4 ) / 4
246 u = (u1 + u2 + u3 + u4 ) / 4
247 dpro = (p4 − p3 ) ∗ 500 / ro
248 dpt = (p2 − p1 ) ∗ 500 / t
249 duro = (u4 − u3 ) ∗ 500 / ro
250 dut = (u2 − u1 ) ∗ 500 / t
251 # eva lua t i on o f more complex thermodynamic f unc t i on s and the e r r o r
252 q = t / ro ∗ dpt / dpro
253 cp = dut + q / ro ∗ dpt
254 gradad = p ∗ q / ( cp ∗ ro ∗ t )
255 vad = sq r t ( dpro ∗ cp / dut )
256 er1 = np . abs (1 − t / p ∗ dpt − duro ∗ ro ∗∗ 2 / p) + 1 .0 e−10
257 e r r o r = np . log10 ( er1 )
258 re turn q , cp , gradad , p , dpro , dpt , u , dut , vad , e r ror , xh1 , xhe1 , xhe2

Thermodynamic Caches (thermoCache.py)

1 import numpy as np
2 import pyximport
3 pyximport . i n s t a l l ( )
4 import gob
5 from sc ipy . i n t e r p o l a t e import Regu la rGr id Inte rpo la to r
6 from sc ipy . opt imize import newton
7 from constant s import ∗
8
9 c l a s s thermCache : # Cache ob j e c t a l l ow ing f o r precomputation o f thermodynamic quan t i t i e s

10 de f __init__( s e l f , x , y , minLogRho=−13,maxLogRho=8,minLogT=2.5 ,maxLogT=8, resRho
=500 , resT=500) :

11 rran = 10∗∗np . l i n s p a c e (minLogRho ,maxLogRho ,num=resRho )
12 tran = 10∗∗np . l i n s p a c e (minLogT ,maxLogT ,num=resT )
13 data = np . z e r o s ( ( l en ( rran ) , l en ( tran ) ,13) )
14 f o r i in range ( l en ( rran ) ) :
15 f o r j in range ( l en ( tran ) ) :
16 data [ i , j ] = gob . termo ( rran [ i ] , t ran [ j ] , x , y )
17 s e l f . r ran = rran
18 s e l f . t ran = tran
19 s e l f . data = data
20 s e l f . i n t e rp = [ ]
21 s e l f . needsLog = [ 3 , 4 , 6 , 8 ]
22 data [ : , : , s e l f . needsLog ] = np . log10 ( data [ : , : , s e l f . needsLog ] )
23 s e l f . i n t e rp = Regu la rGr id Inte rpo la to r ( ( rran , tran ) , data , bounds_error=False

, f i l l _ v a l u e=np . nan )
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24 s e l f . indDict = { ’ q ’ : 0 , ’ cp ’ : 1 , ’ gradad ’ : 2 , ’p ’ : 3 , ’ dpro ’ : 4 , ’ dpt ’ : 5 , ’u ’ : 6 , ’ dut
’ : 7 , ’ vad ’ : 8 , ’ e r r ’ : 9 , \

25 ’ xh1 ’ : 1 0 , ’ xhe1 ’ : 1 1 , ’ xhe2 ’ :12}
26
27 de f termo ( s e l f , rho , t , name=None ) :
28 # Pass ing name causes t h i s to j u s t re turn the s p e c i f i e d quantity ,
29 # otherwi se a l l computed quan t i t i e s are returned .
30 r e t = np . t ranspose ( s e l f . i n t e rp (np . t ranspose ( [ rho , t ] ) ) )
31 r e t [ s e l f . needsLog ] = 10∗∗ r e t [ s e l f . needsLog ]
32 i f name==None :
33 re turn r e t
34 re turn r e t [ s e l f . indDict [ name ] ]
35
36 de f rhoFromP( s e l f , p , t ) :
37 pg = p−(a∗ t ∗∗4) /3
38 i f pg<0: # In c on s i s t e n t with Eddington l im i t
39 re turn np . nan
40 rho0 = mP∗pg/(kB∗ t )
41 f = lambda rho : 1− s e l f . termo ( abs ( rho ) , t , name=’p ’ ) [ 0 ] / p
42 fp = lambda rho : −(1/p) ∗ s e l f . termo ( abs ( rho ) , t , name=’ dpro ’ ) [ 0 ]
43 r e t = np . nan
44 try :
45 r e t = np . abs ( newton ( f , rho0 , fpr ime=fp , maxiter=50) )
46 except :
47 p r i n t ’WARNING: ␣Convergence␣ Fa i l u r e ␣ in ␣Rho−s o l v i n g ! ␣ Inputs ␣ are ␣

log (p) , ’ , np . log10 (p) , ’ l og ( t ) , ’ , np . log10 ( t )
48 re turn r e t
49
50
51 c l a s s rhoCache : # Cache ob j e c t a l l ow ing f o r i n v e r s i o n o f the equat ion o f s t a t e
52 de f __init__( s e l f , thermcache , minLogP=−6,maxLogP=16,minLogT=2.5 ,maxLogT=8, resP

=150 , resT=150) :
53 pran = 10∗∗np . l i n s p a c e (minLogP ,maxLogP ,num=resP )
54 tran = 10∗∗np . l i n s p a c e (minLogT ,maxLogT ,num=resT )
55 data = np . z e r o s ( ( l en ( pran ) , l en ( tran ) ) )
56 f o r i in range ( l en ( pran ) ) :
57 f o r j in range ( l en ( tran ) ) :
58 data [ i , j ] = np . log10 ( thermcache . rhoFromP( pran [ i ] , t ran [ j ] )

)
59 s e l f . pran = pran
60 s e l f . t ran = tran
61 s e l f . data = data
62 s e l f . i n t e rp = Regu la rGr id Inte rpo la to r ( ( pran , tran ) , data , bounds_error=False

, f i l l _ v a l u e=np . nan )
63
64 de f rho ( s e l f , p , t ) :
65 pg = p−(a∗ t ∗∗4) /3
66 i f not i s i n s t a n c e ( t , np . ndarray ) :
67 i f pg<0: # In c on s i s t e n t with Eddington l im i t
68 re turn np . nan
69 e l s e :
70 r e t = np . z e ro s ( l en (p) )
71 r e t [ pg<0] = np . nan # In c on s i s t e n t with Eddington l im i t
72 # The above code i s nece s sa ry because the photosphere sometimes

i n t e r p o l a t e s to NaN va lue s
73 # due to proximity to Eddington−v i o l a t i n g parameters .
74 r e t [ r e t==0] = (10∗∗ s e l f . i n t e rp (np . t ranspose ( [ p , t ] ) ) ) [ r e t==0]
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75 return r e t
76
77 de f drhodT( s e l f , p , t , eps=1e−3) : # Scipy ’ s Rec tB iva r i a t eSp l i n e d i f f e r e n t i a t o r i s

broken so I wrote my own
78 return ( s e l f . rho (p , t ∗(1+eps ) )− s e l f . rho (p , t∗(1− eps ) ) ) /(2∗ eps ∗ t )
79
80 c l a s s convGradCache : # Cache ob j e c t f o r the root−f i n d i n g problem o f the convec t ive

g rad i ent
81 de f __init__( s e l f , minLogV=−20,maxLogV=20,minLogA=−20,maxLogA=20, resV=100 , resA

=100) :
82 vran = 10∗∗np . l i n s p a c e (minLogV ,maxLogV ,num=resV )
83 aran = 10∗∗np . l i n s p a c e (minLogA ,maxLogA ,num=resA )
84 data = np . z e r o s ( ( l en ( vran ) , l en ( aran ) ) )
85 f o r i in range ( l en ( vran ) ) :
86 f o r j in range ( l en ( aran ) ) :
87 roo t s = np . r oo t s ( [ 2∗ aran [ j ] , vran [ i ] , vran [ i ]∗∗2 ,− vran [ i ] ] )
88 data [ i , j ] = np .max(np . r e a l ( r oo t s [ np . where (np . i s r e a l ( r oo t s

) ) ] ) )
89 s e l f . vran = vran
90 s e l f . aran = aran
91 s e l f . data = data
92 s e l f . i n t e rp = Regu la rGr id Inte rpo la to r ( ( vran , aran ) , data , bounds_error=False

, f i l l _ v a l u e=np . nan )
93
94 de f convGrad ( s e l f , v , a ) :
95 re turn s e l f . i n t e rp (np . t ranspose ( [ v , a ] ) )

Fundamental Constants (constants.py)

1 c = 2.99792458 e10 # cm/ s Speed o f l i g h t
2 sigma = 5.670400 e−5 # erg /cm^2/ s /K^4 Stephan−Boltzmann
3 a = 4∗ sigma/c # erg /cm^3/K^4 Photon gas i n t e r n a l energy constant
4 kB = 1.3806488 e−16 # erg /K Boltzmann
5 mP = 1.672622 e−24 # g Proton mass
6 newtonG = 6.67 e−8 # erg cm/g^2 G
7 mSun = 1.9988435 e33 # g So la r Mass
8 rSun = 6.96 e10 # cm So la r Radius
9 lSun = 3.846 e33 # erg / s So la r Luminosity

10 kappaG = 1000 . # g/cm^2 Gamma ray opac i ty

Steady-state and Time-dependent Integrators (star.py)

1 import opac i ty
2 import numpy as np
3 from thermoCache import ∗
4 from sc ipy . spa r s e import csr_matrix
5 from sc ipy . spa r s e . l i n a l g import sp so l v e
6 from numpy import p i
7 from constant s import ∗
8 import p l o tU t i l s as pu
9

10 de f f ( tau ) :
11 d = np . array (1−1.5∗ tau )
12 d [ d<0] = 0
13 return d
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14
15 de f s ( t , rho , l , r ,m) :
16 re turn ( 2 . / 3 ) ∗a∗ t ∗∗3∗ r ∗∗0 .5∗ ( np . abs ( l ) /(8∗ pi ∗ sigma ) ) ∗∗0 .25/( newtonG∗m∗ rho )
17
18 de f gradR ( kappa , l ,m, f f , ss , p , t ) :
19 re turn 3∗p∗( kappa∗ l+f f ∗ s s ∗4∗ pi ∗newtonG∗m∗c ) /(16∗ pi ∗newtonG∗m∗c∗a∗ t ∗∗4∗(1+ f f ∗ s s ) )
20
21 de f gradRho (p , dpdt , t , gradd , dpdrho , rho ) :
22 re turn (p−dpdt∗ t ∗gradd ) /( dpdrho∗ rho )
23
24 de f gradConv ( gradRr , gradAd , kappa , rho , hs , alpha ,m, r , q , cp , t , convcache ) :
25 l t = hs∗ alpha
26 w = kappa∗ rho∗ l t
27 g0 = cp∗ rho ∗(1+(w∗∗2) /3) /(8∗ sigma∗ t ∗∗3∗w)
28 d = newtonG∗m∗ l t ∗∗2∗q/(8∗ hs∗ r ∗∗2)
29 aa = 9∗w∗∗2/(8∗(3+w∗∗2) )
30 v = 1/( g0∗d ∗∗0 .5∗ ( gradRr−gradAd ) ∗∗0 . 5 )
31 y0 = convcache . convGrad (v , aa )
32 re turn gradAd+(gradRr−gradAd ) ∗y0 ∗( y0+v) , y0/v , y0 /(v∗g0 )
33
34 de f gradFul l (m, r , tau , l , t , rho , opac , x , y , alpha , thermcache , convcache ) :
35 f f = f ( tau )
36 s s = s ( t , rho , l , r ,m)
37 q , cp , gradad , p , dpro , dpt , u , dut , vad , e r ror , xh1 , xhe1 , xhe2 = thermcache . termo ( rho , t )
38 dlnp = −newtonG∗m∗(1+ f f ∗ s s ) /(4∗ pi ∗p∗ r ∗∗4)
39 kappa = 10∗∗ opac . opac i ty ( t , rho )
40 gradRr = gradR ( kappa , l ,m, f f , ss , p , t )
41 hs = p∗ r ∗∗2/( rho∗newtonG∗m)
42 gradd = gradR ( kappa , l ,m, f f , ss , p , t )
43 i f not i s i n s t a n c e ( gradd , np . ndarray ) :
44 i f gradRr>gradad :
45 gradd = gradConv ( gradRr , gradad , kappa , rho , hs , alpha ,m, r , q , cp , t ,

convcache ) [ 0 ] [ 0 ]
46 e l s e :
47 gradd [ gradRr>gradad ] = gradConv ( gradRr , gradad , kappa , rho , hs , alpha ,m, r , q , cp

, t , convcache ) [ 0 ] [ gradRr>gradad ]
48 i f l en (np . where (np . i snan ( gradd ) ) [ 0 ] ) >0:
49 p r i n t ’ Error : ␣ I nva l i d ␣numerics ␣ detec ted ␣ in ␣ grad i ent ␣ c a l c u l a t i o n . ’
50 p r i n t ’ Inputs ␣ are : ’
51 p r i n t ’ t ’ , t
52 p r i n t ’ rho ’ , rho
53 p r i n t ’p ’ ,p
54 p r i n t ’ kappa ’ , kappa
55 pr i n t ’ l ’ , l
56 p r i n t ’ Inte rmed iate ␣ va lue s ␣ are : ’
57 p r i n t ’ Radiat ive ␣Gradient ’ , gradRr
58 pr i n t ’ Adiabat ic ␣Gradient ’ , gradad
59 e x i t ( )
60 re turn gradd
61
62 de f dgraddT (m, r , p , tau , l , t , opac , x , y , alpha , thermcache , convcache , rhocache , eps=1e−3) :
63 rho0 = rhocache . rho (p , t∗(1− eps ) )
64 rho1 = rhocache . rho (p , t ∗(1+eps ) )
65 g0 = gradFul l (m, r , tau , l , t∗(1− eps ) , rho0 , opac , x , y , alpha , thermcache , convcache )
66 g1 = gradFul l (m, r , tau , l , t ∗(1+eps ) , rho1 , opac , x , y , alpha , thermcache , convcache )
67 re turn ( g1−g0 ) /(2∗ t ∗ eps )
68
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69 de f dgraddL (m, r , p , tau , l , t , opac , x , y , alpha , thermcache , convcache , rhocache , l0 , eps=1e−3) :
70 rho = rhocache . rho (p , t )
71 dlp = eps ∗ l 0
72 g0 = gradFul l (m, r , tau , l−dlp , t , rho , opac , x , y , alpha , thermcache , convcache )
73 g1 = gradFul l (m, r , tau , l+dlp , t , rho , opac , x , y , alpha , thermcache , convcache )
74 re turn ( g1−g0 ) /(2∗ dlp )
75
76 c l a s s s t a r :
77 de f __init__( s e l f , x , y ,m0, r0 , l0 , alpha , thermcache , rhocache , convcache , fnameOpal=’ . . /

Opacity␣Tables /Opal/GS98 . txt ’ , fnameFerg=’ . . / Opacity␣Tables /Ferguson/ f05 . gs98 /
’ , delM=3e−3, l e x t =0,minRes=500 , caut ion=500 , qu i e t=False ) :

78 # Store inputs
79 s e l f . x = x
80 s e l f . y = y
81 s e l f .m0 = m0
82 s e l f . r0 = r0
83 s e l f . t0 = ( ( l 0 + l e x t ) /(8∗ pi ∗ sigma∗ s e l f . r0 ∗∗2) ) ∗∗0 .25 # T0 i s the su r f a c e

temp , not the photosphere temp : r e l a t e d by 2^(1/4)
84 s e l f . l 0 = l 0
85 s e l f . l = None
86 s e l f . l e x t = l e x t
87 s e l f . alpha = alpha
88 s e l f . delM = delM
89 s e l f . qu i e t = qu i e t
90
91 # Prepare opac i ty i n t e r p o l a t o r
92 s e l f . opalName = fnameOpal
93 s e l f . fergName = fnameFerg
94 s e l f . opac = opac i ty . opac ( fnameOpal , fnameFerg , x , y )
95
96 # Caches
97 s e l f . thermcache = thermcache
98 s e l f . rhocache = rhocache
99 s e l f . convcache = convcache
100
101 # Helper f o r read ing out data
102 s e l f . indDict = { ’ t ’ : 0 , ’ rho ’ : 1 , ’ r ’ : 2 , ’ tau ’ : 3 , ’p ’ : 4 , ’ cp ’ : 5 , ’ gradad ’ : 6 , ’ dpro

’ : 7 , ’ dpt ’ : 8 , ’ u ’ : 9 , ’ dut ’ : 10 , \
103 ’ vad ’ : 1 1 , ’ grad ’ : 1 2 , ’ gradRho ’ : 1 3 , ’ gradR ’

: 1 4 , ’ q ’ : 1 5 , ’mUp’ : 1 6 , ’dm ’ : 17 , ’mDown ’
: 18 , \

104 ’ kappa ’ : 1 9 , ’ hs ’ : 2 0 , ’gamma ’ : 2 1 , ’ vc ’ : 2 2 , ’mu
’ : 2 3 , ’ sigma ’ :24}

105
106 # Prepare i n i t i a l s t a r s t a t e
107 s e l f . s teady = s e l f . s t e ady In t eg ra t e (minRes=minRes , caut ion=caut ion )
108 sg = np . t ranspose ( [ s e l f . s teady [ : , 1 6 ] / ( 4 ∗ pi ∗ s e l f . r0 ∗∗2) ] )
109 s e l f . s teady = np . concatenate ( ( s e l f . steady , sg ) , ax i s=1)
110 s e l = np . where ( s e l f . s teady [: ,−1] >1e−2)
111 s e l f . s teady = s e l f . s teady [ s e l ] # For p l o t t i n g convenience
112 s e l f . l = s e l f . l [ s e l ]
113
114 # Prepare f o r time i n t e g r a t i o n
115 s e l f . s t a t e = np . copy ( s e l f . s teady )
116 s e l = np . where ( s e l f . s t a t e [ : , 3 ] >2 . / 3 )
117 s e l f . s t a t e = s e l f . s t a t e [ s e l ] # Chop o f f top o f photosphere f o r time

i n t e g r a t i o n
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118 s e l f . l = s e l f . l [ s e l ]
119 s e l f . l = np . concatenate ( ( s e l f . l , [ s e l f . l 0 ] ) )
120 s e l f . tb = s e l f . s teady [−1 ,0 ]
121 # Prepare he lpe r v a r i a b l e s f o r time i n t e g r a t i o n
122 s e l f .m = s e l f . s t a t e [ : , 1 8 ]
123 s e l f .dm = s e l f . s t a t e [ : −1 ,17 ]
124 s e l f .mUp = s e l f . s t a t e [ : , 1 6 ]
125 s e l f .mL = np . concatenate ( ( [ s e l f .m[ 0 ] ] , ( s e l f .m[ 1 : ]+ s e l f .m[ : −1 ] ) /2 , [ s e l f .m

[ −1 ] ] ) )
126 s e l f .mLup = np . concatenate ( ( [ s e l f .mUp[ 0 ] ] , ( s e l f .mUp[ 1 : ]+ s e l f .mUp[ : −1 ] )

/2 , [ s e l f .mUp[ −1 ] ] ) )
127 s e l f .dmL = np . concatenate ( ( [ s e l f .dm[ 0 ] / 2 ] , ( s e l f .dm[ 1 : ]+ s e l f .dm[ : −1 ] ) /2 , [

s e l f .dm[ −1 ]/2 ] ) )
128 s e l f . f a c t = s e l f . l [ 0 ] / ( 4 ∗ pi ∗ s e l f . r0 ∗∗2∗ sigma∗ s e l f . s t a t e [ 0 , 0 ] ∗ ∗ 4 ) # Temp

BC co r r e c t i o n
129 i f not s e l f . qu i e t :
130 p r i n t s e l f . f ac t , s e l f . l [ 0 ] / ( 4 ∗ pi ∗ s e l f . r0 ∗∗2∗ sigma∗ s e l f . s t a t e

[ 0 , 0 ] ∗ ∗ 4 )
131
132 # Prepare d e r i v a t i v e s matrix
133 # L oupie s 0 through N, T oup ie s N+1 through 2N
134 n = s e l f . s t a t e . shape [ 0 ]
135 i f not s e l f . qu i e t :
136 p r i n t n
137 i j = np . z e r o s ( (4∗n−2 ,2) )
138 vs = np . z e ro s (4∗n−2)
139
140 # Luminosity d e r i v a t i v e s
141 i j [ : n ] = [ [ i +1, i ] f o r i in range (n) ]
142 vs [ : n ] = −1/ s e l f .dmL
143 i j [ n : 2∗n ] = [ [ i +1, i +1] f o r i in range (n) ]
144 vs [ n : 2∗n ] = 1/ s e l f .dmL
145
146 # Temperature d e r i v a t i v e s
147 i j [ 2∗n :3∗n−1] = [ [ i+n+2, i+n+1] f o r i in range (n−1) ]
148 vs [ 2∗n :3∗n−1] = − s e l f .mUp[ : −1 ]/ s e l f .dm
149 i j [ 3∗n−1:4∗n−2] = [ [ i+n+2, i+n+2] f o r i in range (n−1) ]
150 vs [ 3∗n−1:4∗n−2] = s e l f .mUp[ : −1 ]/ s e l f .dm
151
152 # Put i t a l l t oge the r
153 i j = np . t ranspose ( i j )
154 s e l f . d i f fMat = csr_matrix ( ( vs , i j ) , shape=(2∗n+1,2∗n+1) )
155 s e l f . eps0 = −( s e l f . d i f fMat ∗np . concatenate ( ( s e l f . l , s e l f . s t a t e [ : , 0 ] ) ) ) [1 :1+

len ( s e l f . s t a t e ) ]
156
157 de f p l o t ( s e l f , kind , xVar , yVar , logX , logY , xlab , ylab , ax i s , endMarker=None ,

endMarkerSize=None ) :
158 x = s e l f . r e t r i e v e ( xVar , kind )
159 y = s e l f . r e t r i e v e ( yVar , kind )
160 r = s e l f . r e t r i e v e ( ’ r ’ , kind )
161
162 # Compute marker on the heat ing depth
163 s i g = s e l f . r e t r i e v e ( ’ sigma ’ , kind )
164 heatLoc = np . argmin (np . abs ( s ig−1e3 ) )
165 xH = x [ heatLoc ]
166 yH = y [ heatLoc ]
167
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168 # Compute marker on the photosphere
169 tau = s e l f . r e t r i e v e ( ’ tau ’ , kind )
170 pLoc = np . argmin (np . abs ( tau −2./3) )
171 xP = x [ pLoc ]
172 yP = y [ pLoc ]
173
174 # Continue with p l o t t i n g
175 isConv = ( s e l f . r e t r i e v e ( ’ gradad ’ , kind )>=s e l f . r e t r i e v e ( ’ gradR ’ , kind ) )
176 i f l en (x ) >500:
177 red = len (x ) /500
178 x = np . copy (x [ : : red ] )
179 y = np . copy (y [ : : red ] )
180 r = np . copy ( r [ : : red ] )
181 isConv = isConv [ : : red ]
182 i f logX :
183 x = np . log10 (x )
184 xH = np . log10 (xH)
185 xP = np . log10 (xP)
186 i f logY :
187 y = np . log10 (y )
188 yH = np . log10 (yH)
189 yP = np . log10 (yP)
190 i f yVar!= ’ r ’ :
191 th inApproxFi l t e r = np . abs ( r−s e l f . r0 ) <0.5∗ s e l f . r0
192 x = x [ th inApproxFi l t e r ]
193 y = y [ th inApproxFi l t e r ]
194 pu . c o l o r l i n e ( ax is , x , y , z=0.15+0.7∗ isConv )
195 ranX = np . nanmax(x )−np . nanmin (x )
196 ranY = np . nanmax(y )−np . nanmin (y )
197 ax i s . set_xlim ( [ np . nanmin (x )−ranX/10 ,np . nanmax(x )+ranX /10 ] )
198 ax i s . set_ylim ( [ np . nanmin (y )−ranY/10 ,np . nanmax(y )+ranY /10 ] )
199 ax i s . s e t_x labe l ( xlab )
200 ax i s . s e t_y labe l ( ylab )
201 heatLoc = np . argmin (np . abs (x−1e3 ) )
202
203 # Place markers
204 i f xVar==’ sigma ’ :
205 ax i s . axvspan (xP , xH, alpha =0.3 , c o l o r=’ grey ’ )
206 i f not endMarker i s None :
207 ax i s . s c a t t e r ( x [−1] , y [−1] , marker=endMarker , s=endMarkerSize , c=’k ’ ,

zorder=100)
208
209
210 de f r e t r i e v e ( s e l f , name , kind ) :
211 i f kind==’ steady ’ :
212 i f name==’ l ’ :
213 re turn s e l f . l 0
214 re turn s e l f . s teady [ : , s e l f . indDict [ name ] ]
215 e l i f kind==’ timedep ’ :
216 i f name==’ l ’ :
217 re turn s e l f . l
218 re turn s e l f . s t a t e [ : , s e l f . indDict [ name ] ]
219 e l s e :
220 p r i n t ’ Error : ␣ I nva l i d ␣kind . ␣ Please ␣ s p e c i f y ␣ e i t h e r ␣ steady ␣ or ␣

timedep . ’
221
222 de f sigma ( s e l f , kind ) :
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223 return s e l f . r e t r i e v e ( ’p ’ , kind ) ∗ s e l f . r0 ∗∗2/(newtonG∗ s e l f .m0)
224
225 de f mu( s e l f , kind ) :
226 re turn s e l f . r e t r i e v e ( ’ rho ’ , kind ) ∗kB∗ s e l f . r e t r i e v e ( ’ t ’ , kind ) / s e l f . r e t r i e v e

( ’p ’ , kind )
227
228 de f s t e ady In t eg ra t e ( s e l f , minRes=500 , caut ion=500) :
229 z = np . array ( [ np . l og ( s e l f . t0 ) , np . l og (1 e−12) , s e l f . r0 , 0 ] ) # rho0 = 1e−12
230 i = 0
231 data = [ ]
232 mUp = 1e−30
233 whi l e mUp<s e l f . delM∗ s e l f .m0:
234 # Prepare luminos i ty
235 l e = s e l f . l e x t ∗np . exp(−mUp/(kappaG∗4∗ pi ∗ s e l f . r0 ∗∗2) )
236 l = s e l f . l 0 + l e
237 # Prepare thermodynamics
238 t = np . exp ( z [ 0 ] )
239 rho = np . exp ( z [ 1 ] )
240 tau = z [ 3 ]
241 r = s e l f . r0
242 f f = f ( tau )
243 s s = s ( t , rho , l , r , s e l f .m0)
244 kappa = 10∗∗ s e l f . opac . opac i ty ( t , rho )
245 q , cp , gradad , p , dpro , dpt , u , dut , vad , e r ror , xh1 , xhe1 , xhe2 = s e l f .

thermcache . termo ( rho , t ) [ : , 0 ]
246 gradRr = gradR ( kappa , l , s e l f .m0, f f , ss , p , t )
247
248 # Compute d e r i v a t i v e s
249 dlnp = −newtonG∗ s e l f .m0∗(1+ f f ∗ s s ) /(4∗ pi ∗p∗ r ∗∗4)
250 dr = 1 ./ (4∗ pi ∗ r ∗∗2∗ rho )
251 dtau = −kappa /(4∗ pi ∗ r ∗∗2)
252 dp = p∗dlnp
253
254 # Compute other qu an t i t i e s o f i n t e r e s t
255 hs = p∗ r ∗∗2/( rho∗newtonG∗ s e l f .m0)
256 gradC , gam , vc = gradConv ( gradRr , gradad , kappa , rho , hs , s e l f . alpha ,

s e l f .m0, r , q , cp , t , s e l f . convcache )
257 gam = gam [ 0 ]
258 vc = vc [ 0 ]
259 mu = kB∗ t ∗ rho /(p−a ∗( t ∗∗4) /3)
260
261 # More d e r i v a t i v e s
262 gradd = gradRr
263 i f gradRr>gradad :
264 gradd = gradC [ 0 ]
265 gradRhoo = gradRho (p , dpt , t , gradd , dpro , rho )
266 dlnrho = gradRhoo∗dlnp
267 d lnt = gradd∗dlnp
268
269 # Wrap d e r i v a t i v e s
270 de r i v s = np . array ( [ dlnt , dlnrho , dr , dtau ] )
271
272 # Set s tep s i z e
273 h = min ( s e l f .m0∗ s e l f . delM/minRes , ( 1 . / caut ion ) ∗(np . min ( [ 1 , 1 , z [ 2 ] ] /

np . abs ( d e r i v s [ : −1 ] ) ) ) )
274
275 # Compute cur rent s t a t e
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276 nums = np . array ( [ t , rho , r , tau , p , cp , gradad , dpro , dpt , u , dut , vad , gradd
, gradRhoo , gradRr , q , 0 , 0 , s e l f .m0, kappa , hs , gam , vc ,mu] )

277 nums [ s e l f . indDict [ ’ r ’ ] ] = z [ 2 ]
278 nums [ s e l f . indDict [ ’mDown ’ ] ] = s e l f .m0−mUp
279 nums [ s e l f . indDict [ ’dm ’ ] ] = h
280 nums [ s e l f . indDict [ ’mUp’ ] ] = mUp
281
282 # Step forward
283 data . append (nums)
284 z −= h∗ de r i v s
285 mUp += h
286 i+=1
287 # Check f o r e r r o r s
288 i f not s e l f . qu i e t :
289 i f i %1000==0:
290 p r in t ’Mass␣Step : ’ , h
291 p r in t ’Net␣Mass : ’ ,mUp/ s e l f .m0
292 i f i >1000000:
293 p r i n t ’Warning : ␣Mass␣ s tep ␣ too ␣ low ! ’
294 r a i s e ValueError ( ’Mass␣ s tep ␣ too ␣ low ! ’ )
295 s e l f . l = np . ones ( l en ( data ) ) ∗ s e l f . l 0
296 re turn np . array ( data )
297
298 de f j a c ( s e l f , vec , t s t ep ) :
299 # Read in s t a t e
300 r = s e l f . s t a t e [ : , 2 ]
301 tau = s e l f . s t a t e [ : , 3 ]
302 p = s e l f . s t a t e [ : , 4 ]
303 cp = s e l f . s t a t e [ : , 5 ]
304 n = s e l f . s t a t e . shape [ 0 ]
305
306 # Produce updated quan t i t i e s
307 t = s e l f . s t a t e [ : , 0 ] + vec [ n+1:2∗n+1]
308 l = s e l f . l + vec [ : n+1]∗ s e l f . l 0
309 rho = s e l f . rhocache . rho (p , t )
310
311 # Compute he lpe r term
312 g = newtonG∗ s e l f .m0/ s e l f . r0 ∗∗2
313
314 # Compute grad
315 grad = gradFul l ( s e l f .m0, s e l f . r0 , tau , l [ : −1 ] , t , rho , s e l f . opac , s e l f . x , s e l f . y

, s e l f . alpha , s e l f . thermcache , s e l f . convcache )
316
317 # Compute grad d e r i v a t i v e s
318 dgdt = dgraddT ( s e l f .m0, s e l f . r0 , p , tau , l [ : −1 ] , t , s e l f . opac , s e l f . x , s e l f . y ,

s e l f . alpha , s e l f . thermcache , s e l f . convcache , s e l f . rhocache )
319 dgdl = dgraddL ( s e l f .m0, s e l f . r0 , p , tau , l [ : −1 ] , t , s e l f . opac , s e l f . x , s e l f . y ,

s e l f . alpha , s e l f . thermcache , s e l f . convcache , s e l f . rhocache , s e l f . l 0 )
320
321 # Prepare spar s e matrix
322 # L occup i e s 0 through N, T occup i e s N+1 through 2N, tau goes 2N+1 to 3N
323
324 i j = np . z e ro s ((2+3∗n , 2 ) )
325 vs = np . z e ro s (2+3∗n)
326
327 # Boundary cond i t i on on T at base
328 i j [ 0 ] = [ n+1 ,2∗n ]
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329 vs [ 0 ] = 1 .
330
331 # Boundary cond i t i on on L at top
332 i j [ 1 ] = [ 0 , 0 ]
333 vs [ 1 ] = 1 .
334 i j [ 2 ] = [ 0 , n+1]
335 vs [ 2 ] = − s e l f . f a c t ∗16∗ pi ∗ s e l f . r0 ∗∗2∗ sigma∗ t [ 0 ]∗∗3/ s e l f . l 0
336
337 # Der i va t i v e s
338
339 # Output L
340 i j [4 :4+n ] = [ [ i +1, i+n+1] f o r i in range (n) ]
341 vs [4 :4+n ] = −cp/ t s t ep / s e l f . l 0
342
343 # Output T
344 i j [4+n:3+2∗n ] = [ [ i+n+2, i ] f o r i in range (n−1) ]
345 vs [4+n:3+2∗n ] = −t [ : −1 ]∗ dgdl [ : −1 ]∗ s e l f . l 0
346 i j [3+2∗n:2+3∗n ] = [ [ i+n+2, i+n+1] f o r i in range (n−1) ]
347 vs [3+2∗n:2+3∗n ] = −(( t ∗dgdt+grad ) [ : −1 ] )
348
349 # Put i t a l l t oge the r and so l v e
350 i j = np . t ranspose ( i j )
351 mat = csr_matrix ( ( vs , i j ) , shape=(2∗n+1,2∗n+1) )
352 amat = mat + s e l f . d i f fMat
353 re turn amat
354
355 de f func ( s e l f , vec , t s tep , eps ) :
356 # Read in unchanged th ing s
357 r = s e l f . s t a t e [ : , 2 ]
358 tau = s e l f . s t a t e [ : , 3 ]
359 p = s e l f . s t a t e [ : , 4 ]
360 cp = s e l f . s t a t e [ : , 5 ]
361 n = s e l f . s t a t e . shape [ 0 ]
362
363 # Produce updated quan t i t i e s
364 t1 = s e l f . s t a t e [ : , 0 ] + vec [ n+1:2∗n+1]
365 l 1 = s e l f . l + vec [ : n+1]∗ s e l f . l 0
366 rho1 = s e l f . rhocache . rho (p , t1 )
367 grad1 = gradFul l ( s e l f .m0, s e l f . r0 , tau , l 1 [ : −1 ] , t1 , rho1 , s e l f . opac , s e l f . x ,

s e l f . y , s e l f . alpha , s e l f . thermcache , s e l f . convcache )
368 k = s e l f . opac . opac i ty ( t1 , rho1 )
369 # Evaluate d e r i v a t i v e cond i t i on s
370 ders = s e l f . d i f fMat ∗np . concatenate ( ( l1 , t1 ) )
371
372 # Evaluate l e f t s i d e BC’ s
373 l b c s = np . z e r o s ( l en ( ders ) )
374 l b c s [ 0 ] = l 1 [ 0 ]
375 l b c s [ n+1] = t1 [ n−1]
376
377 # Put i t toge the r
378 l e f t = ders + lb c s
379
380 # Evaluate r i g h t s i d e
381 rght = np . concatenate ( ( [ s e l f . f a c t ∗4∗ pi ∗ s e l f . r0 ∗∗2∗ sigma∗ t1 [ 0 ] ∗ ∗ 4 ] \
382 , ( cp ∗( vec [ n+1:2∗n+1]/

t s t ep ) )−eps \
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383 , [ s e l f . tb ] , ( grad1∗ t1 )
[ : −1 ] ) )

384 bNew = l e f t −rght
385 bNew [ : n+2]/= s e l f . l 0
386 re turn bNew
387
388 de f s t epCon t r o l l e r ( s e l f , t s tep , eps ) :
389 dt = t s t ep
390 de l t a = 0
391 whi l e de l ta<t s t ep :
392 backup = np . copy ( s e l f . s t a t e )
393 backupL = np . copy ( s e l f . l )
394 done = False
395 whi l e not done :
396 i f not s e l f . qu i e t :
397 p r in t ’ dt␣=’ , dt
398 r e t = s e l f . newStep ( dt , eps )
399 i f r e t==−1 or np . sum(1 . 0∗ ( s e l f . s t a t e [ : , 0 ] <0 ) )>0 or np . sum

(1 . 0∗ ( s e l f . s t a t e [ : , 0 ] >1 e11 ) ) >0:
400 s e l f . s t a t e = np . copy ( backup )
401 s e l f . l = np . copy ( backupL )
402 dt /= 2
403 e l s e :
404 done = True
405 de l t a += dt
406
407 de f newStep ( s e l f , t s tep , eps , r t o l=1e−3, s t epS i z e =0.3) :
408 n = s e l f . s t a t e . shape [ 0 ]
409 vec = np . z e r o s (2∗ s e l f . s t a t e . shape [0 ]+1)
410 e r r = 1 .0
411 i=0
412 whi l e err>r t o l :
413 j = s e l f . j a c ( vec , t s t ep )
414 b = s e l f . func ( vec , t s tep , eps )
415 dVec = spso l v e ( j ,−b)
416 vec += dVec∗ s t epS i z e
417 i f np . sum(1 . 0∗ np . i snan ( vec ) ) >0:
418 re turn −1
419 b [ n+2:2∗n+1]/= s e l f . s t a t e [ : −1 ,0 ]
420 b [ 1 : n+2]∗= s e l f . delM∗ s e l f .m0
421 e r r = np . sum(b∗∗2) ∗∗0 .5/ l en (b)
422 i f not s e l f . qu i e t :
423 p r i n t err , s t epS i ze , n , np . argmax (np . abs (b) ) , np .max(np . abs (

vec /np . concatenate ( ( s e l f . l / s e l f . l0 , s e l f . s t a t e [ : , 0 ] ) ) )
)

424 i f i >100 and i%200==0:
425 s t epS i z e /=2
426 i f i >1000:
427 re turn −1
428 i+=1
429 i f not s e l f . qu i e t :
430 p r i n t ’ Step␣done . ␣Error : ’ , e r r
431 p r i n t vec [ : n+1:100]
432 p r i n t vec [ n+1 : : 100 ]
433 s e l f . l += s e l f . l 0 ∗vec [ : n+1]
434 s e l f . s t a t e [ : , 0 ] += vec [ n+1:2∗n+1]
435 s e l f . s t a t e [ : , 1 ] = s e l f . rhocache . rho ( s e l f . s t a t e [ : , 4 ] , s e l f . s t a t e [ : , 0 ] )
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436 kappa = 10∗∗ s e l f . opac . opac i ty ( s e l f . s t a t e [ : , 0 ] , s e l f . s t a t e [ : , 1 ] )
437 q , cp , gradad , p , dpro , dpt , u , dut , vad , e r ror , xh1 , xhe1 , xhe2 = s e l f . thermcache .

termo ( s e l f . s t a t e [ : , 1 ] , s e l f . s t a t e [ : , 0 ] ) [ : , 0 ]
438 f f = f ( s e l f . s t a t e [ : , 3 ] )
439 s s = s ( s e l f . s t a t e [ : , 0 ] , s e l f . s t a t e [ : , 1 ] , s e l f . l [ : −1 ] , s e l f . r0 , s e l f .m0)
440 s e l f . s t a t e [ : , 5 ] = cp
441 s e l f . s t a t e [ : , 6 ] = gradad
442 s e l f . s t a t e [ : , 7 ] = dpro
443 s e l f . s t a t e [ : , 8 ] = dpt
444 s e l f . s t a t e [ : , 9 ] = u
445 s e l f . s t a t e [ : , 1 0 ] = dut
446 s e l f . s t a t e [ : , 1 1 ] = vad
447 s e l f . s t a t e [ : , 1 2 ] = gradFul l ( s e l f .m0, s e l f . r0 , s e l f . s t a t e [ : , 3 ] , s e l f . l [ : −1 ] ,

s e l f . s t a t e [ : , 0 ] , s e l f . s t a t e [ : , 1 ] \
448 , s e l f . opac , s e l f . x , s e l f . y , s e l f .

alpha , s e l f . thermcache , s e l f .
convcache )

449 s e l f . s t a t e [ : , 1 3 ] = gradRho ( s e l f . s t a t e [ : , 4 ] , s e l f . s t a t e [ : , 8 ] , s e l f . s t a t e
[ : , 0 ] , s e l f . s t a t e [ : , 1 2 ] , \

450 s e l f . s t a t e [ : , 7 ] , s e l f . s t a t e [ : , 1 ] )
451 s e l f . s t a t e [ : , 1 4 ] = gradR ( kappa , s e l f . l [ : −1 ] , s e l f .m0, f f , ss , s e l f . s t a t e [ : , 4 ] ,

s e l f . s t a t e [ : , 0 ] )
452 s e l f . s t a t e [ : , 1 5 ] = q
453 s e l f . s t a t e [ : , 1 9 ] = kappa
454 # TODO: Update r

Example Usage (starExample.py)

1 import s t a r
2 import numpy as np
3 from numpy import p i
4 import matp lo t l i b . pyplot as p l t
5 from constant s import ∗
6 from thermoCache import ∗
7
8 x = 0 .7
9 y = 0.27

10 thermcache = thermCache (x , y )
11 rhocache = rhoCache ( thermcache )
12 convcache = convGradCache ( )
13
14 c o l o r=p l t . cm . rainbow (np . l i n s p a c e (0 ,1 , 200 ) )
15 s t = s t a r . s t a r (x , y ,mSun , rSun ,100∗ lSun , 1 . 5 , thermcache , rhocache , convcache , l e x t =0)
16 eps = 0.5∗np . exp((− s t . s t a t e [ : , 1 6 ] ) /(4∗ pi ∗ rSun ∗∗2∗1000) ) ∗ s t . l 0 /(4∗ pi ∗ rSun ∗∗2∗1000)
17 t0 = s t . s t a t e [ : , 0 ]
18 t = 0
19 tnext = 1e6
20 f o r i in range (20) :
21 tnext = s t . s t epCon t r o l l e r ( tnext , 0 )
22 t0 = np . copy ( s t . s t a t e [ : , 0 ] )
23 f o r i in range (200) : # 501 , 1001 , 5001
24 p l t . subp lot (211)
25 p l t . t i t l e ( ’$L_{ in }=100L_{sun } , ␣\Delta ␣ t=2e8s$ ’ )
26 p l t . p l o t (np . log10 ( s t . s t a t e [ : , 2 4 ] ) , ( s t . s t a t e [ : , 0 ] − t0 ) / t0 , c o l o r = co l o r [ i ] )
27 p l t . y l ab e l ( ’ $\Delta ␣T/T$ ’ )
28 p l t . subp lot (212)
29 p l t . p l o t (np . log10 ( s t . s t a t e [ : , 2 4 ] ) , s t . l [ : −1 ]/ lSun , c o l o r = co l o r [ i ] )
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30 p l t . y l ab e l ( ’ $L/L_{sun}$ ’ )
31 p l t . x l ab e l ( ’ Log␣$\Sigma$ ’ )
32 i f i %200==199:
33 p l t . show ( )
34 t += tnext
35 tnext = s t . s t epCon t r o l l e r ( tnext , i ∗ eps /100)
36 i f i >100:
37 tnext = s t . s t epCon t r o l l e r ( tnext , eps )

Radius Addon (starTracker.py)

1 import s t a r
2 import numpy as np
3 from numpy import p i
4 from constant s import ∗
5 from thermoCache import ∗
6 from sc ipy . i n t e r p o l a t e import inte rp1d
7 import os . path
8 import p i c k l e
9

10 q = 4 .5 # Kramer ’ s P,T opac i ty law
11 gA = 0.4 # Adiabat ic g rad i ent in i on i z ed matter
12 x = 0 .7
13 y = 0.27
14
15 i f not os . path . e x i s t s ( ’ cachesLowRes ’ ) :
16 thermcache = thermCache (x , y , resRho=100 , resT=100)
17 rhocache = rhoCache ( thermcache )
18 convcache = convGradCache ( )
19 p i c k l e . dump ( [ thermcache , rhocache , convcache ] , open ( ’ cachesLowRes ’ , ’w+’ ) )
20 e l s e :
21 thermcache , rhocache , convcache = p i c k l e . load ( open ( ’ cachesLowRes ’ , ’ rb ’ ) )
22
23 de f lum(m,mc=None ) :
24 i f m<0.43 and mc i s None :
25 re turn 0 .23∗m∗∗2 .3
26 e l i f mc i s None :
27 re turn m∗∗4
28 e l s e :
29 re turn (10∗∗5 . 3 ) ∗(mc∗∗6) /(1+10∗∗0.4∗mc∗∗4+10∗∗0.5∗mc∗∗5)
30
31 de f r (m,mc=None ) :
32 i f mc i s None :
33 re turn m∗∗0 .9
34 e l s e :
35 re turn 3.7∗10∗∗3∗mc∗∗4/(1+mc∗∗3+1.75∗mc∗∗4)
36
37 c l a s s starT :
38 de f __init__( s e l f ,m,mc=None , sc=1e6 ) :
39 # Compute unperturbed equ i l i b r ium p r op e r t i e s
40 s e l f .m = m
41 s e l f .mc = mc
42 s e l f . s c = sc
43 s e l f . l = lum(m,mc=mc)
44 s e l f . r0 = r (m,mc=mc)
45 s e l f . delMmult = 32702 .6∗ (1 e6/ sc )
46 s e l f . eq = s t a r . s t a r (x , y ,mSun∗m, rSun∗ s e l f . r0 , lSun∗ s e l f . l , 1 . 5 , \
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47 thermcache , rhocache , convcache , \
48 delM=s e l f . r0 ∗∗2/m/ s e l f . delMmult , l e x t =0,\
49 minRes=350 , caut ion=50, qu i e t=True )
50
51 # Compute expansion po t e n t i a l
52 sg = s e l f . eq . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
53 gR = s e l f . eq . r e t r i e v e ( ’ gradR ’ , ’ s teady ’ )
54 p = s e l f . eq . r e t r i e v e ( ’p ’ , ’ s teady ’ )
55 t = s e l f . eq . r e t r i e v e ( ’ t ’ , ’ s teady ’ )
56 bS = np . argmin (np . abs ( sg−s e l f . s c ) )
57 s e l f . pbs = p [ bS ]
58 s e l f . pb0 = p [ bS ] ∗ ( gR [ bS ] /gA) ∗∗ ( 1 . / (gA∗(4+q)−2) )
59 s e l f . t s = t [ bS ]
60 s e l f . rMax = s e l f . r0 ∗max(1 , ( s e l f . pb0/ s e l f . pbs ) ∗∗(2 ./(3∗(4+q) ) ) )
61
62 de f rmax( s e l f , f l u x ) :
63 p r i n t ’Computing␣ s e l f −c on s i s t e n t ␣maximum␣ rad iu s . . . ’
64 r = s e l f . r0
65 dev = 1
66 whi l e abs ( dev )>1e−3:
67 s t = s t a r . s t a r (x , y ,mSun∗ s e l f .m, rSun∗ r , lSun∗ s e l f . l , 1 . 5 , \
68 thermcache , rhocache , convcache , \
69 delM=r ∗∗2/ s e l f .m/ s e l f . delMmult , l e x t=f l ux ∗ lSun∗ pi ∗

r ∗∗2 ,\
70 minRes=350 , caut ion=50, qu i e t=True )
71 sg = s t . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
72 gR = st . r e t r i e v e ( ’ gradR ’ , ’ s teady ’ )
73 p = s t . r e t r i e v e ( ’p ’ , ’ s teady ’ )
74 bS = np . argmin (np . abs ( sg−s e l f . s c ) )
75 pb = ( r ∗∗2/ s e l f . r0 ∗∗2) ∗p [ bS ] ∗ ( gR [ bS ] /gA) ∗∗ ( 1 . / (gA∗(4+q)−2) )
76 rNew = s e l f . r0 ∗max(1 , ( s e l f . pb0/max(pb , s e l f . pbs ) ) ∗∗(2 ./(3∗(4+q) ) ) )
77 r = (rNew + r ) /2
78 dev = rNew − r
79 p r i n t ’Done ! ’ , r
80 re turn r
81
82 de f rmaxFromL( s e l f , lum) :
83 p r i n t ’Computing␣ s e l f −c on s i s t e n t ␣maximum␣ per iod . . . ’
84 r = s e l f . r0
85 dev = 1
86 whi l e abs ( dev )>1e−3:
87 rOrbit = ( r /0 . 46 ) ∗((2+ s e l f .m) / s e l f .m) ∗∗ ( 1 . /3 )
88 f l u x = lum/(4∗ pi ∗ rOrbit ∗∗2)
89 s t = s t a r . s t a r (x , y ,mSun∗ s e l f .m, rSun∗ r , lSun∗ s e l f . l , 1 . 5 , \
90 thermcache , rhocache , convcache , \
91 delM=r ∗∗2/ s e l f .m/ s e l f . delMmult , l e x t=f l ux ∗ lSun∗ pi ∗

r ∗∗2 ,\
92 minRes=350 , caut ion=50, qu i e t=True )
93 sg = s t . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
94 gR = st . r e t r i e v e ( ’ gradR ’ , ’ s teady ’ )
95 p = s t . r e t r i e v e ( ’p ’ , ’ s teady ’ )
96 bS = np . argmin (np . abs ( sg−s e l f . s c ) )
97 pb = ( r ∗∗2/ s e l f . r0 ∗∗2) ∗p [ bS ] ∗ ( gR [ bS ] /gA) ∗∗ ( 1 . / (gA∗(4+q)−2) )
98 rNew = s e l f . r0 ∗max(1 , ( s e l f . pb0/max(pb , s e l f . pbs ) ) ∗∗(2 ./(3∗(4+q) ) ) )
99 r = (rNew + r ) /2
100 dev = rNew − r
101 p r i n t r , dev
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102 p r i n t ’Done ! ’ , r
103 re turn r
104
105 de f l I n ( s e l f , r , f lux , rm=None ) :
106 p r i n t ’Computing␣ f l ux . . . ’
107 i f rm i s None :
108 rm = s e l f . rmax( f l u x )
109 p r i n t rm
110 i f r>rm :
111 p r i n t ’ Error : ␣Requested␣ rad iu s ␣ g r e a t e r ␣ than␣ po s s i b l e . ’
112 re turn None , None , None , None , None
113 e l i f r<s e l f . r0 :
114 p r i n t ’ Error : ␣Requested␣ rad iu s ␣ l e s s ␣ than␣ po s s i b l e . ’
115 re turn None , None , None , None , None
116 pbExp = ( s e l f . r0 / r ) ∗∗2∗ s e l f . pb0 ∗( s e l f . r0 / r ) ∗∗(3.∗(4+q) /2)
117 l = s e l f . l /2
118 lower = 0
119 upper = s e l f . l
120 dev = 1
121 counter = 0
122 s t = None
123 whi l e abs ( dev )>3e−3:
124 counter += 1
125 s t = s t a r . s t a r (x , y ,mSun∗ s e l f .m, rSun∗ r , lSun∗ l , 1 . 5 , \
126 thermcache , rhocache , convcache , \
127 delM=r ∗∗2/ s e l f .m/ s e l f . delMmult , l e x t=f l ux ∗ lSun∗ pi ∗

r ∗∗2 ,\
128 minRes=350 , caut ion=50, qu i e t=True )
129 sg = s t . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
130 gR = st . r e t r i e v e ( ’ gradR ’ , ’ s teady ’ )
131 p = s t . r e t r i e v e ( ’p ’ , ’ s teady ’ )
132 bS = np . argmin (np . abs ( sg−s e l f . s c ) )
133 pb = ( r / s e l f . r0 ) ∗∗2∗p [ bS ] ∗ ( ( s e l f . l / l ) ∗gR [ bS ] /gA) ∗∗ ( 1 . / (gA∗(4+q)

−2) )
134 dev = ( r−s e l f . r0 ∗max(1 , ( s e l f . pb0/max(pb , s e l f . pbs ) ) ∗∗(2 ./(3∗(4+q) )

) ) ) /( r−s e l f . r0 )
135 i f dev<0:
136 upper = l
137 e l i f dev>0:
138 lower = l
139 l = ( upper + lower ) /2
140 # pr in t l , dev , s e l f . l , r , s e l f . r0 , f l u x
141 i f l <1e−4∗ s e l f . l :
142 p r i n t ’Need␣more␣mass ! ’ , s e l f . s c
143 s = starT ( s e l f .m, sc=s e l f . s c ∗2)
144 re turn s . l I n ( r , f lux , rm=None)
145 i f counter > 100 :
146 p r i n t ’ Error : ␣No␣ s o l u t i o n ␣ found ! ’
147 re turn None , None , None , None , None
148 p r i n t ’Done ! ’ , s e l f .m, r , f l u x
149
150 # Process outputs
151 dm = st . r e t r i e v e ( ’dm ’ , ’ steady ’ )
152 gR = st . r e t r i e v e ( ’ gradR ’ , ’ s teady ’ )
153 sg = s t . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
154 t = s t . r e t r i e v e ( ’ t ’ , ’ s teady ’ )
155 dr = dm/(4∗ pi ∗ r ∗∗2∗ rSun∗∗2∗ s t . r e t r i e v e ( ’ rho ’ , ’ s teady ’ ) )
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156 bs = np . argmin (np . abs ( sg−s e l f . s c ) )
157 t s = t [ bs ]
158 pbs = p [ bs ]
159 pb0 = ( r / s e l f . r0 ) ∗∗2∗p [ bS ] ∗ ( ( s e l f . l / l ) ∗gR [ bS ] /gA) ∗∗ ( 1 . / (gA∗(4+q)−2) )
160 tau = s t . r e t r i e v e ( ’ tau ’ , ’ s teady ’ )
161 bt = np . argmin (np . abs ( tau −2./3) )
162 dRpre = np . sum( dr [ bt : bs ] )
163
164 # Compute sudden c o l l a p s e s t a r
165 p r i n t ’Computing␣sudden␣ c o l l a p s e . . . ’
166 s tp r e = s t
167 dev = 1
168 s t = None
169 lower = 0
170 upper = l + f l ux ∗ pi ∗ r ∗∗2
171 l Su r f = ( lower+upper ) /2
172 counter = 0
173 whi l e abs ( dev )>3e−3:
174 counter += 1
175 s t = s t a r . s t a r (x , y ,mSun∗ s e l f .m, rSun∗ r , l S u r f ∗ lSun , 1 . 5 , \
176 thermcache , rhocache , convcache , \
177 delM=r ∗∗2/ s e l f .m/ s e l f . delMmult , l e x t =0,\
178 minRes=350 , caut ion=50, qu i e t=True )
179 sg = s t . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
180 t = s t . r e t r i e v e ( ’ t ’ , ’ s teady ’ )
181 bS = np . argmin (np . abs ( sg−s e l f . s c ) )
182 dev = ( t [ bS ] − t s ) / t s
183 i f dev>0:
184 upper = l Su r f
185 e l i f dev<0:
186 lower = l Su r f
187 l Su r f = ( upper+lower ) /2
188 # pr in t lSur f , dev , s e l f . l , r , s e l f . r0 , f l u x
189 i f counter > 100 :
190 p r i n t ’ Error : ␣No␣ s o l u t i o n ␣ found ! ’
191 re turn None , None , None , None , None
192 # Determine change in rad iu s
193 sg = s t . r e t r i e v e ( ’ sigma ’ , ’ s teady ’ )
194 dm = st . r e t r i e v e ( ’dm ’ , ’ steady ’ )
195 dr = dm/(4∗ pi ∗ r ∗∗2∗ rSun∗∗2∗ s t . r e t r i e v e ( ’ rho ’ , ’ s teady ’ ) )
196 bs = np . argmin (np . abs ( sg−s e l f . s c ) )
197 tau = s t . r e t r i e v e ( ’ tau ’ , ’ s teady ’ )
198 bt = np . argmin (np . abs ( tau −2./3) )
199 dR = np . sum( dr [ bt : bs ] )
200 p r i n t ’Done ! ! ’ , s e l f .m, r , f l u x
201 return l , ts , pb0 , pbs , dRpre−dR

Radius Caller (stNew.py)

1 from starTracker import ∗
2 import numpy as np
3 import p i c k l e
4 from numpy import p i
5 from mul t i p ro c e s s i ng import Pool
6
7 nM = 80
8 nR = 80
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9
10 lRan = [ 1 . , 1 0 . , 2 5 . , 5 0 . ]
11 nL = len ( lRan )
12 mRan = np . l i n s p a c e ( 0 . 0 8 , 1 . 3 ,num=nM, endpoint=True )
13 minR = np . z e ro s (nM) ∗ f l o a t ( ’NaN ’ )
14 maxR = np . z e ro s (nM) ∗ f l o a t ( ’NaN ’ )
15 maxRL = np . z e ro s ( (nM, nL) ) ∗ f l o a t ( ’NaN ’ )
16
17 l i = np . z e r o s ( (nM, nL ,nR) )
18 dR = np . z e ro s ( (nM, nL ,nR) )
19 pbs = np . z e r o s ( (nM, nL ,nR) )
20 pb0 = np . z e ro s ( (nM, nL ,nR) )
21 t s = np . z e r o s ( (nM, nL ,nR) )
22
23 f o r i in range (nM) :
24 s = starT (mRan[ i ] , s c=1e6 )
25 minR [ i ] = s . r0
26 maxR[ i ] = s . rMax
27
28 f o r j in range ( l en ( lRan ) ) :
29 maxRL[ i , j ] = s . rmaxFromL( lRan [ j ] )
30 rRan = np . l i n s p a c e (minR [ i ]+1e−2,maxRL[ i , j ] ,num=nR, endpoint=True )
31
32 de f f ( k ) :
33 rOrbit = ( rRan [ k ] / 0 . 4 6 ) ∗((2+mRan[ i ] ) /mRan[ i ] ) ∗∗ ( 1 . /3 )
34 f l u x = lRan [ j ] / ( 4∗ pi ∗ rOrbit ∗∗2)
35 r e t = None
36 try :
37 r e t = s . l I n ( rRan [ k ] , f lux , rm=maxRL[ i , j ] )
38 except ValueError as e :
39 r e t = (None , None , None , None , None )
40 re turn r e t
41 p = Pool (16)
42 r e t = p .map( f , range (nR) )
43 f o r k in range (nR) :
44 l i [ i , j , k ] , t s [ i , j , k ] , pb0 [ i , j , k ] , pbs [ i , j , k ] , dR [ i , j , k ] = r e t [ k ]
45 p . c l o s e ( )
46 p r i n t "You␣ are ␣ at " , i , j , " . ␣Percent ␣done : " , 1 00 .∗ ( i ∗nL+j+1)/(nM∗nL)
47
48 p i c k l e . dump ( [minR ,maxR, pbs , pb0 , ts ,maxRL, l i , dR,mRan,nR, lRan ] , open ( ’dataDump2 ’ , ’w+’ ) )

Radius Analyzer (stAnalysisNew.py)

1 import p i c k l e
2 import numpy as np
3 from numpy import p i
4 import matp lo t l i b . pyplot as p l t
5 from sc ipy . i n t e r p o l a t e import interp1d , gr iddata
6 from constant s import ∗
7 import f u l l t im e
8
9 de f pFromR( r ,m) :

10 re turn ( r /(0 .46∗0 .0021538∗m∗∗ ( 1 . /3 ) ) ) ∗∗ ( 3 . /2 )
11
12 de f lumm(m) :
13 re turn 0 .23∗m∗∗2 .3∗ (m<0.43)+(m>=0.43)∗m∗∗4
14
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15 # Read in parameter sweep
16 minR ,maxR, pbs , pb0 , ts ,maxRL, l i , dR,mRan,nR, lRan = p i c k l e . load ( open ( ’dataDump2 ’ ) )
17
18 # Set sweep parameters
19 nM = len (mRan)
20 nL = len ( lRan )
21
22 numFigs = 6
23 f i g s = [ ]
24 imm = [ ]
25 f o r i in range ( numFigs ) :
26 f i g s . append ( p l t . f i g u r e ( ) )
27 imm. append ( [ ] )
28
29 # Loop over l um i n o s i t i e s
30 f o r l Index in range (nL) :
31
32 # Set o r b i t a l parameters
33 nP = 150
34 pRan = 10∗∗np . l i n s p a c e ( 3 . 5 , 4 . 8 ,num=nP , endpoint=True )
35 rRoche = 0 .46∗0 .0021538∗ ( np . outer (mRan, pRan∗∗2) ) ∗∗ ( 1 . /3 ) # 0.0021538 i s (GM_sun/

R_sun^3∗ s ^2/(4 p i ^2) ) ^(1/3)
36 rOrbit = ( rRoche /0 .46 ) ∗ ( (mRan [ : , np . newaxis ]+2)/mRan [ : , np . newaxis ] ) ∗∗ ( 1 . /3 )
37 f l u x = np . array ( [ lRan [ i ] / ( 4∗ pi ∗ rOrbit ∗∗2) f o r i in range (nL) ] )
38
39 # Find max/min per iod as a func t i on o f mass
40 pMax = np . z e ro s ( (nM, nL) )
41 pMin = np . z e r o s ( (nM, nL) )
42 f o r i in range (nM) :
43 f o r j in range (nL) :
44 pMax [ i , j ] = pFromR(maxRL[ i , j ] ,mRan[ i ] )
45 pMin [ i , j ] = pFromR(minR [ i ] ,mRan[ i ] )
46
47 # F i l t e r pb0
48 f o r i in range (nM) :
49 rRan = np . l i n s p a c e (minR [ i ]+1e−2,maxRL[ i , l Index ] ,num=nR, endpoint=True )
50 f o r j in range (nR) :
51 i f pb0 [ i , l Index , j ] > newtonG∗mSun∗∗2∗mRan[ i ]∗∗2/(4∗ pi ∗rRan [ j ]∗∗4∗

rSun ∗∗4) :
52 pb0 [ i , l Index , j ] = newtonG∗mSun∗∗2∗mRan[ i ]∗∗2/(4∗ pi ∗rRan [ j

]∗∗4∗ rSun ∗∗4)
53
54 # In t e r p o l a t e var i ous p r op e r t i e s
55 lum = np . z e r o s ( (nP ,nM) )
56 t s s = np . z e ro s ( (nP ,nM) )
57 radP = np . z e ro s ( (nP ,nM) )
58 netP = np . z e r o s ( (nP ,nM) )
59 pb00 = np . z e ro s ( (nP ,nM) )
60 pbss = np . z e ro s ( (nP ,nM) )
61 dRR = np . z e ro s ( (nP ,nM) )
62 f o r i in range (nM) :
63 rRan = np . l i n s p a c e (minR [ i ]+1e−2,maxR[ i ] ,num=nR, endpoint=True )
64 i n t e rp = interp1d ( rRan , l i [ i , l Index , : ] , bounds_error=False )
65 lum [ : , i ] = in t e rp ( rRoche [ i ] )
66 i n t e rp = interp1d ( rRan , t s [ i , l Index , : ] , bounds_error=False )
67 t s s [ : , i ] = in t e rp ( rRoche [ i ] )
68 i n t e rp = interp1d ( rRan , pb0 [ i , l Index , : ] , bounds_error=False )
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69 pb00 [ : , i ] = in t e rp ( rRoche [ i ] )
70 i n t e rp = interp1d ( rRan , pbs [ i , l Index , : ] , bounds_error=False )
71 pbss [ : , i ] = in t e rp ( rRoche [ i ] )
72 i n t e rp = interp1d ( rRan ,dR[ i , l Index , : ] , bounds_error=False )
73 dRR[ : , i ] = in t e rp ( rRoche [ i ] )
74
75 # Compute Roche s c a l e he ight
76 v0 = rSun∗ rOrbit ∗2∗ pi /pRan [ np . newaxis , : ]
77 hs = rSun∗np . t ranspose ( rRoche ) ∗(5∗kB/(3∗mP) ) ∗ ( ( ( lumm(mRan) [ np . newaxis , : ]+ lum) ∗

lSun /(4∗ pi ∗ rSun∗∗2∗np . t ranspose ( rRoche ) ∗∗2∗ sigma ) ) ∗∗ ( 1 . /4 ) ) /np . t ranspose ( v0 )
∗∗2

78 vs = (5∗kB∗ ( ( ( lumm(mRan) [ np . newaxis , : ]+ lum) ∗ lSun /(4∗ pi ∗ rSun∗∗2∗np . t ranspose (
rRoche ) ∗∗2∗ sigma ) ) ∗∗ ( 1 . /4 ) ) /(3∗mP) ) ∗∗0 .5

79 f o r i in range (nM) :
80 hs [ pRan>pMax [ i , l Index ] , i ] = np . nan
81
82 # Compute g
83 g = newtonG∗mRan [ : , np . newaxis ]∗mSun/( rSun∗∗2∗ rRoche ∗∗2)
84
85 # Compute \dot{R} f o r expansion
86 rdot = 1 . 4∗ (mP/2) ∗ lSun ∗(lumm(mRan) [ np . newaxis , : ] − lum) ∗np . t ranspose ( g ) /(12∗ pi ∗np .

t ranspose ( rRoche ) ∗ rSun∗kB∗ t s s ∗pbss ∗( pb00/pbss ) ∗∗1 . 4 )
87
88 # Compute con t ra c t i on t ime s ca l e
89 time = np . z e r o s ( (nP ,nM) )
90 f o r i in range (nP) :
91 f o r j in range (nM) :
92 rho0 = pbss [ i , j ]∗mP/(2∗ t s s [ i , j ]∗kB)
93 time [ i , j ] = f u l l t im e . f ( hs [ i , j ]∗ np . l og (10) ,dRR[ i , j ] , rRoche [ j , i ] ,

mRan[ j ] , lumm(mRan[ j ] )−lum [ i , j ] , lumm(mRan[ j ] ) , rho0 , pb00 [ i , j ] ,
pbss [ i , j ] )

94 l Su r f = lum [ i , j ] + pi ∗ rRoche [ j , i ]∗∗2∗ f l u x [ l Index ] [ j , i ]
95 time [ i , j ] += 1e4 ∗(lumm(mRan[ j ] ) /(lumm(mRan[ j ] )−lum [ i , j ] ) ) /( l S u r f )

∗∗ ( 3 . /4 )
96 f o r i in range (nM) :
97 time [ pRan>pMax [ i , l Index ] , i ] = np . nan
98 time [ pRan<pMin [ i , l Index ] , i ] = np . nan
99
100 ax = f i g s [ 0 ] . add_subplot (2 , 2 , l Index+1)
101 # Plot maximum radius , minimum rad iu s
102 ax . p l o t (mRan, np . log10 (pMax [ : , l Index ] ) , c=’ k ’ , l i n ew id th=2)
103 ax . p l o t (mRan, np . log10 (pMin [ : , l Index ] ) , c=’k ’ , l i n ew id th=2)
104 # Color by expansion t ime s ca l e
105 im = ax . imshow (np . log10 (np . abs ( hs/ rdot ) ) , o r i g i n=’ lower ’ , extent =

[ 0 . 0 8 , 1 . 3 , 3 . 5 , 4 . 8 ] )
106 imm [ 0 ] . append ( im)
107 ax . s e t_x labe l ( ’M’ )
108 ax . s e t_y labe l ( ’ Log␣P ’ )
109 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( lRan [ l Index ] )+’L_\odot$ ’ )
110
111 ax = f i g s [ 1 ] . add_subplot (2 , 2 , l Index+1)
112 # Plot maximum radius , minimum rad iu s
113 ax . p l o t (mRan, np . log10 (pMax [ : , l Index ] ) , c=’ k ’ , l i n ew id th=2)
114 ax . p l o t (mRan, np . log10 (pMin [ : , l Index ] ) , c=’k ’ , l i n ew id th=2)
115 # Color by rap id con t ra c t i on
116 im = ax . imshow (np . log10 (np . abs (dRR/hs ) ) , o r i g i n=’ lower ’ , extent =

[ 0 . 0 8 , 1 . 3 , 3 . 5 , 4 . 8 ] )
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117 imm [ 1 ] . append ( im)
118 ax . s e t_x labe l ( ’M’ )
119 ax . s e t_y labe l ( ’ Log␣P ’ )
120 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( lRan [ l Index ] )+’L_\odot$ ’ )
121
122 ax = f i g s [ 2 ] . add_subplot (2 , 2 , l Index+1)
123 # Plot maximum radius , minimum rad iu s
124 ax . p l o t (mRan, np . log10 (pMax [ : , l Index ] ) , c=’ k ’ , l i n ew id th=2)
125 ax . p l o t (mRan, np . log10 (pMin [ : , l Index ] ) , c=’k ’ , l i n ew id th=2)
126 # Color by d i sk : expansion t ime s ca l e r a t i o .
127 logTimescaleRat = np . log10 (np . abs ( (3 e5∗ lRan [ l Index ]∗∗(−1./8) ∗np . t ranspose ( rRoche

∗∗ ( 5 . /8 ) ) ) /( hs/ rdot ) ) )
128 im = ax . imshow ( logTimescaleRat , o r i g i n=’ lower ’ , extent = [ 0 . 0 8 , 1 . 3 , 3 . 5 , 4 . 8 ] )
129 imm [ 2 ] . append ( im)
130 ax . s e t_x labe l ( ’M’ )
131 ax . s e t_y labe l ( ’ Log␣P ’ )
132 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( lRan [ l Index ] )+’L_\odot$ ’ )
133
134 ax = f i g s [ 3 ] . add_subplot (2 , 2 , l Index+1)
135 # Plot maximum radius , minimum rad iu s
136 ax . p l o t (mRan, np . log10 (pMax [ : , l Index ] ) , c=’ k ’ , l i n ew id th=2)
137 ax . p l o t (mRan, np . log10 (pMin [ : , l Index ] ) , c=’k ’ , l i n ew id th=2)
138 # Color by con t ra c t i on t ime s ca l e .
139 im = ax . imshow (np . log10 ( time ) , o r i g i n=’ lower ’ , extent = [ 0 . 0 8 , 1 . 3 , 3 . 5 , 4 . 8 ] )
140 imm [ 3 ] . append ( im)
141 ax . s e t_x labe l ( ’M’ )
142 ax . s e t_y labe l ( ’ Log␣P ’ )
143 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( lRan [ l Index ] )+’L_\odot$ ’ )
144
145 ax = f i g s [ 4 ] . add_subplot (2 , 2 , l Index+1)
146 # Plot maximum radius , minimum rad iu s
147 ax . p l o t (mRan, np . log10 (pMax [ : , l Index ] ) , c=’ k ’ , l i n ew id th=2)
148 ax . p l o t (mRan, np . log10 (pMin [ : , l Index ] ) , c=’k ’ , l i n ew id th=2)
149 # Color by con t ra c t i on t ime s ca l e .
150 im = ax . imshow (np . log10 ( (3 e5∗ lRan [ l Index ]∗∗(−1./8) ∗np . t ranspose ( rRoche ∗∗ ( 5 . /8 ) ) ) /

time ) , o r i g i n=’ lower ’ , extent = [ 0 . 0 8 , 1 . 3 , 3 . 5 , 4 . 8 ] )
151 imm [ 4 ] . append ( im)
152 ax . s e t_x labe l ( ’M’ )
153 ax . s e t_y labe l ( ’ Log␣P ’ )
154 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( lRan [ l Index ] )+’L_\odot$ ’ )
155
156 ax = f i g s [ 5 ] . add_subplot (2 , 2 , l Index+1)
157 # Plot maximum radius , minimum rad iu s
158 ax . p l o t (mRan, np . log10 (pMax [ : , l Index ] ) , c=’ k ’ , l i n ew id th=2)
159 ax . p l o t (mRan, np . log10 (pMin [ : , l Index ] ) , c=’k ’ , l i n ew id th=2)
160 # Color by con t ra c t i on t ime s ca l e .
161 tML = time
162 tDisk = 3e5∗ lRan [ l Index ]∗∗(−1./8) ∗np . t ranspose ( rRoche ∗∗ ( 5 . /8 ) )
163 tSpread = (2 . / 5 ) ∗ ( (mRan/(mRan+2) ) ∗( vs /np . t ranspose ( v0 ) ) ∗∗2) ∗∗(−3./8)∗ tDisk
164 pdata = 1 . 0∗ (tML>tDisk ) +1.0∗(tML>tSpread )
165 # pdata = np . log10 (np . abs ( hs/ rdot ) )
166 pdata [ np . i snan (np . log10 (np . abs ( hs/ rdot ) ) ) ] = np . nan
167 im = ax . imshow ( pdata , o r i g i n=’ lower ’ , extent = [ 0 . 0 8 , 1 . 3 , 3 . 5 , 4 . 8 ] )
168 imm [ 5 ] . append ( im)
169 ax . s e t_x labe l ( ’M’ )
170 ax . s e t_y labe l ( ’ Log␣P ’ )
171 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( lRan [ l Index ] )+’L_\odot$ ’ )
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172
173
174
175 mins = [1 e10 f o r i in range ( numFigs ) ]
176 maxs = [−1e10 f o r i in range ( numFigs ) ]
177 f o r i in range ( numFigs ) :
178 f o r j in range (nL) :
179 ran = imm[ i ] [ j ] . get_clim ( )
180 i f ran [0] <mins [ i ] :
181 mins [ i ] = ran [ 0 ]
182 i f ran [1] >maxs [ i ] :
183 maxs [ i ] = ran [ 1 ]
184 f o r i in range ( numFigs ) :
185 f o r j in range (nL) :
186 imm[ i ] [ j ] . set_cl im (mins [ i ] , maxs [ i ] )
187
188 cax = f i g s [ 0 ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
189 cbar = f i g s [ 0 ] . c o l o rba r (imm [ 0 ] [ 0 ] , cax=cax )
190 cbar . set_cl im (mins [ 0 ] , maxs [ 0 ] )
191 cbar . s e t_ labe l ( ’ Log␣$h_s/\dot{R}$ ’ )
192 cax = f i g s [ 1 ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
193 cbar = f i g s [ 1 ] . c o l o rba r (imm [ 1 ] [ 0 ] , cax=cax )
194 cbar . set_cl im (mins [ 1 ] , maxs [ 1 ] )
195 cbar . s e t_ labe l ( ’ Log␣$\Delta ␣R/h_s$ ’ )
196 cax = f i g s [ 2 ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
197 cbar = f i g s [ 2 ] . c o l o rba r (imm [ 2 ] [ 0 ] , cax=cax )
198 cbar . set_cl im (mins [ 2 ] , maxs [ 2 ] )
199 cbar . s e t_ labe l ( ’ Log␣$\\tau_\mathrm{ d i sk }/\\tau_\mathrm{exp}$ ’ )
200 cax = f i g s [ 3 ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
201 cbar = f i g s [ 3 ] . c o l o rba r (imm [ 3 ] [ 0 ] , cax=cax )
202 cbar . set_cl im (mins [ 3 ] , maxs [ 3 ] )
203 cbar . s e t_ labe l ( ’ Log␣$\\tau_\mathrm{ con t ra c t i on }$ ’ )
204 cax = f i g s [ 4 ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
205 cbar = f i g s [ 4 ] . c o l o rba r (imm [ 4 ] [ 0 ] , cax=cax )
206 cbar . set_cl im (mins [ 4 ] , maxs [ 4 ] )
207 cbar . s e t_ labe l ( ’ Log␣$\\tau_\mathrm{ d i sk }/\\tau_\mathrm{ con t ra c t i on }$ ’ )
208 #cax = f i g s [ 5 ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
209 #cbar = f i g s [ 5 ] . c o l o rba r (imm [ 5 ] [ 0 ] , cax=cax )
210 #cbar . set_cl im (mins [ 5 ] , maxs [ 5 ] )
211 #cbar . s e t_ labe l ( ’ Cycle Type ’ )
212
213 f o r i in range ( l en ( f i g s ) ) :
214 f i g s [ i ] . t i ght_layout ( )
215 i f i !=5:
216 f i g s [ i ] . subplots_adjust ( r i g h t =0.8)
217
218 f i g s [ 0 ] . s a v e f i g ( ’ P lo t s / ’+’ L_expansionTime . pdf ’ , dpi=200)
219 f i g s [ 1 ] . s a v e f i g ( ’ P lo t s / ’+’ L_contract ion . pdf ’ , dpi=200)
220 f i g s [ 2 ] . s a v e f i g ( ’ P lo t s / ’+’L_TimeRatio . pdf ’ , dpi=200)
221 f i g s [ 3 ] . s a v e f i g ( ’ P lo t s / ’+’ L_contractionTime . pdf ’ , dpi=200)
222 f i g s [ 4 ] . s a v e f i g ( ’ P lo t s / ’+’ L_contractionTimeRatio . pdf ’ , dpi=200)
223 f i g s [ 5 ] . s a v e f i g ( ’ P lo t s / ’+’ L_cycleType . pdf ’ , dpi=200)

Red Giant Caller (redGiant.py)

1 from starTracker import ∗
2 import numpy as np
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3 import p i c k l e
4 from numpy import p i
5 from mul t i p ro c e s s i ng import Pool
6
7 nM = 10
8 nC = 10
9 p = 22 # days

10
11 lRan = np . array ( [ 1 . , 1 0 . , 2 5 . , 5 0 . ] )
12 nL = len ( lRan )
13 mRan = np . l i n s p a c e ( 1 . , 2 . 5 ,num=nM, endpoint=True )
14 cRan = np . l i n s p a c e ( 0 . 2 , 0 . 3 ,num=nC, endpoint=True )
15
16 minR = np . z e ro s ( (nM,nC) )
17 maxR = np . z e ro s ( (nM,nC) )
18 tKel = np . z e ro s ( (nM,nC) )
19 tExp = np . z e ro s ( (nM,nC, nL) )
20 l i = np . z e r o s ( (nM,nC) )
21
22 f o r i in range (nM) :
23 f o r j in range (nC) :
24 s = starT (mRan[ i ] , s c=1e6 ,mc=cRan [ j ] )
25 minR [ i , j ] = s . r0
26 maxR[ i , j ] = s . rMax
27 tKel [ i , j ] = 6∗10∗∗14∗mRan[ i ]∗∗2/ s . r0 / s . l
28 l i [ i , j ] = s . l
29 r = (216 . /25 ) ∗p ∗∗ ( 2 . /3 )
30 p r i n t i , j
31 f o r k in range (nL) :
32 l e = ( 1 . / 4 ) ∗ lRan [ k ] ∗ ( s . r0 ∗∗2/ r ∗∗2)
33 tExp [ i , j , k ] = tKel [ i , j ]∗ s . l /min ( le , s . l )
34
35 p i c k l e . dump ( [nM,nC, nL , p ,mRan, cRan , lRan ,minR ,maxR, l i , tKel , tExp ] , open ( ’dataDumpRed ’ , ’w+’ ) )

Red Giant Analysis (redAnalysis.py)

1 import p i c k l e
2 import numpy as np
3 from numpy import p i
4 import matp lo t l i b . pyplot as p l t
5 from constant s import ∗
6
7 nM,nC, nL , p ,mRan, cRan , lRan ,minR ,maxR, l i , tKel , tExp = p i c k l e . load ( open ( ’dataDumpRed ’ ) )
8
9 p l t . imshow (maxR/30 , o r i g i n=’ lower ’ , extent = [ 0 . 2 , 0 . 3 , 1 , 2 . 5 ] , a spect =0.07)

10 p l t . x l ab e l ( ’$M_c␣ (M_\odot ) $ ’ )
11 p l t . y l ab e l ( ’$M␣ (M_\odot ) $ ’ )
12 p l t . c o l o rba r ( )
13 p l t . s a v e f i g ( ’ P lo t s / r edg i an t s . pdf ’ , dpi=200)
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Appendix C

Gob Stellar Integration Code

The unmodified Gob code1 is shown below. It may be compiled with gfortran version 4.9.0 20140201 via
the command

1 g f o r t r an −std=legacy gob84 . f

Following the original code is the output of the Unix ’diff’ command run with the original code and our
modified version as its arguments in that order. This may be used in conjunction with the original code
to produce the new code2. The new version incorporates our modifications to accommodate an input heat
at a column density of 1000 g

cm2 . In addition, it uses more numerical precision than the previous version,
and has a much more extensive output, giving many more atmospheric quantities of interest. It also uses
command line arguments rather than interactive input. The code may be compiled with the same version
of gfortran using the command

1 g f o r t r an −std=legacy −f d e f au l t−r ea l −8 gobV5 . f ,

where gobV5.f is the filename of the new version. The opacity table used by Gob is shown next. Finally,
the first author also wrote a Python script for interfacing with Gob. This is shown at the end of this
Appendix. Note that this script is Cython-compatible, and calling it in a Cython context significantly
improves performance. Further note that this script requires the new version of Gob, and requires that it
be compiled into an executable named ’gob’ in the same directory. This script was used to test Acorn,
which was ultimately used to generate the figures and data tables in this document.

Gob - Original

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 program gob84
5 c − " gob84 . f o r " has been t e s t ed at Pr inceton on IBM PC/XT on Sept . , 24 , 1984
6 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 c
8 c input :
9 c

10 c un i t=1, f i l e =’ opac i ty . dat ’ opac i ty data made by caokap . f
11 c un i t=∗ , terminal , c on t r o l v a r i a b l e s
12 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 c
14 c output :

1B. Paczyński. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
2The Unix ’patch’ command may be used to do this.

239
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15 c
16 c un i t=2, f i l e =’obc . dat ’ outer boundary cond i t i on s to be used by
17 c sch . f and hen . f
18 c un i t=3, f i l e =’ p r i n t . gob ’ r e s u l t s to be pr in ted
19 c un i t=∗ , terminal , condensed output .
20 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 r e a l m, l , rp , rop , tauf , a l f a , x , y , tp , ya , h , dt , vt , vad , fac , tauc ,
22 ∗ grad , gradad , gradra , tmax , kap , xx , xp , yy ,w, acc , mbol
23 i n t e g e r i , j
24 common/ fpso /vad , grad , gradad , gradra , rp , tauf , tp , ya ,m
25 common/kapa/kap (51 ,31)
26 common/dens/ rhc1 , rhc2 , rhc3 , xh1 , xhe1 , xhe2 , e r r o r
27 common/dathe2/he2lim , zav
28 dimension xx (6 ) , xp (6 ) , yy (6 ) ,w(6 ) , acc (5 )
29
30 wr i t e (∗ ,∗ ) ’ ␣program␣ " gob84 . f " ␣ i s ␣ running ␣ ’
31 open (1 , f i l e=’ opac i ty . dat ’ )
32 rewind (1)
33 open (2 , f i l e=’ obc . dat ’ )
34 rewind (2)
35 open (3 , f i l e=’ p r i n t . gob ’ )
36 rewind (3)
37
38 c −−−−−−−−−−−−−−−−−−−−−−−− read the o p a c i t i e s −−−−−−−−−−−−−−−−−−−−−−−−−−−
39 100 format (2 f8 . 5 )
40 read (1 ,100) x , z
41 i=0
42 k2=0
43 300 cont inue
44 i=i+1
45 i f ( i . gt . 5 1 ) go to 304
46 301 format (1x , i5 , 14 f5 . 2 )
47 k2=k2+1
48 read (1 ,301) k1 , ( kap ( i , j ) , j =1 ,14)
49 i f ( k1 . ne . k2 ) go to 302
50 k2=k2+1
51 read (1 ,301) k1 , ( kap ( i , j ) , j =15 ,28)
52 i f ( k1 . ne . k2 ) go to 302
53 k2=k2+1
54 read (1 ,301) k1 , ( kap ( i , j ) , j =29 ,31)
55 i f ( k1 . ne . k2 ) go to 302
56 go to 300
57 302 cont inue
58 303 format (1x ,21 hwrong opac i ty card , k=, i 3 )
59 wr i t e (∗ , 303) k2
60 c a l l e x i t
61 304 cont inue
62 305 format (7 f6 . 4 , 3 e8 . 1 , i 4 )
63
64 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−− s e t t i n g some con t r o l cons tant s −−−−−−−−−−
65 tau f =2.0/3.0
66 a l f a =1.0
67 rop=1.1e−12
68 tmax=1.5 e8
69 rmin=0.01
70 acc (1 ) =0.2
71 acc (2 ) =0.05
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72 acc (3 ) =0.15
73 acc (4 ) =0.05
74 acc (5 ) =0.1
75 c −−−−−−−−−−−−−−−−−−−−−−−−−−− end o f cons tant s −−−−−−−−−−−−−−−−−−−−−−−−
76
77
78 c −−−−−−−−−−−−−−−−−−−−−−−−−−− begin a s e t o f enve lopes −−−−−−−−−−−−−−−−−
79 400 cont inue
80 wr i t e (∗ , 106) x , z
81 106 format (1x , 4 h x =, f9 . 6 , 8 h z =, f9 . 6 , / ,
82 ∗ 59h m, fm , f lp1 , tp1 , d f lp , dtp , n f lp , ntp , i p r i n t , alpha = ?)
83
84 c −−−−−−−−−−−−−−−−− input the con t r o l parameters from the te rmina l −−−−−
85
86 read (∗ ,∗ )m, fm , f lp1 , tp1 , d f lp , dtp , n f lp , ntp , i p r i n t , a l f a
87 i f (m. l e . 0 . ) c a l l e x i t
88
89 c −−−−−−− s e t the va lue s o f c r i t i c a l d e n s i t i e s f o r p r e s su r e i o n i z a t i o n :
90 c " rhc1 " , " rhc2 " , " rhc3 "
91 c −−−−−−− the value o f c r i t i c a l second helium i o n i z a t i o n : " hel im2 "
92 c −−−−−−− and the average charge o f " metals " : " zav " .
93 rhc l 1=−1.0
94 rhc l 2=−0.5
95 rhc l 3 =0.0
96 he2l im=0.99
97 zav=10.0
98 rhc1=10.0∗∗ rh c l 1
99 rhc2=10.0∗∗ rh c l 2
100 rhc3=10.0∗∗ rh c l 3
101
102 y=1.0−x−z
103 310 format (1x , 2 f7 . 4 , 2 f 9 . 6 , 5 f 6 . 3 , 2 i 4 )
104 i f ( i p r i n t . l e . 0 )
105 ∗wr i t e (∗ , 310) m, fm , x , z , a l f a , f lp1 , tp1 , d f lp , dtp , n f lp , ntp
106 wr i t e (2 ,310) m, fm , x , z , a l f a , f lp1 , tp1 , d f lp , dtp , n f lp , ntp
107 wr i t e (3 ,199) rhc l1 , rhc l2 , rhc l3 , xxx
108 199 format (1x , ’ ␣ l og ␣ rhc1 , ␣ l og ␣ rhc2 , ␣ l og ␣ rhc3 , ␣xxx␣=␣ ’ ,4 f 8 . 4 )
109 wr i t e (3 ,101)
110 101 format (// ,30x , ’ ␣ pr in ted ␣ r e s u l t s ␣ from␣program␣gob84 . f ␣ ’ ,/ ,1 x ,
111 ∗42h m/msun fm/msun x z alpha log Lo ,
112 ∗33h log To d logL d logT nL nT ip r )
113 102 format (1x , 9 f7 . 4 , 3 i 4 )
114 wr i t e (3 ,102) m, fm , x , z , a l f a , f lp1 , tp1 , d f lp , dtp , n f lp , ntp , i p r i n t
115 wr i t e (3 ,199) rhc l1 , rhc l2 , rh c l 3
116 i p r=i p r i n t
117
118
119 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− enve lope i n t e g r a t i o n s begin −−−−−−−−−−
120 do 311 n f l =1, n f l p
121 do 311 nt=1,ntp
122 xh1=0.0
123 xhe1=0.0
124 xhe2=0.0
125 ermax=−10.0
126 i p r i n t=ip r
127 f l=f l p 1+(n f l −1)∗ d f l p
128 f t=tp1+(nt−1)∗dtp
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129 l =10.0∗∗ f l
130 tp=10.0∗∗ f t
131 rp=sq r t ( 5 . 6 e14∗ l ) / tp/ tp
132 ya=1.0
133 dt=0.0
134 mbol=4.74−1.0857∗ a log ( l )
135 rp log=alog10 ( rp )
136 rop log=alog10 ( rop )
137 105 format (1x ,13h log l / l sun =, f6 . 3 , 11 h m bol =, f 6 . 3 ,
138 ∗ 16h log r / rsun =, f6 . 3 , 12 h log t0 =, f6 . 3 )
139 104 format (1x ,35h l dm l t l rho l r l tau ,
140 ∗ 41h l gr l ga l ra xh1 xhe1 xhe2 e r r )
141 103 format (1x , 8 f7 . 2 , 3 f 5 . 2 , f 6 . 2 )
142 i f ( i p r i n t . l e . 0 ) go to 2
143 wr i t e (∗ , 105) f l , mbol , rplog , f t
144 wr i t e (∗ , 104)
145 wr i t e (3 ,105) f l , mbol , rp log , f t
146 wr i t e (3 ,103)
147 wr i t e (3 ,104)
148 wr i t e (3 ,103)
149 2 cont inue
150 xx (1 ) =1.0e−30
151 xx (2 )=tp
152 xx (3 )=rop
153 xx (4 )=rp
154 xx (5 ) =1.0e−30
155 xx (6 ) =0.0
156 k=0
157
158 109 cont inue
159 k=k+1
160 i f ( k . gt . 3 00 ) go to 115
161 do 110 i =1,6
162 w( i )=xx ( i )
163 110 cont inue
164 c a l l pso (xx , x , y , l , a l f a , yy , vt , dturb )
165 i f ( e r r o r . gt . ermax ) ermax=e r r o r
166 i p r i n t=i p r i n t+1
167 i f ( i p r i n t . l t . 0 . or . i p r . l t . 0 ) go to 1002
168 i p r i n t=−i p r
169 dmlog=alog10 ( xx (1 ) )
170 t l o g=alog10 ( xx (2 ) )
171 rh log=alog10 ( xx (3 ) )
172 r l o g=alog10 ( xx (4 ) )
173 tau log=alog10 ( xx (5 ) )
174 g r l=alog10 ( grad )
175 ga l=alog10 ( gradad )
176 g r a l=alog10 ( gradra )
177 wr i t e (∗ , 103) dmlog , t log , rhlog , r log , taulog , g r l , gal , g r a l
178 ∗ , xh1 , xhe1 , xhe2 , e r r o r
179 wr i t e (3 ,103) dmlog , t log , rhlog , r log , taulog , g r l , gal , g r a l
180 ∗ , xh1 , xhe1 , xhe2 , e r r o r
181 1002 cont inue
182
183 c −−−−−−−−−−−−−−−−−−−−−−−−−−−− choose an i n t e g r a t i o n step = h −−−−−−−−−−−−−−
184 h=0.0
185 i f ( xx (5 ) . l t . t au f )h=abs ( yy (5 ) / acc (5 ) )
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186 i f (h . l t . 1 . / acc (1 ) /(m−xx (1 ) ) )h=1./ acc (1 ) /(m−xx (1 ) )
187 do 120 i =2,4
188 i f (h . l t . abs ( yy ( i ) / acc ( i ) /xx ( i ) ) )h=abs ( yy ( i ) / acc ( i ) /xx ( i ) )
189 120 cont inue
190 h=−1./h
191 c −−−−−−−−−−−−−−−−−−−−−−−−−− i n t e g r a t i o n step = h has been chosen −−−−−−−−−−
192
193 iend=−1
194 i f ( ( xx (1 )−h) . l t . fm) go to 307
195 h=xx (1)−fm
196 iend=1
197 307 cont inue
198 do 111 i =1,6
199 xp ( i )=xx ( i ) +0.5∗h∗yy ( i )
200 111 cont inue
201 c a l l pso (xp , x , y , l , a l f a , yy , vt , dturb )
202 do 112 i =1,6
203 xx ( i )=xx ( i )+h∗yy ( i )
204 112 cont inue
205 c −−−−−−−−−−−−−−−−−−−−−−−−−−−− an i n t e g r a t i o n step has been completed −−−−−−−−
206 dt=−6.96e10∗h∗yy (4 ) /vad
207 i f ( iend . l t . 0 ) go to 313
208 i f ( i p r . l t . 0 ) go to 1003
209 dmlog=alog10 ( xx (1 ) )
210 t l o g=alog10 ( xx (2 ) )
211 rh log=alog10 ( xx (3 ) )
212 r l o g=alog10 ( xx (4 ) )
213 tau log=alog10 ( xx (5 ) )
214 g r l=alog10 ( grad )
215 ga l=alog10 ( gradad )
216 g r a l=alog10 ( gradra )
217 wr i t e (∗ , 103) dmlog , t log , rhlog , r log , taulog , g r l , gal , g r a l
218 ∗ , xh1 , xhe1 , xhe2 , e r r o r
219 wr i t e (3 ,103) dmlog , t log , rhlog , r log , taulog , g r l , gal , g r a l
220 ∗ , xh1 , xhe1 , xhe2 , e r r o r
221 1003 cont inue
222 go to 115
223 313 cont inue
224 tauc=−1.0
225 i f ( xx (5 ) . gt . 0 . 0 5 . and .w(5) . l t . 0 . 0 5 ) tauc=0.05
226 i f ( xx (5 ) . gt . t au f . and .w(5) . l t . t au f ) tauc=tau f
227 i f ( tauc . l t . 0 . ) go to 113
228 f a c=(xx (5 )−tauc ) /( xx (5 )−w(5) )
229 do 114 i =1,6
230 w( i )=fa c ∗w( i )+(1.− f a c ) ∗xx ( i )
231 114 cont inue
232 i f ( i p r . l t . 0 ) go to 1004
233 c −−−−−−−−−−−−−−−−−−−−− p r i n t i n g at o p t i c a l depth = 0 .05 , 0 .66667 −−−−−−−−−−−
234 dmlog=alog10 (w(1) )
235 t l o g=alog10 (w(2) )
236 rh log=alog10 (w(3) )
237 r l o g=alog10 (w(4) )
238 tau log=alog10 (w(5) )
239 wr i t e (∗ , 103) dmlog , t log , rhlog , r log , tau log
240 wr i t e (3 ,103) dmlog , t log , rhlog , r log , tau log
241 1004 cont inue
242 i f ( abs (1.0− tauc / tau f ) . l t . 0 . 0 1 ) t e f=alog10 (w(2) )
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243 113 cont inue
244 i f ( xx (2 ) . gt . tmax) go to 115
245 i f ( xx (1 ) . gt . 0 . 9 ∗m) go to 115
246 i f ( xx (3 ) . gt . 1 0 0 0 . ) go to 115
247 i f ( xx (3 ) . l t . 1 . e−12.and . xx (5 ) . gt . t au f ) go to 115
248 go to 109
249 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− end o f i n t e g r a t i o n −−−−−−−−−−
250
251 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−− prepara t i on s o f output at the base o f enve lope
252 115 cont inue
253 i f ( xx (2 ) . l t . tmax) go to 116
254 f a c=(xx (2 )−tmax) /( xx (2 )−w(2) )
255 do 117 i =1,6
256 w( i )=fa c ∗w( i )+(1.− f a c ) ∗xx ( i )
257 117 cont inue
258 f a c=w(6) /w(1)
259 116 cont inue
260 f a c =617.∗ s q r t ( abs ( f a c ) ) ∗ s i gn ( 1 . , f a c )
261 r e f =7.5246+0.5∗ f l −2.0∗ t e f
262 t i=alog10 ( xx (2 ) )
263 rho i=alog10 ( xx (3 ) )
264 r i=alog10 ( xx (4 ) )
265 308 format (1x , 9 f8 . 4 , f 6 . 2 )
266 wr i t e (∗ , 308) m, fm , f l , f t , t e f , r e f , t i , rho i , r i , ermax
267 wr i t e (3 ,308) m, fm , f l , f t , t e f , r e f , t i , rhoi , r i , ermax
268 wr i t e (2 ,308) m, fm , f l , f t , t e f , r e f , t i , rhoi , r i
269 311 cont inue
270 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− enve lope i n t e g r a t i o n s end −−−−−−−−−−−|
271
272
273 go to 400
274 end
275 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
276
277 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
278 subrout ine pso (xx , x , y , l r , a l f a , yy , vt , d e l t )
279 r e a l xx , x , y , l r , a l f a , yy ,mr , t , ro , r , q , cp , p , dpro , dpt , kp ,dpm, g , hp ,
280 ∗ l t , u , omega , a , gamma, sqc , sqg , v , grop , vad , grad , gradad , gradra , rp , tauf ,
281 ∗ tp , ya ,m, vt , kappa
282 dimension xx (6 ) , yy (6 )
283 common/ fpso /vad , grad , gradad , gradra , rp , tauf , tp , ya ,m
284 mr=m−xx (1 )
285 t=xx (2)
286 ro=xx (3)
287 r=xx (4 )
288 c a l l termo ( ro , t , x , y , 1 . , q , cp , gradad , p , dpro , dpt , u , cv , vad )
289 kp=kappa ( ro , t )
290 dpm=−8.97e14∗mr/ r ∗∗4
291 yy (4 ) =0.470/ r ∗∗2/ ro
292 yy (5 )=−3.27e10/ r ∗∗2∗kp
293 yy (6)=mr/r−5.24e−16∗u
294 yy (1)=−1.0
295 gradra=7.65 e9∗kp∗p/ t ∗∗4∗ l r /mr
296 i f ( xx (5 ) . gt . t au f ) go to 40
297 a=1.285e−26∗( l r ∗ r ∗∗2) ∗∗0.25∗(1−xx (5 ) / tau f ) / ro /mr∗ t ∗∗3
298 dpm=dpm∗(1.+a )
299 gradra=gradra ∗(1+1.296 e4∗mr/ l r /kp∗a ) /(1+a )
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300 40 cont inue
301 i f ( gradra . gt . gradad ) go to 41
302 grad=gradra
303 vt=0.0
304 d e l t =0.0
305 go to 42
306 41 cont inue
307 g=2.74 e4∗mr/ r ∗∗2
308 hp=p/ ro /g
309 l t=a l f a ∗hp
310 omega=kp∗ ro ∗ l t
311 a=1.125∗omega∗∗2/(3.+omega∗∗2)
312 gamma=826.7∗ cp∗ ro / t ∗∗3∗omega/a
313 sqc=l t ∗ s q r t ( g∗q /8 ./ hp)
314 sqg=sq r t ( gradra−gradad )
315 v=1./gamma/ sqc / sqg
316 a=2∗a/v
317 43 cont inue
318 vt=(1.−ya ∗( v+ya∗(1.+ya∗a ) ) ) /(v+ya∗(2.+ya ∗3 .∗ a ) )
319 ya=ya+vt
320 i f ( abs ( vt /ya ) . gt . 0 . 0 0 1 ) go to 43
321 vt=sqc ∗ sqg∗ya
322 grad=gradad+(gradra−gradad ) ∗ya ∗( ya+v)
323 d e l t=t ∗4 .0∗ vt∗vt /g/ l t /q
324 42 cont inue
325 grop=(p−grad∗ t ∗dpt ) / ro /dpro
326 yy (2 )=grad∗ t /p∗dpm
327 yy (3)=grop∗ ro /p∗dpm
328 return
329 end
330 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
331
332 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
333 r e a l f unc t i on kappa ( ro , te )
334 common/kapa/kap (51 ,31)
335 r e a l ro , te , d , t , kapp , kap
336 i n t e g e r di , t i
337 d=2.0∗ a log10 ( ro )+25.0
338 d i=in t (d)
339 d=d−di
340 t=20.∗ a log10 ( te )−65.
341 i f ( t . gt . 3 5 . ) t=35.+(t −35.) /4 .
342 t i=in t ( t )
343 t=t−t i
344 i f ( d i . ge . 1 ) go to 30
345 d i=1
346 d=0.
347 30 cont inue
348 i f ( d i . l e . 3 0 ) go to 31
349 d i=30
350 d=1.
351 31 cont inue
352 i f ( t i . ge . 1 ) go to 32
353 t i=1
354 t=0.
355 32 cont inue
356 i f ( t i . l e . 5 0 ) go to 33
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357 t i =50
358 t=1.
359 33 cont inue
360 kapp=(1.− t ) ∗((1.−d) ∗kap ( t i , d i )+d∗kap ( t i , d i+1) )+
361 ∗ t ∗((1.−d) ∗kap ( t i +1, d i )+d∗kap ( t i +1, d i+1) )
362 kappa=exp (2 .3026∗ kapp )
363 re turn
364 end
365 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
366
367 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
368 subrout ine termo ( ro , t , x , y , typ , q , cp , gradad , p , dpro , dpt , u , dut , vad )
369 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
370 c input :
371 c ro dens i ty ( c . g . s . )
372 c t temp(k )
373 c x hydrogen mass f r a c t i o n
374 c y helium mass f r a c t i o n
375 c typ con t r o l v a r i ab l e :
376 c > 0 inc lude r ad i a t i on in i o n i z a t i o n r eg i on
377 c <=0 neg l e c t r ad i a t i on in i o n i z a t i o n r eg i on
378 c output :
379 c q −(d ln rho /d ln t )p |
380 c cp (du/dt )p s p e c i f i c heat cap . at const p |
381 c gradad (d ln t /d ln p) s ad i aba t i c g rad i en t |
382 c p pr e s su r e ( c . g . s . ) |
383 c dpro (dp/drho ) t |−−> c . g . s . k .
384 c dpt (dp/dt ) rho |
385 c u s p e c i f i c i n t e r n a l energy |
386 c dut (du/dt ) rho s p e c i f i c heat cap . at const vo l . |
387 c vad ad i aba t i c sound speed |
388 c
389 c an adjustment i s made to take in to account weak e l e c t r on degen . ,
390 c here f o r f u l l i o n i z a t i on , in energ f o r p a r t i a l i o n i z a t i o n
391 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
392 c
393 r e a l ro , t , x , y , typ , q , cp , gradad , p , dpro , dpt , u , vad , p1 , p2 , p3 , p4 , u1 , u2 ,
394 ∗ u3 , u4 , duro , dut , z , ne l e c t , nnucl ,mue , ndgen
395 common/dens/ rhc1 , rhc2 , rhc3 , xh1 , xhe1 , xhe2 , e r r o r
396 common/dathe2/he2lim , zav
397 c
398 z = 1.−x−y
399 c
400 i f ( xhe2 . l t . he2l im ) go to 2
401 c
402 c −−−−−−− f u l l i o n i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
403 c
404 xh1=1.0
405 xhe1=0.0
406 xhe2=1.0
407 c
408 c p1 i s f o r p a r t i c l e s , p2 i s f o r photons
409 c
410 n e l e c t = (x+y/2.+z /2 . )
411 nnucl = (x+y/4.+z/zav /2 . )
412 mue = (1.+x) /2 .
413 ndgen = ne l e c t ∗ ( 1 . + 2 .19 e−2∗( ro /mue) ∗( t /1 . e6 ) ∗∗(−1.5) )
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414 c p1=0.825075 e8 ∗(0 .5+1.5∗x+0.25∗y ) o ld l e s s accurate way
415 p1=0.825075 e8 ∗( ndgen + nnucl )
416 p2=2.523e−15∗ t ∗∗3/ ro
417 p=(p1+p2 ) ∗ ro ∗ t
418 u=(1.5∗p1+3.∗p2 ) ∗ t +1.516 e13∗x+1.890 e13∗y
419 c
420 dpro=p1∗ t
421 dpt=(p1+4.∗p2 ) ∗ ro
422 duro=−3.∗p2∗ t / ro
423 dut=1.5∗p1+12.∗p2
424 go to 3
425 c
426 2 cont inue
427 c
428 c −−−−−−−−−−−−−− p a r t i a l i o n i z a t i o n o f hydrogen and helium −−−−−−−−−−−−−−−−−
429 c
430 c a l l energ ( ro , 0 . 9 99∗ t , x , y , p1 , u1 , typ )
431 c a l l energ ( ro , 1 . 0 01∗ t , x , y , p2 , u2 , typ )
432 c a l l energ (0 .999∗ ro , t , x , y , p3 , u3 , typ )
433 c a l l energ (1 .001∗ ro , t , x , y , p4 , u4 , typ )
434 c
435 p=(p1+p2+p3+p4 ) ∗0 .25
436 u=(u1+u2+u3+u4 ) ∗0 .25
437 c
438 dpro=(p4−p3 ) / ro ∗500 .
439 dpt=(p2−p1 ) / t ∗500 .
440 duro=(u4−u3 ) / ro ∗500 .
441 dut=(u2−u1 ) / t ∗500 .
442 c
443 3 cont inue
444 c
445 c −−−−− eva lua t i on o f more complex thermodynamic f unc t i on s and the e r r o r
446 c
447 q=t / ro ∗dpt/dpro
448 cp=dut+q/ ro ∗dpt
449 gradad=p∗q/cp/ ro / t
450 vad=sq r t ( dpro∗cp/dut )
451 c
452 er1=abs(1− t /p∗dpt−duro∗ ro ∗∗2/p)+1.0e−10
453 e r r o r=alog10 ( er1 )
454 c
455 re turn
456 end
457 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
458
459 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
460 subrout ine energ ( ro , t , x , y , p , u , typ )
461 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
462 c input :
463 c ro dens i ty ( c . g . s . )
464 c t temp(k )
465 c x hydrogen mass f r a c t i o n
466 c y helium mass f r a c t i o n
467 c typ con t r o l v a r i ab l e :
468 c > 0 to inc lude r ad i a t i on
469 c <=0 to neg l e c t r ad i a t i on
470 c output :
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471 c p pre s su r e ( c . g . s . )
472 c u s p e c i f i c i n t e r n a l energy
473 c
474 c the gas i s assumed non−r e l a t i v i s t i c . a f i r s t −order
475 c e l e c t r on−degeneracy c o r r e c t i o n i s made .
476 c the metals are assumed to be f u l l y i on i z ed ( poor assumption )
477 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
478 r e a l ro , t , x , y , p , u , typ , nt , nh2 , nhi , nh i i , nhei , nhe i i , n h e i i i , ne , pg , pr ,
479 ∗ uh2 , teta , logt , h ,dm, fac , nh , nhe , nmet ,mue , nmetel , nedgen
480 c
481 common/dens/ rhc1 , rhc2 , rhc3 , xh1 , xhe1 , xhe2 , e r r o r
482 common/dathe2/he2lim , zav
483 c
484 c −−−−−− rhc1 , rhc2 , rhc3 are c r i t i c a l d e n s i t i e s f o r " p r e s su r e i o n i z a t i o n "
485 c
486 t e ta =5040./ t
487 dm=2.302585
488 tm=1/te ta /dm
489 l o g t=alog10 ( t )
490 mue = (1.+x) /2 .
491 c
492 h=1.6734e−24
493 nh=x∗ ro /h
494 nhe=0.25∗y∗ ro /h
495 nmet=1./ zav /2.∗(1.0−x−y ) ∗ ro /h
496 c −−−−assume metals f u l l y i on i z ed
497 nmetel=nmet∗zav
498 ne=0.0
499 nhi=nh
500 nh i i =0.0
501 nhei=nhe
502 nh e i i =0.
503 n h e i i i =0.
504 c
505 xh1=0.0
506 xhe1=0.0
507 xhe2=0.0
508 c
509 fac1 =0.0
510 fac2 =0.0
511 fac3 =0.0
512 c
513 c −−−−−−−−−−−−−−−−− hydrogen i o n i z a t i o n
514 hi1 =13.595
515 h i=hi1 ∗(1− ro / rhc1∗(1+tm/hi1 ) )
516 f h l=alog10 (nh)
517 b10=15.3828+1.5∗ l ogt−hi ∗ teta−f h l
518 i f ( b10 . gt . 1 0 . 0 ) b10=10.0
519 i f ( b10 . l t . ( −10 .0) ) go to 21
520 b=10.0∗∗b10
521 c=b
522 fac1=c∗nh
523 bc=0.5∗b/c
524 xx=1.0/( sq r t ( bc∗bc+1.0/ c )+bc )
525 c
526 c −−−−−− " xx " i s the p o s i t i v e root o f equat ion : " xx∗∗2 + b∗xx − c = 0 "
527 xx1=1.0−xx



APPENDIX C. GOB STELLAR INTEGRATION CODE 249

528 i f ( xx1 . l t . 1 . 0 e−10)xx1=1.0e−10
529 nh i i=nh∗xx
530 ne=nh i i
531 nhi=nh∗xx1
532 xh1=xx
533 c
534 c −−−−−−−−−−−−−−−−− f i r s t helium i o n i z a t i o n
535 hi2 =24.580
536 h i=hi2 ∗(1− ro / rhc2∗(1+tm/hi2 ) )
537 f h e l=alog10 ( nhe )
538 b10=15.9849+1.5∗ l ogt−hi ∗ teta−f h e l
539 i f ( b10 . gt . 1 0 . 0 ) b10=10.0
540 i f ( b10 . l t . ( −10 .0) ) go to 21
541 c=10.0∗∗b10
542 b=c+ne/nhe
543 fac2=c∗nhe
544 bc=0.5∗b/c
545 xx=1.0/( sq r t ( bc∗bc+1.0/ c )+bc )
546 xx1=1.0−xx
547 c
548 i f ( xx1 . l t . 1 . 0 e−10)xx1=1.0e−10
549 nh e i i=nhe∗xx
550 ne=ne+nhe i i
551 nhei=nhe∗xx1
552 xhe1=xx
553 c
554 c −−−−−−−−−−−−−−−−−− second helium i o n i z a t i o n
555 hi3 =54.403
556 h i=hi3 ∗(1− ro / rhc2∗(1+tm/hi3 ) )
557 f h e l=alog10 ( nh e i i )
558 b10=15.3828+1.5∗ l ogt−hi ∗ teta−f h e l
559 i f ( b10 . gt . 1 0 . 0 ) b10=10.0
560 i f ( b10 . l t . ( −10 .0) ) go to 20
561 c=10.0∗∗b10
562 b=c+ne/ nhe i i
563 fac3=c∗ nhe i i
564 bc=0.5∗b/c
565 xx=1.0/( sq r t ( bc∗bc+1.0/ c )+bc )
566 xx1=1.0−xx
567 c
568 i f ( xx1 . l t . 1 . 0 e−10)xx1=1.0e−10
569 n h e i i i=nhe i i ∗xx
570 ne=ne+nh e i i i
571 nh e i i=nhe i i ∗xx1
572 xhe2=xx
573 20 cont inue
574 c
575 c −−−−−−−−−−−−−−−− c o r r e c t the i o n i z a t i o n o f hydrogen and helium −−
576 f1=fac1 /ne
577 f2=fac2 /ne
578 f3=fac3 /ne
579 f4=nh/ne
580 f5=y/4/x
581 zz=1.0
582 c
583 c a l l f z z ( zz , f1 , f2 , f3 , f4 , f 5 )
584 c
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585 ne=ne∗ zz
586 xh1=f1 /(1+ f1 )
587 xhe1=f2 /(1+ f2 ∗(1+ f3 ) )
588 xhe2=xhe1∗ f 3
589 c
590 nhi=nh∗(1−xh1 )
591 nh i i=nh∗xh1
592 nhei=nhe∗(1−xhe1−xhe2 )
593 nh e i i=nhe∗xhe1
594 n h e i i i=nhe∗xhe2
595 c
596 c −−−−−−−−−−−−−−−−−−− molecu lar hydrogen −−−−−−−−−−−−−−−−−−−−−−−−−−
597 21 cont inue
598 nh2=0.
599 i f ( nhi . l t . 0 . 0 01∗ nh . or . t . gt . 2 0 0 0 0 . ) go to 22
600 f a c =28.0925− t e t a ∗(4.92516− t e t a ∗(0.056191+ te ta ∗0 .0032688) )− l o g t
601 i f ( t . gt . 1 2 0 0 0 . ) f a c=fac+(t −12000.) /1000 .
602 f a c=exp (dm∗ f a c )
603 i f ( f a c . l t . ( 1 . 0 e−20∗nhi ) ) go to 23
604 b=fac /nhi
605 c=b
606 bc=0.5∗b/c
607 xx=1.0/( sq r t ( bc∗bc+1.0/ c )+bc )
608 nh2=0.5∗ nhi∗(1−xx )
609 nhi=nhi ∗xx
610 c
611 c −−−−−−−−−−−−−−−−− c a l c u l a t i o n o f energy and pre s su r e
612 c
613 22 cont inue
614 c −−−−−co r r . f o r s l i g h t e l e c t r on degeneracy
615 nedgen = ( nmetel+ne ) ∗ ( 1 . + 2 .19 e−2∗( ro /mue) ∗( t /1 . e6 ) ∗∗(−1.5) )
616 nt=nh−nh2+nhe+nedgen+nmet
617 pg=1.3805e−16∗nt∗ t
618 pr=0.
619 i f ( typ . gt . 0 . ) pr=2.523e−15∗ t ∗∗4
620 p=pg+pr
621 uh2=t ∗(2.1+ t ∗2 .5 e−4)
622 i f ( t . gt . 3 0 0 0 . ) uh2=−1890.+t ∗(3.36+ t ∗0 .4 e−4)
623 u=(1.5∗pg+3.∗pr+1.3805e−16∗nh2∗uh2+3.585e−12∗nhi +25.36e−12∗ nh i i+
624 & 39.37 e−12∗ nhe i i +126.52e−12∗ n h e i i i ) / ro
625 re turn
626 c
627 23 cont inue
628 nh2=0.5∗ nhi
629 nhi=0.0
630 go to 22
631 c
632 end
633 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
634
635 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
636 subrout ine f z z ( zz , f1 , f2 , f3 , f4 , f 5 )
637 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
638 c input :
639 c zz = a guess o f c o r r e c t i n g f a c t o r to the e l e c t r on dens i ty (=1.0)
640 c f1 , f2 , f 3 = i o n i z a t i o n f a c t o r s d iv ided by e l e c t r o n dens i ty
641 c f4 = number dens i ty o f hydrogen i on s and atoms / e l e c t r o n number dens i ty
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642 c f5 = r a t i o o f helium to hydrogen nu c l e i
643 c output :
644 c zz = the i t e r a t e d value o f the c o r r e c t i n g f a c t o r
645 c f1 , f2 , f 3 = i o n i z a t i o n f a c t o r s d iv ided by the co r r e c t ed e l e c t r on dens i ty
646 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
647 de l =0.001
648 acc =0.00001
649 itmax=30
650 i t e r=0
651 1 cont inue
652 i t e r=i t e r+1
653 i f ( i t e r . gt . itmax ) go to 2
654 c a l l funzz ( zz , f1 , f2 , f3 , f4 , f5 , f z )
655 i f ( abs ( f z ) . l t . acc ) go to 3
656 zz1=zz+de l
657 c a l l funzz ( zz1 , f1 , f2 , f3 , f4 , f5 , f z 1 )
658 dz=de l ∗ f z /( fz−f z 1 )
659 zz=zz+dz
660 go to 1
661 2 cont inue
662 wr i t e (0 ,∗ ) ’ ␣ f z z ␣ i t e r a t i o n s ␣do␣not␣ converge ’
663 stop
664 3 cont inue
665 c −−−−−−−−−−−−−−− i t e r a t i o n s converged −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
666 f1=f1 / zz
667 f2=f2 / zz
668 f3=f3 / zz
669 re turn
670 end
671 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
672
673 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
674 subrout ine funzz ( zz , f1 , f2 , f3 , f4 , f5 , f z )
675 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
676 f z=f1 /( f 1+zz )+f5 ∗ f 2 ∗( zz+2∗ f 3 ) /( zz ∗ zz+f2 ∗( zz+f3 ) )−zz / f4
677 re turn
678 end
679 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
680
681 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Gob - Modified, Diff

1 4c4
2 < program gob84
3 −−−
4 > program gobV5
5 5a6 , 7
6 > c −
7 > c − modi f i ed ( to gobV5) by a s j to in c lude ex t e rna l heat ing Apr i l 2014
8 21 ,22 c23 ,25
9 < r e a l m, l , rp , rop , tauf , a l f a , x , y , tp , ya , h , dt , vt , vad , fac , tauc ,

10 < ∗ grad , gradad , gradra , tmax , kap , xx , xp , yy ,w, acc , mbol
11 −−−
12 > r e a l (8 ) m, l , rp , rop , tauf , a l f a , x , y , tp , ya , h , dt , vt , vad , fac , tauc ,
13 > ∗ grad , gradad , gradra , tmax , kap , xx , xp , yy ,w, acc , mbol , dlm , le ,
14 > ∗ kappaGamma , l0 , u , lu , gamma, cp , cv
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15 23a27
16 > CHARACTER(LEN=100) : : arg
17 85 ,86 c89 ,116
18 <
19 < read (∗ ,∗ )m, fm , f lp1 , tp1 , d f lp , dtp , n f lp , ntp , i p r i n t , a l f a
20 −−−
21 > c Note that kappaGamma i s in un i t s o f M0/R0^2 , so 2 .43 e−15 i s equ iva l en t
22 > c to 1e−3g/cm^2
23 > c l e i s the ex t e rna l luminos i ty being depos i t ed .
24 > c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 > CALL getarg (1 , arg )
26 > read ( arg , ∗ ) m
27 > CALL getarg (2 , arg )
28 > read ( arg , ∗ ) fm
29 > CALL getarg (3 , arg )
30 > read ( arg , ∗ ) f l p 1
31 > CALL getarg (4 , arg )
32 > read ( arg , ∗ ) tp1
33 > CALL getarg (5 , arg )
34 > read ( arg , ∗ ) d f l p
35 > CALL getarg (6 , arg )
36 > read ( arg , ∗ ) dtp
37 > CALL getarg (7 , arg )
38 > read ( arg , ∗ ) n f l p
39 > CALL getarg (8 , arg )
40 > read ( arg , ∗ ) ntp
41 > CALL getarg (9 , arg )
42 > read ( arg , ∗ ) i p r i n t
43 > CALL getarg (10 , arg )
44 > read ( arg , ∗ ) alpha
45 > CALL getarg (11 , arg )
46 > read ( arg , ∗ ) kappaGamma
47 > CALL getarg (12 , arg )
48 > read ( arg , ∗ ) f l e
49 121 a152
50 > dlm=0.0
51 129a161 ,163
52 > l0=l
53 > l e =10.0∗∗ f l e
54 > l=l e+l
55 130a165 ,166
56 > c 5 .6 e14=(4p i ∗R_sun^2∗K^4∗ sigma ∗2/L_sun) ^(−1)
57 > c The f a c t o r o f 2 comes from co r r e c t i n g to e f f e c t i v e temperature
58 134 ,136 c170 ,172
59 < mbol=4.74−1.0857∗ a log ( l )
60 < rp log=alog10 ( rp )
61 < rop log=alog10 ( rop )
62 −−−
63 > mbol=4.74−1.0857∗ l og ( l )
64 > rp log=log10 ( rp )
65 > rop log=log10 ( rop )
66 139 ,141 c175 ,178
67 < 104 format (1x ,35h l dm l t l rho l r l tau ,
68 < ∗ 41h l gr l ga l ra xh1 xhe1 xhe2 e r r )
69 < 103 format (1x , 8 f7 . 2 , 3 f 5 . 2 , f 6 . 2 )
70 −−−
71 > 104 format (1x ,43h l dm l t l rho l r l tau l gr ,
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72 > ∗ 60h l ga l ra xh1 xhe1 xhe2 e r r l p r e s s u r e l lu g r r grb ,
73 > ∗ 30h gr lu vad vt gamma cp cv )
74 > 103 format (1x ,23 f20 . 8 )
75 157d193
76 <
77 164 c200 ,201
78 < c a l l pso (xx , x , y , l , a l f a , yy , vt , dturb )
79 −−−
80 > c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 > c a l l pso (xx , x , y , l , a l f a , yy , vt , dturb , p , u , gamma, cp , cv )
82 169 ,176 c206 ,242
83 < dmlog=alog10 ( xx (1 ) )
84 < t l o g=alog10 ( xx (2 ) )
85 < rh log=alog10 ( xx (3 ) )
86 < r l o g=alog10 ( xx (4 ) )
87 < tau log=alog10 ( xx (5 ) )
88 < g r l=alog10 ( grad )
89 < ga l=alog10 ( gradad )
90 < g ra l=alog10 ( gradra )
91 −−−
92 > dmlog=log10 ( xx (1 ) )
93 > t l o g=log10 ( xx (2 ) )
94 > rh log=log10 ( xx (3 ) )
95 > r l o g=log10 ( xx (4 ) )
96 > tau log=log10 ( xx (5 ) )
97 > g r l=log10 ( grad )
98 > ga l=log10 ( gradad )
99 > g ra l=log10 ( gradra )
100 > lu = log10 (u)
101 > c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 > c dmlog = Log (mass ) in s o l a r un i t s
103 > c t l o g = Log ( T_surface ) in K. Note that T_eff i s the su r f a c e temperature ( i . e .
104 > c photosphere ) , o f f s e t from the e f f e c t i v e temperature by
105 > c T_eff=2^(1/4) T_surf .
106 > c rh log = Log ( dens i ty ) in c . g . s .
107 > c r l o g = Log ( rad iu s ) in s o l a r un i t s
108 > c tau log = Log ( o p t i c a l depth )
109 > c g r l = log ( t rue g rad i ent )
110 > c ga l = log ( ad i aba t i c g rad i en t )
111 > c g r a l = log ( r a d i a t i v e g rad i en t )
112 > c xh1 = ?
113 > c xhe1 = ?
114 > c xhe2 = ?
115 > c e r r o r = e r r o r
116 > c p = pre s su r e in c . g . s .
117 > c l = luminos i ty in s o l a r un i t s
118 > c gradra = r ad i a t i v e g rad i en t
119 > c gradad = ad i aba t i c g rad i en t
120 > c grad = true g rad i en t
121 > c lu = log ( s p e c i f i c energy dens i ty ) in c . g . s .
122 > c vad = ad i aba t i c sound speed
123 > c vt = Convective speed
124 > c gamma = convect ion e f f i c i e n c y ( in un i t s o f 1/ vt )
125 > c cp = heat capac i ty at constant p r e s su r e ( per un i t mass ) in c . g . s .
126 > c dut = heat capac i ty at constant volume ( per un i t mass ) in c . g . s .
127 > c a s j 7/10/2014
128 > c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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129 178 c244 ,245
130 < ∗ , xh1 , xhe1 , xhe2 , e r r o r
131 −−−
132 > ∗ , xh1 , xhe1 , xhe2 , e r ror , log10 (p) , log10 ( l ) , gradra , gradad , grad , lu
133 > ∗ , vad , vt , gamma, cp , cv
134 180 c247 ,248
135 < ∗ , xh1 , xhe1 , xhe2 , e r r o r
136 −−−
137 > ∗ , xh1 , xhe1 , xhe2 , e r ror , log10 (p) , log10 ( l ) , gradra , gradad , grad , lu
138 > ∗ , vad , vt , gamma, cp , cv
139 201 c269 ,273
140 < c a l l pso (xp , x , y , l , a l f a , yy , vt , dturb )
141 −−−
142 > c a l l pso (xp , x , y , l , a l f a , yy , vt , dturb , p , u , gamma, cp , cv )
143 > l=l0+l e ∗exp(−xx (1 ) ∗3 .271 e10∗kappaGamma/( rp∗ rp ) )
144 > c l=l 0+l e ∗exp(−xx (1 ) ∗ rp∗ rp∗kappaGamma∗3 .271 e10 )
145 > c wr i t e (∗ , 103) xx (1 ) ∗3 .271 e10 , l , l e , p/(27400) ,h
146 > c wr i t e (∗ , 103) xx (1 ) ∗2 .603 e9 , rp , p/(27400) , l
147 203 a276
148 > wr i t e (∗ , 103) log10(−h) , yy (1 ) , yy (2 ) , yy (3 ) , yy (4 ) , xx (1 ) , xx (2 ) , xx (3 ) , xx (4 )
149 209 ,216 c282 ,318
150 < dmlog=alog10 ( xx (1 ) )
151 < t l o g=alog10 ( xx (2 ) )
152 < rh log=alog10 ( xx (3 ) )
153 < r l o g=alog10 ( xx (4 ) )
154 < tau log=alog10 ( xx (5 ) )
155 < g r l=alog10 ( grad )
156 < ga l=alog10 ( gradad )
157 < g ra l=alog10 ( gradra )
158 −−−
159 > dmlog=log10 ( xx (1 ) )
160 > t l o g=log10 ( xx (2 ) )
161 > rh log=log10 ( xx (3 ) )
162 > r l o g=log10 ( xx (4 ) )
163 > tau log=log10 ( xx (5 ) )
164 > g r l=log10 ( grad )
165 > ga l=log10 ( gradad )
166 > g ra l=log10 ( gradra )
167 > lu=log10 (u)
168 > c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
169 > c dmlog = Log (mass ) in s o l a r un i t s
170 > c t l o g = Log ( T_surface ) in K. Note that T_eff i s the su r f a c e temperature ( i . e .
171 > c photosphere ) , o f f s e t from the e f f e c t i v e temperature by
172 > c T_eff=2^(1/4) T_surf .
173 > c rh log = Log ( dens i ty ) in c . g . s .
174 > c r l o g = Log ( rad iu s ) in s o l a r un i t s
175 > c tau log = Log ( o p t i c a l depth )
176 > c g r l = log ( t rue g rad i ent )
177 > c ga l = log ( ad i aba t i c g rad i en t )
178 > c g r a l = log ( r a d i a t i v e g rad i en t )
179 > c xh1 = ?
180 > c xhe1 = ?
181 > c xhe2 = ?
182 > c e r r o r = e r r o r
183 > c p = pre s su r e in c . g . s .
184 > c l = luminos i ty in s o l a r un i t s
185 > c gradra = r ad i a t i v e g rad i en t
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186 > c gradad = ad i aba t i c g rad i en t
187 > c grad = true g rad i en t
188 > c lu = log ( s p e c i f i c energy dens i ty ) in c . g . s .
189 > c vad = ad i aba t i c sound speed
190 > c vt = Convective speed
191 > c gamma = convect ion e f f i c i e n c y ( in un i t s o f 1/ vt )
192 > c cp = heat capac i ty at constant p r e s su r e ( per un i t mass ) in c . g . s .
193 > c dut = heat capac i ty at constant volume ( per un i t mass ) in c . g . s .
194 > c a s j 7/10/2014
195 > c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
196 218 c320 ,321
197 < ∗ , xh1 , xhe1 , xhe2 , e r r o r
198 −−−
199 > ∗ , xh1 , xhe1 , xhe2 , e r ror , log10 (p) , log10 ( l ) , gradra , gradad , grad , lu
200 > ∗ , vad , vt , gamma, cp , cv
201 220 c323 ,324
202 < ∗ , xh1 , xhe1 , xhe2 , e r r o r
203 −−−
204 > ∗ , xh1 , xhe1 , xhe2 , e r ror , log10 (p) , log10 ( l ) , gradra , gradad , grad , lu
205 > ∗ , vad , vt , gamma, cp , cv
206 234 ,240 c338 ,344
207 < dmlog=alog10 (w(1) )
208 < t l o g=alog10 (w(2) )
209 < rh log=alog10 (w(3) )
210 < r l o g=alog10 (w(4) )
211 < tau log=alog10 (w(5) )
212 < wr i t e (∗ , 103) dmlog , t log , rhlog , r log , tau log
213 < wr i t e (3 ,103) dmlog , t log , rhlog , r log , tau log
214 −−−
215 > dmlog=log10 (w(1) )
216 > t l o g=log10 (w(2) )
217 > rh log=log10 (w(3) )
218 > r l o g=log10 (w(4) )
219 > tau log=log10 (w(5) )
220 > wr i t e (∗ , 103) dmlog , t log , rhlog , r log , taulog , l e , l
221 > wr i t e (3 ,103) dmlog , t log , rhlog , r log , taulog , l e , l
222 242 c346
223 < i f ( abs (1.0− tauc / tau f ) . l t . 0 . 0 1 ) t e f=alog10 (w(2) )
224 −−−
225 > i f ( abs (1.0− tauc / tau f ) . l t . 0 . 0 1 ) t e f=log10 (w(2) )
226 262 ,264 c366 ,368
227 < t i=alog10 ( xx (2 ) )
228 < rho i=alog10 ( xx (3 ) )
229 < r i=alog10 ( xx (4 ) )
230 −−−
231 > t i=log10 ( xx (2 ) )
232 > rho i=log10 ( xx (3 ) )
233 > r i=log10 ( xx (4 ) )
234 273d376
235 < go to 400
236 278 ,279 c381 ,382
237 < subrout ine pso (xx , x , y , l r , a l f a , yy , vt , d e l t )
238 < r e a l xx , x , y , l r , a l f a , yy ,mr , t , ro , r , q , cp , p , dpro , dpt , kp ,dpm, g , hp ,
239 −−−
240 > subrout ine pso (xx , x , y , l r , a l f a , yy , vt , de l t , p , u , gamma, cp , cv )
241 > r e a l (8 ) xx , x , y , l r , a l f a , yy ,mr , t , ro , r , q , p , dpro , dpt , kp ,dpm, g , hp ,
242 299 a403
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243 > c pr in t ∗ , t , p , xx (5 ) , gradra
244 333 c437
245 < r e a l func t i on kappa ( ro , te )
246 −−−
247 > r e a l (8 ) func t i on kappa ( ro , te )
248 335 c439
249 < r e a l ro , te , d , t , kapp , kap
250 −−−
251 > r e a l (8 ) ro , te , d , t , kapp , kap
252 337 c441
253 < d=2.0∗ a log10 ( ro )+25.0
254 −−−
255 > d=2.0∗ l og10 ( ro )+25.0
256 340 c444
257 < t=20.∗ a log10 ( te )−65.
258 −−−
259 > t=20.∗ l og10 ( te )−65.
260 393 c497
261 < r e a l ro , t , x , y , typ , q , cp , gradad , p , dpro , dpt , u , vad , p1 , p2 , p3 , p4 , u1 , u2 ,
262 −−−
263 > r e a l (8 ) ro , t , x , y , typ , q , cp , gradad , p , dpro , dpt , u , vad , p1 , p2 , p3 , p4 , u1 , u2 ,
264 453 c557
265 < e r r o r=alog10 ( er1 )
266 −−−
267 > e r r o r=log10 ( er1 )
268 478 c582
269 < r e a l ro , t , x , y , p , u , typ , nt , nh2 , nhi , nh i i , nhei , nhe i i , n h e i i i , ne , pg , pr ,
270 −−−
271 > r e a l (8 ) ro , t , x , y , p , u , typ , nt , nh2 , nhi , nh i i , nhei , nhe i i , n h e i i i , ne , pg , pr ,
272 489 c593
273 < l og t=alog10 ( t )
274 −−−
275 > l og t=log10 ( t )
276 516 c620
277 < f h l=alog10 (nh)
278 −−−
279 > f h l=log10 (nh)
280 537 c641
281 < f h e l=alog10 ( nhe )
282 −−−
283 > f h e l=log10 ( nhe )
284 557 c661
285 < f h e l=alog10 ( nh e i i )
286 −−−
287 > f h e l=log10 ( nh e i i )

Gob Opacity Table

1 0.70000 0.03000
2 1−4.48−3.80−3.20−2.86−2.72−2.67−2.64−2.63−2.63−2.62−2.62−2.62−2.61−2.60
3 2−2.60−2.59−2.58−2.56−2.54−2.52−2.49−2.46−2.42−5.65−4.66−4.66−4.66−4.66
4 3−4.66−4.66−4.66
5 4−4.73−4.71−4.59−4.14−3.52−3.04−2.80−2.69−2.65−2.63−2.61−2.60−2.59−2.57
6 5−2.55−2.52−2.49−2.44−2.39−2.33−2.26−2.18−2.09−5.43−4.48−4.48−4.48−4.48
7 6−4.48−4.48−4.48
8 7−4.53−4.51−4.48−4.41−4.29−4.05−3.60−3.12−2.83−2.69−2.62−2.57−2.53−2.48
9 8−2.43−2.36−2.29−2.20−2.09−1.98−1.85−1.72−1.59−5.20−4.30−4.30−4.30−4.30
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10 9−4.30−4.30−4.30
11 10−4.44−4.41−4.38−4.31−4.21−4.08−3.90−3.64−3.28−2.90−2.60−2.41−2.25−2.13
12 11−2.01−1.88−1.73−1.59−1.43−1.28−1.12−0.96−0.81−4.98−4.12−4.12−4.12−4.12
13 12−4.12−4.12−4.12
14 13−4.31−4.29−4.32−4.24−4.10−3.92−3.68−3.39−3.06−2.72−2.38−2.07−1.82−1.62
15 14−1.45−1.27−1.08−0.90−0.71−0.52−0.33−0.15−0.05−4.76−3.94−3.94−3.94−3.94
16 15−3.94−3.94−3.94
17 16−4.13−4.14−4.23−4.12−3.94−3.68−3.37−3.04−2.69−2.35−2.03−1.72−1.44−1.20
18 17−0.98−0.76−0.53−0.30−0.08 0 .15 0 .38 0 .60 0.50−4.54−3.76−3.76−3.76−3.76
19 18−3.76−3.76−3.76
20 19−3.96−3.99−4.03−3.92−3.71−3.39−3.03−2.69−2.35−2.04−1.73−1.43−1.13−0.86
21 20−0.60−0.33−0.06 0 .21 0 .47 0 .74 1 .01 1 .24 0.79−4.32−3.57−3.57−3.57−3.57
22 21−3.57−3.57−3.57
23 22−3.31−3.40−3.56−3.52−3.37−3.12−2.82−2.51−2.17−1.82−1.47−1.13−0.80−0.51
24 23−0.24 0 .05 0 .33 0 .61 0 .89 1 .17 1 .46 1 .67 0.95−4.09−3.39−3.39−3.39−3.39
25 24−3.39−3.39−3.39
26 25−2.63−2.79−2.95−2.98−2.93−2.78−2.55−2.28−1.96−1.59−1.21−0.84−0.50−0.20
27 26 0 .08 0 .37 0 .66 0 .96 1 .25 1 .54 1 .83 2 .00 1.07−3.87−3.21−3.21−3.21−3.21
28 27−3.21−3.21−3.21
29 28−1.90−2.06−2.24−2.37−2.39−2.27−2.06−1.81−1.53−1.23−0.91−0.58−0.26 0 .05
30 29 0 .36 0 .67 0 .98 1 .29 1 .60 1 .91 2 .22 2 .31 1.19−3.65−3.03−3.03−3.03−3.03
31 30−3.03−3.03−3.03
32 31−1.27−1.39−1.49−1.61−1.66−1.56−1.39−1.18−0.96−0.72−0.47−0.20 0 .09 0 .38
33 32 0 .68 0 .97 1 .28 1 .58 1 .88 2 .18 2 .47 2 .48 1.30−3.43−2.85−2.85−2.85−2.85
34 33−2.85−2.85−2.85
35 34−0.79−0.79−0.77−0.79−0.80−0.73−0.62−0.47−0.30−0.10 0 .11 0 .33 0 .56 0 .81
36 35 1 .06 1 .32 1 .59 1 .85 2 .12 2 .38 2 .64 2 .59 1.41−3.21−2.67−2.67−2.67−2.67
37 36−2.67−2.67−2.67
38 37−0.40−0.32−0.23−0.16−0.08−0.01 0 .07 0 .19 0 .33 0 .49 0 .67 0 .86 1 .06 1 .29
39 38 1 .52 1 .76 2 .01 2 .25 2 .49 2 .73 2 .96 2 .77 1.52−2.99−2.49−2.49−2.49−2.49
40 39−2.49−2.49−2.49
41 40−0.44−0.26−0.07 0 .18 0 .42 0 .59 0 .74 0 .86 0 .97 1 .10 1 .24 1 .39 1 .56 1 .76
42 41 1 .97 2 .18 2 .40 2 .62 2 .83 3 .05 3 .25 2 .91 1.63−2.76−2.31−2.31−2.31−2.31
43 42−2.31−2.31−2.31
44 43−0.47−0.28−0.08 0 .22 0 .55 0 .89 1 .19 1 .39 1 .54 1 .66 1 .77 1 .90 2 .05 2 .21
45 44 2 .38 2 .58 2 .78 2 .97 3 .17 3 .36 3 .52 3 .04 1.74−2.54−2.13−2.13−2.13−2.13
46 45−2.13−2.13−2.13
47 46−0.47−0.40−0.31 0 .01 0 .43 0 .86 1 .28 1 .62 1 .90 2 .09 2 .24 2 .37 2 .50 2 .63
48 47 2 .78 2 .95 3 .12 3 .31 3 .49 3 .67 3 .80 3 .16 1.85−2.32−1.95−1.95−1.95−1.95
49 48−1.95−1.95−1.95
50 49−0.47−0.47−0.48−0.18 0 .24 0 .68 1 .14 1 .59 2 .00 2 .31 2 .56 2 .74 2 .88 3 .01
51 50 3 .14 3 .28 3 .44 3 .60 3 .78 3 .97 4 .07 3 .27 1.96−2.10−1.77−1.77−1.77−1.77
52 51−1.77−1.77−1.77
53 52−0.47−0.47−0.49−0.26 0 .09 0 .49 0 .93 1 .42 1 .90 2 .33 2 .69 2 .96 3 .16 3 .32
54 53 3 .45 3 .58 3 .72 3 .87 4 .04 4 .24 4 .30 3 .37 2.07−1.88−1.59−1.59−1.59−1.59
55 54−1.59−1.59−1.59
56 55−0.47−0.47−0.47−0.30−0.04 0 .29 0 .70 1 .19 1 .71 2 .22 2 .68 3 .04 3 .32 3 .54
57 56 3 .71 3 .85 3 .98 4 .12 4 .28 4 .44 4 .43 3 .45 2.18−1.66−1.41−1.41−1.41−1.41
58 57−1.41−1.41−1.41
59 58−0.47−0.47−0.47−0.35−0.15 0 .15 0 .53 1 .01 1 .53 2 .07 2 .58 3 .01 3 .37 3 .66
60 59 3 .89 4 .07 4 .21 4 .36 4 .50 4 .58 4 .48 3 .53 2.28−1.43−1.23−1.23−1.23−1.23
61 60−1.23−1.23−1.23
62 61−0.47−0.47−0.47−0.39−0.23 0 .03 0 .38 0 .83 1 .34 1 .89 2 .43 2 .91 3 .33 3 .71
63 62 4 .02 4 .24 4 .41 4 .58 4 .70 4 .71 4 .53 3 .61 2.39−1.21−1.05−1.05−1.05−1.05
64 63−1.05−1.05−1.05
65 64−0.47−0.47−0.47−0.40−0.26−0.04 0 .27 0 .69 1 .18 1 .73 2 .28 2 .79 3 .26 3 .69
66 65 4 .06 4 .34 4 .57 4 .78 4 .93 4 .95 4 .71 3 .71 2.50−0.99−0.86−0.86−0.86−0.86
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67 66−0.86−0.86−0.86
68 67−0.47−0.47−0.47−0.40−0.28−0.10 0 .17 0 .56 1 .04 1 .57 2 .13 2 .66 3 .17 3 .64
69 68 4 .06 4 .41 4 .69 4 .94 5 .12 5 .17 4 .87 3 .81 2.61−0.77−0.68−0.68−0.68−0.68
70 69−0.68−0.68−0.68
71 70−0.47−0.47−0.47−0.41−0.29−0.14 0 .09 0 .46 0 .91 1 .43 1 .99 2 .53 3 .05 3 .56
72 71 4 .02 4 .43 4 .77 5 .06 5 .27 5 .35 5 .00 3 .90 2.72−0.55−0.50−0.50−0.50−0.50
73 72−0.50−0.50−0.50
74 73−0.47−0.47−0.47−0.42−0.32−0.18 0 .03 0 .38 0 .82 1 .33 1 .88 2 .42 2 .95 3 .46
75 74 3 .95 4 .40 4 .79 5 .11 5 .35 5 .44 5 .07 3 .98 2.83−0.32−0.32−0.32−0.32−0.32
76 75−0.32−0.32−0.32
77 76−0.47−0.47−0.47−0.44−0.36−0.23−0.02 0 .32 0 .75 1 .26 1 .80 2 .33 2 .86 3 .38
78 77 3 .88 4 .34 4 .76 5 .10 5 .35 5 .42 5 .09 4 .07 2.93−0.10−0.14−0.14−0.14−0.14
79 78−0.14−0.14−0.14
80 79−0.47−0.47−0.47−0.46−0.40−0.28−0.07 0 .26 0 .68 1 .18 1 .72 2 .24 2 .76 3 .28
81 80 3 .78 4 .26 4 .68 5 .05 5 .30 5 .35 5 .07 4 .14 3 .04 0 .12 0 .04 0 .04 0 .04 0 .04
82 81 0 .04 0 .04 0 .04
83 82−0.47−0.47−0.47−0.47−0.44−0.32−0.12 0 .20 0 .60 1 .10 1 .63 2 .14 2 .65 3 .16
84 83 3 .67 4 .15 4 .58 4 .95 5 .21 5 .23 5 .00 4 .21 3 .15 0 .34 0 .22 0 .22 0 .22 0 .22
85 84 0 .22 0 .22 0 .22
86 85−0.47−0.47−0.47−0.49−0.47−0.36−0.16 0 .14 0 .52 1 .00 1 .52 2 .02 2 .52 3 .04
87 86 3 .54 4 .01 4 .44 4 .82 5 .07 5 .07 4 .88 4 .25 3 .25 0 .56 0 .40 0 .40 0 .40 0 .40
88 87 0 .40 0 .40 0 .40
89 88−0.47−0.47−0.47−0.49−0.48−0.39−0.23 0 .01 0 .35 0 .80 1 .31 1 .82 2 .34 2 .87
90 89 3 .39 3 .87 4 .30 4 .67 4 .92 4 .94 4 .81 4 .30 3 .36 0 .78 0 .58 0 .58 0 .58 0 .58
91 90 0 .58 0 .58 0 .58
92 91−0.47−0.47−0.47−0.49−0.48−0.42−0.30−0.11 0 .17 0 .60 1 .10 1 .61 2 .15 2 .70
93 92 3 .22 3 .71 4 .14 4 .50 4 .76 4 .81 4 .73 4 .34 3 .46 1 .01 0 .76 0 .76 0 .76 0 .76
94 93 0 .76 0 .76 0 .76
95 94−0.47−0.47−0.47−0.48−0.47−0.44−0.36−0.22 0 .01 0 .39 0 .87 1 .39 1 .94 2 .50
96 95 3 .04 3 .54 3 .97 4 .34 4 .59 4 .68 4 .66 4 .37 3 .56 1 .23 0 .94 0 .94 0 .94 0 .94
97 96 0 .94 0 .94 0 .94
98 97−0.47−0.47−0.47−0.48−0.47−0.46−0.41−0.30−0.09 0 .25 0 .68 1 .18 1 .72 2 .29
99 98 2 .85 3 .36 3 .81 4 .19 4 .47 4 .59 4 .59 4 .37 3 .65 1 .45 1 .12 1 .12 1 .12 1 .12
100 99 1 .12 1 .12 1 .12
101 100−0.47−0.47−0.47−0.47−0.47−0.47−0.44−0.35−0.17 0 .12 0 .51 0 .98 1 .50 2 .07
102 101 2 .64 3 .17 3 .65 4 .05 4 .35 4 .49 4 .52 4 .33 3 .72 1 .67 1 .30 1 .30 1 .30 1 .30
103 102 1 .30 1 .30 1 .30
104 103−0.47−0.47−0.47−0.47−0.47−0.49−0.47−0.39−0.23 0 .01 0 .34 0 .78 1 .29 1 .85
105 104 2 .43 2 .98 3 .48 3 .91 4 .23 4 .40 4 .43 4 .27 3 .76 1 .89 1 .48 1 .13 0.57−0.42
106 105−1.40−2.40−3.43
107 106−0.47−0.47−0.47−0.47−0.47−0.48−0.49−0.46−0.40−0.30−0.13 0 .16 0 .56 1 .07
108 107 1 .63 2 .22 2 .76 3 .21 3 .54 3 .75 3 .82 3 .79 3 .63 2 .73 2 .19 1 .68 1 .07 0 .09
109 108−0.88−1.87−2.89
110 109−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.44−0.37−0.22 0 .02 0 .38
111 110 0 .83 1 .36 1 .91 2 .39 2 .77 3 .01 3 .15 3 .18 3 .18 3 .10 2 .77 2 .21 1 .56 0 .61
112 111−0.36−1.34−2.35
113 112−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.48−0.48−0.48−0.46−0.42−0.31−0.14
114 113 0 .13 0 .54 1 .02 1 .53 1 .99 2 .31 2 .54 2 .64 2 .71 2 .83 2 .90 2 .63 2 .03 1 .12
115 114 0.16−0.82−1.81
116 115−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.45−0.41
117 116−0.29−0.06 0 .27 0 .70 1 .17 1 .60 1 .96 2 .19 2 .36 2 .52 2 .70 2 .78 2 .45 1 .62
118 117 0.68−0.30−1.29
119 118−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.46−0.46
120 119−0.42−0.36−0.22 0 .06 0 .43 0 .92 1 .40 1 .77 2 .06 2 .23 2 .36 2 .52 2 .54 2 .05
121 120 1 .19 0.22−0.77
122 121−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47
123 122−0.47−0.45−0.39−0.26−0.03 0 .34 0 .77 1 .23 1 .64 1 .89 2 .05 2 .16 2 .24 2 .21
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124 123 1 .65 0.73−0.26
125 124−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47
126 125−0.47−0.47−0.44−0.40−0.30−0.10 0 .19 0 .59 1 .01 1 .31 1 .53 1 .65 1 .74 1 .89
127 126 1 .83 1 .18 0 .23
128 127−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47−0.47
129 128−0.48−0.48−0.47−0.47−0.43−0.37−0.23 0 .01 0 .30 0 .59 0 .85 1 .01 1 .15 1 .33
130 129 1 .50 1 .42 0 .70
131 130−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48
132 131−0.48−0.48−0.48−0.48−0.48−0.47−0.44−0.35−0.21−0.02 0 .20 0 .39 0 .57 0 .74
133 132 0 .93 1 .16 1 .01
134 133−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48−0.48
135 134−0.48−0.48−0.48−0.48−0.48−0.48−0.47−0.46−0.43−0.35−0.24−0.09 0 .07 0 .22
136 135 0 .41 0 .66 0 .87
137 136−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49
138 137−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.49−0.47−0.43−0.35−0.26−0.15
139 138−0.01 0 .20 0 .43
140 139−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50
141 140−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.50−0.49−0.47−0.43−0.37
142 141−0.28−0.14 0 .03
143 142−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51
144 143−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.51−0.52−0.52−0.52−0.50−0.48
145 144−0.44−0.36−0.26
146 145−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53
147 146−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53−0.53
148 147−0.51−0.49−0.43
149 148−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56
150 149−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56−0.56
151 150−0.56−0.55−0.53
152 151−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61
153 152−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61−0.61
154 153−0.61−0.60−0.60

Modified Gob Python Interface: gobPy.pyx

1 import subproces s
2 import numpy as np
3 from numpy import p i
4 import random
5 import s c ipy . opt imize as opt
6 import v i s c o s i t y as v i s c
7
8 # m − Mass ( in s o l a r masses )
9 # fm − Fract ion o f the mass in the enve lope ( in s o l a r masses )

10 # f l p − Log o f luminos i ty / s o l a r luminos i ty
11 # tp1 − Log o f s u r f a c e temperature in K ( o f f s e t by 2^(−1/4) from T__eff )
12 # alpha − Dimens ion les s mixing l ength parameter
13 # kappaGamma − Opacity in cm^2/g
14 # l e − Log o f ex t e rna l luminos i ty / s o l a r luminos i ty
15
16 de f run (m, fm , f lp , tp1 , alpha , kappaGamma , le , i p r i n t =1) :
17 # i p r i n t = Number o f i n t e g r a t i o n s t ep s per pr in ted l i n e
18 d f l p = 0.15 # Step ( in l og space ) f o r sampling luminos i ty
19 dtp = 0.15 # Step ( in log space ) f o r sampling temperature
20 n f l p = 1 # Number o f l um i n o s i t i e s to con s id e r ( l og sampled )
21 ntp = 1 # Number o f temperatures to con s id e r ( l og sampled )
22 p = subproces s . check_output ( [ ’ . . / gob/gob ’ , s t r (m) , s t r ( fm∗m) , s t r ( f l p ) , s t r ( tp1 ) ,\



APPENDIX C. GOB STELLAR INTEGRATION CODE 260

23 s t r ( d f l p ) , s t r ( dtp ) , s t r ( n f l p ) , s t r ( ntp ) , s t r ( i p r i n t )
\

24 , s t r ( alpha ) , s t r (kappaGamma) , s t r ( l e ) ] )
25 p=p . s p l i t ( ’ \n ’ )
26 data =[ ]
27 counter=−1
28 f o r l i n e in p :
29 i f ’ l og ’ in l i n e :
30 data . append ( [ ] )
31 counter+=1
32 e l i f counter !=−1 and not ’dm ’ in l i n e :
33 temp=[ ]
34 excepted=False
35 f o r i in l i n e . s p l i t ( ) :
36 t ry :
37 temp . append ( f l o a t ( i ) )
38 except :
39 excepted=True
40 i f not excepted and l en ( temp) >14:
41 data [ counter ] . append ( temp)
42 f o r i in range ( l en ( data ) ) :
43 data [ i ]=np . array ( data [ i ] )
44 d=[ ]
45 f o r i in range ( n f l p ) :
46 d . append ( [ ] )
47 f o r j in range ( ntp ) :
48 d [ i ] . append ( data [ ntp∗ i+j ] )
49 re turn d [ 0 ] [ 0 ] [ 1 : ]
50 # We chop o f f the f i r s t datapoint , as i t i s the boundary cond i t i on
51
52 # d now holds the data indexed in the same order that Gob output i t .
53 # These are g iven in that order by :
54 # dmlog = Log (mass ) in s o l a r un i t s
55 # t l o g = Log ( T_surface ) in K. Note that T_eff i s the su r f a c e temperature ( i . e .
56 # photosphere ) , o f f s e t from the e f f e c t i v e temperature by
57 # T_eff=2^(1/4) T_surf .
58 # rh log = Log ( dens i ty ) in c . g . s .
59 # r l o g = Log ( rad iu s ) in s o l a r un i t s
60 # tau log = Log ( o p t i c a l depth )
61 # g r l = log ( t rue g rad i ent )
62 # ga l = log ( ad i aba t i c g rad i en t )
63 # g ra l = log ( r a d i a t i v e g rad i en t )
64 # xh1 = ?
65 # xhe1 = ?
66 # xhe2 = ?
67 # e r r o r = e r r o r
68 # p = log ( p r e s su r e ) in c . g . s .
69 # l = log ( luminos i ty ) in s o l a r un i t s
70 # gradra = r ad i a t i v e g rad i en t
71 # gradad = ad i aba t i c g rad i en t
72 # grad = true g rad i en t
73 # lu = log ( s p e c i f i c energy dens i ty ) in c . g . s .
74 # vad = ad i aba t i c sound speed
75 # vc = convec t ive v e l o c i t y
76 # gamma = e f f i c i e n c y /vc
77 # cp = s p e c i f i c heat capac i ty in c . g . s .
78 # cv = s p e c i f i c heat capac i ty in c . g . s .
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79
80 # Various he lpe r methods and quan t i t i e s , a l l outputs in cgs
81 # Al l q u an t i t i e s i nvo l v i ng v e r t i c a l shear assume a s c a l e he ight f o r the shear
82 # r , m when used as inputs are in s o l a r un i t s
83
84 mSun = 1.9891 e33 # g
85 rSun = 6.955 e10 # cm
86 c=2.99792458 e10 # cm/ s
87 kB = 1.38 e−16 # erg /K
88 newtonG = 6.67259 e−8 # cm^3/g/ s^2
89 lSun = 3.846 e33 # erg / s
90 fSun = lSun /(4∗np . p i ∗ rSun ∗∗2)
91
92 de f r (d) :
93 re turn rSun ∗(10∗∗d [ : , 3 ] )
94
95 de f sigma (d) :
96 re turn mSun∗10∗∗d [ : , 0 ] / ( 4 ∗ np . p i ∗( r (d) ) ∗∗2)
97
98 de f p(d) :
99 re turn 10∗∗d [ : , 1 2 ]
100
101 de f radGrad (d) :
102 re turn d [ : , 1 4 ]
103
104 de f adGrad (d) :
105 re turn d [ : , 1 5 ]
106
107 de f cp (d) :
108 re turn d [ : , 2 1 ]
109
110 de f cv (d) :
111 re turn d [ : , 2 2 ]
112
113 de f adiabat icExp (d) :
114 re turn cp (d) /cv (d)
115
116 de f mAbove(d) :
117 re turn mSun∗(10∗∗d [ : , 0 ] )
118
119 de f mBelow(d ,m) : # m i s in s o l a r un i t s
120 re turn mSun∗(m−10∗∗d [ : , 0 ] )
121
122 de f g (d ,m) : # m i s in s o l a r un i t s
123 re turn newtonG∗mBelow(d ,m) / r (d) ∗∗2
124
125 de f vs (d) :
126 re turn d [ : , 1 8 ]
127
128 de f vc (d) :
129 re turn d [ : , 1 9 ]
130
131 de f rho (d) :
132 re turn 10∗∗d [ : , 2 ]
133
134 de f t (d) :
135 re turn 10∗∗d [ : , 1 ]
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136
137 de f hs (d ,m) : # m i s in s o l a r un i t s
138 re turn p(d) /( g (d ,m) ∗ rho (d) )
139
140 de f mu(d) :
141 re turn rho (d) ∗kB∗ t (d) /p(d)
142
143 de f muGrad(d) :
144 re turn np . g rad i ent (np . log10 (mu(d) ) ) /np . g rad i en t (d [ : , 1 ] )
145
146 de f i sConvec t ive (d) :
147 re turn 1 . 0∗ ( d [ : ,14] >=d [ : , 1 5 ] )
148
149 de f gamma(d) :
150 re turn d [ : , 2 0 ] ∗ d [ : , 1 9 ]
151
152 de f lum(d) :
153 re turn lSun ∗10∗∗(d [ : , 1 3 ] )
154
155 de f f l u x (d) :
156 re turn lum(d) /(4∗np . p i ∗ r (d) ∗∗2)
157
158 de f thermalK (d ,m) :
159 re turn lum(d) ∗np . g rad i en t (p(d) ) /( rho (d) ∗g (d ,m) ∗4∗np . p i ∗ r (d) ∗∗2∗np . g rad i en t ( t (d) ) )
160
161 de f m ic roV i s co s i ty (d) :
162 re turn v i s c . o v e r a l l ( t (d) ,p (d) , rho (d) )
163
164 de f r adV i s co s i t y (d ,m) :
165 re turn 3∗ f l u x (d) /(4∗ g (d ,m) ∗( c ∗∗2) ∗radGrad (d) )
166
167 de f r i chardsonVi s c (d ,m, alpha ,muG, v i s c , viscR , v ) : # Returns the v e r t i c a l v i s c o s i t y

from the Richardson c i r t e r i o n
168 # Note : t h i s i s only va l i d in

r a d i a t i v e zones .
169 richardDenom = g (d ,m) ∗hs (d ,m) ∗ ( ( radGrad (d)−adGrad (d) ) /( alpha+v i s c )+(1/ v i s c ) ∗muG)
170 i f v∗∗2/ richardDenom<viscR :
171 re turn viscR
172 return v∗∗2/ richardDenom
173
174 de f zonalWind (d , omega ,m, eps ) :
175 a = ( vc (d) /hs (d ,m) ) ∗( r (d) /( omega∗( vc (d) ∗∗3/(2∗ hs (d ,m) )+eps ) ) ) ∗∗ ( 1 . /3 )
176 b = a∗hs (d ,m) ∗( omega/ r (d) ) ∗∗ ( 0 . 5 )
177 ar r = np . array ( [ a , np . z e r o s ( a . shape ) ,−np . ones ( a . shape ) ,b ] )
178 q = map(np . roots , np . t ranspose ( a r r ) )
179 r e t = [ ]
180 f o r k in q :
181 i f max(np . imag (k ) )<1e−10:
182 r e t . append (np .max(k ) )
183 e l s e :
184 counter=0
185 f o r kk in k :
186 i f np . imag ( kk )<1e−10 and counter==0:
187 r e t . append ( kk )
188 counter+=1
189 return np . array ( r e t )
190



APPENDIX C. GOB STELLAR INTEGRATION CODE 263

191 de f c o r i o l i sRad i u s (d ,m, omega , theta , v ) :
192 c = omega∗∗2∗np . abs (np . s i n ( theta ) ) ∗ r (d)
193 gg = g (d ,m)
194 return v∗np . abs (np . s i n ( theta ) ) ∗np . sq r t ( gg∗∗2+2∗gg∗c+2∗c∗gg∗np . s i n ( theta ) ) /(2∗ gg∗

omega∗np . abs (np . cos ( theta ) ) )
195
196 de f windDi f fus ionFlux (d ,m, tK , omega , theta , tg , v ) :
197 r = c o r i o l i sRad i u s (d ,m, omega , theta , v )
198 re turn hs (d ,m) ∗ t (d) ∗ tg ∗np .minimum(2∗ cp (d) ∗v∗ r , tK) /(3∗ r )
199
200 de f rad ia t iveWindDi f fu s i on (dd ,m, omega , theta , tg , r e c=1e3 ) :
201 # Returns the thermal f l u x along i s oba r s
202 # due to wind . theta i s the ang le from the po le . tg i s
203 # the t yp i c a l va lue o f | \ nabla_p ln T | .
204 v i s c = mic roV i s co s i ty (dd) + radV i s co s i t y (dd ,m) # assume non−turbu l ent
205 tK = thermalK (dd ,m)
206 alpha = tK/( rho (dd) ∗cp (dd) )
207 muG = muGrad(dd)
208 # so l v e f o r v at each po int
209 vv = np . z e r o s ( l en (dd) )
210 f o r i , de in enumerate (dd) :
211 d = np . array ( [ de ] )
212 # Fir s t , assume turbu l ent and k>2cp∗v∗ r / rho
213 h = lambda v : rho (d) ∗ r i chardsonVi s c (d ,m, alpha [ i ] ,muG[ i ] , abs ( v ) \
214 ∗ c o r i o l i sRad i u s (d ,m, omega , theta , abs ( v ) ) , v i s c [ i ] , abs ( v ) ) ∗abs (v )

∗(1/ hs (d ,m) ) ∗∗2\
215 −hs (d ,m) ∗ t (d) ∗ tg ∗∗2∗2∗ cp (d) /(3∗ rho (d) )
216 try :
217 vv [ i ] = opt . brentq (h , 1 e−5,1e30 , maxiter=300)
218 except :
219 vv [ i ] = f l o a t ( ’NaN ’ )
220 i f tK [ i ]<2∗cp (d) ∗vv [ i ]∗ c o r i o l i sRad i u s (d ,m, omega , theta , vv [ i ] ) / rho (d) :
221 h = lambda v : rho (d) ∗ r i chardsonVi s c (d ,m, alpha [ i ] ,muG[ i ] , abs ( v ) \
222 ∗ c o r i o l i sRad i u s (d ,m, omega , theta , abs (v ) ) , v i s c [ i ] , v ) ∗( v/hs (

d ,m) ) ∗∗2\
223 −tK [ i ]∗ hs (d ,m) ∗ t (d) ∗ tg ∗∗2/(3∗ c o r i o l i sRad i u s (d ,m, omega ,

theta , abs (v ) ) )
224 try :
225 vv [ i ] = opt . brentq (h , 1 e−5,1e30 , maxiter=300)
226 except :
227 vv [ i ] = f l o a t ( ’NaN ’ )
228 i f vv [ i ]∗ c o r i o l i sRad i u s (d ,m, omega , theta , vv [ i ] ) / v i s c [ i ] < rec :
229 h = lambda v : rho (d) ∗ r i chardsonVi s c (d ,m, alpha [ i ] ,muG[ i ] , v i s c [ i ] ,

v i s c [ i ] , v ) ∗v∗(1/ hs (d ,m) ) ∗∗2\
230 −hs (d ,m) ∗ t (d) ∗ tg ∗∗2∗2∗ cp (d) /(3∗ rho (d) )
231 try :
232 vv [ i ] = opt . brentq (h , 1 e−5,1e30 , maxiter=300)
233 except :
234 vv [ i ] = f l o a t ( ’NaN ’ )
235 i f tK [ i ]<2∗cp (d) ∗vv [ i ]∗ c o r i o l i sRad i u s (d ,m, omega , theta , vv [ i ] ) / rho (

d) :
236 h = lambda v : rho (d) ∗ r i chardsonVi s c (d ,m, alpha [ i ] ,muG[ i ] ,

v i s c [ i ] , v i s c [ i ] , v ) ∗( v/hs (d ,m) ) ∗∗2\
237 −tK [ i ]∗ hs (d ,m) ∗ t (d) ∗ tg ∗∗2/(3∗ c o r i o l i sRad i u s (d ,m,

omega , theta , abs (v ) ) )
238 try :
239 vv [ i ] = opt . brentq (h , 1 e−5,1e30 , maxiter=300)
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240 except :
241 vv [ i ] = f l o a t ( ’NaN ’ )
242 vv = np . abs ( vv )
243 re turn windDi f fus ionFlux (dd ,m, tK , omega , theta , tg , vv )
244
245 # Assumes edd i e s are c l o s e enough to i s o t r o p i c
246 de f c onve c t i v eV i s c o s i t y (d ,m, aleph =1.5) :
247 re turn aleph ∗vc (d) ∗hs (d ,m)
248
249 de f o v e r a l lV i s c o s i t y (d ,m, aleph =1.5) :
250 re turn np .maximum( mic roV i s co s i ty (d) , c onv e c t i v eV i s c o s i t y (d ,m, aleph=aleph ) ) \
251 +radV i s co s i t y (d ,m)
252
253 de f microReynolds (d ,m, v , a leph =1.5 ,x=0, v e r t i c a l=True ) : # m i s in s o l a r un i t s
254 i f v e r t i c a l :
255 re turn v∗ aleph ∗hs (d ,m) /mic roV i s co s i ty (d)
256 e l s e :
257 re turn v∗x/mic roV i s co s i ty (d)
258
259 de f convect iveReynolds (d ,m, v , a leph =1.5 ,x=0, v e r t i c a l=True ) : # m i s in s o l a r un i t s
260 i f v e r t i c a l :
261 re turn v∗ aleph ∗hs (d ,m) / conve c t i v eV i s c o s i t y (d ,m, aleph=aleph )
262 e l s e :
263 re turn (v∗x ) /( vc (d) ∗ aleph ∗hs (d ,m) )
264
265 de f ove ra l lReyno lds (d ,m, v , a leph =1.5 ,x=0, v e r t i c a l=True ) : # m i s in s o l a r un i t s
266 i f v e r t i c a l :
267 re turn aleph ∗hs (d ,m) ∗v/ o v e r a l lV i s c o s i t y (d ,m, aleph=aleph )
268 e l s e :
269 re turn x∗v/ o v e r a l lV i s c o s i t y (d ,m)
270
271 de f bruntva i sa l a squared (d ,m) :
272 re turn ( g (d ,m) ∗∗2) ∗np . g rad i en t ( rho (d) ) /np . g rad i en t (p(d) )
273
274 de f bandSpeed (d , theta , tg , omega ) :
275 re turn (kB/mu(d) ) ∗ tg /(2∗omega∗ r (d) ∗np . cos ( theta ) )
276
277 de f r i chardson (d ,m, v ) :
278 re turn bruntva i sa l a squared (d ,m) ∗( hs (d ,m) ∗∗2) /(v∗∗2)
279
280 de f alpha (d ,m) :
281 re turn thermalK (d ,m) ∗mu(d) /( adiabat icExp (d) ∗kB∗ rho (d) )
282
283 de f p e c l e t (d ,m, v , z=0, v e r t i c a l=True ) :
284 i f v e r t i c a l :
285 re turn v∗hs (d ,m) / alpha (d ,m)
286 e l s e :
287 re turn v∗z/ alpha (d ,m)
288
289 de f r i cha rd sonCr i t (d ,m, v ) :
290 re turn np .maximum(1 ,1/ p e c l e t (d ,m, v , v e r t i c a l=True ) )
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Appendix D

Anisotropy Code

The code used to compute and plot various quantities relating to the anisotropy in surface flux of pulsar
companions may be found below. The equations this code solves are described in Chapter 11. Note
that this code requires Python, NumPy, and SciPy, and was tested with versions 2.7, 1.9.0, and 0.14.0
respectively.

Anisotropy Calculator

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3
4 de f l r (m, eps=1e−4) : # Implements L ,R main sequence r e l a t i o n s
5 s = m. shape
6 m = np . reshape (m,(−1 ,) )
7 l = np . z e ro s (m. shape )
8 l [ (m>=2) & (m<20+eps ) ] = 2∗∗(4−3.6)∗m[ (m>=2) & (m<20+eps ) ]∗∗3 . 6
9 l [ (m>=0.43) & (m<2) ] = m[ (m>=0.43) & (m<2) ]∗∗4

10 l [ (m>=0.08−eps ) & (m<0.43) ] = ( 0 . 4 3 ) ∗∗(4−2.3)∗m[ (m>=0.08−eps ) & (m<0.43) ]∗∗2 . 3
11 r = np . z e r o s (m. shape )
12 r [ (m>=2) & (m<20+eps ) ] = 2∗∗(0 .72−0.57) ∗m[ (m>=2) & (m<20+eps ) ]∗∗0 . 5 7
13 r [ (m>=0.43) & (m<2) ] = m[ (m>=0.43) & (m<2) ]∗∗0 . 7 2
14 r [ (m>=0.08−eps ) & (m<0.43) ] = m[ (m>=0.08−eps ) & (m<0.43) ]∗∗0 . 7 2
15 l = np . reshape ( l , s )
16 r = np . reshape ( r , s )
17 m = np . reshape (m, s )
18 re turn l , r
19
20 de f ut (m, p , lp , df , fe , f i ) : # Compute T and dT/T
21 fn = ( f e+f i ∗(2−df ) ) /2
22 fd = ( f e+f i ∗(2+df ) ) /2
23 t = 0 . 6∗ ( fd ∗∗ ( 1 . /4 )+fn ∗∗ ( 1 . /4 ) ) /2
24 u = 2∗( fd ∗∗ ( 1 . /4 )−fn ∗∗ ( 1 . /4 ) ) /( fd ∗∗ ( 1 . /4 )+fn ∗∗ ( 1 . /4 ) )
25 re turn u , t
26
27 de f wind (m, p , lp , df ) : # Se l f−c o n s i s t e n t l y compute wind f l u x / f i
28 l i , r r = l r (m)
29 f i = l i / r r ∗∗2
30 f e = lp /(((2+m) ∗p∗∗2) ∗∗ ( 2 . /3 ) ) /2
31 f o r i in range (5 ) : # Se l f−con s i s t ency loop
32 u , t = ut (m, p , lp , df , fe , f i )
33 ro = 0.012∗ t ∗∗0 .5∗p/ r r
34 rov = ro ∗u∗∗2/(16∗np . p i )

266
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35
36 a = 0
37 b = 3∗np . tanh ( rov ) ∗∗2
38 q = 5−3∗np . tanh ( rov ) ∗∗2
39 y = 1+9∗np . tanh ( rov ) ∗∗2
40
41 w = 5∗y∗ t ∗∗ ( 3 . /2 ) ∗u∗∗q∗ ro ∗∗b∗(2∗ t ∗ r r /m) ∗∗a /( f i ∗ r r )
42
43 rho = 2∗10∗∗4∗m∗10∗∗3/ r r ∗∗2/(10∗∗13∗ t )
44 y = ((4∗10∗∗10∗10∗∗(−2)∗ rho/ t ∗∗ (7) ) ∗(m/ r r ∗∗2) ) ∗∗ ( 1 . /3 )
45 s = m. shape
46 m = np . reshape (m,(−1 ,) )
47 p = np . reshape (p ,(−1 ,) )
48 t = np . reshape ( t ,(−1 ,) )
49 y = np . reshape (y ,(−1 ,) )
50 u = np . reshape (y ,(−1 ,) )
51 f e = np . reshape ( fe , (−1 ,) )
52 f i = np . reshape ( f i , (−1 ,) )
53 r r = np . reshape ( rr , (−1 ,) )
54 ro = np . reshape ( ro ,(−1 ,) )
55 w = np . reshape (w,(−1 ,) )
56 a = 1./3
57 q = 3
58 b = 0
59 w[1 >25∗(( f e+f i ) /2) ∗∗ ( 3 . /4 ) ∗u∗∗2∗p ] = (5∗y∗ t ∗∗ ( 3 . /2 ) ∗u∗∗q∗ ro ∗∗b∗(2∗ t ∗ r r /m)

∗∗a /( f i ∗ r r ) ) [1 >25∗(( f e+f i ) /2) ∗∗ ( 3 . /4 ) ∗u∗∗2∗p ]
60 t = np . reshape (m, s )
61 p = np . reshape (p , s )
62 y = np . reshape (y , s )
63 u = np . reshape (u , s )
64 f e = np . reshape ( fe , s )
65 f i = np . reshape ( f i , s )
66 r r = np . reshape ( rr , s )
67 ro = np . reshape ( ro , s )
68 w = np . reshape (w, s )
69 m = np . reshape (m, s )
70
71 # Calcu la te bo t t l ed area f r a c t i o n
72 ar = (1 . / 2 ) ∗(1+w/2)
73 ar [ ar >1]=1
74 ar [ np . i snan ( ar ) ]=1./2 # In case a prev ious i t e r a t i o n messed up
75
76 # Calcu la te r e v i s e d f e
77 l r a t = lp /(((2+m) ∗p∗∗2) ∗∗ ( 2 . /3 ) ) /2/ f i
78 m = np . reshape (m,(−1 ,) )
79 ar = np . reshape ( ar ,(−1 ,) )
80 l r a t = np . reshape ( l r a t ,(−1 ,) )
81 w = np . reshape (w,(−1 ,) )
82 l r a t [ (m<2) & ( l r a t <2) ] = 0
83 l r a t [ (m<2) & ( l r a t >2) ] −= 4∗( ar [ ( l r a t >2) & (m<2) ] )
84 m = np . reshape (m, s )
85 w = np . reshape (w, s )
86 ar = np . reshape ( ar , s )
87 l r a t = np . reshape ( l r a t , s )
88 df ∗= l r a t ∗ f i / f e
89 f e = l r a t ∗ f i
90 re turn w, ar , l r a t , df , rov
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91
92 l p r = [ 1 , 1 0 , 2 5 , 5 0 ]
93 f i g s = [ ]
94 imm = [ ]
95 s t r s = [ ’ $\ log ␣F_{day}/F_{ night }$ ’ , ’ $\ l og ␣F_{day }/(F_e+F_i ) $ ’ , ’ $\ l og ␣F_{night }/F_i$ ’ , ’ $\

l og ␣\Delta ␣F/F$ ’ , ’ $\ l og ␣W/(F_i+F_e) $ ’ ]
96 numFigs = 5
97 f o r i in range ( numFigs ) :
98 f i g s . append ( p l t . f i g u r e ( ) )
99 imm. append ( [ ] )
100 f o r q in range (4 ) :
101 lp = lp r [ q ]
102 mr = 10∗∗np . l i n s p a c e (np . log10 ( 0 . 0 8 ) , np . log10 (20) ,num=200 , endpoint=True )
103 pr = 10∗∗np . l i n s p a c e (−0.5 ,3 ,num=200 , endpoint=True )
104 d f r = np . concatenate ( [ [ 0 ] , 1 0 ∗ ∗ np . l i n s p a c e (−10 ,−2 ,num=150 , endpoint=True ) \
105 ,10∗∗np . l i n s p a c e (−2 ,0 ,num=400 , endpoint=

True ) ] )
106 m, pp , df = np . meshgrid (mr , pr , dfr , index ing=’ i j ’ )
107 l i , r r = l r (m)
108 f i = l i / r r ∗∗2
109 f e = lp /(((2+m) ∗pp∗∗2) ∗∗ ( 2 . /3 ) ) /2
110 df ∗= f e / f i
111
112 w, ar , l ra , df , rov = wind (m, pp , lp , df )
113 # These l o c a t i o n s get NaN ’d because we zero−out f e in the
114 # convec t ive f u l l −bo t t l i n g zone , and then update df a c co rd ing ly .
115 # Everywhere that t h i s occurs , df should proper ly be zero .
116 df [ np . i snan ( df ) ] = 0
117 r e s = ( df − l r a + w)
118 fN = np . z e r o s ( ( l en (mr) , l en ( pr ) ) )
119 fD = np . z e r o s ( ( l en (mr) , l en ( pr ) ) )
120 l r a a = np . z e r o s ( ( l en (mr) , l en ( pr ) ) )
121 l r r = l r (mr)
122 f o r i in range ( l en (mr) ) :
123 f o r j in range ( l en ( pr ) ) :
124 l r a a [ i , j ] = l r a [ i , j , np . argmin ( r e s [ i , j ]∗∗2 ) ]
125 fN [ i , j ] = f i [ i , j , 0 ] ∗ ( l r a a [ i , j ]+2−df [ i , j , np . argmin ( r e s [ i , j ]∗∗2 ) ] )

/2
126 fD [ i , j ] = f i [ i , j , 0 ] ∗ ( l r a a [ i , j ]+2+df [ i , j , np . argmin ( r e s [ i , j ]∗∗2 ) ] )

/2
127 w[ i , j , 0 ] = w[ i , j , np . argmin ( r e s [ i , j ]∗∗2 ) ]
128 i f l r r [ 1 ] [ i ] >0.49∗ ( (mr [ i ]+2) ∗∗0 .5∗ pr [ j ] ∗ (mr [ i ] / 2 ) ) ∗∗ ( 2 . /3 ) / ( 0 . 6∗ (

mr [ i ] / 2 ) ∗∗ ( 2 . /3 )+np . l og (1+(mr [ i ] / 2 ) ∗∗ ( 1 . /3 ) ) ) :
129 fN [ i , j ] = 0
130 fD [ i , j ] = 0
131 w[ i , j , 0 ] = 0
132 w = w[ : , : , 0 ]
133 fN = np . t ranspose ( fN )
134 fD = np . t ranspose ( fD )
135 ax = f i g s [ 4 ] . add_subplot (2 , 2 , q+1)
136 ax . p l o t (mr , 1 0∗∗4∗ ( 0 . 4 9∗ ( (mr+2) ∗∗0 .5∗ (mr/2) ) ∗∗ ( 2 . /3 ) / ( 0 . 6∗ (mr/2) ∗∗ ( 2 . /3 )+np . l og

(1+(mr/2) ∗∗ ( 1 . /3 ) ) ) / l r r [ 1 ] ) ∗∗(−3./2) , c=’k ’ , l i n ew id th=2)
137 im = ax . imshow (np . log10 (np . t ranspose ( (w∗ f i [ : , : , 0 ] ) /( f i [ : , : , 0 ] + ( lp /(((2+m) ∗pp∗∗2)

∗∗ ( 2 . /3 ) ) /2) [ : , : , 0 ] ) ) ) , o r i g i n=’ lower ’ , extent =[0 .08 ,20 ,3∗10∗∗3 ,10∗∗7 ] , a spect
=0.65)

138 ax . set_xlim ( [ 0 . 0 8 , 2 0 ] )
139 ax . set_ylim ( [ 3∗10∗∗3 , 10∗∗7 ] )
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140 imm [ 4 ] . append ( im)
141 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( l p r [ q ] )+’ $ ’ )
142 ax . s e t_xsca l e ( ’ l og ’ )
143 ax . s e t_ysca l e ( ’ l og ’ )
144 i f q==2 or q==3:
145 ax . s e t_x labe l ( ’M␣ ($M_\odot$ ) ’ )
146 i f q==0 or q==2:
147 ax . s e t_y labe l ( ’P␣ ( s ) ’ )
148 ax = f i g s [ 3 ] . add_subplot (2 , 2 , q+1)
149 ax . p l o t (mr , 1 0∗∗4∗ ( 0 . 4 9∗ ( (mr+2) ∗∗0 .5∗ (mr/2) ) ∗∗ ( 2 . /3 ) / ( 0 . 6∗ (mr/2) ∗∗ ( 2 . /3 )+np . l og

(1+(mr/2) ∗∗ ( 1 . /3 ) ) ) / l r r [ 1 ] ) ∗∗(−3./2) , c=’k ’ , l i n ew id th=2)
150 im = ax . imshow (np . log10 (2∗ ( fD−fN ) /( fD+fN ) ) , o r i g i n=’ lower ’ , extent

=[0 .08 ,20 ,3∗10∗∗3 ,10∗∗7 ] , a spect =0.65)
151 ax . set_xlim ( [ 0 . 0 8 , 2 0 ] )
152 ax . set_ylim ( [ 3∗10∗∗3 , 10∗∗7 ] )
153 imm [ 3 ] . append ( im)
154 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( l p r [ q ] )+’ $ ’ )
155 ax . s e t_xsca l e ( ’ l og ’ )
156 ax . s e t_ysca l e ( ’ l og ’ )
157 i f q==2 or q==3:
158 ax . s e t_x labe l ( ’M␣ ($M_\odot$ ) ’ )
159 i f q==0 or q==2:
160 ax . s e t_y labe l ( ’P␣ ( s ) ’ )
161 ax = f i g s [ 2 ] . add_subplot (2 , 2 , q+1)
162 ax . p l o t (mr , 1 0∗∗4∗ ( 0 . 4 9∗ ( (mr+2) ∗∗0 .5∗ (mr/2) ) ∗∗ ( 2 . /3 ) / ( 0 . 6∗ (mr/2) ∗∗ ( 2 . /3 )+np . l og

(1+(mr/2) ∗∗ ( 1 . /3 ) ) ) / l r r [ 1 ] ) ∗∗(−3./2) , c=’k ’ , l i n ew id th=2)
163 im = ax . imshow (np . log10 ( fN/np . t ranspose ( f i [ : , : , 0 ] ) ) , o r i g i n=’ lower ’ , extent

=[0 .08 ,20 ,3∗10∗∗3 ,10∗∗7 ] , a spect =0.65)
164 ax . set_xlim ( [ 0 . 0 8 , 2 0 ] )
165 ax . set_ylim ( [ 3∗10∗∗3 , 10∗∗7 ] )
166 imm [ 2 ] . append ( im)
167 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( l p r [ q ] )+’ $ ’ )
168 ax . s e t_xsca l e ( ’ l og ’ )
169 ax . s e t_ysca l e ( ’ l og ’ )
170 i f q==2 or q==3:
171 ax . s e t_x labe l ( ’M␣ ($M_\odot$ ) ’ )
172 i f q==0 or q==2:
173 ax . s e t_y labe l ( ’P␣ ( s ) ’ )
174 ax = f i g s [ 1 ] . add_subplot (2 , 2 , q+1)
175 ax . p l o t (mr , 1 0∗∗4∗ ( 0 . 4 9∗ ( (mr+2) ∗∗0 .5∗ (mr/2) ) ∗∗ ( 2 . /3 ) / ( 0 . 6∗ (mr/2) ∗∗ ( 2 . /3 )+np . l og

(1+(mr/2) ∗∗ ( 1 . /3 ) ) ) / l r r [ 1 ] ) ∗∗(−3./2) , c=’k ’ , l i n ew id th=2)
176 im = ax . imshow (np . log10 ( fD/np . t ranspose ( f i [ : , : , 0 ] + ( lp /(((2+m) ∗pp∗∗2) ∗∗ ( 2 . /3 ) ) /2)

[ : , : , 0 ] ) ) , o r i g i n=’ lower ’ , extent =[0 .08 ,20 ,3∗10∗∗3 ,10∗∗7 ] , a spect =0.65)
177 ax . set_xlim ( [ 0 . 0 8 , 2 0 ] )
178 ax . set_ylim ( [ 3∗10∗∗3 , 10∗∗7 ] )
179 imm [ 1 ] . append ( im)
180 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( l p r [ q ] )+’ $ ’ )
181 ax . s e t_xsca l e ( ’ l og ’ )
182 ax . s e t_ysca l e ( ’ l og ’ )
183 i f q==2 or q==3:
184 ax . s e t_x labe l ( ’M␣ ($M_\odot$ ) ’ )
185 i f q==0 or q==2:
186 ax . s e t_y labe l ( ’P␣ ( s ) ’ )
187 ax = f i g s [ 0 ] . add_subplot (2 , 2 , q+1)
188 ax . p l o t (mr , 1 0∗∗4∗ ( 0 . 4 9∗ ( (mr+2) ∗∗0 .5∗ (mr/2) ) ∗∗ ( 2 . /3 ) / ( 0 . 6∗ (mr/2) ∗∗ ( 2 . /3 )+np . l og

(1+(mr/2) ∗∗ ( 1 . /3 ) ) ) / l r r [ 1 ] ) ∗∗(−3./2) , c=’k ’ , l i n ew id th=2)
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189 im = ax . imshow (np . log10 ( fD/fN ) , o r i g i n=’ lower ’ , extent =[0 .08 ,20 ,3∗10∗∗3 ,10∗∗7 ] ,
a spect =0.65)

190 ax . set_xlim ( [ 0 . 0 8 , 2 0 ] )
191 ax . set_ylim ( [ 3∗10∗∗3 , 10∗∗7 ] )
192 imm [ 0 ] . append ( im)
193 ax . s e t_ t i t l e ( ’$L_p=’+s t r ( l p r [ q ] )+’ $ ’ )
194 ax . s e t_xsca l e ( ’ l og ’ )
195 ax . s e t_ysca l e ( ’ l og ’ )
196 i f q==2 or q==3:
197 ax . s e t_x labe l ( ’M␣ ($M_\odot$ ) ’ )
198 i f q==0 or q==2:
199 ax . s e t_y labe l ( ’P␣ ( s ) ’ )
200
201 f o r j in range ( numFigs ) :
202 minn = 1e10
203 maxx = −1e10
204 f o r i in range (4 ) :
205 ran = imm[ j ] [ i ] . get_clim ( )
206 i f ran [0] <minn :
207 minn=ran [ 0 ]
208 i f ran [1] >maxx :
209 maxx=ran [ 1 ]
210 f o r i in range (4 ) :
211 i f j !=4:
212 imm[ j ] [ i ] . set_cl im (minn ,maxx)
213 e l s e :
214 imm[ j ] [ i ] . set_cl im (minn , 0 )
215
216 cax = f i g s [ j ] . add_axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 3 , 0 . 8 ] )
217 cbar = f i g s [ j ] . c o l o rba r (imm[ j ] [ 0 ] , cax=cax )
218 cbar . s e t_ labe l ( s t r s [ j ] )
219 f i g s [ j ] . subplots_adjust ( r i g h t =0.8)
220 f i g s [ j ] . s a v e f i g ( ’ . . / Thes i s / an i so t ropy ’+s t r ( j +1)+’ . pdf ’ , dpi=200)
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Reference Stellar Models

All quantities other than R and M are given in c.g.s.k., with the former two given in solar units. M+
represents the mass above the current integration point, while M− is the mass below. The quantities vs,
GradR, GradA, and Grad are vs, ∇rad, ∇ad, and ∇ respectively. The quantity M represents the total
mass above the current integration point. If R is similar to the stellar radius this is related to the column
density by Σ = M

4πR2 . The code used to produce these tables is in Appendix B.2.

The Sun: M = M�,Lin = L�,Tsurface = 103.76K,Le = 0

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-1.999 20.785 33.301 -8.817 2.443 3.687 6.820 5.675 nan
-1.828 20.956 33.301 -8.643 2.613 3.687 6.816 5.672 nan
-1.657 21.127 33.301 -8.469 2.784 3.687 6.813 5.671 nan
-1.485 21.299 33.301 -8.295 2.955 3.687 6.811 5.669 nan
-1.313 21.471 33.301 -8.122 3.127 3.687 6.809 5.668 nan
-1.141 21.644 33.301 -7.948 3.300 3.687 6.808 5.667 nan
-0.968 21.816 33.301 -7.774 3.472 3.687 6.807 5.667 nan
-0.795 21.990 33.301 -7.601 3.645 3.688 6.806 5.666 nan
-0.621 22.164 33.301 -7.427 3.819 3.689 6.806 5.666 nan
-0.446 22.339 33.301 -7.253 3.994 3.690 6.808 5.667 nan
-0.268 22.516 33.301 -7.079 4.172 3.695 6.811 5.669 nan
-0.086 22.699 33.301 -6.906 4.354 3.703 6.820 5.673 nan
0.107 22.892 33.301 -6.732 4.547 3.722 6.840 5.683 nan
0.329 23.113 33.301 -6.558 4.769 3.764 6.887 5.709 3.923
0.782 23.567 33.301 -6.457 5.223 3.919 7.240 5.950 5.336
1.149 23.933 33.301 -6.286 5.589 4.036 7.435 5.979 5.270
1.396 24.180 33.301 -6.113 5.836 4.086 7.509 6.013 5.198
1.627 24.411 33.301 -5.939 6.067 4.122 7.566 6.042 5.136
1.850 24.635 33.301 -5.765 6.291 4.155 7.616 6.068 5.082
2.071 24.855 33.301 -5.591 6.511 4.185 7.663 6.093 5.036
2.290 25.074 33.301 -5.418 6.730 4.215 7.708 6.118 4.975
2.509 25.293 33.301 -5.244 6.949 4.245 7.753 6.143 4.928
2.729 25.513 33.301 -5.070 7.168 4.276 7.799 6.168 4.874
2.950 25.734 33.301 -4.896 7.390 4.309 7.846 6.195 4.833
3.174 25.958 33.301 -4.723 7.613 4.344 7.896 6.223 4.777
3.400 26.184 33.301 -4.549 7.840 4.383 7.949 6.253 4.733

271
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
3.630 26.414 33.301 -4.375 8.070 4.424 8.006 6.285 4.691
3.864 26.648 33.301 -4.202 8.304 4.470 8.066 6.319 4.639
4.102 26.886 33.301 -4.028 8.542 4.521 8.130 6.355 4.591
4.345 27.129 33.301 -3.854 8.784 4.576 8.199 6.395 4.547
4.594 27.379 33.301 -3.680 9.034 4.640 8.275 6.440 4.508
4.854 27.638 33.301 -3.507 9.294 4.715 8.361 6.492 4.467
5.124 27.909 33.301 -3.333 9.564 4.804 8.458 6.548 4.431
5.401 28.185 33.301 -3.159 9.841 4.900 8.560 6.600 4.370
5.674 28.458 33.301 -2.986 10.114 4.994 8.660 6.646 4.307
5.945 28.729 33.301 -2.812 10.385 5.086 8.757 6.696 4.250
6.221 29.005 33.301 -2.638 10.661 5.183 8.859 6.753 4.202
6.503 29.288 33.301 -2.464 10.943 5.288 8.968 6.811 4.151
6.790 29.574 33.301 -2.291 11.230 5.399 9.081 6.870 4.096
7.079 29.863 33.301 -2.117 11.518 5.513 9.196 6.928 4.040
7.368 30.152 33.300 -1.943 11.808 5.628 9.312 6.987 3.988
7.658 30.442 33.300 -1.770 12.098 5.744 9.428 7.045 3.923
7.947 30.732 33.300 -1.596 12.388 5.859 9.544 7.103 3.866
8.237 31.021 33.298 -1.422 12.677 5.975 9.660 7.161 3.799
8.527 31.311 33.296 -1.248 12.967 6.090 9.775 7.219 3.725
8.817 31.601 33.292 -1.075 13.257 6.206 9.892 7.277 3.621
9.106 31.891 33.284 -0.901 13.546 6.321 10.008 7.335 nan
9.356 32.140 33.270 -0.727 13.796 6.397 10.084 7.373 nan

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-1.999 nan -23.431 -4.145 -0.842 -4.145 -4.417 10.842
-1.828 nan -23.428 -4.021 -0.831 -4.021 -4.127 10.842
-1.657 nan -23.425 -3.843 -0.820 -3.843 -3.830 10.842
-1.485 nan -23.423 -3.611 -0.810 -3.611 -3.527 10.842
-1.313 nan -23.422 -3.341 -0.801 -3.341 -3.218 10.842
-1.141 nan -23.420 -3.049 -0.792 -3.049 -2.905 10.842
-0.968 nan -23.419 -2.744 -0.785 -2.744 -2.590 10.842
-0.795 nan -23.418 -2.432 -0.779 -2.432 -2.272 10.842
-0.621 nan -23.417 -2.118 -0.774 -2.118 -1.952 10.842
-0.446 nan -23.417 -1.806 -0.769 -1.806 -1.630 10.842
-0.268 nan -23.416 -1.493 -0.767 -1.493 -1.303 10.842
-0.086 nan -23.417 -1.179 -0.767 -1.179 -0.962 10.842
0.107 nan -23.418 -0.885 -0.771 -0.885 -0.598 10.842
0.329 -2.061 -23.423 -0.565 -0.790 -0.571 -0.167 10.842
0.782 1.203 -23.621 -0.574 -0.821 0.593 1.377 10.842
1.149 2.288 -23.699 -0.621 -0.878 1.639 2.882 10.842
1.396 3.061 -23.722 -0.764 -0.927 2.108 3.684 10.842
1.627 3.638 -23.743 -0.829 -0.934 2.466 4.270 10.842
1.850 4.147 -23.761 -0.857 -0.928 2.786 4.762 10.842
2.071 4.611 -23.777 -0.865 -0.915 3.074 5.204 10.841
2.290 5.036 -23.793 -0.865 -0.898 3.353 5.621 10.841
2.509 5.460 -23.808 -0.854 -0.877 3.626 6.024 10.841
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
2.729 5.849 -23.822 -0.838 -0.853 3.881 6.418 10.841
2.950 6.243 -23.837 -0.815 -0.826 4.133 6.807 10.841
3.174 6.606 -23.852 -0.789 -0.796 4.377 7.195 10.840
3.400 6.971 -23.866 -0.758 -0.764 4.614 7.587 10.840
3.630 7.327 -23.881 -0.725 -0.729 4.844 7.984 10.840
3.864 7.644 -23.895 -0.692 -0.694 5.043 8.384 10.839
4.102 7.947 -23.909 -0.658 -0.659 5.220 8.772 10.839
4.345 8.190 -23.922 -0.619 -0.620 5.335 9.151 10.838
4.594 8.321 -23.935 -0.569 -0.570 5.345 9.493 10.838
4.854 8.282 -23.945 -0.510 -0.511 5.189 9.771 10.837
5.124 8.136 -23.954 -0.464 -0.464 4.891 9.978 10.836
5.401 8.019 -23.960 -0.456 -0.456 4.583 10.137 10.835
5.674 8.007 -23.965 -0.471 -0.471 4.344 10.281 10.833
5.945 7.954 -23.971 -0.466 -0.466 4.080 10.420 10.831
6.221 7.765 -23.976 -0.441 -0.441 3.701 10.539 10.828
6.503 7.479 -23.979 -0.419 -0.419 3.220 10.629 10.825
6.790 7.188 -23.981 -0.407 -0.407 2.718 10.695 10.820
7.079 6.933 -23.982 -0.402 -0.402 2.239 10.747 10.814
7.368 6.737 -23.983 -0.400 -0.400 1.812 10.794 10.806
7.658 6.584 -23.983 -0.400 -0.400 1.436 10.843 10.796
7.947 6.445 -23.984 -0.399 -0.399 1.066 10.897 10.781
8.237 6.299 -23.984 -0.399 -0.399 0.698 10.955 10.761
8.527 6.160 -23.984 -0.399 -0.399 0.343 11.019 10.734
8.817 5.966 -23.985 -0.399 -0.399 -0.035 11.088 10.696
9.106 nan -23.985 -0.420 -0.400 -0.420 11.158 10.641
9.356 nan -23.985 -0.585 -0.400 -0.585 11.223 10.572

The Sun: M = M�,Lin = L�,Tsurface = 103.76K,Le = Lin

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-2.000 20.785 33.301 -8.980 2.445 3.762 6.985 5.784 nan
-1.840 20.944 33.301 -8.806 2.603 3.762 6.970 5.774 nan
-1.679 21.105 33.301 -8.632 2.763 3.762 6.956 5.765 nan
-1.517 21.268 33.301 -8.459 2.925 3.762 6.944 5.756 nan
-1.353 21.432 33.301 -8.285 3.088 3.762 6.934 5.748 nan
-1.188 21.597 33.301 -8.111 3.253 3.762 6.925 5.741 nan
-1.021 21.764 33.301 -7.938 3.419 3.763 6.917 5.735 nan
-0.853 21.932 33.301 -7.764 3.587 3.763 6.912 5.730 nan
-0.682 22.102 33.301 -7.590 3.757 3.765 6.908 5.727 nan
-0.510 22.275 33.301 -7.416 3.930 3.767 6.907 5.725 nan
-0.333 22.452 33.301 -7.243 4.107 3.772 6.910 5.727 nan
-0.146 22.638 33.301 -7.069 4.294 3.783 6.923 5.735 nan
0.091 22.875 33.301 -6.895 4.531 3.821 6.986 5.781 4.276
0.341 23.125 33.301 -7.017 4.780 3.970 7.358 5.942 5.575
0.720 23.504 33.301 -6.914 5.160 4.115 7.635 6.073 5.538
1.038 23.822 33.301 -6.741 5.478 4.187 7.779 6.153 5.520
1.334 24.118 33.301 -6.567 5.774 4.268 7.901 6.229 5.518
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
1.620 24.404 33.301 -6.393 6.060 4.361 8.014 6.290 5.476
1.903 24.687 33.301 -6.220 6.343 4.458 8.123 6.372 5.472
2.217 25.002 33.301 -6.046 6.657 4.596 8.263 6.458 5.439
2.503 25.287 33.301 -5.872 6.943 4.705 8.375 6.488 5.321
2.755 25.539 33.301 -5.698 7.195 4.777 8.454 6.521 5.240
3.012 25.796 33.301 -5.525 7.451 4.853 8.536 6.579 5.176
3.290 26.074 33.301 -5.351 7.729 4.955 8.641 6.647 5.081
3.577 26.362 33.301 -5.177 8.018 5.068 8.755 6.708 4.875
3.853 26.638 33.301 -5.004 8.294 5.169 8.858 6.758 nan
4.101 26.885 33.301 -4.830 8.541 5.243 8.931 6.795 nan
4.339 27.123 33.301 -4.656 8.779 5.307 8.995 6.827 nan
4.570 27.355 33.301 -4.482 9.010 5.364 9.053 6.856 nan
4.796 27.581 33.301 -4.309 9.236 5.417 9.105 6.882 nan
5.019 27.804 33.301 -4.135 9.459 5.466 9.155 6.907 nan
5.241 28.026 33.301 -3.961 9.681 5.515 9.203 6.931 nan
5.463 28.247 33.301 -3.788 9.903 5.562 9.251 6.955 nan
5.684 28.469 33.301 -3.614 10.124 5.610 9.299 6.979 nan
5.906 28.690 33.301 -3.440 10.346 5.659 9.346 7.003 nan
6.128 28.912 33.301 -3.266 10.568 5.707 9.394 7.027 nan
6.349 29.134 33.301 -3.093 10.789 5.755 9.442 7.051 nan
6.570 29.354 33.301 -2.919 11.009 5.801 9.489 7.074 nan
6.789 29.573 33.301 -2.745 11.229 5.847 9.534 7.097 nan
7.008 29.792 33.301 -2.572 11.448 5.892 9.580 7.120 nan
7.227 30.011 33.301 -2.398 11.667 5.938 9.625 7.143 nan
7.447 30.231 33.300 -2.224 11.887 5.984 9.671 7.166 nan
7.668 30.452 33.300 -2.050 12.108 6.032 9.719 7.190 nan
7.890 30.674 33.300 -1.877 12.330 6.080 9.767 7.214 nan
8.112 30.897 33.299 -1.703 12.552 6.129 9.815 7.238 nan
8.336 31.120 33.298 -1.529 12.776 6.179 9.865 7.263 nan
8.560 31.344 33.296 -1.356 13.000 6.229 9.916 7.288 nan
8.785 31.569 33.293 -1.182 13.225 6.280 9.967 7.314 nan
9.009 31.794 33.287 -1.008 13.450 6.331 10.018 7.339 nan
9.233 32.017 33.278 -0.834 13.673 6.381 10.068 7.364 nan
9.436 32.221 33.263 -0.675 13.876 6.425 10.112 7.386 nan

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-2.000 nan -23.518 -3.801 -0.921 -3.801 -3.769 10.842
-1.840 nan -23.504 -3.660 -0.914 -3.660 -3.546 10.842
-1.679 nan -23.491 -3.484 -0.906 -3.484 -3.316 10.842
-1.517 nan -23.480 -3.276 -0.896 -3.276 -3.077 10.842
-1.353 nan -23.470 -3.050 -0.886 -3.050 -2.832 10.842
-1.188 nan -23.461 -2.806 -0.875 -2.806 -2.582 10.842
-1.021 nan -23.454 -2.548 -0.864 -2.548 -2.323 10.842
-0.853 nan -23.447 -2.284 -0.854 -2.284 -2.057 10.842
-0.682 nan -23.442 -2.003 -0.844 -2.003 -1.783 10.842
-0.510 nan -23.439 -1.711 -0.836 -1.711 -1.495 10.842
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-0.333 nan -23.437 -1.406 -0.830 -1.406 -1.188 10.842
-0.146 nan -23.440 -1.068 -0.830 -1.068 -0.844 10.842
0.091 -1.857 -23.465 -0.534 -0.850 -0.561 -0.329 10.842
0.341 0.391 -23.688 -0.044 -0.860 0.583 0.871 10.842
0.720 2.078 -23.819 -0.629 -1.002 1.530 2.908 10.842
1.038 2.424 -23.891 -0.626 -0.900 1.772 3.636 10.841
1.334 2.337 -23.932 -0.495 -0.711 1.758 4.099 10.841
1.620 2.341 -23.952 -0.510 -0.660 1.619 4.426 10.841
1.903 2.268 -23.964 -0.393 -0.489 1.494 4.720 10.840
2.217 2.197 -23.966 -0.361 -0.417 1.222 5.038 10.840
2.503 2.316 -23.969 -0.504 -0.536 0.993 5.301 10.839
2.755 2.424 -23.976 -0.558 -0.577 0.825 5.516 10.838
3.012 2.288 -23.982 -0.480 -0.491 0.546 5.702 10.837
3.290 2.025 -23.984 -0.413 -0.418 0.120 5.858 10.835
3.577 1.754 -23.985 -0.402 -0.404 -0.263 5.998 10.833
3.853 nan -23.986 -0.499 -0.406 -0.499 6.132 10.830
4.101 nan -23.985 -0.553 -0.407 -0.553 6.280 10.827
4.339 nan -23.985 -0.587 -0.407 -0.587 6.448 10.824
4.570 nan -23.985 -0.622 -0.407 -0.622 6.624 10.820
4.796 nan -23.985 -0.647 -0.407 -0.647 6.802 10.816
5.019 nan -23.985 -0.659 -0.406 -0.659 6.980 10.812
5.241 nan -23.985 -0.665 -0.406 -0.665 7.160 10.806
5.463 nan -23.985 -0.666 -0.405 -0.666 7.343 10.801
5.684 nan -23.986 -0.663 -0.405 -0.663 7.529 10.794
5.906 nan -23.985 -0.663 -0.404 -0.663 7.718 10.786
6.128 nan -23.985 -0.664 -0.404 -0.664 7.909 10.778
6.349 nan -23.985 -0.669 -0.403 -0.669 8.098 10.768
6.570 nan -23.985 -0.677 -0.403 -0.677 8.284 10.757
6.789 nan -23.985 -0.683 -0.403 -0.683 8.467 10.744
7.008 nan -23.985 -0.685 -0.402 -0.685 8.648 10.730
7.227 nan -23.986 -0.683 -0.402 -0.683 8.829 10.713
7.447 nan -23.986 -0.671 -0.402 -0.671 9.014 10.694
7.668 nan -23.985 -0.664 -0.401 -0.664 9.204 10.671
7.890 nan -23.985 -0.661 -0.401 -0.661 9.397 10.644
8.112 nan -23.985 -0.655 -0.401 -0.655 9.593 10.611
8.336 nan -23.985 -0.651 -0.401 -0.651 9.792 10.572
8.560 nan -23.985 -0.646 -0.401 -0.646 9.994 10.522
8.785 nan -23.985 -0.643 -0.401 -0.643 10.198 10.459
9.009 nan -23.986 -0.648 -0.400 -0.648 10.401 10.374
9.233 nan -23.986 -0.657 -0.400 -0.657 10.600 10.255
9.436 nan -23.986 -0.673 -0.400 -0.673 10.777 10.087

The Sun: M = M�,Lin = L�,Tsurface = 103.76K,Le = 10Lin

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-2.000 20.785 33.301 -9.466 2.466 3.953 7.492 5.985 nan
-1.830 20.955 33.301 -9.293 2.628 3.958 7.481 5.981 nan
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-1.648 21.136 33.301 -9.119 2.803 3.966 7.483 5.984 nan
-1.421 21.363 33.301 -8.945 3.025 3.991 7.531 6.011 3.098
-1.032 21.752 33.301 -8.771 3.411 4.096 7.742 6.140 2.313
-0.790 21.995 33.301 -8.598 3.652 4.154 7.810 6.194 nan
-0.561 22.223 33.301 -8.424 3.880 4.204 7.864 6.209 1.391
-0.330 22.455 33.301 -8.250 4.111 4.255 7.922 6.235 2.218
-0.099 22.685 33.301 -8.077 4.342 4.306 7.978 6.282 nan
0.131 22.915 33.301 -7.903 4.571 4.360 8.034 6.332 nan
0.364 23.148 33.301 -7.729 4.804 4.418 8.093 6.371 nan
0.600 23.384 33.301 -7.555 5.040 4.480 8.156 6.404 nan
0.848 23.632 33.301 -7.382 5.288 4.553 8.230 6.431 nan
1.115 23.899 33.301 -7.208 5.555 4.640 8.323 6.446 4.808
1.378 24.162 33.301 -7.034 5.818 4.718 8.412 6.502 nan
1.610 24.394 33.301 -6.861 6.050 4.774 8.471 6.548 nan
1.832 24.617 33.301 -6.687 6.272 4.823 8.520 6.581 nan
2.052 24.836 33.301 -6.513 6.492 4.869 8.565 6.607 nan
2.271 25.055 33.301 -6.339 6.711 4.915 8.611 6.632 nan
2.490 25.275 33.301 -6.166 6.930 4.962 8.656 6.655 nan
2.709 25.494 33.301 -5.992 7.149 5.008 8.701 6.678 nan
2.926 25.711 33.301 -5.818 7.366 5.051 8.745 6.700 nan
3.138 25.922 33.301 -5.645 7.578 5.090 8.783 6.719 nan
3.343 26.127 33.301 -5.471 7.783 5.123 8.814 6.735 nan
3.544 26.329 33.301 -5.297 7.984 5.151 8.842 6.749 nan
3.748 26.532 33.301 -5.123 8.188 5.182 8.871 6.765 nan
3.962 26.747 33.301 -4.950 8.402 5.223 8.912 6.785 nan
4.187 26.971 33.301 -4.776 8.627 5.274 8.963 6.811 nan
4.416 27.200 33.301 -4.602 8.855 5.329 9.018 6.838 nan
4.642 27.427 33.301 -4.429 9.082 5.382 9.071 6.865 nan
4.866 27.651 33.301 -4.255 9.306 5.433 9.121 6.890 nan
5.089 27.873 33.301 -4.081 9.529 5.482 9.170 6.915 nan
5.310 28.095 33.301 -3.907 9.750 5.530 9.218 6.939 nan
5.532 28.316 33.301 -3.734 9.971 5.577 9.265 6.962 nan
5.753 28.538 33.301 -3.560 10.193 5.625 9.313 6.986 nan
5.975 28.759 33.301 -3.386 10.415 5.674 9.361 7.011 nan
6.197 28.981 33.301 -3.212 10.636 5.722 9.409 7.035 nan
6.418 29.202 33.301 -3.039 10.858 5.769 9.457 7.058 nan
6.638 29.422 33.301 -2.865 11.078 5.816 9.503 7.082 nan
6.857 29.641 33.301 -2.691 11.297 5.861 9.549 7.104 nan
7.076 29.860 33.301 -2.518 11.516 5.906 9.594 7.127 nan
7.295 30.079 33.301 -2.344 11.735 5.952 9.639 7.150 nan
7.515 30.300 33.300 -2.170 11.955 5.999 9.685 7.173 nan
7.737 30.521 33.300 -1.996 12.176 6.047 9.733 7.197 nan
7.959 30.743 33.300 -1.823 12.399 6.095 9.782 7.221 nan
8.182 30.966 33.299 -1.649 12.622 6.144 9.831 7.246 nan
8.405 31.190 33.297 -1.475 12.845 6.194 9.881 7.271 nan
8.630 31.414 33.295 -1.302 13.070 6.245 9.932 7.296 nan
8.854 31.639 33.291 -1.128 13.295 6.296 9.983 7.322 nan
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
9.079 31.863 33.285 -0.954 13.519 6.347 10.033 7.347 nan
9.300 32.085 33.274 -0.782 13.740 6.396 10.082 7.372 nan
9.463 32.247 33.261 -0.654 13.903 6.431 10.117 7.389 nan

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-2.000 nan -23.814 -1.682 -1.128 -1.682 -1.423 10.841
-1.830 nan -23.804 -1.453 -1.131 -1.453 -1.174 10.841
-1.648 nan -23.803 -1.184 -1.130 -1.184 -0.896 10.841
-1.421 -4.740 -23.830 -0.747 -1.114 -0.793 -0.499 10.841
-1.032 -6.165 -23.935 -0.574 -0.770 -0.588 0.259 10.841
-0.790 nan -23.945 -0.650 -0.606 -0.650 0.563 10.841
-0.561 -6.917 -23.950 -0.666 -0.680 -0.667 0.799 10.840
-0.330 -5.831 -23.958 -0.662 -0.708 -0.669 1.019 10.840
-0.099 nan -23.964 -0.641 -0.578 -0.641 1.237 10.840
0.131 nan -23.966 -0.615 -0.468 -0.615 1.462 10.840
0.364 nan -23.966 -0.590 -0.432 -0.590 1.701 10.839
0.600 nan -23.967 -0.570 -0.426 -0.570 1.953 10.839
0.848 nan -23.967 -0.510 -0.462 -0.510 2.247 10.838
1.115 -1.712 -23.972 -0.470 -0.635 -0.493 2.592 10.837
1.378 nan -23.981 -0.589 -0.566 -0.589 2.905 10.837
1.610 nan -23.984 -0.646 -0.482 -0.646 3.135 10.836
1.832 nan -23.985 -0.670 -0.449 -0.670 3.336 10.835
2.052 nan -23.985 -0.677 -0.435 -0.677 3.531 10.833
2.271 nan -23.985 -0.675 -0.424 -0.675 3.729 10.832
2.490 nan -23.985 -0.674 -0.423 -0.674 3.938 10.831
2.709 nan -23.985 -0.685 -0.421 -0.685 4.160 10.829
2.926 nan -23.985 -0.710 -0.419 -0.710 4.397 10.828
3.138 nan -23.985 -0.769 -0.417 -0.769 4.644 10.826
3.343 nan -23.985 -0.831 -0.414 -0.831 4.900 10.824
3.544 nan -23.986 -0.855 -0.411 -0.855 5.172 10.822
3.748 nan -23.985 -0.774 -0.409 -0.774 5.461 10.820
3.962 nan -23.985 -0.672 -0.408 -0.672 5.764 10.817
4.187 nan -23.985 -0.625 -0.407 -0.625 6.058 10.814
4.416 nan -23.985 -0.623 -0.407 -0.623 6.327 10.811
4.642 nan -23.985 -0.641 -0.407 -0.641 6.567 10.807
4.866 nan -23.985 -0.655 -0.406 -0.655 6.784 10.802
5.089 nan -23.985 -0.662 -0.406 -0.662 6.988 10.797
5.310 nan -23.986 -0.666 -0.405 -0.666 7.186 10.792
5.532 nan -23.985 -0.665 -0.405 -0.665 7.380 10.785
5.753 nan -23.985 -0.664 -0.404 -0.664 7.575 10.778
5.975 nan -23.985 -0.663 -0.404 -0.663 7.769 10.770
6.197 nan -23.985 -0.666 -0.404 -0.666 7.963 10.761
6.418 nan -23.985 -0.673 -0.403 -0.673 8.153 10.750
6.638 nan -23.985 -0.680 -0.403 -0.680 8.339 10.738
6.857 nan -23.986 -0.684 -0.402 -0.684 8.522 10.725
7.076 nan -23.986 -0.684 -0.402 -0.684 8.703 10.709
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
7.295 nan -23.985 -0.681 -0.402 -0.681 8.885 10.691
7.515 nan -23.985 -0.669 -0.401 -0.669 9.072 10.670
7.737 nan -23.985 -0.663 -0.401 -0.663 9.264 10.645
7.959 nan -23.985 -0.660 -0.401 -0.660 9.458 10.615
8.182 nan -23.985 -0.653 -0.401 -0.653 9.654 10.579
8.405 nan -23.985 -0.650 -0.401 -0.650 9.854 10.534
8.630 nan -23.986 -0.644 -0.401 -0.644 10.057 10.478
8.854 nan -23.986 -0.643 -0.400 -0.643 10.261 10.404
9.079 nan -23.985 -0.652 -0.400 -0.652 10.464 10.303
9.300 nan -23.985 -0.659 -0.400 -0.659 10.660 10.155
9.463 nan -23.985 -0.676 -0.400 -0.676 10.800 9.981

Low-mass nuclear-burning: M = 0.3M�,Lin = 0.1L�,Tsurface = 103.3K,Le = 0

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-1.999 20.052 32.778 -8.273 2.651 3.370 6.274 5.509 nan
-1.826 20.226 32.778 -8.099 2.824 3.370 6.274 5.509 nan
-1.652 20.399 32.778 -7.925 2.998 3.370 6.274 5.509 nan
-1.478 20.573 32.778 -7.752 3.172 3.370 6.274 5.509 nan
-1.304 20.747 32.778 -7.578 3.346 3.370 6.274 5.509 nan
-1.130 20.921 32.778 -7.404 3.520 3.370 6.274 5.509 nan
-0.957 21.095 32.778 -7.231 3.694 3.370 6.274 5.509 nan
-0.783 21.269 32.778 -7.057 3.867 3.371 6.274 5.509 nan
-0.608 21.443 32.778 -6.883 4.041 3.371 6.275 5.509 nan
-0.434 21.617 32.778 -6.709 4.216 3.372 6.275 5.510 nan
-0.260 21.792 32.778 -6.536 4.390 3.372 6.276 5.510 nan
-0.085 21.967 32.778 -6.362 4.565 3.374 6.277 5.511 nan
0.091 22.142 32.778 -6.188 4.741 3.376 6.280 5.512 nan
0.268 22.319 32.778 -6.015 4.918 3.379 6.283 5.513 nan
0.446 22.497 32.778 -5.841 5.096 3.383 6.287 5.515 nan
0.626 22.678 32.778 -5.667 5.276 3.390 6.294 5.518 nan
0.811 22.862 32.778 -5.493 5.460 3.400 6.304 5.523 nan
1.001 23.052 32.778 -5.320 5.651 3.417 6.321 5.531 nan
1.204 23.255 32.778 -5.146 5.853 3.446 6.349 5.545 nan
1.420 23.471 32.778 -4.972 6.070 3.488 6.392 5.565 4.282
1.636 23.688 32.778 -4.799 6.286 3.531 6.435 5.587 4.287
1.852 23.903 32.778 -4.625 6.502 3.573 6.477 5.608 4.281
2.067 24.119 32.778 -4.451 6.717 3.615 6.519 5.628 4.260
2.282 24.333 32.778 -4.277 6.932 3.655 6.559 5.648 4.220
2.495 24.546 32.778 -4.104 7.145 3.695 6.599 5.668 4.165
2.708 24.759 32.778 -3.930 7.358 3.734 6.638 5.687 4.105
2.921 24.972 32.778 -3.756 7.571 3.773 6.677 5.707 4.057
3.133 25.184 32.778 -3.583 7.783 3.810 6.715 5.726 3.990
3.345 25.397 32.778 -3.409 7.995 3.848 6.754 5.746 3.930
3.559 25.610 32.778 -3.235 8.209 3.885 6.794 5.769 3.876
3.777 25.829 32.778 -3.061 8.427 3.923 6.839 5.798 3.814
4.009 26.061 32.778 -2.888 8.659 3.963 6.897 5.850 3.762
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
4.291 26.342 32.778 -2.714 8.941 4.011 7.005 5.969 3.692
4.678 26.729 32.778 -2.540 9.327 4.079 7.217 6.081 3.683
4.948 27.000 32.778 -2.366 9.597 4.165 7.313 6.072 3.669
5.207 27.258 32.778 -2.193 9.856 4.244 7.399 6.109 3.604
5.463 27.514 32.778 -2.019 10.126 4.316 7.495 6.155 3.533
5.723 27.774 32.778 -1.845 10.381 4.383 7.576 6.197 3.468
5.985 28.036 32.778 -1.672 10.639 4.447 7.661 6.245 3.405
6.255 28.306 32.778 -1.498 10.907 4.511 7.755 6.303 3.336
6.541 28.593 32.778 -1.324 11.193 4.578 7.867 6.375 3.275
6.851 28.902 32.778 -1.150 11.502 4.649 8.002 6.460 3.223
7.180 29.231 32.778 -0.977 11.830 4.733 8.157 6.543 3.187
7.502 29.553 32.778 -0.803 12.153 4.832 8.306 6.605 3.161
7.806 29.857 32.777 -0.629 12.456 4.936 8.436 6.660 3.110
8.106 30.158 32.777 -0.456 12.757 5.040 8.562 6.726 3.056
8.402 30.453 32.776 -0.282 13.052 5.156 8.684 6.779 3.014
8.692 30.743 32.774 -0.108 13.342 5.272 8.800 6.836 2.949
8.982 31.033 32.770 0.066 13.632 5.388 8.916 6.894 2.891
9.267 31.318 32.763 0.236 13.917 5.502 9.030 6.951 2.836

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-1.999 nan -23.413 -3.903 -0.711 -3.903 -3.685 10.476
-1.826 nan -23.413 -3.755 -0.711 -3.755 -3.480 10.476
-1.652 nan -23.413 -3.596 -0.711 -3.596 -3.280 10.476
-1.478 nan -23.413 -3.432 -0.711 -3.432 -3.086 10.476
-1.304 nan -23.414 -3.263 -0.711 -3.263 -2.896 10.476
-1.130 nan -23.414 -3.090 -0.711 -3.090 -2.709 10.476
-0.957 nan -23.414 -2.916 -0.711 -2.916 -2.524 10.476
-0.783 nan -23.413 -2.740 -0.711 -2.740 -2.340 10.476
-0.608 nan -23.413 -2.563 -0.711 -2.563 -2.157 10.476
-0.434 nan -23.413 -2.391 -0.711 -2.391 -1.976 10.476
-0.260 nan -23.413 -2.218 -0.711 -2.218 -1.796 10.476
-0.085 nan -23.413 -2.044 -0.712 -2.044 -1.616 10.476
0.091 nan -23.414 -1.870 -0.712 -1.870 -1.435 10.476
0.268 nan -23.414 -1.695 -0.712 -1.695 -1.252 10.476
0.446 nan -23.414 -1.519 -0.713 -1.519 -1.065 10.476
0.626 nan -23.413 -1.340 -0.715 -1.340 -0.871 10.476
0.811 nan -23.413 -1.155 -0.717 -1.155 -0.666 10.476
1.001 nan -23.413 -0.960 -0.720 -0.960 -0.439 10.476
1.204 nan -23.413 -0.744 -0.726 -0.744 -0.170 10.476
1.420 0.628 -23.413 -0.700 -0.733 -0.547 0.159 10.476
1.636 0.878 -23.414 -0.706 -0.735 -0.452 0.479 10.476
1.852 1.269 -23.414 -0.713 -0.737 -0.247 0.785 10.476
2.067 1.807 -23.414 -0.720 -0.739 0.101 1.178 10.476
2.282 2.406 -23.414 -0.727 -0.741 0.523 1.688 10.476
2.495 2.933 -23.414 -0.733 -0.744 0.888 2.221 10.476
2.708 3.373 -23.414 -0.739 -0.747 1.172 2.716 10.475
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
2.921 3.810 -23.414 -0.745 -0.750 1.439 3.164 10.475
3.133 4.256 -23.415 -0.751 -0.754 1.729 3.595 10.475
3.345 4.789 -23.416 -0.757 -0.759 2.090 4.066 10.475
3.559 5.391 -23.419 -0.761 -0.762 2.497 4.583 10.475
3.777 6.030 -23.426 -0.761 -0.762 2.911 5.139 10.475
4.009 6.790 -23.444 -0.760 -0.760 3.345 5.737 10.475
4.291 7.790 -23.503 -0.786 -0.786 3.846 6.447 10.475
4.678 8.473 -23.648 -0.605 -0.605 4.490 7.368 10.475
4.948 8.835 -23.658 -0.501 -0.501 5.004 8.134 10.475
5.207 9.489 -23.665 -0.535 -0.535 5.419 8.893 10.475
5.463 10.056 -23.689 -0.565 -0.565 5.778 9.573 10.474
5.723 10.576 -23.703 -0.593 -0.593 6.060 10.191 10.474
5.985 11.048 -23.723 -0.614 -0.614 6.304 10.734 10.474
6.255 11.440 -23.754 -0.630 -0.630 6.489 11.223 10.473
6.541 11.765 -23.799 -0.638 -0.638 6.622 11.699 10.473
6.851 11.957 -23.863 -0.623 -0.623 6.654 12.118 10.472
7.180 11.962 -23.934 -0.556 -0.556 6.524 12.457 10.470
7.502 11.908 -23.984 -0.479 -0.479 6.272 12.707 10.469
7.806 11.892 -24.010 -0.466 -0.466 6.004 12.903 10.466
8.106 11.797 -24.032 -0.430 -0.430 5.718 13.081 10.463
8.402 11.596 -24.038 -0.399 -0.399 5.276 13.225 10.458
8.692 11.455 -24.038 -0.398 -0.398 4.777 13.328 10.453
8.982 11.205 -24.038 -0.398 -0.398 4.295 13.407 10.445
9.267 10.998 -24.038 -0.398 -0.398 3.857 13.472 10.436

Low-mass nuclear-burning: M = 0.3M�,Lin = 0.1L�,Tsurface = 103.3K,Le = Lin

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-2.000 20.051 32.778 -8.612 2.652 3.692 6.613 5.677 nan
-1.829 20.222 32.778 -8.438 2.822 3.693 6.610 5.675 nan
-1.657 20.394 32.778 -8.264 2.993 3.693 6.608 5.673 nan
-1.485 20.566 32.778 -8.090 3.165 3.693 6.606 5.672 nan
-1.313 20.738 32.778 -7.917 3.337 3.693 6.604 5.671 nan
-1.141 20.911 32.778 -7.743 3.510 3.693 6.603 5.670 nan
-0.968 21.084 32.778 -7.569 3.683 3.693 6.602 5.670 nan
-0.794 21.257 32.778 -7.396 3.856 3.694 6.602 5.669 nan
-0.619 21.432 32.778 -7.222 4.030 3.695 6.603 5.670 nan
-0.443 21.608 32.778 -7.048 4.207 3.698 6.605 5.671 nan
-0.263 21.788 32.778 -6.874 4.387 3.705 6.611 5.674 nan
-0.076 21.975 32.778 -6.701 4.574 3.718 6.625 5.681 nan
0.128 22.180 32.778 -6.527 4.779 3.746 6.656 5.697 3.270
0.438 22.489 32.778 -6.381 5.088 3.852 6.819 5.813 5.246
0.948 22.999 32.778 -6.225 5.598 4.000 7.174 5.963 5.289
1.209 23.260 32.778 -6.052 5.859 4.065 7.261 5.996 5.201
1.442 23.494 32.778 -5.878 6.093 4.106 7.321 6.026 5.126
1.667 23.719 32.778 -5.704 6.317 4.139 7.372 6.052 5.065
1.888 23.939 32.778 -5.531 6.538 4.170 7.418 6.076 5.007
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
2.106 24.158 32.778 -5.357 6.756 4.200 7.463 6.100 4.953
2.324 24.376 32.778 -5.183 6.974 4.230 7.508 6.124 4.881
2.543 24.594 32.778 -5.009 7.193 4.261 7.553 6.149 4.820
2.762 24.814 32.778 -4.836 7.413 4.293 7.599 6.174 4.731
2.984 25.035 32.778 -4.662 7.634 4.327 7.646 6.201 4.632
3.208 25.259 32.778 -4.488 7.858 4.363 7.696 6.229 4.507
3.435 25.486 32.778 -4.315 8.085 4.401 7.749 6.259 4.351
3.665 25.717 32.778 -4.141 8.315 4.444 7.806 6.291 4.212
3.900 25.951 32.778 -3.967 8.550 4.490 7.867 6.325 4.143
4.138 26.190 32.778 -3.793 8.788 4.541 7.932 6.362 4.099
4.382 26.433 32.778 -3.620 9.032 4.597 8.002 6.402 4.049
4.632 26.684 32.778 -3.446 9.283 4.660 8.079 6.447 4.009
4.891 26.943 32.778 -3.272 9.542 4.734 8.164 6.498 3.973
5.161 27.212 32.778 -3.099 9.811 4.820 8.259 6.553 3.920
5.436 27.487 32.778 -2.925 10.086 4.915 8.361 6.606 3.875
5.711 27.762 32.778 -2.751 10.361 5.010 8.462 6.654 3.815
5.984 28.035 32.778 -2.577 10.634 5.104 8.561 6.705 3.751
6.260 28.312 32.778 -2.404 10.910 5.201 8.664 6.760 3.706
6.542 28.594 32.778 -2.230 11.193 5.305 8.773 6.819 3.651
6.829 28.880 32.778 -2.056 11.479 5.416 8.886 6.877 3.595
7.117 29.169 32.778 -1.883 11.768 5.529 9.000 6.936 3.536
7.407 29.458 32.778 -1.709 12.057 5.644 9.116 6.994 3.475
7.696 29.748 32.777 -1.535 12.347 5.759 9.232 7.052 3.382
7.986 30.038 32.777 -1.361 12.636 5.874 9.348 7.110 3.244
8.271 30.322 32.776 -1.188 12.921 5.984 9.458 7.166 nan
8.515 30.566 32.775 -1.014 13.165 6.054 9.529 7.201 nan
8.746 30.797 32.773 -0.840 13.396 6.112 9.587 7.230 nan
8.973 31.025 32.770 -0.666 13.624 6.164 9.640 7.256 nan
9.198 31.250 32.765 -0.493 13.848 6.215 9.691 7.282 nan
9.410 31.462 32.756 -0.327 14.061 6.261 9.738 7.305 nan

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-2.000 nan -23.429 -3.985 -0.835 -3.985 -4.262 10.476
-1.829 nan -23.426 -3.861 -0.824 -3.861 -3.969 10.476
-1.657 nan -23.424 -3.676 -0.814 -3.676 -3.668 10.475
-1.485 nan -23.422 -3.441 -0.804 -3.441 -3.360 10.475
-1.313 nan -23.421 -3.170 -0.796 -3.170 -3.048 10.475
-1.141 nan -23.420 -2.873 -0.788 -2.873 -2.732 10.475
-0.968 nan -23.419 -2.565 -0.781 -2.565 -2.413 10.475
-0.794 nan -23.418 -2.251 -0.776 -2.251 -2.092 10.475
-0.619 nan -23.417 -1.939 -0.771 -1.939 -1.769 10.475
-0.443 nan -23.416 -1.624 -0.768 -1.624 -1.443 10.475
-0.263 nan -23.416 -1.312 -0.767 -1.312 -1.108 10.475
-0.076 nan -23.417 -1.013 -0.769 -1.013 -0.758 10.475
0.128 -2.668 -23.419 -0.718 -0.778 -0.725 -0.370 10.475
0.438 0.241 -23.477 -0.430 -0.845 -0.057 0.429 10.475
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
0.948 1.812 -23.684 -0.499 -0.778 1.311 2.345 10.475
1.209 2.751 -23.706 -0.705 -0.888 1.886 3.309 10.475
1.442 3.394 -23.725 -0.799 -0.913 2.282 3.966 10.475
1.667 3.927 -23.742 -0.842 -0.916 2.606 4.494 10.475
1.888 4.409 -23.758 -0.860 -0.909 2.897 4.961 10.474
2.106 4.868 -23.773 -0.863 -0.897 3.171 5.394 10.474
2.324 5.274 -23.787 -0.859 -0.880 3.408 5.805 10.474
2.543 5.682 -23.801 -0.846 -0.860 3.622 6.207 10.474
2.762 6.048 -23.815 -0.830 -0.837 3.793 6.601 10.473
2.984 6.389 -23.829 -0.808 -0.812 3.897 6.996 10.473
3.208 6.699 -23.844 -0.782 -0.784 3.914 7.392 10.473
3.435 6.970 -23.858 -0.752 -0.753 3.840 7.795 10.472
3.665 7.238 -23.872 -0.721 -0.721 3.797 8.202 10.472
3.900 7.512 -23.887 -0.688 -0.689 3.894 8.595 10.471
4.138 7.825 -23.901 -0.655 -0.656 4.070 8.980 10.471
4.382 8.046 -23.915 -0.618 -0.618 4.164 9.346 10.470
4.632 8.149 -23.928 -0.573 -0.573 4.139 9.668 10.469
4.891 8.111 -23.939 -0.520 -0.520 3.973 9.926 10.468
5.161 7.967 -23.949 -0.474 -0.474 3.695 10.123 10.466
5.436 7.866 -23.955 -0.458 -0.458 3.400 10.281 10.464
5.711 7.826 -23.961 -0.465 -0.465 3.141 10.424 10.462
5.984 7.745 -23.967 -0.463 -0.463 2.853 10.557 10.459
6.260 7.548 -23.973 -0.443 -0.443 2.456 10.668 10.455
6.542 7.246 -23.977 -0.422 -0.422 1.961 10.749 10.450
6.829 6.954 -23.980 -0.410 -0.410 1.462 10.809 10.443
7.117 6.702 -23.981 -0.404 -0.404 0.992 10.858 10.434
7.407 6.500 -23.982 -0.401 -0.401 0.568 10.902 10.421
7.696 6.323 -23.983 -0.400 -0.400 0.197 10.949 10.404
7.986 6.117 -23.983 -0.400 -0.400 -0.157 11.002 10.381
8.271 nan -23.984 -0.483 -0.399 -0.483 11.060 10.350
8.515 nan -23.984 -0.586 -0.399 -0.586 11.121 10.315
8.746 nan -23.985 -0.623 -0.399 -0.623 11.197 10.272
8.973 nan -23.985 -0.641 -0.399 -0.641 11.292 10.219
9.198 nan -23.986 -0.654 -0.399 -0.654 11.408 10.151
9.410 nan -23.987 -0.668 -0.398 -0.668 11.533 10.065

Low-mass nuclear-burning: M = 0.3M�,Lin = 0.1L�,Tsurface = 103.3K,Le = 10Lin

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-1.999 20.052 32.778 -9.204 2.665 3.944 7.219 5.957 nan
-1.829 20.223 32.778 -9.030 2.831 3.948 7.212 5.954 nan
-1.648 20.404 32.778 -8.857 3.009 3.956 7.215 5.958 nan
-1.434 20.617 32.778 -8.683 3.220 3.977 7.253 5.977 3.099
-1.027 21.024 32.778 -8.565 3.624 4.108 7.540 6.144 2.770
-0.777 21.274 32.778 -8.391 3.874 4.173 7.615 6.200 nan
-0.546 21.505 32.778 -8.218 4.104 4.224 7.672 6.217 2.167
-0.313 21.739 32.778 -8.044 4.338 4.276 7.732 6.249 2.358
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-0.081 21.971 32.778 -7.870 4.570 4.329 7.790 6.300 nan
0.151 22.203 32.778 -7.696 4.802 4.386 7.848 6.348 nan
0.386 22.437 32.778 -7.523 5.036 4.446 7.909 6.385 nan
0.626 22.678 32.778 -7.349 5.276 4.512 7.975 6.418 nan
0.880 22.932 32.778 -7.175 5.530 4.590 8.056 6.439 3.176
1.151 23.202 32.778 -7.001 5.801 4.678 8.152 6.465 4.907
1.398 23.450 32.778 -6.828 6.048 4.745 8.226 6.520 nan
1.626 23.677 32.778 -6.654 6.276 4.797 8.280 6.561 nan
1.847 23.898 32.778 -6.480 6.497 4.844 8.327 6.591 nan
2.066 24.117 32.778 -6.307 6.716 4.890 8.373 6.617 nan
2.286 24.337 32.778 -6.133 6.936 4.936 8.419 6.642 nan
2.506 24.557 32.778 -5.959 7.156 4.984 8.466 6.666 nan
2.725 24.777 32.778 -5.785 7.375 5.030 8.511 6.689 nan
2.941 24.992 32.778 -5.612 7.591 5.072 8.553 6.710 nan
3.149 25.200 32.778 -5.438 7.799 5.107 8.587 6.727 nan
3.348 25.399 32.778 -5.264 7.998 5.133 8.612 6.740 nan
3.537 25.588 32.778 -5.091 8.187 5.149 8.628 6.748 nan
3.718 25.769 32.778 -4.917 8.368 5.158 8.635 6.753 nan
3.897 25.949 32.778 -4.743 8.547 5.164 8.641 6.756 nan
4.080 26.132 32.778 -4.569 8.730 5.173 8.650 6.760 nan
4.271 26.323 32.778 -4.396 8.921 5.191 8.667 6.769 nan
4.475 26.526 32.778 -4.222 9.125 5.221 8.697 6.784 nan
4.689 26.741 32.778 -4.048 9.339 5.262 8.738 6.805 nan
4.910 26.961 32.778 -3.875 9.560 5.309 8.785 6.828 nan
5.131 27.183 32.778 -3.701 9.781 5.356 8.832 6.852 nan
5.351 27.403 32.778 -3.527 10.002 5.403 8.879 6.875 nan
5.571 27.622 32.778 -3.353 10.221 5.448 8.924 6.898 nan
5.789 27.840 32.778 -3.180 10.439 5.493 8.969 6.920 nan
6.007 28.059 32.778 -3.006 10.657 5.538 9.013 6.943 nan
6.226 28.277 32.778 -2.832 10.876 5.583 9.058 6.965 nan
6.445 28.496 32.778 -2.659 11.095 5.628 9.104 6.988 nan
6.664 28.716 32.778 -2.485 11.314 5.673 9.149 7.011 nan
6.884 28.935 32.778 -2.311 11.534 5.720 9.196 7.034 nan
7.104 29.155 32.778 -2.137 11.754 5.766 9.242 7.057 nan
7.323 29.375 32.778 -1.964 11.973 5.812 9.287 7.079 nan
7.542 29.594 32.778 -1.790 12.192 5.857 9.332 7.102 nan
7.761 29.813 32.777 -1.616 12.411 5.903 9.377 7.125 nan
7.981 30.033 32.777 -1.443 12.631 5.949 9.424 7.148 nan
8.202 30.253 32.777 -1.269 12.852 5.997 9.471 7.172 nan
8.424 30.476 32.776 -1.095 13.074 6.045 9.520 7.196 nan
8.647 30.699 32.774 -0.921 13.298 6.094 9.569 7.221 nan
8.871 30.923 32.772 -0.748 13.521 6.144 9.619 7.246 nan
9.095 31.146 32.768 -0.574 13.745 6.193 9.669 7.271 nan
9.302 31.353 32.761 -0.413 13.953 6.239 9.715 7.294 nan
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-1.999 nan -23.771 -1.718 -1.132 -1.718 -1.439 10.474
-1.829 nan -23.763 -1.477 -1.127 -1.477 -1.192 10.474
-1.648 nan -23.762 -1.209 -1.121 -1.209 -0.915 10.474
-1.434 -4.492 -23.780 -0.825 -1.118 -0.834 -0.546 10.474
-1.027 -5.430 -23.934 -0.507 -0.778 -0.534 0.365 10.474
-0.777 nan -23.945 -0.638 -0.614 -0.638 0.688 10.473
-0.546 -5.861 -23.951 -0.654 -0.698 -0.660 0.925 10.473
-0.313 -5.452 -23.959 -0.647 -0.682 -0.652 1.147 10.473
-0.081 nan -23.964 -0.626 -0.538 -0.626 1.373 10.472
0.151 nan -23.966 -0.601 -0.449 -0.601 1.606 10.472
0.386 nan -23.967 -0.579 -0.424 -0.579 1.853 10.471
0.626 nan -23.967 -0.521 -0.425 -0.521 2.120 10.470
0.880 -3.518 -23.968 -0.498 -0.505 -0.499 2.437 10.469
1.151 -1.362 -23.975 -0.523 -0.638 -0.531 2.782 10.468
1.398 nan -23.982 -0.614 -0.534 -0.614 3.053 10.467
1.626 nan -23.984 -0.661 -0.467 -0.661 3.267 10.466
1.847 nan -23.985 -0.677 -0.439 -0.677 3.463 10.464
2.066 nan -23.985 -0.678 -0.428 -0.678 3.657 10.462
2.286 nan -23.985 -0.671 -0.418 -0.671 3.859 10.460
2.506 nan -23.985 -0.672 -0.416 -0.672 4.074 10.458
2.725 nan -23.985 -0.686 -0.415 -0.686 4.303 10.456
2.941 nan -23.985 -0.734 -0.413 -0.734 4.545 10.453
3.149 nan -23.985 -0.823 -0.411 -0.823 4.793 10.451
3.348 nan -23.985 -0.968 -0.409 -0.968 5.053 10.448
3.537 nan -23.986 -1.201 -0.406 -1.201 5.324 10.445
3.718 nan -23.986 -1.449 -0.404 -1.449 5.610 10.442
3.897 nan -23.985 -1.416 -0.402 -1.416 5.915 10.439
4.080 nan -23.985 -1.160 -0.401 -1.160 6.236 10.436
4.271 nan -23.985 -0.925 -0.400 -0.925 6.564 10.433
4.475 nan -23.985 -0.767 -0.400 -0.767 6.887 10.430
4.689 nan -23.985 -0.688 -0.400 -0.688 7.189 10.425
4.910 nan -23.985 -0.665 -0.399 -0.665 7.458 10.421
5.131 nan -23.986 -0.670 -0.399 -0.670 7.696 10.415
5.351 nan -23.985 -0.679 -0.399 -0.679 7.909 10.409
5.571 nan -23.985 -0.687 -0.399 -0.687 8.107 10.402
5.789 nan -23.985 -0.690 -0.399 -0.690 8.297 10.394
6.007 nan -23.985 -0.690 -0.399 -0.690 8.482 10.386
6.226 nan -23.985 -0.687 -0.399 -0.687 8.666 10.376
6.445 nan -23.985 -0.683 -0.399 -0.683 8.850 10.365
6.664 nan -23.985 -0.679 -0.399 -0.679 9.035 10.352
6.884 nan -23.986 -0.678 -0.399 -0.678 9.220 10.337
7.104 nan -23.985 -0.679 -0.399 -0.679 9.406 10.320
7.323 nan -23.985 -0.680 -0.399 -0.680 9.590 10.300
7.542 nan -23.984 -0.681 -0.399 -0.681 9.773 10.277
7.761 nan -23.984 -0.680 -0.399 -0.680 9.957 10.250
7.981 nan -23.984 -0.676 -0.399 -0.676 10.142 10.218
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
8.202 nan -23.984 -0.667 -0.399 -0.667 10.331 10.178
8.424 nan -23.984 -0.659 -0.399 -0.659 10.524 10.130
8.647 nan -23.985 -0.654 -0.399 -0.654 10.721 10.067
8.871 nan -23.985 -0.655 -0.399 -0.655 10.920 9.984
9.095 nan -23.985 -0.655 -0.399 -0.655 11.118 9.868
9.302 nan -23.986 -0.666 -0.398 -0.666 11.299 9.701

Brown Dwarf: M = 0.02M�,Lin = 0.01L�,Tsurface = 103K,Le = 0

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-1.999 19.078 31.602 -8.220 2.449 3.116 6.221 5.387 nan
-1.824 19.253 31.602 -8.046 2.624 3.117 6.222 5.387 nan
-1.648 19.428 31.602 -7.872 2.800 3.119 6.224 5.388 nan
-1.472 19.605 31.602 -7.699 2.977 3.122 6.228 5.390 nan
-1.293 19.783 31.602 -7.525 3.156 3.127 6.232 5.392 nan
-1.113 19.964 31.602 -7.351 3.336 3.133 6.238 5.395 nan
-0.931 20.146 31.602 -7.178 3.518 3.142 6.247 5.399 nan
-0.747 20.330 31.602 -7.004 3.702 3.152 6.257 5.404 nan
-0.562 20.514 31.602 -6.830 3.886 3.163 6.268 5.409 nan
-0.379 20.697 31.602 -6.656 4.069 3.172 6.277 5.414 nan
-0.200 20.876 31.602 -6.483 4.248 3.177 6.283 5.416 nan
-0.023 21.054 31.602 -6.309 4.426 3.181 6.286 5.418 nan
0.155 21.232 31.602 -6.135 4.604 3.185 6.291 5.420 nan
0.335 21.412 31.602 -5.962 4.784 3.192 6.297 5.423 nan
0.519 21.596 31.602 -5.788 4.968 3.202 6.307 5.428 nan
0.709 21.785 31.602 -5.614 5.157 3.218 6.323 5.436 nan
0.906 21.982 31.602 -5.440 5.354 3.241 6.346 5.447 nan
1.101 22.178 31.602 -5.267 5.550 3.263 6.368 5.458 nan
1.282 22.358 31.602 -5.093 5.730 3.270 6.375 5.461 nan
1.461 22.537 31.602 -4.919 5.910 3.275 6.380 5.463 nan
1.643 22.719 31.602 -4.746 6.091 3.283 6.388 5.467 nan
1.829 22.905 31.602 -4.572 6.277 3.295 6.401 5.473 nan
2.022 23.098 31.602 -4.398 6.470 3.315 6.420 5.483 nan
2.226 23.303 31.602 -4.224 6.674 3.345 6.450 5.497 nan
2.442 23.518 31.602 -4.051 6.890 3.387 6.492 5.517 3.649
2.657 23.734 31.602 -3.877 7.105 3.429 6.534 5.537 3.689
2.871 23.948 31.602 -3.703 7.320 3.469 6.575 5.556 3.656
3.085 24.161 31.602 -3.530 7.533 3.508 6.614 5.576 3.613
3.298 24.374 31.602 -3.356 7.747 3.548 6.654 5.596 3.558
3.511 24.588 31.602 -3.182 7.959 3.587 6.693 5.615 3.508
3.724 24.801 31.602 -3.008 8.172 3.626 6.732 5.635 3.456
3.937 25.013 31.602 -2.835 8.385 3.665 6.771 5.654 3.400
4.149 25.226 31.602 -2.661 8.598 3.703 6.810 5.673 3.343
4.362 25.439 31.602 -2.487 8.811 3.741 6.849 5.693 3.290
4.575 25.651 31.602 -2.313 9.023 3.779 6.888 5.712 3.224
4.787 25.864 31.602 -2.140 9.236 3.817 6.927 5.732 3.169
5.000 26.077 31.602 -1.966 9.449 3.854 6.966 5.752 3.111
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
5.213 26.290 31.602 -1.792 9.662 3.890 7.006 5.772 3.048
5.428 26.505 31.602 -1.619 9.877 3.927 7.047 5.795 2.986
5.648 26.724 31.602 -1.445 10.096 3.963 7.093 5.827 2.924
5.889 26.966 31.602 -1.271 10.338 4.001 7.161 5.902 2.847
6.264 27.341 31.602 -1.100 10.715 4.041 7.366 6.166 2.700
6.570 27.647 31.602 -1.024 11.022 4.061 7.598 6.359 2.659

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-1.999 nan -23.413 -2.220 -0.674 -2.220 -1.889 9.988
-1.824 nan -23.413 -2.031 -0.674 -2.031 -1.674 9.988
-1.648 nan -23.414 -1.851 -0.674 -1.851 -1.467 9.988
-1.472 nan -23.414 -1.674 -0.675 -1.674 -1.266 9.988
-1.293 nan -23.414 -1.516 -0.675 -1.516 -1.069 9.988
-1.113 nan -23.413 -1.383 -0.676 -1.383 -0.881 9.988
-0.931 nan -23.413 -1.280 -0.677 -1.280 -0.705 9.988
-0.747 nan -23.413 -1.233 -0.678 -1.233 -0.546 9.988
-0.562 nan -23.413 -1.254 -0.679 -1.254 -0.417 9.988
-0.379 nan -23.413 -1.420 -0.681 -1.420 -0.322 9.988
-0.200 nan -23.414 -1.651 -0.681 -1.651 -0.275 9.988
-0.023 nan -23.414 -1.691 -0.682 -1.691 -0.243 9.988
0.155 nan -23.414 -1.519 -0.682 -1.519 -0.205 9.988
0.335 nan -23.413 -1.346 -0.683 -1.346 -0.152 9.988
0.519 nan -23.413 -1.170 -0.684 -1.170 -0.075 9.988
0.709 nan -23.413 -0.996 -0.687 -0.996 0.031 9.988
0.906 nan -23.413 -0.888 -0.690 -0.888 0.173 9.988
1.101 nan -23.413 -1.211 -0.693 -1.211 0.294 9.987
1.282 nan -23.414 -1.582 -0.694 -1.582 0.330 9.987
1.461 nan -23.414 -1.441 -0.695 -1.441 0.358 9.987
1.643 nan -23.414 -1.266 -0.696 -1.266 0.400 9.987
1.829 nan -23.414 -1.092 -0.698 -1.092 0.462 9.987
2.022 nan -23.414 -0.917 -0.701 -0.917 0.555 9.987
2.226 nan -23.414 -0.741 -0.707 -0.741 0.696 9.987
2.442 1.725 -23.414 -0.712 -0.714 -0.549 0.909 9.987
2.657 2.207 -23.414 -0.720 -0.723 -0.324 1.193 9.987
2.871 2.620 -23.414 -0.730 -0.731 -0.101 1.531 9.987
3.085 2.935 -23.414 -0.733 -0.734 0.042 1.872 9.987
3.298 3.186 -23.414 -0.735 -0.736 0.132 2.171 9.987
3.511 3.632 -23.414 -0.737 -0.738 0.414 2.497 9.987
3.724 4.172 -23.415 -0.740 -0.740 0.792 2.914 9.987
3.937 4.726 -23.415 -0.742 -0.743 1.189 3.428 9.986
4.149 5.236 -23.416 -0.745 -0.745 1.540 3.946 9.986
4.362 5.668 -23.417 -0.748 -0.748 1.811 4.420 9.986
4.575 6.081 -23.418 -0.752 -0.752 2.076 4.859 9.986
4.787 6.547 -23.419 -0.756 -0.756 2.382 5.290 9.986
5.000 7.071 -23.421 -0.761 -0.761 2.747 5.766 9.986
5.213 7.637 -23.424 -0.767 -0.767 3.153 6.286 9.985



APPENDIX E. REFERENCE STELLAR MODELS 287

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
5.428 8.213 -23.428 -0.774 -0.774 3.556 6.830 9.985
5.648 8.823 -23.438 -0.788 -0.788 3.958 7.386 9.985
5.889 9.520 -23.468 -0.851 -0.851 4.376 7.976 9.985
6.264 10.356 -23.634 -1.117 -1.117 4.918 8.774 9.984
6.570 10.813 -23.845 -1.207 -1.207 5.301 9.305 9.983

Brown Dwarf: M = 0.02M�,Lin = 0.01L�,Tsurface = 103K,Le = Lin

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-2.000 19.077 31.602 -8.811 2.451 3.688 6.813 5.676 nan
-1.829 19.248 31.602 -8.637 2.621 3.688 6.810 5.674 nan
-1.658 19.419 31.602 -8.463 2.792 3.688 6.807 5.672 nan
-1.486 19.591 31.602 -8.289 2.964 3.688 6.805 5.670 nan
-1.314 19.763 31.602 -8.116 3.135 3.689 6.803 5.669 nan
-1.141 19.935 31.602 -7.942 3.308 3.689 6.801 5.668 nan
-0.969 20.108 31.602 -7.768 3.480 3.689 6.800 5.668 nan
-0.795 20.281 31.602 -7.595 3.653 3.690 6.799 5.667 nan
-0.621 20.455 31.602 -7.421 3.827 3.691 6.800 5.668 nan
-0.446 20.631 31.602 -7.247 4.002 3.693 6.801 5.668 nan
-0.269 20.808 31.602 -7.073 4.180 3.697 6.805 5.670 nan
-0.086 20.991 31.602 -6.900 4.363 3.705 6.814 5.675 nan
0.107 21.184 31.602 -6.726 4.556 3.724 6.833 5.685 nan
0.329 21.406 31.602 -6.552 4.778 3.767 6.882 5.712 3.952
0.795 21.872 31.602 -6.451 5.244 3.924 7.246 5.955 5.339
1.150 22.226 31.602 -6.279 5.599 4.038 7.429 5.980 5.265
1.396 22.472 31.602 -6.105 5.845 4.087 7.501 6.014 5.193
1.626 22.702 31.602 -5.931 6.075 4.123 7.558 6.042 5.129
1.849 22.926 31.602 -5.758 6.298 4.155 7.607 6.068 5.071
2.069 23.145 31.602 -5.584 6.517 4.185 7.653 6.093 5.016
2.287 23.364 31.602 -5.410 6.736 4.214 7.697 6.117 4.945
2.505 23.582 31.602 -5.237 6.954 4.244 7.742 6.141 4.886
2.724 23.801 31.602 -5.063 7.172 4.275 7.787 6.166 4.796
2.944 24.021 31.602 -4.889 7.393 4.307 7.833 6.192 4.697
3.166 24.243 31.602 -4.715 7.615 4.342 7.882 6.220 4.566
3.392 24.468 31.602 -4.542 7.840 4.379 7.934 6.249 4.378
3.620 24.697 31.602 -4.368 8.069 4.420 7.988 6.280 4.125
3.853 24.929 31.602 -4.194 8.301 4.464 8.047 6.313 3.890
4.089 25.166 31.602 -4.020 8.538 4.514 8.110 6.349 3.823
4.331 25.408 31.602 -3.847 8.779 4.568 8.178 6.387 3.777
4.579 25.655 31.602 -3.673 9.027 4.629 8.252 6.431 3.738
4.836 25.912 31.602 -3.499 9.284 4.701 8.335 6.481 3.699
5.104 26.180 31.602 -3.326 9.552 4.787 8.430 6.537 3.656
5.379 26.456 31.602 -3.152 9.828 4.882 8.531 6.590 3.606
5.653 26.730 31.602 -2.978 10.102 4.977 8.632 6.638 3.548
5.925 27.001 31.602 -2.804 10.373 5.069 8.729 6.686 3.491
6.199 27.276 31.602 -2.631 10.648 5.164 8.830 6.741 3.431
6.480 27.556 31.602 -2.457 10.928 5.268 8.937 6.800 3.378
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-2.000 nan -23.431 -3.447 -0.843 -3.447 -4.409 9.986
-1.829 nan -23.428 -3.422 -0.832 -3.422 -4.119 9.986
-1.658 nan -23.426 -3.372 -0.821 -3.372 -3.823 9.986
-1.486 nan -23.424 -3.280 -0.811 -3.280 -3.521 9.986
-1.314 nan -23.422 -3.134 -0.802 -3.134 -3.212 9.986
-1.141 nan -23.420 -2.932 -0.794 -2.932 -2.900 9.986
-0.969 nan -23.419 -2.681 -0.786 -2.681 -2.584 9.986
-0.795 nan -23.418 -2.400 -0.780 -2.400 -2.266 9.986
-0.621 nan -23.417 -2.101 -0.774 -2.101 -1.945 9.985
-0.446 nan -23.417 -1.796 -0.770 -1.796 -1.622 9.985
-0.269 nan -23.417 -1.486 -0.768 -1.486 -1.294 9.985
-0.086 nan -23.417 -1.176 -0.768 -1.176 -0.953 9.985
0.107 nan -23.418 -0.883 -0.772 -0.883 -0.589 9.985
0.329 -2.023 -23.423 -0.562 -0.792 -0.562 -0.153 9.985
0.795 1.229 -23.631 -0.558 -0.807 0.639 1.444 9.984
1.150 2.309 -23.699 -0.628 -0.880 1.646 2.904 9.983
1.396 3.068 -23.723 -0.768 -0.927 2.104 3.694 9.983
1.626 3.640 -23.743 -0.832 -0.934 2.452 4.276 9.982
1.849 4.142 -23.761 -0.860 -0.928 2.758 4.765 9.981
2.069 4.596 -23.777 -0.869 -0.915 3.025 5.204 9.980
2.287 5.011 -23.792 -0.869 -0.897 3.272 5.620 9.979
2.505 5.421 -23.806 -0.858 -0.877 3.490 6.021 9.978
2.724 5.777 -23.820 -0.843 -0.854 3.655 6.413 9.976
2.944 6.114 -23.834 -0.822 -0.828 3.759 6.801 9.975
3.166 6.405 -23.849 -0.796 -0.799 3.752 7.187 9.973
3.392 6.630 -23.863 -0.766 -0.767 3.576 7.577 9.971
3.620 6.782 -23.877 -0.734 -0.734 3.167 7.974 9.969
3.853 6.925 -23.891 -0.700 -0.700 2.833 8.374 9.966
4.089 7.212 -23.905 -0.666 -0.666 2.950 8.762 9.963
4.331 7.468 -23.918 -0.629 -0.629 3.078 9.144 9.960
4.579 7.623 -23.931 -0.582 -0.582 3.108 9.492 9.955
4.836 7.625 -23.942 -0.525 -0.525 2.991 9.782 9.949
5.104 7.484 -23.951 -0.474 -0.474 2.715 10.000 9.942
5.379 7.356 -23.958 -0.455 -0.455 2.403 10.166 9.932
5.653 7.327 -23.963 -0.467 -0.467 2.146 10.310 9.920
5.925 7.300 -23.969 -0.469 -0.469 1.900 10.451 9.904
6.199 7.125 -23.974 -0.448 -0.448 1.542 10.575 9.883
6.480 6.846 -23.978 -0.424 -0.424 1.074 10.669 9.854

Brown Dwarf: M = 0.02M�,Lin = 0.01L�,Tsurface = 103K,Le = 10Lin

Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-2.000 19.077 31.602 -9.432 2.472 3.946 7.456 5.971 nan
-1.830 19.246 31.602 -9.258 2.634 3.950 7.444 5.968 nan
-1.652 19.425 31.602 -9.084 2.808 3.957 7.443 5.969 nan
-1.448 19.629 31.602 -8.910 3.008 3.974 7.470 5.984 2.900
-1.042 20.035 31.602 -8.748 3.410 4.081 7.709 6.120 2.864
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Log(Sigma) Log(M+) Log(M-) Log(Rho) Log(p) Log(T) Log(hs) Log(vs) Log(vc)
-0.780 20.297 31.602 -8.575 3.671 4.151 7.797 6.191 nan
-0.549 20.527 31.602 -8.401 3.900 4.202 7.852 6.209 1.233
-0.318 20.759 31.602 -8.227 4.131 4.253 7.910 6.233 2.336
-0.086 20.990 31.602 -8.053 4.362 4.305 7.967 6.280 nan
0.144 21.221 31.602 -7.880 4.593 4.359 8.024 6.331 nan
0.377 21.453 31.602 -7.706 4.826 4.417 8.083 6.370 nan
0.613 21.690 31.602 -7.532 5.062 4.479 8.146 6.403 nan
0.860 21.937 31.602 -7.358 5.309 4.552 8.219 6.431 nan
1.126 22.203 31.602 -7.185 5.575 4.638 8.311 6.445 4.836
1.390 22.467 31.602 -7.011 5.839 4.717 8.401 6.500 nan
1.622 22.699 31.602 -6.837 6.071 4.773 8.460 6.547 nan
1.845 22.922 31.602 -6.664 6.293 4.822 8.509 6.579 nan
2.064 23.141 31.602 -6.490 6.513 4.868 8.554 6.606 nan
2.283 23.359 31.602 -6.316 6.732 4.913 8.599 6.631 nan
2.501 23.578 31.602 -6.142 6.951 4.959 8.645 6.654 nan
2.719 23.796 31.602 -5.969 7.168 5.003 8.688 6.676 nan
2.934 24.010 31.602 -5.795 7.382 5.045 8.729 6.697 nan
3.141 24.218 31.602 -5.621 7.590 5.080 8.763 6.714 nan
3.339 24.416 31.602 -5.448 7.788 5.106 8.787 6.727 nan
3.527 24.604 31.602 -5.274 7.976 5.121 8.801 6.734 nan
3.707 24.784 31.602 -5.100 8.156 5.128 8.807 6.738 nan
3.882 24.959 31.602 -4.926 8.331 5.130 8.809 6.739 nan
4.057 25.133 31.602 -4.753 8.506 5.131 8.810 6.740 nan
4.232 25.309 31.602 -4.579 8.681 5.134 8.811 6.740 nan
4.410 25.486 31.602 -4.405 8.858 5.138 8.815 6.742 nan
4.592 25.669 31.602 -4.232 9.040 5.147 8.824 6.746 nan
4.783 25.859 31.602 -4.058 9.231 5.164 8.840 6.754 nan
4.985 26.062 31.602 -3.884 9.433 5.193 8.869 6.769 nan
5.197 26.274 31.602 -3.710 9.646 5.231 8.908 6.788 nan
5.415 26.492 31.602 -3.537 9.864 5.276 8.952 6.811 nan
5.634 26.711 31.602 -3.363 10.083 5.321 8.998 6.833 nan
5.852 26.929 31.602 -3.189 10.301 5.365 9.041 6.856 nan
6.068 27.145 31.602 -3.016 10.517 5.408 9.084 6.877 nan
6.279 27.356 31.602 -2.846 10.728 5.449 9.125 6.898 nan
6.427 27.503 31.602 -2.727 10.875 5.478 9.154 6.912 nan
6.520 27.597 31.602 -2.651 10.969 5.496 9.172 6.921 nan
6.581 27.658 31.602 -2.602 11.030 5.507 9.183 6.927 nan
6.621 27.697 31.602 -2.570 11.069 5.515 9.191 6.931 nan
6.647 27.724 31.602 -2.549 11.095 5.520 9.196 6.933 nan
6.664 27.741 31.602 -2.535 11.113 5.523 9.199 6.935 nan

Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-2.000 nan -23.795 -1.731 -1.132 -1.731 -1.486 9.980
-1.830 nan -23.786 -1.503 -1.133 -1.503 -1.237 9.980
-1.652 nan -23.783 -1.256 -1.131 -1.256 -0.963 9.979
-1.448 -4.780 -23.796 -0.897 -1.125 -0.931 -0.624 9.979
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Log(Sigma) Log(Gamma) Log(mu) Log(Grad) Log(GradA) Log(GradR) Log(Tau) Log(R)
-1.042 -5.368 -23.928 -0.499 -0.863 -0.524 0.233 9.977
-0.780 nan -23.944 -0.634 -0.612 -0.634 0.595 9.976
-0.549 -7.026 -23.949 -0.663 -0.672 -0.664 0.835 9.974
-0.318 -5.649 -23.957 -0.660 -0.713 -0.669 1.055 9.972
-0.086 nan -23.963 -0.641 -0.586 -0.641 1.274 9.970
0.144 nan -23.966 -0.615 -0.471 -0.615 1.500 9.967
0.377 nan -23.966 -0.590 -0.432 -0.590 1.739 9.965
0.613 nan -23.967 -0.570 -0.425 -0.570 1.991 9.961
0.860 nan -23.967 -0.511 -0.457 -0.511 2.284 9.957
1.126 -1.633 -23.972 -0.470 -0.628 -0.493 2.626 9.952
1.390 nan -23.981 -0.587 -0.572 -0.587 2.942 9.945
1.622 nan -23.984 -0.646 -0.484 -0.646 3.173 9.938
1.845 nan -23.984 -0.672 -0.449 -0.672 3.375 9.930
2.064 nan -23.985 -0.680 -0.434 -0.680 3.570 9.921
2.283 nan -23.985 -0.681 -0.423 -0.681 3.768 9.911
2.501 nan -23.986 -0.682 -0.421 -0.682 3.977 9.899
2.719 nan -23.986 -0.698 -0.419 -0.698 4.199 9.887
2.934 nan -23.985 -0.735 -0.417 -0.735 4.436 9.872
3.141 nan -23.985 -0.824 -0.415 -0.824 4.684 9.856
3.339 nan -23.985 -0.977 -0.411 -0.977 4.940 9.839
3.527 nan -23.985 -1.233 -0.408 -1.233 5.209 9.822
3.707 nan -23.985 -1.656 -0.405 -1.656 5.494 9.804
3.882 nan -23.985 -2.151 -0.403 -2.151 5.797 9.786
4.057 nan -23.986 -2.099 -0.401 -2.099 6.117 9.768
4.232 nan -23.985 -1.779 -0.403 -1.779 6.448 9.748
4.410 nan -23.985 -1.463 -0.403 -1.463 6.785 9.727
4.592 nan -23.985 -1.175 -0.404 -1.175 7.124 9.703
4.783 nan -23.984 -0.939 -0.404 -0.939 7.460 9.677
4.985 nan -23.984 -0.782 -0.403 -0.782 7.784 9.645
5.197 nan -23.985 -0.708 -0.403 -0.708 8.080 9.607
5.415 nan -23.985 -0.686 -0.402 -0.686 8.342 9.558
5.634 nan -23.985 -0.689 -0.401 -0.689 8.571 9.497
5.852 nan -23.985 -0.698 -0.401 -0.698 8.777 9.417
6.068 nan -23.984 -0.707 -0.400 -0.707 8.967 9.309
6.279 nan -23.984 -0.713 -0.400 -0.713 9.142 9.152
6.427 nan -23.984 -0.714 -0.400 -0.714 9.262 8.978
6.520 nan -23.984 -0.715 -0.400 -0.715 9.337 8.804
6.581 nan -23.984 -0.714 -0.400 -0.714 9.386 8.630
6.621 nan -23.984 -0.714 -0.400 -0.714 9.417 8.456
6.647 nan -23.984 -0.714 -0.400 -0.714 9.438 8.283
6.664 nan -23.984 -0.714 -0.400 -0.714 9.452 8.109
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