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Curiosity demands that we ask questions, that we try to put things
together and try to understand this multitude of aspects as perhaps resulting
from the action of a relatively small number of elemental things and forces
acting in an infinite variety of combinations.

— Richard P. Feynman
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Abstract



iv
Pulsars emit radiation over an extremely wide frequency range, from radio through
gammal] Recently, systems in which this radiation significantly alters the atmospheres
of low-mass pulsar companions have been discovered?l These systems, ranging from
ones with highly anisotropic heating to those with transient X-ray emissions, represent
an exciting opportunity to investigate pulsars through the changes they induce in their
companions. In this work, we present both analytic and numerical work investigating
these phenomena, with a particular focus on atmospheric heat transport, transient
phenomena, and the possibility of deep heating via gamma rays. We find that certain
classes of binary systems may explain decadal-timescale X-ray transient phenomena’}
as well as the formation of so-called redback companion systemsf_f]. We also posit an
explanation for the formation of high-eccentricity millisecond pulsars with white dwarf

companiondﬂ. In addition, we examine the temperature anisotropy induced by the

LA. Smith David. “Gamma Ray Pulsars with the Fermi LAT”. in: 3rd Fermi Symposium. May
2011. URL: http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/sessioni4/
Smith_FermiPSRs.pdf; H. et al Anderhub. “Search for Very High Energy Gamma-ray Emission
from Pulsar-Pulsar Wind Nebula Systems with the MAGIC Telescope”. In: The Astrophysical
Journal 710.1 (2010), p. 828. URL: http://stacks.iop.org/0004-637X/710/i=1/a=828; T.
Padmanabhan. Theoretical Astrophysics. Vol. 2. ISBN: 978-0521566315. Cambridge University
Press, 2001. Chap. 6.

2Mallory S. E. Roberts. Surrounded by Spiders! New Black Widows and Redbacks in the Galactic
Field. 2012. eprint: arXiv:1210.6903. URL: http://arxiv.org/abs/1210.6903; M. T. Reynolds
et al. “The light curve of the companion to PSR B1957420”. In: Monthly Notices of the Royal
Astronomical Society 379.3 (2007), pp. 1117-1122. po1: 10.1111/j.1365-2966.2007.11991 . x.
eprint: http://arxiv.org/abs/0705.2514. URL: http://mnras.oxfordjournals.org/content/
379/3/1117 .abstract.

SM. Linares. “X-Ray States of Redback Millisecond Pulsars”. In: The Astrophysical Journal 795,
72 (Nov. 2014), p. 72. DOI: 10.1088/0004-637X/795/1/72. arXiv: 1406.2384 [astro-ph.HE].

4P. Podsiadlowski, S. Rappaport, and E. D. Pfahl. “Evolutionary Sequences for Low- and
Intermediate-Mass X-Ray Binaries”. In: The Astrophysical Journal 565 (Feb. 2002), pp. 1107—
1133. DOI: |10.1086/324686. eprint: astro-ph/0107261; P. Podsiadlowski. “Irradiation-
driven mass transfer low-mass X-ray binaries”. In: Nature 350 (Mar. 1991), pp. 136-138. DoOI:
10.1038/350136a0.

°B. Knispel et al. “Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric
Binary Orbit”. In: ArXiv e-prints (Apr. 2015). arXiv: 1504.03684 [astro-ph.HE].


http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/session14/Smith_FermiPSRs.pdf
http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/session14/Smith_FermiPSRs.pdf
http://stacks.iop.org/0004-637X/710/i=1/a=828
arXiv:1210.6903
http://arxiv.org/abs/1210.6903
http://dx.doi.org/10.1111/j.1365-2966.2007.11991.x
http://arxiv.org/abs/0705.2514
http://mnras.oxfordjournals.org/content/379/3/1117.abstract
http://mnras.oxfordjournals.org/content/379/3/1117.abstract
http://dx.doi.org/10.1088/0004-637X/795/1/72
http://arxiv.org/abs/1406.2384
http://dx.doi.org/10.1086/324686
astro-ph/0107261
http://dx.doi.org/10.1038/350136a0
http://arxiv.org/abs/1504.03684

Pulsar in its companion, and demonstrate that this may be used to infer properties
of both the companion and the Pulsar wind. Finally, we explore the possibility of

spontaneously generated banded winds in rapidly rotating convecting objects.



Contents

[Acknowledgements|

[Abstractl

[Definition of Symbols|

[List of Figures|
Motivation

I Physics|

[1 Geometry and Optical Depth|

2 OneDi . [Model
[2.1 Equations of Stellar Structure| . .
2.2 Simulationsf . . ... ... ...
[2.3  Luminosity and Radial Variation|

[3 Higher Dimensional Models|
[3.1  Zero-Wind Analytic Model| . . . .
[3.1.1 T[terative Methodl . . . . .
[3.1.2  Eigenfunction Expansion| .
(3.2 Zero-Divergence Wind Model| . .

I Rewd FFTnid Mechamics
[4.1  Microscopic Viscosity| . . . . . . .
(4.2 Reynolds Number|{. . . . . . . ..
[4.3  Rayleigh Number| . . . . . . . ..

vi

ii

ix

xvii

14
14
18
28

36
39
40
42
46



CONTENTS vii

4.4 Richardson Numberf. . . . . . . ... ..o 59
[4.5 Rossby Number| . . . . . . . . . ... 61
4.6 Mach Number . . . . . . . . .. ... 62

[5 Stability and Turbulence| 65
[b. 1 Sheared Convectionl . . . . . . . . . . . . . ... 66

O 1.1 Shear-dominated flow]. . . . . . . . ... ... 0L 69

b.1.2  Convection-dominated flowl. . . . . ... ... ... ... ... 72

bh.1.3  Mixed shear-convective flow] . . . . . . ... ... ... ... .. 73

h.2  Non-Convective Shear] . . . . ... ... ... ... ... ... .... 75

6 Global Wind Patterns| 79
6.1 Turbulent Zonal Flow|. . . . . . . . .. ... .. ... ... ... .. 79
6.2 Alternative Patterns . . . . . . . .. .. .. ... .. ... ... 82
[6.2.1  Large Rossby Number| . . . . .. ... ... ... ... .... 83

[6.2.2  Small Rossby Number| . . . . . . .. ... ... ... ... .. 88

6.3 Deciding| . . . . . . ... 92
[6.4 Convective Reynold’s Stress| . . . . . . . .. ... .. ... ... ... 100
[6.5 Summary of Results| . . . .. ... ... ... 0000 104

[ Higher Dimensional Models with Transport| 110
[(1 Radiative Starsl . . . . . . . . . . .o 111
(.2 Convective Starsl . . . . . . . . ..o 115
[.3  Crossover Behavior] . . . . . ... ... ... ... ... ... .... 117

8 Time Dependence 125
[8.1 Assumptions and Computational Methods| . . . . . .. ... ... .. 125
(8.2  Fully Radiative Stars| . . . . . .. .. ... ... ... .. 129
(8.3 Fully Convective Stars| . . . . . . . . . ... ... ... ..., 132
8.4 Mixed Starsl . . . . . ... 138
(II  Applications in Astronomy| 144
[9 X-Ray Binaries| 145
01 Accretionratel . . . . . . ... 145
[9.2  Pre-Roche Expansion| . . . . . . ... ... ... ... 147
9.3 Post-Roche Accretionl . . . . . . . ... .. ... 152




CONTENTS viii

9.5 Limit Cycles|. . . . . . . . . . . 163
(L0 Accretion Induced Collapse] 173
(11 Spotted Black Widows| 179

11.1 Setup|. . . . . . . . 180

(11.2 Main Sequence Solutions| . . . . . . . . . . . ... ... ... ..., 183

(11.3 Brown Dwarfsl . . . . . . . . . .. .. .. 190
12 Banded Stars| 198
|Appendices| 204
[A Viscosity Code) 204
(B Acorn Stellar Integration Code| 207

[B.1 Opal and Ferguson Opacity Table Parser| . . . . . ... ... ... .. 207

[B.2  Stellar Integration Code| . . . . . . . . ... ... 211
[C Gob Stellar Integration Code| 239
[D Anisotropy Code] 266
[E2_Reference Stellar Models| 271

(Bibliography| 291




Definition of Symbols

iX

Symbol  Name Definition/Value/[Units]
log Logarithm base 10

In Logarithm base e

G Newton’s Constant 6.673 x 10_8ergfg—r§
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R, Solar Radius 6.955 x 10%m

Lo Solar Luminosity 3.83 x 103%erg /s

my Proton Mass 1.6605 x 10~%g

a Radiation Constant 7.57 x 1071 S
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R, Rydberg - Hydrogen Ionization Energy 2.179872 x 10~ Herg
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by Column Density [g/cm?|
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Ry Orbital Radius [cm]
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w Pulsar frequency [rad/s]

2 Depth [em)]

g Acceleration due to Gravity aM

P Pressure [erg/cm?®]

p Density [g/cm?]

T Temperature (K]

u Specific Internal Energy [erg/cm?®]

s Specific Entropy [erg /K /cm?]
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F, Radiative Flux 12 ). T

L. External Luminosity lerg/s]
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Krad Radiative Thermal Conductivity ool
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p Specific Heat Capacity (Constant Pressure) Ve
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14 Mean Free Particle Mass py;T

Vs Speed of Sound %

h Pressure Scale Height ds. _ 2




Symbol  Name Definition/Value/[Units]
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Tw Wind Circulation Time %"
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Ri Richardson Number %

Ri. Critical Richardson Number
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Re. Critical Reynolds Number

o4 Thermal Expansion Coefficient K]
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Motivation

If you haven’t found something strange during the day, it hasn’t been much
of a day.
— John Archibald Wheeler

Pulsars, highly magnetic compact stellar remnants, exhibit some of the most un-
usual behaviors in the universe by virtue of existing at length and energy scales where
general relativity and quantum field theory are both relevant. Pulsar gravitational
fields are typically so strong that in binary pairs they emit significant gravitational
radiation. The magnetic field near a pulsar’s surface is strong enough that the index
of refraction of the vacuum deviates significantly from unity, and particle pair creation
helps create an ionized wind which travels relativistically away from the pulsai’|

Most of what is known of pulsars comes from radio timing datafl Pulsars may be
thought of as spherical magnetic dipoles approximately 10km in radius with surface
magnetic fields between 10*Gauss and 10'°Gauss, spinning with periods between
millisecond and second timescalesﬂ As a result of the large electric fields created by
the rotating magnetic dipole moment, particles are created and carry energy, both
kinetic and in the form of a Poynting flux, away from the pulsar. As these particles
move they also radiate gamma-rays. Observationally, this means that pulsars appear
in a wide band of radio frequencies as a periodic short pulse, while also being active
through very high energies. The timing of these pulses has informed much of what is
currently known about pulsars.

"Padmanabhan, op. cit.

8Dipankar Bhattacharya. “The Evolution of the Magnetic Fields of Neutron Stars”. In: .J.
Astrophys. Astr. 16 (Mar. 1994), pp. 217-232. URL: http://www.ias.ac.in/jarch/jaa/16/217+
232 pdfl

“Tdem, [“The Evolution of the Magnetic Fields of Neutron Stars”; José A. Pons et al. “Evidence
for Heating of Neutron Stars by Magnetic-Field Decay”. In: Phys. Rev. Lett. 98 (7 Feb. 2007),
p. 071101. DoOI: [10.1103/PhysRevLett.98.071101. eprint: http://arxiv.org/pdf/astro~
ph/0607583 . pdf Torigin=publication_detaill. URL: http://link.aps.org/doi/10.1103/
PhysRevLett.98.071101.
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More specifically, pulsars have masses and radii in a very small range constrained
by models of the degenerate nuclear equation of statd'} From dispersion delay data
at different frequencies it is possible to determine the electron column density in
the interstellar medium between Earth and the pulsar, which can give a distance
estimatd'] Measurement of the pulse period gives the angular frequency w. Combined
with the mass and radius this gives the rotational energy of the pulsar:

Loy, 1 2 2
E=_-Ilw"=_-MRw (1)
2 >
Measurement of the rate at which the pulse period changes gives w, which then gives
the rate at which the pulsar rotational energy changes:
. 2 9 .
E = 5M Rww (2)
Equating this with the energy loss rate of a magnetic dipole then gives the surface
dipole magnetic field. Measurement of w can also give insight into the mechanisms
transferring angular momentum to or from the pulsar by giving an estimate of the
braking index"}

While these techniques give significant insight into the properties of the pulsar,
they give very little information regarding the surrounding environment. In particular,
the properties of the pulsar wind are currently not very well known. While it is
known that some fraction of the outgoing electromagnetic flux must be converted
into a particle flux at the light cylinder of radius

R, = —, 3
= (3)
little is known of the nature of this conversion and the effect it has on the radiation
portion of the energy flux. Recently, a number of binary systems composed of a
pulsar and star orbiting it have been discovered in which the pulsar wind causes
observable changes in the companion star[T_g]. If the companion star has a mass less

10Padmanabhan, |op. cit.; J. M. Lattimer and M. Prakash. “Neutron Star Structure and the
Equation of State”. In: The Astrophysical Journal 550.1 (2001), p. 426. eprint: http://arxiv|
org/abs/astro-ph/0002232. URL: http://stacks.iop.org/0004-637X/550/i=1/a=426.

tAndrea N Lommen and Paul Demorest. “Pulsar timing techniques”. In: Classical and Quantum
Gravity 30.22 (2013), p. 224001. eprint: http://arxiv.org/abs/1309.1767. URL: http:
//stacks.iop.org/0264-9381/30/1i=22/a=224001.

2Padmanabhan, lop. cit.

13R. P. Breton et al. “Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond
Pulsars”. In: The Astrophysical Journal 769 (2013), p. 108. URL: http://arxiv.org/abs/1302|
1790L
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than the 0.08 M, minimum required to sustain fusion, the system is known as a Black
Widow{!] and if the pulsar wind heats the companion and causes it to swell to fill its
Roche lobe, the system is known as a Redbackff].

In the vast majority of Black Widows, even heating is seen on the pulsar-facing
side{lﬂ There is one, however, known as PSR J1544-4937, in which the heating
appears to be highly concentrated towards a small set of points on the companion.
This indicates effects involving the interaction between the wind and the companion
magnetosphere.

In the case of Redbacks, it is possible that Roche lobe-filling companions can
begin an accretion process onto the pulsar as a result of heating from the wind. If
this occurs, the system can become an X-ray binary. There are several known cases
of X-ray binaries which turn on and off on timescales of ~ 10yrd""} This may be due
to the accretion disk burying the magnetic field of the pulsar, allowing the companion
to cool and thereby halting the accretion procesﬂ. Under this model, when the
accretion rate drops sufficiently the process begins again.

Both kinds of systems offer an opportunity to learn more about the pulsar wind,
in particular as the effects of the wind on the companion are strongly influenced by
its composition. For typical low-frequency radiation (anything ranging up to X-rays
in energy), the region which the wind heats is in the upper atmosphere of the star,
near the photosphere. The result is that the radiation is just re-radiated without
significantly altering the structure of the atmosphere. The net effect is a rise in

4Roberts, lop. cit.; D. J. Stevenson. “The search for brown dwarfs”. In: Annual Review of
Astronomy and Astrophysics 29 (1991), pp. 163-193. DOI: |10.1146/annurev.aa.29.090191 |
001115,

»Haji-Liang Chen et al. “Formation of Black Widows and Redbacks—Two Distinct Populations of
Eclipsing Binary Millisecond Pulsars”. In: The Astrophysical Journal 775.1 (2013), p. 27. eprint:
http://arxiv.org/abs/1308.4107. URL: http://stacks.iop.org/0004-637X/775/i=1/a=27,

oReynolds et al.,|op. cit.; Roger W. Romani et al. “PSR J1311-3430: A Heavyweight Neutron Star
with a Flyweight Helium Companion”. In: The Astrophysical Journal Letters 760.2 (2012), p. L36.
eprint: http://arxiv.org/abs/1210.6884. URL: http://stacks.iop.org/2041-8205/760/i=
2/a=L36; M. H. van Kerkwijk, R. P. Breton, and S. R. Kulkarni. “Evidence for a Massive Neutron
Star from a Radial-velocity Study of the Companion to the Black-widow Pulsar PSR B1957+420".
In: The Astrophysical Journal 728.2 (2011), p. 95. eprint: http://arxiv.org/abs/1009.5427.
URL: http://stacks.iop.org/0004-637X/728/i=2/a=95.

TIcdem, B. and Baykal, A. “Viscous timescale in high mass X-ray binaries”. In: Astronomy and
Astrophysics 529 (2011), A7. poI: [10.1051/0004-6361/201015810. eprint: http://arxiv.org/
abs/1102.4203. URL: http://dx.doi.org/10.1051/0004-6361/201015810.

18], Hessels. “M28I and J1023+0038: The Missing Links Go Missing, but Provide a New Link”. In:
NS Workshop. Dec. 2013. URL: http://www.astro.uni-bonn.de/NS2013-2/Hessel_M28i.pdfl
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temperature on the near-side according to the Stefan-Boltzmann law:

ArR*cT?

new

= 4rR*0T5, + Le. (4)

The far-side does not heat at all, as there is no time to move the absorbed heat
around the star before reemission occurs.

When the radiation is higher in energy, or is made of massive particles, the
situation is somewhat different. High energy radiation can penetrate quite deep into
the star, as will be discussed later. Massive particles can likewise make it quite far,
particularly if they are uncharged. Charged massive particles are, however, limited by
the ionization zone in how far they may travel. Regardless of the specific form of the
external heating, when it occurs at depth the picture is very different. In particular,
the heat has some time to be redistributed within the star rather than immediately
escaping to the near-side. The formal statement of this effect is that the time it takes
for the heat to be nontrivially redistributed is now comparable to or shorter than
the radiative relaxation time. Profound structural changes in the stellar atmosphere
may occur, including the excitation of gravity waves, strong zonal winds, tropical
hurricanes, and the inducement of swelling in the deeper regions of the atmosphere.
This last symptom of external heating may be responsible for the observed Roche-lobe
filling in certain Redback systems, with the eponymous thermal difference on the
surface between the two sides of the star being due to the non-penetrative flux of the
Pulsar wind.

As these phenomena couple heat transport, fluid mechanics, orbital mechanics,
and various pieces of thermodynamic microphysics, we will discuss the physics first,
and then the astronomy. Along the way, we will use examples from astronomy to
illustrate relations, gain intuition, and build models, but only at the end will the
astrophysical phenomena of interest be discussed in full.



Part 1

Physics



1

Geometry and Optical Depth
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There is geometry in the humming of the strings, there is music in the spacing of the
spheres.
— Pythagoras

The geometry of the situations of interest is outlined in Fig. [I.1 The companion
star and pulsar orbit their center of mass with angular velocity 2. The companion is
tidally locked, and hence {2 is also its rotation rate. The pulsar, on the other hand,
has rotation rate w > ). The two objects are separated by distance R,, and have
masses M, and M for the pulsar and companion respectively. The star has radius R.
Note that the relative distances depicted are not shown to scale. The heating zone is,
for any kind of radiation, the region surrounding the surface of unit optical depth. In
the cases of interest the source is positioned on one side of the companion and is far
enough away that it may be viewed as roughly a planar wavefront.

To determine where the heating zone lies, we must examine the optical depth
associated with various kinds of radiation incident on the surface of the star. Below
10keV, the chief scattering processes are resonant absorption and Rayleigh scatter-
ingﬂ. Above this scale, Compton scattering becomes the dominant process,until
approximately 1MeV ~ 2m,, at which point the dominant process is pair production.
This state of affairs continues to arbitrarily high energies once the electron-positron
pair production threshold is crossed. The use of the pair production decay channel,
however, means that there will be more particles present after the initial scattering,
and these may continue moving through the star for some distance before further
scattering thermalizes them. If the resulting particles have energies above some
critical level, the dominant process once all channels and possibilities are accounted
for will continue to be pair production.

The net result of all of this is that for incident radiation below a critical energy, a
single scattering event suffices and the cross-section directly gives the depth at which
the radiation deposits heat. This gives

1
Y= o (1.1)
where x is the mass attenuation coefficient corresponding to the material and particle
kind. Above the critical energy, the resulting particles from the first scattering continue
to produce further particles until their descendents drop below the critical energy
and produce heat. At each stage in the shower, additional particles are produced
with energies approximately two times lower than what they started with, so if F,

1J. et al Beringer. “Particle Data Group”. In: Phys. Rev. D 86 (2012), p. 010001.
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Heating Zone

< >
Ro

Pulsar Companion Star

Figure 1.1: Depiction of a pulsar and its companion. Note that none of the depictions
are to scale. The companion orbits with angular velocity equal to its rotational
angular velocities due to tidal locking effects. The pular and companion are separated
by a distance R,. Their masses are M, and M respectively. The star has radius R.
The heating zone is, for any kind of radiation, the region of unit optical depth given
that the radiation is incident from one side and that the source is far enough away
that it may be viewed as a planar wavefront.
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is the energy of the photon and E.,.; is the critical energy, a total of approximately
log,(E,/Eeit) are created. If the scattering cross-section at each stage is roughly
constant, as is expected in the case of energies above GeV scalesE], then this means
that the column density at which heat is produced should be

1 E
po (14, ),
R * 082 Ecm't
The critical energy is given approximatelyﬂ in gases by

710MeV
Z +0.92

E crit —

where Z is the number of protons in a nucleus. For hydrogen this simplifies to
E i = 370MeV.

Plots of k7! and the corresponding % are shown in Fig. and Fig. respectively.
For hydrogen, the value of x~! is approximately 100g/cm? for all energies beyond
E..;+ which have been measuredE], going up through 100GeV. Thus

g L, )
Y =100—-= (1 +1 — .
cm? ( +l08 370MeV

Typical pulsar photon energies in the upper end of the spectrum are of order hundreds
of GeV] Substituting this in gives roughly

&

S =10°—=5.
cm

(1.2)
This is the column density at which a stellar companion transforms the pulsar’s
gamma rays into heat, and we will use this value in calculations involving the heating
depth. To most appropriately model the physical process of particle showers and
absorption, we will treat the incident luminosity as following

Le(X) = Lee ™/, (1.3)

ZIbid.

3bid.

%Ibid.

6A. Smith David. “Gamma Ray Pulsars with the Fermi LAT”. in: 3rd Fermi Symposium. May
2011. URL: http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2011/program/sessionl4/
Smith_FermiPSRs.pdf; H. et al Anderhub. “Search for Very High Energy Gamma-ray Emission
from Pulsar-Pulsar Wind Nebula Systems with the MAGIC Telescope”. In: The Astrophysical
Journal 710.1 (2010), p. 828. URL: http://stacks.iop.org/0004-637X/710/i=1/a=828.
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Figure 1.2: log x~! is plotted versus log E. The former is measured in g/cm? and the
latter in eV. Data was extracted manually from plots in the Particle Data Group
bookﬂ, and so has some uncertainty associated with the conversion process.
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Figure 1.3: log ¥ is plotted versus log E. The former is measured in g/cm? and the
latter in eV.

where L. measures only the high-energy photons. Low energy photons are ignored,
as they are absorbed and reemitted soon thereafter in the photosphere.

Armed with this information regarding the structure of the heating zone, we
can in principle take a three-dimensional model of a star and compute the spatial
dependence of the heating. Again, in principle, this may be used to compute the
resulting effects on the star. For the purposes of gaining physical intuition, however,
this is not the most effective way to proceed, for there are many simplifications which
may save substantially on computational effort and may make clearer the relevant
physics.

The most basic model for the companion star which captures some of the physics
of interest is to treat it as one-dimensional, and ignore the azimuthal symmetry
breaking which results from the tidal locking. In this case, the star is parametrized by
a series of functions of the radial coordinate, such as temperature, pressure, and so on.
Though this model neglects a significant physical asymmetry, it is advantageous in its
mathematical and computational simplicity, and so will be our starting point. Within
the context of this model, we will treat all physical quantities as their averages over
the angular coordinates, such that the externally incident flux will sum up to the
same total luminosity. As a result, this model is often referred to as the plane-parallel
or isotropic atmosphere, for in it there is only one coordinate (depth) which matters.
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After this model, the next modification will be to examine higher-dimensional
models. We will examine both two-dimensional models which add just the azimuthal
coordinate ¢ and fully three dimensional models. In the former, we will treat all
quantities as their average over the spherical polar angle 6, while the latter holds the
full dimensionality of the system.

Beyond spatial dimensions, there is also the question of time. Initially we will
consider all solutions in the steady-state. After this, we will shift to considering the
time-dependence of these models, and exa mine both the stability of the steady-state
solutions and the means by which they are reached.
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2

One-Dimensional Model

There is a computer disease that anybody who works with computers knows
about. It’s a very serious disease and it interferes completely with the
work. The trouble with computers is that you "play" with them/

— Richard P. Feynman[]

2.1 Equations of Stellar Structure

In the isotropic steady-state model, we treat all quantities in the companion as
functions of r, the distance from its center. No other independent variable enters in
this model, as t is forbidden by the steady-state assumption and € and ¢ are forbidden
by the isotropy assumption. Thus we write temperature as T'(r), pressure as P(r),
and so on.

To a very good approximation, we may neglect the variation in the composition
of the star with position. That is, we treat all compositional variables as global
constants, such that X (r) = Xy, the hydrogen mass fraction in the star, and likewise
for all other such quantities. In making this approximation we mainly lose accuracy in
calculating the properties of convection zones, though there our accuracy is primarily
limited by the uncertainty in the choice of mixing length, and so this loss is acceptable.

The remaining spatial variables are then only thermodynamic ones. Of these,
one might pick as "fundamental" ones the pressure, temperature, density, and mean

'Richard P. Feynman. Los Alamos From Below. https://www . youtube . com/watch?
v =00gSC6JKkrY. Feb. 6, 1975. URL: http://calteches . library . caltech.edu/34/3/
FeynmanLosAlamos.htm.
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molecular Weightﬂ All other quantities of interest may be derived from these. We
may, however, eliminate p, for it is a direct function of 7. This follows from the
fact that we have held compositional variables fixed, such that p varies only through
ionization.ﬂ This variation occurs mainly when kg7 is comparable to 13.6eV, and is
generally taken to happen between 103®K and 10*'K. The value of 13.6eV, of course,
is the ionization energy of hydrogen.

Using the equation of state, we may eliminate yet another function, to reduce
the total count of "fundamental" thermodynamic variables at each point to two. The
equation of state is most generally written as

P = f(p,T), (2.1)

though it is usually well approximated by the form
1
uP = pkpT + gaT"‘, (2.2)

where the second term is included to accommodate radiation pressure. At low
temperatures the second term may be dropped, yielding the familiar ideal gas law.
Regardless of the specific form, we will use the equation of state to eliminate the
density from consideration, and hence write

p=g(P.T). (2.3)

Our ability to write it in this form comes from P being monotonic in p and 7. We
choose p rather than 7" or P because we generally wish to compute heat transport
properties in terms of temperature, and in hydrostatic equilibrium the pressure is
computable by a straightforward integral. As a result, we are left with two basic
functions, P(r) and T'(r), which fully characterize the star to within our various
approximations.

It will often be more convenient to replace r» with m, the mass above a particular
radius, as the independent variable. As m is monotonically decreasing with r this
is a perfectly well-defined transformation. We thus write P = P(m),T = T(m). In
this language, the condition of hydrostatic equilibrium may be cast into a convenient
form, as

apP aP g
T G T I
Now over the depth ranges of interest, as will be verified later, r varies only slightly
relative to R. As a result, we may neglect its variation in computing quantities

(2.4)

20ther valid choices include specific energy, specific entropy, sound speed, etc.
3At high pressures it may also depend on pressure, and indeed we will account for this
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in which r appears as a multiplicative factor. This is known as the thin-envelope
assumption, and has several useful implications. For instance, we may approximate
the gravity of the star as being fixed at

GM

g= 7 (2.5)
As a result, we may write the condition of hydrostatic equilibrium as
dP GM
dm — 4mR* (2:6)
Using the boundary condition P(r = o0) = 0, m(r = 0o) = 0 we find
GMm
P = . 2.
(m) = (2.7
Note that we may also use the variable
m
Y= 2.8
41 R? (28)

as the independent variable. Given that this is the form in which we know the heating
depth, we will often switch to using this rather than m.

Given T'(m), in addition to what we have found so far, we will know the structure
of the star to within the bounds of our approximations. As a result, we know that
T'(m) must depend in some fashion on the luminosity of the star and on the external
illumination we hope to investigate, for these quantities appear nowhere else and they
seem quite important. To that end, consider the outer boundary condition on the
star. There are a variety of models for thifY, but most treat the low-m regime by
some gas-radiation dilution model and use this to find the optical depth along the
radial direction. From there, it is typically asserted that

L =47 R*oT* (2.9)

at the place where the optical depth 7 = 2/3. This is just an application of the
Stephan-Boltzmann radiation law to a gray-body atmosphere, with an effective
treatment for the differing rates at which different frequencies of radiation escape at
low optical depth. We will not go into the specific details of the model we used, and
merely state that they are those described in Ref.E].

4B. Paczynski. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
SIbid.
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From this upper boundary condition on 7', we may integrate towards higher m
using the equation

dT  (dWwT\ TdP _TdP
( - ) ~-v (2.10)

dlnP) Pdm  Pdm’
where the second equality defines the symbol V and where the derivative with respect
to In P is taken along the radial direction. This last point is not relevant in an
isotropic star, where VT' and Vp are aligned, but will become important when we
move to higher dimensional models.

Of course, there is no physical content in Eq. : it is simply a true statement
regarding differentiable functions. The reason we bother to cast the problem in this
form is that V may often be expressed simply. In regions of the star where heat is
transported radiatively,

dm

3kPL
16TacGMTY
where « is the Rosseland mean opacity of the stellar material, and is generally a
function of P and T'. On the other hand, when the region of interest is unstable against
convection, the thermal gradient V is somewhat more complicated. If convection is
efficient, then the convective gradient matches the adiabatic gradient, such that

V =V = (2.11)

dlnT

V=Vl = gnp)

(2.12)

This gradient is typically 0.4 for monatomic gas and for fully ionized gas, and drops
to 0.1 — 0.2 in the ionization zone. If, on the other hand, convection is inefficient,
then matters become somewhat more complex, as then both radiation and convection
contribute nontrivially to thermal transport. The full solution for the convective
gradient in this case is somewhat complicated, and involves the root of a cubic with
a closed form which does not yield much intuition. Various methods of numerical
solution have been developedﬂ and will be employed in the next section. As will be
shown later, however, convection is usually highly efficient in the cases of interest,
and so setting V = V4 in convecting regions is generally accurate.

It is worth noting that the question of convective stability is much simpler in stars
than in other contexts. The microscopic viscosity of stellar atmospheres is generally
far too low to stop convection[]. This is a statement about the typically large value of
the Rayleigh number whenever the radiative gradient exceeds the adiabatic one. Thus

8Ibid.
"This will be discussed at length when we examine the properties of fluids in motion for higher
dimensional heat transport
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in the absence of shear turbulence the primary criterion determining if convection
occurs 1s

Viad > Vaa. (2.13)

If this condition is satisfied then convection occurs. Loosely speaking this criterion
may be thought of as indicating that the temperature gradient needed to carry the
thermal flux through radiation is too high relative to the buoyancy experienced by
an adiabatically expanding packet of gas. The result is a convective instability.

The only remaining piece of physics we need to compute stellar structures with
the above equations is k. This we take from tables such that those of OPAIE| and
Fergusonﬂ as discussed in Appendix . A plot of the opacities produced by these
tables at X = 0.7,Y = 0.27, Z = 0.03 is shown in figure

2.2 Simulations

Armed with the equations of stellar structure, we may simulate a variety of stars
numerically to see how they respond to different amounts of external illumination. The
purpose of these initial simulations is to gain intuition for the relevant phenomenology,
and to determine reasonable ranges for the various parameters such as temperature,
pressure, and so on.

Initially, all simulations were done using a modified version of the Gob software
package, originally written for Red Giant envelope integrationﬂ. The original and
modified codes may be found in Appendix [C] A modern code known as Acorn was
then written as part of this thesis to incorporate recent advances in low-temperature
stellar opacity models. In addition, it uses a much finer adaptive mass grid, resulting
in more accurate and smoother stellar profiled'!] This code was then verified in
the high-temperature limit against Gob, and the microphysical inputs were verified
independently in the low-temperature limit. The details of this code may be found in
Appendix with details on the opacity tables and associated interpolation routines
in Appendix . The code solves precisely the same equations as Gob@, with the

8C. A. Iglesias and F. J. Rogers. “Updated Opal Opacities”. In: The Astrophysical Journal 464
(June 1996), p. 943. DOI: |10.1086/177381.

9Jason W. Ferguson et al. “Low-Temperature Opacities”. In: The Astrophysical Journal 623.1
(2005), p. 585. URL: http://stacks.iop.org/0004-637X/623/i=1/a=585.

OPaczynski, lop. cit.

"'The smoothness of the resulting profiles is particularly important, as we will use the output
from the steady-state code as the input to the transient code, which requires evaluating numerical
derivatives in mass.

12Paczynski, lop. cit.


http://dx.doi.org/10.1086/177381
http://stacks.iop.org/0004-637X/623/i=1/a=585
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log x

log T

Figure 2.1: The vertical axis is log p (with p measured in g/cm?), the horizontal is
logT (with 7" measured in K), and the color represents log x (with x measured in

cm?/g. White regions are those without data.
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addition of the thin envelope assumption, such that M — m and r are taken not to
change, except where they appear explicitly as parameters for differentiation.

Though Acorn only computes stellar envelopes, this is more than enough to
examine the vicinity of ;. The heat input was modeled by changing the luminosity
of the star as a function of column density, according to

L(X) = Lip + Lee /0, (2.14)

A value of ¥; = 103g/cm? was used here, as per the discussion in Chapter [1]

To begin with, we consider models where the external illumination is imposed
whilst holding the star’s radius and intrinsic luminosity fixed. The following three
representative models for companion stars were chosen for the simulations:

e The Sun: M = My,L;,, = Lo, R = Rg
e Low-mass nuclear-burning: M = 0.3M,L;, = 107?L,R = 0.43R,,
e Brown dwarf: M = 0.02M,L;, = 107*Lo,R = 0.14R,

The full output from Acorn for each of these cases for a variety of external luminosities
may be found in Appendix [E]

The first aspect of these models worth investigating is the region of validity of
the thin-envelope approximation, which is the assumption that » ~ R everywhere in
the envelope. To see where this holds, we have plotted the radius as a function of X
in figure 2.2} For the 1M, star, the thin-envelope approximation is good down to
¥ = 10%/cm? or so, where deviations reach roughly 10%. For the 0.3M, star, the
approximation is valid everywhere with no external heating, down to ¥ = 107g/cm? for
L. = L;, and to ¥ = 105g/cm? for L, = 10L;. For both of these stars, deviations grow
rapidly past the regime of validity. Finally, for the 0.02M/ star, the approximation is
typically only valid within 10% down to ¥j. Past this, however, deviations grow much
more slowly than for the other two stars, and so the approximation may be safely
used down to around 10°g/cm?, where deviations reach 15%. Fortunately there are
no phenomena which are both sensitive to the high-X failure of this approximation
and are of significant quantitative interest, so this approximation is a safe one to
make. Subsequent plots will be truncated in their range of ¥ to that in which the
approximation is valid to within 50%.

We now turn to the thermal structure of the star. Figure [2.3| shows the log of
temperature versus the log of column density for nine scenarios. The three stars of
interest are represented by the columns, while three different external luminosities
are represented by the rows. The top row has no external illumination, the middle
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Figure 2.2: Radial coordinate (in cm) versus log of 3 (in g/cm?) for nine different
scenarios. Y here is computed as the mass above the point of interest divided by
47 R%. The columns are the three different stars under consideration. Moving left to
right, they are M = M, L;, = Lo, R = Ry, M = 0.3My,L;, = 1072Lo,R = 0.43R,,,
and M = 0.02M,L;, = 107*Lo,R = 0.14R. The rows represent different quantities

of external luminosity. From top to bottom, these are L, = 0, L. = Lg %2, L, =
10L¢ %2. The vertical grey bar goes from the edge of the photosphere (where 7 = 2/3)

to the heating depth (X = 103g/cm?). Blue regions are dominated by convective heat
transport, red by radiative transport.
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row has the illumination equal to Ly R*/R?2, and the bottom row has it equal to ten
times that. Note that for each mass, the radius was held constant. As a result, the
top row represents a nearly unmodified system, while the bottom row represents a
system dominated by the external heating.

Looking first at the sun, we see that adding external heating begins by shutting
down convection at the base of the envelope, and eventually leads to almost completely
radiative transport at high external luminosity. The only regions which remain
convective are those in the vicinity of the ionization zone, where the adiabatic
gradient is very low to begin with. This may be understood as a result of the external
heat decreasing the temperature gradient between the core and the heating depth,
while increasing it between this depth and the surface. In the former region this
suffices to switch the transport from convective to radiative, while the latter is very
stable against convection and so remains radiative. That the effect of the heating is
so much deeper than the heating depth may be viewed as due to the imposition of a
different boundary condition at this depth. In particular, the fact that we maintain a
fixed radius as we vary the flux means that the surface temperature scales as Li/e?.
In the 0.3M, star we see the same thing, though with convection holding on in a
larger region in the middle plot. In the 0.02M star, the same process is evidently
occurring, though the transition to radiative transport is not apparent until the final
plot. This is as we expect: at the lower temperatures which dominate in these stars,
radiative transport is less efficient and so the need for convective heat transport is
greater.

One interesting feature of note is the change in thermal gradient between T" = 10*K
and 7' = 10*°K. This occurs when the ionization zone is convective, which it almost
always is, and results from a decrease in the adiabatic gradient within the zone. The
reason this feature is not visible in each of the nine scenarios plotted in figure is
that in not all scenarios does the ionization zone fall within the envelope.

The next aspect of these models worth examining is the pressure scale height, h.
This sets the characteristic length scale for turbulence, wind shearing, and convective
motion, and so will be of interest at every stage of our analysis. The log of this height
is shown in figure In each of the models, h, increases monotonically into the star
past the photosphere, starting around 10%°cm near the surface and reaching values
only a few orders of magnitude smaller than R at the base of the envelope. In general,
we expect h, to follow a power-law as a function of ¥, and indeed this is what we see.
Deviations from this are typically due to changes in the mode of heat transport, or
to the ionization of material at various points.

Now we may also compute the efficiency of convection, I', defined as the ratio
of the heat carried by a convecting gas packet to the heat lost radiatively along the
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way. While a variety of expressions exist for this, we will make use of the one used in
the Gob stellar integration codeﬁ. The results of doing so are shown in figure .
This quantity is of interest because it is a good indicator of the extent to which the
balance between convection and radiation has been altered by the external heating,
as well as because it indicates the extent to which the convective gradient deviates
from the adiabatic one. In each of the unperturbed stars, convection is either highly
efficient at the heating depth or becomes very efficient close to the heating depth. In
shallower regions the efficiency decreases until convection ceases, with a sharp drop in
efficiency at the boundary. Importantly, the region over which the efficiency is low is
very small, as the slope of I' with respect to X is large near the radiative-convective
transition. In the perturbed stars, convection does not always occur in the same
region, as the additional heat may turn it off in the vicinity of the surface, but where
it does occur all of the same statements regarding its efficiency hold.

Finally, it is also useful to examine how x varies through each of the stellar models
of interest, and so this is shown in figure 2.6] Referencing figure we see a few
points worthy of discussion. First, many of the stellar tracks go outside of the known
opacity data. In most of these cases the stars are convective, with highly efficient
convection, and so the opacity is irrelevant. In every combination of the two low-mass
stars with the two lowest-heating values, however, we get a radiative region outside
of the known opacity data. In each case the issue arises because p is too large. The
opacity tables are internally stored using p/T3 and T as the independent variableﬂ.
Below 10°K the tables form a rectangular grid in these variables. As a result, these
tracks have exceeded the maximum value of p/T® for which we have data, while
remaining in an acceptable temperature range. The simulation code in these cases
simply returns the opacity at the correct temperature and maximum value of p/T?
for which data exists. Fortunately, however, examination of the corresponding regions
in figure [2.3] indicates that these regions are actually quite small in pressure-space,
and only appear stretched in this plot out because p changes more rapidly here.

The second feature worth noting is that the convergence of the various tracks
corresponding to the radiative atmospheres supports our conclusions regarding the
decay of heating into radiative zones. Likewise, the lack of convergence between the
analogous convective envelopes supports our conclusions regarding the continuation of
heating into convection zones. Additionally, the vast majority of each track, whether
measured by pressure-space or arc-length in log p,logT" space, is spent in regions

13Tbid.
14The first of these, p/T3, is often called R, and usually defined with p measured in units of
1g/cm?® and T measured in units of 10°K.
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where

0K

ar| =
This fact will become relevant later in the next section. Finally, the fact that the
minimum in s lies at temperatures comparable to those in the ionization zone means
that V,.q tends to peak where V4 is at a minimum, which encourages the formation
of a convection region around the ionization zone. This is seen even in the case of
heavy external illumination, which generally pushes stars towards radiative transport
even at depths much below where the additional heat is deposited.

0. (2.15)

2.3 Luminosity and Radial Variation

The simulations in the previous section were done with the radius and internal
luminosity of the star fixed. To be completely accurate, we should really do a
boundary condition matching between the photosphere and the nuclear burning
region, as is done in codes like MESAE. Instead, we will perform a much simpler
process, which consists of identifying roughly what the temperature change in the
bulk of the star is, and using that, along with the dependence of nuclear burning
on temperature, to estimate the balance between changing radius, changing surface
temperature, and changing internal luminosity.

To begin, let P, be the pressure at which the star changes from being convective
to being radiative. We usually expect stars to be convective for P < P, and radiative
for P > Pﬂ This is obviously not always the case, as there can be small regions
where convection turns on and off, but as a coarse view of things this is a good
approximation. Note that for fully radiative stars P, = 0 and for fully convective
stars Py = P.oe ~ 222M - The mixed case, where 0 < P, < P.,.., arises for stars of

4m
mass M € [0.43, 2] M,

15Bill Paxton et al. “Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations,
Rotation, and Massive Stars”. In: The Astrophysical Journal Supplement Series 208.1 (2013), p. 4.
URL: http://stacks.iop.org/0067-0049/208/i=1/a=4.

16The reason we expect convection on top is that V,..q decreases rapidly with temperature. In
an efficient convection zone T o PVed, where V.4 is usually around 0.4 except in the ionization
zone, where it drops to 0.1. V,qq, on the other hand, usually goes roughly as PT° oc P1=5Vad
in the star’s interior. When we look past the ionization zone, the exponent is negative, and so
Vradq eventually drops below V.4 at high pressure. There may of course be brief changes between
convective and radiative heat transport in the ionization zone, but below that region our arguments
should hold. Note that in computing V.4 we have factored in the approximate dependence of the
opacity on temperature and pressure.

1"Maurizio Salaris and Cassisi Santi. Evolution of stars and stellar populations. Vol. 1. ISBN:


http://stacks.iop.org/0067-0049/208/i=1/a=4
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If the star’s surface heats up by an amount AT, we may ask how much of a change
this causes in the matter below. In the radiation region, we know that

dT B 3xL
dP  16racGmT3’

where m is the mass below the pressure of interest. If we perturb this equation by
letting T'— T + 0T, and assume that T'(P) is a solution to the equation, then

d(oT) dT ( Olnk

(2.16)

dP_dpP\ oT

1
—3—=|oT. 2.1
) 3T> 5 (2.17)

Now « usually decreases with increasing temperature, at least once you look deeper
than the upper envelope, so the perturbation decreases exponentially as one goes to
higher pressures. This is consistent with the valve modelof radiative zoned™ For
fully radiative stars, then, we expect as a result that keeping R and L;, fixed is
appropriate.

In the convecting region things are somewhat more complicated. We know that
T o< PY ~ PVad_ If the temperature at some pressure Py is increased by T, then the
temperature changes all the way from Py to P, following the convective gradient. For
stars which have some nontrivial convection zone, let ATy be the temperature change
at Py, where we now restrict Py < P, and pick Py at the lowest possible pressure
below the photosphere. Recall that the radius of the star obeys

dr 1
_— = 2.18
dm  4mr?p (2.18)
This may also be written as
dr? 3
_— = 2.19
dm  4mp ( )
Differentiating with respect to time gives
d (dr? -3 (dl dr® (dl
@A) _ o (dmp)  drmfamp) (2.20)
dm \ dt dmp \ dt dm \ dt
At fixed pressure, dlnp = —dInT, neglecting the small space occupied by the
ionization zone, so
dlnp dinT
=— ) 2.21
dt dt (221)

0-470-09220-3. John Wiley Sons, 2005, pp. 138-140.
18H. Ritter, Z.-Y. Zhang, and U. Kolb. “Irradiation and mass transfer in low-mass compact
binaries”. In: Astronomy and Astrophysics 360 (Aug. 2000), p. 969. eprint: astro-ph/0005480.
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As a result,

3 3
d (dr)_drdlnTi (2.22)

dm \ dt | — dm dt

Integrating assuming fixed radius at the base of the convection zone allows us to write

dm

dV, dlnT
_ 9.9
o= Ve (2.23)
or dnV, dinT
n n
c _ 9.94
dt T (2:24)

where V. is the volume of the convection zone. Integrating with respect to time yields
AlnV,=AInT. (2.25)

If the position of the base of the convection zone is fixed and near the core, then this
reduces to

AlnR= ;AIHT. (2.26)

In the case of fully convective stars a fixed base is a fine assumption: V,.q is so
much greater than V4 that P, is just the core pressure. In the case of fully radiative
stars, we are likewise fine: increasing T' just lowers V,.q4, reinforcing the fact that
Vied < Vag. Thus we do not expect that if V, is zero for some T, it will become
nonzero at a larger T'. Between these two cases, we may compute the change that a
temperature perturbation has on the convective-radiative boundary.

Suppose that T'(P) is the unperturbed state and 07'(P) is the perturbation. Then

Vad = v7"ad (Péa T+ 5T) = VMLd (Pb7 T) ) (227)
and so
8medde + 8Tde8pTde + ﬁTvmdéT =0. (228)
From this it follows that
@ o _B ahrlTvv"ad - _B -3 + 8lnT Ink (2 29)
ar B T alnpvrad + valnTvracl T \1 + \Y (_3 + alnT In 5) . .

As V = V4 at the transition point, this simplifies to

de__P —3—|—61nTln/<;
1+ Vad(—3+61nTln/<) ’

dr ~— T

(2.30)
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Now Oy, 7 In k (holding P fixed) at high temperature and pressure is generally around
—3, and V4 under the same conditions is usually around 0.4, so this expression is
actually negative, with magnitude roughly given by —4P/T. Thus

dlIle
= — ~ 4. 2.31
Vo= T T (231)

As InT changes by the same amount everywhere in the convection zone, we may
substitute T for 7" and obtain the same result. This is consistent with what we see
in the top-left and middle-left of Figure [2.3] where logT' changes by one near the
base of the sun’s envelope and log P, changes by five or so towards the surface.

We may now examine the behavior of the radius of the base of the convection
zone. Let this radius be Rpage, the initial temperature at Fy be T ;, and the final
temperature at Fy be T ;. Using this, we write

dease o dease dIn Pb o
dinTy, dlnP,dInT,

dln Pf
‘V“dhsm = VaaVihs. (2.32)

Recalling that h, is a function only of T', we may find hs at the base using only
knowledge of the way the temperature at the base of the convection zone changes.
That is,

dlnTb OlnTb 8111Tb dlnPb
dinTy ~ OnTy|, OB, dinTyl|, VadVy (2:33)
Thus i
= hy(1 -V, 2.34
dn T, (1—=VaVy), (2.34)
and hence
TO s 1-V4aVp
hg r=hg,; | == . 2.
s, f S0 (TO,@'> ( 35)

Now the difference between R,y and Rf,0 is given by

Py dr hs,i PO,i v
Rig— Ro = . ﬁdp - Y. (1 — <Pb,i>ad) , (2.36)
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so putting it all together we find

TnTs = ), dne * i o)
_ g}i - (vc —anRE,, ZﬁleO) 4 Zﬁ»;z (2.38)
5 () 20
_ Z; + Vaa (Rio — Ryo) <77:(())7j>1—vadvb (1 - R]%;se> ‘ (2.41)

Past the initial small changes in temperature, the second term is negligible, so we
find that we are actually justified in writing

AlnR= ;AlnT (2.42)

for convecting stars. To combine the cases of convection and radiation, we write

1. B 1
Aln R = mi (1 LN T). 2.43
n min { 75 In B3 n (2.43)
The picture, then, is that fully radiative stars have fixed R, L;,, and fully convective
stars have Aln R = %A InT. To determine the change in L;, for a fully convective
star, we note that nuclear burning typically scales as T for some 3 > 0. Thus we
may write the energy balance in such a star as

B
Tsur new
AT R 0T = Lo+ Linoia ( L ) , (2.44)

surf,new Tsurf,old

where we have made use of the fact that the surface temperature ratio between the
perturbed and unperturbed cases is the same as the core temperature ratio between
the two cases. Substituting in what we know for the dependence of R on T gives

B
irsur new
47TR(2JIdUT4+2/3 Tk oid = Le + Liola ( ; ) ' (2.45)

surf,new - surf,old T ¢ old
surf,o
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Figure 2.7: The log of f is plotted versus log(L./L; oa) with 8 = 4 + 2/3 in orange
and # = 0 in blue. These solutions were determined numerically in Mathematica.

Using Liola = 47 R2%40 T35 o1q and letting f = Touesnew/Tout.od, we find

u

Le

I = S fB (2.46)

Fully convective stars tend to be cooler ones, for which § & 4, so we may numerically
solve this for a variety of cases. The results of this are shown in orange in figure 2.7
Note that when the impact on nuclear burning is included in the solution, the result
exceeds what we would otherwise find. This aligns with our intuition that heating
the star causes it to burn faster, which causes it to heat more. The trend is close to
linear, past L. = L; 4, With a slope of roughly 1/6, so loosely speaking 1" o< LS,
Roc LS and Ly, oc L?/3. In the case that the convection zone goes deep into the
star but does not reach near the nuclear burning region, we expect instead that L;,
will be constant and that R oc T o< (L, + Ly, )*/™, as plotted in blue in figure
Note that if § > 14/3 then Eq. has no solutions. This reflects the fact that
in such a system, heating the star causes the nuclear burning rate to go up faster
than the surface flux can accommodate, further heating the star. The end of such a
process occurs by weakening the coupling between the surface and the core of the star
by turning off convection in the vicinity of the core. Further note that if the star is
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not heated by nuclear burning, the only thermodynamically allowed equilibrium has
the external illumination only stemming the loss of heat, not raising the temperature.

It appears, in summary, that the only stars which will respond to the external
illumination by swelling are those which are nuclear burning and mostly convective,
and that the response is greatest in those which are convective all the way down to
the nuclear burning regions. In these, the swelling is increased by the fact that the
nuclear burning increases in extent to match the hotter core temperatures.

In the next several chapters we will move to higher-dimensional models and
perform the same kind of analysis to determine what, if any, impact the anisotropy
in the external heating has, and how this impact depends on the parameters of the
system.
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3

Higher Dimensional Models

All of the analysis thus far has been one dimensional. We now describe a framework
for computing higher dimensional steady state effects in certain limits. Recall that in
hydrostatic equilibrium,

Vp=plc—g), (3.1)

where ¢ captures all rotational acceleration effects. We also have that in steady state
and without any input heating or winds, the thermal flux obeys

V.F=0. (3.2)
In the presence of an input heat power density e, this changes to
V.F =c¢. (3.3)

The boundary condition on this equation at the star’s edge is a free one, with the
flux at » = oo dropping to zero. This results from the thermal flux proceeding out of
the star at the photosphere with no reflection. The star’s photospheric temperature

is determined by
oT*=F - (3.4)

at the photosphere’s base, usually defined as the point where 7 = 2/3. Finally, if
winds are introduced, the flux divergence becomed]

V- F=c—c¢Tv- (VInT -V,Vinp). (3.5)

'Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,
2012. 1SBN: 978-3-642-30304-3.
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Note that F' includes convective and radiative effects only. Further note that ¢ must
include the effects of viscous dissipation on the winds in order for this formalism to
be self-consistent.
In general, we expect that we may write the thermal flux in terms of the tempera-
ture distribution as
F =—kVT, (3.6)

where k£ may depend on the temperature, the pressure, and the gradients thereof.
Note that this holds even for convective flux, though in the case of convection the
thermal conductivity will be a rank two tensor, reflecting the potentially anisotropic
nature of the thermal diffusion supported by convection. It is tempting to argue
that this anisotropy may be handled by superposing an advective flow on top of the
underlying convection cell, and this is mathematically a valid option, but it leads to
multiple different advective terms of distinct physical origin, which is not an appealing
solution. Thus we will not hide from the complexity of anisotropic thermal conduction
by convection. Generally speaking the convective conductivity along Vp will be given
by the usual expression, but with V computed taking into account the angle a of
misalignment between the temperature and pressure gradients. More formally, V
may be defined in this context as

_O0lnT
V= Olnp’

(3.7)

where the partial derivatives are taken following the pressure gradient. The transverse
components of the convective conductivity are then given by the transverse size of
the convection cell, as will be discussed in a later chapter. Qualitatively, everything
else remains the same for the convective aspect of the flowf}

In the case where k is a nontrivial tensor, it is not generally possible to avoid
using 1" as an intermediate result. Having said this, there are several things we can
determine which at least constrain the form of k. First, £ must be invertible, as the
null space of £ must consist solely of the trivial vector, or else arbitrary temperature
gradients along a given axis could result in no flux. Additionally, when VT and Vp
align, the flux is entirely along the preferred direction this picks out. Similarly, if VT’
is perpendicular to Vp, the flux is entirely along VT'. Thus k£ must be diagonal in

2Pierre Lesaffre et al. “A two-dimensional mixing length theory of convective transport”. In:
Monthly Notices of the Royal Astronomical Society (2013). DOI: [10.1093/mnras/stt317. eprint:
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.full.pdf+
html. URL: http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317,
abstract.
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any orthonormal basis which has one basis element parallel to the pressure gradient.
In this basis, k=1 is just the element-wise reciprocal of k along the diagonal.

In the case where £ may vary spatially and is a scalar, V x F may be nonzero.
In particular,

VXF =—-kVXxVT -VEkExVT =-VkxVI=VInkxF, (3.8)

which allows F' to be computed without computing 7" as an intermediate result, so
long as the functional form of k is known.

In general, a vector field may be written as the sum of a field with zero curl and
a field with zero divergence. Suppose that

V-G=0 (3.9)
and
V xH=0. (3.10)
Then we write
F=G+H. (3.11)

Thus all said we have, in the special case where k is a scalar,

V-H=¢ (3.12)

VxH=0 (3.13)

V-G=0 (3.14)

(V-Vnk)xG=VInk x H. (3.15)

The solution for H is given by the familiar electrostatics Green’s function as

’ ot

H(r) = /d%’W. (3.16)
A |r — 7’|

In the case where winds are important, the appropriate substitution of must be made
to incorporate them into Eq. (3.16). Given k, then, this serves as the source term
which determines G.

There are several options to complete the solution given k. One is to directly
invert the differential operator acting on GG. This may be done, for instance, via
eigenfunction expansion into either a plane wave basis or a vector spherical harmonic
basis. Another solution involves numerical inversion of the differential operator over
a spatial grid. Direct exact solutions, however, are of limited utility due to the fact
that k is ultimately a nonlinear and non-local function of F'. Even if this were not
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the case for k, it would still be the case for the wind distribution. As a result, once
a 'good-enough’ approximation of the flux is obtained, k£ and the wind distribution
should be recomputed to allow for further refinement of F'. It follows that an iterative
(perturbative) or quickly-converging eigenfunction expansion solution is preferred.

Suppose that k (scalar or tensor) is known as a function of T, VT, p, and Vp.
If, additionally, the boundary of the star is a known surface 9€) with normal vector
n, then we may determine the temperature and pressure analogously to how Gob
or other atmospheric integration codes handle it. That is, we may first set p and
p in accordance with standard photospheric prescriptions on 0€). The temperature
is set by Eq. (3.4). Given an estimate of F, Eq. may be combined with the
hydrostatic equilibrium condition Eq. to integrate the pressure and temperature
inward, recomputing the density at each stage. Using the new state of the star, k
may be recomputed and used to form a new estimate of F'.

As an example of an iterative method for determining the flux, let Gy be the
solution to

VxGy=Vnkx H

and letting G,, be the solution to
VxG,=VhkxG,_1,

given by treating the right side as the source current for a Biot-Savart-like law. The
full solution may then be written as

G=)> G, (3.17)
n=0

Of course the convergence of this series is not guaranteed. In fact, as we will show
later, this series will generally not converge, so eigenfunction expansion is a more
promising route. The case may be improved by alternating iterations of this series
method with iterations of recomputing k, as this minimizes the distance that the
solution moves from self-consistency in any step, but ultimately other methods will
prove preferable.

3.1 Zero-Wind Analytic Model

Before doing anything as involved as the above process, it is worth extracting as
much information as possible analytically. As a toy model, suppose that k is a scalar
function of just T" and p, and is a power-law thereof, such that

k =wT*P. (3.18)
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The former assumption amounts to specifying that we are in the radiative zone,
while the latter amounts to specifying that we don’t cross between regions with
substantively different power laws. This is actually not very constraining, as may be
seen in figure 2.1} Furthermore, suppose that we neglect all wind effects. In later
sections we will remove this assumption.

Take the external heating to be put in at a point, which by choice of axis we set

to be at r, = rp2. Eq. (3.16) then gives

H(r) L <LT + L(r_r")) . (3.19)

Tan \ 2

The source term leading to G is then
Vinkx H=(aVInT+bVinp) x H. (3.20)

To leading order, VT is parallel to H (treating Gy as a perturbation), so
b
Vlnk;xH:thlpr:h—ng. (3.21)

Rotational effects are a perturbation on § so we take § to be —7. As a result,

b1 (Lif  L(r— bL7 —bry,Led
Vinkx H = ——#x — [ =2 4 (r=ru)) _ _bLefxmy __ Zbruled
hy — Am \ r 7 — 7] drhg P —ry|” Amhg P — 7y
(3.22)
3.1.1 Iterative Method
Now suppose we adopt the iterative scheme described earlier. Then
bry, Led
V x Gy = —— nle? (3.23)

Archg | — 73|

where the scale height is to be evaluated at the sample place as the curl, given by
r. Outside of the star this quantity diverges, and so the curl of Gy becomes zero.
Note that the nonzero circulating flux outside of the star is not unphysical, though
the representation of the flux in this manner is somewhat nonstandard. For a simple
example, consider a planar light emitter which emits collimated light normal to its
surface, with flux which varies along the plane. The curl of the flux field above this
surface is evidently nonzero.
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From symmetry considerations it is evident that G| describes a circulating flux
between the heating point and the opposing point on the star. The net flux transported
due to all G terms is zero due to their uniformly vanishing divergences. The primary
effect of these flux loops then is to change the distribution of heat in the interior. In
particular, suppose that b > (ﬂ The circulating flux lines then proceed toward the
point r;, outside the star and away from it within the star.

We may compute the net flux which is transported from one side to the other
within the star. To do so, first note that Gy may be written as a curl of another
vector field due to its vanishing divergence. This vector field may be written as

~bry L)
Ao(r) = /d3r’v XGo _ /d3r’ T e<§ . (3.24)
47 |r — 7| (47)2hg [P — rp)” [P — 7|

From symmetry considerations we know that this will go along —gg at r. The
magnitude will be dominated by contributions near r,, and so may be estimated as

b?"hLe

Ay ~
O (4n)2hy [ — 7))

(3.25)

up to corrections of order unity given roughly by the log of the ratio of r — r; to the
size of the heating region, which in practice will be finite. Note that the scale height
here is that at r,. The integrated flux through the star is therefore

2 N 2nwrbry, L,
Lot = —/d%z Go=— [ dorAy-$= . (3.26)
0 (4)2hg\ /12 + 13
In general we expect r, ~ r so
b
L (3.27)

Liyy ~ ———1L..
! 8v/27h,

In general, hy < r and b is of order unity, so this significantly exceeds the input
luminosity, and indeed indicates that the circulating flux significantly exceeds the
conservative flux H. This indicates that the curl operator has eigenvalues which
are typically much less than those of the V In kx operator, invalidating an iterative
method of this form. This result is more general than the specific form of k used.
To see this, suppose we let b depend on P and 7. None of the above results change
so long as |br/hs| > 1, for we only relied on local properties of b until performing

3This will generally be true, as can be seen by noting that at fixed T, p oc P, and by examining
figure Note that k < xkP.
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integration, and in the integration procedure all symmetry constraints remain because
b reflects the underlying symmetry in 7" and P. As a result, all that changes is that
the integration replaces b with some weighted average of its value over the star at 7y,
which cannot produce values orders of magnitude smaller than unity, given that b
undergoes no sign changes and is typically of order unity at the densities of interest.
Intuitively this result concerning the eigenvalues of V In kX arises because all material
properties of the star change on scales on the order of a pressure scale height, while
flux variations have a characteristic scale which goes as the stellar radius.

3.1.2 Eigenfunction Expansion

Having demonstrated that a straightforward iterative series expansion is invalid for
this kind of problem, we now turn to eigenfunction expansion. The most convenient
basis for doing this is that of vector spherical harmonics. These are defined as

Y i = Yo, (3.28)
U, = rVY, (3.29)
@y =1 X VVin, (3.30)

where the gradient operators are constrained to the surface of the unit sphere, Yy,
are the usual scalar spherical harmonics, and —I < m <[ as usual. These operators
are mutually orthogonal, and their norms are 1, I[(I + 1), and [(l 4+ 1) respectively.
Given a field A, we may write

l
Z Alm,lYlm + Alm,?‘I’lm + Alm,S‘I)lma
l

l

A=y
1=0m
VxA=) >
1=0m

I(l+1 1
- ( )Alm,SYlm - <ar + > Alm,3\Ijlm
- r r
A 1
+ <_H + <8r + > Alm,?) (pl’ﬂu (331)
r r
[e%S) l
PXA=">" —AumsW + Ao P,
=0 m=—1
< 2 I(1+1)
V- - A= Z Z arAlm,l + ;Alm,l - r Alm72 }/Em
=0 m=—1
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Note that the coefficients in these expansions are all functions just of . Expanding
both H and G in this manner yields

b 1 b
(V + ! ) X G = Z Z >Glm,3Ylm — (& + -+ ) Glm,BlI’lm
hes 1=0 m=—1 rhs
Gim, 1
+ <_ fm,1 (8 + -+ )sz 2) @y, (3.32)
r r hy
b oo
= > Z —Hip 3V im + Hip 2Py
=0 m=—1

Note that V x H = 0 implies that Hj,, 3 = 0. The orthogonality of the vector
spherical harmonics, combined with the divergence-free nature of G, then allows us
to write

1
—l(l: )sz,g =0 (3.33)
1 b
- T - g m,3 — .34
(a + hg)G, 5=0 (3.34)
1 b Gimi b
<aT +- - h) Gz = =1 = =3~ Hin, (3.35)
2 I(l+1
arGlm,l + ;Glm,l - ( r >Glm,2 = 0. (336)

The first condition gives us Gy, 3 = 0. The second condition is then trivially satisfied.
The third and fourth conditions must be combined to obtain a solution. Using the
fourth to obtain the second coefficient, we write

1 b Gimg b
<(9r + ; - h) ll(lﬁ—l) (0 Glm 1+ Glm 1)] - r — hs Hlm,2- (337)

Once a solution to this is known, the value of G, » may be computed directly.

The differential equation of interest may be solved numerically without much
difficulty, given H;,,, but for the purposes of our rough calculations suppose we insist
that G, 1 changes with characteristic scale of order the stellar radius. This amounts
to insisting that O, has eigenvalues of order 1/r. Given that hy < r we may write

b

 hy <1(z+1) b

2
OrGima + +1 )sz 1) = _EHlm,Qu (3.38)
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or
T 2

———0,Gp, —Gyn1 = Him oo 3.39

A 0 m Py T T Him (3:39)

To simplify matters somewhat, we consider a modified version of the input heating

considered earlier. In this case, the input heat takes on the form

or—r
e = I i 4 Loy (= Vi), (3.40)
e

This qualitatively reproduces the expected heating behavior, with preferential heating
on one side but without any net cooling, so long as L. > v/6L. ;. The heating all
occurs at a radius r, with maximum heating on the positive Z side. The source term
ViInk x H is not impacted in any way by the Y{ o term, as this term produces a
radial flux field. The remaining terms give rise to a flux field which contributes to
the source term. The equations governing this field are given by

2 2 S(r—rp)

0, H -H ——-H = Let), 3.41
1,+1,1 T e 47”% (FLer) ( )
Hy413=0 (3.42)

H 1
- 1’;“ + (ar + T) Hii15=0. (3.43)

The first of these relations arises from the divergence condition H, while the second
two arise from the requirement that the curl of H vanish. The general solution to
this set of equations is

A FLei(r3+2r3)0(r — 1)
H =—4+B ! 44
LELLT 3 e 127r3r? (3.44)
A FLea(r®—1r3)0(r —rp)
H =——+B : 3.45
1,+1,2 273 th 127372 (3.45)
Hy113=0, (3.46)

where ©(x) is the Heaviside step function and the constants A and B are to be fixed
by boundary condition considerations. In this case, we want the flux to drop to zero
at infinity, and we want it to be finite at finite radius. As a result, both constants are
zero and we have

FLea(r®+2r3)0(r —rp)

H = 3.47

17:‘:1,1 127TT3T]% ( )
FLea(r? —1r3)0(r —rp)

H = ’ 3.48

1,41,2 127732 ( )

Hy413=0. (3.49)
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Using this to solve for G 111 in the simplified differential equation gives

FLea(r —rp)?(r+2r,)0(r —rp)
127733 ’

G111 = (3.50)

where we have already imposed the condition that this converge at the origin. To
obtain the flux from one side of the star to the other from this, we note that Gy, 1
doesn’t contribute to the flux through a slice of the star which cuts it in half. The only
such contribution arises from the angular terms. We already know that Gy, 3 = 0, so
we just need to compute Gy, 2. This may be done as described previously, yielding

FLex ((r—rp)2(r+2r,)d(r —rp) (3 —13)O(r —rp)
127723 < 2 - r ) - (38D

Only the portion of the vector field directed along qg contributes to the flux through
the plane separating the two halves of the star, and this is given by

Gy — i\/? L, 2 ((r —rp)2(r + 2rp)0(r — rp) N (r* —rH)O(r — rh)> (3.52)

7 127r2r; 2 r

Giti2 =

where we have set ¢ = m/2. Integrating this over the plane of interest then yields

—Th)Z(R—f—QTh)
L= / dr/ d(cosO)r(G, — G —4/ rGy = N L1, (3.53)

where R is the stellar radius and L is the total power flowing from one side of the star
to the other as a result of the circulation field. In typical situations, R — r;, < R, so

1 Th
L~ Loiss (1 R) . (3.54)
By comparison, the flux due to the curl-free term is given by the incident flux times
the ratio of the solid angle that the plane of interest sweeps as seen from the heating
point, which is roughly 27/3, to the total solid angle of 47, so in most cases this
term dominates over the circulation term. One important consequence of Eq.
is that as the heat is deposited deeper, the flux which manages to find its way to the
opposing side increases as expected.

Interestingly, this result is independent of a,b. So long as they do not vary
substantially on a spherical shell, this independence should hold. Additionally, note
that the situation in any case is very different from that of an isotropic star, wherein
half of the heating flux is present on each side. This is a result of the fact that
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a spherically symmetric shell of heating cannot alter the flux inside it, while an
anisotropic heating shell can.

It is worth noting two effects which we have not considered here. The first is
the potential for a more complex thermal conductivity structure due to convection,
and the second is that of wind transport/dissipation. In the case of the former,
the key effect will be the potential for significantly greater conductivity gradients
misaligned with the thermal gradient. In the case of the latter, the key effect will be
additional heating terms, manifesting as regions of nonzero ¢, even when no heating
is present at those locations. Finally, rotation plays a role in determining how these
complications alter the situation. Estimating the significance of these effects is the
subject of subsequent sections.

3.2 Zero-Divergence Wind Model

Suppose that we insist that the flux divergence be made zero by wind transport. This
represents the opposite limit of the previous section solution. This condition means
that we require

e=c¢Tv- (VInT -V, Vinp). (3.55)
Recall that ¢, = y¢, and that up to factors of order unity ¢, = kgT'/p, so
e=qpv-(VInT -V, Vinp). (3.56)

This relation would be precisely correct if we neglected convection in computing F'.
This is not how we are treating the heat flux, however, so we need to correct this
relation by subtracting out the convective term. The convective term arises from gas
traveling in a circulatory fashion up and down a pressure gradient. As a result, this
subtraction may be done by requiring v L Vp. This is essentially the geostrophic
flow condition. One might object to this requirement by citing Kelvin-Helmholtz
instability, but such processes separate in our treatment to convection and advection,
as in a convective roll. Likewise one might object to this requirement by arguing that
winds can move along pressure gradients in radiative regions. While this is true, such
winds cannot be driven by thermal processes, as the region must, by definition, be
stable against convection. Objections case aside, we impose this requirement, and
the criterion reduces to

>
e=pv-VInT ~ ng” e, (3.57)

where é7 is the unit vector along the thermal gradient. The approximate form comes
from noting that if the flux has zero divergence except in the core, then the thermal
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gradient must be purely radial. Now we know that neglecting viscous losses,

L

(&
e — 2
21 R?

[1— exp (—X/S4)], (3.58)

where we are taking the illumination to occur on one side only. As a result,

Lk,
"™ orgSR?

A

v-eé [1—exp(—=X/%p)]. (3.59)
Usually R ~ 10*%m, h, ~ 107cm, g ~ 10*cm/s?, L, ~ 10¥erg/s, and 3;, = 103g/cm?,
so this has a maximum value of

v-ép ~ 10%cm/s. (3.60)

This is an absurd value, greater than the speed of light, and indicates a breakdown in
the assumption that the divergence of the flux remains zero. In particular, it arises
from the characteristic scale over which T' changes in the absence of a flux divergence
being much greater than the characteristic scale over which € changes. As the wind
clearly cannot move enough heat to keep the divergence at zero, the temperature
profile will shift to accommodate the shorter length scale.

Evidently the true steady state, if one exists, lies somewhere in between the two
models considered thus far. The star likely adjusts its radial transport to handle
much of the flux divergence, and then sets up some non-radial flux transport, which
then allows the wind to move non-radially to dissipate some of the flux divergence.
As a result, the star must exhibit some anisotropy, but it is possible that below a
certain depth winds succeed in isotropizing the thermal structure. This model will
serve as a template for subsequent analyses.
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4

Review of Fluid Mechanics

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.
— Lewis Fry Richardson

To understand how wind flow works in stars, it is worth reviewing the basic fluid
mechanics involved. In general, fluid mechanics problems are exceedingly difficult to
solve, either analytically or numerically. As a result, we will exploit the fact that such
problems may often be broadly characterized by only a few dimensionless numbers.
This reduces the complexity of the problems, and allows us to reduce many scenarios
to the same mathematics. Before discussing these numbers, however, we must address
a dimensionful property of fluids: viscosity.

4.1 Microscopic Viscosity

Intuitively viscosity is a measure of the resistance of a fluid to shearing. The term
usually refers to a material property, rather than a property of fluid flow. As both
notions are important, viscosity as a material property and viscosity as a property of
fluid flow, we will use "microscopic viscosity" to denote the material property and
"turbulent viscosity" or "effective viscosity" to denote the flow property. The latter
will be discussed at length later in this chapter, while here we will focus on the former.

In this analysis, we take the companion stars of interest to be primarily hydrogen,
with some helium present in small quantities. At temperatures higher than those
in the ionization zone, in the regime where p = %mp, the Spitzer estimate gives the

49



4. REVIEW OF FLUID MECHANICS 50

microscopic viscosity asﬂ

T5/2 2
v=52x10" T (4.1)
plnA s
where T' is made dimensionless by dividing out by K, and likewise for p by dividing
out by g/cm?®. The quantity In A is given byf|

—174+15InT —05np T <1.1x 10°K
InA =

, (4.2)
—12.74+InT - 0.51lnp T > 1.1 x 10°K

where everything is in the same units as before.

To obtain a broader range of microscopic viscosities, we turn to tables of this
value at various temperatures and pressuresﬂ The results, computed for a mixture
of 85% hydrogen and 15% helium, indicate that pr is roughly constant, ranging
from 3 x 10%g/cm/s to 3 x 107g/cm/s. The tabulated data allows us to compute
v for temperatures ranging from 3600K up to 10°K, and pressures ranging from
103erg/cm?® up to 10'terg/cm®. Between this and the Spitzer estimate, then, we
have covered the entire range of interest for stellar atmospheres except for very low
temperatures in the outer regions of brown dwarfs. These regions, however, are not of
much interest, as the transport phenomena of interest occur much deeper in the star.
Furthermore, unlike the case for opacity, the underlying physics behind microscopic
viscosities is not expected to change significantly at these lower temperatures. Thus
reasonable extensions of the low-temperature viscosity model may be used, with the
understanding that they are only accurate as order-of-magnitude estimates.

Next we consider the viscosity of radiation, which was not included in either the
data table nor the Spitzer estimate. The radiative viscosity is given byﬁ

T4
Vrad = (4.3)

CKp
This is usually much smaller even than the microscopic viscosity of hydrogen. To see
this, we may non-dimensionalize T, k, and p and evaluate the constant factors to find
2
4 —1,—1CM

Vrad = 3 % 107°Tg py 1 kg — (4.4)

!Daniel Kagan and J. Craig Wheeler. “The Role of the Magnetorotational Instability in the
Sun”. In: The Astrophysical Journal 787.1 (2014), p. 21. URL: http://stacks.iop.org/0004~
637X/787/i=1/a=21|

ZIbid.

3F. N. Edmonds Jr. “The Coefficients of Viscosity and Thermal Conductivity in the Hydrogen
Convection Zone.” In: The Astrophysical Journal 125 (Mar. 1957), p. 535. DOI: |10.1086/146327.

4Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,
2012. 1SBN: 978-3-642-30304-3.
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where factors with subscripts are given numerically by the quantity divided by ten to
the power of the subscript in the C.G.S.K unit system as usual. While this is much
less than the microscopic viscosity over the entire range of tabulated data, at high
temperatures it will overtake the Spitzer data due to a higher power of T" appearing
in the numerator.

To compute v over the entire range of available data, an interpolation code was
written which makes use of both the Spitzer form and the data tables. It returns an
error whenever the data is outside of the range of validity of both, taking the Spitzer
formula to be only valid above the ionization temperature 10*!'K. In places where
both sources contained valid data, the tabulated version was used. In addition, it
computes the radiative viscosity and adds it to the viscosity obtained from the other
sources. The radiation merely provides an additional avenue for momentum transport,
and so linear combination is appropriate. The full code may be found in Appendix [Al
The output from this code is shown in figure [4.1] Following the trajectories shown in
the one-dimensional modeling chapter, we see that the viscosity is typically between
lem?/s and 10%cm? /s, with higher temperature stars reaching at most 10°cm?/s.

The one remaining question needed to determine the viscous microphysics of
interest is that of the impact of magnetic fields. At temperatures where the ionization
fraction is low, the magnetic field by and large does not interact with the gas, and
so at low temperatures the above results are accurate independent of the magnetic
field. The remaining effect of interest then is that of the solar magnetic field on
momentum transport in plasma. Once ionization occurs, the magnetic field can
introduce preferred directions of momentum transport, significantly altering the shear
properties of the medium. This occurs when the thermal gyroradius is less than the
mean free path of the ions. The intuition behind this is that it occurs when the
magnetic field has a chance to order the system in between randomizing collisions.

Detailed calculations of this effect have been dond’, with the result that the
anisotropy in the viscosity is of order

titwy, (4.5)
where t.; is the self-collision time for positive ions and w,; is the gyrofrequency of these
same ions in the magnetic field. Both quantities are to be computed assuming thermal
equilibrium. More specifically, the quantity in Eq. gives the approximate ratio of
the visocosity of a velocity gradient perpendicular to the velocity, holding the velocity
perpendicular to the magnetic field, to the viscosity in the absence of a magnetic

5Jr. Lyman Spitzer. Physics of Fully Ionized Gases. Vol. 1. ISBN 978-0-486-44982-1. Dover,
2006.
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log v

-10
3

logT

Figure 4.1: The vertical axis is log p (with p measured in g/cm?), the horizontal is
log T (with T measured in K), and the color represents log v (with v measured in
cm?/s. White regions are those without data.
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field. If this quantity exceeds unity then the magnetic field may be ignored, and the
anisotropy disappears.

To compute the anisotropy, then, we note that t.; is given by the mean free path
of the ions divided by their typical thermal velocities. Thus

toi = = (4.6)

Note that in the final equality here, v is the non-magnetic microscopic viscosity. The
thermal gyroradius is given by

macy/ (V) L
=t (47)
Thus
v2 B
S ACR R (4.8)
Tq My
As a result, the anisotropy factor is
L m2(w?)?  9kRT?*c*  9pPpie? (4.9)

2.2 - QQBQVQ o q232v2 _p2q232y2‘

ci¥ci
To produce a factor which has the appropriate temperature dependence at low
temperatures, we note that the anisotropy only impacts the ionized portion of the gas.

As a result, we may separate the gas into its ionized and neutral portions, compute
their viscosities, and then add them. The corrected anisotropy factor is then

m —
m;! (2u —m, + 2t§w2“> . (4.10)

As an estimate of the magnitude of the anisotropy factor when 1 = m,/2, we may
take typical values of v to be ~ p~1107g/cm/s, and hence

1 9p2,u262 pQ/JJQCQ 4 % 10—21p2
202 £ B2101 ~ ¢*B21013 ~ 32 :

cier

(4.11)

where all units have been omitted for clarity. As usual all quantities are in measured
C.G.S.K units. In most stars of interest, g ~ 10%cm/s?, so near the surface this may

be written as
1 4 x 10713%2

22 B2

ciMci

(4.12)
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As a quick estimate, suppose we plug in the sun’s magnetic field of ~ 1072G. This
yields an anisotropy factor of 4 x 107932, Thus the viscosity is significantly anisotropic
for ¥ < 6 x 103g/cm?. The viscosity code in Appendix [Alis capable of computing
the minimum B field requires to induce significant anisotropy. In convection zones
this is often irrelevant: the convective viscosity far exceeds the molecular viscosity.
In radiative zones, the microscopic viscosity will play a role in determining the
characteristic scale of turbulencd’l In cases where the microscopic viscosity does
matter in a regime in which there is magnetically-induced anisotropy, we will hold
the field to be that inside a dipole, aligned with the star’s rotation axis, and so
the microscopic viscosity is just multiplied by the anisotropy factor. The code in
Appendix [A] accepts an optional argument specifying this factor. In its absence,
isotropy is assumed.

The anisotropy factor is shown for B = 1072G in figure and B = 10°G in
figure [4.3] In the first case the anisotropy is minimal for most density-temperature
combinations of interest, while the latter shows significant anisotropy in a wide enough
range of densities and temperatures that most scenarios of interest are covered. The
regions of greatest anisotropy are subject to some numerical noise, resulting from a
breakdown in the assumption that all ionization is hydrogen ionization.

4.2 Reynolds Number

The first of our dimensionless numbers is the Reynolds number, defined as

vl
= — 4.1
Re > (4.13)

where v is a characteristic velocity scale for a shear flow, [ is a characteristic length
scale, and v is the viscosity of the fluid. The precise meaning of v in this context is
somewhat complex, so we will discuss it further later on. The Reynolds number in
non-stratified flow is the quantity which determines whether or not a flow is shear
turbulent. Barring stabilizing factors which will be discussed below, the flow is
turbulent when

Re > Re,

for some critical Reynolds number Re.. Typical values of this number are of order
103.

6This is a result of our use of the more modern Richardson criterion modified to incorporate the
effect turbulence plays in aiding thermal diffusion.
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logT

Figure 4.2: The vertical axis is log p (with p measured in g/cm?), the horizontal is
logT (with T" measured in K), and the color represents the log of the anisotropy
factor A. White regions are those without data.
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Figure 4.3: The vertical axis is log p (with p measured in g/cm?), the horizontal is
logT (with T" measured in K), and the color represents the log of the anisotropy
factor A. White regions are those without data.
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4.3 Rayleigh Number

In addition to shear instability, it is possible for a fluid to be convectively unstable.
This instability is quantified by the Rayleigh number, defined as
3
Ra = M, (4.14)
av
where [ is the thermal expansion coefficient and « is as defined previously. Convective
instability occurs when V,.4 > V.4 and the Rayleigh number exceeds the critical
Rayleigh number Ra,, typically of order 103. The former condition is necessary for
adiabatic expansion to lead to growing buoyant perturbations, while the latter is
necessary for this expansion to not be overcome by viscous dissipation.
We claim that the Rayleigh number is typically so large that whenever the former
condition is satisfied in a star the latter is as well. To begin, we write the Rayleigh
number as

BgR3R3TAInT
a = :

(09%

R (4.15)

Over a scale height, which is roughly what we expect the convection cell size to be,
P changes by a factor of e and, we expect T to change by a multiplicative factor of
similar magnitude. Thus AlnT is of order unity, so

BgN3R3T

(09%

Ra ~ (4.16)

Now £ is typically of order T}, equaling

5= 1 [foV 1
S vier), T
so long as the ideal gas law holds. This only fails in the ionization zone, where 3 will
be somewhat lower. Keeping this in mind, we find

EgN3h?
AN ——
(09%

R , (4.17)

where ¢ is the dimensionless constant giving the ratio of 3 to T~!. Typical scale
heights are around 300km, and typical values of g are around 10%cm/s?; so

N3
Ra ~ 3 x 10265%, (4.18)
av
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with all remaining quantities given in the usual c.g.s.k unit system. Now

o= @ (4.19)
PCp
SO N3
Ra ~ 3 x 102651«530' (4.20)

We expect ¢, to be of order kp/u ~ pl0®erg/K/cm?, so
NS
Ra~ 2 x 10955 4.21
. krady ( )

Typical values of N are between unity and two. Taking the lower end gives

Ram 2 x 1045 (4.22)

krady

As was argued earlier, the maximum value of v for the stellar models of interest is
around 10%cms, so in a worst case scenario

Ra ~ 2 x 1029;6[. (4.23)

Now k,.q may be computed directly as

4acT?
Frad = —o— (4.24)
3pK
where  is within a few orders of magnitude of 1cm?/g. Thus
T3
kpag = 10324, (4.25)
P1
where T} is T/10*°K and p; is pcm3/g. It follows that, again in a worst case,
Ra~ 2 x 102821 (4.26)

T

Even supposing that £ and p; are both quite a few orders of magnitude below unity,
and taking T to be 10°K, the Rayleigh number still exceeds its critical value. Thus
we are safe assuming that whenever convection is indicated by the thermal gradient
criterion it occurs.
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4.4 Richardson Number

The next dimensionless number of interest is the Richardson number, defined as

N2
Ri=——— 4.27
"= (dvfd2)? (4.27)
where il
n
N2=yg dzp (4.28)

defines the Brunt-Vaisala frequency N and dv/dz is the vertical velocity shear. The
Richardson number quantifies the competition between buoyant stabilizing forces and
shear instability. In particular, an oft-cited’| necessary but not sufficient criterion for
instability is that

Ri < Ri. =~ 0.25. (4.29)

There is, however, significant evidence, both experimental and theoretical, against
this criterionﬁ. There are two problems. The first is that turbulence mixes the fluid,
which counteracts the entropic stratification that would otherwise stabilize it. As
a result, the fluid is actually unstable over a wider range of parameter space than
this criterion indicates. The second is that more modern experimental evidence
suggests that even when this mixing is minimal, the critical value should be closer to

"Richard Lyons, A. H. Panopsky, and Sarah Wollaston. “The Critical Richardson Number and
Its Implications for Forecast Problems”. In: Journal of Applied Meteorology 3 (Jan. 1964), pp. 136—
142. URL: http://journals.ametsoc.org/doi/pdf/10.1175/1520-0450(1964)0037%3C0136:
TCRNAI%3E2.0.C0;2.

®E. Schatzman, J.P. Zahn, and P. Morel. “Shear turbulence beneath the solar tachocline”. In:
Astronomy and Astrophysics (Oct. 2000). eprint: http://arxiv.org/pdf/astro-ph/0010543v1)}
pdf; E. C. Itsweire, K. N. Helland, and C. W. Van Atta. “The evolution of grid-generated
turbulence in a stably stratified fluid”. In: Journal of Fluid Mechanics 162 (Jan. 1986), pp. 299-338.
ISSN: 1469-7645. DOI: 10.1017/50022112086002069. URL: http://journals.cambridge.org/
article _S0022112086002069; A. Maeder. “Stellar rotation: Evidence for a large horizontal
turbulence and its effects on evolution”. In: Astronomy and Astrophysics 399.1 (2003), pp. 263-269.
DOI: |10.1051/0004-6361:20021731. eprint: http://arxiv.org/abs/astro-ph/0301258. URL:
http://dx.doi.org/10.1051/0004-6361:20021731; Prat, V. and Lignieres, F. “Turbulent
transport in radiative zones of stars”. In: Astronomy and Astrophysics 551 (2013), p. L3. DoOI:
10.1051/0004-6361/201220577. eprint: http://arxiv.org/abs/1301.4151. URL: http:
//dx.doi.org/10.1051/0004-6361/201220577; S. Mathis, A. Palacios, and J.-P. Zahn. “On
shear-induced turbulence in rotating stars”. In: Astronomy and Astrophysics 425.1 (2004), pp. 243—
247. DOI: 10.1051/0004-6361:20040279. eprint: http://arxiv.org/abs/astro-ph/0403580.
URL: http://dx.doi.org/10.1051/0004-6361:20040279.
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unity than to 0.25°] In convection zones this may be remedied by setting the critical
Richardson number to

1
R,ic = Imax <1, P) y (430)
where Pe is the Péclet number, defined in this context as
p, — v (4.31)
e — a .

and « is the thermal diffusivity. Outside of convective layers, the criterion may
be modified by replacing the Péclet as written above with one computed using
the characteristic velocity and length scale of turbulent eddies["’] In both cases,
this criterion takes into account the action of heat transport to lower buoyant
effects. Notice that this criterion in the non-convecting case presumes the existence
of turbulence from the start, and is primarily making a statement regarding the
characteristic scale of the turbulence. This, in effect, neglects the microscopic viscosity
of the fluid, which is akin to arguing that

v < vAz, (4.32)

where v and Az are the maximum turbulence speed and size allowed by the modified
Richardson criterion. This condition is satisfied by taking

< 1
vAz ~ Re,

< 1. (4.33)

Should this condition fail, the flow cannot be turbulent anyway via the Reynolds
criterion, as the turbulence velocity and length scale cannot be smaller than those of
the shear which produces it, and so it suffices to require both the Reynolds criterion
and the Richardson criterion, without having an additional condition regarding the
microscopic viscosity.

At this stage it is worth introducing the idea of an effective viscosity. This is
the viscosity that one would measure in a turbulent flow by using the definition of
viscosity as the force per unit area per unit shear across a fluid. A key property of an
effective viscosity, as will be discussed at length in the following sections, is that it
is dependent on the length scale over which the shear occurs. In the context of the
Reynolds criterion, the question of stability becomes one of the effective viscosity of

9V. M. Canuto. “Turbulence in Stars. II. Shear, Stable Stratification, and Radiative Losses”.
In: The Astrophysical Journal 508.2 (1998), p. 767. URL: http://stacks.iop.org/0004 -
637X/508/1=2/a=767.

VIbid.
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any non-shear turbulent processes. In the context of the Richardson criterion, what
occurs is the production in any Reynolds-unstable flow of turbulence up to a critical
effective viscosity scale, defined by the criterion, and it is this effective viscosity which
is seen by the large-scale flow. Thus the Richardson criterion is perhaps better viewed
as setting a viscosity scale than making definitive statements about flow stability.

This is not the end of the story of the Richardson criterion, however. The actual
Richardson criterion must account for the fact that in a stratified flow, there is
a difference between the horizontal turbulent viscosity and the vertical turbulent
viscosity. In order to accommodate this, we use as our criterion T}

vAz vAz v\ >
— =% N2 N? — 4.34
(kra,d + Vh) T + Vp, H < <dz> ’ ( 3 )

where v and Az are the speed and size of the largest eddies which are isotropic,
vy, is the turbulent viscosity for horizontal motions, k,.q is the thermal diffusivity
due to radiation transport, and Ny and N, partition the Brunt-Vaisala frequency
into pieces corresponding to the thermal and chemical gradients respectively. This
takes into account all of the effects discussed thus far. We will examine in detail the
computation of this criterion in the section on vertical shear.

4.5 Rossby Number

The next dimensionless number of interest is the Rossby number, which determines
the circumstances under which the Coriolis force has a significant impact on the
motion of a fluid. Given a characteristic speed v and a characteristic length scale x,
the Rossby number is defined as

v

Ro = 2¢sinf’

(4.35)
where () and 6 are defined as usual. Note that v is defined in a reference frame
rotating at €2, as fluid at rest in the rotating frame does not experience a Coriolis
force. When this number is large relative to unity, the Coriolis force is negligible and
so may be neglected. In the opposing limit, the Coriolis force dominates the flow,
and geostrophic balance is likely. When the Rossby number is of order unity, the
Coriolis force must typically be taken into account, but need not be the dominant
effect. We will usually use = R, such that the Rossby number refers to motion
around the star.

11§, Mathis, A. Palacios, and J.-P. Zahn, jop. cit.
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4.6 Mach Number

The final dimensionless number of interest is the Mach number, defined as the ratio
of the flow speed to the fluid’s sound speed. That is,

v

Ma = —. 4.36
2= (4.30)
The sound speed is generally given as
P
Vs =\ —» (437)
P
where c
v = c—p (4.38)

is the adiabatic index of the fluid. For a monatomic gas outside of the ionization
zone, this is 5/3. Inside the ionization zone, it falls to roughly unityIT_ZI. From our
perspective, the Mach number is important primarily because for Ma > 1, turbulent
losses become extreme, so we may safely assume that v < v,.

2Donald D. Clayton. Principles of Stellar Evolution and Nucleosynthesis. Vol. 1. ISBN: 978-
0521566315. University of Chicago Press, 1968.
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5

Stability and Turbulence

When I meet God, I am going to ask him two questions: Why relativity?
And why turbulence? I really believe he will have an answer for the first.
— Werner Heisenberg

The key problem of interest in this chapter is that of determining the local flow
patterns that stars may exhibit, with a particular eye to questions of viscous and
turbulent losses as well as flow stability. In the fluid mechanics discussed thus far, only
one kind of instability was considered at a time. This turns out to be insufficiently
general. In the various stellar models under consideration, ¥3j is sometimes within the
unperturbed convection zone and sometimes not. The latter case may be analyzed by
only considering shear instability, but the former requires understanding how shear
and convective instabilities interact. To understand this, we will consider a model of
shear flow with convection and analyze it in general. We will then proceed to look
at the case of shear flow alone, as the difference in stability criteria between vertical
and horizontal shear is significant there. The next chapter will then take a broader
view of wind in stars, and will piece together a global picture from these local parts.

In analyzing the stability of different kinds of flows in this chapter we will keep
the thin-envelope approximation made in our earlier one-dimensional model. This is
justified by the same reasoning used there, and allows us to assume that the regions of
interest are always thin relative to R. This means that g is a constant in the regions
of interest, and that the curvature of these regions may be neglected. It further tells
us that the pressure in each region is just what is required to hold up the material
above it.

In addition to the above conditions, we take the shear in all cases to be an amount
vg over a convective mixing length [ = Rh, where X > 1 is of order unity. When
convection occurs, we will take its eddy velocity to be wv..

65



5. STABILITY AND TURBULENCE 66

5.1 Sheared Convection

In the analysis to follow, we work within a single convection cell of linear dimension
[. Additionally, we take the forces resulting from microscopic viscosity to be small
relative to those resulting from the buoyancy which drives convection. This is justified
by our argument in the previous chapter that in stars the Rayleigh number is large
relative to its critical value.

Note that since, by assumption, the flow is convectively unstable, the Richardson
criterion is automatically satisfied: N? < 0. There are several limits which are
easily analyzed. First, suppose that vy > v., and that Re > Re.. In this case, the
convection acts as a perturbation to the shear turbulence: existing eddies due to the
shear suffice to carry the convective heat flux with only minor additional anisotropy.
This scenario will be stable then against convective turbulence, as the shear will carry
the needed flux, but will be unstable against shear turbulence. On the other hand, if
v. > vy and Re < Re,, the shear acts as a perturbation to the convective turbulence:
the convective eddies suffice to carry the necessary momentum flux, again with only
minor additional anisotropy. This scenario is thus stable against shear turbulence yet
unstable against convective turbulence.

Another straightforward limit is that in which Re < Re. and vy > v.. In this
case, shear due to vy is insufficient on its own to cause an instability: the viscosity
is high enough that the turbulence is dissipated as heat faster than it is created.
If the flow is stable against shear turbulence, however, the thermal flux must be
carried by convection. As v. < vy, the convection appears as a perturbation against
the background shear and so the flow will remain shear-stable with a background
convective instability. The convection will increase the effective viscosity of the flow,
but this only serves to further reduce Re and hence further stabilize the shear flow.
Thus in this case the flow is shear stable and convectively turbulent. This flow pattern
is like that known in meteorological work as a longitudinal rol]E].

Likewise, in the case where Re > Re. and v. > vy, there will be shear turbulence
which provides a perturbative background for convective turbulence. That is, the
convection is necessary and proceeds effectively unimpeded, yet the shear flow ex-
periences turbulence nonetheless. Each kind of turbulence will cause an increased

1S. Mergui, X. Nicolas, and S. Hirata. “Sidewall and thermal boundary condition effects on the
evolution of longitudinal rolls in Rayleigh-Bénard-Poiseuille convection”. In: Physics of Fluids (1994-
present) 23.8, 084101 (2011), pages. DOI: http://dx.doi.org/10.1063/1.3605698. URL: http:
//scitation.aip.org/content/aip/journal/pof2/23/8/10.1063/1.3605698; R. A. Brown.
“Longitudinal instabilities and secondary flows in the planetary boundary layer: A review”. In:
Reviews of Geophysics 18.3 (1980), pp. 683-697. 1SSN: 1944-9208. poI: [10.1029/RG0181003p00683.
URL: http://dx.doi.org/10.1029/RG0181003p00683.
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effective viscosity seen by the other, and so here, by requiring Re to be large, we
really mean the effective Re taking into account the convective viscosity.

The four cases considered so far characterize the extreme possibilities. The
remaining scenarios lie in the interior of the (Re,v./vy) space. Starting with v, < vy
and Re < Re. and moving towards increasing Re, we see that the flow must transition
from shear stable and convectively unstable to shear unstable and convectively stable.
If we move instead in the direction of increasing v., there is no such transition, as
the kind of instabilities remain the same in the low Re limit. On the other hand, in
the high Re limit, moving from low v. to high v, causes a convectively stable flow
to become convectively unstable. We expect then a rich set of transitions in the
intermediate values of Re and vy /v,.

To fill in our understanding of this space, the scaling forms of different instabilities
will be useful. These have historically been understood as energy transport relations in
momentum-space, though they may also be viewed as a result of the application of the
Momentum-Shell Renormalization Group methodology to fluid mechanic{?} In this
context, the RG flow amounts to an increase in viscosity with length scale, conditioned
upon the existence of turbulence. The Kolmorogov relation plays the role of a trivial
fixed point’] as expected given its assumption of isotropy and scale-invariance.

Regardless of the interpretation, the key differences between convective and shear
instabilities lie in how energy is transferred to different length scales. In a shear
instability, energy begins on long scales and is transferred to short scales, where it is
eventually dissipated. In a convective stability, on the other hand, the energy begins
on all scales and is merely redistributed. This difference results in a difference in
the scaling form of the resultant eddy velocity. Furthermore within a convective
instability the scaling form varies as a function of length scale. Specifically, if €, is the
rate of viscous energy dissipation per unit mass, e is the rate of thermal dissipation

2Victor Yakhot and StevenA. Orszag. “Renormalization group analysis of turbulence. I. Basic
theory”. English. In: Journal of Scientific Computing 1.1 (1986), pp. 3-51. ISSN: 0885-7474.
DOI: [10.1007/BF01061452. URL: http://dx.doi.org/10.1007/BF01061452; Ye Zhou, David
W. McComb, and George Vahala. “Renormalization Group (RG) in Turbulence: Historical and
Comparative Perspective”. In: (Aug. 1997). URL: http://ntrs.nasa.gov/archive/nasa/casi,
ntrs.nasa.gov/19970028852. pdf; Dirk Barbi and Gernot Munster. Renormalization Group
Analysis of Turbulent Hydrodynamics. May 2013. URL: http://arxiv.org/abs/1012.0461;
L. Ts. Adzhemyan et al. “Renormalization-group approach to the stochastic Navier Stokes equation:
Two-loop approximation”. In: International Journal of Modern Physics B 17.10 (2003), pp. 2137—
2170. por: 10.1142/50217979203018193. eprint: http://www.worldscientific.com/doi/pdf/
10.1142/50217979203018193. URL: http://www.worldscientific.com/doi/abs/10.1142/
S0217979203018193.

3Yakhot and Orszag, lop. cit.; Barbi and Munster, jop. cit.
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per unit mass, and r is the length scale of interest, thenﬁ

convective 1/3
Usmall ~ (ENT) )
convective 2 p4.4,.3\1/5
long ~ <6T6 gr ) )
shear 1/3
v ~ (eur)'?,

where 3 is the thermal expansion coefficient. For an ideal gas, 3 = T—!. The crossover
between the two behaviors for convection typically occurs at the Bolgiano length,

iven b
& yE' Lo — ¢5/473/4 —3/2 51
B=¢/"€ex" (Bg)™". (5.1)

That is, the small-scaling is expected for r < Lp and the long scaling for » > Lg.
Now the scaling relations may also be written in terms of macroscopic quantities as

3/5 1/3
convective LB T /
Vsmall ~ Ve )
[ Lp
3/5
Ucorwective ~ v f /
long c I )

1/3
r
Ushear ~ <l> )

Note that the scaling forms are only precise when the length scale is much smaller
than any large-scale features of the flow. The primary large-scale flow length scale in

4Emily S. C. Ching et al. “Scaling behavior in turbulent Rayleigh-Bénard convection revealed
by conditional structure functions”. In: Phys. Rev. E 87 (1 Jan. 2013), p. 013005. DOI: 10|
1103/PhysRevE.87.013005. URL: http://link.aps.org/doi/10.1103/PhysRevE.87.013005;
F Rincon. Theories of convection and the spectrum of turbulence in the solar photosphere. Tech. rep.
astro-ph/0611842. Contribution to the proceedings : 239 Convection in Astrophysics, International
Astronomical Union., held 21-25 August, 2006 in Prague, Czech Republic. Nov. 2006. eprint:
http://arxiv.org/pdf/astro-ph/0611842.pdfl URL: http://cds.cern.ch/record/1001690/
files/0611842.pdf; Dan Skandera, Angela Busse, and Wolf-Christian Miiller. Scaling Properties
of Convective Turbulence. English. Ed. by Siegfried Wagner et al. Springer Berlin Heidelberg,
2009, pp. 387-396. I1SBN: 978-3-540-69181-5. DOI: [10.1007/978-3-540-69182-2_31. URL:
http://dx.doi.org/10.1007/978-3-540-69182-2_31; Detlef Lohse and Ke-Qing Xia. “Small-
Scale Properties of Turbulent Rayleigh-Benard Convection”. English. In: Annual Review Of Fluid
Mechanics. Annual Review of Fluid Mechanics 42 (2010), pp. 335-364. 1SSN: 0066-4189. DOI:
10.1146/annurev.fluid.010908.165152; G Boffetta et al. Kolmogorov and Bolgiano scaling in
thermal convection: the case of Rayleigh- Taylor turbulence. Tech. rep. arXiv:1101.5917. Comments:
4 pages, 5 figures. Feb. 2011. URL: http://arxiv.org/pdf/1101.5917.pdf|

5Ching et al., jop. cit.; Lohse and Xia, [op. cit.; Boffetta et al., [op. cit.
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this problem is the pressure scale height, or equivalently the size of the convection
cell, so use of these relations in the vicinity of the convection scale should be treated
with some caution. Having said that, this warning is most applicable in cases with
fixed boundary conditions constraining the flow. In stars, where the boundaries are
typically free and the fluid properties are continuous, the scale at which boundary
effects on the scaling must be considered is somewhat larger relative to [. As a result
the line between large-scale flow and turbulent scaling is somewhat more blurred
than usual, so the use of these equations in the vicinity of a scale or convective height
is safer than might otherwise be expected.

As a rough model, then, we take the kind of turbulence present at any length scale
to be the kind with the greatest eddy velocity at that scale. In computing stability
criteria, we use the effective viscosity due to the effect we are not considering. This
model is convenient in that it provides a way to deal continuously with the empty
sections in the table classifying flow phases: effectively as one or the other parameter
changes the length scales are shuffled around to determine the flow properties.

Within the context of this model, and in the case where both types of turbulence
are present, there are three possibilities. Either the shear velocity curve intersects
the long convective velocity curve above r = [, or the shear curve falls below both
convective curves, or it intersects the convection curves below r = [. In the first
case, shear turbulence dominates and the convective turbulence manifests as a slight
anisotropy in the shear turbulent flow. In the second case, convection dominates
and the shear turbulence manifests as a slight anisotropy in the convection. In
the final case, convective turbulence dominates on long scales, shear turbulence on
intermediate scales, and convective turbulence on shorter scales. Each of these cases
may be analyzed separately for stability.

5.1.1 Shear-dominated flow

In the first case, the Reynold’s number is given by
Uol
Verf
Now the tricky part here is determining a choice of v.ss. It is tempting to declare
the convective eddies irrelevant, as they are subdominant on all length scales. The
problem with this is that stability is determined in the absence of the instability of

interest. Thus we take the effective viscosity here to be that due to the convective
eddies, and hence

Re =

(5.2)

l
Re =2 =20 (5.3)

vl 0.
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Furthermore, by virtue of us considering this case we must have

m"“

1 3/5
v0<§>3>vc<§> Vr<l—>vo><§>1Vr<l—>U0>1. (5.4)
Ve Ve

As a result, for turbulent flow to arise from shearing we must have vg > Re.v., which
trivially satisfies the condition that vy > v. because Re, ~ 103. The full criterion for
this case to arise, then, is

LN Re.. (5.5)
Ve
The dissipation in this case is
Power  Fy dv o P
= = VUeffP— = UgVeff—. 5.6
Area Area o7 ffpdz Yo% 7 (56)

Once more we must pick an effective viscosity. Here, however, the effective viscosity
is that due to the turbulence itself. Using the simple Prandtl model, this is given by

Verf = on. (57)
As a result,
Power dv 3
= Vlefff— = pPUS. 5.8
Area VoV ffde PV, ( )

As the energy density of the wind is puv2, the time over which it dissipates in the
absence of a driving force is [ /vy and the distance it travels is .

Note that in this case the heat flux is entirely carried by the turbulent motion the
shear generates. This is much faster than the convective flux, and so the associated
temperature gradient will be lower. This will cause the layer to become convectively
stable, leaving shear instability as the only remaining form of turbulence. Of course,
should the turbulence stop the layer will become convectively unstable on the cooling
timescale of the layer, though for this to happen the shear velocity must slow down
tremendously to accommodate the much lower molecular-scale viscosity.

Finally, note that stability of shear flow on one length scale does not guarantee
stability on another, and likewise with instability. In particular, the numerator of the
Reynold’s number scales as r2, while the denominator scales as r'*¢, e € {%, g} As a
result, Re ~ r¢, ¢ € {%,% .

As € > 0, it is possible for a shear flow which is unstable on long length scales
to stabilize on short ones. This could occur if the larger scale shear flow breaks up
into bands smaller than a pressure height, each of which is internally laminar with a
turbulent region in between. The bulk convective motion is then restricted to work
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on this new scale. One might expect v, to drop as a result, as the gas packets have
less time to accelerate before turning around. More specifically, one would expect
v, < /1. This decrease, however, will lower the flux that the convection can carry,
leading to an increase in the thermal gradient across the region. The flux carried

goes as
dr dr ar | (dT dr
Fc X CprcE XX p’UcE 0.6 pldz\J (dz) - <d2>ad. (59)

As a result, decreasing [ results in a necessary increase of the temperature gradient
to carry the same flux. Now recall that
dI'  TdInT dP T I g

& PdmpPd: - 9BV T L,

F, < IV\/V = V. (5.11)

The corresponding differential form is

— 3V — 2V 4
dFC x Vy/V — Vaddl + lﬁdv (512)

(5.10)

SO

Setting this to zero yields

AV 2V(V — V)
_ ~ Vad) 1
dl ~ 1(2Va — 3V) (5.13)

This is a negative quantity, as V ~ V4, so decreasing [ increases V as expected.

Recalling that
Ve X l\/V - Vad7 (5.14)
we find

dv, \V4 1
/N7 — 14— ) =,/V - 1+ ———1. A
ar VY V“d( +2Vad—3v> v v“d( +2V§d—3> (5:15)

In general we expect V > V4 and V =~ V, 4 in a convection zone, so we expect
Vaa/V =1 — 6 for small positive §. Thus

dv, 1 N o os3)2
o \/V = Vg <1+ _1_2§> ~ 20\/V — Vg = 26%/2. (5.16)

This quantity is positive, so v. decreases as the length scale drops. This raises the
Reynold’s number for the flow and destabilizes it, so we expect the flow to actually
be unstable on all length scales despite the fact that ¢ = % The effective viscosity
will be similar to the general case of shear turbulent flow.
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5.1.2 Convection-dominated flow

In the second case, convection dominates on all length scales. The instability criterion
for convective flow is that

BAT
Ra = AT > Ra,. (5.17)
av
Now recall that 91V
n
B = 5T |p. (5.18)

We expect that at fixed pressure, increasing the temperature of a gas always increases
its volume, even when ionization effects are presemﬂ In the ionization zone this may
be a relatively small increase due to the fact that increasing 7' there leads primarily
to an increase in ionization, and hence to a decrease in y which partially offsets the
decrease in P. Without going into detail in analyzing the equation of state there
is not much more that can be said, so we simply remark that g will typically be a
number of order 7!, As AT is of order T on a scale height, these two will roughly
cancel, leaving

g’

— > Ra,. (5.19)

av
The viscosity here once more should not be the molecular viscosity, but rather the
turbulent viscosity due to the shear flow in the absence of convection. This viscosity
is given on the scale of interest by

v = lvy, (5.20)

SO l2
I S Ra,. (5.21)

avg

Now the thermal diffusivity a will be dominated by the shear turbulence, and so is
roughly equal to lvg. As a result,

gl
vg

> Ra,. (5.22)

This is the necessary criterion for convection to dominate over an otherwise shear-
turbulent flow.

6The fact that this does not hold for solids is a result of the global symmetry changes which can
occur in phase transitions.
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Given that this is the case, we also know that

1/3 ‘ L 3/5 1/3
Ushecw’ ~ U (T) < U?Zﬁfﬁdwe ~ Ve <B> (r) ) (523)
I l Lg

3/5 1/3 I\ 4/15
% < (LB> YT (B> . (5.24)
Ve ) LB l

Now Lpg is generally a small length scale, much smaller than [, such that the
regime ’visible’ to the turbulence has no externally imposed length-scale. As a result,
we require

and hence

Ve > V. (525)

In this case the dissipation of the shear is given by the convective viscosity, which
serves to transport momentum efficiently around the region. Thus

Power Fv dv (pvg) ‘

p p
= = UoVefsp g = /Ugl/effj = vgvclz—o = v, (5.26)

Area Area

We recognize the final quantity in parentheses as the energy density of the wind. The
time the wind may travel before running out of energy is then this divided by the
volumetric power loss, and so is [ /v.. As v. > vy we expect then that the wind loses
energy comparable to what it carries over a distance much shorter than [.

5.1.3 Mixed shear-convective flow

In this case, the convective and shear velocities are such that

Ve > o, (5.27)
1/3 3/5
Vo (;) = v, (7;) ,7 > Lp. (5.28)
This implies that

4

Lo\
1> 90 (f) o (5.29)

Ve

A result of this is that the system is convective on long scales and experiences shear
turbulence on short scales. The length scale of the transition is given by

v\ 7
Terit = l (0) (530)

c
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In order for the shear to be unstable below this length scale, we require as before

(UT()) Terit Vo T crit % Vo g
N LY N ) L P
Tcrit 5 UC l UC
e (%)
We therefore have " ,
1> — > Re?. (5.32)
Ve

As Re, ~ 103, this is a contradiction, so it appears that this crossover behavior cannot
happen. This could just be a result of one of our assumptions being too strong,
however: we have taken the onset of shear turbulence to occur precisely at the point
where, were it to happen, it would be dominant over convective turbulence. The
necessary assumption, however, is only that it occurs below the scale at which it
takes over and above the scale of L. Thus the criterion should be

15 15
Forit < 1 <”°> - (”O) Te<t (5.33)
(& ,UC
- Teri N 2 g
Re — (l)t _ Y (rm> "> Re, — &2 (“0> > Re, (5.34)
Tepit \ © Ve l (%
UC ( crzt)
—25/4 5/2
o€ > RS2 (”") iy = (Recvc) , (5.35)
Ve Vo
with the condition that the crossover behavior occurs only when
v 25/4
rerit > Lp,1 > &> Re)/? <> : (5.36)
Vo

Using Re, ~ 10® we find roughly

VA 25/4

1>¢> 10 () . (5.37)
Vo

Given that v, > vy we find that the above is a contradiction, and hence that the

crossover behavior cannot happen. This confirms the conclusion from our earlier,

somewhat simpler analysis.
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5.2 Non-Convective Shear

Consider now the regime of shear flow in the absence of convection. Let the vertical
shear be vy across a scale height, and let the horizontal shear be v, across a distance
x.

Suppose first that the flow is shear-unstable. This is a common state of affairs in
the radiative zoneﬂ mainly due to the absence of a large turbulent viscosity. Recall
that the Richardson criterion is

vAz

vAz dv 2
= NZ4 =EN? — 5.38
(a+vy) Tt v, M < (dz) ’ ( )

where v and Az are the speed and size of the largest eddies which are isotropic, vy, is
the turbulent viscosity for horizontal motions, « is the thermal diffusivity, and N and
N, partition the Brunt-Vaisala frequency into pieces corresponding to the thermal
and chemical gradients respectively. Using the usual approximation of derivatives as
quotients and rearranging terms gives

1 1 1 vo\ 2
N2+ —NP< —— <°> : 5.39
(o + 1) T+1/h “<0Az s ( )
The frequency components may be computed ag]
g Olnp g
Ni=2 — == - 4
P p - (GaF) =4 TuD (5.40)
and 01 dl dl
N2=J (2P BA) 9 (2R (5.41)
B hg \Olnp T dInp hs \dlnp

Note that the derivatives involving u here are compositional derivatives, taken ignoring
ionization effects. As we are generally neglecting compositional effects, we may just
set N7 = 0.

7S. Mathis, A. Palacios, and J.-P. Zahn. “On shear-induced turbulence in rotating stars”.
In: Astronomy and Astrophysics 425.1 (2004), pp. 243-247. DOI: 10.1051/0004-6361:20040279.
eprint: http://arxiv.org/abs/astro-ph/0403580. URL: http://dx.doi.org/10.1051/
0004-6361:20040279; A. Maeder. “Stellar rotation: Evidence for a large horizontal turbulence
and its effects on evolution”. In: Astronomy and Astrophysics 399.1 (2003), pp. 263-269. DOTI:
10.1051/0004-6361:20021731. eprint: http://arxiv.org/abs/astro-ph/0301258. URL:
http://dx.doi.org/10.1051/0004-6361:20021731.

®V. M. Canuto. “Turbulence in Stars. II. Shear, Stable Stratification, and Radiative Losses”.
In: The Astrophysical Journal 508.2 (1998), p. 767. URL: http://stacks.iop.org/0004-
637X/508/1=2/a=767.
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Putting all of this in the Richardson criterion yields

(vad_V) < hs </UO>2
(a+v,)  guvAz '

(5.42)
l
The vertical viscosity, v, may be viewed as set by saturating this criterion with vAz,
as this sets the size of the largest isotropic eddies. In the context of our previous
scaling arguments this may be viewed as one of the fixed points of the renormalization
process. Thus,
_ hyg a+uy

S TER .

The interpretation of this result is somewhat subtle, and hence worth examining
in detail. Suppose first that a flow has a velocity shear which makes it Reynolds
unstable in both the vertical and horizontal directions. The Richardson criterion
as stated indicates that there will be turbulence, but that the vertical action of the
turbulence will be limited in its viscosity by the requirement that the criterion hold.

Now suppose that the shear is insufficient make the system unstable vertically in
the Reynolds sense, but sufficient to make it unstable horizontally in the same sense.
The vertical viscosity will then be the maximum of the turbulent viscosity again from
the Richardson criterion and the microscopic viscosity. Here the Richardson criterion
plays the role of suppressing the vertical extent of the turbulent eddies created by
the horizontal shear.

Now if the horizontal shear is insufficient to make the system Reynolds unstable
but the vertical shear is, the eddies will be dominated by the vertical shear. The
anisotropy which forced us to consider the horizontal viscosity separately from the
vertical value is not relevant in this case, as horizontally-generated turbulence must
fight the buoyant effects in one direction and not in the other, while vertically
generated turbulence is from the start fighting these effects. Setting v, = v, yields
then

(5.43)

_avd
N2
If neither shear suffices to make the system Reynolds unstable, then the viscosity
in both directions is just the microscopic viscosity.
As a final note, whenever the horizontal viscosity is not simply the microscopic
value, we need to specify it to close the equation specifying the vertical viscosity.
This is done by letting

(5.44)

Vp

Vp = URT, (5.45)

though it is left to the specific physical circumstances to determine x and v,. We will
address this question as it arises.
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6
Global Wind Patterns

More is different.
— P.W. Anderson

In the previous chapter we discussed notions of local stability in an attempt to
determine the properties of winds on length scales of order [ and below. We now turn
to length scales of order R to determine the global flow pattern. We will use as our
building blocks the flow patterns at scales of order I.

6.1 Turbulent Zonal Flow

It has long been known that the gas giant planets in our own solar system organize
their winds, at least on the surface, into zonal jets. These jetstreams are both
stable against perturbations with spherical harmonic number m # 0 and exhibit
a characteristic energy scaling in the total spherical harmonic number n, namely
as n_ﬂ Note that m and n are defined as in the spherical harmonic Y,", such
that —m < m < n. This phenomenon was first explained by Peter Rhinef] in the

'Boris Galperin, Semion Sukoriansky, and Huei-Ping Huang. “Universal n-5 spectrum of zonal
flows on giant planets”. In: Physics of Fluids (1994-present) 13.6 (2001), pp. 1545-1548. DOI:
http://dx.doi.org/10.1063/1.1373684. URL: http://scitation.aip.org/content/aip/
journal/pof2/13/6/10.1063/1.1373684; Semion Sukoriansky, Boris Galperin, and Nadejda
Dikovskaya. “Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere and Some
Basic Features of Atmospheric Circulation on Giant Planets”. In: Phys. Rev. Lett. 89 (12 Aug.
2002), p. 124501. poOI: 10.1103/PhysRevLett.89.124501. URL: http://link.aps.org/doi/10.,
1103/PhysRevLett.89.124501,

“Peter B. Rhines. “Waves and turbulence on a beta-plane”. In: Journal of Fluid Mechanics
69 (03 June 1975), pp. 417-443. 1sSN: 1469-7645. DOI: 10.1017/80022112075001504. URL:
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paper which established the Rhines arrest of the inverse energy cascade characterizing
Kolmogorov turbulence. This has been investigated in a variety of contexts, ranging
from experimenta]ﬁ] to simulationa]ﬂ and has been found to be a universal property
of quasi two-dimensional turbulence on a rotating sphere. The arrest is, contrary
to the original claims by Rhines, not quite a halting of the cascade. Rather, in the
absence of friction, the [ effect merely slows the cascade of energy to longer length
scales. Frictional effects have been found?| to be responsible for the actual halting of
the energy flow. The properties of the Rhines spectrum, as well as the conditions
under which it arises, are the subject of this section.
The Rhines wavenumber is defined adf]

[ Q
=4/ — 1
kR RUO’ (6 )

and the p-effect wavenumber is given by

Q3 1/5

where ¢ is the energy input per unit mass into the system. The driving force is
typically assumed to be present either at all length scales, or just at the smallest
length scales. Historically there has been some uncertainty as to which of kg and kg

http://journals.cambridge.org/article_S0022112075001504,

3J.M. Nguyen Duc, Ph. Caperan, and J. Sommeria. “An Experimental Study of the Inverse
Cascade of Energy in Two-Dimensional Turbulence”. English. In: Advances in Turbulence. Ed. by
Genevieve Comte-Bellot and Jean Mathieu. Springer Berlin Heidelberg, 1987, pp. 265-268. 1SBN: 978-
3-642-83047-1. DOI: 10.1007/978-3-642-83045-7_30. URL: http://dx.doi.org/10.1007/978~
3-642-83045-7_30; D. H. Atkinson, J. B. Pollack, and A. Seiff. “The Galileo probe Doppler wind
experiment: Measurement of the deep zonal winds on Jupiter”. In: Journal of Geophysical Research
103 (Sept. 1998), pp. 22911-22928. DOTI: |10.1029/98JE00060.

4Sergey Danilov and David Gurarie. “Rhines scale and spectra of the 8-plane turbulence with
bottom drag”. In: Phys. Rev. E 65 (6 June 2002), p. 067301. DOIL: [10.1103/PhysRevE.65.067301.
URL: http://link.aps.org/doi/10.1103/PhysRevE.65.067301; Seimion Sukoriansky, Nadejda
Dikovskaya, and Boris Galperin. “On the Arrest of Inverse Energy Cascade and the Rhines Scale”.
In: Journal of the Atmospheric Sciences 64 (2006). URL: http://journals.ametsoc.org/doi/
abs/10.1175/JAS4013.1; S. Danilov and D. Gurarie. “Scaling, spectra and zonal jets in beta-plane
turbulence”. In: Physics of Fluids 16 (July 2004), pp. 2592-2603. DOI: 10.1063/1.1752928;
J. Verhoeven and S. Stellmach. “The compressional beta effect: A source of zonal winds in planets?”
In: Tcarus 237 (July 2014), pp. 143-158. DOI: [10.1016/j.icarus.2014.04.019. arXiv: [1404.6940
[astro-ph.EP].
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6Sukoriansky, Galperin, and Dikovskaya, [op. cit.
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actually controls zonal flows, but this is actually a misguided question, for there is
another quantity which plays a significant role. This is the frictional wavenumber,
given by

ki = (3C)"? (A>/ (6.3)

3

where C} is a constant, roughly equal to dZL and

din FE
A=
dt ’

(6.4)

with F being the specific kinetic energy of the wind and the time derivative being
taken assuming no power input into E. It is actually the combination of the frictional,
Rhines, and S effect wavenumbers which controls the properties of zonal ﬂowsﬁ.

The Rhines cascade is then understood in the following way. Energy is injected
at very short length scales (large k). Energy present at the length scale set by kg
or above (k < kg) proceeds to march to longer length scales in the inverse cascade.
This process halts when the energy reaches ky,., for there the energy is transported to
k > ks and hence transformed into heat. As a result, if kg > ky,, we expect energy
to pile-up near k¢,. It can be shown that the pile-up actually occurs at kg, which
is proportional in the steady-state to ks, with proportionality constant quite close
to unityﬂ. Due to anisotropy in the cascade, this energy preferentially piles up in
the m = 0, n = Rky, mode, leading to jetstreams following lines of constant latitude
circling the star. On the other hand, if kg < ky,, the inverse cascade cannot proceed,
for all of the modes which would undergo it have lost their energy to friction. In this
case, Kolmogorov-style turbulence dominates at all scales.

There are two reasons that we are careful to make a distinction between kr and
k¢, despite their general steady-state interchangeability. The first is that physically,
the distinction reveals that the underlying cause of the arrest of the inverse cascade
lies with friction, rather than Rossby wave instabilityf°} The second is that while
they are close in the steady-state, the transient case with ¢ making a sudden change
and then remaining constant reveals that they are not always the same. In particular,
upon making a change to the driving force, it takes some time for the velocity profile
to adapt. During this time, kg and £, will disagree quite strongly, for the former

7Ibid.

8Idem, “Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere and Some
Basic Features of Atmospheric Circulation on Giant Planets”; Sukoriansky, Dikovskaya, and Galperin,
op. cit.

“Idem, “On the Arrest of Inverse Energy Cascade and the Rhines Scale”}

10Tbid.
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tracks the velocity profile while the latter tracks the driving force. The two come
to terms on timescales of order A™', and so on timescales shorter than these the
number of bands, determined by kg, may deviate significantly from the steady-state
value suggested by kfm. Generally, this manifests as kr beginning very large and
then shrinking to assume the proper proportionality with k¢, at which point the
final number of bands is achieved. In all problems of interest, we will verify that the
relevant transient timescales are greater than A~!, and hence that we may neglect
this effect.

In addition to being careful about timescales, we must also be cautious regarding
dimensionality. A key assumption underlying the Rhines cascade is that the flow
is quasi-two-dimensional. This assumption is valid in any system with significant
pressure stratification, such that we do not expect winds which go significantly against
the pressure gradient. To state this formally, suppose that we follow the path of some
fluid as it performs a closed loop around the star. Let the mean pressure of the fluid
along the loop be Fy. Let As be the maximum distance between the path of the fluid
and the isobaric surface at F,. We require then that

As < R, (6.5)

such that the deviations are not relevant on the global scale. Note that we have

implicitly treated the flow as occurring on top of an averaged flow background in

speaking of isobaric surfaces. This is the usual way to examine fluctuations in a

renormalized theory, but it can lead to incorrect conclusions when not kept in mind.
Now we may estimate As as

PV P U

As =~ VP =1 P = l’yvz. (6.6)

s

As | < R, 7y is of order unity, and vy < v, the last of these coming from the immense
shock losses associated with supersonic flow, we find that the criterion in Eq. (6.5))
will always be satisfied. Thus it is only the transient criterion we ever need check.

6.2 Alternative Patterns

In the case where kg < k¢, and in the presence of turbulence, there is no energy
available at the modes which may contribute to the Rhines cascade. As a result,
no pile-up of energy occurs at kg. Additionally, the lack of an anisotropic cascade

Hbid.
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in momentum-space means that the turbulence ought to be isotropic except on the
largest scales, where the pattern of flow is determined by the driving force. Likewise,
if there is no turbulence, the flow is just determined by the driving and boundary
conditions at length scales of order R.

Given that we are interested in cases where a star is being heated on one side
but not the other, we expect that the tendency will be to have wind flow in the ngS
direction, driven by a temperature differential. Precisely what happens is determined
by the Rossby number, which supports two distinct limits. For Ro > 1, taking the
length scale to be R, the Coriolis force is negligible on the scale of the star, and so
the wind can simply flow around along ngﬁ On the other hand, if Ro < 1, once more
taking the length scale to be R, the Coriolis force is important, and will tend to wrap
the wind into hurricanes. If the flow is turbulent, we will refer to these as Kolmogorov
hurricanes, for then they support the familiar structure of nested vortices on many
length scales.

6.2.1 Large Rossby Number

When the Rossby number is large, the wind moves in an essentially ballistic manner.
As we have argued in discussing the Rhines scale, the flow may be considered to
be quasi-two-dimensional, as we take the wind to move along isobars. Note that in
this limit the rotation of the star is largely irrelevant. As a result, the system is
axisymmetric about the line connecting the pulsar and the companion. In analyzing
this case, then, we eschew our standard conventions for Z and instead take 2 to lie
along this line. The angular coordinates # and ¢ are then redefined accordingly, so vy
is now the wind speed from one side of the star to the other, while v, measures the
wind speed along the symmetric direction.

Suppose that the star has some temperature differential AT between the day and
night sided™”} Then in moving around the star, the wind acts as a heat engine. The
specific power it moves is given by

' =cu-VT. (6.7)

Now the rate at which the wind may extract work from this process is just the heat
engine efficiency multiplied by the specific power. Using the endoreversible heat
engine efficiency, a common approximation used in place of the maximal Carnot

12This is equivalent to speaking about the amplitude of the first nontrivial spherical harmonic.
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efficiency for real-world systems, we find that

W:<1—,/1—ATT) (cpv-VT)%gjj:(cpv-VT), (6.8)

and so approximating the gradient yields

W= U AT? _ v2vg (AT>2 <k3> 7 (6.9)
2r RT 2tR\ T Colb
where the final term on the right is 3/2 for an ideal gas and of order unity generally.
The intuitive picture here is that the wind moves to the hot side of the star, picks up
heat, and then moves to the cold side to release it. It then moves back to the hot
side to warm up again, and the process repeats.

There are a variety of structures that the global flow could take on. One would
simply be to set vy to some uniform nonzero value. Given that there is nothing
driving the flow in the QAS direction, and no spontaneous symmetry breaking, we may
then set vy = 0 up to turbulent corrections. This has the disadvantage of causing a
net mass flux across the star. This could be remedied by setting vy to some value
which varies as a periodic function of ¢, spontaneously breaking the axisymmetry.
There is, however, no physical process giving the ¢ scale for this symmetry breaking.
Additionally, this solution leads to a singularity in the continuity equation near the
poles, which is somewhat harder to remove.

There are two natural ways to correct the problems uncovered in the previous
examples. The first would be to make use of Hadley cells. These preserve axisymmetry
and require no additional length scale. They respect the isobaric nature of the flow
up to corrections of order hJ”| but have the advantage that there is no longer a
singularity in the continuity equation. The other possibility is to assume once more
circumferential transport. The axis along which the the transport aligns would be
set by some combination of the weak residual effects of rotation and the magnetic
anisotropy in the underlying microscopic viscosity, both of which will tend to weakly
align it with the star’s rotation axis. The question is then of whether or not all of the
gas moves with the same handedness around the star. There is no physical process
which breaks the symmetry here, so if there are zones with alternating handedness
we expect the scale of alternation to be R. In either case, we refer to the relevant
speed as vy.

13That is, they have deviations of order hs.
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Using the above results, we may equate W totaled over a spherical shell of thickness
[ with the specific power lost to viscous drag, giving

2 2
9, VU AT _ .2 2 3-1 2 —1 kj
An Rt = v (47 R*v,l " + 27 RIV*y, R (CUM> (6.10)
R\? v, k
= 27mlv,v; (1 +2 <l> Vh) (%Z) (6.11)
AT? R\%*v kg
. Rv? = 142 () - . 12
o Ro? —7% VVp ( + 7)o o (6.12)

Note that because W is always a small fraction of &, we do not need to worry about
including heat produced by viscous effects in the calculation of heat transport.

We must now consider the radiative and convective cases separately. In the
radiative case,

Vp = U@R (613)
and ot
2 h
= , 14
TGN (Vg — V) (614
As a result, we may write
AT? R\? o
2 =v (1+2 () (1 ) 1
Vsorz — U8 ( * [ + vy, gNl Colb (6.15)
R\? o kp
— 92 - _
_ 2 <1+2(l) (1+ Vh) ( ) ( )) (%u) (6.16)
k

— (1 +2 (?)2 <1 + pcpng> (U"> (%)) (f’;) . (6.17)

Now note that

k F FP Fhy F kg
pcyvg R N pcyvgR| 0T N pc,vg RV T |0, P| N pc,Tvg RV vggR,OV (pcp>
(6.18)
The last term and V are both of order unity. The flux is generally within two orders
of magnitude of 10*?erg/cm?, R is within an order of magnitude of 10'°%cm, g is close
to 10*cm/s?, so this term may be written roughly as v, 'p~'1072g/cm?/s. In the
limit of fast winds, we expect this to be small, and hence may neglect the vertical
shear, while for slower winds or lower densities we may neglect the horizontal shear.
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Regardless, solving for vy yields

L83 (52) (1) 0+ k) (3) (2) -1
Vg = .
9 15 1+ 540 (3) ()

This may be simplified by dropping factors of W, v, c,u/kp, all of which are quite
close to unity, and by assuming AT/T to be small. Doing so yields

(6.19)

Vg = Usﬁ. (620)

The heat transported is therefore

AT 1 AT\> o} (AT\?
6/:1)9017@:@@801)7" (T) Ys <> . (621)

Q

On the other hand, in the convective case
vy = l max (ve, vg) , (6.22)

while
vy, = max (lv., Rug) . (6.23)

As R > [, their ratio is 1 for lv. < Ruvg, R/l for vy > v., and Ruvy/lv. in between. As
R > [, then, the term (R/l)%*vy, /v, is always dominant over unity, so we may write

AT? R\? [k
2 o B
fo, orr2 Y ( [ ) (cv,u> ' (6.24)

Once more we will drop the rightmost term, for it should be very close to unity. This
done, we may substitute in the expression for v, and find

AT\ (1
v? (T) (R) = 2mvg max (ve, vg) - (6.25)

To solve this, we first assume v, > vy. This yields

v (AT e
v 2T, <T> (R) ' (6.26)
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If this exceeds v, then we next take v, < vy and find

AT | 1
Vp = 'UST ﬁ (627)
If v. > vg then

AT 02, T (1) (AT’ vt (1) [(AT?
[ =" _ 8P — N ~ d —_ E— 2
£ =t 5 nRo, (R) < T ) Sr R (R) < T ) ; (6.28)

while in the other case

AT v, (AT\? [ 1 L\ (AT’
r_ _ Vs ~oatt () (20 2
STUYTR T IR ( T ) 27 R o (%R) < T ) (6.29)

The similar structure of all of the heat transport equations indicates that we may
simplify, and write them each as

g = ¢l (6.30)

where ¢ is a dimensionless quantity given in the radiative case as

() (3

in the convective v, > vg case as

v (1 O\ (AT’
5:27%*0 <M> (T) ; (6.32)

and in the convective v, < vy case as

£=2 (275}%)3/2 (ATT>2 : (6.33)

From the form of ¢ we may gain some intuition about the system. To begin, note
that £/1 depends on [ only in the convective case. This is because in the convective
case the nature of the turbulence which resists moving heat circumferentially depends
on [, whereas in the radiative case this dependence is not there, for the turbulence
there depends only on the Richardson viscosity scale. Additionally, [/27R is typically
of order 1073, while v, /v, is typically of order 103. If AT/T is smaller than unity,
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we see that the most efficient transport comes when the turbulence is suppressed by
entropic stratification, as in the radiative case.

Note that the above expressions were derived assuming AT'/T is somewhat
smaller than unity. The functional forms become somewhat more complicated as
the temperature difference increases, so we will keep in mind that there could be
deviations from the above behavior and use them primarily as guidelines for intuition
and estimation. Having said that, note that [/ R is generally on the order of 1073, and
v, /v, is generally not more than 103, so all of the cases considered thus far indicate
that vy approaches v, as AT approaches T'. This behavior is expected regardless of
the underlying turbulent model, so the fact that it occurs in all of the cases indicates
that we are not missing substantial qualitative physics. Furthermore, when vy > vy,
we simply substitute vy = v, to get the correct physics, for winds generally cannot
travel much above the sound speed without incurring tremendous losses. In this case,

, AT  3AT
€ =VeCp—H =

TR TRT

(6.34)

6.2.2 Small Rossby Number

When the Rossby number for motion on scales of order R is small, the Coriolis force
is extremely important, and will generally deflect winds into hurricanes. To see
this, suppose that a wind is flowing with velocity v. The Coriolis acceleration it

experiences is
a=2v x 8, (6.35)

where € is the angular velocity of the region of the star of interest about the stellar
rotation axis, neglecting the contribution of the wind. As the wind follows isobaric
surfaces, this acceleration must be projected onto these surfaces. This yields circular
motion, for the acceleration is always perpendicular to the motion as a result of the
cross product, and the radius is given by

)
T'rot = .
" 20 cos b

(6.36)

The resulting motion is a hurricane with a Rossby number of one. As the star will be
dominated by these storms in this limit, we are looking at a diffusive process with
thermal diffusion constant

2

B _peu
k = pcyuryor = 0 cosd" (6.37)
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The flux is £VT'. The circumferential part of this is

AT
Frk—. 6.38
& (6.38)

A spherical shell of thickness dz then transmits power 2r Rdz F'. Averaging this over
the mass of the shell gives

o 2nRdzF kAT curyqAT 1ol AT
T 2nR?’pdz  pnR?2 wR2 @R

(6.39)

Note that the factor of two in the denominator rather than four arises because ¢ is
the specific power removed from one side of the star and added to the other, so we
use half of the area of the star.

Before addressing the problem of determining v, it is worth discussing the diver-
gence of all of our expressions at # = 7/2. At the equator of the star, geostrophic winds
experience no Coriolis force. As a result, this region is automatically excluded from
the low Rossby number regime, and so our results from the previous section should
be used for low latitudes. To be formal, let 65 be the angles at which v/2QR cos 6
equals unity. Between these angles, we should use the ballistic high-Rossby number
results. Outside of this range, the hurricane diffusion result should be used.

Returning, then, to the question of v, we must once more compute a balance
between the work the wind may extract as it shuffles heat around and the power lost
to viscous effects. By the same reasoning in the previous section, we find that

: V202 AT?
W=—2—. 6.40
47 RT?Q) cos 0 ( )
As r.o¢ < R, we compute the viscous losses over a single hurricane, giving
v2? AT? _ .
2rrotlm - 'UQ (WT?Othl ! + ZWTTOthhrro}j> (641)
V2AT?
> = (vl 4+ 2upr2) . 6.42
272 Ry T2€2 cos 0 (V + Vhrmt) ( )

Here 27, is the area of the surface that the flux passes through, 772, is the area
associated with bottom drag, and 27r,,[ is the area associated with shearing along
the isobar. Now we recognize that 2r.,$2cosf = v, so

vIAT?
m2RT?

= v (vl + 2mry3 ) (6.43)
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We must now once more consider the radiative and convective cases separately.
In the radiative case, the horizontal viscosity is

U2

Y 44
Ph = Ulrot 2€2 cos 0 (6.44)
The vertical viscosity is then
2 o+ vy 5 + %
= = 7 6.45
PR (Ve = V) gR (Vaa — V) (6.45)
so the power balance is
vIAT?
WSQRTQ = (uvl’2 + 2uh7“;£) (6.46)
=v (Vvl_2 + 21)7“;01) (6.47)
= (uvl_z + 48 cos 9) (6.48)
2
2 @ + 2Q1éos€
= 40 cosb | . 6.49
! ( IR (Vg — V) 0% ) (649)

This equation is quintic and unfortunately has no analytic roots. For small AT/T, a
linear expansion suffices, yielding

B vEIAT? (6.50)
YT 4R cos 0 '
and 2 2,2 6 A5
;TS AT vt AT ve AT (6.51)

TR2T  2QmR2Tcosf  32Bm5RATS cos? 0
Note that the angles 6. may be computed roughly as 7/2 + sin™! (v/QR). In
computing &', we should be averaging over # outside of this range. Equivalently, we
should be requiring that v/2QR < cosf, so we should average cos~30 over the range
from cos @ = 1 to cos = v/2QR. As the integration measure on a sphere is —d(cos ),
we need only multiply " by

BT PR R 2
_/v/m“ “‘2( _4Q2R2>' (6.52)

For small v this is generally 1/2, but for large v it approaches zero and then becomes
negative, an indicator that the high Rossby number calculations are more appropriate.
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We now turn to the convective case. If v > v., both the horizontal and vertical
viscosities are dominated by the shearind™] The length scale in the vertical direction
remains [, but in the horizontal direction is now r,,. As a result,

vIAT?
7:2RT2 =v (VUZ_Q + QVhTr_o%) (6.53)
= (vl_l + 22}7“;0}5) (6.54)
= (17 + 2r,,)) (6.55)
=027t + 4Qucos (6.56)

v2AT? vIAT?

v =20l cos 1 5 — ~ : . 6.57
v cos \/ o 40212 RIT? cos? 0 42 RT?Q cos 6 (6.57)

This is precisely the result from the radiative case, and the power transmitted is the
same. This is a result of the shear turbulence dominating over convection, and of the
Richardson viscosity being a higher order correction in AT/T' to v.

Now suppose that v < v.. The diffusion of heat is then convection dominated
even in non-radial directions. As a result, the diffusion constant is just v. times
the horizontal length scale. In the model of isotropic turbulence, we expect the
characteristic length scale to be [. On the other hand, if the star is rotating very
rapidly, the Coriolis effect may make this impossible. Rapid rotation can introduce
an anisotropy in the convection cell{™”| and so we will take the scale of this turbulence
to be the minimum of r,.,; and [, where the former is computed for v.. First suppose

14We call this a Kolmogorov hurricane, for it is a hurricane which exhibits Kolmogorov turbulence
at all but the largest scales. This is in contrast to in the radiative case where significant anisotropies
are present across many scales, and to the convective case with v, > v, which is just convective
diffusivity.

15H. Kohler. “Differential Rotation Caused by Anisotropic Turbulent Viscosity”. In: Solar Physics
13 (July 1970), pp. 3-18. DOI: [10.1007/BF00963937; Pierre Lesaffre et al. “A two-dimensional
mixing length theory of convective transport”. In: Monthly Notices of the Royal Astronomical Society
(2013). DOI: [10.1093/mnras/stt317. eprint: http://mnras.oxfordjournals.org/content/
early/2013/03/20/mnras . stt317 . full . pdf +html. URL: http://mnras.oxfordjournals |
org/content/early/2013/03/20/mnras.stt317.abstract; P. Garaud et al. “A model of the
entropy flux and Reynolds stress in turbulent convection”. In: Monthly Notices of the Royal
Astronomical Society 407 (Oct. 2010), pp. 2451-2467. DOI: [10.1111/j.1365-2966.2010.17066.x.
arXiv: [1004.3239 [astro-ph.SR]; Richard J.A.M. Stevens, Herman J.H. Clercx, and Detlef Lohse.
“Heat transport and flow structure in rotating RayleighABA(©nard convection”. In: European
Journal of Mechanics - B/Fluids 40 (2013). Fascinating Fluid Mechanics: 100-Year Anniversary
of the Institute of Aerodynamics, {RWTH} Aachen University, pp. 41-49. 1SsN: 0997-7546. DOI:
http://dx.doi.org/10.1016/j.euromechflu.2013.01.004. URL: http://www.sciencedirect.
com/science/article/pii/S0997754613000058.


http://dx.doi.org/10.1007/BF00963937
http://dx.doi.org/10.1093/mnras/stt317
http://mnras.oxfordjournals.org/content/early/2013/03/20/mnras.stt317.full.pdf+html
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http://dx.doi.org/10.1111/j.1365-2966.2010.17066.x
http://arxiv.org/abs/1004.3239
http://dx.doi.org/http://dx.doi.org/10.1016/j.euromechflu.2013.01.004
http://www.sciencedirect.com/science/article/pii/S0997754613000058
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that 7., is larger than [. This is the case, for instance, on the sun, which is known to
exhibit giant convection cell{™®] Then the diffusivity is just v.l, so the heat transported
is

vlvEIAT
Now suppose that [ is the larger. Then
o VT ot VAT B v2IlAT (6.59)

TRYT  2Q7wR?*T cosf’

Now when AT ~ T, it would appear that none of the above expansions are
sufficient even qualitatively, for certain effects (such Richardson stabilization) do not
appear to leading order. However, all of the models under consideration give in this

case

U2

VB (6.60)
In other words, the Mach numbeIE] reduces to the sound speed Rossby numbeIEgI.
To get a feel for these Mach numbers, let us write R in units of Ry, ) in units of
27 /1hour, and vy as 1067, cm /s, where T} is the surface temperature measured in
units of 10°K. Note that we use a sound speed which is a factor of a few higher
than that corresponding to 10K, as the temperature in the regions which transport
significant heat by sonic winds is typically somewhere between a factor of one and
ten higher than that at the surface. Using these values, we find that

v T41/2Ph0ur

Vs - SO(R/R®)7
where P, is the orbital period measured in hours. As a result, we see that only
for very short orbital periods can AT'/T be of order unity with v/vs not of the same
order. If such cases arise and are of interest, they may be handled by extrapolating
the scaling with AT'/T to the point where v/vy is of order unity. We expect to incur
minimal error by doing this, as the dynamic range of this scaling is at most 50.

(6.61)

6.3 Deciding

We are now interested in determining when to expect Rhines scaling and when an
alternate wind pattern is applicable. The condition for Rhines jetstreams is kg > k..

16D, H. Hathaway, L. Upton, and O. Colegrove. “Giant Convection Cells Found on the Sun”. In:
ArXiv e-prints (Jan. 2014). arXiv: 1401.0551 [astro-ph.SR].

17This is the ratio v/vs.

18This is the ratio vs/RQ


http://arxiv.org/abs/1401.0551
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Using the definition of each wavenumber we find

03 \V° ap [N
il /2 2 9
<R3€> > (301" < (6.62)

Now making use of

E=¢—-)\E (6.63)
and 1
E = 50;, (6.64)
we find that in steady-state
£ = ;)\vz, (6.65)
and hence our condition is
(22§§g>1/5 > (3Ci)"* V2. (6.66)

The Rossby number for flow around the star is roughly

_ Y
Ro= 5 %o (6.67)

Using this we may write vy = 2mR{2Ro, such that

1 SQG 1/5
(67;6 ) Ro*5 > (3C,)*2 V2. (6.68)

Evaluating the numerical constants yields roughly

)\ 2
Ro > 100 <Q> . (6.69)

Intuitively what this means is that the more the Coriolis force deflects the wind as it
travels around the star, the faster the star needs to dissipate the winds in order to
prevent bands from forming.

It is now worth examining how to compute the various quantities mentioned
in discussing the Rhines formalism. Many of them have simple definitions but are
nontrivial to arrive at from the externally specified fluid parameters, and so this is a
somewhat tricky procedure.
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To begin with then, consider A\. This may be interpreted as the timescale over
which a wind dies down due to drag effects. Given that the Rhines cascade uses a
quasi two-dimensional flow, the characteristic scale for the associated sheer will be
the pressure scale height, and so A may be estimated as

= (6.70)

where v, is the effective vertical viscosity on length scales of h,. Note that we neglect
the viscosity in the horizontal direction, as this is already accommodated by the
formalism of the Rhines arrest.

In the convection zone, v, = I max (v., vy), SO

N
A= 5 max (Vey V) - (6.71)

In the radiation zone, on the other hand, v, = v/kg, and so

o ot uskn) B0+ iGR/D) (6.72)
v glN (Vad — V) glN (Vad — V) ’ .

| vy (a + ,/ng/Q) (6.73)

gl2hs (Vad — V) ’

The next quantity of interest is . This is distinct from the € used in the previous
section, for here it is the power driving the wind, rather than the power the wind
moves. Neglecting external heat input, in a steady state this will be the power lost by
turbulence to drag, which is given by E. This may be computed as in the previous
paragraph. When external heat is included, however, some fraction of it should be
counted towards this quantity. As discussed in Chapter [3, much of the external
heating goes towards inducing a divergence in the flux. To compute the amount
that goes towards e, we use the same method as before, computing a power balance
between the work extracted by the wind and the losses to bottom drag. The work

extracted is, as usual,
. viugAT?
=2 74
w 9r T2 (6.74)

The power lost is
: 1
E=)\E=¢c= 51@, (6.75)
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where in the second equality we have assumed that the wind is in power equilibrium.

Setting E equal to W yields

1 206 ANT?
fv;)\ S ol
2 2T RT?
\ v2AT?
Vg = ————— |
*" T ZRT?

In the radiation zone this means that

v (a + ,/viR/Q) _ W2AT?

gi?hy (Ve — V)  wRT?’

A series expansion of this around AT /T = 0 yields

(VAT (Ve — V) 1/
¢ TRT?« '

This may be simplified by noting that
k F F FP Fhy

Fhy

o= —=

PCp _pcp&T - p%gc,0pT - p?9c, TV R - pc, TV R ~ PVg

In the thin-shell approximation, we may write P = ¥g and find

Fh
a = .
Eng

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

(6.81)
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Substituting this into the equation for vy yields
03— VEAT?gl?hg (Vg — V)

_ 82

¢ TRT?« (0:52)
VIAT?*¢* SV IPhg (Vaa — V)

_ 2 (6.83)
VEAT? @SV Rl? (Vg — V)

_ Yl (6.84)

~ OATR?P2EVR (Vo — V) (6.85)

- TRp?FT? '

_ WSATR?EV g (Vg — V) (6.86)

= TRV2FT? |

_ WSAT?N*EV R (Vea — Vi) (6.87)

- TRy FT? |
vOAT?*Y VR

o BAT BV, (6.88)

(6.89)

where in the last line we have dropped some dimensionless constants of order unity.
As a result, we may write

_@@+JR&) a0

gl?hs (Vaa —V
( BAT?SV . )2/3 VeiR/Q) (6.91)
TRFT? 2hy (Ve — V) |
( 6AT22vR>2/3 VUiR/Q) (6.92)
TRET? gh3 '
2 2/3
2
AT?SV 5 ﬁ%{*Vm%gfﬂ
v < —RRT? ) B : (6.94)
(6.95)

When AT/T is small, this simplifies to

FATY \Y3
A= (m) ' (6.96)
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The criterion for the Rhines scale to be in effect is then

)\ 2
Ro > 100 <Q> (6.97)
2/3
U¢ FAT4
: 1 .
om0~ M <w2R22T4VRQ3 (6.98)
1 (SATEEVR) P - 100 FAT*  \** (6.99)
27RO\ 7RFT? PRI TV O3 '
1 SAT?Y F2ATS
U Vi) e . (6.100)
ST R3OS\ TRET? T RIN2TSV3,06
1 (WAT?EVR F2ATS
: : 100~ 101
'893< FT? ) U Sersvzan (6.101)
. 1 ’USVR 6 FQATﬁ
- ( F ) > 10 ST (6.102)
F3ATS
. ,,6 7
FAT?
02> 100 104
> 1005 (6.104)
FAT?Y,
Ty > 10783 ———" 1
ST 07 e (6.105)
FAT?Y,
Ty > 100 1
+Ta > 00 eot (6.106)

When it is in effect, the heat transported is

oA o L AT s (168EVR) (1 NP ATYE
PrR TR *°T s IAF R T ' ‘
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Recalling the definition of Vg, this becomes
oy (1SR 1\ (AT
® I*F 27 R T
_ o 160EBRLD YR\ AT\
-~ P \16racGMTHAF 21 R T

vl 20323k LP l g 5/8
7R 167racGMT4lF 27TR T

W3 [ 20%3kLP [\ ar\?
TR 167rach2T4lF 27rR T
0} (2035 3kAT R2P L\ AT\
TR 167rach2T4l 27TR T
0} (20°83kP VAR
R\ dacgT 2R T

v (3035kP\"? V3 AT\
:wR<8 T4l> (%R) (T)

v3 (3, SkPry VBN AT
T TR ( 8oT4N ) (27TR> <T> '

When AT/T is large, on the other hand,

1/3
vy (VATSVR\'? (T SF R AT? /
~ \ 7RFT? Y, FRT? ’

Us

98

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)

(6.116)

(6.117)

so we expect vg4 to be of order vy. Note that if this formula indicates a speed greater
than the sound speed we truncate it as usual to the sound speed. Using v4 ~ v, we
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find
_ vg (a + vf;;R/Q) (6.118)
gl?hs (Vaa — V) '
v3 (a+ /v3R/Q
¢ @
~ ( s ) (6.119)
v? (a - \/vg’R/Q)
~ o (6.120)
V3R
~ h;* (OH— ?2 ) (6.121)
Fhy 3R
~ h? ( e ”?2 ) (6.122)
_ FhsXng 3/4 [4o1 B
~ b2 (109 =220 L qoteryt [0ol = 12
. ( 0 107ecmFpXg + 10761 Ry (6.123)
V3R
~\| 2o (6.124)
The criterion for the Rhines scaling is then
Vs VPR v2R? g*R?
sr > W005sgs - 1> 200mpes 1> 200m G (6.125)

As a rough estimate, the right side should be 10% or so for a sun-like star with
Q= 10"%s71, so this case does not concern us.
We may now perform the same procedure for convecting regions, where

2AT2
U¢h—s max (ve, vy) = ?;:RTQ . (6.126)
To solve this, we first assume v, > v4 and write
hsv?AT?
= 6.127
Y T L RTRT? (6.127)

If this exceeds v,, then we instead use

| hsv2 AT?
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We then have
YAV A

TR
Once more A and € may be computed from these results. If v, > vy, A is a constant
and ¢ goes as AT*. Otherwise, A goes as AT and ¢ goes as AT3.

5 (6.129)

6.4 Convective Reynold’s Stress

In addition to being powered by temperature differentials, circumferential flows may
be powered by rotation-induced anisotropy in convecting regions. To model this, we
treat convection zones via the mean field theory of Reynolds stress. The Navier-Stokes
equation, written with the Reynolds stresses in place, is

p(?tv + pv - Vv = —Vp + F + Fvisc — élaj (pRZ]), (6130)

where there is an implied summation over repeated indices and where R;; are the
components of the Reynolds stress. If we take the body force to be gravitational, and
further take this to be precisely canceled by the unperturbed pressure, then

pOv + pv - Vo = =Vip+ F ;5. — ;0;(pRij). (6.131)
If we approximate the velocity as constant then
pv - Vo = =Vop + Fs. — €,0;(pR;j). (6.132)
Now suppose that the only non-turbulent velocity is along ngS Then
pgR'0,v = —Vip + F e — €:0;(pRij). (6.133)

This may be further simplified, for F',;s. will go parallel to gg and opposing v in this
case, SO

PR 00 = =V p — DF e — €:0;(pRy;). (6.134)
We generally expect that only a fraction of the convective energy may be diverted
into powering a horizontal wind. As a result, the viscosity is just the convective
turbulent viscosity, so

_ ~ [V v . o
pvg R 040 = —Vop — b (pl;)(vcl) + ,0(51%2 (v min({, rrot))> —€,0;(pRi;) (6.135)
= -Vip—1 (p%N + ,0(;1%2(2;6 min(/, rmt))> — €;0;(pRij) (6.136)

[ min(l, 7o)

— —Vép— 9pNv <1+
Pt (R

) — &0;(pRyj), (6.137)
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where ¢R is the length scale for shearing within isobars. In the absence of Rhines
scaling, we expect £ to be of order unity and hence the second term in parentheses

may be dropped, for | < R. In the presence of Rhines scaling, R = k' = \/ Rvug /€.
The second term in parentheses is then

Imin(l, 7o)  QUmin(l, ryo)

= . 6.138
(ER)? Rug ( )

As will be argued later, v, should be of order v/Qlv., so we may write
Imin(l, 7o) min(l, rpep) 2 (6.139)

(ER)?2 R N

The first term is at most 1072. At the depths of interest, N is never less than 107°,
and in no case do we consider 2 > 107, so the second term is at most of order unity.
As a result, we may neglect the product of these two and write

P R10yv = —Vip — 9pNuvg — €:0;(pRyj), (6.140)

and hence A .
pug R 040 = =V op — ppvgN — &;0;(pR;j). (6.141)

Note that in the bottom friction term we have assumed v, > 0. Once more making
use of the expected direction of the motion, we find

PR 10505 = —R'050p — pugN — 0;(pRy ;). (6.142)

Typically we expect band speeds to not vary too much across the system, so dgv4 ~ 0.
We may average the equation then over ¢ to find

0= —pugN — 0;(pRy ;). (6.143)
This may be written as
- @-Rm - R¢7jaj lnp = U¢N. (6.144)

If we take 6 derivatives to be small and once more average over ¢ we find that only
the radial derivatives survive. Thus

— 0,Ryr — Ry, 0, Inp = vyN. (6.145)
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We now need an expression [7;;. In a rotating system, and to linear order in the
inverse of the Rossby number, we havd"™]

_ 9 .
Ry=— <Cl + M) L2N?, (6.146)

cice \ 7 3(c1 + )
Ro (&)
Ryso = Ropo = —2 ( ) , 6.147
060 66,0 3 C1 + Co ( )
Ro 301 + Co
Rpp = -2 () 6.148
0 3 C1+ Co ( )
53/2 2
—ClR dT
F.,= — |, 6.149
0T 9IN? <dr> (6.149)
~ —F l 2N 1dr+C \/_ Rzz _Rx:v
Ry = —212N?Ro " sin 6 o (Rozo o) (6.150)
1+ 2(61 + CQ)/C? + 262/301
where
N? =02/? (6.151)
1 =04, (6.152)
co = 0.6, (6.153)
cg = 1.4, (6.154)
cr = 1.4. (6.155)
As a result, we may write
0 —F ol 2NTH(IE) T+ ol PN R (L
Ry = —21°N*—sin 6 ° <d ) ( s 2) (6.156)
N 14 2(c1 +¢2)/er + 2¢2 /3¢y
c1R 3 3 H3/2 1
_ opn2Sgng [ 22 - al NOR () (6.157)
N 1+ 2(c1 + ¢2)/er + 2¢2 /3¢y
= —2RY? " L ing 2 g (6.158)
IN2 1+ 2(cy + ) /er + 2¢9/3cy '

3/2 01
2 C1 361 + Cy 9 ~ + =6 - +c
(Clc6 <C7 + 3(C1 + CQ))) S 1+ 261+62 + 2co ( )

3c1

= —5.251°QN sin § = —5.251Qu, sin 6. (6.160)

YGaraud et al., op. cit.
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Note that we have made all of the appropriate substitutions required to make this
result applicable for compressible systems, including identification of N with the
convective turnover frequency and identification of the characteristic length scale with
the convective scale of mixing length theory. Note also that by choice of convention in
the Navier-Stokes equation we have taken R to have units of velocity squared rather
than energy density.

Using our expression for the Reynolds stress in our approximated and averaged
Navier-Stokes equation, we may write that

5.25Qsin0 (9, (I°N) +IN) = 0N, (6.161)

where we have taken 0, In p to be roughly an inverse scale height. Dividing through
by N yields

5.25Qsin 0 (170, In N + 0,1% + 1) = vy, (6.162)
The middle term may be evaluated as
1—
0,12 =210, = LY L pgp=o-——71 (6.163)
2 pg Py Y

where we have made use of the near adiabaticity of efficient convection. Thus
. 9 ~ 2
5.25Q0sind (70, In N + 1| — —1| | = vy. (6.164)
Y
Using v = 5/3 this becomes
-1
5.25€ sin 6 <128r InN + 5) = V. (6.165)

In the stellar models of interest, In N increases by about two orders of magnitude
over around seven scale heights, and it increases typically in the radially outward
direction. Thus we may write the first derivative as roughly 2/71, and hence

vy A 2.6 sin 6. (6.166)

In the ionization zone this should increase somewhat, as « increases there, but
otherwise it should be fairly universal.

If we average the square of this over 8 we find that the typical scale of the velocity
is

Ve = 1.300 ~ QU (6.167)
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and so ] . ]
e=FE\= 5& — 59%% — 59%0. (6.168)

Now should the viscosity be due to shearing rather than convection this result must
be amended accordingly. This may occur if a combination of a heat engine and this
anisotropy are responsible for driving the wind. In this case, A = v,/ and it can be
shown that the wind speed goes as

AT\ 1
v =0} <T> 7T vy, (6.169)

for the force associated with the Reynolds stress goes as {2, so the power goes as v4£2.
The specific form follows because the right side of this equation is just a rescaled
version of the power input, and the left side is a similarly rescaled version of the power
removed by turbulence. As a result of the above equation for vy, the contribution to
¢ of the convective anisotropy depends on the thermal driving, for
3_ .3
anis = ;u;j;z—l - ;v;’;voz—l — 2 e0, (6.170)

where vy is the solution in the absence of convective anisotropy. As v4 has a
nontrivial and non-polynomial dependence on I, this expression does not reduce to
something independent of v, . The problems are coupled, therefore, with thermal
driving diminishing the significance of convective anisotropy.

Finally, note that the convective Reynolds stress produces in the low thermal
anisotropy regime a wind speed of roughly €2/. This leads to transport of the form

AT v? l
’r_ — -1 s
e =gy ™R Ro, TR (27TR> ’ (6.171)

where Rog is the sonic Rossby number.

6.5 Summary of Results

Our analysis of large Rossby number transport suggests that all of the transport
expressions may be written in the same general form. Neglecting convective Reynolds
stresses and working in the limit of small AT/T', we may write

v [(AT\? I \*
=y [ =) |— . 172
: wa< T ) (%R) Ko, (6.172)
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This may also be put in the form

q 47\ @
)13/ R@> AT 101 Ro? (F@) 6.173
5‘”4(}% <T orr) O \E, ) (6.173)
The dimensionless quantities y, 1/, ¢, a, b are given in table[6.1} Note that in computing

y’', we have used the following relations (and all approximations which accompany
them):

F=p? (6.174)
P =gX (6.175)
Case Yy Y qg a b
Radiative v > 27QR 1 10 2 0 0
Radiative v < 27QR ﬁ 1 5 0 3
. . v.sep\1/3 mMRzY \ Y3
Radiative Rhines (38;%41) ) <W> 3 % 0
~1/3
Convective v > 21QR, v, (Z—C) 10-27,/* (%) / 310
Convective v, > v > 21QR 1 101 2 % 0
Convective 27QR > v > v, ﬁ 1 5 0 3
F¥, mi (1 vg ) 13
pmin| 1,5+
Convective v < 27QR, v,  27% min ( , ﬁ) 1073 (ﬂ) 1 10
Vs F@ET4
Convective Rhines, v > v, /2 101 2 3 0
~1/3
Convective Rhines, v < v, 2% 1072 Q{F };2;@,/2) 3 1 0
c o) "
Convective Reynolds 2rRQ 1073 Qj‘jZ 1 1 0
Vs R@T4

Table 6.1: Computed parameterization of circumferential heat transport by winds.
The first column specifies what case is under consideration. All possible cases are
enumerated here. The remaining columns specify y, a prefactor on the transport as
well as ¢, a, b, the exponents on AT/T, 1/27 R, and Ro respectively. Note that factors
of v and N have been neglected in assembling this table.

The quantity ¢’ has a clear physical interpretation: y’ is the fraction of a solar
luminosity which, up to powers of the Rossby number and temperature anisotropy,
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may be moved from one side of the sun-like star to another over a change in depth of
Y. We immediately see that radiative stars are orders of magnitude more efficient at
transporting heat circumferentially, particularly when the Rhines cascade is relevant.
This is a result of the larger turbulent viscosity associated with convection in most
cases. Additionally, it is clear that stars with low Rossby number are less efficient
at this task than those with high Rossby number. This is because, as the Rossby
number is lowered, the problem transitions from being one of ballistic transport to
being one of diffusion. The former is much more efficient than the latter, just as a
directed walk moves away from its origin faster than a random walk.
Now recall that

TR , ¢ AT\
= = — — . 1
v cpATg UEWR< T ) (6.176)
This may be written as
AT\
v = Usl()_ly/ (T) R,Ol; (6177)

Recalling that the Mach number is expected to be at most one, a good approximation
is to use the form in Eq. (6.173]) until

1
AT 10 71
_ 1
( T ) (y’ROZ> ’ (6.178)

at which point the wind reaches the sound speed and ceases to grow with increasing
temperature anisotropy. Table lists the critical anisotropy values at which this
occurs. Note that not all cases appear in the table, for v, is generally quite subsonic,
so v = vs implies that v > v.. Additionally, the Reynolds stress case only occurs
when AT/T is small, and even in the fastest-rotating cases of interest we have argued
that the Rossby number is at least unity, so the low-Rossby number cases have been
omitted.
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Case (AT/T).
Radiative v > 27QR 1
—1/2

Radiative Rhines 30 (MMRQQEW>

Mg R2%,T, o

. —1/4 ( F, \!

Convective v > 21QR, v, 30T, (%)
Convective Rhines, v > v, 102

Table 6.2: Critical thermal anisotropy values are listed for each case of interest. Note
that factors of v and X have been neglected in assembling this table.
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7

Higher Dimensional Models with
Transport

... tres souvent les lois particulieres déduites par les physiciens d’un grand
nombre d’observations ne sont pas rigoureuses, mais approchées.
very often the laws derived by physicists from a large number of
observations are not rigorous, but approximate.
— Augustin Louis Cauchy

In this chapter we will put all of the pieces other than time dependence together.
The addition of time is left for the next chapter, and so for the moment we maintain
the steady-state approximation.

For simplicity, suppose that we represent a star by two temperature profiles, one
for the hot side and one for the cold. This may be understood as representing the
amplitude of the lowest order spherical harmonic which is symmetric about the line
connecting the pulsar and its companion star. We refer to the hot side temperature
as T}, and the cold side temperature as 7,.. The subscripts h and ¢ will be attached
to other quantities as needed to describe the same distinction. Quantities lacking
subscripts are taken to be averaged between the two sides.

In this context the quantity AT discussed previously is the difference between
the two temperatures at the same pressure. In general, we define

AA= A, — A, (7.1)

where both quantities on the right are evaluated at the same pressure. The isobaric
condition is required by our usage of AT as the temperature difference experienced
by winds moving around the star.

110
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Note that we will neglect gravity modes as a means of energy transfer, as they are
only excitable by convective zones and only transferrable over long distances through
radiative zones, leaving only the narrow interfaces between these regions as conduitd!}
As a result, they carry relatively little flux compared to the thermal anisotropies of
interest?l

7.1 Radiative Stars

If we take k to be a scalar, neglect winds, and assume that all of one side of the
companion experiences heating while the entirety of the other side does not, we know
from Chapter [3| that somewhere between 1/6 and 1/2 of the input flux exits on the
cold side. The remainder of the input flux exits on the hot side. The assumption
that k is a scalar is always valid in radiative stars, and the assumption regarding the
geometry of heating is well justified per Chapter [} so the key assumption which fails,
then, is the neglecting of wind. Given that the effect of circumferential wind in a star
is to make the flux divergence more isotropic, we expect that there will be a column
density at which the wind achieves this, and beyond which the star is isotropic. As a
result, we do not expect that such a large fraction of the flux will generically escape
to the cold side.

To understand this more thoroughly, note that the flux divergence differs between
the two sides of the star as

V- Fy=p(e—€yina) (7.2)
V- -F.=pe (7.3)

where € is the usual input heat. As we are treating the star as being two one-
dimensional stars stuck together, we may also write this as

O Fy = ple— €2uind) ) (7.4)
O, F. = pe, (7.5)

wind?

Y. Wu and P. Goldreich. “Gravity Modes in ZZ Ceti Stars. IV. Amplitude Saturation
by Parametric Instability”. In: The Astrophysical Journal 546 (Jan. 2001), pp. 469-483. DOI:
10.1086/318234. eprint: lastro-ph/0003163; C. C. Mei and T. Y.-t. Wu. “Gravity Waves due
to a Point Disturbance in a Plane Free Surface Flow of Stratified Fluids”. In: Physics of Fluids 7
(Aug. 1964), pp. 1117-1133. DOL: 10.1063/1.1711351; A. J. Brickhill. “The pulsations of ZZ Ceti
stars. III - The driving mechanism”. In: Monthly Notices of the Royal Astronomical Society 251
(Aug. 1991), pp. 673-680.

2J. H. Shiode et al. “The observational signatures of convectively excited gravity modes in
main-sequence stars”. In: Monthly Notices of the Royal Astronomical Society 430 (Apr. 2013),
pp. 1736-1745. DOI: [10.1093/mnras/sts719. arXiv: 1210.5525 [astro-ph.SR].


http://dx.doi.org/10.1086/318234
astro-ph/0003163
http://dx.doi.org/10.1063/1.1711351
http://dx.doi.org/10.1093/mnras/sts719
http://arxiv.org/abs/1210.5525

7. HIGHER DIMENSIONAL MODELS WITH TRANSPORT 112

Switching to column density as the independent variable, this becomes

OsFp=—(—¢€ ..,

wind
o /
8EFC = ~Ewind>

Using the radiative equilibrium relation, we get

dacT? dacT?
9 o1 =2 oo = Lot (7.8)
K

K

F=—kd,T = —

Now for T' > 10*K, the key regime of interest for radiative stars, x doesn’t vary much
with T" or p except at unphysically high densitiesﬂ As a result, we may write

OsFy, = — (e —¢€l;.4) = ack 03T}, (7.9)

OnF, = —¢, = ack 0T (7.10)
Note that we have made an additional approximation in writing the differential
equation governing the flux, for we have neglected the heat moved by circumferential
radiative transport. To justify this, note that the circumferential transport by
radiation should have

0 (7.11)

L. = ZWRdeg = 2dzkAT . €
TR

| 2%kdzAT  KAT (1) fF
red T 9rRdzp  prR®

prR’

where f = AT/T. Taking F ~ 10%2erg/cm?/s, R ~ 10%m, | ~ 107cm, and
vs ~ 107cm/s, we find that ¢/, , ~ 108 f2erg/g while ¢/, ~ 107! ferg/g. As the wind
carries far more heat than the circumferential transport, we are justified in neglecting
the latter.

In all radiative models considered, regardless of the Rossby number, we found

that for AT/T < 1,

q 4 a
R R@> AT\ (104 b(F@)
e =y'T, (R <T o Ro, WA (7.12)

This is just Eq. (6.173). The dimensionless quantities v, ¢, a,b may be found in
table [6.1] Up to minor corrections of order unity, this form should hold until the

critical temperature anisotropy is reached. The values associated with this are given
in table [6.2

3We are really comparing 4In7T to x when we say that the latter doesn’t vary significantly.
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Using these results, we find that the anisotropy of the flux at the star’s surface is
3,
AF=F —2 / ey, (7.13)
0

We only integrate to >, because, as we showed in our one-dimensional model, the
temperature difference induced by the flux drops off exponentially below that depth.
Now from our one-dimensional simulations, we know that AT /T is roughly a constant
over the range ¥ = 0 to X = X, changing only by a factor of two or so. As a result,
we may estimate for low input luminosities that

AT AF  AF _AF

T — AF  2F.+A4F, ~ AF,’ (7.14)
and estimate the integral as
b
AF =F,—2 /0 > (7.15)
~ F,— 2%l (7.16)
R ATN\? (104" F,
~ F, — 25,y TY? (@> — b <@) 1
TR )T ) \aer ) Boss, (7.17)
R AT\ (104"
~ F, — 2y T3 <@> =) (=) Ro'FE 7.18
R AT\ (10%1\*
zFe—Q’?’/Q(@) — bR 1

Now in estimating the integral we should multiply the wind solution by a few to
accommodate the fact that T typically varies by around a factor of 5 over the
integration regime. This allows us to use the surface values for thermodynamic
quantities later on. Thus

AF F, s R®> AT\ (10M\" ., Fy
_ R Re I Yo 2
o F vl (R T onk) RO R (7.20)

This may also be written as

u=r—tul (7.21)

where r,t > 0, r < 1. Here r is the ratio of external to intrinsic illumination and ¢ is a
dimensionless parameter giving the efficacy of the winds in transporting heat relative
to the intrinsic flux. In general we may solve this numerically, but it is also worth
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examining the behavior of the solution in various limits. For r < t, a perturbative

expansion may be used to find
urr—tri (7.22)

Physically, this means that the anisotropy is just the maximum allowed minus a small
contribution due to the action of winds. For ¢t < r, we may neglect the linear term

in u to find )
e <T> " (7.23)

t

In this limit the dominant effect is that of the wind, and the result is just a balance
reflecting the fact that the wind needs some anisotropy to function. Except for small
', this last limit is generally not accessible while maintaining the small anisotropy
approximation. As a result, we generally expect to be in the former limit with
radiative stars, and only expect to be in the latter in convective stars with just the
right amount of external illumination.

Now suppose that AT/T is large relative to the critical value. Once more we
write

Xh
AF =F,—2 /O el dS ~ F, — 25, (7.24)

wind*

Here, AT/T corresponds more closely to (AF/c)Y/4*T~! than to AF/4F, for the
critical AT/T is at least unity, so

v3 (AT
o= — 7.25
Ewind R ( T ) ) ( )

and hence

9%, . (AF\Y* s (RoN AR\
AF =F, — 322 ) =F —10F. TV (@> = . 2
WRTUS< a> Y VAV (7.26)

Performing the adjustment to allow us to use all quantities near the surface, we get

Ro\ (AF\'*
AF = F, — 20F, T, <®> = . 7.27
T () (R (7.27)
Now in this regime, the quantity of interest really should be AF/F,, not AF/F;.
Casting the equation into this form gives

/4 —3/4
AF 12 (R@> (AF)l (F)
=1-20F. T, (=2 —c . 7.28
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Recalling that the temperature goes as F'/4, and that the flux should be of order F,,

we expect that
AE 1 g (R®> DARNETAN (7.29)
F., R )\ F, F, ' '

This equation may be solved numerically as a function of the coefficient of the second
term. At very large F,, the anisotropy is once more near unity. As F, is lowered, a
perturbative expansion shows that the anisotropy goes as

AF R F.\%/8
w0 () (F) (7:30)

At small F, relative to 20%/°F, ~ 100F, the solution goes as
AF R\'(F.\"?

~107° = | | == . 7.31
Fe <R®> <F®> (731

7.2 Convective Stars

We now turn to the case of circumferential heat transport in fully convective stars.
Suppose first that the star has an active nuclear-burning core. By our arguments
in Chapter ?? convection will continue, but it will carry less heat to the surface. If
L. < L;/2, the reduction in heat carried from the core to the surface will be L., and
the surface temperature will not change, for the external illumination makes up the
difference. Otherwise the reduction will be L;/2, and the surface temperature will
change on the illuminated side to match L. [ In either case, the reduction in heat
transport results in an increase in the temperature of the core, and hence an increase
in the intrinsic luminosity of the star. This increase will generally raise L; by an
amount comparable to L.. As this change occurs at the core, the resulting changes
in stellar structure should be isotropic. The only way for this to not be the case is
if the core heats anisotropically and therefore loses heat preferentially to one side.
To show that this is not the case, consider just the circumferential transport due to
convection-driven turbulent diffusion. As it will be quite slow near the core, we take
the Rossby and Mach numbers to be small. Matching the wind transport with the

4The factor of two in the comparison of L. to L, is of geometric origin: it reflects the fact that
the external illumination only comes in on one side. In reality the factor should not be precisely 2,
but this is accurate to the degree of precision present in our models.
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flux anisotropy yields

_ 0lvZAT  min (L, L;/2)

AT mintle ] (7.32)

UczviAT _ min (I;/; Li/2) (7.33)

UCZ$T _ min %}’)LM (7.34)

) (F'Z-/p);/glAT _ min (Z;Liﬂ) (7.35)

(Fiyg/?1/3lAT  min (Q;Liﬂ) (7.36)
2\1/3 ]

(E?) T/ (AT min(Le 1/2) (7.37)

CAT - min (L, Li/2) (7.38)

C T T 2(Fw?)1/3)IP3

Here we have made use of the usual result that F,,,, ~ pvd. At these depths,
T ~ 10°K, so v? ~ 107cm/s. Additionally, I ~ R here so [ ~ 10%cm. We may
estimate the pressure as P ~ GM?/R* ~ 10'erg/cm3. Finally, we estimate that
F, = L;/(4nR?% ) ~ 100L;/(4mR?) ~ 1072'L,. Thus the temperature difference is
expected to be

AT  max (L., L;/2)

T 109,
This is minuscule for any conceivable flux anisotropy, confirming our assumptions
and yielding an isotropic star. All of our conclusions about stars of this type from the
one-dimensional analysis therefore hold in the steady-state. Of course in the transient
case the star can still be anisotropic. As we will see, the transient response of nuclear
burning stars is the same as the steady-state response for non-burning stars.

Now suppose that the star is not nuclear burning. The same arguments regarding
lowering heat transport from the core apply, but now the core simply responds to
different heat transport by matching it. As a result, if L, < L;/2, there should be no
visible changes: the star will cool more slowly, but the surface flux will remain the
same and the star will remain isotropic. On the other hand, if L, > L;/2, the star
may be isotropic. This is because the heating cannot run uphill: we cannot put heat
in at one temperature and have the energy move towards higher temperatures. As a
result, the surface temperature will necessarily rise in the absence of circumferential
transport to match the flux associated with L.. This requires a shallower thermal

(7.39)
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gradient than convection can support, and so will result in radiative transport for at
least some of the range ¥ < X;,. As we saw in table radiative zones are orders of
magnitude more efficient than convection zones at transporting heat circumferentially.
This means that the limiting factor is the distance that the heat has to traverse in
the convection zone on the cool side.

Consider a wind being pushed from one side to the other by a thermal gradient.
When this wind reaches the convecting regions, it encounters an increase in resistance,
and so slows down. This leads to an accumulation of hot material on the interface
between the radiative and convective regions, which will shut down convection in
a larger region than that covered by the external heating. This will continue until
there is insufficient flux being transported to accommodate a larger radiative zone.
We may calculate the area of the new radiative zone roughly as

AT R*Tpel,
Apqq = 27 R? (1 + min (1, W)) , (7.40)

where €/, . is to be calculated using the ¢’ values for radiation, not convection. Within
this zone, the temperature and flux anisotropies may be computed as before. Inside
the remaining convection zone, the flux is just F;. In principle one might multiply ¢/’
by the ratio of the linear dimension of the radiative transport regime to 27 R, but
this correction is a small factor of order unity in all cases, and therefore does not
justify the complexity associated with performing a self-consistency calculation for
the area of the radiative zone.

7.3 Crossover Behavior

The final case to consider is that where the star is convective for ¥ < Y. and radiative
otherwise. This case is like the nuclear burning convective case, in that there is
an intrinsic flux which can be bottled up. On the other hand, the exponential
suppression of changes in thermal structure characteristic of radiative zones means
that we generally do not have the ability to change the core temperature of these
stars. As a result, the problem of determining whether or not the thermal structure
is strongly anisotropic is actually somewhat nontrivial.

To begin with, suppose that the thermal anisotropies are small enough that all
winds are subsonic. Initially, the external illumination will not alter the size of the
convection zone. All that changes is that the flux carried by the convection zone
decreases. As there is no significant heating in this region, the flux differential will be
preserved down to the base of the convection zone. When it reaches the radiation
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zone, it will cause changes in thermal structure which will damp exponentially in X.
As a result, the core will be unchanged, so the intrinsic flux will still emerge. This
means that the surface temperature must be sufficient to accommodate the increased
flux. As the convection zone requires that specific entropy be constant, the fractional
change in temperature which results will be the same throughout the zone. This
temperature differential will drive a wind which attempts to equalize the flux between
the two sides of the star. In equilibrium, this provides the self-consistency relation

JAT _Fe— o el inad®

7 7 (7.41)
F. (Fo\ (ATN\? [/, a0 (Ro\ (10M\*
T F <F> <T> /0 vl (R) orpp) Rosdr o (T42)
where 5
T = 5, (7.43)

There are several ways to simplify the self-consistency relation. To begin with, we
may neglect the variation in R, as this is of order unity across any integration range
which does not reach the core. This allows us to write

AT F. AT\? (104%\" /Fo\ /R Ze/S
SR ‘( T ) (zm) (7)) [ wmitrdae. @

Recalling that we may write the sonic Rossby number as

Vs

= 5 R0 (7.45)

Re,

we find that

AT F F, R\t Se/%h AT\ (104"
42t e gt <®> (@) O ip3f2eb g (AT (74
T F 0 7 R -4 yly 7| 5 R (7.46)

Note that in convection zones 3’ may be put in the form

R w2 F ws3 E w4
/:10w1 o - — T’LU5Qw6
(i) (2) (5) ¢

where w; are constants. The one case which this doesn’t handle is that with v >
27QR,v.. There some of the powers w; must be modified when QI = v.. This

(7.47)
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introduces a variation of up to £0.5 in the exponents here, and we will find such
variation to be unimportant. As a result, we may write

Yy = yox", (7.48)

where w = wy + ws is in the range [—1/2,1] and yg is the value of ¢/ at ¥ = ¥.
Additionally, we may substitute Ty(P/FPy)'™/7 for T. Though the thin-atmosphere
approximation is not guaranteed to hold in all regions of interest, we make errors
only of order unity by using it so we further substitute P = Xg. This yields

4£ —E—y 10-1 (FQ) (RQ)H_I)Q—b . (3/2+b)(1+1/7)+w+1T AT 97104\
T — F F,)\R 4\, T MR )’

(7.49)
where T} o is the temperature at the heating depth, and where we have dropped the
order unity factors produced by the integration process. This may be approximated

as
AT F, F R\ [ 3. AT 104\
ab  Fe [~3.5,0] fo) (Lo
Y=g Q_4<Fi>(R> (&) (T) (27?1—2) - (750)

In the cases of interest, 3. > ¥, for otherwise our arguments in the one-dimensional
model indicate that the convection zone will disappear just from the required surface
temperature changes. As a result of this and the other prefactors either being large
or near unity, there is some positive n for which we may write

JAT F—m”(AT). (751)

T F; T

When ¢ = 1 the solution is roughly

AT F,
4— ~ . .52

T F;10m (752)
When ¢ > 1 there is a competition between the linear and nonlinear terms. The two

terms are roughly equal when

E n
£~ 10751, 7.53
- (7.53)

i

For larger fluxes, the nonlinear term dominates and

AT:( F, )1/‘1 (7.54)

T 4F;10m
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For smaller ones, the linear term dominates and

AT F,
T  AF,

(7.55)

Note that n goes roughly as 3log >./%;, so in all cases with very deep convection
zones we reproduce our result of high isotropy.

Note that in assuming that radial lines are isentropes, we are requiring that the
characteristic timescale of convection be shorter than that of the wind{’ If this fails,
then the winds may circle the star without coming into local equilibrium with any
radial lines, and hence a better approximation is that surfaces of fixed r are isentropes.
This case is not, however, physically realistic. To see this, first note that for the
criterion to assume radial isentropes is

[ 2
LR (7.56)
Ve v
Rearranging gives
v/v. < 2w R/I. (7.57)
This is roughly
v/ve < 103(2/8p) =1 —1/7). (7.58)
Now
Ve ~ 10°(F/Fo)Y3(5/8,) Y3, (7.59)
SO
v < 108(F/Fo)Y3(2/%,) %3, (7.60)

For the stars of interest, the first factor is generally of order 1/3, and the sound speed
is roughly 10%m/s even at large depths, so subsonic violation of this criterion only
becomes possible at > ~ 30X,. Now the critical thermal anisotropy to get sonic
winds in a convection zone is

AT _1/a (th>1/6

— ~ 30T,
T 4 F.%

(7.61)

5The assumption takes this form in regions of high convective efficiency. Were this not to hold,
we would need to consider the timescale for material coming into radiative equilibrium as well.
Fortunately only a small portion of each convection zone exhibits inefficient convection, as was
discussed in Chapter [2] so we need not deal with the inefficient limit.
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As the anisotropy is damped into the star by the winds, we may take this as a lower
bound on the anisotropy above the point where the radial isentrope assumption fails,
so the flux transported is

INAY A
E;uind = ;R (762)
vV3AT
_ Y 7.63
’/TRT ( )
Fs, 1/6
> 305 s (ES 7.64
R (F@E> (7.64)
Fy,\ e
= 10075/ <F®Z> erg/g/s (7.65)
1/6
F FyY
=2 x 1022717/ S 7.66
S, j285) (7.66)
Integrating this gives
303, ,
Fyima = /0 e’ (7.67)
1/6
305, F Fy
> dy2 x 102279/ i 7.68
= /0 e Ry (7.68)
r 1/6
_/ dr2 x 10°F, T (7.69)
F@x
= 2 x 10*Ty o F/S /6 / drz i+~ (7.70)
308
~ 2 X 10°Ty o FY/O P62 3 (7.71)
~ 2 x 1097, o F2/O /0 (7.72)
~ 2 x 10T, F. (7.73)

As this lower bound is well in excess of the Eddington luminosity for any convective
star, an anisotropy in the flux that large would ablate the star to nothing on short
timescales, and is therefore not a case of interest.

Now if AT/T approaches or exceeds unity, then we must instead write

= _q0m
F F

AF F AT\
(ary' (7.74)
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Recalling that AF ~ o(AT)* in this case,

AF F _ (AF\"* /T\¢
As the flux has raised the mean temperature by approximately (F./F; + 1)1/ :
AF F. AF\* /F, a/t
Tk L), .
= 0<E> (E+> (7.76)

As F, must be large relative to F; to bring about a change of this magnitude, the
factor of unity at the end may be removed, giving

q/4 q/4
AF _Fe g (AE)T (ENT (7.77)

The nature of the solutions is the same as the nature of the solutions in the previous
section, just with

q

q— 1 (7.78)
q, Fe
= log — :
n—>n+4ogFi (7.79)
AT AF
- . 7.80
T 7R (7.80)
As in the previous section, it is now more appropriate to speak of the flux anisotropy
as AF/F,, so
AF NI
— 110" () . (7.81)
F, F, F;
For external luminosities, we require
AF _an (4 —2q
=10« 7.82
= (=), (752
while for large external luminosities we have
AF F, F N\
=% _10™ (8 . )
7 =710 (F) (7:83)

Here large and small are of course referenced to 10**/4F).
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Finally, if the thermal and flux anisotropies are large, the wind is sonic and we
expect ¥ = 10, ¢ = 1, a = 0, and b = 0. This greatly increases the efficiency of
circumferential transport, and results in n increasing by an additive factor somewhere
between 1 and 4. This pushes us further into the regime where our assumption that
a > 0 holds, and the remainder of the above analysis is unchanged.

It is worth noting that in all of the cases above, we saw no transition from
convective to radiative behavior. This is because increasing the requisite flux does not
force this transition. Rather, it is increasing the flux while at the same time insisting
that the ratio of the temperature at the base of the convection zone to that at the
top of the convection zone remain invariant. Of course if 3. is small, then increasing
the luminosity results in shrinking the convection zone appreciably in relative terms.
This can, as in the case of our one-dimensional model of the sun, cause the convection
zone to disappear.
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8

Time Dependence

It is all a matter of time scale. An event that would be unthinkable in a
hundred years may be inevitable in a hundred million.
— Carl Sagan

The results of our one-dimensional model indicate that there are two modes of
behavior for stars in the presence of external illumination, and that stars pick one
or the other on the basis of being predominantly radiative or convective. In this
chapter we will analyze these behaviors in the transient case through a combination
of numerics and analytics. We begin by describing the numerical methods used, and
then proceed to introduce the cases of fully radiative, fully convective, and mixed
radiation-convection stars.

8.1 Assumptions and Computational Methods

The time-dependent portion of Acorn represents a compromise between the simplicity
of time-independent codes like Gob and the complexity of modern time-dependent
codes like MESA. The equation of state used is the same one present in Gob and
in the time-independent portion of Acorn, incorporating at leading order various
ionization effects as well as radiation pressure. The opacity is the same as that used
in Acorn, a mix of the OPAIE] and FergusonE] tables. The thin shell approximation is
used everywhere, and only envelope evolution is considered. Hydrostatic equilibrium

1C. A. Iglesias and F. J. Rogers. “Updated Opal Opacities”. In: The Astrophysical Journal 464
(June 1996), p. 943. DOI: |10.1086/177381.

2Jason W. Ferguson et al. “Low-Temperature Opacities”. In: The Astrophysical Journal 623.1
(2005), p. 585. URL: http://stacks.iop.org/0004-637X/623/i=1/a=585.
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is assumed at all times. Finally, it is assumed that convection adjusts to the changing
flux being carried faster than the thermal adjustment timescale of the envelope, and
hence that it may be assumed that the convective gradient is the gradient required
to carry the appropriate flux in steady-state. This last assumption will be justified
later on.

Assuming hydrostatic equilibrium only, the time-dependent equations of stellar
structure are’]

5’; _ _47T1rzp’ (8.1)
§§:§$> (8.2)
L2~ i%f (8.3)
gzziﬂi, (8.4)

where ¢ is the power per unit mass being deposited by external illumination, and the
signs have been chosen such that the mass coordinate is the mass above the point in
question. Note that we include the equation governing r for purposes of tracking how
r changes as the other quantities vary, but we do not allow it to produce feedback
with the other equations. Note also that the time derivatives are to be taken at fixed
mass, not at fixed spatial coordinate. Now the condition of hydrostatic equilibrium

means that %—f = 0, so we may drop this term.
We now make the substitution
mg
= —, 8.5
4mr? (85)

in accordance with the thin-shell approximation. This, combined with the previous
arguments regarding time derivatives, allows us to eliminate P and write

P:Lﬁ, (8.6)
g; _ —47;2,0, (8.7)
gfz _ et %f (8.8)
S; _ Z;V. (8.9)

3Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer,
2012. 1SBN: 978-3-642-30304-3.
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In order to fully specify the system, we must of course specify boundary conditions.
For the t = 0 boundary, we specify that ¢ = 0 and that 0,7 = 0. When the mass
coordinate equals the envelope mass, i.e. m = M,, we choose to hold T" constant.
Physically this choice simply means that we must only consider timescales shorter
than the thermal timescale of the envelope, given by
eI (M) M, ML

C T x 10Ty ——+ (8.10)

te = .
L, ML

The envelope mass was generally chosen to optimize convergence of the time-stepping
code and to stay carefully within the realm of validity of the opacity and equation of
state microphysics. As a result, typical values were 3 x 1073M. Typical envelope-base

temperatures are 7' ~ 10°K, and generally 1\]\//1[5% ~ 1, so the timescales the code may

investigate with this boundary condition are those shorter than 2 x 10%s, which should
be long enough to see the transient effects of interest. Note that in considering V
to respond immediately, we are also imposing a minimum timescale over which the
results may be taken seriously. This timescale is given roughly by the convective
turnover time, [/v., or around 10% at the base of the envelope and 103s where
convection begins. As a result, time steps will usually be chosen at 10°s.

The remaining boundary condition we use to set

drrioT* = wl, (8.11)

where all quantities are evaluated at the mass corresponding to 7 = 2/3 and w is a
fudge factor obtained from the steady state evolution which makes this relation true
at t = 0. Note that this means that we only track the mass in the star at 7 > 2/3.
This helps with numerical stability, as it reduces the range of densities to consider,
which drastically improves the condition number of the linear algebra problems solved
in the time-stepping process.

In typical simulations, w was found to be roughly 0.5. This is not a matter of a
misplaced factor of two in the surface temperature determination. Rather, it is due
to well-documented approximations made in Gob’s, and hence Acorn’s, method for
computing the effects of radiation dilution in the photospherd® It is clear that these
boundary conditions are sufficient, for L and 7" are the only variables involved, all
others being determined by either the approximations made or the equation of state,
and we now have two first order differential equations with one boundary condition
each in one dimension.

4B. Paczyniski. “Envelopes of Red Supergiants”. In: Acta Astronomica 19 (1969), p. 1.
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For the starting state, we use the steady state solution. This additionally defines
the mass grid used to discretize the problem. Note that this produces N + 1 points
for L and N points for T', such that the temperature is defined only between pairs
of points at which the luminosity is defined. For the sake of writing down the
discretization, let there be 2N + 1 points in the mass grid numbered 0 through 2N.
Define L on all even-numbered points and all other quantities on the odd-numbered
points. The equations of interest are then:

Opa
Oip2iy1 = %hﬂ@%iﬂ (8.12)
. 1 Loiyo — Lo Vg(2i+1)
(i # N)OiTrir Cozinn) €2i+1 Mairz — M Cp(2i+1) R oL (2i+1)
(8.13)
To;q — To;_ T
(i #0)—2H 2L _ g, 2 (8.14)
Moj+1 — M2i—1 mM2i+1
atTngl == O (815)
O, Lo = 16wr R*cT30,T, (8.16)

Note that the boundary conditions are enforced in differential form. In addition, note
that our use of asymmetric differences in places should not matter in the limit of
large N.

The equations complete and discretized, we turn to the method of solution.
For numerical stability the backwards Euler method was used, such that all time
derivatives were written in the form

At +dt) — A(t)

OA(t) = 8.17
A() 2 (817)
Thus the equations solved were of the form
df
flt+dt) = f(t) + dt%h:t—i—dt- (8.18)

This method is particularly appropriate given the stiff nature of V in convection
zones, a fact that will be discussed at length later on. As the backwards Euler method
is an implicit integrator, it requires knowledge of all relevant derivatives evaluated in
the future. To solve for these self-consistently, a damped version of Newton’s method
was implemented. The Jacobian was constructed analytically, with the exception
of parts involving V, which were computed numerically. This then allowed for an
iterative solution of the form

Frt+dt) = f'(t+dt) + )\, (8.19)
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where A is an adaptively chosen damping parameter beginning at 0.3 for ¢ = 0 and
then reduced geometrically whenever slow convergence was indicated. Here § is the
solution to the equation

J& = —b, (8.20)

where b is a vector formed by subtracting the right side of each of the discretized
equations from the left and .J is the operator formed from the derivatives of b’s
components with respect to the entries in f. The latter is fortunately sparse, and
so the equation does not require an explicit matrix inversion and hence is fast to
solve. The above procedure is iterated in the code until the error, as measured by b,
falls below a critical threshold, usually defined as 10~* relative to f. Given a desired
time-step, this procedure was attempted first for the full step. If the solution proves
numerically unstable, the step is divided in two and attempted again. This is done
recursively until the full requested step has completed or until a certain number of
failures are reached, at which point an error is generated and the program exits.

It is finally worth noting that an initial settling period is allowed, generally twenty
time-steps, over which any deviations due to numerical imprecision in the steady
state solution are worked out and allowed to come to equilibrium. This generally
results in the luminosity of the star shifting by as much as several percent.

8.2 Fully Radiative Stars

The first model of interest is that of a completely radiative star, such that we
may verify our claim that such stars are only heated significantly at depths above
the heating one. Figure [8.1] shows the time evolution of just such a star, with
M = My, R = Ry, L = 100Ls. From the figure it is clear that the change in
temperature does indeed drop off exponentially for > = 33, as predicted. Additionally,
the value of AT/T at the surface, roughly 0.19, matches our expectation of

AT Lt -
To n L1/4

Lo\ 1/A
_ (Lf> 1 =94 _1—019. (8.21)

To verify that the star was indeed in equilibrium at the end of this simulation, the
same scenario was run again with twice the total time interval, such that the final
10%s had constant luminosity. The results of this are shown in figure . The good
agreement, between the two simulations indicates that the star is indeed in equilibrium
at the end of the first one.

Now in many cases we are actually interested in the case where the star is initially
illuminated from without and that illumination is turned off. The results of simulating
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Figure 8.1: AT/T, (top) and L/Ls (bottom) versus logX (in g/cm?) for a star
of mass My, radius Ry, and luminosity 100Ls. The external heat was put in at
¥ = 103g/cm? and linearly increased from zero to 100Lg over the course of 10%s,
which is where the simulation ends. Color represents time, with the simulation
beginning at violet and ending with red.
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Figure 8.2: AT/T, (top) and L/Ls (bottom) versus logX (in g/cm?) for a star
of mass My, radius Ry, and luminosity 100Ls. The external heat was put in at
¥ = 103g/cm? and linearly increased from zero to 100L, over the course of 10%s, after
which the simulation continued for another 10%s to allow for equilibration. Color
represents time, with the simulation beginning at violet and ending with red.
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this scenario on the same radiative star as before are shown in figure 8.3} The trend is
just the same as before, with the temperature falling by the same amount it initially
rose, and the luminosity falling everywhere back down to the internally generated
value.

These results confirm that radiative stars exponentially damp temperature differ-
ences as a function of depth. Additionally, the quick response of radiative stars to
changes in external illumination mean that they track the present-day properties of
the pulsar wind. This, combined with possible anisotropies in their thermal profiles,
means that they may still be useful for exploring the environments pulsars produce.

8.3 Fully Convective Stars

We now turn to fully convective stars. Figure [8.4] shows a fully convective star with
M =0.3Mgy, L;, =0.1Ls, R = 2.65R,. The star was initially subjected to external
illumination equal to its intrinsic illumination, and this was then turned off over the
course of 10%s. To verify that the final state is indeed an equilibrium solution, this
scenario was then run for an additional 10%s, with the results shown in figure [8.5]
The good agreement between these two figures indicates that 10%s suffices to compute
an equilibrium, though the question of what is meant by equilibrium is actually quite
subtle in this case. As specified in the differential equations being solved, the solution
is in equilibrium. That is, all time derivatives are zero within the envelope. This does
not, however, mean that the solution describes an equilibrium scenario for the star
in question. This is because the luminosity at the lower boundary has adjusted up
to match the initial outer boundary luminosity. As a result heat is exiting the star
below this envelope faster than it is being produced by nuclear burning. This effect
is also seen in cases with much higher external luminosities, as shown in figure [8.6,
where L. = L. To understand this, we must examine in more detail the structure of
V as a function of L.

In radiative zones, V o« L, and so both In7T" and L adjust to similar degrees
to changing circumstances. In convective regions, on the other hand, V is nearly
independent of L, and so the equations become stiff in In 7" relative to L. In the case
of a fully convective envelope, then, to a good approximation, 7" may be treated as
fixed, while L is allowed to vary. The surface temperature sets the outer boundary
condition on L, and so this leads to L rising in the interior to meet the outgoing flux
at the surface, rather than the surface flux falling to match that of the interior.

The process outlined above cannot happen instantaneously. Rather, the timescale
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Figure 8.3: AT/T, (top) and L/Ls (bottom) versus logX (in g/cm?) for a star
of mass My, radius Ry, and luminosity 100Ls. The external heat was put in at
¥ = 103g/cm? and linearly decreased from 100L¢, to zero over the course of 10%s.
Color represents time, with the simulation beginning at violet and ending with red.
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Figure 8.4: AT/Ty (top) and L/L, (bottom) versus log Y (in g/cm?) for a star of
mass 0.3Mg, radius 2.65Rs, and luminosity 0.1L. The external heat was put in
at ¥ = 103g/cm? and linearly decreased from 0.1Lg to zero over the course of 108s.
Color represents time, with the simulation beginning at violet and ending with red.
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Figure 8.5: AT/Ty (top) and L/Le, (bottom) versus log Y (in g/cm?) for a star of
mass 0.3Mg, radius 2.65Rs, and luminosity 0.1L. The external heat was put in
at ¥ = 103g/cm? and linearly decreased from 0.1Lg to zero over the course of 108s.
The simulation was then run for an additional 10%s with no external heating. Color
represents time, with the simulation beginning at violet and ending with red.
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Figure 8.6: AT/Ty (top) and L/L, (bottom) versus log Y (in g/cm?) for a star of
mass 0.3Mg, radius 2.65Rs, and luminosity 0.1L. The external heat was put in
at ¥ = 103g/cm? and linearly decreased from L to zero over the course of 108s.
The simulation was then run for an additional 10%s with no external heating. Color
represents time, with the simulation beginning at violet and ending with red.
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of adjustment for L in a convection cell is set by the convective turnover time [/ ’UCEL
and so what occurs is that the temperature adjusts due to the nonzero slope of L
in m for a time [/v., after which the flux has uniformly risen to match the outer
boundary condition. At this point and in this region, the flux ceases to vary, and
hence 0,T falls to zero. The expected change in T is then expected to be roughly
AL 6z AL

= 8.22
cpdm v, Anr?pe,ve] (8.22)

5T = O,T6t ~

where dm and 0z refer to the mass and thickness of a spherical shell of material, and
AL is the change in luminosity, which should be equal to the external luminosity.
Now the convective flux may be written as

Lin
R 8.23
PV R (8.23)
o
L Lo \° 1 ( L \P Lo\
0T =~ L ( ) . (8.24)
Anr2pe, \ 4mr2p cp \4mr2p Lin
This may also be written as
0T  v? /L
dInT~ —~ < (=2). 2

Near the surface of a fully convective star, we usually have v, & v4/10, so for L., = Ly,
we expect 6T/T = 1072, Furthermore, at higher pressures the sound speed rises
relative to the convection speed, and so the difference drops off. This may be
understood as following from the above result that 67" o< p~2/3. The endpoint of this
process occurs when the moving "wavefront" of the flux change reaches the nuclear
burning regime. At this stage the temperature will drop significantly more, for there
is nowhere else for the wavefront to go.

To understand what happens next, we first remark that the convection zone will
adjust to maintain an adiabatic gradient on a timescale set by the convective turnover
rate. As a result, the timescale for the entire star to adjust to maintain this gradient

1S
d 1 P\
Tads =/—T =/ iy ~ /pfl () ds = F’l/g/p’2/3d2, (8.26)
ve J puc p

Recall that this is why Acorn only takes time-steps which are at least max(l/v.) in size.
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where the integral is taken over the entire star. In a convective atmosphere, P o p7,
so p o< PY7. If we make the thin atmosphere approximation throughout the star,
just to gain an order-of-magnitude estimate, then P = g3, and so

2/3 PN\
oy g Y / p234P — g P / <Po> P (8.27)
1 _ _ _
_ — lg—lF—l/?)pO 2/3P02/3’Y (P]} 2/3y _ P01 2/3’7) ] (828)
3y

Now # is typically 5/3 outside of the ionization zone, so 2/3y=2/5, and hence

5pPy/°
3gF1/3p3/3( o0

3/5 P3/5) N 5P02/5PJ:§/5 _ 51)3,0 (Pf>3/5 _ ﬁ (Pf)s/s)
3gF13p23  3vgveo \ Py gveo \ Fo 7
(8.29)
where we have made the approximation that the core pressure vastly exceeds the
pressure at the top of the convection zone. Now v, is typically around v, /10, and
Vs, is typically around 10%°cm/s & 100sg, so the prefactor is around 10%s. Typically
Py ~ 10%°erg/cm?®, and Py ~ gM/(4wR?) ~ 10%erg/cm? for the sun, so the overall
timescale is around 10%t® = 10%, scaling roughly as MS°R~1%/5 For the fully
convective star considered in simulation, M = 0.3My and R = 2.65R, so this
timescale is smaller by a factor of 25, giving around 4 x 107s, or roughly a year.
On the other hand, the core adjusts its temperature in time

Ta dj ~

mcoreCpT Lm GM2

core — PR = = ap7T 8.30
T L. Ju L. TK fM2RLe ( )

where fy; &~ 1/10 is the fraction of the star’s mass in the core and 7y is the Kelvin
timescale for the star. This is typically of order ten million years, and so if L, = L;,
the core’s adjustment timescale is of order a million years. As this is much shorter
than the timescale required to maintain adiabaticity, the star may be approximated
as being adiabatic at all times after the cooling wavefront reaches the core.

8.4 Mixed Stars

For stars with a convection zone above a radiative region, there are two considerations
which our steady-state analysis leads us to expect to differ from the fully convective
case. First, any bloating effects are limited to the convection zone, and so the extent
of bloating is decreased proportional to the size of the zone. Additionally, the nuclear
burning of the core is unchanged by the addition or removal of external illumination
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in these stars, meaning that the bloating effect is further decreased by the amount
given in figure 2.7

To investigate these effects in the transient case, we first simulated a sun-type
star initially illuminated by L. = L, and watched as the illumination was turned
off. The results of this are shown in figure 8.7 The key feature we see here is
that the luminosity sits fixed near the initial steady-state value at the surface, and
that the main effect of time evolution is to push the transition between this value
and the nuclear-burning value deeper into the star. The depth at which this occurs
is between ¥ = 10%g/cm? and ¥ = 105g/cm?, just slightly deeper than the point
in our steady-state calculations where the radiative-convective transition arises in
illuminated equilibrium in this sort of star. This feature is not unique to stars of
M = M. Figure 8.8 shows a star of the form examined in the preceding section,
but with L, = 10Ls. This star exhibits a similar transition between radiative and
convective heat transport in the steady state and hence exhibits a similar transient
adjustment process. The story behind the evolution of stars such as these is then
that the external illumination shuts off convection beyond a certain depth. When
the illumination is removed, that radiative region dampens the resulting change in
temperature exponentially into the star, while the convective region maintains a
luminosity close to the initial steady-state value. This is precisely what we see, but we
can further test this notion by examining the star on longer timescales. If this story
is correct, the star will slowly turn the radiative zone back into a convection zone,
and in the process the luminosity profile will settle down to have L = L, everywhere.

To determine if this is the case, the simulation was run for another 10%s and found
indeed to be out of equilibrium, a feature not seen in any of the previous scenarios
considered. The results of the longer simulation are shown in figure 8.9} Note that as
the luminosity transition region pushes deeper into the star, the magnitude of the
transition falls. Over even longer timescales, the equilibration continues but slows
down somewhat, as shown in figure 8.10] The adjustment time for this process is on
the order of the thermal timescale for the entire region in which the mode of heat
transport shifted from being convective to being radiative, perhaps decreased by a
factor of 10 to account for the relatively small temperature changes required to do
this at high ¥. As a result, the full adjustment process requires timescales beyond the
realm of validity of our lower boundary condition on 7. Fortunately all that matters
for our purposes are the trend and timescale involved, which are clearly seen in the
simulations which are accessible.
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Figure 8.7: AT/Ty (top) and L/ L, (bottom) versus log X (in g/cm?) for a star of mass
Mg, radius Re), and luminosity Le. The external heat was put in at ¥ = 10%g/cm?
and linearly decreased from L, to zero over the course of 10%s. Color represents time,
with the simulation beginning at violet and ending with red.



8. TIME DEPENDENCE 141

o1 | | Ly =01L,,, At =1¢8s
0.0}
-0.1
-0.2
&~
= -0.3
4
-0.4
—0.5¢ — t=0e7s
— t=1le7s
0.6 — t=2e7s
— t=3e7s
-0.7 L ! L ! ! .
1 2 3 4 5 6 t=4e7s
t=5e7s
- t=6e7s
t=7e7s
t=8e7s
10} — t=9e7s
— t=10e7s
8,
~
41
2,
0 L
0 1 2 6 7

Figure 8.8: AT/Ty (top) and L/Ls, (bottom) versus log Y (in g/cm?) for a star of
mass 0.3Mg, radius 2.65Rs, and luminosity 0.1L. The external heat was put in
at ¥ = 10%g/cm? and linearly decreased from 10Lg, to zero over the course of 108s.
The simulation was then run for an additional 10%s with no external heating. Color
represents time, with the simulation beginning at violet and ending with red.
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Figure 8.9: AT/Ty (top) and L/ Le, (bottom) versus log X (in g/cm?) for a star of mass
Mg, radius Re), and luminosity Le. The external heat was put in at ¥ = 10%g/cm?
and linearly decreased from L to zero over the course of 10%s. It was then run for
another 10%s at that value. Color represents time, with the simulation beginning at
violet and ending with red.
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Figure 8.10: AT/Ty (top) and L/Lg (bottom) versus log® (in g/cm?) for a star
of mass My, radius Ry, and luminosity Ls. The external heat was put in at
¥ = 10%g/cm? and immediately decreased from L to zero over the course of 10%s
before being run for another 10%. Color represents time, with the simulation beginning
at violet and ending with red.
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9
X-Ray Binaries

You know, you blow up one sun and suddenly everyone expects you to
walk on water.
— Lt Col. Samantha Carter, Stargate SG-1 Season 8 Episode 17

The results presented thus far have been general, in the sense that while there
were motivating examples of phenomena of interest, many avenues were pursued
to provide a picture of the phenomenology of pulsar-companion systems. We are
now interested in examining the specific case in which the pulsar interacts with its
companion to produce transient X-ray emissions. This case has long been studied]
though conclusions have proven scarce. In addition, while in previous chapters the
companion was a passive agent, here we will consider the role it plays in influencing
its own fate. The first section deals with the isotropic illumination case, while the
second discusses the effects of anisotropy.

9.1 Accretion rate

The initial heating of the star causes it to expand at some rate R. This rate is
everywhere the same in the atmosphere due to the expansion being driven by deep
heating, as discussed earlier. As the atmosphere of the star falls off exponentially

1J. C. Brown and C. B. Boyle. “An exploratory eccentric orbit 'Roche lobe’ overflow model
for recurrent X-ray transients”. In: Astronomy and Astrophysics 141 (Dec. 1984), pp. 369-375;
H. Ritter, Z.-Y. Zhang, and U. Kolb. “Irradiation and mass transfer in low-mass compact binaries”.
In: Astronomy and Astrophysics 360 (Aug. 2000), p. 969. eprint: astro-ph/0005480; A. R. King
et al. “Mass Transfer Cycles in Close Binaries with Evolved Companions”. In: The Astrophysical
Journal 482 (June 1997), pp. 919-928. eprint: astro-ph/9701206!

145


astro-ph/0005480
astro-ph/9701206

9. X-RAY BINARIES 146

in the radial coordinate above the photosphere, no significant accretion is expected
until this region approaches the Roche lobe radius R,. The accretion rate is expected
to be]

M = /21 Rh,v,p(Ry). (9.1)

Here h, &~ Rv?/v2, where vy is the orbital velocity of the star. This is due to the fact
that in the vicinity of the Roche lobe, the pressure profile is set by orbital parameters
rather than the thermal structure of the star. As a result, we may write

M =~ 21 R*v; 203 p(Ry). (9.2)

If the accretion rate is IOWEL it typically means that p is low at R;, the Roche
radius, and hence that we are in the upper portion of the atmosphere. This allows us
to make use of p o< exp(—7/hs) and write

M ~ V21 R*vg 20 pg exp ﬁ =270 203 pyexp PG (9.3)
0 7s Rv? ° Rv? |’

where pg is chosen to make this relation true and r is a Lagrangian quantity. For
the accretion to be significant we must have R ~ R,, for R, R, > h, because
vp ~ 107cm/s > 10%cm/s ~ v,. Thus

(9.4)

20)2
M~ V21 ?v3 py exp (TROQ ) .

RbUZ

s

In Part 1, we found that only stars with deep convection can swell to the point where
R ~ Ry, so we restrict ourselves to stars of this form. As a result, M < 1.2M. Using
M, ~ 2Mg, we may approximateﬂ

Mo\
R, ~0 6RO<M+ p) : (9.5)
yielding
: 2r Ry (M + M,)*/?
—~ -2.3 0 P
M =~ V27 v] pg exp ( e , (9.6)

2Brown and Boyle, lop. cit.

3Using Eq. (9-2), we find that M ~ 10%4pcm?/s. Based on the data in Appendix the exponential
atmosphere assumption holds at least up to p ~ 1078g/cm?, so we are safe making this assumption
if M < 10*°g/s. As will become clear subsequently, this is much larger than the typical values we
will encounter.

4B. Paczynski. “Evolutionary Processes in Close Binary Systems”. In: Annual Review of
Astronomy and Astrophysics 9 (1971), p. 183. DOI: [10.1146/annurev.aa.09.090171.001151,


http://dx.doi.org/10.1146/annurev.aa.09.090171.001151
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where s
G(M + M,)
Ry = <Q2p> : (9.7)
Typical atmospheric temperatures are such that g = m,, so v = 5/3 and
S5kgT
v} =20 (9.8)
3m,,

Thus we can compute all of the quantities in the exponential.

Now we haven’t yet fixed r or py, and so we actually have the freedom to absorb
any constants we wish. Furthermore, relative to the exponential the dependence on
T is negligible, so we may let T' — T for some reference photospheric temperature
Ty and absorb it as well. Thus we will write instead

2r Ry (M + M,)*/?3
M2/32 )

M =~ exp ( (9.9)

We now no longer have the freedom to pick the zero-point of r. Rather, it is uniquely
determined given M at some time. Without solving for it, though, we may write

2ROV (M + M,)*3 .
= g 7M. (9.10)

T

Using 7 = R and dividing through by M yields

2r RyO2(M + M,)*3

075 InM = M2/3U2

(9.11)

This equation is independent of the zero-point of r, for r no longer appears anywhere
in it. Given In M at some point in time, we may use this relation to determine it at
any subsequent point so long as we know R.

9.2 Pre-Roche Expansion

Recall that the radius of the star obeys

dr 1
_— = 9.12
dm  47r3p (9.12)
This may also be written as
dr? 3
LN (9.13)

%_47rp
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Differentiating with respect to time gives

3 _ 3
d (dr :73 dlnp :_d'r dlnp . (9.14)
dm \ dt dtp \ dt dm \ dt
At fixed pressure, dlnp = —dInT, neglecting the small space occupied by the
ionization zone, so
dlnp dIn'T
= _ ) 9.15
dt dt ( )
As a result,
d (dr3 dr3dInT
) = 2 1
dm(dt) dm dt (9.16)
and hence IR T
n
— =R’ : 9.17
dt dt ( )

Note that we have assumed here that the majority of the star, as measured by
the radial coordinate cubed, is convective. This is equivalent to assuming that the
majority of the volume of the star is convective. This must be true in order for us to
get the expansion of interest, and so may be thought of as a condition on the star,
rather than an assumption to be tested later on. Though in equilibrium many stars
become fully radiative, as we found in Chapter 2] during the initial expansion the
star remains convective for quite a while. For many systems the equilibrium state is
never reached, as the Roche lobe overflows well before this occurs, and so we may
safely assume that a substantial convection zone remains.
Now the convective turnover timescale of the star is given by Eq. as

2 3/5
USO (Pf)
Todi = — — ) 9.18

K gueo \ Fo ( )

where v is the convection speed near the top of the efficient convection region (i.e.
where I' ~ 10), vy is the sound speed at the same location, F, is the pressure at
the same location, and Py is the pressure at the base of the convection zone. The
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thermal adjustment time, on the other hand, is

f conv CpTdm

;o 9.19
Tad] (LZ + Le - Lsurface) ( )
_ fcom) CPT47Tr2dp (9 20)
g (Lz —+ Le — Lsurface) |
 4nR2e, Ty Py (Py ) Po) Ve (9.21)
g<vad + 1) (LZ + Le - Lsurface) .
_ AR R (Pr/Py) (9.22)
7V 1+ Lo~ Do)
_ 47TR27—adec,0P0 (Pf/PO)Vad+2/5 (9.23)
V(Vad + 1) (LZ + Le - Lsurface) .
_ AwRPTguaoPy (Py/ Po) " (9.24)
V(Vad + 1) (LZ + Le - Lsurface) .
Tagj _ ATR*Pyveg (Pf/PO)Vad+2/5 (9.25)

. Tadj - V(Vad + 1) (Lz + Le - Lsurface) .

Note that we have made use of the fact that the heat being bottled up is L; + L. —
Lgurface, Wwhere L; is a time-dependent quantity in the case that the core is heated. This
is the isotropic expression, as we are assuming deep convection. Now R ~ 10''cm,
Uep is generally between 10*cm/s and 10°cm/s, Py ~ 10°erg/cm?, L; < 10%°erg/s, so
this ratio is at least

/
? = 1077 (P /Py) Ve o 1077 (P Py) P (9.26)
adj
As long as Py > 10%F, the thermal adjustment time is greater than the convective
adjustment time, and we may take the convective gradient to hold everywhere. This
will always be the case in the stars of interest: if it does not hold, a substantial
fraction of the convection zone will disappear when the heating is introduced, as
discussed in Chapter [2|
Our result involving R? may now be cast as a result involving R, giving

- RdlnT
R=— . 9.27
3 dt (9:27)
Now the characteristic timescale defined by dInT'/dt is just 7,4, so
% dlnT a, 1 Lz Le - Lsur ace

S8 dt 3y 120R0G R (Pr/Ro)Y
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Note that we have neglected the gravitational potential energy associated with the
change in radius. By the virial theorem, we expect that the fraction of the input
energy which goes into changing the gravitational potential is half that which goes
into changing the temperature. As this is an order unity correction we are justified
in neglecting it.

Now there are three possible cases. First, the Roche radius may exceed the
maximum possible radius the star can expand to. In this case no accretion is observed.
Second, the Roche radius may be smaller than the main sequence radius of the star.
In this case we expect the star to cataclysmically accrete onto the companion. This
possibility has been extensively studied elsewhere and is not the focus of this text.
Finally, the Roche radius may lie between the main sequence radius of the companion
and the maximum possible radius the companion can expand to. It is this final case
which is of interest in this chapter.

To examine the case of interest, we need to compute the maximum possible
post-expansion companion radius. Formally, the problem of interest is to determine
the maximum R consistent with the constraint that R = R, and with the incident
external illumination L.. To do this, we must first determine the depth of the base
of the convection zone. In the region deeper than the ionization zone, the Kramer
opacities are valid and we may write

k= BPT~*, (9.29)

where 3 is a constant independent of pressure or temperature. As we are interested
in the expansion of the entire star, we may focus on this region and neglect effects
near the surface. The base of the convection zone is the location where

vad = vrad' (930)
Solving this with the known form of V, .4 gives
3B8P%L
T%° = —————. 31
16macGMYV 44 (9:31)

As we are working deep in the star, V,4 is a constant, and so we know that there is
only one solution. Now at any given pressure in the convection zone,

P Vad
T =T, () 9.32
where Ty and Fy are just the temperature and pressure at some reference position in

the convection zone. Using this we may solve for the base of the convection zone as

vrad<P = PO)>9W2d2

Pr=F < V., (9.33)
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Using V.4 = 0.4, the exponent may be evaluated as 0.56. Thus

Vyaa P = B) "™
Py =P (M) |

What this means is that we may compute a stellar envelope down to some position
deeper than the ionization zone and determine the position of the base of the convection
zone from local thermodynamic quantities in the envelope. This means that if the
computed Py is smaller than /), we know that the envelope is radiative through the
reference pressure. We will pick P as shallow as possible while remaining deeper
than the ionization zone, such that this allows us to classify the entire envelope minus
the portion very close to the surface. In practice this amounts to picking a test P
above the ionization zone, and then increasing it geometrically until a well-converged
envelope matching the self-consistency conditions is achieved.

Using our knowledge of P, along with our equations giving R in terms of it, we
may compute the radius of a star as a function of its main sequence and current P
values. This is just given by

(9.34)

/ P f 50s
R(P;) = R(Py) max <1, P}) , (9.35)
where we have once more made use of Kramer’s opacities in the deep stellar inte-
rior. We see that this provides a self-consistency relation which must be evaluated
numerically. To solve this, an add-on to the core Acorn code was developed. The
full code is shown in Appendix [B.2] It begins by computing for a given star and a
given pulsar luminosity the maximum radius the star may achieve through thermal
expansion. This accounts for the fact that the orbital position is not independent of
the Roche radius, as well as the fact that the incident flux is not independent of the
orbital position. A shooting method is used in these computations, where a guess
of P is used to compute a new value of it. The resulting radius is averaged with
that of the previous guess, and used as input for the next iteration. Convergence is
achieved when the radius changes by less than 1073 R, per iteration. To determine
the surface luminosity of stars with radii between the main sequence radius and the
maximum radius, binary search is used. The algorithm tracks a lower and upper
bound on the luminosity, initially between L. and L. + L;. Given such an interval,
the radius resulting from the midpoint luminosity is computed. If this is larger than
the desired radius, the upper bound on the interval is set to the midpoint. Likewise
if it is smaller than the desired radius, the lower bound is set to the midpoint. The
algorithm converges when the computed radius minus the main sequence radius is
within one part in one thousand of the desired difference.
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Putting all of this together, we can compute the characteristic timescale 7o, =
hs/R over which M increases by a factor of e. A plot of this is shown in figure .
Note that low mass stars have a much easier time expanding, both because they have
lower thermal content and because they both can be and have to be much closer to
the pulsar to satisfy the expansion criteria.

9.3 Post-Roche Accretion

From the previous section, we know that the characteristic increase timescale Tey,
for M is of order of a century for most stars. This exponential increase in M clearly
cannot continue indefinitely. There are three processes which may interrupt it. First,
the star could continue expanding until it all overflows the Roche lobe. This is unlikely
given that long before that happens the pulsar’s radiation will be blocked by the
accreting material. This is the second possibility: the accreting material can prevent
the heating from continuing, putting an upper limit on M. Finally, the star can reach
a balance where the amount of heat being removed by the accreting material equals
the input heat.

Ignoring the first possibility, we turn to the second. Let r be distance from the
pulsar. The pressure exerted by the pulsar wind is

L
P,=—" 9.36
4drric ( )
The pressure exerted by the accreting material is given roughly by pv?, where v,
is the radial velocity. If we assume that the accreting material spreads out in all

directions by the time it reaches the pulsar, then

M = 4mr?po. (9.37)
Now v should be roughly the free-fall velocity onto the pulsar, given by
GM,
v~ £ (9.38)
r

so assuming spherical accretion yields

M,/GM,
Ppee = —+—_2. (9.39)

4grr/2
Equating this with the pulsar wind pressure, we find
GM,c* .
Teq = T;”M?. (9.40)
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Figure 9.1: The vertical axis is log’P in seconds, the horizontal axis is the com-
panion mass M in solar masses, and the color represents the log of the expansion
timescale hg/ R in seconds. The four different plots correspond to four different pulsar
luminosities.
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If this radius falls within the Pulsar’s light cylinder it will bury the magnetic ﬁeldﬂ

This occurs when I I
M,=—L  =5x108P/% /s, (9.41)

where P, _3 is the pulsar period measured in milliseconds. We may compute the
thermal energy lost when this mass leaves the star at ~ 10*K. The result is roughly
3 x 1078L,. As the input heat is expected to be only a few orders of magnitude
below L,, this effect is negligible. Thus we expect the limiting factor in the accretion
process to be that the heat coming from the pulsar is blocked above a certain M.

Now at the accretion rate M, we may estimate the structure of the accretion disk
which forms. The accretion luminosity is

GM,M
Lace = ——2—. 9.42
We may equate this with the heat flux of the disk as a black body, giving
o\ 1/4
GM,M
T=|—Et— : 9.43
( TR0 ) ( )

If the disk is optically thin, then the temperature gradient in the vertical direction is
negligible. We will assume that this is the case, and later demonstrate its consistency
in the regimes of interest. The remaining structural equations which must be solved

5There is some evidence that the actual radius to compare to is smaller than the light cylinder
radius by a factor of 20 or so (Unal Ertan. “Inner disk radius, accretion and the propeller effec