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Abstract

This thesis describes a series of experimental, numerical, and analytical studies involving

the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma

jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes

system. The jet is collimated and accelerated by the MHD forces.

We present three-dimensional ideal MHD finite-volume simulations of the plasma jet ex-

periment using an astrophysical magnetic tower as the baseline model. A compact magnetic

energy/helicity injection is exploited in the simulation analogous to both the experiment

and to astrophysical situations. Detailed analysis provides a comprehensive description

of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet

structure and the transition process that converts the injected magnetic energy to other

forms.

When the experimental jet is sufficiently long, it undergoes a global kink instability

and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of

the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the

cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The

Rayleigh-Taylor instability is found to couple to the classic current-driven instability, result-

ing in a new type of hybrid instability. The coupled instability, produced by combination

of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fun-

damentally different from the classic magnetic Rayleigh-Taylor instability occurring at a

two-dimensional planar interface.

In the experiment, this instability cascade from macro-scale to micro-scale eventually

leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it

compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers

a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe

and successfully detected the high frequency magnetic fluctuations of broadband whistler
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waves associated with the fast reconnection. The magnetic fluctuations exhibit power-

law spectra. The magnetic components of single-frequency whistler waves are found to be

circularly polarized regardless of the angle between the wave propagation direction and the

background magnetic field.
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Chapter 1

Background and Introduction

A plasma is an ionized gas containing freely moving ions and electrons and possibly neutral

atoms. The charged particles in the plasma collide with other charged particles via Coulomb

interaction. Motion of electrons and ions creates an electric current that further generates

a magnetic field. On the other hand, an external magnetic field or self-generated magnetic

field exerts a Lorentz force on the plasma when applied on the electric current. The coupling

of electromagnetic forces and fluid effects leads to complex behaviors of the plasma.

The majority of the observable matter in the universe is in the plasma state, including

stars, planetary nebulae, interstellar media, solar corona, solar wind, magnetosphere, etc.

Man-made terrestrial plasmas are found in controllable fusion experiments and other plasma

research experiments, plasma display, semi-conductor processing/manufacturing, and so on.

Studying plasma is crucially important, not only for improving its existing usages in civilian

applications, but also for solving human beings’ long-term sustainable energy problem, and

for understanding the behaviors of the most abundant state of baryonic matter of our

universe.

1.1 Magnetohydrodynamic theory

Magnetohydrodynamic (MHD) theory gives the simplest description of plasma dynamics.

The theory couples fluid dynamics and electromagnetism by treating plasma as a single
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conductive fluid. The Eulerian form of the MHD equations in SI units are

continuity equation ∂ρ
∂t +∇ · (ρv) = 0 (1.1)

equation of motion ρ
(
∂v
∂t + v · ∇v

)
= J×B−∇P (1.2)

Ohm’s law E + v ×B = ηJ (1.3)

Faraday’s law ∇×E = −∂B
∂t (1.4)

Ampere’s law ∇×B = µ0J (1.5)

energy equation d
dt

(
P
ργ

)
= 0, (1.6)

where ρ is the plasma density, v is the bulk plasma velocity (velocity of center of mass of

electrons and ions), P is the plasma pressure, E, B, and J are respectively the electric field,

magnetic field, and current density vectors, η is the plasma resistivity, and γ = 5/3 is the

adiabatic index for sufficiently collisional plasma.

The continuity equations, equation of motion, and energy equation are similar to those

in hydrodynamics except that the equation of motion contains the Lorentz force. Ampere’s

law is same as in the Maxwell’s equations in the non-relativistic limit.

Plasma that can be described by MHD equations must satisfy the following conditions:

• The plasma is charge-neutral. A charged particle in the plasma attracts oppositely

charged particles surround it like a charge shield. It can be shown that the charge-

neutrality is true when the characteristic lengths of the plasma dynamics are much

longer than Debye length λD =
√

ε0κBT
nq2

, where n is the particle number density and

q is the particle charge [e.g., see § 1.6 in Ref. 5].

• The plasma is sufficiently collisional so that the particle distribution is Maxwellian

and the plasma can be treated as a single fluid. This is true for plasma dynamics that

are much slower than the particle collision rate.

• The plasma phenomenon is nonrelativistic, so no relativistic effect shows up in the

MHD theory. For example, the pre-Maxwell version of Ampere’s law is used in MHD,

which does not include the displacement current µ0ε0
∂E
∂t

1. We assume lchar and

1In fact, relativistic MHD equations are often used for many astrophysical situations, such as active
galactic nucleus (AGN) jets [40]. In this thesis we will only use the non-relativistic version of the MHD
equations to study the plasma dynamics in the Caltech Bellan group experiment and relevant topics.
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tchar as respectively the characteristic length scale and time scale for a given plasma

phenomenon. Faraday’s law (Eq. 1.4) then gives E/lchar ∼ B/tchar. The ratio of the

displacement current to the left-hand side of Eq. 1.5 is then

|µ0ε0
∂E
∂t |

|∇ ×B|
∼ E/tchar
c2B/lchar

∼ (lchar/tchar)
2

c2
,

where we have used c = (µ0ε0)−1/2. Therefore, the displacement current term is

ignorable for non-relativistic phenomena having lchar/tchar � c.

• The characteristic time scale for a given plasma dynamics is much longer than the

electron and ion cyclotron period 1/ωcσ = mσ/(eB) where σ = e or i. Equation 1.2

shows that when the Lorentz force dominates the plasma dynamics there is J ∼

ωρU/B. Here ω is the characteristic frequency of the dynamics. Hence J/(ne) ∼

ωmiU/(eB) = ωU/ωci � U if ω � ωci. Therefore the differential velocity of electrons

and ions are much slower than the plasma bulk velocity. Equivalently speaking, the

electron and ion motions are well coupled. This condition also leads to the fact that

the Hall term in the electron equation of motion can be ignored to give the MHD

Ohm’s law (see § 4.1.2 for details).

• The pressure and density gradients are parallel, so there is no thermoelectric effect

(also see § 4.1.2).

We emphasize here that MHD theory is not a simple combination of fluid dynamics and

Maxwell’s equations. In fact, MHD equations are derived from two-fluid theory by coupling

electrons and ions into a single fluid. Two-fluid theory regards electrons and ions as two

individual flows and considers their own dynamics and interactions (Ref. [5] § 2.5). Two-

fluid theory is often a more appropriate theory than MHD theory to describe small-scale

fast-paced plasma dynamics. We will discuss two-fluid theory in Chapter 4 primarily in the

context of whistler wave and fast magnetic reconnection. A more fundamental description of

plasma dynamics is the Vlasov equation, which considers the evolution of particle distribu-

tion in the space-velocity phase space subject to particle motion, collision, and Lorentz force

(Ref. [5] § 2.3). The continuity, momentum, and energy transport equations of two-fluid

theory and MHD theory result from the zeroth, first, and second momentum integration of

the Vlasov equations.
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1.1.1 Lorentz force and force-free configuration

Substitute Ampere’s law into the Lorentz force to obtain

J×B =
1

µ0
(∇×B)×B

=
1

µ0
B · ∇B−∇

(
B2

2µ0

)
, (1.7)

where we have used the vector calculus identity ∇(C ·D) = (C · ∇)D + (D · ∇)C + C ×

(∇×D) + D× (∇×C). Write B = BB̂ and ∇B = ∇(BB̂) = (∇B)B̂+B(∇B̂). Therefore

J×B =
1

µ0
B · ∇B−∇

(
B2

2µ0

)
=

B2

µ0
B̂ · ∇B̂ + B̂ ·

(
∇ B2

2µ0

)
B̂ −∇

(
B2

2µ0

)
=

B2

µ0
B̂ · ∇B̂ −∇⊥

(
B2

2µ0

)
, (1.8)

where ∇⊥ is the gradient perpendicular to the magnetic field direction. It can be shown

that B̂ · ∇B̂ = −R̂/R, where 1/R is the local curvature of the field line and R̂ goes from

the center of curvature to the field line, and hence the first term describes a force that tries

to straighten out the curved magnetic field line. This tension-like component B2

µ0
B̂ · ∇B̂ is

called the pinch force. The other pressure-like component of the Lorentz force ∇⊥
(
B2

2µ0

)
is

called the hoop force. Both components are perpendicular to the magnetic field line.

Force-free configuration is an arrangement of plasma that satisfies

∇×B = αB, (1.9)

where α is a scalar that might be spatially dependent. According to Ampere’s law, the

force-free configuration has J = 1
µ0
∇×B = α

µ0
B ‖ B so J ×B = 0. Therefore no Lorentz

force acts on the plasma in the force-free configuration.

Equation 1.9 indicates that a force-free configuration must be three-dimensional because

the curl of a two-dimensional B has component perpendicular to B.

Take the divergence of Eq. 1.9 so the left hand side becomes zero. There is

0 = ∇ · (αB) = α∇ ·B + B · ∇α = B · ∇α. (1.10)
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Therefore B ⊥ ∇α, so α remains constant along magnetic field lines.

1.1.2 Ideal MHD magnetic flux frozen-in condition

Ohm’s law can be interpreted in two different aspects. One is to consider the traditional

Ohm’s law in the plasma frame

E′ = ηJ′ (1.11)

and then switch to the lab frame using Lorentz transform in the low-speed limit

E′ = E + v ×B (1.12)

J′ = J. (1.13)

Another aspect is to consider the electron equation of motion in two-fluid theory. After

dropping the electron inertia term, the Hall term, and the pressure term, the electron

equation of motion is reduced to Eq. 1.3. A detailed discussion will be given in § 4.1.2.

In thermal equilibrium, Fokker-Planck theory shows that the resistivity of a fully ionized

plasma is [e.g., see § 13.3 in Ref. 5]

η =
πZe2m

1/2
e ln Λ

(4πε)2(κBT )3/2
= 1.03× 10−4Z ln Λ

T
3/2
e

Ohm ·m, (1.14)

where Z is the ionization of ions, me is the electron mass, ε0 is the vacuum electric permit-

tivity, ln Λ is the Coulomb logarithm and is usually taken to be 102, κB is the Boltzmann

constant, T is the plasm temperature in Kelvin, and Te is the plasma temperature in eV.

Equation 1.14 is called Spitzer resistivity [105]. It is seen that η ∝ T−3/2, meaning that

higher temperature plasma has lower resistivity. This is because free electrons and ions

with larger kinetic energy are less vulnerable to Coulomb interaction (collision) with other

charged particles. Most astrophysical plasmas and many experimental plasmas have very

high temperature and so very low resistivity.

2The parameter Λ is defined as Λ = λD/bπ/2, where λD is the Debye length previously defined in § 1.1,
and bπ/2 = Ze2/(4πε0mev

2
0) is the impact parameter of 90◦-angle collisions of a Ze charged ion seen by

electrons with velocity v0. It can be shown that Λ = 6πnλ3
D, where n is the plasma particle number density.

Therefore, Λ is a measure of number of particles in a sphere having a radius equal to the Debye length.
Dependent on density and temperature, Λ can take value ranged from 102 to 1011 in different plasmas.
However, the logarithm operation makes ln Λ lie in the range 5− 25. When an order-of-magnitude estimate
suffices, it is usually assumed that ln Λ ∼ 10. More detailed discussions can be found in § 1.8 and § 1.12 in
Ref. [5].
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Ideal MHD theory takes the zero resistivity limit η = 0 so an ideal MHD plasma behaves

like a superconductor. One of the most important properties of ideal MHD is that the

magnetic flux is “frozen-in” to the plasma frame. To see this, we substitute Ampere’s law

and the resistive Ohm’s law into Faraday’s law and obtain the MHD induction equation

∂B

∂t
= ∇× (v ×B) +

η

µ0
∇2B. (1.15)

Therefore, changes in magnetic field are caused by plasma motion and resistive diffusion.

In ideal MHD there is no magnetic diffusion, so

∂B

∂t
= ∇× (v ×B). (1.16)

Consider a surface S(t) in the plasma that moves together with the plasma. The total

magnetic flux through the surface is

Ψ(t) =

∫
S(t)

B(x, t) · ds, (1.17)

where ds is the elementary surface area vector perpendicular to the surface. Therefore, the

changing rate of Ψ is

dΨ(t)

d
= lim

δt→0

∫
S(t+δt) B(x, t+ δt) · ds−

∫
S(t) B(x, t) · ds

δt

= lim
δt→0

∫
S(t+δt)

(
B(x, t) + δt∂B(x,t)

∂t

)
· ds−

∫
S(t) B(x, t) · ds

δt

= lim
δt→0

∫
S(t+δt) B(x, t) · ds−

∫
S(t) B(x, t) · ds

δt
+

∫
S(t)

∂B(x, t)

∂t
· ds. (1.18)

Hence the flux changing rate is contributed by shifting of the surface (first term) and

changing of the magnetic field through the surface (second term). Denote dl as the boundary

vector of S(t), and the differential area due to the shifting of S(t) at the boundary can be



7

written as ds = vδt× dl. The first term in Eq. 1.18 becomes

lim
δt→0

∫
S(t+δt) B(x, t) · ds−

∫
S(t) B(x, t) · ds

δt

= lim
δt→0

∮
C B(x, t) · (vδt× dl)

δt

=

∮
C

B · (v × dl)

= −
∮
C

(v ×B) · dl

= −
∫
S
∇× (v ×B) · ds, (1.19)

where C is the boundary of S, and we have used the Stoke’s theorem to convert the boundary

integration to a surface integration. Substitute this equation back to Eq. 1.18 and get

dΨ(t)

d
=

∫
S

(
∂B

∂t
+∇× (v ×B)

)
· ds = 0. (1.20)

Therefore, the magnetic flux enclosed by a closed material line is constant. It is usually

stated (though not very rigorously) that the magnetic field line is “frozen-in” the plasma.

1.1.3 Dimensionless nature of ideal MHD

Ideal MHD has a very important property that it does not have any intrinsic scale. Equa-

tions 1.1-1.6 are all written with dimensional variables. We define three nominal quantities:

length L, magnetic field B0 and plasma density ρ0. Then we define several nominal quan-

tities dependent on L, B0, and ρ0, which are velocity vA = B0/
√
µ0ρ0, time t0 = L/vA

and pressure P0 = B2
0/µ0 = ρ0v

2
A. After normalizing to these nominal quantities, the

dimensionless version of the MHD equations are

∂ρ̃

∂t̃
+ ∇̃ · (ρ̃ṽ) = 0 (1.21)

ρ̃

(
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ

)
= (∇̃ × B̃)× B̃− ∇̃P̃ (1.22)

∂B̃

∂t̃
= ∇̃ × (ṽ × B̃) +

1

S
∇̃2B̃, (1.23)

where the tilde (̃ ) denotes the normalized physical quantities or operations. For example,

ρ̃ = ρ/ρ0 and ∇̃ = L∇. The nominal vA is called the Alfvén velocity, which is the velocity of
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Alfvén wave propagating along the magnetic field lines. The Lundquist number is introduced

as

S =
µ0vAL

η
. (1.24)

In the reduced MHD equations, the Lundquist number S is the only scale-dependent param-

eter. However, S is usually very large for most astrophysical and space plasma (S > 1010)

and laboratory plasma (S = 102 − 108), especially in fusion research experiments, because

these plasma usually have very fast Alfvén velocity and low resistivity, due to the strong

magnetic field and high temperature. S � 1 is equivalent to saying that the magnetic

diffusion is ignorable compared to the magnetic convection in the dynamics. In this case

the last term in the reduced MHD equations can be dropped. Therefore we obtain a set of

dimensionless ideal MHD equations that are independent on the scale of the plasma.

One evidence of the scalability of ideal MHD is that astrophysical jets of vastly differ-

ent scales and lifetimes are found to have very similar morphology, kinetic behavior, and

magnetic field structure [30, 45]. Arched flux rope structures that are found in solar corona

can also be created in the lab experiment [107]. These facts indicate that the underlying

physics of these plasma phenomena are described by ideal MHD.

The dimensionless nature of ideal MHD suggests that plasma dynamics of very large

scales, such as astrophysical plasma, can be studied at a much smaller scale, such as in

a terrestrial experiment, as long as the ideal MHD conditions are satisfied. A terrestrial

experiment has several advantages over passive astrophysical observation, including the

possibility of adjusting plasma parameters (i.e., active experiment) and in-situ diagnostics.

Compared to numerical simulation, lab experiment includes real plasma effects. In the past

decade there have been a rapidly increasing number of studies of using laboratory experi-

ments to study astrophysics. In 2012, a new division, Division of Laboratory Astrophysics

Division (LAD), was established in American Astronomical Society (AAS). “Laboratory

astrophysics” has become an important branch in the modern astrophysical research.

In chapter 2, we will normalize a typical Active Galactic Nucleus jet and the Caltech

experimental plasma jet individually. We find that after normalization the two plasma

jets are very similar to each other, despite the fact that in reality these two objects are

dramatically different in scale.
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1.1.4 Magnetic helicity and Taylor state

Magnetic helicity is an important concept of MHD plasma, and is defined as

K =

∫
V

A ·Bd3r, (1.25)

where A is the vector potential of the magnetic field and the integration is performed over

the entire volume V of the plasma. A is undefined with respect to a gauge, i.e., A +∇f

gives the same magnetic field B as A with f being an arbitrary analytic scalar function.

However, K turns out to be gauge invariant as long as no magnetic field line penetrates the

surface S enclosing the volume V [5].

Magnetic helicity is a topological measure of number of linkages of magnetic flux tubes

with each other and number of twists of magnetic field. Topologically the linkage and twist

are the same concept.

Denote φ as the electrostatic potential. Using Faraday’s law and E = −∇φ − ∂tA, we

have

∂

∂t
(A ·B) =

∂A

∂t
·B + A · ∂B

∂t

= −(E +∇φ) ·B−A · (∇×E)

= −E ·B−∇ · (φB)−∇ · (E×A)−E · (∇×A)

= −2E ·B−∇ · (φB + E×A). (1.26)

MHD Ohm’s law Eq. 1.3 gives

E ·B = (ηJ−U×B) ·B = ηJ ·B. (1.27)

Substitute this equation to Eq. 1.26 and obtain

∂

∂t
(A ·B) +∇ · (φB + E×A) + 2ηJ ·B = 0. (1.28)

Integrate this equation over the entire volume V and apply Gauss’s theorem to have

dK

dt
+

∫
S
ds · (φB + E×A) = −2

∫
V
ηJ ·Bd3r. (1.29)
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For ideal MHD plasma the right-hand side of this equation is zero. Furthermore, if the

ideal plasma is bounded by a conducting wall so that near the wall the magnetic field

only has a tangential component and the electric field only has a normal component, the

surface integral in the above equation then vanishes. Therefore, the magnetic helicity K is

a conserved quantity in ideal MHD.

If the plasma is driven by a magnetized electrode system that has both electrostatic

potential and magnetic field with normal component, the second integration is finite. More-

over, the definition of absolute helicity in Eq. 1.26 is gauge-dependent. However, the relative

helicity

Krel =

∫
V

(A ·B−Avac ·Bvac)d
3r (1.30)

remains gauge invariant. It can be shown that the conservation law for the relative helicity

is
dKrel

dt
+

∫
∂V

(2VB) · ds = −2

∫
V
ηJ ·Bd3r, (1.31)

where ∂V is surface of the electrodes [3, 61]. Therefore, helicity can be injected into a

plasma by maintaining an electrostatic potential across two electrodes and having external

magnetic field threading into the plasma.

Without external helicity injection, the magnetic helicity of an ideal MHD plasma is

conserved. Woltjer-Taylor relaxation is a process where a plasma relaxes to a final state

with minimum magnetic energy WB =
∫
V

B2

2µ0
d3r while conserving the magnetic helicity.

Variational method shows that for a zero-pressure plasma the minimum-energy state satisfies

∇×B = λB, (1.32)

where λ is a spatially uniform constant [121]. Magnetic reconnection dissipates magnetic

energy but conserves helicity and therefore provides a mechanism for this relaxation [114].

The final state is called the Taylor state. Comparing with Eq. 1.9 it is seen that the Taylor

state is a special force-free state.

One approach to magnetic confinement fusion is to confine a plasma in its Taylor state

in order to achieve long confinement time, because the Taylor state is the lowest energy

state and also a force-free state. One famous candidate is the Spheromak, a toroidal-shape

3D plasma that satisfies Eq. 1.32. Compared to the tokamak, the Spheromak requires a
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greatly simpler facility. Meanwhile, the Spheromak is not susceptible to many instabilities

that exist in Tokamak because of the different confinement concept.

1.2 Overview of Caltech plasma jet experiment

1.2.1 Experiment setup and jet dynamics

The Caltech experimental plasma jet is generated using a planar magnetized coaxial plasma

gun mounted at one end of a 1.48 m diameter, 1.58 m long cylindrical vacuum chamber

(sketch in Fig. 1.1). The coaxial gun is similar to those used for creating the Spheromak [34].

We define the central axis perpendicular to the electrodes as the z axis of a cylindrical

coordinate system. The electrode plane is defined as z = 0. The radial and axial directions

are called the “poloidal” direction and the azimuthal direction θ is called the “toroidal”

direction. The vacuum pressure is ∼ 10−7 torr, corresponding to a background particle

density of 3 × 1015 m−3 at room temperature. The plasma gun has a 19.1 cm diameter

disk-shaped cathode and a co-planar annulus-shaped anode with inner diameter d = 20.3

cm and outer diameter D = 51 cm. At time t = −10 ms, a circular solenoid coil behind

the cathode electrode generates a dipole-like poloidal background magnetic field for ∼ 20

ms, referred to as the bias field. The total poloidal field flux is about 1.5 mWb. At t = −1

ms to −5 ms, neutral gas is puffed into the vacuum chamber through eight evenly spaced

holes at r = 5 cm on the cathode and eight holes at r = 18 cm on the anode at the same

azimuthal angles. At t = 0, a 120 µF 5 kV high voltage capacitor is switched across the

electrodes. This breaks down the neutral gas into eight arched plasma loops spanning from

the anode to the cathode following the bias poloidal field lines, a geometry analogous to

“spider legs”. At 0.6 µs after breakdown, a 4 kV pulse forming network (PFN) supplies

additional energy to the plasma and maintains a total poloidal current at 60 − 80 kA for

≈ 40 µs. A typical current and voltage measurement is given in Fig. 2.4.

Fast ion gauge measurements show that the neutral particle number density immediately

before the plasma breakdown is 1019 − 1020 m−3 [79, 81]. When the eight arched plasma

loops are initially formed (top frames in Fig. 1.2), the poloidal current and poloidal magnetic

field in the loops are parallel to each other. However, the plasma is not a force-free system

because of the toroidal magnetic field associated with the poloidal current. The inner

segments of the eight arched loops, carrying parallel current from the anode to the cathode,
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Figure 1.1: Left: 3D cross-sectional view of the vacuum chamber and the coplanar coaxial
plasma gun. Right: sketch of the plasma gun and the cylindrical coordinate. The central
thick plane is the cathode. The sketch is not to scale.

mutually attract each other by the Lorentz force and merge into a single collimated plasma

tube along the z axis. A ten-fold density amplification in the jet due to collimation is

observed by Stark broadening and interferometer measurements; these show the typical

density of the collimated jet is 1022 − 1023 m−3 [63, 126, 127]. The poloidal magnetic field

strength in the plasma is also amplified from < 0.05 T to ∼ 0.2 T, indicating that the field

is frozen into the plasma and is collimated together with the plasma. This amplification

of the magnetic field strength has also been observed spectroscopically [102]. The thermal

pressure and axial magnetic field pressure B2
z/(2µ0) increase until they balance the radial

Lorentz force and lead to a nearly constant jet radius of 2− 5 cm (Fig. 1.2) and a toroidal

magnetic field Bθ ∼ 0.1− 0.5 T (see experimental measurements in Fig. 2.11). This radial

equilibrium is gradually established from small to large z, resulting in an MHD pumping

mechanism that accelerates the plasma towards the +z direction to form a jet. The typical

jet velocity is 10− 20 km s−1 for argon, 30− 40 km s−1 for nitrogen, and ∼ 50 km s−1 for

hydrogen [63].

The plasma jet, as a one-end-free current-conducting plasma tube, undergoes a kink

instability to relax to a lower energy state when its length grows long enough to satisfy the

classical Kruskal-Shafranov kink threshold [49, 50]. An intuitive approach to understand

the kink instability is to consider the current-carrying plasma jet as an inductor. The

energy stored in an inductor is E = Ψ2/(2L), where Ψ is the total magnetic flux and L is
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H jet shot#11497 Ar jet shot#13769

Figure 1.2: False color images showing the formation of a hydrogen plasma jet (left, shot
11497) and an argon plasma jet (right, shot 13769). The hydrogen shot only used the 120
µF 5 kV power supply and the argon one used the PFN in addition to the power supply.
The images are taken by a high-speed visible-light IMACON 200 camera at two slightly
different angles. The dotted circle at the right of each frame is the 10 cm radius central
cathode.
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the inductance of the plasma. In the plasma jet case, Ψ is the total toroidal flux. During

the kink instability Ψ remains quasi-constant. Hence the plasma changes its shape from a

straight column to a spiral solenoid to have a larger inductance and so relaxes to a lower

energy state. A detailed theory of kink instability will be given in § 3.5.1, as a special case

of a Rayleigh-Taylor-Current-Driven coupled instability. Kink instability is a fundamental

current-driven MHD instability that occurs in many other current-driven systems, such as

Tokamak, Z-pinch plasma, solar flux ropes, and astrophysical jets.

When the kink grows exponentially fast and accelerates the plasma laterally away from

the central axis, an effective gravitational force due to the acceleration is experienced by

the plasma jet. At the inner boundary of the kinked jet, where this effective gravity points

from the displaced jet (dense plasma) to the z axis (zero-density vacuum), a Rayleigh-Taylor

instability occurs [80]. The Rayleigh-Taylor instability eventually leads to a fast magnetic

reconnection and destroys the jet structure. In Chapter 3 we will present an MHD theory

of the Rayleigh-Taylor instability.

The jet life-time is ∼ 10 µs for hydrogen, 20−30 µs for nitrogen, and 30−40 µs for argon.

Because heating is not important during this short, transient lifetime, the plasma remains

at a relatively low temperature, Te ∼ 2 eV, inferred from spectroscopic measurements [126].

Under typical experiment plasma conditions, the temperature relaxation time between elec-

trons and ions is about 100 ns, less than 1% of the jet life time. Therefore, Ti ≈ Te ∼ 2

eV. At this temperature, the plasma is essentially 100% singly ionized according to the

Saha-Boltzmann theory, which is also confirmed by spectroscopic measurements [49, 126].

Figure 1.2 shows how the plasma is initially generated as eight arched loops, which then

merge into one collimated jet. The jet then undergoes a kink instability when its length

exceeds ∼ 30 − 40 cm and the Kruskal-Shafranov kink threshold is satisfied [49, 50]. For

the current experiment configuration, the radius-length ratio of the jet in the final stage is

about 1 : 10.

For a typical experimental plasma with ne = 1022 m−3, Te = Ti = 2 eV, B = 0.2 T and

ion mass µ ≡ mi/mH , the Debye length λD ≈ 10−7 m, the ion gyroradius ri ≈ 0.7
√
µ mm,

and the ion skin depth di ≈ 2
√
µ mm are all significantly smaller than the length/radius of

the experimental jet. The typical thermal to magnetic energy density ratio is β ≈ 0.1− 1,

showing that the magnetic field is essential to the jet dynamics. Despite its relatively low

temperature, the plasma has sufficiently high conductivity so that the Lundquist (see § 1.1.3)
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and magnetic Reynolds numbers S ∼ Rm & 102×(L/0.3 m)/
√
µ are both much greater than

one with L ∼ 0.3 m being the length of the jet. Therefore, ideal MHD theory can describe

jet global dynamics, such as collimation, acceleration, and kinking [49, 50, 61, 63, 126, 127],

and magnetic field diffusion is negligible during the jet dynamics. The kinked jet image in

Fig. 1.2 shows that the magnetic field is frozen into the plasma, consistent with ideal MHD

theory. Therefore, the collimation of the bright plasma shown in Fig. 1.2 also demonstrates

the collimation of the magnetic field. The secondary Rayleigh-Taylor instability, on the

other hand, involves small-scale dynamics that are smaller than can be described by MHD

theory [80].

1.2.2 Diagnostics and other apparatus

The transient experimental plasma jet varies from shot to shot, especially after the jet

undergoes the kink instability. Therefore, measurements obtained by averaging over a large

number of repeated single shots, which are commonly seen in other laboratory experiments,

are not applicable in our experiment. Instead, high-speed diagnostics capable of resolving

microsecond-scale plasma dynamics are required.

Diagnostic instrumentation used in the plasma jet experiment includes a high-speed

visible-light IMACON 200 camera, a 30 − 60 eV band extreme ultra-violet (EUV) optical

system [17], a 12-channel spectroscopic system [126], a He-Ne interferometer perpendicular

to the jet [62], a 20-channel 3D magnetic field probe array (MPA) along the r direction

with adjustable z and ∼ 1 µs response time [95], a whistler probe with excellent capacitive

rejection and noise shielding (see Chapter 5), a Rogowski coil, and a Tektronix P6015A

high-voltage probe. Figure. 1.3 gives a sketch of the system.

The data acquisition (DAQ) system contains 12 eight-channel Struck Innovative Systeme

SIS3300 data acquisition boards. Each channel has a ±0.5 V dynamic measurement range

with 12-bit resolution and a sampling frequency of 100 MHz. Therefore, the digitization

resolution of the DAQ system is 1/212 = 0.244 mV.

The lab also owns a collection of optical bandpass filters and a VIS-7-35 VariSpec liquid

crystal tunable filter. These filters when mounted in front of the IMACON200 camera can

turn the camera into a 2D fast framing spectroscopic system.

Detailed descriptions and reviews of most of the experiment diagnostics have already

been included in the theses by Auna L. Moser [79], Deepak Kumar [61], and Carlos A.
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Figure 1.3: An overview of some diagnostics in the plasma jet experiment. Not to scale.

Romero Talamás [113]. In this section we will provide brief reviews of the fast framing

IMACON 200 camera, the EUV optics built by Kil-Byoung Chai, and the VariSpec tunable

filter. In Appendix A we give a detailed description and some interesting applications using

the tunable filter.

1.2.2.1 High-speed IMACON 200 camera

The IMACON 200 camera is an ultra-high-speed camera manufactured by DRS Technolo-

gies. The IMACON camera contains an eight-way beam splitter system and seven functional

monochrome 1360× 1024-pixel 10-bit CCDs. Each of the CCDs records two images to give

a movie of 14 frames in one experiment. The minimal inter-frame time between different

CCDs is 5 ns and the waiting time between two frames of a single CCD is 200 ns. The

IMACON 200 camera is sensitive to visible band and near-infrared band.

1.2.2.2 EUV optical system

Kil-Byoung Chai built an extreme ultra-violet optical system consisting of a Mo:Si multi-

layer mirror that focuses EUV photons to a P-46 YAG:Ce phosphor screen coated with a 50
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nm Al film. The EUV optics converts EUV photons ranging from 30 eV to 60 eV (20− 40

nm) to visible-light photons at an average converting efficiency of 5× 10−4. Detailed infor-

mation about the EUV optics is described in Ref. [17]. The EUV optical system is mounted

inside the vacuum chamber with the phosphor screen facing a window. The IMACON 200

camera is focused on the phosphor screen through the window and records the visible im-

ages converted from the EUV images. Another configuration is to use a double-branch fiber

bundle to convey both the visible and EUV images simultaneously to the IMACON 200

camera, as shown in Fig. 1.3.

1.2.2.3 VariSpec liquid crystal tunable filter

The VariSpec liquid crystal tunable filter is an optical filter with transmitting wavelength

electrically controllable from 400 nm to 720 nm. It is claimed that the tunable filter has an

integral hot mirror that can reflect infrared photons because the thermal energy carried by

the infrared photons can affect performance of the filter or even cause damages. However,

we found that the filter can still transmit a significant amount of near-infrared photons

that can be recorded by the IMACON 200 camera. Therefore, an external hot mirror is

mounted in front of the tunable filter. In Appendix A we provide a detailed description

of the tunable filter and show a two-color imaging of the plasma jet experiment using the

tunable filter.

1.3 Overview of this thesis

In Chapter 1 we have presented some brief introduction to plasma physics, MHD theory,

and the Caltech plasma jet experiment. A more detailed introduction regarding specific

topics will be given individually in each chapter.

In Chapter 2 we will give a brief review of astrophysical jets and show the similarity

between the plasma jet experiment and astrophysical jets in terms of electromagnetic con-

figurations at the jet boundary and the global magnetic structure. We use an astrophysical

magnetic tower model initially proposed by Lynden-Bell [74, 75] as the base model and

present three-dimensional ideal MHD simulations of the plasma jet experiment. A localized

magnetic energy and helicity injection is implemented in the simulation to mimic both the

experimental and astrophysical situations. Detailed analysis to the simulation results and
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comparison between the experiment and simulation give a comprehensive description of the

jet collimation and acceleration processes. We study numerically the magnetic to kinetic

energy conversion and obtain quantitative agreement between the simulation results and

the experiment.

As shown in § 1.2.1, the plasma jet undergoes a global kink instability and then a

secondary local Rayleigh-Taylor instability due to lateral acceleration of the kink instability.

This Rayleigh-Taylor instability is very interesting because it occurs on a cylindrical surface

of an MHD-collimated plasma tube and the direction of gravity is not always perpendicular

to the interface. We found that the conventional hydrodynamic and magnetic Rayleigh-

Taylor theories, which only consider 2D planar interface, give incorrect results when applied

to our case. In Chapter 3 we use linear stability analysis to develop an MHD theory

of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the

presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple

to the classic current-driven instability, resulting in a new type of hybrid instability. The

coupled instability, produced by combination of helical magnetic field, curvature of the

cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic

Rayleigh-Taylor instability occurring at a two-dimensional planar interface. The theory

gives instability wavelengths and growth rates that match with experiments having several

different configurations. We also show that this hybrid instability theory can be applied to

many situations in solar physics.

Chapter 3 solves the Rayleigh-Taylor instability in the early phase when the linear sta-

bility analysis is still valid. In the experiment, however, this instability quickly evolves to a

nonlinear phase and eventually leads to the failure of MHD. The Rayleigh-Taylor instability

compresses and pinches the plasma jet to a scale smaller than the ion skin depth and then

triggers a fast magnetic reconnection. In Chapter 4 we present measurements of high-speed

magnetic fluctuations at the time of the reconnection and show that these fluctuations

contain broadband right-hand circularly polarized whistler waves associated with the fast

reconnection. With the specially designed high-speed 3D magnetic probe (Chapter 5), we

are able to resolve the circular polarization of the whistler waves spontaneously generated

in the fast magnetic reconnection.

Chapter 5 presents the philosophies and detailed designs of the high-speed 3D magnetic

probe (whistler probe) that gives the magnetic fluctuations measurements in Chapter 4.
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The whistler probe consists of six shielded loop B-dot probes made of semi-rigid coaxial

cables. We implement an RF ground current diverting technique that was first used by

Perkins & Bellan (2011) [89]. The whistler probe has a 70 dB rejection to electrostatic

interference, making it ideal for high-speed time-dependent magnetic field detection in an

extremely noisy environment such as the Caltech plasma jet experiment.

Chapter 6 presents an earth-isolated optically coupled DC-5 MHz wideband high voltage

probe powered by solar cells under ambient lab light. The HV probe uses a lab-made 60 pF

high-voltage capacitor and a commercial 100 nF low-voltage capacitor to form a 1000 : 0.6

voltage divider. The divided low voltage is coupled into a LED driver that converts the

voltage signal into an amplitude-modulated infrared signal. The AM light signal is conveyed

through an optical fiber and then converted back to an electric signal at the data acquisition

device. The transmitter is powered by a 30 µF capacitor pre-charged by solar cells under lab

ambient light. Therefore, the high voltage probe is electrically isolated from earth ground.

The HV probe is being used in the cross-flux-tube experiment and other experiments in the

Caltech Bellan group.
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Chapter 2

Three-Dimensional MHD
Numerical Simulation of Caltech
Plasma Jet Experiment

Magnetic fields are believed to play an essential role in astrophysical jets with observa-

tions suggesting the presence of helical magnetic fields. Here, we present three-dimensional

(3D) ideal MHD simulations of the Caltech plasma jet experiment using a magnetic tower

scenario as the baseline model. Magnetic fields consist of an initially localized dipole-like

poloidal component and a toroidal component that is continuously being injected into the

domain. This flux injection mimics the poloidal currents driven by the anode-cathode volt-

age drop in the experiment. The injected toroidal field stretches the poloidal fields to large

distances, while forming a collimated jet along with several other key features. Detailed

comparisons between 3D MHD simulations and experimental measurements provide a com-

prehensive description of the interplay among magnetic force, pressure, and flow effects. In

particular, we delineate both the jet structure and the transition process that converts the

injected magnetic energy to other forms. With suitably chosen parameters that are derived

from experiments, the jet in the simulation agrees quantitatively with the experimental jet

in terms of magnetic/kinetic/inertial energy, total poloidal current, voltage, jet radius, and

jet propagation velocity. Specifically, the jet velocity in the simulation is proportional to

the poloidal current divided by the square root of the jet density, in agreement with both

the experiment and analytical theory. This work provides a new and quantitative method

for relating experiments, numerical simulations, and astrophysical observation, and demon-

strates the possibility of using terrestrial laboratory experiments to study astrophysical

jets.
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Primary part of this chapter was published by Xiang Zhai, Hui Li, Paul M. Bellan, and

Shengtai Li, in Astrophysical Journal, Volume 791:40, 2014 [130]. This work is under the

collaboration between Bellan group in Caltech and Li group in LANL.

2.1 Introduction

Magnetohydrodynamic (MHD) plasma jets exist in a wide variety of systems, from ter-

restrial experiments to astrophysical objects, and have attracted substantial attention for

decades. For example, energetic and usually relativistic jets are commonly observed, origi-

nating from active galactic nuclei (AGNs), which are believed to be powered by supermassive

black holes. AGN jets usually remain highly collimated for tens to hundreds of kiloparsecs

from the host galaxy core [30]. It is generally accepted that AGN jets are powered by the

central black hole accretion disk region. On a much smaller scale, stellar jets are believed

to be an integral part of star formation, with an active accretion disk surrounding a young

star [45]. See Fig. 2.1.

Despite our limited understanding of how the disks or central objects produce collimated

jets, observational evidence has shown that magnetic fields are crucial in collimating and

accelerating jets. Highly polarized synchrotron radiation is observed from both AGN jets

and stellar jets, implying that jets have a strongly organized magnetic field. For example,

the two lobes of T Tauri S, created by the interaction of a bipolar stellar jet with the remote

interstellar medium (ISM), exhibit strong circularly polarized radio emission with opposite

helicity [93]. Large-scale magnetic fields from bipolar AGN jets also show transverse asym-

metries [22]. These observations strongly suggest that a large-scale poloidal magnetic field,

centered at the accretion disk or the central object, plays a crucial role in generating and

propagating both AGN jets and stellar jets. A close look into the jet origin of M87 has found

that the jet at 100 Schwarzschild radii is only weakly collimated (opening angle ≈ 60◦), but

becomes very collimated at larger distance (opening angle < 10◦). This favors a magnetic

collimation mechanism at z > 100 Schwarzschild radii [56]. The 3C31 jet and several other

AGN jets exhibit a global kink-like m = 1 instability or helical wiggles [43, 83] (also see

Fig. 2.1 panel B), implying the existence of a strong axial current along the jet, or, equiv-

alently, a strong toroidal magnetic field around the jet. Here, we define the central axis

along the jet as the z axis of a cylindrical coordinate system. These facts suggest a z-pinch
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A B C

Figure 2.1: Panel A: Composite image of M87 AGN jet by Hubble Space Telescope. The
yellow light are emissions from the host elliptical galaxy and the blue light are from syn-
chrotron radiation by cyclotron motions of relativistic electrons. The length of the jet shown
in the image is about 5000 light years or 5× 1019 m. The jet is believed to be driven by a
3×109 solar masses supermassive black hole and the surrounding accretion disk [56]. Credit:
J. A. Biretta et al., Hubble Heritage Team (STScI /AURA), and NASA. Panel B: False
color image of radio galaxy 3C31 (NGC 383) and its jet in 1.4 GHz radial band by VLA.
The wiggled jet stretches to a distance of 300 kpc or 1022 m. Credit: Laing et al., NRAO.
Panel C: HH30 protostellar jet and the accretion disk by Hubble (Burrows, STSci/ESA,
WFPC2, NASA). The length of the jet is about 1000 AU or 1014 m.

type of collimation mechanism, in which the axial current Jz and the associated azimuthal

magnetic field Bθ generate a radial Lorentz force and squeeze the jet plasma against the

pressure gradient at the central region of the jet.

The surprising similarities of astrophysical jets in morphology, kinetic behavior, and

magnetic field configuration over vastly different scales have inspired many efforts to model

these jets using ideal MHD theory. One important feature is that ideal MHD theory has

no intrinsic scale (§ 1.1.3). Therefore, an ideal MHD model is highly scalable and capable

of describing a range of systems having many orders of magnitude difference in size. Ideal

MHD theory assumes that the Lundquist number, a dimensionless measurement of plasma

conductivity, to be infinite. This leads to the well-known “frozen-in” condition, wherein

magnetic flux is frozen into the plasma and moves together with the plasma [5] (see also

§ 1.1.2). Hence the evolution of plasma material and magnetic field configuration is unified

in ideal MHD. Blandford & Payne (1982) [14] developed a self-similar MHD model, in which
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a magnetocentrifugal mechanism accelerates plasma along poloidal field lines threading the

accretion disk; the plasma is then collimated by a toroidal dominant magnetic field at

larger distance. Lynden-Bell (1996,2003) [74, 75] constructed an analytical magnetostatic

MHD model where the upward flux of a dipole magnetic field is twisted relative to the

downward flux. The height of the magnetically dominant cylindrical plasma grows in this

configuration. The toroidal component of the twisted field is responsible for both collimation

and propagation. The Lynden-Bell (1996,2003) [74, 75] model and various following models,

(typically numerical simulations with topologically similar magnetic field configurations;

e.g., [68, 69, 73, 84, 122]), are called “magnetic tower” models. In these models, the large

scale magnetic fields are often assumed to possess “closed” field lines with both footprints

residing in the disk. Because plasma at different radii on the accretion disk and in the corona

have different angular velocity, the poloidal magnetic field lines threading the disk will

become twisted up [14, 69, 73, 74, 75, 100], giving rise to the twist/helicity or the toroidal

component of the magnetic fields in the jet. Faraday rotation measurements to 3C 273

show a helical magnetic field structure and an increasing pitch angle between toroidal and

poloidal component along the jet [128]. These results favor a magnetic structure suggested

by magnetic tower models. Furthermore, it is (often implicitly) assumed that the mass

loading onto these magnetic fields is small, so the communication by Alfvén waves is often

fast compared to plasma flows.

These models have achieved various degrees of success and have improved understanding

of astrophysical jets significantly. However, the limitations of astrophysical observation,

e.g., mostly unresolved spatial features, passive observation, and impossibility of in-situ

measurement, have imposed a natural limitation to these models. During the last decade,

on the other hand, it has been realized that laboratory experiments can provide valuable

insights for studying astrophysical jets. Laboratory experiments have the intrinsic value

of elucidating key physical processes (especially those involving magnetic fields) in highly

nonlinear systems. The relevance of laboratory experiments relies on the scalability of

the MHD theory and the equivalence of differential rotation of the astrophysical accretion

disk to voltage difference across the laboratory electrodes (at least in the magnetically

dominated limit). The latter can be seen by considering Ohm’s Law in ideal MHD theory,

E + v ×B = 0; E is the electric field and v is the plasma velocity. The radial component

of Ohm’s Law is Er + vzBθ − vθBz = 0. If we ignore the vertical motion vz of the accretion
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Figure 2.2: Analogy of accretion disk system of astrophysical jet and magnetized coaxial
coplanar plasma gun.

disk, it is seen that Er = vθBz, i.e., an equivalent radial electric field is created by θ

motion (rotation), and spatial integration of this electric field gives the voltage difference

at different radii. Such a voltage difference is relatively easy to create in lab experiments

by applying a voltage across a coaxial electrode pair (See § 2.2.3 for the discussion on the

helicity). Figure 2.2 shows the analogy of the magnetized coaxial coplanar plasma gun and

the accretion disk system. Experimental jets are reproducible, parameterizable, and in-situ

measurable. They automatically “calculate” the MHD equations and also “incorporate”

non-ideal MHD plasma effects. Most importantly, the very fact that jets can be produced

in the experiments strongly suggests there should be relatively simple unifying MHD concept

characterizing AGN jets, stellar jets, and experimental jets [8].

The experiments carried out at Caltech [48, 63] and Imperial College [20, 21, 67] have

used pulse-power facilities to simulate “magnetic tower” astrophysical jets. The two ex-

periments have topologically similar toroidal magnetic field configurations and plasma col-

limation mechanisms. However, in addition to the toroidal field, the Caltech plasma jets

also have a poloidal magnetic field threading a co-planar coaxial plasma gun so the global

field configuration is possibly more like a real astrophysical situation. Magnetically driven

jets are produced by both groups, and the jets are collimated and accelerated in essentially

the same manner described by the magnetic tower models. Due to the lack of poloidal

magnetic field, the plasma jets in the group at Imperial College undergo violent insta-

bility and break into episodic parts (magnetic bubbles). The Caltech jets remain very
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collimated and straight and undergo a global kink instability when the jet length satisfies

the classic Kruskal-Shafranov threshold [49, 50]. The Alfvénic and supersonic jets cre-

ated by the Caltech group have relatively low thermal to magnetic pressure ratio β ∼ 0.1

and large Lundquist number S ∼ 10 − 100. Other features including flux rope merging,

magnetic reconnection, Rayleigh-Taylor instability, and jet-ambient gas interaction are also

produced [49, 50, 80, 81, 126, 127]. See § 1.2 for a detailed introduction to the Caltech

plasma jet experiments.

Observation, analytical modeling, numerical simulation and terrestrial experiments (lab-

oratory astrophysics) are all crucial approaches for a better understanding of astrophysical

jets. Compared to observation or analytical models, numerical simulation and terrestrial

experiments share certain common features, such as the ability to deal with more complex

structures and sophisticated behaviors, larger freedom in the parameter space compared to

observation, and more resolution. However, cross-validation between numerical simulations

and experiments has been very limited. Lab experiments can provide detailed validation for

numerical models, while the numerical models can test the similarity between the terrestrial

experimental jets and astrophysical jets.

In this chapter we report 3D ideal MHD numerical studies that simulate the Caltech

plasma jet experiment. The numerical model uses a modified version of a computational

code [70] previously given by Li et al. (2006) [68] for simulating AGN jets in the intra-cluster

medium. Motivated by both observations and experiments, we adopt the approach that the

jet has a global magnetic field structure and both poloidal and toroidal magnetic fields in

the simulation are totally contained in a bounded volume. Following the approach Li et

al. (2006) [68], the MHD equations are normalized to suit the experiment scale. An initial

poloidal field configuration is chosen to simulate the experimental bias field configuration

and the toroidal magnetic field injection takes a compact form to represent the electrodes.

Detailed comparisons between simulation and experiment have been undertaken, addressing

the collimation and acceleration mechanism, jet morphology, axial profiles of density and

magnetic field, and the 3D magnetic field structure. The simulations have reproduced most

salient features of the experimental jet quantitatively, with discrepancies generally less than

a factor of three for key quantities. The conversion of magnetic to kinetic energy from jet

base to jet head is examined in the simulation and compared to the experiment. As a result,

a Bernoulli-like equation, stating that the sum of kinetic and toroidal magnetic field energy
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is constant along the axial extent of the jet, is validated by analytical modeling, laboratory

experiment, and the numerical simulation.

The chapter is organized as follows: In § 2.2 we describe the approach and configuration

of our simulation, and show that the compact toroidal magnetic field injection method used

in the simulation is equivalent to the energy and helicity injection through the electrodes

used in the experiment. In § 2.3.1, we present the simulation results of a typical run, and

compare these results with experimental measurements. In § 2.3.2, we perform multiple

simulations with different toroidal injection rates and examine the jet velocity dependence

on poloidal current. These results together with experimental measurements confirm the

MHD Bernoulli equation and the magnetic to kinetic energy conversion in the MHD driven

plasma jet. In § 2.4 we discuss the sensitivity of the simulation results to initial and injection

conditions. In § 2.5 we present some preliminary results of the numerical investigation to

kink instability. Summary and discussions are given in § 2.6.

2.2 Numerical MHD simulations

Discussion in this chapter is restricted to the global axisymmetric behaviors of the jet,

such as collimation and acceleration. In this section, we prescribe appropriate initial and

boundary conditions used to solve the ideal MHD equations numerically for the Caltech

plasma jet experiment.

2.2.1 Normalization and equations

Number density, length and velocity are scaled to nominal reference values. In particular,

density is normalized to n0 = 1019 m−3, lengths are normalized to R0 = 0.18 m (radial

position of the outer gas feeding holes of the plasma gun in the experiment), and velocities

are normalized to the ion sound speed Cs0 =
√

2kT/mi = 1.96 × 104
√
mH/mi m s−1

(with temperature 2 eV). All other quantities are normalized to reference values derived

from these three nominal values and ion mass mi. Table 2.1 lists the derivation and the

normalization values adopted in the experimental hydrogen/argon jet simulation and the

AGN jet simulation by Li et al. (2006) [68]. SI units are used for the lab experiment while cgs

units are used for the AGN jet in order to facilitate comparison to respective experimental

and astrophysical literature.
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Table 2.1: Normalization units for Experimental H/Ar Jet Simulation and AGN Jet Simu-
lation

Quantity unit Quantity symbols H (µ = 1) Ar (µ = 40) AGN jet (µ = 1)

Length R0 0.18 m 0.18 m 15 kpc

Number density n0 1019 m−3 1019 m−3 3× 10−3 cm−3

Speed Cs0 1.96× 104 m s−1 3.1× 103 m s−1 1.16× 108 cm s−1

Ion weight µ = mi/mH 1 40 1

Time t0 = R0/Cs0 9.2 µs 58.2 µs 1.3× 107 yr

Mass density ρ0 = n0mi/2 8.4× 10−9 kg m−3 3.3× 10−7 kg m−3 2.5× 10−30 g cm−3

Pressure p0 = ρ0C
2
s0 3.2 pa 3.2 pa 3.4× 10−11 erg cm−3

Temperature kBT = miC
2
s0/2 2eV 2eV 7 keV

Energy E0 = p0R
3
0 0.0187 J 0.0187 J 3.4× 1057 erg

Power P0 = E0/t0 2.0× 103 Watt 321 Watt 2.6× 1050 erg/yr

Magnetic field B0 =
√
µ0p0 0.002 T 0.002 T 2× 10−5 Gauss

Magnetic flux Ψ0 = B0R
2
0 0.0648 mWB 0.0648 mWB 4.4× 1040 G cm2

Current density J0 = B0/(µ0R0) 8.871× 103 A m−2 8.871× 103 A m−2 3.5× 10−28 A cm−2

Current I0 = J0R
2
0 2.874× 102 A 2.874× 102 A 7.6× 1017 A

Voltage V0 = P0/I0 7.07 V 1.118 V 1.1× 1018 V

The dimensionless ideal MHD equations, normalized to the quantities given in Table 2.1,

can be written as

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂(ρv)

∂t
+∇ · (ρvv + Pg

←→
I + PB

←→
I −BB) = 0 (2.2)

∂e

∂t
+∇ · [(e+ Pg + PB)v −B(v ·B)] = ėinj (2.3)

∂B

∂t
−∇× (v ×B) = Ḃinj. (2.4)

The momentum equation and the energy equation have been written in the form of con-

servation laws. We assume the same ion/electron temperature T = Ti = Te. The particle

number density n = 2ne = 2ni is used assuming singly-ionized plasma. The ionization

status is assumed to be time-independent. The equation of state for an ideal gas with

adiabatic index γ = 5/3 is used. The gas pressure Pg = nikBTi + nekBTe = nkBT is then

related to the thermal energy density by ethermal = Pg/(γ − 1). The magnetic pressure PB,
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or magnetic energy density eB, is PB = eB = B2/(2µ0) and the total energy density is

e ≡ ρv2/2 + Pg/(γ − 1) + PB. Compared to the MHD equations given in the introduction

Chapter, here we use the energy transportation equation 2.3 instead of the adiabatic energy

equation 1.6. They are equivalent mathematically but the energy transportation equation is

easier to implement in the finite-volume numerical computation algorithm since it is written

in the form of a conservation law.

An injection term Ḃinj is added to the induction equation. The associated dimensionless

energy density injection is

ėinj = Ḃinj ·B, (2.5)

where B is the magnetic field.

Simulations are performed in a 3D Cartesian coordinate system {x, y, z} using the 3D

MHD code as part of the Los Alamos COMPutational Astrophysics Simulation Suite [LA-

COMPASS, 70]. The solving domain is a cube [−4R0, 4R0]3 = [−0.72 m, 0.72 m]3, similar

to the vacuum chamber size in the experiment. Each Cartesian axis is discretized into 800

uniformly spaced grids, giving a total of 5.12×108 grid points. The spatial resolution ∆x =

8R0/800 = 1.8 mm in the simulation is significantly greater than the Debye length, and is

similar to the ion gyroradius and the ion skin depth of the plasma jet in the experiment. A

typical run takes 5 to 24 hr on the Los Alamos National Lab Turquoise Network using 512

processors.

In contrast to the experiment where the jet exists only for positive z, the simulation has a

mirrored plasma jet in the negative z direction so as to have a bipolar system centered at z =

0 plane. The solving domain contains plasma only and has no plasma-electrode interaction

region. Non-reflecting outflow boundary conditions are imposed at the boundaries (large x,

y or z). The MHD equations are solved in Cartesian coordinates so that no computational

singularity exists at the origin.

2.2.2 Initial condition

2.2.2.1 Initial global poloidal magnetic field

It is generally believed that the poloidal and toroidal magnetic component evolve together

under the dynamo processes in accretion disk and surrounding corona. However, when the

poloidal component varies slower than the toroidal component, it is possible to treat the
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two components separately. In Lynden-Bell (1996, 2003) [74, 75], a poloidal field is assumed

to be pre-existing, and the toroidal field is generated by twisting the upward flux relative to

downward flux. During this process, the poloidal flux remains constant while toroidal field

is enhanced with the increase of number of turns (helicity). These processes are realized

equivalently in the lab experiment, where an initial dipole poloidal field is first generated

by an external coil, and then helicity is increased by injecting poloidal current. In the

simulation, an initial dipole poloidal magnetic field is similarly imposed, given by

Ψpol(r, z) ≡ 2παp
r2

(l2 + a2
0)3/2

e−l
2
, (2.6)

where a0 ≡ 0.623R0 = 11.2 cm (R0 = 0.18 m, see Table 2.1) and l ≡
√
r2 + z2 is the distance

from the origin. This configuration is topologically similar to the initial poloidal flux Ψpol =

r2e−l
2

adopted by Li et al. (2006) [68]. By default, simulation equations/variables will be

written in dimensionless form with reference units given in Table 2.1. For example, Eq. 2.6 is

the dimensionless version of Ψpol(r, z) = 2παpB0R
2
0(r/R0)2/[(l/R0)2 + (a0/R0)2]3/2e−l

2/R2
0 ,

where B0 and R0 are given in Table 2.1. Compared to the ideal infinitesimal magnetic

dipole flux Ψ ∝ r2/l3, Ψpol contains a constant factor a0 to make the dipole source finite;

it also has an exponential decay at large distance so that the initial field vanishes at the

solving domain boundaries. At small r and z, Ψpol ∝ r2 hence Bz is nearly constant. a0

is selected so that Ψpol(r = r1, z = 0) = Ψpol(r = r2, z = 0), where r1 = 0.278 ⇒ 5

cm and r2 = 1 ⇒ 18 cm corresponding to the radii of the inner and outer gas lines in the

experiment. The dimensionless parameter αp quantifies the strength of the flux. The vector

potential can be selected to be A = (Ψpol/(2πr))θ̂. The initial poloidal field is

Bpol = ∇×A =
1

2π
∇Ψpol ×∇θ (2.7)

⇒


Br =

αpzre
−l2

(l2 + a2
0)5/2

(3 + 2a2
0 + 2l2)

Bz =
αpe
−l2

(l2 + a2
0)5/2

[
2(1− r2)(l2 + a2

0)− 3r2
] , (2.8)

where θ̂ is the azimuthal unit vector and ∇θ = θ̂/r. The total poloidal flux is

Ψ0,pol ≡ Ψpol(ro, 0) = 2.448αp ⇒ 0.1586αp mWb, (2.9)
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where ro = 0.5667 ⇒ 10.20 cm is the position of the null of the initial poloidal field, i.e.,

Bz(ro, 0) = 0. The first frame of Fig. 2.5 shows the flux contours of the initial poloidal field

in the rz plane.

The toroidal current associated with the poloidal field is

Jθ = ∂zBr − ∂rBz = −αp
re−l

2

(l2 + a2
0)7/2

· g(l), (2.10)

where

g(l) = 4l6 + (8a2
0 + 2)l4 + 4a2

0(a2
0 − 2)l2 − 5a2

0(a2
0 + 3). (2.11)

Simple calculation shows that l0 = 0.9993 ≈ 1 is the only zero point of g(l) and g(l) < 0 for

0 ≤ l < l0 and g(l) > 0 for l > l0.

2.2.2.2 Initial mass distribution

In the experiment, plasma is initially created following the path of initial poloidal field lines

(see Fig. 1.2 H jet at 1.1 µs and Ar jet at 2.0 µs), i.e., the plasma is distributed around

the Ψpol(r, z) = Ψ0 surface. Here Ψpol(r, z) is the initial poloidal flux function (Eq. 2.6)

and Ψ0 ≡ Ψpol(r1, 0) = Ψpol(r2, 0) is the flux contour connecting the inner (r1 = 5 cm) and

outer (r2 = 18 cm) gas feeding holes. A possible choice for the initial mass distribution

function in the simulation is ninit ∼ exp[−δ(Ψpol(r, z)−Ψ0)2].

Note that this initial distribution has low plasma density on the axis. In the experiment,

fast magnetic reconnection occurs as the eight arched loops merge into one. This allows the

plasma and magnetic field to fill in the central region. The ideal MHD simulation, however,

lacks the capability to simulate the fast magnetic reconnection, and hence cannot accurately

describe the merging process. As a compromise, we start the simulation immediately after

the merging process but before the collimation and propagation processes. We therefore

choose a simple form topologically similar to the contour Ψpol(r, z) = Ψ0 but without the

central hollow region, namely

ninit(r, z) = 1 + ninit,0 · e−l
2 · e−δ[(r−1/2)2+z2−1/4]

2

. (2.12)

The first term 1 corresponds to a background particle number density 1019 m−3. This

is ∼ 103 times more dense than the background in the experiment, but still ∼ 10−3 less



31

dense than the plasma jet. ninit,0 is the assumed initial plasma number density. The

e−δ[(r−1/2)2+z2−1/4]
2

term states that the plasma is initially distributed over a torus surface

(r−1/2)2+z2 = 1/4, connecting r = 0 and r = 1 = 18 cm at mid plane. The torus surface is

roughly parallel to the initial poloidal flux surface Ψpol(r, z) = Ψ0, but without the central

hole. The e−l
2

term assures that the initial plasma is localized around the origin. Using this

distribution, the central region r ' 0 in the simulation is initially filled with dense plasma.

2.2.3 Helicity and energy injection

2.2.3.1 Compact injection near the z=0 plane

Toroidal magnetic flux is continuously injected into the simulation system, in order to

replicate the energy and magnetic injection through the electrodes in the experiment. The

helicity conservation equation in an ideal MHD plasma with volume V is

dKrel

dt
= −

∫
∂V

(2VB) · dS = 2Ψpol ·
∂(IL)

∂t
, (2.13)

where Krel is the relative magnetic helicity, ∂V is the boundary of the volume and the area

dS is normal to the boundary, V is the electrode voltage, I is the total current through

the plasma, and L is the plasma self inductance across the electrodes [3, 9, 31, 61] (also

see § 1.1.4). The electrode surface in the experiment is the effective ∂V. When a poloidal

magnetic field is present, Eq. 2.13 states that magnetic helicity injection can be realized

either by maintaining a non-zero voltage across the electrodes, or by increasing the poloidal

current/toroidal field in the plasma. In the experiment, these two methods are essentially

equivalent. Meanwhile, magnetic energy is also injected into the plasma by Ė = P = IV =

IdΨtor/dt, where Ψtor is the toroidal magnetic flux. Since neither electric field nor potential

is explicitly used in the simulation, we choose the second method to inject helicity. Thus

we inject toroidal magnetic field into the system to increase the poloidal current and the

magnetic helicity. The toroidal field injection term in Eq. 2.4 is defined as

Ḃinj ≡ γb(t)Btor, (2.14)
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where γb(t) is the injection rate and

Btor =
f(Ψpol)

2πr
e−Az

2
θ̂ =

1

2π
f(Ψpol)e

−Az2∇θ (2.15)

is a pure toroidal field. The localization factor A is a large positive number so that toroidal

field injection is localized near the z = 0 plane. f(Ψpol) is an analytical function of Ψpol and

following the magnetic tower model used in Li et al. (2006) [68], we choose f(Ψpol) = αtΨpol

so that

Btor = αtαp
r

(l2 + a2
0)3/2

e−l
2
e−Az

2
= αtαp

r

(r2 + z2 + a2
0)3/2

e−r
2−(A+1)z2 . (2.16)

The poloidal current associated with this toroidal field is

Jpol = ∇×Btor =
1

2π
∇
(
αtΨpole

−Az2
)
×∇θ = αte

−Az2Bpol +
αtΨpol

πr
Aze−Az

2
r̂, (2.17)

where ∇×∇θ = 0 and Eq. 2.7 are used.

At z = 0, Btor = αtΨpol/(2πr). Therefore the net poloidal current within radius r is

2πrBtor = αtΨpol. Using Eq. 2.9, the total positive poloidal current associated with Btor is

Ipol = 2.488αtαp ⇒ 0.704αtαp kA. (2.18)

The localization factor A has no impact on the total poloidal current.

It is important to point out that the field injection term in the induction Eq. 2.4 is

a compromise used to avoid having a plasma-electrode interaction boundary condition.

Theoretically, Eq. 2.4 is not physically correct because of the injection term. However,

because the localization factor A is a large positive number, the magnetic energy of Btor

decreases rapidly with z. Therefore the “unphysical” region is very localized to the vicinity

of the z = 0 plane. In particular, using A = 9, the total toroidal magnetic energy at

the z = 0.307 ⇒ 5.5 cm plane is only 10% of the total planar magnetic energy at the

z = 0 plane. The toroidal magnetic flux within |z| < 0.307 contributes 87% of the total

toroidal flux, although the volume is only 7.7% of the total simulation domain. We define

zfoot ≡ 0.307, so the region where |z| < zfoot is the “engine region” where most of the

energy injection is enclosed, and the region outside the engine region (|z| > zfoot) is the
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“jet region” where unphysical toroidal field injection does not occur. In the engine region,

the toroidal magnetic field is directly added to the existing configuration by the modified

induction equation (Eq. 2.4). The injection also adds magnetic helicity, poloidal current,

and magnetic energy. In the jet region, on the other hand, this direct injection is negligible

so the ideal MHD laws hold almost perfectly. The helicity, current, and energy enter the

jet region with the plasma flow.

In the simulations presented here, we use A = 9. Although the choice of A is somewhat

arbitrary, in general, A needs to be sufficient large to localize the engine region to the

vicinity of the z = 0 plane. This compact engine region serves as an effective plasma-

electrode interface, and leaves most of the simulation domain described by the correct

induction equations (i.e., no artificial injection). If a small A were used, injection would

occur globally. There would then be a large amount of energy directly added to remote

regions with low density plasma. A magnetized shock would then arise and dissipate injected

energy. Using a large A guarantees that the magnetic field is mostly frozen into the dense

plasma. However, A should be not too large in our simulation, since otherwise numerical

instability and error would occur because of excessive gradients.

The process of helicity/energy injection in the simulation is not exactly the same as in

the experiments or the astrophysical case. In the experiment, a non-zero electric potential

drop between the electrodes is responsible for the process. In AGN jet or stellar jet cases,

the injection process could also be accompanied by electric potential drop in the radial

direction as a result of interaction among the central object, wind, magnetic field, and the

accretion disk dynamics, such as differential rotation of the disk and corona. However,

the artificial injection of a purely toroidal field should produce mathematically equivalent

magnetic structure. This injection is also consistent with the asymptotic X-winds solution

by Shu et al. (1995) [103] and Shang et al. (2006) [98].

2.2.3.2 Jet collimation as a result of helicity/energy injection

To illustrate how injected toroidal magnetic field impacts the system, we consider a “virtual

magnetic field” configuration composed by Bpol (defined in Eq. 2.6-2.8) and Btor (defined
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in Eq. 2.16). The Lorentz force

F ≡ J×B = (Jpol + Jtor)× (Bpol + Btor)

Fpol = Jpol ×Btor + Jtor ×Bpol

Ftor = Jpol ×Bpol

(2.19)

has both poloidal and toroidal components.

We first examine the toroidal component of the Lorentz force, or, the twist force. The

first component of Jpol in Eq. 2.17 is parallel to Bpol, and only the second term contributes

to the twist, namely,

Ftor =
αtΨpolAze

−Az2

πr
r̂×Bz ẑ = −2αtα

2
pA

rz

(l2 + a2
0)4

e−2l2−Az2 ·
[
2(1− r2)(l2 + a2

0)− 3r2
]
θ̂.

(2.20)

For small radius, the twist force scales as Ftor/r ∼ ze−(A+2)z2/(z2 + a2
0)3. The twist force

is strongest at z = 0.166⇒ 3 cm and weak for very small z and large z. In the simulation,

Ftor twists the plasma differently at different radii and height, and hence contributes to

Er by increasing vθBz negatively. This electric field is equivalent to the voltage across the

inner cathode and outer anode in the experiment.

In the poloidal component of the Lorentz force, the Jtor ×Bpol term is the hoop force

that expands the system resulting from the poloidal magnetic field; while Jpol×Btor is the

pinch force and is caused solely by the toroidal magnetic field. Insertion of Eq. 2.7, 2.8,

2.10, 2.16 , and 2.17 into Eq. 2.19 yields

Fr =−
α2
pre
−2l2

(l2 + a2
0)6

[
2(1− r2)(l2 + a2

0)− 3r2
]
·
[
g(l) + α2

t e
−2Az2(l2 + a2

0)2
]

(2.21)

Fz =
α2
pr

2ze−2l2

(l2 + a2
0)6

[(
3 + 2l2 + 2a2

0

)
g(l) + α2

t e
−2Az2(l2 + a2

0)2(3 + 4l2 + 4a2
0)
]
. (2.22)

The terms containing g(l) result from the poloidal field and the terms proportional to α2
t

are given by the toroidal field. In the small αt limit, the pinch applied by the toroidal field

is weak, so the g(l) term determines the direction of the Lorentz force. In the region of

small r and l, Fr > 0 and Fz/z < 0, showing that the plasma expands and is made more

diffuse by the hoop force. The same argument is true for l < l0 ≈ 1 and for finite αt with
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Az2 � 1. In the cases where αt is sufficiently large, i.e., the pinch due to the poloidal

current/toroidal field overcomes the hoop force, Fr < 0 and Fz/z > 0 for small r. This is

where the toroidal field squeezes the plasma radially and lengthens it axially. To see this

more clearly, if we ignore the poloidal field effect by dropping the terms containing g(l),

the radial Lorentz force is Fr/r ∝ e−2(A+1)z2/(l2 + a2
0)3, which decreases rapidly along the

z axis. Hence the plasma is pinched and pressurized more at small z than at large z. The

huge pressure gradient along the central axis, due to the huge gradient of collimation force,

then accelerates the plasma away from the z = 0 plane. Equivalently, the large gradient of

the toroidal magnetic pressure B2
θ/(2µ0) in the z direction is responsible for the collimation

and acceleration of the plasma.

It is important to point out that the Lorentz force is primarily poloidal. Since

Ftor

Fr
=

2αtAze
−Az2(l2 + a2

0)2

g(l) + α2
t e
−2Az2(l2 + a2

0)2
∝


αt for small αt

1/αt for large αt

, (2.23)

Fr is usually much stronger than Ftor.

The above analyses show the Lorentz force tends to squeeze the plasma radially and

accelerate it axially with the presence of Btor. However, in the simulation, only Bpol

is initially imposed as the bias poloidal field. The toroidal field is continuously injected

into the system at small z. Meanwhile, the existing poloidal and toroidal magnetic field

configuration is continuously deformed together with the plasma. Eq. 2.20-2.21 are not

exact expressions of the Lorentz force experienced by the plasma. However, Eq. 2.20-2.21

nevertheless gives a semi-quantitative description of how injected toroidal field affects the

plasma.

In summary, we have established both the initial condition and the continuous injection

condition for simulating the Caltech plasma jet experiment. Only a poloidal field and a

dense plasma distributed roughly parallel to the field lines are imposed initially. As the

plasma starts to evolve, although the hoop force by the initial toroidal current tries to

expand the plasma radially, the injected toroidal magnetic field (poloidal current) applies

Lorentz force that overcomes the poloidal field pressure, and squeezes the plasma radially

and lengthens it axially to form a jet in both the +ẑ and −ẑ directions. We only consider

the +z part as the −z part is a mirror image.
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2.3 Simulation results

In this section, we present some typical simulation results and compare them to the exper-

imental results.

2.3.1 A typical argon jet simulation

First we show a typical argon plasma jet simulation (µ = 40). The initial poloidal flux

factor is selected as αp = 10 corresponding to a 1.59 mWb poloidal flux with maximum Bz

strength of 0.165 T at the origin. The initial mass distribution is given by Eq. 2.12 with

δ = 40 and ninit,0 = 4000, corresponding to a maximum initial electron number density

2× 1022 m−3.

The dimensionless injection coefficient is

γb(t)αt = 1000e−30t + 150e−20(t−0.5)2 (2.24)

for 0 ≤ t ≤ 0.6 = 35 µs, which contains a short exponential decay and then a long-duration

Gaussian profile. This corresponds to the fast power input by the main capacitor and

then the long-duration power input by the PFN in the experiment. This injection rate

is obtained based on the experiment current characteristics. In the experiment, the main

capacitor gives rise to a plasma poloidal current at a rate of ≈ 150 kA/3 µs ×(π/2) ∼ 102

kA/µs. The PFN supplies current 60− 80 kA with a rise time of ∼ 10 µs, giving a current

injection rate ∼ 10 kA/µs. With αp = 10, Eq. 2.18 indicates a dimensionless injection rate

γbαt ∼ 103 for the main capacitor and ∼ 102 for the PFN.

The localization factor is A = 9 so the engine region extends up to zfoot = 0.307⇒ 5.5

cm. The initial plasma temperature is uniformly Ti = Te = 2 eV, and the plasma remains

100% singly ionized through the simulation.

2.3.1.1 Global energy analysis

First, we examine the overall global energetics of the jet. The kinetic energy, magnetic

energy and thermal energy in different regions are calculated by integrating dimensional

quantities ρv2/2, eB = B2/(2µ0) and Pg/(γ− 1) over the volume of interest for comparison

with experiment. The evolution of these various types of energy are plotted in Fig. 2.3.



37

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

time (µs)

E
n

er
g

y
 (

J)
Entire simulation domain

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

time (µs)

E
n

er
g

y
 (

J)

Engine region

 

 

total energy

magnetic energy

kinetic energy

thermal energy

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

time (µs)

E
n

er
g

y
 (

J)

Jet region

Figure 2.3: Evolution of different energy components in the entire simulation domain (left),
engine region |z| < zfoot (middle) and jet region |z| ≥ zfoot (right).
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(effective) voltage. The solid curves are measured in a typical argon plasma experiment
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38

The simulation starts with a finite thermal energy and a small magnetic energy from the

initial poloidal magnetic field. During the first 5 µs, the toroidal field is injected into the en-

gine region at a very fast rate, leading to a rapid rise in total magnetic energy. Meanwhile,

the injected toroidal field continuously applies a Lorentz force to the plasma, converting

magnetic energy into kinetic energy. At 5 µs, this energy conversion rate exceeds the de-

clining toroidal field injection rate, and the magnetic energy of the entire simulation domain

begins to drop. This dropping trend is terminated by the second fast injection occurring at

later time. At 10 µs, the relative amounts of magnetic and kinetic energy in the engine re-

gion reach a quasi-equilibrium state where magnetic energy dominates and remains roughly

constant. However, the magnetic and kinetic energy in the jet region continue growing at

constant rates. Therefore magnetic energy injected in the engine region is effectively trans-

ferred to the jet region because the energy in the engine region stays saturated. The energy

partition and evolution are consistent with estimation for the experiment [see Chapter 3 of

Ref. 61].

The thermal energy is insignificant compared to the magnetic and kinetic energies.

The thermal energy has a small rise in early time due to the adiabatic heating from the

collimation, and then slowly decreases because of the mass loss at the domain boundaries.

Heating during the jet evolution is in general also not important in the experiment.

In § 2.2.3.2, we showed that the jet is accelerated by the plasma pressure gradient along

the central axis. This pressure gradient is caused by the non-uniform toroidal field pinching.

In the jet region, the rate of increase of kinetic energy greatly exceeds the decrease of the

thermal energy. Therefore, it is confirmed that the jet gains kinetic energy ultimately from

magnetic energy, not from thermal energy, i.e., the jet is magnetically driven.

The total power input into the system is given by

Ptot ≡
∫∫∫

(ėB + ėK + ėT )dV, (2.25)

where eB, eK and eT are the magnetic, kinetic and thermal energy density.

If we ignore the energy loss due to the outflow mass at the solving domain boundaries,

the energy conservation law states that the rate of change of total energy equals the energy
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injection rate associated with toroidal field injection, i.e.,

Ptot = Pinj ≡
∫∫∫

ėinjdV ėinj ≡ γb(t)Btor ·B. (2.26)

According to the analysis in § 2.2.3.1, the power injection mainly occurs in the engine region,

i.e.,

Pinj ≈
∫∫∫

|z|<zfoot
ėinjdV ≡ Pinj,engine. (2.27)

Due to energy saturation in the engine region, there is also

Ptot ≈
∫∫∫

|z|≥zfoot
(ėB + ėK + ėT )dV ≡ Pjet at large t. (2.28)

Therefore,

Pinj,engine ≈ Pjet at large t. (2.29)

This shows that the power input at the jet base is mainly used to accelerate the jet, and

not for heating.

An effective voltage at the z = 0 plane can be defined as

Veff ≡
Ptot

I(z = 0)
I(z) =

∫∫
Jz>0

Jzdxdy, (2.30)

where I(z) is the total positive poloidal current through the plane z.

Figure 2.4 shows that the poloidal current in the simulation is in good agreement with

the experimental measurement. At t ≤ 3 µs, the current at z = zfoot is less than 30% of

the current at the z = 0 plane. This is because most of the toroidal injection occurs within

the engine region. However, for t > 5 µs, the current entering the jet region is comparable

with the total current in the system, indicating that the engine region is injecting toroidal

flux into the jet region.

It is difficult in the experiment to measure the voltage across the plasma precisely

because the impedance of the plasma is very low. The voltage measurement given by the

solid curve in Fig. 2.4 contains the plasma voltage drop as well as voltage drops on the

cables and connectors. The effective voltage in the simulation is expected to be comparable

to but lower than the experiment measurement, as is generally the case in Fig. 2.4.

The global energy and electric characteristics comparison between the simulation and
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experiment confirm that the simulation captures the essential features. The jet is MHD-

driven and gains kinetic energy from magnetic energy. In the following sections, we discuss

the detailed process of jet collimation and propagation and various properties of the jet.

2.3.1.2 Jet collimation and propagation

According to the analysis in § 2.2.3.1 the A = 9 localized toroidal field injection, quan-

tified by Eq. 2.24, will generate a pinch force that collimates the plasma near the z = 0

plane. Meanwhile, the plasma pressure gradient along the axis, caused by the z gradient

of collimation force on the jet surfaces, will accelerate the plasma away from the z = 0

plane. The evolution of the plasma is given in Fig. 2.5, which presents the time sequence

of plasma density in the xz (rz) plane overlaid by azimuthally-averaged poloidal magnetic

field contours. Figure 2.5 shows that plasma with frozen-in poloidal field is pinched radi-

ally and lengthened axially. Starting from a torus structure around the origin, the plasma

eventually forms a dense collimated jet with a radius r ' 0.2 ⇒ 3.6 cm (at z = 0) and

height h ' 2 ⇒ 36 cm at ∼ 30 µs. The radius-length ratio of the plasma decreases from

≈ 1 : 1 to ≈ 1 : 10. Consequentially, a more than five times amplification of density and

poloidal field is observed to be associated with the collimation process in the simulation,

consistent with the experimental measurement by Yun et al. (2007) [127]. The jet radius

r ' 0.2 at z = 0 in the simulation is found where plasma density drops below 5% of the

central density ρ(r = 0, z). An unmagnetized hydrodynamic shock bounding the global

structure forms in the numerical simulation and propagates outward, as a result of super-

sonic jet flow propagating into the finite pressure background; this shock is not observed

in the experiment because of the lack of background plasma. Here we define the jet head

as the leading edge of dense magnetized plasma along the central axis. This leading edge

corresponds to the top of the T -shaped shell in Fig. 2.5 (from z = 0 to z ∼ 1.8 at 27.94

µs, see also in Fig. 2.6). The jet head is the point where all the poloidal flux bends and

returns back to the mid-plane. In front of the jet head, plasma is essentially unmagnetized

and the density drops from ∼ 1022 m−3 to < 1020 m−3. Therefore the hydro shock and its

downstream region from the T -shell to the shock front are not considered as part of the jet,

but rather the termination of the entire global structure. Figure 2.5 also shows that the

entire plasma structure remains axisymmetric in the simulation.

The high speed images of the experiment plasma jets shown in Fig. 1.2 are integration
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Figure 2.5: Evolution of the density distribution (color map) and azimuthally-averaged
poloidal flux surfaces (white contours) in xz plane (z > 0) from t = 0 to 0.48 with 0.06
interframe time, corresponding to dimensional time from 0 to 27.94 µs with interframe time
3.49 µs. The color represents the common logarithm of the total particle number density
n = ne + ni in m−3. Each frame contains 13 evenly spaced flux contours from 0.05 mWb
to 1.45 mWb every 0.2 mWb. The white horizontal dash lines in each frames mark the
position of zfoot = 0.307⇒ 5.5 cm.

of plasma atomic line emission along the line of sight. Generally atomic line emission is

proportional to the square of density. Therefore we calculate the line-of-sight integration of

density squared of the simulation jet and plot the equivalent “emission” images in Fig. 2.6,

along with five experimental plasma images. The plasma is optically thin. Figure 2.6

shows that simulation and experimental jets have similar radius, length/velocity, brightness

variation, and the relatively flat and bright plasma at jet head, a T -shaped structure.

This T -shaped structure is a signature of return flux (also see the structure at the top of

jet in Fig. 2.5). Due to the lack of any background pressure, the experimental jet has a

much flatter return flux structure, compared to the T -shaped structure shown in simulation

images at later times. This structure is much dimmer in Fig. 1.2 because for those figures

the camera was not placed perpendicular to the jet so the line of sight does not lie entirely
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Figure 2.6: Top panels: distribution of line-of-sight integration of square of density in
simulation, i.e.,

∫
n2(x, y, z)dy. Lower panels: false color images of a typical Argon jet

experiment in visible band taken by IMACON 200 camera placed almost perpendicular to
the jet axis (along r direction). Shot # 11082. The second frame also shows a reflected jet
image on a glass window behind the jet. The plots are rotated 90◦ about (x = 0, z = 0),
and are scaled to be 26 cm in z (horizontal) direction by 22 cm in x (vertical) direction.
The respective color tables for both the simulation and experimental images do not change
with time.

in the T -shell structure. Note that the experimental jet starts to kink at 20 µs but the jet

still propagates in a similar manner and remains attached to the center electrode.

Although the localized toroidal field (poloidal current) injection is confined to the engine

region (|z| < zfoot, below the dashed lines in Fig. 2.5), the plasma nevertheless collimates

in the jet region. This is because the poloidal current, pre-injected in the engine region,

propagates into the jet region along with the plasma motion and so provides a pinch force

to collimate the plasma there (Fig. 2.4, also see Fig. 2.10). Hence the toroidal field injection

actually occurs in both the engine region and jet region. The injection in the engine region is

realized artificially by Eq. 2.4, a non-ideal process; the injection in the jet region is achieved

through the z = zfoot plane associated with the plasma dynamics.

The detailed axial profile of the collimated jet is given in Fig. 2.7, which plots density,

kinetic and magnetic profiles along the central z axis spanning from 11.6 µs to 30.2 µs.

Although the experimental jet already undergoes a kink instability as early as ∼ 20 µs, the

simulation results at late times can still be used to study the expansion of the length of the

axis of the kinked experimental jet according to Fig. 2.6.

The left four panels A-D in Fig. 2.7 show the evolution of jet’s kinetic properties. The

number density plots (panels A and B) show that mass is rearranged to become more
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∫
ndx along y = 0 (panel B), axial velocity vz along r = 0 (panel

C), axial kinetic energy density ek = ρv2
z/2 along r = 0 (panel D), axial magnetic field Bz

along r = 0 (panel E), toroidal magnetic field Bθ(r, z) at r = 0.21 (3.8 cm) (panel F), total
poloidal current I(z) ≡ maxr I(r, z), where µ0(r, z) = Bθ(r, z)/2πr (panel G), and total
toroidal field energy at each height

∫∞
0 eBθdθrdr (panel H) where eBθ = B2

θ/2u0.

elongated and more evenly distributed along the jet. Since the total mass is conserved in

the solving domain, consequentially, the density or column density decreases along the jet

body when the jet gets longer. Panels C and D show the axial velocity and kinetic energy

are gradually developed along the jet. The plasma axial velocity decreases in the lab frame

because of the jet elongation. In fact, panel C indicates that the axial velocity approximately

follows a self-similar profile vz(t, z) ∝ z/t. Detailed calculation finds that tvz/z approaches

1 for z > zfoot at later time, i.e., vz → z/t. Therefore, the acceleration in the frame of

jet is dvz/dt = ∂tvz + vz∂zvz = 0. This means that the jet has reached a dynamic steady

state and the entire jet is elongating as a whole. However, it is crucial to point out that the

vz ∝ z/t behavior is only true at later times, when the injection rate varies very slowly. At
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early times when injection rate has a large variation, the jet velocity profile is expected to

be very different from self-similar behavior, with density accumulation/attenuation in some

parts of the jet and even internal shocks. At the jet head, plasma flow slows down in the

moving frame of plasma, density accumulation always occurs (see panel B), which is also

observed in experiments [126]. This accumulation can be regarded as an indicator of jet

head, e.g., z ≈ 16 cm at t = 16.3 µs and z ≈ 28 cm at t = 25.6 µs. This gives a jet speed

of vz ≈ 13 km s−1, consistent with the experiment (Fig. 2.6).

The jet speed is faster than the background plasma sound speed cs = 3.1 km s−1. The

supersonic jet flow is expected to excite a hydro shock with speed vs = [(3γ− 1)/(6γ− 4) +√
(3γ − 1)2/(6γ − 4)2 + c2

s/v
2
z ]·vz ≈ 18 km s−1 where the adiabatic constant is γ = 5/3 [60].

This is consistent with the simulation results in panel C. Under the strong shock approxima-

tion vz � cs, the shock speed is vs ≈ [(3γ− 1)/(3γ− 2)] · vz. In the experiment, although a

hydro shock is also expected, it is not feasible to measure it because the background density

is too low. Moser & Bellan (2012) [81] had a vz ≈ 16 km s−1 argon experiment jet collide

with a pre-injected hydrogen neutral cloud with density n ∼ 1019− 1020 m−3, and observed

a hydro shock in the cloud with a speed of vs ∼ 25 km/s. This satisfied the strong shock

solution with γ = 7/5 for neutral diatomic gas.

Yun (2010) [126] measure the density and velocity profiles of a typical nitrogen jet

using Stark broadening and Doppler effect (Fig. 15, 17 of Ref. [126]). It is found that

the experimental jet has a typical density (0.5 − 1.0) × 1023 m−3, and the density profiles

behave very similarly to the argon simulation jet in aspects like mass distribution, time-

dependent profile evolution, and density accumulation at the jet head, especially for the

column number density (Fig. 2.7 panel B). The velocity profiles of the experiment nitrogen

jet also show similar trends as Fig. 2.7 panel C, e.g., velocity behind the jet head slows

down in lab frame and the jet head travels at a roughly constant speed. In the experiment,

because there is negligible background density, the measurable plasma velocity reaches zero

at the jet head. In the simulation, however, the axial velocity profiles are terminated by

the hydro shock in front of the jet head. Yun & Bellan (2010) [126] show a smaller density

decrease of the jet in the experiment than in the simulation, due to the continuous mass

injection into the plasma through the gas feeding holes on the electrodes [107]. Continuous

mass injection is not included in the simulation in order to reduce complexity. This results

in a larger density attenuation in the simulation as the jet propagates (panel A and B). It
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is important to point out that the experimental nitrogen jets and argon jets do not have

exactly the same conditions, so the discussion here on nitrogen jet, while identifying similar

trends, is not quantitative.

As the jet lengthens, axial magnetic field embedded in the plasma is also stretched out,

resulting in a quasi-uniform magnetic density along the jet axis. This is clearly evident by

noticing the Bz evolution in Fig. 2.7 panel E. At 11.6 µs, Bz attenuates from 0.7 T to 0.35

T in 9.5 cm, while at 30.2 µs this 2-fold decay occurs in a distance of 25 cm ≈ 6 jet radius.

Hence the axial magnetic field is becoming more uniform. Panel F, G, and H demonstrate

that toroidal magnetic field and poloidal current propagate along the jet body and reach

the same distance as does the plasma density, despite the fact that toroidal field/poloidal

current is injected in the engine region at small z. The jet is thus still being collimated by

the toroidal field/poloidal current even though the jet is already far from the engine region.

The total positive poloidal current (panel G) and total toroidal magnetic energy density

(panel H) become quite uniform along the jet in later time. Panel G also clearly indicates

the jet head location, where all poloidal current turn back and results in a sharp decrease

in total positive poloidal current at the jet head. The locations of this sharp decrease is

consistent with the location of density accumulation shown in panel B.

According to Fig. 2.7 here and Fig. 17 in Yun & Bellan (2010) [126], there is no distinct

jet head in either simulation or experiment. After the main jet body, plasma density and

other characteristics, such as poloidal flux and current, take significant distance to reach

zero. The reason is again the lack of background pressure. In the jet-neutral cloud collision

experiment [79, 81], a sharper jet head with significant amplified density and magnetic field

is observed.

Although panels E & F show Bz along the axis remains comparable with Bθ at the

jet boundary, we will show in § 2.3.1.3 that this result does not conflict with Lynden-Bell

models [74, 75, 100] or Zavala & Taylor (2005) [128], in which an increasing pitch angle

Bθ/Bz is expected tracing magnetic field lines along the jet.

Figure 2.8 shows the distribution of Poynting flux B2
θvz, kinetic flux ρv3

z and enthalpy

flux γp/(γ − 1)vz at t = 29.1 µs. The figure shows that Poynting flux has successfully

reached the height of jet head z ≈ 1.8, even though the toroidal field is injected at z < 0.307.

Poynting flux is generally 2 − 10 times larger than kinetic flux, and two to three orders of

magnitude larger than thermal flux, showing that the jet is MHD driven and magnetically
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Figure 2.8: From left to right: distribution of logarithm of Poynting flux log10(vzB
2
θ ), kinetic

flux log10(ρv3
z), and enthalpy flux log10(γp/(γ − 1)vz) at t = 29.1 µs. At this time, the jet

head is at z ≈ 1.8 or 32 cm and jet radius is about r = 0.2 or 3.6 cm. The SI unit for energy
flux is W m−2.

dominated. However, at small radius where Bθ is small, kinetic and thermal flux are larger

than Poynting flux. The hydro shock in front of the jet carries a notable amount of kinetic

energy due to the fast expansion velocity.

2.3.1.3 Jet structure and the global magnetic field configuration

We have shown that a collimated jet automatically forms in the jet region when toroidal

field is injected into the engine region. We now examine the jet structure in the jet region.

Figure 2.9 plots the radial profiles of the plasma density, pressure, velocity and magnetic

field at z = 1.14 ⇒ 20.5 cm (15 cm above the zfoot plane) at different times. At 5.8 µs,

according to Fig. 2.5, a collimated jet structure has not yet formed, and the injection in the

engine region has caused little impact at z = 20.5 cm. As expected, the left three panels

of Fig. 2.9 reveal a low density (∼ 1019 m−3), low velocity, and very weakly magnetized

plasma structure. (Note that vertical scales for 5.82 µs and 29.1 µs are different in Fig. 2.9).

However, the negative radial velocity between 1 and 10 cm shows that the collimation has

already started at this time. At 29.1 µs, a collimated jet in steady-state is expected at
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z = 20.5 cm because the jet head has travelled beyond 20.5 cm according to Fig. 2.5. The

right three panels of Fig. 2.9 show that the entire radial profile can be divided into three

regions from small to large radii, namely the central column (jet, region A), the diffuse

pinch region (region B) and the return flux region (region C) (see also discussions of these

structures in Nakamura et al. (2006) [82] and Colgate et al. (2014) [23]).

Central column For r . 4− 5 cm, the central jet is characterized by a ∼ 1022 m−3 high

density, a ∼ 10 km s−1 quasi-uniform axial velocity and a ∼ 0.24 T axial magnetic field.

The radial velocity is zero, indicating that collimation is complete and a radially balanced

z-pinch configuration is maintained. The toroidal magnetic field gradually increases from

r = 0 to r ≈ 5 cm at a roughly constant slope, suggesting that the central jet is filled by a

roughly uniform current Jz. The zero Br additionally demonstrates that the magnetic field

is well confined inside the jet. At the jet boundary, density, pressure, axial magnetic field,

and current density drop rapidly and connect to the diffuse pinch region. Specifically, at

r = 5 cm, the plasma density is already less than 15% of the maximal density 1.14 × 1023

m−3 at r = 1.7 cm. The density dip at r = 0 results from the initial torus-shaped mass

distribution.

Diffuse pinch region For 5 cm. r . 12 cm, there is a relatively large region filled by low

density plasma (∼ 5× 1020 m−3) surrounding the central dense jet. The toroidal magnetic

field Bθ scales as r−0.96 ≈ 1/r in this region, showing that the poloidal current is almost

zero. Detailed calculation shows that 87% of total axial current IZ flows inside the central

column r < 5 cm, and another 13% of IZ exists in the 5 cm. r . 10 cm region. The

axial magnetic field Bz drops to zero with a steep scaling Bz ∼ r−5.5 from 5 cm to 8 cm,

and reverses polarity at r = 8.5 cm. The radial magnetic field Br is . 10−2 times weaker

than Bz and Bθ. This region has a relatively fast axial velocity and finite radial velocity.

However, because of the low density, the kinetic energy in this region is only 15% of the

toroidal magnetic energy in the same region, and is less than 10% of the central column

kinetic energy. Thus the diffuse pinch region is a toroidal magnetic field dominant region

with low Jz.

Return flux region Since the simulation starts with a complete global dipole magnetic

field, the poloidal flux, carried by the central jet, must return to the central plane at some
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Figure 2.10: Cross-sectional view of plasma properties at t = 0.5 or 29.1 µs. From left to
right: axial magnetic field Bz with poloidal field arrows, toroidal magnetic field Bθ with
poloidal field arrows, axial current Jz with poloidal current arrows, logarithm of Lorentz
force density with poloidal J × B arrows, logarithm of plasma β (ratio of thermal energy
density to magnetic energy density) distribution. In all panels, the length of each arrow is
proportional to the 1/5 power of the corresponding quantity at the location of arrow center.
For example, an arrow I with a half length of an arrow II means that the represented
quantity at arrow I is only 1/25 ∼ 3% of arrow II.

point. According to Fig. 2.5 and Fig. 2.7, all the upward flux frozen into the dense plasma

starts to return at the jet head. The return flux at z = 20.5 cm is found in the narrow 12

cm. r . 15 cm region and has a ∼ 0.04 T negative strength. The toroidal field sharply

decays to zero in this region as well, indicating the existence of a narrow return poloidal

current sheet. The Lorentz force acting on this current sheet repels this region away from

the central axis at a fast speed (vr ≈ 6 km s−1), and piles up and compress plasma in 15

cm. r . 18 cm and forms the T -shell shown in Fig. 2.5.

The return flux region transitions to the background plasma configuration through a

hydrodynamic shock at r ≈ 50−60 cm. At t = 29.2 µs, since the return flux region still has

higher density and pressure compared to the background, the unmagnetized shock expands

radially at a supersonic velocity of vs ≈ 6 km s−1 (sound speed Cs0 = 3.1 km s−1, see

Table 2.1). At very late time, when there is sufficient radial expansion, the density and

pressure in the return flux region are expected to be low enough so that the expansion will

become sonic. The entire jet structure is expected to transit to pressure confinement from

inertial confinement [82].

These radial profiles of the central jet confirm that the jet is highly magnetized and is

MHD-collimated. The cross-sectional view of various plasma properties in Fig. 2.10 further
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validate this point. By comparing Fig. 2.10 with Fig. 2.5, we find that the strong poloidal

field and current are both confined in the dense plasma region (central jet region and the

outer boundary of the return flux region). Poloidal field, current, and toroidal field have

been established from z = 0 to z = 1.8, same as the density and Poynting flux (Fig. 2.5 and

2.8).

Figure 2.10 shows that the poloidal current is approximately parallel to the poloidal

magnetic field in most of the region, especially in the central column, suggesting that the

Lorentz force is dominantly poloidal, because the toroidal Lorentz force Ftor = Jpol×Bpol ≈

0. This is consistent with the analysis given by Eq. 2.23. Detailed calculation finds that

Ftor in the simulation is generally one to three orders of magnitude smaller than Fpol. The

Lorentz force distribution panel shows that J×B is extremely strong at the jet boundary

especially at relatively low height. The Lorentz force at the jet boundary is radially inwards

due to the self-pinch of the poloidal current, and is responsible for the collimation. The

very large gradient of this pinching force along z direction ∂z[(J ×B)r], equivalent to the

gradient of toroidal magnetic energy ∂z(B
2
θ )r, collimates the plasma gradually from lower z

to higher z, and ultimately accelerates the plasma. This demonstrates the MHD pumping

mechanism in the current-driven plasma tube proposed by Bellan (2003) [4] and verified in

the Caltech plasma jet experiment [63, 126, 127]. Figure 2.10 also shows that the return

flux/current are expanding outwards under a relatively strong Lorentz force. It is notable

that at z > 0.7, where the jet has not been fully collimated, the poloidal field is being

compressed at very small radius, resulting in a radial outward Lorentz force.

The plasma β panel shows that the central jet has a typical β ≈ 10−1.5−10−1 (0.03−0.1),

consistent with the experiment (§ 1.2). Hence the jet is magnetically dominated. The β

value is even smaller in the diffuse pinch region, due to the low plasma density and relatively

strong toroidal magnetic field. The hydro shock has a very high β value since it is essentially

unmagnetized.

Figure 2.11 compares the magnetic structure of the simulation jet with the experimental

jet. The experimental measurements are obtained using the 1 MHz 20-channel MPA at

z = 15 cm from the electrode plane [95] in a typical argon jet experiment. The top panel

shows poloidal flux contours calculated from the MPA measurement from t = 15 µs to

t = 25 µs, during which times the MPA has effectively “scanned” approximately 15 cm

distance along the z direction in the moving frame of jet, although the MPA is fixed in the
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Figure 2.11: Top panel: poloidal magnetic field contours inferred from the MPA measure-
ments from t = 15 µs to t = 25 µs. Mid and Bottom panels: magnetic field in axial (heavy
solid curves) and azimuthal (dotted curves) direction measured in the experiment (mid
panel) and in the simulation (bottom panel). The experimental measurements (top two
panels) are obtained in argon jet experiment shot # 12780. This experiment jet remains
quasi-axisymmetric at t = 22 µs.

lab frame. The contours show that the magnetic field lines inside the jet (r . 5 cm) are

quite collimated. The middle panel plots the radial profiles of Bz and Bθ at t = 22 µs in

the experiment. The bottom panel gives the magnetic profiles in the simulation at z = 14.4

cm+zfoot at t = 24 µs. In both simulation and experiment, Bz is ' 0.2 T at the central

axis and reverses direction at r ≈ 7 cm; Bθ rises quasi-linearly for small r and peaks at

r = 5 cm. Hence Jz is approximately constant within the central jet. Despite the excellent

agreement in the central column region, it should be noted that the return current in the

experiment extends to a much larger radius, leaving the entire 5 cm< r < 30 cm region

devoid of current (Bθ ∝ 1/r). The return current in the simulation is at ≈ 8−15 cm, where
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Bθ deviates from the 1/r behavior and quickly becomes zero. The return magnetic flux in

the experiment, on the other hand, is located at ≈ 9−10 cm, very similar to the simulation.

The Bθ due to the axial current in the jet produces a radially outward Lorentz force at

the location of the return current. The expansion speed of the return current is determined

by the density of the return flux region (T -shell in Fig. 2.5) and the background pressure.

The density of the return flux region n ∼ 1021 m−3 (Fig. 2.5 and 2.9) is possibly too high

compared to the experiment, although the experiment does not have accurate measurements

of the low density plasma in the return current region. Also, the background pressure in

the experiment (10−7 torr ∼ 10−5 Pa for n ∼ 1015 m−3 and T = 300 K) is also much lower

than the simulation background pressure (p0 = 3.2 Pa for n = 1019 m−3 and T = 2 eV).

Numerical investigation has found that the return current extends to a larger radius for a

less dense T -shell or background. More discussion is given in § 2.4.3 and 2.6.

Figure 2.12 plots the 3D global magnetic field structure at t = 29.1 µs, which shows a

typical magnetic tower structure with upward flux along the jet and return flux surrounding

the jet. The upward flux is twisted relative to the return flux. Tracing each field line from

mid plane, the ratio Bθ/Bz is roughly constant along the central jet, and increases rapidly

near the jet head because Bz becomes zero at the turning point. Combining this figure

with Fig. 2.7 panel E & F, we find that at the jet head the poloidal field along the axis

can remain comparable to the toroidal field at the jet boundary, although for each field

line Bθ/Bz always increases. This is because the poloidal field and current do not bend

over and return to mid plane at exactly the same height and same radius, i.e., there is no

distinct jet head (also see § 2.3.1.2). Both Bz along the axis and Bθ at the jet boundary

decrease gradually in the jet head region, giving a relatively constant ratio between them.

The opening angles of the field lines shown in Fig. 2.12 are 5−6◦. Calculation shows that a

field line starting from r ∼ 0.2, essentially the boundary of the jet, has an opening angle of

11◦; a field line from r = 0.1 has an opening angle of 4◦. It is found in the simulation that

the opening angles become smaller as the toroidal field injection continuously accelerates

and collimates the jet.

2.3.1.4 Alfvén velocity and Alfvén surface

Spruit (2010) [106] categorizes the standard magnetocentrifugal acceleration model [14] into

three distinct regions: accretion disk, magnetic dominant region surrounding the central
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Figure 2.12: Left: 3D magnetic field structure of the simulation jet. The structure is
composed by two groups of field lines starting from mid plane at r = 0.12 (2.16 cm) and
r = 0.15 (2.7 cm). Each group contains four field lines azimuthally equally spaced starting
at same radius. Upper right: radial location of each fieldline at different height. Linear
regression within 0 ≤ z ≤ 1.2 gives ∆r/∆z = 0.043 with R2 = 0.981 for field lines starting
from r = 0.12, and ∆r/∆z = 0.055 with R2 = 0.980 for field lines starting from r = 0.15.
These correspond to opening angles θ = 2 arctan(∆r/∆z) = 4.9◦ and 6.3◦ for the two
groups of field lines, respectively. Mid right: Bθ/Bz along the field line from mid plane to
jet head. Lower right: the pitch of the magnetic field θ ≡ arctan(Bθ/Bz) in degree. In all
three subplots, the thick curves represent fieldlines starting from (r = 0.12, z = 0) and the
thin curves represent fieldlines from (r = 0.18, z = 0). The fieldlines are obtained at t = 0.5
or 29.1µs.

objects, and a distant kinetic dominant region. An Alfvén surface, on which the plasma

velocity equals the Alfvén velocity vA ≡ B/
√
µ0ρ, separates the magnetic dominant region

and kinetic dominant region, since the ratio of plasma velocity to Alfvén velocity, v/vA =

[(ρv2)/(B2/µ0)]1/2, is the square root of the ratio of kinetic energy to magnetic energy.

Figure 2.13 plots the distribution of dimensionless Alfvén velocity (top four panels) and

v/vA ratio (bottom four panels) in the rz plane at different times. The boundaries of the

central jet region and the diffuse pinch region are overlaid on the lower right panel. The

figure shows that vA is always high in the diffuse pinch region due to the low density and

strong toroidal field. In the central jet, vA remains roughly constant because of the quasi-
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constant density and magnetic field configuration. The high Alfvén velocity region increases

in volume together with the jet propagation.

The v/vA distribution plots show that the Alfvén surface, denoted by the innermost

v = vA contour curve, is also expanding. In the +z direction, the Alfvén surface propagates

from 0.5R0 = 9 cm at t = 11.6 µs to 1.5R0 = 27 cm at t = 29.1 µs at a speed of ≈ 10 km

s−1, similar to the jet propagation speed. Along the central axis, the v/vA ratio gradually

increases from� 1 at jet base to ∼ 1 at jet head, and becomes� 1 at the hydro shock which

has no magnetic field. According to Fig. 2.5, 2.7 and 2.10, the magnetic tower, wherein

dense plasma encloses strong axial magnetic field Bz and axial current Jz, is inside the

Alfvén surface. We point out here that the entire jet collimation and propagation dynamics

is an integrated process. It is inappropriate to characterize the jet as a hydrodynamic jet

or magnetized jet simply based on the local v/vA ratio, because the Alfvén surface is also

expanding. Although the kinetic energy of the global system extends beyond the Alfvén

surface in Fig. 2.13, the magnetic tower is still an MHD driven jet. Outside the Alfvén

surface, according to Fig. 2.7, both the poloidal and toroidal components of the magnetic

field decrease rapidly. The entire diffuse pinch region always has a relatively low v/vA ratio.

Outside the Alfvén surface, there is another vA = v contour expanding outwards, which

indicates the hydrodynamic shock. This is essentially the boundary of the entire large-scale

jet structure. Outside this structure, both v and vA are zero.

2.3.2 Bernoulli equation in MHD driven flow

We have shown in detail the process of jet collimation and propagation resulting from the

MHD mechanism. In § 2.3.1.2, we have demonstrated that the jet gains its kinetic energy

from magnetic energy; kinetic energy dominates near the jet head while magnetic energy

dominates near the jet base. This has been quantitatively verified in the experiment.

Assuming that the Lorentz force balances the thermal pressure gradient in the radial

direction, an axisymmetric model was proposed by Kumar & Bellan (2009) [61, 63] to study

the non-equilibrium steady-state flow along the axial direction. The model claims that a

Bernoulli-like quantity involving the toroidal magnetic energy remains constant along the

jet, i.e.,

∂

∂z

[
ρv2
z +

B2
θ,a

µ0

(
1− r2

2a2

)]
= 0, (2.31)
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The red curve at larger radius is the Jz = 0 contour, that separates the diffuse pinch region
and the return flux region.

where a is the jet radius and Bθ,a = µ0I/(2πa) is the toroidal field strength at the jet

boundary. Evaluating the expression at r = 0 gives

ρv2
z +

B2
θ,a

µ0
= ρv2

z +
µ0I

2

4πa2
= const, (2.32)

which is a Bernoulli-like equation. At z ∼ 0, the axial velocity vz ≈ 0 so the magnetic

energy dominates. At the jet head, Bθ,a ≈ 0 so the kinetic energy dominates. This is

consistent with the analysis in § 2.3.1.2. Evaluating Eq. 2.32 at z = 0 and at the jet head

yields

vz|jet head '
I

2πa

√
µ0

ρ

∣∣∣∣
z=0

∝ I
√
ρ
. (2.33)

Kumar & Bellan (2009) [61, 63] reported quantitative experimental measurements and

showed that the axial velocity of the MHD driven plasma jet is linearly proportional to the

poloidal current, and inversely proportional to the square root of the jet density. Therefore
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Figure 2.14: Jet velocity dependence in the simulation. Upper left: time-averaged total
poloidal current for different injection rate γbαt (asterisk symbols). Upper right: the av-
eraged jet velocity at different injection rate γbαt (plus symbols). Bottom: jet velocity vs.
total poloidal current (open circle symbols). The averaging period is the time the jet head
spends traveling from z = 30 cm to 60 cm. For each subplot, linear regression is performed
(dotted lines) and the results are presented as the title.

Eq. 2.33, a direct corollary of Eq. 2.31, has been verified by the experiment.

Equation 2.33 can be understood from a semi-quantitative analysis. Since the injected

Poynting flux or toroidal magnetic field energy will ultimately be used to accelerate the jet,

an energy equal-partition gives B2
θ ∼ ρv2

z . Hence vz ∼ Bθ/
√
ρ ∼ I/

√
ρ. Similar analysis

and scaling can also be found in [46, 74, 75, 118].

We now use the simulation to investigate this relation.

2.3.2.1 Jet velocity dependence on the poloidal current

We use the same initial conditions as in § 2.3.1, and the same localized toroidal field injection

with the localization factor A = 9. However, in order to control the total poloidal current, we

use constant injection rates γbαt throughout the simulation. Five simulations are performed

with different time-independent injection rates over a wide range: γbαt = 100, 150, 200, 250,

and 300. The average jet velocity is computed using the time the jet head takes to travel

from z = 30 cm to 60 cm (z = 1.67 to 3.33 in reduced units). Here we define the location
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of the jet head as being where the plasma density drops below 1021 m−3 along the z axis.

According to Fig. 2.5 and Fig. 2.7, this definition gives a sufficiently consistent estimation

of the jet head location. The total poloidal current is also averaged over the same period.

Figure 2.14 shows that both the jet velocity and the time-averaged total poloidal current

are proportional to the toroidal field injection rate γbαt. Thus the jet velocity is indeed

proportional to the poloidal current.

2.3.2.2 Jet velocity dependence on the jet density

Kumar & Bellan (2009) [61, 63] found that under the same experimental configuration, a

deuterium plasma jet always propagates at a speed = 0.73 ≈ 1/
√

2 times the speed of a

hydrogen plasma jet. Therefore vz ∝ 1/
√
µ ∼ 1/

√
ρ is verified. In the simulation, this

dependence is already incorporated by the normalization process in § 2.2.1. Note that the

simulation time unit is defined as

t0 ≡
R0

Cs0
∝ 1

Cs0
(2.34)

and

C2
s0 ∝

1

mi
∝ 1

µ
, µ ≡ mi

mH
, (2.35)

so the simulation time unit is proportional to
√
µ. Therefore the simulation velocity unit is

proportional to 1/
√
ρ.

Given that n ≈ 1022 m−3 and a ≈ 4 cm, Eq. 2.33 predicts vz/I '
√
µ0/ρ0/(2πa) = 0.244

m/(s·A) = 0.244 km·s−1/kA, which is consistent with the linear regression results given in

the bottom panel of Fig. 2.14.

2.3.2.3 A direct illustration of MHD Bernoulli equation

In fact, Eq. 2.31 can be easily verified directly by the simulation. Evaluating the equation

at the jet radius r = a gives

∂

∂z

(
ρv2
z +

B2
θ,a

2µ0

)
= 0⇒ (ek + eBtor/2)|jet radius = const, (2.36)

where the kinetic energy density is ek ≡ ρv2
z/2 and the toroidal magnetic field energy density

is eBtor ≡ B2
θ/2µ0.
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Figure 2.15: Top left panel: cross-sectional view of (ek + eBtor/2) energy density on the
xz plane (y = 0) from 17.4 µs to 34.9 µs. Top right panel: cross-sectional view of density
distribution (log scale) at the same times as used for the plots in the top panel. Azimuthally
averaged poloidal flux contours are overlaid. Note that the jet radius to length ratio has
dropped to ∼ 1 : 20 at t = 34.9 µs. Bottom panel: (ek + eBtor/2) at r = 2.88 cm along the
z direction at different times. The plots are generated from the γbαt = 200 simulation in
§ 2.3.2.1.
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We choose the γbαt = 200 simulation presented in § 2.3.2.1 and plot the 1D profile of

(ek + eBtor/2) along the jet radius and the cross-sectional 2D view of (ek + eBtor/2) and

density/flux in Fig. 2.15. The three plots directly illustrate that at any given time after jet

collimation is completed, (ek + eBtor/2) is constant on the boundary of a magnetic tower

jet through the entire jet body.

Having cross-checked the jet velocity dependence on poloidal current and density using

experiments, simulation, and analytical theory, and also demonstrated that Eq. 2.36 holds

along the jet in the simulation, we conclude that Eq. 2.33, and more generally, the MHD

Bernoulli Eq. 2.31 are true for magnetic tower jets, such as the Caltech experimental plasma

jet and possibly actual astrophysical jets.

2.4 Sensitivity to imposed simulation conditions

The numerical simulations presented in § 2.3.1 are based on a number of imposed conditions,

including initial mass distribution, background pressure, initial poloidal field, toroidal field

injection rate and toroidal field injection volume (factor A). As discussed in § 2.2, the initial

poloidal field flux and toroidal field injection rate are selected strictly on the experiment

properties. The initial mass distribution in simulation is similar to the real experiment case.

We now examine how our key conclusions depend on these imposed conditions.

We perform another eight simulations with exactly the same conditions as the simulation

presented in § 2.3.1 (referred as the “original” simulation or simulation A in the following

discussion), except for one different condition. The density distribution and poloidal field

configuration at t = 29.1 µs of these eight simulations are plotted in Fig. 2.16 together with

the original simulation.

2.4.1 Background condition

The original simulation has a background plasma particle number density nbackground = 1,

or 1019 m−3, about 103 − 104 times less dense than the central jet (Fig. 2.16A). In the

experiment, this number is 107 − 108. However, as long as the background density is

significantly lower than the plasma of interest, the dynamics of the central jet should not

be affected.

This is verified by simulation B and C, which have nbackground = 0.1 and 10, respectively.
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Figure 2.16: Cross-sectional view of density distribution (color map) and azimuthally-
averaged poloidal flux contours (white curves) in xz plane (z > 0) at t = 0.5 (29.1 µs) of
nine simulations with different conditions. Each plot is formatted the same way as Fig. 2.5
except the density range is from 1018 m−3 to 1023 m−3. A: the original simulation described
in § 2.3.1 with initial mass distribution ninit = nbackground + 4000e−l

2
e−40[(r−1/2)2+z2−1/4]2 ,

background density nbackground = 1 (corresponding to 1019 m−3), injection factor A = 9,
and total poloidal flux factor αp = 10 (corresponding to a total flux 1.59 mWb). Panel
B-I show simulations with same conditions as simulation A except with only one dif-
ferent condition. B: simulation with initial background density nbackground = 0.1 (1018

m−3), 10 times lower than simulation A. C: simulation with initial background density
nbackground = 10 (1020 m−3), 10 times denser than simulation A. D: simulation with in-
jection factor A = 3. E: simulation with injection factor A = 6. F: simulation with
initial mass distribution ninit = 1 + 4000e−2l2 . G: simulation with initial mass distribution
ninit = 1+4000e−l

2
e−100(Ψpol(r,z)−Ψ0)2 . H: simulation with initial poloidal flux factor αp = 5

(corresponding to a total flux 0.79 mWb, 50% of simulation A). I: simulation with initial
poloidal flux factor αp = 20 (corresponding to a total flux 3.17 mWb, twice of simulation
A). The injection rates γbαt of simulation H and I are adjusted correspondingly so that the
effective toroidal injection rate γbαtαp of these two simulations are the same with simulation
A. Panel A-G are overlaid by poloidal flux contours from 0.2 mWb to 1.4 mWb every 0.4
mWb. Panel H has contours from 0.1 to 0.7 mWb every 0.2 mWb; Panel I has contours
from 0.4 mWb to 2.8 mWb every 0.8 mWb.
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Comparing A, B and C, they show no difference in the central jet and the vicinity. The

hydro shock and return flux at very large radii, however, are indeed affected by the different

background conditions. Consistent with the discussion in § 2.2.2.2, § 2.3.1.2, and § 2.3.1.3,

a lower background pressure imposes a weaker restriction to the expansion of the system.

In an astrophysics situation, the density difference between the central jet and ambi-

ent environment (ISM/IGM) is expected to be less than in the experiment and the shock

structure and the return flux are expected to be somewhat different. With a significant

background pressure, the expansion of return flux and current can be highly constrained.

If the return flux and current are sufficiently near the center jet, they can influence the jet

stability properties. This is similar to how a conducting wall surrounding a current-carrying

plasma tube can prevent the plasma against from developing a kink instability.

2.4.2 Toroidal field injection condition

The toroidal field injection condition is subjected to two major possible variations: injection

rate and injection volume.

The injection rate affects the total poloidal current and therefore affects the jet velocity

according to Eq. 2.33. In § 2.3.2, we have addressed this issue by performing five simulations

with different injection rates. Figure 2.14 shows that jet velocity is proportional to the

toroidal injection rate.

Injection volume is determined by the injection factor A (§ 2.2.3.1). We already pointed

out that the factor A does not alter the total poloidal current associated with the toroidal

field. Simulation D and E shown in Fig. 2.16 are performed with A = 3 and A = 6,

respectively. At z = 1, the factor e−Az
2

= 0.05, 2.5 × 10−3, and 1.2 × 10−4 for A = 3

(D), 6 (E), and 9 (A), respectively. Even with such enormous differences, the plasmas in

simulation A, D, and E evolve in very similar ways. This is because the injected toroidal

field is able to emerge into the propagating jet rapidly, no matter where the field is initially

injected (see also in Fig. 2.7, 2.8 and 2.10).

A notable difference for different A factors is the behavior of the hydro shock and

remote return flux. This is because toroidal injection with a smaller A gives larger direct

field injection at larger distance and low density region, and therefore gives rise to a faster

expanding shock and return flux.

The A factor determines the thickness of the effective engine region. In the experiment
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and astrophysics cases, the engine region is expected to be limited to the electrodes or the

vicinity of central objects. Ideally, a toroidal injection with a larger A factor provides better

approximation to the real cases. However, the A factor has little effect on the dynamics of

the central jet.

2.4.3 Initial mass distribution

As shown in § 2.3.1 and § 2.3.2, the jet is created as a result of a gradient along the z

direction of the pressure associated with the toroidal magnetic field. Therefore the initial

mass distribution should not be crucial in the jet dynamics.

Simulation F adopts a very different initial mass distribution ninit = 1 + 4000e−2l2 ,

where l2 = r2 + z2. A central jet is created with a similar radius and slower speed. Further

investigation shows that the well-collimated portion extends from z ≈ 0.8 to 1.1 in the next

6 µs. The return flux manages to expand further because of the relative low density at large

radii initially. The general jet behaviors are consistent with simulation A.

Simulation G takes an initial mass distribution very similar to the real experiment case,

ninit = 1 + 4000e−l
2
e−δ(Ψpol(r,z)−Ψ0)2 with δ = 100 (see § 2.2.2.2). The central region is

initially filled with low density plasma. In the experiment, fast magnetic reconnection

allows the magnetic field to diffuse into the center along with the plasma. However, in ideal

MHD theory, reconnection is forbidden. As shown in panel G of Fig. 2.16, a hollow jet is

eventually formed. The axis magnetic field is stronger along the axis than simulation A,

because there is no dense plasma in the center helping the poloidal flux against compression

of the toroidal pinch. Because the plasma is initially distributed parallel to the poloidal

field, simulation G shows a better alignment between plasma and poloidal flux compared

to simulation A.

Although the detailed form of initial mass distribution does not significantly affect the

formation of the central magnetic tower jet, it can at later times impact the density distri-

bution at larger radius, such as return flux region, and therefore can potentially influence

the expansion of the return current. Three additional simulations A2, A3, and A4 are per-

formed which are the same as simulation A (original one) except that there is less dense

plasma at either larger radius or larger height. Table 2.2 lists the detailed function of initial

mass distribution and the location of return current at z = 20 cm for each simulation. Max

Bθ in Table 2.2 is the toroidal field strength at the central jet surface. The return flux region



63

Table 2.2: Location of return current of simulations with different initial density distri-
bution at z = 20 cm at t = 24.4 µs for simulation A, B A2-A4 and t = 27.9 µ for
simulation F. Function f(r, z) = e−40[(r−1/2)2+z2−1/4]2 . RJz=0 is the radius where axial
current changes sign and R̄Jz<0 is the averaged location of the return current, defined as
R̄Jz<0 ≡ (

∑
r|Jz|2)/(

∑
|Jz|2) for all negative Jz. The numbers for simulation F are ob-

tained at t = 27.9 µs when the jet has a similar height as other simulation jet at t = 24.4
µs (see Fig. 15 panel A and F).

Simulation initial mass distribution max Bθ (T) RJz=0 (cm) R̄Jz<0 (cm)

A 1 + 4000f(r, z)e−r
2−z2 0.119 7.3 11.7

B 0.1 + 4000f(r, z)e−r
2−z2 0.107 8.3 11.9

F 1 + 4000e−2r2−2z2 0.083 9.8 22.6

A2 1 + 4000f(r, z)e−r
2−4z2 0.123 9.2 16.5

A3 1 + 4000f(r, z)e−2r2−z2 0.091 9.0 14.5

A4 1 + 4000f(r, z)e−2r2−4z2 0.100 10.5 21.6

(T -shell) of A2-A4 is less dense than that of simulation A. This is because initially there

was less dense plasma at larger radius or height. As expected, the return current of A2-A4

expands faster than does simulation A. With a lower background pressure, simulation B

also has a faster expanding return current than A does.

It is found that all these simulations produce similar magnetic/kinetic profiles in the

central region, although their return current profiles differ significantly. This is because,

according to Ampere’s Law, there is no magnetic field generated by the return current at the

central jet location. In both the simulation and experiment, there is no boundary condition

constraining the radius of zero net current and hence the return current radius can expand

from the MHD force. The return flux region of simulation A expands at speed vr ≈ vz ≈ 6

km s−1 at t = 29.1 µs (Fig. 2.9). This is comparable with the Alfvén velocity VA ∼ 15 km

s−1 in the diffuse pinch region between the central jet and the return flux/current.

2.4.4 Initial poloidal flux

Compression of the poloidal flux tends to oppose the pinching force of the toroidal field.

Simulation H and I verify this with 50% and 200% initial poloidal flux compared to simu-

lation A. Panel H and I of Fig. 2.16 show that with less poloidal flux, the jet has a smaller
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radius and propagates faster; with doubled poloidal flux, on the other hand, the plasma

struggles to compress the poloidal field, resulting in a much wider and slower jet.

In non-axisymmetric situations, the poloidal flux is expected to impact the stability

properties of the current-conducting jet. Experiment investigation involving changing the

ratio between poloidal current and poloidal flux, known as “gun parameter”, shows that

the jet undergoes MHD kink instability when the classical Kruskal-Shafranov threshold is

satisfied [49, 50].

In summary, we have shown here how different conditions affect the simulation results.

The conditions that directly determine the jet dynamics, such as initial poloidal flux and

toroidal injection rate, are selected strictly from the actual experiment conditions. Those

conditions that only affect the dynamics of return flux and the hydro shock, such as back-

ground pressure, initial mass distribution and toroidal injection volume, can be subject to

relatively large variations without significantly influencing the jet dynamics.

2.5 Preliminary results on kink instability

The numerical studies so far in this chapter are only focused on the axisymmetric behaviors

of the plasma jet including collimation and propagation. The 3D numerical simulation,

however, is capable of studying non-axisymmetric behavior.

In the experiment, due to the inevitably imperfect laboratory condition, the plasma

gains enough non-axisymmetric perturbations as seeds that later lead to kink instability.

On the other hand, an artificial perturbation must be introduced in the simulation in order

to excite non-axisymmetric behaviors. In addition to the initial mass distribution Eq. 2.12,

we add a small and localized perturbation

nperturb ∝ e−16r2 · e−5[r−rpert(z)]2 · e−2z2 , (2.37)

where rpert(z) = 0.15[cos(15z)x̂+ sin(15z)ŷ]. Figure 2.17 presents the results of a hydrogen

jet simulation (see Table 2.1) with the perturbed mass distribution. It is seen that the

perturbation is small at t = 0 and t = 6 µs. However, a notable m = −1 kink instability is

developed at t = 10 µs with a jet-center displacement ≈ 4 cm at z ≈ 9 cm. The frozen-in

poloidal magnetic field and current are also kinked.
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Figure 2.17: A hydrogen jet simulation with perturbed initial mass distribution (Eq. 2.37).
Top three panels: three snapshots of the cross-sectional view of plasma density (in unit of
1019 m−3) overlaid by poloidal magnetic field arrows. Lower left panel: Bz distribution (in
unit of 0.002 T) overlaid by poloidal magnetic field arrows at t = 10 µs. Lower middle
panel: Jz distribution (in unit of 8.87 kA/m2) overlaid by poloidal current arrows at t = 10
µs. Lower right panel: brightness of the jet obtained by line-of-sight integration of density
squares (see Fig. 2.6). Simulation run# 163.

The simulation shown in Fig. 2.17 (run#163) has a total poloidal current I = 66 kA at

t = 6 µs. In a different simulation (run#164), we choose a larger toroidal field injection rate

so that the total poloidal current is I = 80 kA at t = 6 µs. The simulation jet undergoes a

faster growing kink instability with the lateral jet-center displacement ≈ 6 cm at t = 6 µs

(left panel of Fig. 2.18). In simulation run #165, an even larger toroidal field injection rate

is selected to give a total poloidal current I = 150 kA and a jet-center displacement ≈ 15

cm at t = 6 µs (right panel of Fig. 2.18). The fact that larger polodial current gives faster

growing kink instability is consistent with theory (see Eq. 3.69 in Chapter 3).

Preliminary analysis of the simulation kink instability shows that the kink amplitude

(jet-center displacement) grows linearly with time. This is different from the lab experiment

where kink instability grows exponentially fast and gives an equivalent gravity that drives a

secondary Rayleigh-Taylor instability. The simulation, on the other hand, shows no sign of



66

Run 164 
t=6 µs

Run 165 
t=6 µs

z/
(1

8 
cm

)

x/(18 cm) x/(18 cm)

n/(1019 m-3) color map and poloidal field arrows 

Figure 2.18: Cross-sectional view of plasma density (in unit of 1019 m−3) at t = 6 µs of two
hydrogen simulation runs #164 (left) and #165 (right). The two simulations have different
toroidal flux injection rates so that the total poloidal currents at t = 6 µs are I = 80 kA
(left) and I = 150 kA (right), respectively.

Rayleigh-Taylor instability. A possible explanation to the discrepancy is the different back-

ground condition of the simulation jet compared to the experiment jet. In the experiment,

the background is a 1015 m−3 room-temperature neutral gas (or very weakly ionized gas).

In the simulation, however, due to the limitation of numerical computation, we choose a

ne = 1019 m−3, fully ionized 2 eV plasma as the background. As discussed in § 2.4 and

Fig. 2.16, the relatively high-pressure background in the simulation significantly slows down

the expansion of the return current. Meanwhile, the expansion of the kink instability is also

expected to be restricted by the dense background plasma.

2.6 Summary and discussion

We have presented MHD numerical simulations of the Caltech plasma jet experiment using

a magnetic tower model similar to Li et al. (2006) [68]. By having a purely toroidal magnetic

injection localized around the z = 0 plane, the simulation jet gains energy and helicity in a

manner analogous to the electrode-driven experimental jet, or to astrophysical jets driven

by accretion disks. In the simulation, the injected toroidal field near z = 0 is efficiently

carried through the jet and is responsible for generating the pinch force that collimates both

the plasma and the embedded poloidal magnetic field. The gradient of the collimation force

along the jet boundary, or equivalently, the gradient of toroidal magnetic field energy in the

z direction, is responsible for accelerating the jet. Magnetic to kinetic energy conversion is
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verified in the simulation along with the experiment.

The simulation jet agrees quantitatively with the experimental jet in numerous ways,

including the energy partition/evolution, current/voltage, jet radius, axial profile, magnetic

field structure, and jet velocity scaling. Furthermore, by using the unit systems given in

Table 2.1, the simulation results can easily be made dimensionless and then converted to

astrophysical scales.

One of the most significant outcomes of this simulation work is the validation of using

terrestrial laboratory experiments to study astrophysical jets. Although it is not feasible to

experimentally reproduce every single aspect of an astrophysical jet, by careful experiment

design it is possible to replicate many of the most important mechanisms that govern the jet

dynamics. Also, the experimental investigation shares common advantages with the numer-

ical simulation such as reproducibility, freedom in parameter space and possibility of in-situ

measurement. This chapter suggests that combining observation, theoretical modeling, and

laboratory experiments helps understand the nature of magnetically driven plasma flows.

We emphasize here that the simulation does not prove that the experimental jets are

exactly the same as astrophysical jets. Neither the simulation nor the experiment is expected

to reproduce every detail of a theoretical model or an astrophysical jet. However, the fact

that an astrophysical magnetic tower model can be used to simulate laboratory experiments

suggests that the experiment shares several important similarities with astrophysical jets,

such as the collimation and propagation mechanisms. Furthermore consideration of any

discrepancies between experiment and simulation help understand the underlying physics.

In both the experiment and simulation, there is no boundary condition or other re-

striction on the expansion of the return current/flux. The return current/flux expands

at a velocity comparable to Alfvénic velocity but the dynamics of the central magnetic

tower jet is not influenced by the return current/flux. In astrophysical situations where the

background pressure is important [69, 74], free expansion of the return current/flux can be

inhibited, resulting in a small or null diffuse pinch region, i.e., the return current/flux could

be snugly on the surface of the central jet [83, 100]. In this situation, most of the toroidal

field energy is inside the central jet so the jet is expected to be more efficiently collimated

and accelerated for a fixed amount of toroidal energy. Meanwhile, an extremely dense return

flux region closed to the jet could act like a wall that would stabilize the central jet.

The simulation presented in this chapter mainly addresses jet launching and accelera-
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tion mechanisms, i.e., jet collimation, propagation and energy conversion, and considers only

axisymmetric dynamics. No asymmetric perturbation is introduced initially or during the

simulation. The simulation jets, theoretically vulnerable to kink instability, remain quasi-

axisymmetric and stable. However, preliminary investigation has been able to produce slow

rising kink instability in the simulation, by using a perturbed initial mass distribution. In

the experiment, due to the inevitable imperfectly symmetric laboratory conditions, the jet

always undergoes kink instability when the classic Kruskal-Shafranov condition is satisfied

[49, 50]. In some cases when the kinked plasma grows exponentially fast and accelerates

away from the central axis, a lateral Rayleigh-Taylor instability is induced on the inner

boundary of the jet. The Rayleigh-Taylor instability further induces a fast magnetic re-

connection that breaks the jet in the middle, and removes some magnetized jet segment

from the electrode-attached jet segment [80]. Astrophysical jets in a similar situation, e.g.,

kink instability or other lateral acceleration, might also be susceptible to this secondary

instability. An analytical theory of this Rayleigh-Taylor instability is given in Chapter 3.
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Plasma Science. Co-author H. L. is grateful to Stirling Colgate, Ken Fowler, and Ellen

Zweibel for discussions. Co-authors H. L. and S. L. are supported by the LANL/LDRD

and Institutional Computing Programs at LANL and by DOE/Office of Fusion Energy

Science through CMSO.
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Chapter 3

A Hybrid
Rayleigh-Taylor-Current-Driven
Coupled Instability in an MHD
Collimated Cylindrical Plasma
with Lateral Gravity

We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically

confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor

instability is found to couple to the classic current-driven instability, resulting in a new type

of hybrid instability that grows faster than either of the two instabilities individually. The

lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes to-

gether. The coupled instability, produced by combination of helical magnetic field, curvature

of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic

magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. The

theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech

plasma jet experiment [80]. Potential applications of the theory include magnetic controlled

fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and

astrophysical plasma processes.

Primary part of this chapter has been submitted to Physics of plasmas.



70

Heavy fluid

Light fluid

gravity

Figure 3.1: Sketch of Rayleigh-Taylor instability. Left: equilibrium state where a heavier
fluid is above a lighter fluid. Right: once ripples are developed on the interface, the total
gravitational potential energy of the system decreases, and the disturbance to the system
is unstable. The black arrows indicate the moving direction of the perturbed surface.

3.1 Introduction

Rayleigh-Taylor (RT) instability is a well-known hydrodynamic instability occurring when

a gravitational field points from a high density fluid to a low density fluid [5, 18, 99]. A

simple graph explanation of the Rayleigh-Taylor instability is given in Figure 3.1.

In the case that the low density fluid is vacuum and the interface is planar, the growth

rate of the one-dimensional (1D) RT instability is

γ =
√
gk, (3.1)

where g is the gravity and k is the spatial wavenumber of the perturbation on the interface.

The instability grows as exp(γt) in early time when the disturbance caused by the instability

is small so that linear stability analysis is valid. The RT instability prefers small scale

perturbations because larger k gives faster growth rate. Equation 3.1 results from assuming

incompressible fluid with no surface tension. It is known that finite compressibility can

stabilize long wavelength perturbations (small k) while surface tension suppresses short

wavelength (large k) perturbations [99]. At later times the RT instability is well known to

develop bubble and finger-like structures that further undergo Kevin-Helmholtz instability.

The RT instability in a magnetized plasma was first considered by Kruskal and

Schwarzschild [59]. For a plasma ‘sitting’ above vacuum with a magnetic field parallel to
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the planar interface, magnetohydrodynamic (MHD) theory shows that the growth rate of

this two-dimensional (2D) magnetic Rayleigh-Taylor (MRT) instability is

γ2 = gk − (k ·B0)2

µ0ρ
, (3.2)

where B0 is the unperturbed magnetic field, k is the perturbation wavevector, and ρ is

the density of the plasma [5, 18, 59]. It is seen that finite k ·B0 reduces the growth rate.

Because the instability phase is ik · x, the wavevector k is perpendicular to the direction

of constant phase. This means that for perturbations that try to bend magnetic field lines,

i.e., k not perpendicular to B0, the magnetic field has a stabilizing effect. Moreover, along

the magnetic field, perturbations with k > µ0ρg/B
2
0 are completely suppressed, as a result

of tension along the magnetic field lines (see § 1.1.1). Such a perturbation, especially for

k ‖ B0, is usually called an undular mode. For a perturbation with k ⊥ B0, sometimes

called the interchange mode, the instability is identical to the hydrodynamic case. However,

finite shear in the magnetic field can make a perturbation impossible to align with mag-

netic field at all depths, and thus helps to stabilize the system [5]. The highly anisotropic

nature of the MRT instability has motivated efforts to study its nonlinear behavior using

three-dimensional (3D) numerical simulations. It is found that at later times a strong mag-

netic field may even enhance the growth of bubbles and fingers in comparison to a purely

hydrodynamic instability [110].

The RT and MRT instabilities occur in various situations and the ‘gravity’ g can orig-

inate from different sources. In astrophysical situations such as accretion processes and

supernovae remnants, the RT instability happens due to the centripetal gravity from the

central object [110]. The interfaces are cylindrical or spherical surfaces. Magnetic implosion

of metal liner or Z-pinch plasmas are subject to the MRT instability on the cylindrical inter-

face with the effective gravity caused by radial acceleration of the interface [44, 78, 90, 92].

In laser-based inertial confinement fusion and laser-produced plasma experiments, the RT

instability happens when the ablation fronts are accelerated by laser irradiation [11, 112].

The Parker instability or magnetic buoyancy instability can occur when a horizontal mag-

netic field increasing with depth supports heavier gas on top [2, 51, 88]. This instability

shares the same physics as the MRT instability. In space plasmas and magnetic confine-

ment, a concept of “bad” curvature or “good” curvature of magnetic field is also related to



72

the MRT instability. This is because curved magnetic field lines can introduce an effective

gravity to the plasma, as a result of centrifugal force resulting from guiding center motion

along curved field lines [5]. In magnetic confinement devices and space plasma, when a pres-

sure gradient exists at a location where the magnetic field has an unfavored curvature, the

configuration is RT unstable, and gives rise to the ballooning mode [25, 41, 120]. These RT

and MRT processes, despite their diverse geometries and causes, share a common feature

that the (effective) gravity g is perpendicular to the interface. In this sense, the interfaces

can be approximately treated as planar.

A recently lab experiment by Moser & Bellan showed a Rayleigh-Taylor instability

developed on one side of an argon plasma jet [80]. In the experiment, a plasma jet is created

and collimated to uniform radius of 3− 5 cm by MHD forces. The cylindrical jet carries a

strong axial magnetic field of 0.2 T and a large axial current of 50− 80 kA, so the magnetic

field is in a typical flux rope configuration [63, 126, 130]. When the jet is sufficiently long,

it undergoes an m = −1 kink instability [49]. The kinked plasma grows exponentially fast

and accelerates laterally away from the original central jet axis. In the plasma frame, an

equivalent gravity is created due to the acceleration, pointing laterally from the plasma,

which is a heavy gas, to the center axis, which is now vacuum. The lateral acceleration of

the argon jet is measured to be g = 4×1010 m/s2. See the left panel of Fig. 3.2 for a typical

RT instability of a kinked argon jet. A Rayleigh-Taylor instability is induced on the inner

boundary of the kinked jet, with an axial wavelength λz ∼ 1− 2 cm and an initial growth

rate γ ∼ 106 s−1. The RT instability quickly erodes and breaks the jet structure, leading to

fast magnetic reconnection [80]. Hydrogen plasmas are found to develop kink instability in

a very similar manner, but no distinct RT instability has been observed for hydrogen jets

with g ∼ 1010 m/s2; RT instabilities with axial wavelength λz = 3− 5 cm are observed only

in some rare shots with strong lateral acceleration g = 1011 − 3× 1011 m/s2. We name the

two cases as type I and type II hydrogen jets, respectively. The right two panels of Fig. 3.2

display the two types of hydrogen jets.

These RT instabilities on one side of a magnetized cylindrical flux rope is interesting

because it involves a complicated magnetic structure, a curved interface, and a lateral

gravity that is not aways perpendicular to the interface. A sketch of the configuration

is given in Fig. 3.3. In a naive attempt we can assume locally the interface is a flat 2D

plane. At the bottom of the rope the interface is susceptible to the interchange mode
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Figure 3.2: Left: a kinked argon jet developing RT instability on the inner side of the
surface with lateral acceleration g = 4×1010 m/s2 (shot#13247, t = 32 µs). Middle: a type
I hydrogen jet with g = 3×1010 m/s2 but no RT, (shot#11596, t = 11 µs). Right: a type II
hydrogen jet with g = 1.5×1011 m/s2 having λz = 4 cm RT instability (shot#11754, t = 9.7
µs). Images are taken by an IMACON 200 high speed camera in visible light (§ 1.2.2.1).
Magnetic field measurements show that actual radii of the jets (flux ropes) are 3-5 cm,
larger than shown in the visible images [130].

of RT instability, analogous to 2D magnetic RT theory. The growth rate of such mode

is γ =
√

2πg/λz = 5 × 106 s−1, which is very close to the observation. However, it is

questionable whether this interchange mode can exist at other parts of the interface. At the

top, the gravity is pointing from vacuum to plasma and hence stabilizes the perturbation;

at other locations the gravity is oblique to the interface. The oversimplified local 2D theory

is therefore mathematically incompatible with the real case where lateral gravity is applied

to cylindrical interface. Moreover, it is also not clear why λz = 1 cm is selected by the

instability in argon plasma and why RT does not occur in type I hydrogen jets under the

same lateral gravity.

Lateral RT instability in cylindrical geometry was previously considered in geophysics

applications of diapir formation and spacing on a rising cylinder of buoyant hydrodynamic

fluid [57]. References [71, 72] show theoretically that the RT instability in cylindrical geom-

etry differs significantly from the stability results for 1D or 2D planar interfaces, and that

it is fundamentally incorrect to assume that results from planar geometry may be applied

to cylindrical configurations.

It is therefore necessary to theoretically consider the lateral RT problem in a more rig-

orous way. In this chapter we use linear stability analysis to develop an ideal MHD theory

of Rayleigh-Taylor instability occurring on the surface of a magnetically collimated plasma-

filled flux rope in vacuum with the presence of a gravity perpendicular to the plasma axis.
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We linearly perturb an equilibrium flux rope and decompose the perturbation into a sum-

mation over all azimuthal modes. The perturbation is assumed to be incompressible. It is

found that the lateral gravity breaks the axisymmetry of the system, and consequentially

couples all the azimuthal modes to each other. This mutual coupling of all the modes is

converted to an eigenvalue problem where an eigenvector gives the amplitude of each az-

imuthal mode of an ‘eigen-perturbation’ and the corresponding eigenvalue gives the growth

rate of this eigen-perturbation. A parameter Φ2 = gR/v2
Aθ quantifies the relative impor-

tance of gravity versus azimuthal (toroidal) magnetic field, where R is the flux rope radius

and vAθ = Bθ/
√
µ0ρ is the toroidal Alfvén speed on the plasma surface. In the weak gravity

limit, i.e., Φ2 � 1, different azimuthal modes are decoupled and the theory reduces to the

classic current-driven instability (m = −1 kink instability). In the weak magnetic field

limit, i.e., Φ2 � 1, the theory reduces to the 1D hydrodynamic RT instability (Eq. 3.1) or

MRT instability (Eq. 3.2). When both gravity and magnetic field are important, i.e, Φ2 is

of order of unity, the traditional Rayleigh-Taylor instability is coupled to the current-driven

instability. This new hybrid instability, denoted as lateral Rayleigh-Taylor-Current-Driven

(RT-CD) coupled instability, exhibits interesting features such as an intrinsic 3D geometry

and quasi-paramagnetic properties that cannot be fully explained solely by either of the

traditional instabilities. It is found that extremely small scale perturbations are suppressed

and an optimal axial wavelength exists that gives the fastest growth rate. The theory suc-

cessfully explains the Caltech experiments: in the argon plasma jet configuration, the theory

predicts a coupled RT-CD instability with a λz = 1.2 cm and growth rate γ = 3.6 × 106

s−1; for the type I hydrogen jets, the theory shows only kink instability; for the type II

hydrogen jets, the theory shows some RT effect with a λz ∼ 5 cm.

This chapter is arranged as follows. In § 3.2 we state the basic MHD equations and

provide an equilibrium solution before perturbation. In § 3.3 we linearly perturb the equi-

librium state and use the ideal MHD frozen-in flux condition to connect perturbations inside

and outside the plasma. § 3.4 converts the partial differential equations to an eigenvalue

problem of infinitely large matrices. In § 3.5 we solve the eigenvalue problem analytically

and numerically and compare the results with the lab experiments. § 3.6 summarizes the

results and discusses other potential applications. In § 3.7 we provide some supportive

materials.
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g

Figure 3.3: A sketch of the plasma jet before RT instability. The jet axis is the z axis and
the effective gravity is in −ŷ direction (θ = 3π/2).

3.2 Equations and equilibrium state

In this chapter we will primarily use cylindrical coordinates but will also use Cartesian

coordinates from time to time. The two coordinate systems share a common z axis; the x

and y axes of the Cartesian coordinates have respective azimuthal angles θ = 0 and π/2 in

the cylindrical coordinates. See Fig. 3.3 for a sketch of the configuration.

Consider an ideal MHD plasma in the presence of a lateral gravity field in the −y

direction. The MHD equations are

∂ρ

∂t
+∇ · (ρU) = 0 (3.3)

ρ

(
∂U

∂t
+ U · ∇U

)
=

1

µ0
B · ∇B−∇ B2

2µ0
−∇P − ρgŷ (3.4)

∂B

∂t
= ∇× (U×B), (3.5)

where all variables have their conventional meaning. The induction equation Eq. 3.5 is

equivalent to the ideal MHD frozen-in flux condition, i.e., the magnetic field is frozen into

the plasma frame and moves together with the plasma (see § 1.1.2). In Eq. 3.4 the Lorentz
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force J×B has been split into a tension-like term and a pressure-like term (see § 1.1.1).

We consider an infinitely long cylindrical plasma which in equilibrium has radius R and

uniform B0z inside and outside. The plasma density is uniformly ρP inside the cylinder. To

reduce complexity, we assume all current is confined to the surface of the cylinder. Therefore

B0θ = 0 inside the plasma. B0z is continuous across the surface, hence J0θ = 0. Here the

subscript 0 refers to equilibrium quantities. Outside the plasma is vacuum. Therefore the

density profile in equilibrium is ρ0 = ρp ·H(r−R), where H(x) is the Heaviside step function:

H(x) = 0 for x < 0 and H(x) = 1 for x > 0.

In equilibrium, U0 = 0 and so Eqs. 3.3-3.5 reduce to

−∇
(
P0 +

B2
0

2µ0
+ ρ0gy

)
+

1

µ0
B0 · ∇B0 = 0. (3.6)

The equilibrium magnetic field is assumed to be azimuthally uniform. The equilibrium

magnetic field and current are B0r = 0, B0 = B0z ẑ + B0θθ̂, and J0 = J0z ẑ. Since B0z is

spatially uniform and θ, z are ignorable coordinates,

B0 · ∇B0 = B0θθ̂ · ∇(B0θθ̂) = B2
0θθ̂ · ∇θ̂ = −

B2
0θ

r
r̂. (3.7)

Equation 3.6 then becomes

−∇
(
P0 +

B2
0θ +B2

0z

2µ0
+ ρ0gy

)
−
B2

0θ

µ0r
r̂ = 0. (3.8)

The radial component is

− ∂

∂r

(
P0 +

B2
0θ

2µ0
+ ρ0gy

)
−
B2

0θ

µ0r
= 0. (3.9)

Because the current is confined to the surface B2
0θ = 0 inside the plasma and the plasma

equilibrium has

P0 + ρpgy = const. (3.10)

We defined the constants

bz ≡ B0z bθ = B0θ(R+). (3.11)

The total axial current is denoted as I0 so bθ = µ0I0/2πR and B0θ = (bθR/r) ·H(r − R).
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Without loss of generality, we assume bz > 0 and I0 > 0 and hence bθ > 0. This gives a

right-hand helical magnetic field.

Integration of Eq. 3.9 across the interface gives

P0 + ρpgy =
b2θ

2µ0
=
µ0I

2
0

8πR
. (3.12)

The equilibrium solution is a simple Bennett pinch configuration with a lateral gravity

g = −gŷ and an axial current confined to the surface.

3.3 Perturbation and linearization

We now perturb the equilibrium state and use the subscript “1” to indicate the first

order perturbed quantities. Assume that all the perturbed quantities have dependence

∼ f(r)eγt+imθ+ikz, where γ is a complex number and m is an integer. Without loss of

generality, we assume k > 0. We consider an incompressible perturbation so that

∇ ·U1 = 0. (3.13)

The linearized versions of Eqs. 3.3-3.5 are

γρ1 + U1 · ∇ρ0 = 0 (3.14)

γρ0U1 = −∇
(
P1 +

B0 ·B1

µ0

)
+

B0 · ∇B1

µ0
+

B1 · ∇B0

µ0
− ρ1gŷ (3.15)

γB1 = ∇× (U1 ×B0). (3.16)

We normalize the magnetic field terms to bθ = B0θ(R+), i.e., B̄0 = B0/bθ and B̄1 = B1/bθ.

There are

ρ1 = −1

γ
U1 · ∇ρ0 = −1

γ
U1r

∂ρ0

∂r
(3.17)

γ
ρ0

ρp
U1 = −∇

(
P1

ρp
+
b2θ
ρp

B̄0 · B̄1

µ0

)
+
b2θ
ρp

B̄0 · ∇B̄1

µ0
+
b2θ
ρp

B̄1 · ∇B̄0

µ0

+
g

γρp
U1r

∂ρ0

∂r
ŷ (3.18)

γB̄1 = ∇× (U1 × B̄0). (3.19)
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The continuity Eq. 3.17 has been used to eliminate ρ1 in the momentum Eq. 3.18. The

constant 1/ρp has been multiplied on both sides of Eq. 3.18 where ρp is the density of

unperturbed plasma.

We define the toroidal Alfvén speed

vAθ =
bθ√
µ0ρp

(3.20)

and dimensionless parameters

Φ2 =
gR

v2
Aθ

α =
bz
bθ

Γ =
γ2R2

v2
Aθ

x = kR q = αx. (3.21)

The Alfvén speed vAθ, the parameter Φ2 and α are all determined by the equilibrium state.

α is the pitch angle of the helical magnetic field on the interface. Γ is the dimensionless

growth rate. q = αx = kRbz/bθ is the safety factor of the perturbation with x = kR.

We divide Eq. 3.18 by v2
Aθ to obtain

γ

v2
Aθ

ρ0

ρp
U1 = −∇P̄1 + B̄0 · ∇B̄1 + B̄1 · ∇B̄0 +

Φ2

γρpR
U1r

∂ρ0

∂r
ŷ, (3.22)

where we have defined an effective pressure perturbation

P̄1 =
P1

ρpv2
Aθ

+ B̄0 · B̄1. (3.23)

The three components of the equation of motion are

γ

v2
Aθ

ρ0

ρp
U1r = −∂P̄1

∂r
+ (B̄0 · ∇B̄1 + B̄1 · ∇B̄0)r +

Φ2

γρpR
U1r

∂ρ0

∂r
sin θ (3.24)

γ

v2
Aθ

ρ0

ρp
U1θ = −1

r

∂P̄1

∂θ
+ (B̄0 · ∇B̄1 + B̄1 · ∇B̄0)θ +

Φ2

γρpR
U1r

∂ρ0

∂r
cos θ (3.25)

γ

v2
Aθ

ρ0

ρp
U1z = −∂P̄1

∂z
+ (B̄0 · ∇B̄1 + B̄1 · ∇B̄0)z. (3.26)

To compute B̄1, Eq. 3.19 is dotted with ∇h where h is an arbitrary analytic function.
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This gives

γ∇h · B̄1 = ∇h · ∇ × (U1 × B̄0)

∗
= ∇ · ((U1 × B̄0)×∇h) + (U1 × B̄0) · ∇ ×∇h
∗∗
= ∇ · (B̄0U1 · ∇h−U1B̄0 · ∇h)

∗∗∗
= B̄0 · ∇ (U1 · ∇h)−U1 · ∇

(
B̄0 · ∇h

)
, (3.27)

where identities * F ·∇×G = ∇·(G×F)+G ·∇×F, ** (F×G)×H = G(F ·H)−F(G ·H),

∇×∇h = 0 and *** ∇·B̄0 = 0, ∇·U1 = 0 have been used to simplify the derivation. Taking

h = r, h = θ, and h = z in the equation, respectively, and noting that B̄0 · r̂ = B̄0r = 0 and

B̄0 · ẑ = B̄0z are constant, we obtain the three components of B̄1

B̄1r =
1

γ
B̄0 · ∇U1r (3.28)

B̄1θ =
r

γ

[
B̄0 · ∇

(
U1θ

r

)
−U1 · ∇

(
B̄0θ

r

)]
(3.29)

B̄1z =
1

γ
B̄0 · ∇U1z. (3.30)

The magnetic field perturbation is therefore expressed in terms of the equilibrium mag-

netic field subject to small motion of plasma, as a direct result of the ideal MHD frozen-in

flux condition.

3.3.1 General solution of magnetic field perturbation

In the equilibrium state, J0 = J0z ẑ is non-zero only on the plasma surface. It can be proved

that the perturbed current J1 is also confined on the surface (See § 3.7.1). Therefore

∇ × B1 = 0 both inside and outside the plasma. This means that there exists a scalar

“potential” χ where B̄1 = ∇χ and

∇2χ = ∇ · B̄1 = 0. (3.31)
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Because χ is a perturbation term, it has the form of χ ∼ eγt+imθ+ikz. Solving the equation

in cylindrical coordinates and requiring regularity at r = 0 and r → +∞ gives

χ =


∑

m amIm(kr)eγt+imθ+ikz r < R (in plasma)∑
m bmKm(kr)eγt+imθ+ikz r > R (in vacuum)

, (3.32)

where the summations are over all integers m, Im(x) and Km(x) are the modified Bessel

functions of the first kind and the second kind, respectively [1].

Coefficients am and bm are related by the fact that the perturbed magnetic field cannot

penetrate the surface of plasma according to the ideal MHD frozen-in flux condition. This

is satisfied by the MHD induction equation (Eq. 3.28-3.30) plus continuity at the plasma

interface. The latter condition requires that the velocity component orthogonal to the

interface must be continuous across the interface, i.e.,

U1r(R−) = U1r(R+). (3.33)

Notice that since B̄0 = αẑ inside plasma and B̄0 = αẑ + (R/r)θ̂ outside plasma, Eq. 3.28

can be written explicitly as

B̄1r =

 1
γ ikαU1r r < R

1
γ (imR/r2 + ikα)U1r r > R

, (3.34)

where we have used ẑ · ∇ = ∂z = ik and θ̂ · ∇ = (1/r)∂θ = im/r.

On the other hand, 3.32 gives B̄1r(R−) = amkI
′
m and B̄1r(R+) = bmkK

′
m. Hence

amkI
′
m =

1

γ
ikαU1r(R−) (3.35)

bmkK
′
m =

1

γ

(
im

R
+ ikα

)
U1r(R+). (3.36)

Applying Eq. 3.33 to Eqs. 3.35 and 3.36 gives

bm =
m+ q

q

I ′m
K ′m

am. (3.37)

The vacuum field is now expressed in terms of the plasma field.
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3.3.2 Inside plasma

Inside the plasma, B̄0 = αẑ is uniform so Eqs. 3.28-3.30 reduce to B1 = (1/γ)B̄0 · ∇U1 =

(ikα/γ)U1 and

U1 =
γ

ikα
B̄1. (3.38)

Equation 3.26 and the z component of Eq. 3.38 give

P̄1(R−) =

(
α+

γ2

αk2v2
Aθ

)
B̄1z(R−) = ikα

(
1 +

Γ

q2

)
amIm, (3.39)

where Γ and q are defined in Eq. 3.21.

3.3.3 Outside plasma

Outside the plasma, B̄0(R+) = αẑ + θ̂. Hence

P̄1(R+) = B̄0(R+) · B̄1(R+)

= B̄1θ(R+) + αB̄1z(R+)

=
im

R
bmKm + ikαbmKm

=
i

R

(m+ q)2

q

I ′mKm

K ′mIm
amIm, (3.40)

where Eq. 3.37 has been used.

3.4 Radial motion jump condition at the interface

The interface region where the current flows is part of the plasma and so is governed by the

MHD equations, i.e., the momentum equation and the induction equation.

We integrate the radial motion Eq. 3.24 across the interface from r = R− to R+ to

obtain

0 = − P̄1

∣∣R+

R−
+

∫ R+

R−

(B̄0 · ∇B̄1 + B̄1 · ∇B̄0)rdr −
Φ2

γR
U1r(R−) sin θ. (3.41)

For general cylindrical vectors

(F · ∇G)r = Fr
∂Gr
∂r

+
Fθ
r

∂Gr
∂θ

+ Fz
∂Gr
∂z
− FθGθ

r
, (3.42)
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and therefore

(B̄0 · ∇B̄1)r = B̄0r
∂B̄1r

∂r
+
B̄0θ

r

∂B̄1r

∂θ
+ B̄0z

∂B̄1r

∂z
− B̄0θB̄1θ

r
, (3.43)

(B̄1 · ∇B̄0)r = B̄1r
∂B̄0r

∂r
+
B̄1θ

r

∂B̄0r

∂θ
+ B̄1z

∂B̄0r

∂z
− B̄1θB̄0θ

r
. (3.44)

Because B̄0r = 0 and B̄0z = α,

(B̄0 · ∇B̄1 + B̄1 · ∇B̄0)r =
im

r
B̄0θB̄1r + ikαB̄1r −

2B̄0θB̄1θ

r
. (3.45)

The second term of Eq. 3.41 involves an integration across an infinitesimally thin layer.

Only terms behaving like a delta-function at r = R contribute to this integration. These

terms must contain a partial derivative at r = R in the radial direction. On examination

of Eqs. 3.28-3.29 it is seen that only B̄1θ is a delta-function type term. To see this, rewrite

Eq. 3.29 and only keep the term with ∂r to obtain

B̄1θ = − r
γ
U1r

∂

∂r

(
B̄0θ

r

)
+ non-delta. (3.46)

Therefore,

(B̄0 · ∇B̄1 + B̄1 · ∇B̄0)r =
2

γ
U1rB̄0θ

∂

∂r

(
B̄0θ

r

)
+ non-delta

=
U1r

γr

∂B̄2
0θ

∂r
+ non-delta. (3.47)

Integration across the interface gives

∫ R+

R−
(B̄0 · ∇B̄1 + B̄1 · ∇B̄0)rdr =

U1r(R+)

γR
B̄0θ(R+)2 =

U1r(R+)

γR

=
U1r(R−)

γR
=
k

iq
amI

′
m, (3.48)

where Eqs. 3.33 and 3.35 have been used.

The last term in Eq. 3.41 is given by the lateral gravity. We write sin θ = (eiθ− e−iθ)/2i
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and expand U1r using Eq. 3.35 to obtain

Φ2

γR
U1r(R−) sin θ =

Φ2

iαkR

eiθ − e−iθ

2i

∑
m

amkI
′
me

imθ

= −Φ2k

2q

∑
m

amI
′
m(ei(m+1)θ − ei(m−1)θ)

mth
= −Φ2k

2q
(am−1I

′
m−1 − am+1I

′
m+1). (3.49)

This equation shows that the lateral gravity breaks the axisymmetry of the cylindrical

system and links the mth mode to the (m± 1)th modes.

Substitution of Eqs. 3.39, 3.40, 3.48 and 3.49 into Eq. 3.41 gives

0 = ikα

(
1 +

Γ

q2

)
amIm−

i

R

(m+ q)2

q

I ′mKm

K ′mIm
amIm+

k

iq
amI

′
m+

Φ2k

2q
(am−1I

′
m−1−am+1I

′
m+1).

(3.50)

We multiply by iRq to obtain

(m+ q)2 I
′
mKm

K ′mIm
amIm + xamI

′
m +

i

2
xΦ2(am−1I

′
m−1 − am+1I

′
m+1) = (Γ + q2)amIm. (3.51)

Equation 3.51 is a very strong condition because it holds for all integers m. However,

this equation is not to be considered as a coefficient recurrence relation because one should

not expect an arbitrary perturbation to precisely satisfy the condition for all azimuthal

modes. Instead, Eq. 3.51 should be considered as an eigenvalue problem. We define new

coefficients

wm ≡ amIm for all integer m, (3.52)

an infinitely long column vector

w ≡ [· · · , w−2, w−1, w0, w1, w2, · · · ]T , (3.53)

an infinitely large zero-diagonal-entry tridiagonal matrix

G = (Gmn)m,n∈Z, Gm,m = 0, Gm,m−1 = x
I ′m−1

Im−1
, Gm,m+1 = −x

I ′m+1

Im+1
, (3.54)
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two infinitely large diagonal matrices

M = (Mmn)m,n∈Z Mm,m = (m+ q)2 I
′
m

Im

Km

K ′m
(3.55)

N = (Nmn)m,n∈Z Nm,m = x
I ′m
Im
, (3.56)

and an infinitely large tridiagonal matrix

Q ≡M + N +
i

2
Φ2G. (3.57)

Equation 3.51 becomes

[
M + N +

i

2
Φ2G

]
w = (Γ + q2)w,

Qw = (Γ + q2)w. (3.58)

The procedure to find the growth rate γ of a perturbation is equivalent to finding the

eigenvalues of the matrix Q. The infinite matrix Q has an infinite and countable number

of eigenvalues {σm}m∈Z and eigenvectors {wm}m∈Z. Each eigenvector gives the coefficients

{am} of an eigen-perturbation. The growth rate of this eigen-perturbation is given by the

corresponding eigenvalue. All of the eigenvectors form a complete basis in the coefficient

space. Any arbitrary perturbation can always be decomposed into a linear combination

of those eigen-perturbations, and the fastest growing mode is given by the available eigen-

perturbation with the largest positive Γ. A similar treatment but for the situations of

diapir formation can be found in Refs. [71, 72]. Note that because of the lateral gravity and

the cylindrical geometry, an eigen-perturbation contains all azimuthal modes because the

matrix Q is non-diagonal.

Here we briefly review the process of deriving Eq. 3.51. First, the linearization of the

continuity equation expresses the density perturbation ρ1 as a function of the velocity

perturbation U1r. The linearized induction equation gives the magnetic field perturbation

B̄1 in terms of the velocity perturbation U1, as a consequence of frozen-in flux condition.

Equivalently, velocity perturbation U1 is also expressed as function of B̄1. In the system,

current is always confined within the interface, so the magnetic field perturbation B̄1 is a

vacuum-type field both inside and outside plasma. As a general vacuum field, B̄1 is written
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as two different Fourier series inside and outside the plasma. The coefficients of the two

Fourier series are related by the continuity of radial velocity across the interface, given

B̄1 as a function of U1. The linearization of momentum equation gives three equations of

motion involving the three velocity components, the effective pressure P̄1, the magnetic field

perturbation B̄1 and the gravity term due to density perturbation. However, only two of

the motion equations are linearly independent because the perturbation is incompressible.

The z motion is used to express P̄1 inside the plasma in terms of B̄1z. P̄1 outside plasma is

naturally a function of B̄1 due to the lack of plasma pressure. The r motion is integrated

across the interface to link P̄1, the magnetic field and gravity term inside and outside

plasma. Because all terms have already been written as functions of B̄1 or U1, and U1 is

also expressed in terms of B̄1 by the induction equation, the integrated r motion becomes

a self-consistent equation for B̄1. Fourier expansion of the equation determines the relation

of all Fourier coefficients, i.e., Eq. 3.51.

3.4.1 Preliminary analysis on stability

We multiply the pre-matrix equation Eq. 3.51 by v2
Aθ/R

2 and divide by amIm to get

v2
Aθ

R2
(m+ q)2 I

′
mKm

ImK ′m
+
v2
Aθ

R
k
I ′m
Im

+
i

2
gk
am−1I

′
m−1 − am+1I

′
m+1

amIm
= γ2 + α2k2v2

Aθ. (3.59)

This equation has a one-to-one correspondence with Eq. 3.58 and provides more physical

intuition than the matrix equation.

Both Im(x) and Km(x) are positive for x > 0. Im(x) is a monotonically increasing

function and Km(x) is a monotonically decreasing function. Therefore, I ′m > 0, K ′m < 0

and hence Mmm < 0, Nmm > 0, Gm,m−1 > 0 and Gm,m+1 < 0.

All diagonal entries of the diagonal matrix M are negative. Larger |Mmm| results in

smaller Γ and so more stable system. The dimensioned version of M is given by the first

term of Eq. 3.59, hence

Mmm ∝
v2
Aθ

R2
(m+ q)2 ∝

b2θ
R2

(
m+

kRbz
bθ

)2

=
(m
R
bθ + kbz

)2
= (k ·B)2, (3.60)

where k = kẑ + (m/R)θ̂ and B = bz ẑ + bθθ̂ are the instability wavevector and magnetic

field on the plasma surface, respectively. Therefore M represents the stabilizing effect due
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to the tension along the magnetic field.

N is a positive-definite matrix and hence destabilizes the system. The second term of

Eq. 3.59 shows that N is proportional to v2
Aθ/R, which has a dimension of an acceleration.

v2
Aθ/R can be understood as the centrifugal acceleration a test particle experiences when

traveling around the r = R interface at the Alfvén speed vAθ. Therefore the destabilizing

effect is a result of ‘bad’ curvature of the azimuthal magnetic field on the circular plasma-

vacuum interface. The destabilizing effect leads to a traditional current-driven instability

such as kink instability. Similar mechanism exists in toroidal magnetic confinement devices

and space plasmas as ballooning mode and resistive ballooning mode [25, 41, 120].

The gravity term iG does not have a simple stabilizing or destabilizing effect. Because

G is similar to a skew-symmetric matrix and iG is similar to a Hermitian matrix, all the

eigenvalues of iG are pure real. Moreover, the eigenvalues of iG come in positive-negative

pairs, i.e., if λ > 0 is an eigenvalue then −λ is also an eigenvalue. A mathematical proof

is given in § 3.7.3. Positive eigenvalues correspond to destabilizing effect, and negative

ones stabilize the system. This can be understood intuitively by considering a perturbation

occurring around the cylindrical plasma: the perturbation on the ‘top’ of the surface (i.e.,

y > 0) undergoes a stable oscillation, and a perturbation on the ‘bottom’ of the surface

(y < 0) undergoes a Rayleigh-Taylor instability. Another important feature of iG is that

it is the only non-diagonal matrix in Eq. 3.58. Specifically, the first sub-diagonal and

super-diagonal entries of iG are nonzero. Therefore any azimuthal mode m is coupled with

neighboring modes m − 1 and m + 1 due to iG, and therefore all azimuthal modes are

coupled together.

The second term of the RHS of Eq. 3.59, α2k2v2
Aθ, is proportional to k2b2z and hence

corresponds to tension along the axial magnetic field. This term helps to reduce γ2 for fixed

Γ and therefore stabilizes the system.

As a short summary, Bz and Bθ help stabilize the system because of magnetic tension.

However the “bad” curvature of Bθ destabilizes the system. The gravity term has a dual

effect which stabilizes some perturbations and destabilizes others. The gravity term also

breaks the azimuthal symmetry and couples all azimuthal modes together.
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3.4.2 Comments on the matrix equation

Equation 3.58 involves infinitely large matrices that cannot be solved directly. However in

practice, approximate solutions can be obtained by truncating the matrices. We define a

series of finite matrices

Qp ≡ (Qmn)−p≤m,n≤p, p = 1, 2, 3, .. (3.61)

For each integer p, Qp is a (2p + 1) by (2p + 1) square tridiagonal matrix. We solve the

eigenvalue problems Qpw
q
p = σqpw

q
p in a complex space, where q ∈ {1, 2, . . . , 2p + 1} is the

index of the eigenvalues and eigenvectors of Qp. We sort the eigenvalues in descending

order by their real parts, i.e., real(σ1
p) ≥ · · · ≥ real(σ2p+1

p ). We solve the above systems

with successively increasing p and look for limits

lim
p→+∞

σ1
p → σ1, lim

p→+∞
w1
p → w1. (3.62)

For a well-defined problem, we expect the above limits converge to {σq} and {wq}, which

are the eigenvalues and eigenvectors of the infinitely large linear system Eq. 3.58. The

largest eigenvalue σ1 gives the growth rate of the fastest growing mode using Γ = σ1 − q2,

while w1 gives the coefficients of each azimuthal mode of the fastest growing mode. If there

exists some mechanism inhibiting high-order azimuthal modes, p can be chosen to be the

highest permitted azimuthal mode number.

Along the azimuthal direction, Bθ is expected to suppress high order azimuthal modes.

The 1D MHD Rayleigh-Taylor theory shows that the undular mode with wavenumber k >

gµ0ρ0/B
2 is prohibited. We apply this result to the azimuthal direction of the cylindrical

system and we find that modes with m > gµ0ρ0R/B
2
θ = Φ2 are expected to be prohibited.

On the other hand, for a system with axial perturbation wavenumber k, fluctuation with

typical length scale 2π/k is allowed. Hence azimuthal mode m ∼ kR should be permitted.

Fig. 3.4 shows numerically that the limit in Eq. 3.62 always converges for magnetized

plasma (finite Φ) but diverges for unmagnetized plasma (Φ2 →∞). The figure also shows

that empirically σ1
p ≈ σ1 is generally acceptable for p > max(Φ2, kR).

The three matrices M, N and G contain the derivatives of modified Bessel functions.

The recurrent relations 2I ′m(x) = Im−1(x) + Im+1(x) and −2K ′m(x) = Km−1(x) +Km+1(x)
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Figure 3.4: Eigenvalue σ1
p of truncated matrix Qp (defined in Eq. 3.61) as a function of

largest allowed mode number p for magnetized plasma cylinder(finite Φ, solid curves) and
unmagnetized plasma (N and M are omitted, dashed curves) at different axial wavelength.
The solid vertical lines label the position of p = Φ2 and the dotted vertical lines label
p = kR. Pitch angle α = 1 is used.

can be used to avoid calculating the complicated derivatives when computing the matrices.

3.4.3 Short/Long wavelength approximation

Truncating the matrix Q at ±p is an artificial way to inhibit the perturbations with az-

imuthal wavelength smaller than λθ = 2πR/p or wavenumber larger than kθ = p/R along

the azimuthal direction. Along its orthogonal direction on the plasma-vacuum interface, i.e.,

the z direction, the scale of perturbations is characterized by kR and wavelength λz = 2π/k.

Mathematically, the modified Bessel functions Im(x) and Km(x) have different asymp-

totic behaviors under different limits. § 3.7.2 shows that the large x approximation of mod-

ified Bessel functions is valid if x � m2/2. This is approximately equivalent to kR � m2

or
√
Rλz � λθ. The small x approximation is valid if x �

√
m+ 1. This is equivalent to

k2R2 � m or λz �
√
Rλθ.

We therefore formalize the terms “short wavelength approximation” as kR � m2 or
√
Rλz � λθ, and “long wavelength approximation” as k2R2 � m or λz �

√
Rλθ. The two

approximations correspond to the large and small argument approximations of modified
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Bessel functions, respectively (§ 3.7.2). Physically speaking, the short (long) wavelength

approximation is equivalent to saying that the axial (azimuthal) perturbation dominates.

3.5 Solutions

We now solve Eq. 3.58. First we consider several special cases where either gravity or

the magnetic field is weak. In these cases some analytical solutions can be obtained using

short or long wavelength approximations. Then we numerically solve the truncated matrix

equation for general cases.

3.5.1 Special cases I: weak gravity or strong toroidal magnetic field

The limit of weak gravity or strong toroidal magnetic field is defined by Φ2 = gR/v2
Aθ � 1,

or equivalently g � v2
Aθ/R. In this limit, Eq. 3.58 becomes

(M + N)w = (Γ + q2)w. (3.63)

Since both M and N are diagonal matrices, each eimθ mode is now an eigen mode of the

system because there is no gravity breaking the axisymmetry. The growth rate of the mth

mode simply is

Γ = Mmm +Nmm − q2 (3.64)

γ2 =
v2
Aθ

R2

(
(m+ q)2 I

′
mKm

ImK ′m
+ x

I ′m
Im
− q2

)
. (3.65)

The marginal stability is given by

(m+ q)2 I
′
mKm

ImK ′m
+ x

I ′m
Im
− q2 < 0. (3.66)

At this point, we have returned to the textbook current-driven MHD instability. Equa-

tion 10.171 in Ref. [5] shows for such system marginal stability is given by

kR
b2z
b2θ

Im
I ′m
− (m+ q)2

kR

[
ImK̂

′
m − Î ′mKm

I ′mK̂
′
m − Î ′mK ′m

]
> 1, (3.67)

where Im or I ′m and Km or K ′m are evaluated at kR and Îm or Î ′m and K̂m or K̂ ′m are
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evaluated at the finite-distanced wall. In the limit of infinitely far wall, there are Î ′m →∞

and K̂ ′m → 0. Hence the marginal stability inequality reduces to

xα2 Im
I ′m
− (m+ q)2

x

Km

K ′m
> 1 (3.68)

After multiplied x(I ′m/Im) on both sides the inequality becomes identical to Eq. 3.66. There-

fore we have verified that the theory reduces to classic current-driven MHD instability in

the weak gravity limit.

In the long wavelength approximation k2R2 � m, the modified Bessel functions give

I ′m/Im ≈ |m|/x and K ′m/Km ≈ −|m|/x (§ 3.7.2). Equation 3.65 becomes

γ2 =
v2
Aθ

R2
(−(m+ q)2 + |m| − q2), (3.69)

which is positive for m = −1 when q < 1. This is the classic m = −1 kink instability.

3.5.2 Special cases II: strong gravity or weak toroidal magnetic field

In the limit of Φ2 � 1 or equivalently g � v2
Aθ/R, Eq. 3.58 becomes

i

2
Φ2Gw = (Γ + q2)w. (3.70)

Consider the short wavelength approximation kR� p2 with the matrix G intentionally

truncated at ±p. In this limit I ′m/Im ≈ 1 for |m| ≤ p (§ 3.7.2). Hence all sub-diagonal

entries of Gp are x and all the super-diagonal entries are −x. Gp is then also a Toeplitz

matrix. It can be shown mathematically that eigenvalues of iGp are 2x cos(kπ/(2p + 2)),

where k = 1, 2, 3, · · · 2p+ 1 (e.g., see Ref. [85]). The largest positive eigenvalue of iG is 2x.

Hence

Γ = xΦ2 − q2 = xΦ2 − α2x2, (3.71)

γ2 = gk − b2zk
2

µ0ρ0
= gk − v2

Azk
2, (3.72)

where vAz = bz/
√
µ0ρp = αvAθ. This is the 1D MRT theory for the undular mode along the

axial direction. In the zero field limit, bz = 0 and q = 0, the short wavelength approximation

gives Γ = xΦ2 or γ2 = gk, which is the 1D hydrodynamic Rayleigh-Taylor instability.
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Note that the short wavelength approximation emphasizes axial perturbation and ignores

azimuthal perturbation. This explains why under short wavelength approximation the

theory is identical to 1D MRT.

The maximum of Γ or γ2 occurs for x that satisfies dΓ/dx = 0. From Eq. 3.72 this

maximum is at

x =
Φ2

2α2
max Γ = Φ4

4α2

k =
g

2v2
Az

max γ2 = g2

4v2Az
. (3.73)

It is notable that Eq. 3.70 is an ill-posed problem unless G is truncated. Otherwise

there are always sufficiently large integers p so that the short wavelength approximation

fails. The extreme case is when the long wavelength approximation is valid, i.e., kR� √p,

Gp+1,p = xI ′p/Ip ≈ |p| (see § 3.7.2). Therefore the non-zero elements of G diverge as

p→ +∞, and so do the eigenvalues. This is also seen in Fig. 3.4.

3.5.3 Lateral Rayleigh-Taylor-Current-Driven coupled instability in cylin-

drical MHD collimated plasma

We have shown that the solution reduces to the conventional current-driven MHD instabil-

ity and the 1D hydrodynamic/magnetic Rayleigh-Taylor instability when either gravity or

(toroidal) magnetic field are neglected. When both gravity and magnetic field are present,

the two instabilities are expected to couple together and give a Rayleigh-Taylor-Current-

Driven (RT-CD) coupled instability.

In the Caltech plasma jet experiment, a typical argon jet has ne = ni = 1022 m−3,

Iz = 60 kA, R = 3.5 cm, Bz = 0.2 T, and so Bθ = 0.34 T. Hence α = 0.583. A typical

effective gravity has g = 4× 1010 m/s2 (See Ref. [80]) hence
√
gR = 34.6 km/s. The system

parameters are

vAz = 6.9 km/s vAθ = 11.8 km/s Φ2 = 10.0 α = 0.583. (3.74)

For a type I hydrogen jet with the same g and R, there are

vAz = 43.6 km/s vAθ = 74.8 km/s Φ2 = 0.25 α = 0.583. (3.75)



92

Based on these parameters, it is seen that due to the different ion weight the gravity

effect is strong in the argon jet while the current-driven effect is strong in the type I hydrogen

jet.

Despite the complexity of the theory, Eq. 3.58 has only three free parameters. Given

x, Φ2 and α (or kR, gR/v2
Aθ and bz/bθ), the three matrices M, N, and G are uniquely

determined. Therefore for a given equilibrium, the growth rate of the RT-CD coupled

instability is determined solely by the axial perturbation scale kR.

Using the parameters given in Eq. 3.74 and 3.75, we vary kR to calculate the correspond-

ing growth rate Γ and γ. Figure 3.5 shows the instability growth rate for argon and hydrogen

plasmas as a function of kR (thick solid curve). Also plotted are the instability growth rate

in the weak gravity limit, strong gravity limit and zero field limit (N and M omitted, α = 0,

thick dotted-dashed curve). For further comparison, 1D MHD Rayleigh-Taylor growth rate

γ2 = gk − v2
Azk

2 (light dashed curve) and 1D hydrodynamic Rayleigh-Taylor growth rate

γ2 = gk (light solid curve) are also plotted.

In both argon and hydrogen jet configurations, very small wavelength perturbations

are always suppressed and the peak growth rate occurs at a finite axial wavelength. This

is fundamentally different from the 1D hydrodynamic RT instability and the interchange

mode of 2D MRT instability.

3.5.3.1 Argon plasma jet

In the argon plasma jet configuration, Φ2 = 10.0 and the instability shows strong coupling

between RT instability and CD instability, especially for long wavelength perturbation.

The growth rate of this RT-CD coupled instability is faster than either 1D MHD RT or CD

instability, as a result of the destabilizing effect from the cylindrical geometry and effective

gravity. On the other hand, the RT-CD instability grows slower than the strong gravity

(zero toroidal field) limit or zero field limit, showing the stabilizing effect due to magnetic

field Bz and Bθ.

The fastest growth rate of RT-CD instability for argon plasma jet is Γ = 115.6 at

kR = 18.0, corresponding to a dimensioned growth rate γ = (vAθ/R)
√

Γ = 3.6× 106 s−1 at

λz = 1.22 cm. This is very close to the experimental measurement that γ ∼ 106 s−1 and

λz ≈ 1 ∼ 2 cm.

The 1D MHD RT theory predicts the maximal growth rate is Γ = Φ2/(4α2) = 73.4
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Figure 3.5: Instability growth rate as a function of axial perturbation wave number/wave-
length for Caltech argon plasma jet with Φ2 = 10 (top panel) and hydrogen plasma jet with
Φ2 = 0.25 (bottom panel). α = 0.58 for both cases. The growth rates are computed using:
(1) RT-CD coupled theory for cylindrical plasma (Eq. 3.58, thick solid curve); (2) weak
gravity limit (Φ2 = 0, Eq. 3.65, thick dotted-dashed curve); (3) strong gravity limit (N and
M omitted, Eq. 3.70, thick dotted curve); (4) zero field limit (Eq. 3.70 with q = 0, thick
dashed curve); (5) 1D MHD RT theory in axial direction (Eq. 3.72, light dashed curve);
(6) 1D hydrodynamic RT theory γ2 = gk (light solid curve). The bottom abscissa is the
dimensionless variable kR and the top abscissa gives the dimensioned wavelength λz = 2π/k
with R = 3.5 cm. The left ordinate is the dimensionless growth rate Γ = γ2R2/v2

Aθ and the
right one is the dimensioned rate γ. Matrix Q is truncated at p = 70 in the calculation.
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at kR = Φ2/(2α2) = 14.7 or γ = 2.9 × 106 s−1 at λz = 1.5 cm. It is seen that the 1D

MHD RT theory does provide a reasonable approximation to RT-CD theory, despite the

big discrepancy between the two at small kR (long wavelength).

The weak gravity limit describes current-driven MHD instabilities such as m = −1 kink

instabilities. As shown in Fig. 3.5, the CD instability growth rate is 10− 100 times slower

than the RT-CD coupled instability. The fastest growth rate of the weak gravity limit is

γ = 3 × 105 s−1 at kR = 4.0 or λz = 18.7 cm, in excellent agreement with the experiment

measurement.

3.5.3.2 Hydrogen plasma jet

In hydrogen plasma jet configuration with g = 4×1010 m/s2, Φ2 < 1 due to the low ion mass

of hydrogen. Figure 3.5 confirms that the RT-CD instability in hydrogen jet is essentially

reduced to weak gravity limit. This explains why distinct Rayleigh-Taylor-like ripple is not

observed in most hydrogen jet experiments with g < 1011 m/s2. The fastest growth rate is

Γ = 0.931 at kR = 1.92 or γ = 2.1× 106 s−1 at λz = 11.5 cm. Unlike the argon plasma jet

case, the 1D MHD RT theory does not apply to the hydrogen jet system at all.

3.5.4 RT-CD coupled instability as a quasi-paramagnetic instability

The classic current-driven instability is paramagnetic in the long wavelength approximation.

The surface wavevector k = kẑ + mθ̂/R is perpendicular to magnetic field B = bz ẑ + bθθ̂

on plasma surface, i.e., k · B = kbz + mbθ/R = 0. This requires a negative m and thus a

right handed perturbation. The surface current after perturbation has an additional right

handed part, which enhances the equilibrium axial field [49]. The 2D MRT instability

allow wavevectors in random direction. However the interchange mode having wavevector

perpendicular to the magnetic field grows fastest because it is not suppressed by the field

line tension. Hence for interchange mode there is k ·B = 0. The interchange mode does not

modulate the equilibrium magnetic field. The hydrodynamic 1D Rayleigh-Taylor instability

does not involve a magnetic field. In an MHD collimated cylindrical plasma configuration,

it is of interest to study the paramagnetic property of RT-CD coupled instability on the
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Figure 3.6: Spectra of the fastest growing eigen-perturbation for argon jet configuration
(solid dots) and hydrogen jet configuration (open circles). The spectrum is defined by
Eq. 3.76. Two Gaussian functions with means and standard deviations calculated using the
spectra are also plotted for comparison. Matrix Q is truncated at p = 70.

curved interface. To see this, we define the spectrum of the fastest eigen-perturbation as

f(m) =
|w1
m|∑

j∈Z |w1
j |

m = 0,±1,±2, · · · , (3.76)

where w1 is the eigenvector of Q corresponding to σ1, the eigenvalue with the largest real

part. Because χ(R) =
∑

m amIm(kR)eγt+imθ+ikz =
∑

mwme
γt+imθ+ikz, f(m) ∼ |w1

m| is the

amplitude of the mth azimuthal mode on the plasma surface. We also define the average

azimuthal mode number

m̄ =
∑
m

mf(m) (3.77)

and spectral width (standard deviation)

SD =

√∑
m∈Z

(m− m̄)2f(m) (3.78)

to quantify how concentrated the spectrum is.

Figure 3.6 shows the spectra of the fastest growing RT-CD eigen-perturbation in argon

and type I hydrogen plasma jet configuration (Eq. 3.74, 3.75). The spectrum of argon jet

reveals a Gaussian profile centered at m̄ = −13.8 with width SD = 3.39, and hydrogen
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jet spectrum is centered at m̄ = −1.56 with narrow width SD = 0.75. This is consistent

with previous discussion that gravity breaks the axisymmetry and links different m modes

together. In a relatively strong gravity case like the argon jet, Φ2 = 10, gravity is able

to create a wide spectrum from m ∼ −23 to m ∼ −5. In a weak gravity case like the

hydrogen jet, Φ2 � 1, the current-driven instability dominates and gives a sharp spectrum

centered around m = −1 (kink) and m = −2. These spectra also demonstrate the validity of

truncating the matrix Q at p = 70 because the spectrum is essentially zero below m = −25

or above m = 1.

The average mode number m̄ is negative for both argon and hydrogen jet so the insta-

bility is paramagnetic. The inner product of averaged surface wavevector k = kẑ + m̄θ̂/R

and magnetic field B = bz ẑ + bθθ̂ is

k ·B = kzbz +
m̄

R
bθ = bθ(q + m̄)/R (3.79)

k ·B
|k||B|

=
q + m̄

(x2 + m̄2)1/2(1 + α2)1/2
, (3.80)

where x = kR, α = bz/bθ and q = αx. Calculation in previous section gives q = 10.5 for

argon jet and q = 1.12 for hydrogen jet. For both jets the safety factor q does not completely

cancel m̄ so k · B 6= 0, different from the conventional CD instability or the interchange

mode of 2D MRT instability. Further calculation shows that k·B/|k||B| = −0.126 for argon

jet and −0.154 for hydrogen jet, corresponding to an angle of 97.2◦ and 98.9◦ between k and

B on the plasma surface. We call this property quasi-paramagnetic because it is slightly

different from the paramagnetic behavior of the CD instability. There is a small but finite

angle between the magnetic field and the direction of constant instability phase on the

plasma surface. This imperfect alignment is a result of the curved interface because on a

planar interface the fastest growing modes (interchange modes) always have k ·B = 0.

3.5.5 Visualization of the instability

Figure 3.7 shows in both 2D and 3D the perturbed surface of argon and hydrogen jets

given by U1r ∼ ∂χ/∂r ∼
∑

mwm(I ′m/Im)eikz+imθ. The instability disturbs the argon jet

surface primarily around θ = 3π/2 because gravity is in the −ŷ direction. The instability on

the hydrogen jet surface occurs at all θ because it is a current-driven dominant instability.

The gravity nevertheless enhances the perturbation around θ = 3π/2 as well. The surface
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Figure 3.7: Pattern of fastest growing eigen-perturbation of argon jet (top) and hydrogen jet
(bottom) from z = 0 to z = 0.2 m. The 2D images are U1r(θ, z) evaluated at plasma surface.
The 3D surfaces show the plasma boundary under the fastest growing eigen-perturbation.
The black curves illustrate the magnetic field line at the plasma boundary.
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Figure 3.8: Cross-sectional view of velocity and magnetic field of the fastest growing eigen-
perturbation of argon jet solution on y− z plane at x = 0: The background color illustrates
azimuthal component (U1θ or B1θ) and arrows on top represent radial and axial components
of U1 or B0 + B1. The thick dash line/curves in each plot are unperturbed surface and
the thick solid curves are perturbed surface. Blue/cyan color represents component into
the paper and red/yellow color represents component out of the paper. Arrow length is
proportional to field strength.

magnetic field (thick black curves) is approximately parallel to the phase of the instability.

The argon jet instability shows strong coupling between Rayleigh-Taylor and current-driven

effect. The hydrogen jet case is very similar to a pure m = −2 CD instability.

Figure 3.8 and 3.9 give the cross-sectional view of velocity and magnetic field under

the fastest growing eigen-perturbation inside argon plasma. The figures demonstrate an

intrinsic 3D geometry of RT-CD coupled instability. Unstable deformation occurs along

both axial and azimuthal direction. The right panel of Fig. 3.8 clearly shows that the

poloidal (radial and axial) components of magnetic field remain parallel to plasma surface

under perturbation, because of the frozen-in flux requirement. Consequently, the xy-cross-

sectional view (Fig. 3.9) shows amplification in Bz when there is an inward velocity (U1r < 0)

and vice versa. Finite azimuthal magnetic field is created inside the plasma because of

deformation of the surface current.
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Figure 3.9: Cross-sectional view of velocity and magnetic field of the fastest growing eigen-
perturbation of argon jet solution on x − y plane at z = 0, z = λz/4, and z = λz/2,
where λz = 1.14 cm is the axial wavelength of the instability. The locations of these three
slices are also marked in Fig. 3.8. The color images are U1z or B1z and arrows represent
radial and azimuthal components of U1 or B1. The thick dash line/curves in each plot
are unperturbed surface and the thick solid curves are perturbed surface. Blue/cyan color
represents component into the paper and red/yellow color represents component out of the
paper. Arrow length is proportional to field strength.
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3.5.6 Comprehensive view of RT-CD coupled instability

As this point we have shown two special cases with Φ2 = 0.25 and Φ2 = 10 and α =

0.583. For a plasma filled flux rope, Φ and α are fully determined by the equilibrium. The

instability growth rate is further determined by the axial perturbation x = kR. In general

case, we define Γ(Φ2, α, x) as the fastest growing solution of Eq. 3.58 for given Φ2, α and

x, i.e., Γ(Φ2, α, x) = σ1 − α2x2 where σ1 is the largest eigenvalue of matrix Q.

Now consider a system with Φ2 and α subject to a random perturbation that contains

all possible x = kR components. Those components that give Γ(Φ2, α, x) > 0 are unstable

and grow exponentially fast. The component x that gives the largest positive Γ(Φ2, α, x),

denoted as x∗, grows faster than all other components, and is therefore the dominant com-

ponent. Hence

x∗(Φ, α) = x that maximizes Γ(Φ2, α, x). (3.81)

We further define

Γ∗(Φ2, α) = max
x≥0

Γ(Φ2, α, x) = Γ(Φ2, α, x∗) (3.82)

m̄∗(Φ2, α) = m̄ of x∗ eigen-perturbation (3.83)

SD∗(Φ2, α) = SD of x∗ eigen-perturbation. (3.84)

We now solve for Γ∗, x∗, m̄∗ and SD∗ over a wide range of Φ and α and show the results

in Fig. 3.10. The argon jet configuration (Φ2 = 10, α = 0.585) and type I hydrogen jet

configuration (Φ2 = 0.25, α = 0.583) are marked in the plots. Also marked is the type II

hydrogen jet configuration (as “H(2)”) with g = 3× 1011 m/s2. Unlike the type I hydrogen

jet, this type II hydrogen jet has Φ2 = 1.89 and is observed to develop λz = 3 ∼ 5 cm

RT-type ripple in the experiment.

There are two domains in the parameter space that have already been solved by existing

theories.

Classic current-driven instability dominated domain The lower half portion of each

plots in Fig. 3.10 has Φ2 � 1 and is the current-driven instability dominated domain. The

impact from gravity is much weaker than that from toroidal field, hence the instability is

weakly dependent on Φ2 in this domain. The type I hydrogen jet experiment is located
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Figure 3.10: Solution of log10 Γ∗ (upper left), log10 x
∗ (upper right), m̄∗ (lower left), and

SD∗ (lower right) in the 0.0625 ≤ Φ2 ≤ 16 and 0.2 ≤ α ≤ 5 domain. For each (Φ2, α),
we scan x from from 10−2 to 103 and find x∗ that maximizes Γ(Φ2, α, x). The xy axes are
both in log scale. Matrix Q is truncated at p = 70 in the calculation. Since p = 70 is
about 4 times the maximal standard deviation away from the maximal mean mode number
(max SD∗ = 6.5 and max |m̄∗| = 45), the truncation is valid. The ◦ and � symbols
mark the location of argon and hydrogen plasma jet configuration with g = 4× 1010 m/s2

in the (Φ2, α) parameter space. The 4 symbols marks the hydrogen configuration with
g = 3× 1011 m/s2.

in this domain (� symbol). For cases with relatively strong axial field, e.g., α > 0.6, the

instability occurs with a long axial wavelength (small x∗), and the instability is the standard

m = −1 kink instability with very sharp spectra. For weak axial field cases (small α), large

k and high m modes can develop, but the spectrum remains sharply distributed around the

peak mode, because weak gravity cannot efficiently couple different azimuthal modes.

Classic Rayleigh-Taylor instability dominated domain The upper left corner of

each subplot (large Φ2 and small α, or weak Bz and Bθ) of Fig. 3.10 is the Rayleigh-Taylor

instability dominated domain. The instability occurs with large x∗ (small axial wavelength),
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as well as large and broad azimuthal spectrum (small scaled azimuthal perturbations).

These results are consistent with the classic Rayleigh-Taylor instability theory where small

scale perturbations have larger growth rates. Equation 3.73 shows that under strong gravity

limit and short wavelength approximation, the maximum of Γ is obtained at x∗ = Φ2/(2α2)

as Γ∗ = Φ4/(4α2). Hence log Γ∗ = 2 log Φ2−2 logα−log 4 and log x∗ = log Φ2−2 logα−log 2.

These matches with the behaviors of Γ∗ and x∗ for large Φ and small α. More specifically, in

the upper left corner of the subplots, contours of Γ∗ have slope d(log Φ2)/d(logα) = 1 and

contours of x∗ have slope d(log Φ2)/d(logα) = 2, consistent with the 1D MHD RT theory.

Figure 3.10 shows continuous transition from m = −1 long wavelength kink instability

(lower right portion) to 1D hydrodynamic/magnetic Rayleigh-Taylor instability (upper left

corner). The argon jet configuration (Φ2 = 10) and the type II hydrogen jet (Φ2 = 1.89)

are located in the transition region. The former case has been discussed in § 3.5.3. For the

latter case, the theory gives x∗ = 4.3 or λz = 5 cm, consistent with the experiment. In

general, when a lateral gravity field is applied to an MHD confined flux rope, the Rayleigh-

Taylor and current-driven instability are intrinsically coupled and a unified theory of RT-CD

instability on cylindrical geometry should be considered.

3.6 Summary and discussion

By using linear stability analysis, we have established an analytic theory of a hybrid lateral

Rayleigh-Taylor-Current-Driven coupled instability of an incompressible MHD collimated

cylindrical plasma (flux rope) in the present of a lateral gravitational field. This RT-CD

coupled instability is affected by magnetic field tension, curvature, and gravity. The coexis-

tence of lateral gravity and cylindrical geometry leads to a complex coupling of all azimuthal

modes of the cylinder, a fundamentally different situation compared to results from a 1D or

2D planar interface. The coupled instability reduces to the classic current-driven instability

in the weak gravity limit and to the conventional hydrodynamic or magnetic RT instability

in the strong gravity limit. In the general case, the RT and current-driven instabilities are

coupled and result in a new hybrid instability.

A useful parameter Φ2 = µ0ρ0gR/b
2
θ is defined to quantify the relative importance of

gravity versus toroidal magnetic field. This parameter is interesting because it includes

magnetic field, curvature, plasma density, and gravity, and is completely determined by
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the equilibrium state. Φ2 can be written as Φ2 = (ρ0gR)/(b2θ/µ0), which is the ratio of

gravitational energy density to toroidal magnetic energy; or it can be written as Φ2 =

g/(v2
Aθ/R), the ratio between real gravity and effective gravity due to the curvature of the

toroidal magnetic field. g is responsible for the RT instability and v2
Aθ/R is responsible

for the current-driven instability. Φ2 describes whether a flux rope is more susceptible to

the RT instability (if Φ2 � 1) or the current-driven instability (if Φ2 � 1), or coupled

instability (Φ2 ∼ 1).

The RT-CD instability is quasi-paramagnetic since m̄ is negative. The instability

wavevector k is nearly perpendicular to the surface magnetic field B so the instability

phase is roughly constant along the magnetic field. Note that on a 2D planar interface

k ·B = 0 corresponds to the interchange mode and the instability is essentially identical to

the hydrodynamic situation. In cylindrical geometry, the magnetic field prefers a perpen-

dicular k at the bottom of the flux rope, but as the perturbation extends to other parts of

the cylinder, gravity is no longer perpendicular to the interface or can become stabilizing.

The combination of magnetic field, cylindrical geometry and gravity can suppress high k

modes even when k is nearly perpendicular to B.

The RT-CD coupled instability theory successfully explains the experimental observation

(Fig. 3.2). For the argon jet, the theory predicts λz = 1.22 cm with growth rate γ = 3.6×106

s−1; for the type I hydrogen jet the theory shows that the RT effect is not important and

the instability is dominantly current-driven; for the type II of hydrogen jet with much

larger lateral acceleration, the theory shows RT-CD coupled instability with λz ∼ 5 cm.

Conventional MRT instability theory that only considers axial magnetic field and axial

perturbation is able to explain the argon jet, but fails to consider interchange mode or

explain hydrogen jets.

Figure 3.10 shows comprehensive results of RT-CD coupled instability in a large param-

eter space, and illustrates a smooth transition from CD to RT. This figure can be used as

function tables for γ∗(Φ2, α), x∗(Φ2, α), m̄∗(Φ2, α), and SD∗(Φ2, α), because it is difficult to

obtain relatively simple explicit functions to approximate the results from the large matrix

equations.

One major simplification in the theory is to assume that current is confined to the

plasma surface. With this assumption, the perturbed magnetic field is a vacuum field both

inside and outside the plasma. This greatly simplifies the mathematical analysis. In a
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Figure 3.11: Configuration of a curved flux rope with minor radius a, major radius b, axial
magnetic field Bb and azimuthal field Ba. Lateral gravity can be caused by magnetic field
curvature (panel A), real gravity or lateral acceleration (panel C). Configuration A and C
are analogous to a straight flux rope (panel F) with lateral gravity. Flux rope A can develop
RT instability similar to panel B and flux rope C can have RT instability similar to panel
D. If the gravity effect is weak, the flux rope can undergo kink instability like shown in
panel E.

more realistic configuration where axial current density Jz is finite inside the plasma, the

perturbed magnetic field is no longer curl-free, and Eq. 3.32 is no longer valid for r < R.

Finite Jz for r < R gives a shear of the magnetic field along the radial direction because

B0θ(r) = µI(r)/(2πr) depends on r as does the pitch angle α = B0z/B0θ. This shear

provides extra stabilizing effect because a paramagnetic perturbation on plasma surface

will not be aligned with magnetic field inside the plasma [5].

This lateral RT-CD coupled instability could be applicable for many situations where

there is a flux rope presented in a lateral (effective) gravity. Consider a stationary curved

flux rope with minor radius a and major radius b. Assume the axial magnetic field is Bb

and azimuthal magnetic field around the plasma axis is Ba (Fig. 3.11A). The curvature of

the plasma axis is 1/b. We define Alfvén speeds vAa = Ba/
√
µ0ρ and vAb = Bb/

√
µ0ρ. An

effective lateral gravity gb = v2
Ab/b is applied perpendicular to the flux rope axis, pointing

in the direction from the curvature center to the flux rope, as indicated by the big arrows
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in Fig. 3.11A. This configuration is analogous to a straight flux rope subject to a lateral

gravity as shown in Fig. 3.11F. Therefore the outer surface of the curved flux rope can

develop curvature-driven RT instability (Fig. 3.11B). The characteristic parameter Φ2 in

this configuration is Φ2 = gb/(v
2
Aa/a) = aB2

b /(bB
2
a) or Φ2 = Bb/(TBa) = b/(T 2a), where

T = bBa/(aBb) is number of twists of the surface helical magnetic field around the axis. If

Bb ∼ TBa then a RT-CD coupled instability is expected. If Bb � TBa, the flux rope is

subject to kink instability (Fig. 3.11E). In the process of flux emergence in the solar corona,

a flux rope with a curved axis exists. A typical configuration has b ∼ 2a and T ∼ 2 (e.g.,

see Ref. [36]). Hence Φ2 ∼ 0.5 and α ∼ 1. Figure 3.10 shows that for this configuration the

fastest growing mode has ka = 0.7 and averaged mode number m̄∗ = −1.2 with spectrum

width SD∗ = 0.75. Hence the RT effect is weak and the instability is essentially an m = −1

kink instability. In a configuration with larger b and fewer twists, our theory predicts

that the RT-CD hybrid instability can develop on the outer edge of the flux ropes. For

example, curvature-driven Rayleigh-Taylor instability on the top of solar prominence is

studied in theory and is proposed as cause of prominence destabilization and fast magnetic

reconnection [91, 101]. In Ref. [101] an effective gravity due to the curvature of high-beta

prominence g = V 2
‖ /R is considered, where V‖ is the thermal velocity along the magnetic

field. The resulted RT instability is also called ballooning instability [91, 101], in analogous

to the ballooning mode in magnetic controlled fusion devices. However, in Ref. [91, 101]

concepts of RT and MRT instability of planar interface were used for qualitative or quasi-

quantitative analysis. We suggest that the cylindrical geometry is crucial.

Quiescent prominence, believed to be supported by magnetic curvature, can also develop

Rayleigh-Taylor instability due to solar gravity [10, 47]. This configuration, illustrated in

Fig. 3.11C, is susceptible to RT-CD coupled instability at the bottom of the flux rope as

shown in Fig. 3.11D. So far only planar interface has been considered. Our theory shows

that in cylindrical geometry this type of planar approximation might be inappropriate.

Another potential application is coronal mass ejection (CME) where flux rope is erupting

due to some MHD instability like torus instability [58]. As the flux rope is expanding

exponentially fast, a lateral effective gravity due to the acceleration is applied on the flux

rope pointing opposite to the direction of expansion (Fig. 3.11C). This configuration is very

similar to the Caltech plasma jet experiment. A high resolution observation from SDO

shows a bright helical brightening with 3 − 4 turns occurs at 7:24:12 UT below the apex
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A B

Figure 3.12: SDO/AIA 171 EUV images of a coronal mass ejection occurring in active
region NOAA 11163 on 2011 February 24. These two images are from Fig. 1 of Kumar et
al. (2012) [65].

of the prominence of the 2011 Feb 24 CME in active region NOAA 11163 (Fig. 3.12A). In

Ref. [65] this helical brightening is attributed to helical kink instability and is believed to

trigger formation of two blobs that later on erupt to give the CME. At 7:30:36 UT some

ripple-like fine structures and several helix turns can be seen at inner edge of blob “B”

(Fig. 3.12B). The facts that the helical brightening occurs on the inner edge of the apex of

the prominence and helix turns exists at inner edge of blob “B” suggest that there could

be some RT effect (Fig. 3.11D) coupled in the phenomena. Precise estimation of Φ2 is not

applicable due to lack of detailed measurement, especially in magnetic field. But a rough

estimation gives

Φ2 = 2.2×
(

g

500km/s/min

)
·
( ne

1011cm−3

)
·
(

R

5Mm

)
·
(

20G

Bθ

)2

. (3.85)

For nominal quantities given in the equation, Φ2 ∼ 2. Therefore it is likely that the

lateral Rayleigh-Taylor-Current-Driven instability exists. Figure 3.10 shows that for Φ2 = 2

and α = 0.4, the averaged mode number of the RT-CD instability is m̄∗ ≈ −4.5 with

kR = 10 and the growth rate is γ∗ ≈ 13. This corresponds to an axial perturbation scale

λz = 2πR/(kR) = 0.64R = 3.2 Mm (or 4.4 arcsec) and growth rate γ = 0.1 s−1 for

ne = 1011 cm−3, R = 5 Mm and Bθ = 20 gauss. The growth rate is consistent with the
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life time of the helix turns observed in “blob” B, which is on the order of 20 sec. Higher

resolution observation is nevertheless necessary to identify whether the phenomena is indeed

RT-CD coupled instability, or just purely kink. This is because RT-CD coupled instability

is also paramagnetic and could be confused with current-driven instability. However, if high

resolution observation is indeed able to distinguish the two instabilities, it can be used to

estimate magnetic field configuration of the system using the RT-CD theory.

Numerical simulation of buoyant magnetic flux tube in solar convection zone has found

mushroom-shaped RT-type disturbance at bottom of the flux tube [26, 27], and this RT-

type disturbance is significantly stabilized by adding more toroidal magnetic field. This is

consistent with the RT-CD theory because larger toroidal magnetic field gives smaller Φ2

and hence the RT effect is weaker. As the flux tube emerges from the convection zone to

the solar corona, a filamentary structure can form at the top of the emerging flux tube

as a result of MRT instability [52, 53] under solar gravity. The filamentary structure is

found to be parallel to the surface magnetic field, consistent with the interchange mode of

MRT instability. We suggest that the geometry of the cylindrical emerging flux may also

be important and could modulate the behavior of the RT instability. However, we admit

that the RT-CD theory presented in this chapter should not be directly used in situations

like buoyant and emerging flux tube, because in these cases the flux tube is surrounded by

dense plasma that can be denser than the flux tube. Nevertheless the theory suggests that

in cylindrical geometry the RT could be fundamentally different from 2D planar case.

This work is supported by the U.S. Department of Energy Office of Science, Office of

Fusion Energy Sciences under Award Numbers DE-FG02-04ER54755 and DE-SC0010471,

by the National Science Foundation under Award Number 1059519, and by the Air Force

Office of Scientific Research under Award Number FA9550-11-1-0184.

3.7 Supplementary materials

In this section we provide some supportive materials.

3.7.1 Confined perturbed current

We have assumed that in equilibrium the current J0 is confined to the surface of the flux

rope. However, it is not obvious that the perturbed current J1 is still confined to the surface.
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Here we prove that J1 is zero in side the plasma.

Consider the momentum equation Eq. 3.18 inside plasma, where ρ1 = 0, B0 = bz ẑ so

B0 · ∇ = bz∂z = ikbz. Hence

γρpU1 = −∇
(
P1 +

B0 ·B1

µ0

)
+
ikbz
µ0

B1. (3.86)

The dimensioned version of Eq. 3.38 gives

U1 =
γ

ikαbθ
B1 =

γ

ikbz
B1. (3.87)

Use this equation to eliminate U1 in Eq. 3.86 and get

γ2ρp
ikbz

B1 = −∇
(
P1 +

B0 ·B1

µ0

)
+
ikbz
µ0

B1. (3.88)

Take the curl of this equation and the first term on the right hand side vanishes. There is

(
γ2ρp
ikbz

− ikbz
µ0

)
∇×B1 = 0. (3.89)

In general, γ2ρ0/ikbz 6= ikbz/µ0. Therefore µ0J1 = ∇×B1 = 0 inside plasma. Hence J1 is

also confined in the interface.

3.7.2 Asymptotic behaviors of modified Bessel functions

Asymptotic behaviors of modified Bessel functions are very useful for semi-quantitative

analysis in different limits. Here we relist some results from Ref. [1].

In large argument approximation, x� m2/2 and

Im(x) =
ex√
2πx

(
1− 4m2 − 1

8x
+O(x−2)

)
Km(x) =

√
π

2x
e−x

(
1 +

4m2 − 1

8x
+O(x−2)

)

for | arg x| < π/2. Therefore Im(x) and Km(x) are weakly dependent in the limit of x �

m2/2 and hence
I ′m
Im
≈ 1− 1

2x
≈ 1

K ′m
Km
≈ −1− 1

2x
≈ −1.
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In small x approximation, 0 < x�
√
m+ 1,

Im(x) ≈ 1

|m|!

(x
2

)|m|
Km(x) ≈ (|m| − 1)!

2

(
2

x

)|m|
m 6= 0,

so that
I ′m
Im
≈ |m|

x
and

K ′m
Km
≈ −|m|

x
m 6= 0.

3.7.3 Eigenvalues of matrix G

In this section we show that the eigenvalues of iG are purely real and are in positive-negative

pairs.

In the following derivation we will always use a finite symmetrically truncated matrix

Gp (see Eq. 3.61) instead of the original infinitely large matrix G defined in Eq. 3.54.

Matrix G is a tridiagonal matrix with zero diagonal, negative super-diagonaland positive

sub-diagonal entries. A finite truncated Gp has the form of

Gm,m+1 = ωm < 0, Gm,m = 0, Gm+1,m = βm > 0.

Define a real diagonal matrix D with

D1,1 = 1, Dm,m =

√
βm−1

−ωm−1
· · · β1

−ω1

and real matrix H

H = D−1GpD.

H is also a tridiagonal matrix with zero diagonal elements and the off-diagonal elements

are

Hm,m+1 = D−1
m,mGm,m+1Dm+1,m+1 = −

√
ωmβm

Hm+1,m = D−1
m+1,m+1Gm+1,mDm,m =

√
ωmβm.

Therefore HT = −H, where T is the transpose operation. Hence H is a real skew-

symmetric matrix. Furthermore, (iH)† = −iHT = iH, where † is complex conjugate
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transpose operation. Therefore iH is a Hermitian matrix. Since matrix iGp is similar to a

Hermitian matrix, all eigenvalues of iGp are pure real.

A matrix is similar to its transpose, so H and HT = −H must have same eigenvalues.

This immediately leads to the results that the eigenvalues of H always come in pairs ±λ,

where λ are imaginary. Therefore the eigenvalues of iGp always come in real positive and

negative pairs. Since iGp is a (2p+ 1) by (2p+ 1) matrix, by symmetry, 0 must also be an

eigenvalue of iGp. Therefore iG has p positive eigenvalues and p negative eigenvalues (in

pairs) and one zero eigenvalue. This is also consistent with the fact that the summation of

all eigenvalues of a matrix, which is zero for iG, equals to the trace of the matrix, which is

also zero because iG has zero diagonal entries.
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Chapter 4

Circularly polarized Magnetic
Field of Obliquely Propagating
Whistler Wave during Fast
Magnetic Reconnection

The whistler wave is a cold electromagnetic plasma wave ubiquitous in collisionless mag-

netic reconnection [29, 32, 54], Earth’s magnetosphere [24, 108, 116, 117], and laboratory

antenna excitation experiments [108, 109]. Whistler waves can be excited in a magnetized

plasma when the frequency is much higher than the ion cyclotron frequency but much lower

than the electron cyclotron frequency, i.e., ωci � ω � |ωce| [5, 6, 54]. The conventional

derivation of whistler waves shows that both the electric component and the magnetic com-

ponent of the wave are right-hand circularly polarized when the wavevector is parallel to

the background magnetic field. Tsurutani et al. [117] discovered that the magnetic compo-

nent of a magnetospheric whistler wave is circularly polarized even when the wavevector is

oblique to the background magnetic field. Theoretical analyses [6, 119] confirm that the

whistler wave always has a circularly polarized magnetic component regardless of the wave

propagation direction, but the wave electric component is circularly polarized only when

the wavevector is parallel to the background magnetic field.

Lab experiments [54, 80], electron magnetohydrodynamic (EMHD) simulations and

particle-in-cell (PIC) simulations [28, 29, 32], and space observations [24, 117] suggest that

the whistler wave is an integral component of fast magnetic reconnection. However it is

still unclear what role the whistler wave plays in the reconnection processes. Theoretical

modeling shows that the equations that govern the fast reconnection process may involve
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whistler waves [7].

In the Caltech plasma jet experiment, a current-carrying collimated jet is created from

the merging of eight plasma-filled flux ropes. When the current-carrying jet undergoes a

kink instability, a lateral Rayleigh-Taylor instability occurs on the jet surface. A linear

theory of this Rayleigh-Taylor instability has been presented in Chapter 3. The Rayleigh-

Taylor instability quickly evolves to a nonlinear phase, and the plasma jet is eroded by the

instability to have a width smaller than the ion skin depth. At the ion skin depth scale,

MHD is no longer valid because ion and electron motion are decoupled. A fast magnetic

reconnection induced by the Rayleigh-Taylor instability then occurs and eventually breaks

the plasma jet structure [80]. A capacitively coupled probe placed near the jet measured

fast electric field fluctuations with frequencies in the whistler regime [79, 80].

In this chapter, we present the measurements and analyses of the magnetic components

of the whistler waves associated with the fast magnetic reconnection in the Caltech plasma

jet experiment. A 3D high speed magnetic probe with excellent electrostatic rejection has

been specifically designed and constructed to perform the measurement (see Chapter 5 for

details about the magnetic probe). High-frequency magnetic fluctuations in the whistler

regime are detected by the probe at the time of Rayleigh-Taylor instability and reconnection.

The magnetic fluctuations span a wide frequency range and have a very steep power spec-

trum. Circularly polarized magnetic components of obliquely propagating whistler waves

are identified. The detection of whistler waves is important evidence indicating that the

reconnection process is in the two-fluid, not MHD regime.

This chapter is arranged as follows. First we briefly review the theories of whistler

wave and its association with fast reconnection. Then we analyze the measurements from

the high-speed 3D magnetic probe and show that the high-frequency magnetic fluctuations

are an ensemble of whistler waves generated during the reconnection. We use a hodogram

technique to resolve the circularly polarized magnetic components of the whistler waves.

A polarization recognition algorithm was developed to automatically identify the type of

polarization. Useful signal processing algorithms are listed and briefly reviewed in Ap-

pendix B, such as Fourier transform, finite impulse response digital filters and principal

component analysis.
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4.1 Background

4.1.1 Two-fluid theory of whistler wave

The whistler wave is a cold electromagnetic plasma wave with frequency much higher than

the ion cyclotron frequency but much lower than the electron cyclotron frequency. Therefore

ions can be assumed to be unmagnetized and the electron motion and the ion motion

are decoupled. This is different from MHD theory which treats ions and electrons as a

single bulk fluid. Two-fluid theory is required to explain the physics of whistler waves.

Linear perturbation to the two-fluid theory shows that electromagnetic fluctuations in a

cold plasma satisfy

∇×B =
1

c2

∂

∂t
(K ·E) (4.1)

∇×E = −∂B

∂t
, (4.2)

where the dielectric tensor is

K =


S −iD 0

iD S 0

0 0 P

 , (4.3)

and the elements of the dielectric tensor are

S = 1−
∑
σ=i,e

ω2
pσ

ω2 − ω2
cσ

(4.4)

D =
∑
σ=i,e

ωcσ
ω

ω2
pσ

ω2 − ω2
cσ

(4.5)

P = 1−
∑
σ=i,e

ω2
pσ

ω2
. (4.6)

The z axis of the coordinate system has been defined parallel to the equilibrium magnetic

field. See Bellan (2006) [5] for details.

Assuming the perturbation terms have a spatial and time dependence as exp(ik·x−iωt),
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Eq. 4.1 and 4.2 becomes

k× (k×E) = −ω
2

c2
K ·E (4.7)

nn ·E− n2E + K ·E = 0, (4.8)

where we have defined the refractive index n = ck/ω. Without loss of generality, the x axis

of the coordinate system is defined to lie along the perpendicular component of n so that

ny = 0. We further define θ to be the angle between n and ẑ (the direction of equilibrium

magnetic field) so that nx = n sin θ and nz = n cos θ. The above equation becomes


S − n2 cos2 θ −iD n2 sin θ cos θ

iD S − n2 0

n2 sin θ cos θ 0 P − n2 sin2 θ

 ·

Ex

Ey

Ez

 = 0. (4.9)

Existence of non-trivial solutions to Eq. 4.9 requires that the determinant of the matrix

must vanish. This leads to a very complicated dispersion relation between ω and n (or k).

Consider the special case where θ = 0. Equation 4.9 becomes


S − n2 −iD 0

iD S − n2 0

0 0 P

 ·

Ex

Ey

Ez

 = 0. (4.10)

Equating the determinant of the matrix to zero gives

[(S − n2)2 −D2]P = 0, (4.11)

which has roots

P = 0, n2 = R ≡ S +D, n2 = L ≡ S −D. (4.12)

P = 0 corresponds to the cold plasma limit of unmagnetized electrostatic plasma wave.

n2 = R or L are the dispersion relations of magnetized cold plasma waves propagating

along the background magnetic field. Consider the solution n2 = R = S+D. Equation 4.10
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becomes 
−D −iD 0

iD −D 0

0 0 P

 ·

Ex

Ey

Ez

 = 0. (4.13)

Hence the n2 = R solution has
Ex
Ey

= −i. (4.14)

This corresponds to a right-hand circularly polarized electric component of an electromag-

netic wave propagating in the positive z direction. Because Faraday’s law gives iωB =

ik × E, the magnetic component is also right-hand circularly polarized. Similarly, the

n2 = L solution gives a left-hand circularly polarized plasma wave.

Now we consider a special high-frequency limit so that the ion terms in S, D, and P

are all small compared to unity or the electron terms, i.e.,

S ≈ 1−
ω2
pe

ω2 − ω2
ce

D ≈ ωce
ω

ω2
pe

ω2 − ω2
ce

P ≈ 1−
ω2
pe

ω2
. (4.15)

It can be shown that the approximations give the famous Altar-Appleton-Hartree dispersion

relation

n2 = 1−

 2
ω2
pe

ω2

(
1− ω2

pe

ω2

)
2
(

1− ω2
pe

ω2

)
− ω2

ce
ω2

(
1− ω2

pe

ω2

)2
± Γ

 , (4.16)

where

Γ =

√
ω4
ce

ω4
sin4 θ + 4

ω2
ce

ω2

(
1−

ω2
pe

ω2

)2

cos2 θ. (4.17)

The + sign in the dispersion relation corresponds to the n2 = R solution in the θ = 0 case

and the − sign corresponds to the n2 = L solution.

We further take the limit

ω4
ce

ω4
sin4 θ � 4

ω2
ce

ω2

(
1−

ω2
pe

ω2

)2

cos2 θ (4.18)
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so that

Γ ≈ −2

(
1−

ω2
pe

ω2

)2

cos2 θ. (4.19)

In most literature, this approximation is made under the quasi-longitudinal (QL) approxi-

mation θ ≈ 0. However, a simplification to Eq. 4.18 gives

sin2 θ � 2ω

|ωce|

∣∣∣∣∣1− ω2
pe

ω2

∣∣∣∣∣ cos θ (4.20)

or
sin2 θ

cos θ
�

2ω2
pe

ω|ωce|
, if ω � ωpe. (4.21)

Therefore the quasi-longitudinal approximation θ ≈ 0 can be relaxed to Eq. 4.21. We will

see later that in the Caltech plasma jet experiment the RHS of Eq. 4.21 is of order of 107.

Hence Eq. 4.21 is valid for essentially all θ except for θ = π/2.

Upon substitution of Eq. 4.19, the dispersion relation Eq. 4.16 becomes

n2
± = 1−

ω2
pe/ω

2

1∓
∣∣ωce
ω cos θ

∣∣ . (4.22)

The mode with upper sign is the quasi-longitudinal right-hand (QLR) mode and has a

right-hand circularly polarized magnetic component. When ω � |ωce cos θ|, the QLR mode

is called the whistler or helicon wave and the dispersion relation becomes

c2k2

ω2
= n2

+ =
ω2
pe

ω|ωce cos θ|
. (4.23)

or

ω =
c2|ωce cos θ|

ω2
pe

k2 =
c2|ωce cos θ|

ω2
pe

k2 , k =
ωpe
c

√
ω

|ωce cos θ|
. (4.24)

The phase velocity of the whistler wave is

vp =
ω

k
k̂ =

c

ωpe

√
ω|ωce cos θ| · k̂ =

c

n
k̂. (4.25)

The group velocity associated with the dispersion relation is

vg =
∂ω

∂k
=

2c

ωpe

√
ω|ωce cos θ| · k̂ =

2c

n
k̂ = 2vp. (4.26)

The whistler wave has an interesting quadratic dispersion relation ω ∝ k2. Consequentially,
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low-frequency models travel slower than high-frequency modes. In the magnetosphere when

a burst of broadband whistler waves is excited by lightning or magnetic reconnection, a

distant observer always sees the high-frequency modes first and then low-frequency modes,

analogous to a descending whistler tone.

Verkhoglyadova et al. (2010) [119] and Bellan (2013) [6] showed theoretically that the

magnetic component of an obliquely propagating whistler wave is also right-hand circularly

polarized. The electric field oscillation has a finite component along the wave propagation

direction if the latter is not aligned with the background magnetic field, but the perpendic-

ular component remains right-hand circularly polarized. Therefore when the wave vector is

oblique to the background magnetic field, the electric field is not exactly circularly polarized.

In the Caltech plasma jet experiment, at the location of the 3D whistler probe (z = 29

cm, r = 6 cm), the electron number density is about ne ≈ 1021 m−3, and the magnetic field

strength is B ∼ 0.15 T. The electron/ion plasma frequencies and cyclotron frequencies are

ωpe = 1.8× 1012Hz ωpi = 6.6× 109Hz

|ωce| = 2.6× 1010Hz ωci = 3.6× 105Hz

or fpe = 2.9× 1011Hz fpi = 1.1× 109Hz

|fce| = 4.1× 109Hz fci = 5.7× 104Hz.

The typical frequency of the magnetic fluctuations measured by the 3D magnetic probe

is in the range of 2− 20 Mhz, corresponding to an angular frequency ω = 0.13× 108 Hz to

1.3 × 108 Hz. Hence ωci � ω � ωpi � |ωce| � ωpe. It can be shown that 2ω2
pe/(ω|ωce|) =

2 × 106 − 2 × 107. Therefore the approximation made in Eq. 4.21 is valid except for θ
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extremely close to π/2. It can also be shown that∣∣∣∣∣ ω2
pe

ω2 − ω2
ce

∣∣∣∣∣ ≈ ω2
pe

ω2
ce

= 4.6× 103

∣∣∣∣∣ ω2
pi

ω2 − ω2
ci

∣∣∣∣∣ ≈ ω2
pi

ω2
= 2.7× 103 − 2.7× 105

∣∣∣∣∣ωceω ω2
pe

ω2 − ω2
ce

∣∣∣∣∣ ≈ ω2
pe

ω|ωce|
= 106 − 107

∣∣∣∣∣ωciω ω2
pi

ω2 − ω2
ci

∣∣∣∣∣ ≈ ωciω
2
pi

ω3
= 8− 8× 103

ω2
pe

ω2
= 2× 108 − 2× 1010

ω2
pi

ω2
= 2.7× 103 − 2.7× 105.

Therefore the approximations in Eq. 4.15 for D and P are valid. For S, according to the

above estimation, the ion term is comparable or even larger than the electron term, so it is

inappropriate to drop the ion term. However, calculation shows that the dispersion relation

Eq. 4.23 is still valid even though it was derived by assuming the ion term in S is ignorable.

To see this, we consider a different approach to derive the whistler wave dispersion

relation. According to the calculation above, there are |P | ≈ 109, |D| ≈ 106 and |S| ≈ 104.

Moreover, the whistler dispersion relation gives n2 ∼ ω2
pe/(ω|ωce|) ∼ 106. Therefore |P | �

n2 ∼ |D| � S. Revisit Eq. 4.9 and write the determinant of the matrix as

(P − n2 sin2 θ)

∣∣∣∣∣∣S − n
2 cos2 θ −iD

iD S − n2

∣∣∣∣∣∣+ n2 sin θ cos θ

∣∣∣∣∣∣ −iD n2 sin θ cos θ

S − n2 0

∣∣∣∣∣∣ = 0. (4.27)

Because |P − n2 sin2 θ| is much larger than other terms in the equation, the balance of this

equation requires that∣∣∣∣∣∣S − n
2 cos2 θ −iD

iD S − n2

∣∣∣∣∣∣ ≈ 0 if |P | � |D|, n2, |S|. (4.28)
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Expansion of the above equation gives

n4 cos2 θ − Sn2(1 + cos2 θ) + S2 −D2 = 0. (4.29)

n2 =
S(1 + cos2 θ) +

√
4D2 cos2 θ + S2 sin4 θ

2 cos2 θ
. (4.30)

With quasi-longitudinal approximation 4D2 cos2 θ � S2 sin4 θ and also |D| � |S|, the above

equation becomes

n2 ≈ D

cos θ

≈ ωce
ω

ω2
pe

ω2 − ω2
ce

1

cos θ
(4.31)

≈ ωce
ω

ω2
pe

−ω2
ce cos θ

=
ω2
pe

ω|ωce| cos θ
. (4.32)

Equation 4.32 is identical to the whistler dispersion relation obtained in Eq. 4.23. The

approximations we have made to derive Eq. 4.32 are |P | � |D| � |S|, |D| � |S| sin2 θ/ cos θ

and that the ion term is ignorable in D. In the Caltech plasma jet experiment configuration,

the above two conditions are satisfied as long as ωci � ω � |ωce|.

It is important to note that the above derivation of the whistler wave dispersion does

not rely on the sign of S. S can be positive or negative as long as |D| � |S| is satisfied.

S = 0 corresponds to the lower hybrid resonance, an electrostatic resonance occurring

perpendicular to the magnetic field. The frequency of the lower hybrid resonance is

ω2
lh = ω2

ci +
ω2
pi

1 +
ω2
pe

ω2
ce

. (4.33)

In our plasma ωpe � |ωce|, and the above expression can be simplified as

ω2
lh ≈ ω2

ci +
ω2
piω

2
ce

ω2
pe

= ω2
ci +

me

mi
ω2
ce =

m2
e

m2
i

ω2
ce +

me

mi
ω2
ce

≈ me

mi
ω2
ce =

mi

me
ω2
ci = ωciωce. (4.34)

Therefore ωci � ωlh � |ωce|. Because the derivation of the whistler wave does not depend

on the sign of S, the whistler wave can exist with S > 0, S < 0 or S = 0, i.e., the whistler
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frequency can be higher, lower, or even equal to the lower hybrid resonance frequency.

We have reviewed the basic theory of whistler waves and verified that the 2 − 20 MHz

magnetic fluctuation measured by the high speed 3D magnetic probe is in the whistler

regime.

4.1.2 Fast magnetic reconnection and whistler wave

Consider the two-fluid electron equation of motion

me
due
dt

= −e(E + ue ×B)− 1

ne
∇(neκTe)− νeime(ue − ui), (4.35)

where νei is the collision rate between electrons and ions. Because ui − ue = J/(nee)

and ui = (1 + me/mi)U + (me/mi)ue ≈ U, the electron velocity can be written as ue ≈

−J/(nee) + U. Here U is the center of mass velocity of electrons and ions. The electron

equation of motion, or generalized Ohm’s law becomes

me

e

due
dt︸ ︷︷ ︸

electron inertia

+E + U×B− 1

nee
J×B︸ ︷︷ ︸

Hall

+
1

nee
∇(neκTe)︸ ︷︷ ︸

electron pressure

= ηJ︸︷︷︸
resistive term

, (4.36)

where η = νeime/(nee
2) is the plasma resistivity. The electron inertia term on the LHS of

the equation may be ignored for low speed plasma motion. The third term on the LHS of the

equation, −J×B/(nee), is call the Hall term, and is ignored in MHD theory. Equation 4.36

is usually used in Ampere’s law −∂tB = ∇ × E. After taken curl, the electron pressure

term becomes

∇×
(

1

nee
∇(neκTe)

)
= ∇ 1

nee
×∇(neκTe) = − 1

n2
ee
∇ne × (κTe∇ne + ne∇(κTe))

= − 1

nee
∇ne ×∇(κTe). (4.37)

Since the gradient of density is usually parallel to the gradient of temperature (or pressure),

the above equation is close to zero.

Upon dropping the electron inertia term, the Hall term and the pressure term, the

equation of electron motion is reduced to the well-known MHD Ohm’s law

E + U×B = ηJ. (4.38)
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Figure 4.1: Sketch of 2D X-point type Sweet-Parker reconnection. The solid curves with
arrows are the magnetic field lines. A current sheet is formed in the center of this X-point
configuration.

Ideal MHD theory further takes the zero resistivity limit, i.e., η = 0. We have shown in

the introduction chapter that this leads to the famous frozen-in flux condition in which the

magnetic flux enclosed by any closed material line is constant.

Magnetic reconnection, a process wherein magnetic field lines break and reconnect to

form a different topological configuration, is forbidden in ideal MHD because the magnetic

flux in the reconnection region must change in the reconnection process. With finite electric

resistivity, the Sweet-Parker model [13, 87, 111] shows that magnetic reconnection occurs

in a stationary, steady-state fashion due to magnetic diffusion. Magnetic reconnection can

also be described as a growing instability called tearing instability in the context of resistive

MHD [33]. Figure 4.1 shows a sketch of two-dimensional Sweet-Parker magnetic reconnec-

tion. Plasmas that carry horizontal magnetic field lines of opposite directions are pinched

towards each other at velocity Vin by some external force. In the central plane an electric

current is generated flowing into the board because of the oppositely oriented magnetic

field lines above and beneath the central plane. Because of the finite resistivity, the current

sheet region dissipates magnetic energy. Consequentially the horizontal magnetic field lines

break (diffuse) in the center, become vertical field lines and move outwards horizontally.

The center region is called the X-point.

The reconnection rate of Sweet-Parker model can be quantified by Vin/VA ∼ 1/
√
S,
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where VA is the Alfvén velocity and S is the Lundquist number corresponding to the size

of the current sheet [13, 123]. This rate, however, is usually too slow compared to actual

reconnection processes. For example, in the solar corona the plasma resistivity is very low

due to the high temperature and the low density, so the Lundquist number is very large.

Coronal mass ejection (CME) events last for seconds to minutes, whereas the Sweet-Parker

model would predict weeks to months for the reconnection involved in these events [79].

In the Magnetic Reconnection eXperiment (MRX) in Princeton Plasma Physics Lab, an

anomalous resistivity as high as 10 times larger than the Spitzer resistivity has to be assumed

to explain the experimental reconnection rate [55, 66, 115, 123].

These discrepancies have motivated efforts to consider non-MHD effects in the plasma

dynamics. One of the assumptions of MHD theory is that the ion dynamics and the electron

dynamics are coupled and the bulk plasma dynamics is considered. This is usually not

correct in the processes involving small-scale fast-paced dynamics like reconnection. On a

length scale that is smaller than the ion skin depth di = c/ωpi, where c is the speed of light

and ωpi is the ion plasma frequency, the plasma should not be considered as a single bulk

fluid. Theories of fast magnetic reconnection, sometimes called Hall magnetic reconnection,

use the generalized Ohm’s law by including the electron inertia term and the Hall term1.

The generalized Ohm’s law can also be written as

E + ue ×B = −me

e

due
dt
− ∇Pe

nee
+ ηJ. (4.39)

In the cases that the electron inertia term or the hall term are more important than the

resistive term, for example, when the current sheet is thinner than the electron mean free

path, the reconnection is also called collisionless reconnection.

Note that if the electron inertia term and the pressure term are dropped, Eq. 4.39

then becomes very similar to Eq. 4.38 except that the velocity involved in Eq. 4.39 is the

electron velocity instead of the bulk plasma velocity. In the zero resistivity limit this leads

to the result that the magnetic field is frozen into the electron fluid and ions are somewhat

“unmagnetized”. Sometimes this regime is also called the electron magnetohydrodynamics

(EMHD) regime, in contrast to the conventional MHD regime. In general cases when the

electron inertia term and resistive term are included it is not correct to assume that the

1Sometimes the electron pressure term is also included, such as in Ref. [7]
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magnetic field is frozen to the electron motion.

In the Caltech plasma jet experiment, the current density though the cross-section of

the pre-kink jet is estimated to be

J =
I

πR2
∼ 50 kA

π(5 cm)2
= 6.4× 106 A/m2,

where I = 50 kA is the total poloidal current and R = 5 cm is the radius of the central

plasma that carries the current. With ne = 1022 m−3, the relative drift velocity between

ions and electrons is

Ui − Ue =
J

nee
∼ 4 km/s.

This drift velocity is about 20 − 30% times the bulk plasma velocity. Hence the for the

pre-kink jet the Hall term J×B/nee is ignorable comparing to the U×B term. However as

the plasma is pinched to a thickness smaller than 5 mm by the Rayleigh-Taylor instability,

the local current density increases to

J ∼ 50 kA

5 mm× 5 cm
= 2× 108 A/m2.

Use the electron number density inferred from Stark broadening measurement ne = 3.5 ×

1022 m−3, the relative drift velocity of ions and electrons becomes

Ui − Ue =
J

nee
∼ 36 km/s.

This relative drift velocity is faster than the typical argon jet velocity v ∼ 10 − 20 km/s,

indicating that the ion and electron motion are decoupled. It is therefore inappropriate to

drop the Hall term in Ohm’s law.

Fast magnetic reconnection has been studied in theoretical modeling [7], lab experi-

ments [54, 55, 66, 115, 123], space observation [24, 86], two-fluid, hybrid, and full-particle

numerical simulations [12, 28, 29, 32, 77, 94]. These studies find that the rates of fast

magnetic reconnection significantly exceed those obtained from resistive MHD reconnection

models [12, 123]. For example, Bellan (2014) [7] showed that when using the full version of

the generalized Ohm’s law (Eq. 4.36), the systems of equations of the fast magnetic recon-

nection is inherently fourth-order, and is fundamentally different from the resistive MHD
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theory. The latter one is intrinsically second order. The eigen solution of the fourth order

equation systems gives a fast and purely growing magnetic reconnection with the growth

rate on the order of the whistler frequency.

By including the Hall term and the electron inertia term in the generalized Ohm’s

law, we have essentially separated the electron motion from the ion motion. Equivalently

speaking, Hall magnetic reconnection is in the context of two-fluid theory, not MHD theory.

Due to the large ion to electron mass ratio, ion motion is much slower than electron motion.

If plasma dynamics occurs with a velocity much faster than the ion motion but much slower

than the electron motion, the ions can be assumed to be stationary and the electrons are

fast moving particles. We have shown in section 4.1.1 that the characteristic wave in this

regime is the whistler wave.

Various studies have revealed a strong relation between fast magnetic reconnection and

whistler wave [7, 24, 29, 32, 35, 54, 77, 94]. The role of whistler wave in the fast magnetic

reconnection, however, remains strongly debated.

Mandt et al. (1994) [77] studied fast magnetic reconnection using hybrid numerical sim-

ulation. It is suggested that in the EMHD regime the whistler wave take over the role of

the Alfvén wave in driving magnetic reconnection. More specifically, whistler wave helps

develop an out-of-plane magnetic field components and drives fast reconnection as the bent

magnetic field straightens out, which pumps the magnetic energy into whistler wave energy.

Roger et al. (2001) [94] proposed that collisionless reconnection is controlled by standing

whistler waves in the vicinity of the X-point. The quadratic dispersion relation of the

whistler wave is necessary to maintain stable whistler waves near the X-point. Drake et

al. (2008) [29] used large-scale, particles-in-cell simulation and found that whistler wave

plays the key role in driving the electrons away from the magnetic X-line and essentially

drives the reconnection. These results prefer a whistler-wave driven fast reconnection mech-

anism.

Space observation detects whistler-mode waves at the times of Hall magnetic reconnec-

tion between the magnetic field of the Earth’s magnetosphere and the magnetic field of the

Solar wind [24? ]. Deng & Matsumoto (2001) [24] claimed that the reconnection is medi-

ated by whistler waves. Ji et al. (2004) [54] investigated fast reconnection experimentally

and found high-frequency magnetic fluctuations near the current sheet center. The magnetic

fluctuations have frequencies comparable to or below the lower hybrid resonance frequency



125

and the wavevectors are obliquely to the background magnetic field, corresponding to the

right-hand polarized whistler wave. These space observations and terrestrial experiments

demonstrate positive correlations between the whistler wave and the fast magnetic recon-

nection. However, they cannot prove that the fast magnetic reconnection is driven by the

whistler wave.

By contrast, Bellan (2014) [7] showed in theory that in Hall MHD plasma fast magnetic

reconnection is a purely growing instability that does not necessarily involve a whistler

wave, although the same equations do give a whistler wave if the perturbation is wavelike.

Bellan (2014) [7] also pointed out that the standing whistler wave scenario proposed by

Roger et al. (2001) [94] can lead to unphysical behaviors such as fast oscillating electron flow

and diverging frequency at the X-point. Fujimoto et al. (2008) [32] showed that whistler

wave is driven by electron temperature anisotropy caused by fast magnetic reconnection

in the downstream region of the electron flow. The whistler wave does not control the

energy dissipation process but instead scatters the electrons and relaxes the temperature

anisotropy. These results suggest that whistler waves are associated with fast reconnection,

but is not the cause of fast reconnection.

4.2 Whistler waves associated with fast reconnection in the

plasma jet experiment

At the location of the lateral Rayleigh-Taylor instability, spectroscopic measurement of

Stark broadening shows that the electron density of the compressed plasma is (3.5± 0.9)×

1022 m−3. Assuming ni = ne, the electron and ion plasma frequency are respectively

ωpi = 36 GHz and ωpe = 10 THz. The ion skin depth or ion inertia depth is di = c/ωpi = 8

mm and the electron skin depth is de = c/ωpe = 0.03 mm. Visible images show that the

Rayleigh-Taylor instability rapidly chokes the plasma filament down to less than 5 mm,

smaller than the ion skin depth [79, 80]. Therefore the ion motion is decoupled from the

electron motion and the plasma dynamics is in the two-fluid regime.

As the Rayleigh-Taylor instability grows, the plasma jet eventually breaks at the loca-

tion of the instability. As a consequence, the helical magnetic field that was frozen into the

jet must have undergone a reconnection process, mostly likely a fast magnetic reconnec-

tion process because small-scale dynamics was involved. High-frequency whistler waves are
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expected to be associated with this process.

A high-speed 3D magnetic probe (we hereafter use “whistler probe”) has been specially

designed and built to measure the magnetic component of the whistler waves generated in

the Caltech plasma jet experiment. The whistler probe is composed of three orthogonal

pairs of oppositely oriented B-dot coils. Each B-dot coil is a single turn shielded loop probe

made out of a 0.047 inch semi-rigid coaxial cable. An RF ground loop diverting technique

invented by Perkins & Bellan [89] is implemented. The probe has an overall 70 dB rejection

to electrostatic interference. The whistler probe is placed at z = 29 cm away from the

electrode (z = 0) and its radial location can be adjusted.

The whistler probe is connected via a 20 dB attenuator to a 100 MHz VME data

acquisition system and is sensitive to magnetic fluctuations Ḃ > 100T/sec (or 1 Gauss/µs)

up to 20 MHz. The measurement range is ±106T/sec, given the 20 dB attenuation, the

±0.5 V dynamic range of the data acquisition system and the the calibration factor of the

whistler probe 0.5×10−4 V/(T/sec). Detailed information about the whistler probe is given

in Chapter 5.

4.2.1 High-frequency magnetic fluctuations during fast magnetic recon-

nection

First we placed the whistler probe at r = 6 cm so that the probe is immersed in a relatively

low density plasma surrounding the central dense plasma jet. Typical direct measurements

of magnetic fluctuations Ḃ are given in the first row of Fig. 4.2 (shot 17012). The signals

are integrated over time to give the magnetic field measurement as shown in the third row

of Fig. 4.2. The first and the third rows of the figure show that the magnetized plasma

reached the probe as early as 12 µs.

The velocity of the argon plasma jet is 10 − 20 km/s, hence the motion of the plasma

across a 1 cm size probe may cause magnetic field fluctuations up to 2 MHz. To eliminate

this effect, we apply a digital 2 MHz highpass filter to the measurements (see § B.2 for details

about the digital filter). The filtered high-frequency magnetic fluctuations measurements

are shown in the second row of Fig. 4.2. The filtered signals clearly show that the high-

frequency magnetic fluctuations in all three components arise at 28 µs and become very

violent after 30 µs. The profiles of the high-frequency fluctuations are somewhat stochastic

and are similar in all three directions, indicating that the fluctuations contain an ensemble
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Figure 4.2: 3D magnetic field measurements of shot 17012 from 0 to 40 µs. First row:
magnetic fluctuation dB/dt measurements. Second row: Signals in the top row filtered by a
4-th order Butterworth 2 MHz highpass digital filter. The insets show the signals in detail
from 26 to 32 µs. Third row: magnetic field measurements obtained by integrating the
dB/dt signals over time. Fourth row: Spectra of the magnetic fluctuations Ḃ from 27 to
35 µs obtained using fast Fourier transform. The dashed lines are the best fitted power-law
function. In shot 17012, the probe is located at z = 29 cm, r = 6 cm.
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of modes. The fourth row of the figure shows that the broadband magnetic fluctuations have

continuous spectra following f−1 power-law from 2 MHz to 20 MHz. As shown in § 4.1.1

these high-frequency magnetic fluctuations measured by the magnetic probe correspond to

the whistler regime.

At t = 28 µs, a Rayleigh-Taylor instability that eventually leads to magnetic recon-

nection starts to develop on the kinked plasma jet. Figure 4.3 shows a sequence of false

color images created by superimposing extreme ultraviolet (EUV) emissions in 30− 60 eV

band [17] and visible light emissions (see § 1.2.2 for detailed description about the diag-

nostics). As the Rayleigh-Taylor instability begins, the top part of the kinked jet becomes

extremely bright in EUV while it dims in visible light, indicating a sudden increase in the

electron temperature of the top part of the jet. The 30 − 60 eV (20 − 40 nm wavelength)

EUV emissions are believed from Ar5+−Ar7+ ions. Assuming local thermal equilibrium,

the existence of significant amounts of Ar5+−Ar7+ ions reveals that the local electron tem-

perature is 5−10 eV. Spectroscopic measurements show that the local ion temperature also

rose from ∼ 3 eV to ∼ 16 eV. This efficient particle heating occurring in microsecond scales

is believed to be a consequence of fast magnetic reconnection, where magnetic energy is

rapidly dissipated and converted to particle kinetic energy. Similar particle heating is also

observed in the Princeton reconnection experiment MRX [123, 124, 125].

Figure. 4.4 shows the voltage and current profiles measured at the electrodes. It is

seen that large voltage spikes of 500− 800 V occur starting at 29.5 µs, indicating temporal

changes of the magnetic flux associated with the electric current through the electrodes. The

current profile does not have notable spikes but instead undergoes a non-smooth change at

31.5 µs, coincident with the end of the voltage spikes. This implies that the current has a

different path after 31.5 µs.

The fast particle heating and the IV profiles suggest that a magnetic reconnection occurs

around 28 µs, triggered by the Rayleigh-Taylor instability. The detection of high-frequency

magnetic fluctuations coincident with the Rayleigh-Taylor instability shows that the process

is a fast magnetic reconnection.

Figure 4.5 gives the typical measurements of magnetic fluctuations when the probe was

placed at r = 1 cm so that at later times the probe was immersed in the central dense

plasma jet (shot 16940). The results are in general very similar to those of shot 17012. The

timing of high-frequency modes is again consistent with the large voltage spike shown in



129

(a)

28.0 μs

(b)

28.5 μs

(c)

29.0 μs

(d)

29.5 μs

Figure 4.3: Front view of composite images of EUV emission and visible light emission of
the kinked argon plasma jet (shot 17012). The EUV emissions are displayed in red and the
visible light emissions are depicted in blue. The total power of the EUV burst is estimated
to be 50 kW [17]. Figure from Kil-Byoung Chai, personal communication.
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Figure 4.4: IV characteristics of shot 17012. Left: Voltage across the electrodes. Right:
Current flowing through the electrodes.
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Fig. 4.6.

We have detected high-frequency magnetic fluctuations in the whistler frequency range

simultaneously with a Rayleigh-Taylor instability induced magnetic reconnection. This in-

dicates that the whistler wave is associated with the reconnection and that the reconnection

is a fast reconnection. The instability occurs at z ≈ 10 cm, r ≈ 5− 10 cm. Hence the probe

is about 15 cm away from the location of the reconnection. We believe that there is no

magnetic field line that connects the reconnection point to the probe. Hence the whistler

waves generated in the reconnection region need to propagate obliquely to the magnetic

field to be picked up by the whistler probe. Assuming an average plasma density ne = 1021

m−3 and a magnetic field B = 0.15 T, at 10 MHz Eq. 4.23-4.26 give the refractive index

n = ck/ω ≈ 1400 and vg = 2c/n = 430 km/s. Therefore it only takes 0.35 µs for the

whistler waves to travel from the location of magnetic reconnection to the probe.

4.2.2 High-frequency magnetic fluctuations as an ensemble of whistler

waves

We have already shown in the third rows of Fig. 4.2 and 4.5 that the high frequency

fluctuations have continuous spectra scales as Ḃ ∝ f−1. Because Ḃ ∼ ωB ∼ fB and

whistler waves have f ∼ k2, there are

Ḃ ∝ f−1 ∝ k−2 (4.40)

B ∝ f−2 ∝ k−4 (4.41)

B2/f ∝ f−5 ∝ k−10 (4.42)

B2/k ∝ f−4.5 ∝ k−9. (4.43)

The magnetic fluctuations measured by the whistler probe have very steep power spectra

in comparison to the Alfvénic MHD turbulence observed in the solar wind. The latter

ones have B2/k ∝ k−5/3 in the inertial range [37]. Chang et al. (2013) [19] performed 3D

particle-in-cell simulations and found that in a collisionless magnetized plasma the whistler

turbulence, with frequencies much higher than the Alfvén wave, follows power laws between

B2/k ∝ f−3 and B2/k ∝ f−4 for 0.1|ωce| < ω < |ωce|. For ω < 0.1|ωce| the power spectra

are much less steep. However, our measurements reveal much steeper power spectra for
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Figure 4.5: 3D magnetic field measurements of shot 16940 from 0 to 40 µs. Location of the
probe: z = 29 cm, r = 1 cm.
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Figure 4.6: IV characteristics of shot 16940. Left: Voltage across the electrodes. Right:
Current flowing through the electrodes.

ω � 0.1|ωce|. The underlying physics of such steep power spectra is not clear. One plausible

explanation is that the dissipation of high frequency whistler waves may be more efficient

as they travel through the plasma than that of low frequency waves. However the whistler

wave is an electromagnetic wave and the particle-wave interaction is normally very weak.

Another potential contributing factor is the nature of the in-situ plasma magnetic field

measurement. The magnetic probe, enclosed in a quartz tube, is isolated from the plasma.

Therefore the magnetic field in the plasma needs to diffuse out of the plasma into the tube

to be picked up by the probe. High-frequency modes are more attenuated than the low-

frequency modes in the diffusion process. Hence the magnetic power spectra measured by

the probe is expected to be steeper than the actual spectra in the plasma.

One major question is whether the magnetic fluctuations detected by the whistler probe

are indeed turbulence. Plasma turbulence is a broadband ensemble of incoherent field

fluctuations. The stochastic behavior of the detected fluctuations shown in Fig. 4.2 and 4.5

seems to be consistent with the definition. To answer this question, we consider the Fourier

transform of the magnetic fluctuations in complex domain. The absolute value of a complex

Fourier coefficient gives the amplitude of the corresponding Fourier mode and the argument

(complex angle) of the complex Fourier coefficient gives the phase of the corresponding

mode. Mathematical details can be found in § B.1. Figure 4.7 and Figure 4.8 present the

phases of different modes computed from the Fourier transforms. In shot 16940, where the
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Figure 4.7: Phases of different Fourier modes obtained from the Fourier transform of mag-
netic fluctuations measurements in different time periods. Shot 16940 (probe at z = 29 cm,
r = 1 cm).
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Figure 4.8: Phases of different Fourier modes obtained from Shot 17012 (probe at z = 29
cm, r = 6 cm).
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Figure 4.9: Spectrograms of the 3D magnetic fluctuations Ḃ measured in shot 17012 (left)
and shot 16940 (right) from t = 0 to 45 µs and f = 1 to 24 MHz. The color in all
spectrograms represents the common logarithm of the amplitudes of different modes in the
unit of T/sec. The sensitivity of the probe is 102 T/sec.

probe is located in the central dense plasma jet, different frequency modes have similar

phases in the 29−36 µs period, indicating that the different modes are coherent2. However,

in shot 17012, where the probe is located in the low density plasma surrounding the central

jet, different modes of the measured magnetic fluctuations are incoherent in the entire

28− 35 µs time period. In a short time window from 28 to 30 µs when the high frequency

fluctuations were just detected, Fig. 4.8 shows that the fluctuations are somewhat coherent.

The high frequency magnetic fluctuations measured by the whistler probe are an en-

semble of whistler waves of different frequencies. These whistler waves are coherent to

some extent, suggesting that they might originate from the same source. The magnetic

fluctuations, although with power-law spectra, are not random turbulence.

To study the time variations of the fluctuations spectra, we show the spectrograms

of shot 17012 and 16940 in Fig. 4.9. The spectrograms display the fluctuation power in

both the time and the frequency domain. Figure 4.9 shows that low-frequency magnetic

fluctuations arise around 15 µs due to the motion of the plasma and broadband high-

2Note that the phase θ is periodic about 360◦ so α◦ is identical to α◦ + n · 360◦ with any integer n.
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frequency fluctuations arise around 30 µs when the Rayleigh-Taylor instability occurs.

4.2.3 Circularly polarized whistler wave

The whistler wave has a circularly polarized magnetic field component regardless of the

angle between the direction of the wave propagation and the background magnetic field.

The whistler probe can measure 3D magnetic field and therefore is in principle capable of

resolving the polarization property of the fluctuations. However, the fluctuations measured

by the probe at a single spatial location are an ensemble of different modes. Therefore we

use 4-th order Butterworth finite impulse response (FIR) digital bandpass filters to process

the measurements and select single frequency modes. The mathematical details about the

FIR digital filter and Butterworth filter are given in § B.2.

Another important issue is the finite extent of the whistler probe, which spans a 6

mm by 10 mm space (see Chapter 5). In an ne = 1022 m−3 and B = 0.3 T plasma, the

wavelength of a 5 MHz whistler wave is λ = 1.4 cm, not significantly larger than the size

of the whistler probe. Therefore when the probe is immersed in the central dense jet the

polarization measured by the probe is not very reliable. When the probe is at larger radius,

say r = 6 cm, the plasma density is much lower but the magnetic field strength is similar

(see the third row of Fig. 4.2). With ne = 1021 m−3 and B = 0.2T a 5 MHz whistler wave

has a wavelength λ = 3.6 cm, much larger than the probe size. Therefore we will only study

the polarization properties of the fluctuation measured in the second configuration.

In shot 17012 the probe was placed at r = 6 cm and z = 29 cm and it was in low density

plasma around 30 µs. We apply a 9 − 11 Mhz bandpass filter to the 3D measurements.

The three filtered signals from 29 µs to 30 µs are presented in the left panel of Fig. 4.10

and the corresponding hodogram is shown in the right panel of the figure. The left panel

shows that the three components have fixed phase differences during this 1 µs time window.

The hodogram, which is the locus of the tip trajectory of the 3D fluctuating magnetic field

vector, reveals that the fluctuation is circularly polarized, with an average amplitude of

710 T/sec. At 10 MHz this corresponds to an amplitude of magnetic field B̃ = 0.1 gauss.

Ten complete periods are observed. The normal vector of the wave is perpendicular to

the circularly polarization but with a sign ambiguity. When assuming right-hand circular

polarization the direction of the wavevector is determined. Calculation shows that the angle

between the wavevector and the background magnetic field is 45.5◦, so the whistler wave is
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Figure 4.10: Left: 3D magnetic fluctuations Ḃ measured in shot 17012 and filtered by a
digital Butterworth 9− 11 MHz bandpass filter from 29 to 30 µs. Right: hodogram of the
3D filtered magnetic fluctuations (blue dots connected by the blue spiral curve). The blue
square symbols marks the starting point and the red circle symbol is the ending point. The
normalized wavevector (thick dashed black vector) is along (r, θ, z) = (0.13, 0.96,−0.24).
The direction of background magnetic field (thick dashed red vector) is along (r, θ, z) =
(0.35,−0.87,−0.36). The major and minor radii of the best fitted ellipse to the hodogram
are 870 T/sec and 550 T/sec, respectively.

obliquely propagating.

When processing the hodogram, we use principal component analysis (PCA, see § B.3

for details) to find an optimal 2D plane in the 3D space so that the summation of the

projection distances of the measurement points to the 2D plane is minimized. Then we

project the measurement points on to the 2D plane and find a best fitted ellipse to the

projected points.

Figure 4.11 show two more examples of right-hand circularly polarized magnetic fluctu-

ation measurements at different times and frequencies.

At B = 0.1 T, Eq. 4.34 shows that the lower hybrid resonance frequency is flh =√
ωci|ωce|/(2π) = 10 MHz, which is in the frequency range of the measured magnetic

fluctuations. The detection of the circular polarization and the non-perpendicular angle

between the wavevectors and the background magnetic field verify that the waves detected

are not the lower hybrid resonance because the lower hybrid resonance is perpendicular to

the magnetic field.

The successful identification of the circular polarization confirms that the high-frequency

magnetic fluctuations are indeed whistler waves. This further verifies that the associated
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Figure 4.11: Left: hodogram of shot 17012 from 30.3 to 30.9 µs after a 8 − 10 band-
pass filter. A total of 5 complete periods are recorded. The angle between the direc-
tion of the wavevector (r, θ, z) = (0.27,−0.82, 0.5) and the direction of the background
magnetic field (r, θ, z) = (0.26,−0.87,−0.43) is 55.3◦. The major and minor radii of the
best fitted ellipse to the hodogram are 4710 T/sec and 3500 T/sec, respectively. Right:
hodogram of shot 17012 from 34.5 to 35 µs after a 11 − 13 MHz bandpass filter. A to-
tal of 6 complete periods are recorded. The angle between the direction of the wavevec-
tor (r, θ, z) = (−0.93,−0.39,−0.04) and the direction of the background magnetic field
(r, θ, z) = (−0.60,−0.15,−0.79) is 50.4◦. The major and minor radii of the best fitted
ellipse to the hodogram are 4100 T/sec and 3240 T/sec, respectively.
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magnetic reconnection is fast magnetic reconnection.

4.2.3.1 Polarization recognition algorithm

In this section we describe an automatic polarization recognition algorithm that can directly

identify the existence of circular polarization in the time-frequency domain.

Consider a general single frequency signal in 3D

B(t) = ξ̂B0 cosωt+ η̂B1 sinωt, (4.44)

where ξ̂ and η̂ are two unit vectors in 3D space and are perpendicular to each other. With

B0 = 0 or B1 = 0, the equation can describe a linear polarized wave. With non-zero B0 and

B1, the equation describes an elliptically polarized wave. With B0 = B1 6= 0, the equation

describes a circularly polarized wave.

The time derivative of B is

Ḃ = −ωξ̂B0 sinωt+ ωη̂B1 cosωt. (4.45)

The cross product and inner product of B and Ḃ are

B× Ḃ = ω(ξ̂ × η̂)B0B1, (4.46)

B · Ḃ = ω(B2
1 −B2

0) sinωt cosωt = (ω/2)(B2
1 −B2

0) sin 2ωt. (4.47)

The time average of |B · Ḃ| within any π/ω period is

< |B · Ḃ| >π/ω= (ω/2)|B2
0 −B2

1 |
∫ π/4

0 cos θdθ

π/4
= (2ω/π)|B2

0 −B2
1 |, (4.48)

For linearly polarized signal, B0 = 0 or B1 = 0. Without loss of generality, assume

B1 = 0 and B0 6= 0. There are

B× Ḃ = 0 < |B · Ḃ| >π/ω= (2ω/π)B2
0 . (4.49)
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For circularly polarized signal, B0 = B1. There are

B× Ḃ = ωk̂B2
0 < |B · Ḃ| >π/ω= 0, (4.50)

where k̂ ≡ ξ̂ × η̂ is the unit wavevector perpendicular to both ξ̂ and η̂.

Therefore |B×Ḃ| is proportional to the amplitude of the circularly polarized component

of a 3D signal and < |B · Ḃ| >π/ω is proportional to the amplitude of the linearly polarized

component of the signal. In general cases, we define the polarization factor α ≡ B1/B0.

Without loss of generality, we assume |B1| < |B0| so |α| < 1. There are

|B× Ḃ|
< |B · Ḃ| >π/ω

=
π

2

α

1− α2
(4.51)

and

α = − 1

2β
+

√
1 +

1

4β2
, β =

2|B× Ḃ|
π < |B · Ḃ| >π/ω

. (4.52)

α is essentially the ellipticity of the polarization. Note that Eq. 4.52 guarantees 0 ≤ α ≤ 1.

α = 1 (or β → +∞) means perfectly circular polarization and α = 0 (or β → 0) means

linear polarization.

α is a function of time and frequency. Therefore to identify circular polarization we

simply need to compute α in a given time-frequency domain and look for α close to unity.

The merit of this polarization recognition algorithm is that it is coordinate invariant because

only cross product and inner product of 3D vectors are involved.

The direct output of the whistler probe is Ḃ(t). After integration with time we obtain

B(t). We also need to use digital bandpass filter to select single-frequency modes in order

to compute |B(t, f)× Ḃ(t, f)| and |B(t, f) · Ḃ(t, f)|.

We compute α(t, f) for shot 16940, 17012 and 17014. In shot 17014 the probe was

placed at the same location as shot 17012. Figure 4.12 shows the calculation results for

valid measurements (i.e., |Ḃ(t, f)| is larger than the sensitivity of the probe). It is seen

that the distribution of α(t, f) of shot 16940 is different from 17012 or 17014, especially

in the 7 − 11 MHz range. In shot 17012 and 17014, α(t, f) ≥ 0.7 is valid at most times

and frequencies, indicating that circularly polarized magnetic fluctuations are ubiquitous in

these two shots.
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Figure 4.12: Polarization factor α in time-frequency domains for shot 16940 (top row),
17012 (middle row) and 17014 (bottom row). In each row the two colormap plots are the
same except the color indexing range. We only computed α(t, f) for Ḃ(t, f) > 300 T/sec,
i.e., at least three times as large as the probe sensitivity.
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Figure 4.13: Top left, top right, bottom left panels: Three components of the normalized
wavevector k̂ of shot 17012 computed by Eq. 4.53 in the time-frequency domain. Bottom
right panel: inner product of k̂ and the direction of the background magnetic field B̂0.
Only the valid measurements are used (i.e., Ḃ(t, f) at least three times larger than the
probe sensitivity).
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Figure 4.14: Inner product of the normalized wavevector k̂ and the direction of the back-
ground magnetic field B̂0 of shot 17014 and 16940.

Equation 4.46 shows that the wavevector direction k̂ ≡ ξ̂ × η̂ can be given by

k̂ =
B× Ḃ

|B× Ḃ|
. (4.53)

Note that Eq. 4.53 has assumed that B is right-hand polarized because the phase of Ḃ is

behind B by π/2 for right-hand polarized wave. Figure 4.13 shows the three components

of the normalized wavevector k̂ · r̂, k̂ · θ̂, and k̂ · ẑ, and the inner product of k̂ and B̂0

computed using Eq. 4.53. Here B̂0 is the direction of the background magnetic field. It is

seen that most waves propagate with angles smaller than 60◦ (i.e., k̂ ·B̂0 > 0.5). Figure 4.14

gives the calculation results for shot 16940 and 17014. Measurements of shot 17014 also

reveals k̂ · B̂0 > 0.5 at most times and frequencies similar to shot 17012 because the two

measurements are performed in the same configuration (probe at r = 6 cm). However,

when the probe is immersed in the central dense plasma jet, shot 16940 gives a much more

randomly distributed k̂ · B̂0. This is because the wavelengths of the whistler waves in the

central dense jet is not significantly larger than the size of the whistler probe. Hence the

wave polarization inferred from shot 16940 is not very reliable.
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4.3 Summary

We detected 3D high-frequency magnetic fluctuations consisting of broadband whistler

waves associated with the fast magnetic reconnection in the plasma jet experiment. The

3D magnetic fluctuations have Ḃ ∼ f−1 power-law spectra. However, detailed analysis

shows that the single-frequency modes of the fluctuations are somewhat coherent especially

within short time periods, suggesting that these modes may originate from a single source

and the fluctuations are not random turbulence. We successfully resolve the circularly po-

larization of the whistler wave for obliquely propagating whistler wave. This is consistent

with theoretical modes and space observations.

The detection and recognition of high-frequency whistler waves associated with the

magnetic reconnection provide strong evidence that the reconnection is a fast magnetic

reconnection and the dynamics is described by two-fluid theory, not MHD theory.
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Chapter 5

A High-Speed 3D Magnetic Probe
with Excellent Capacitive
Rejection and Noise Shielding

Magnetic field is a fundamental component of current-carrying plasma and therefore mag-

netic diagnostics are important for magnetized plasma experiments. In-situ measurement

of magnetic field uses probes such as Hall effect sensor and B-dot probe; remote detections

include Zeeman splitting spectroscopic measurement and Faraday rotation measurement.

The Hall effect sensor or Hall probe utilizes Hall effect to directly measure the local mag-

netic field perpendicular to the probe. Typically the Hall probe is used for DC or low

frequency (< 50 KHz) situations. B-dot probe, essentially a coil of wire, outputs voltage

signal that is proportional to the flux changing rate through the coil according to Faraday’s

Law. B-dot probe in principle has high sensitivity at high frequency, but its output has to be

integrated to obtain real magnetic field measurement. B-dot probe is more commonly seen

in transient plasma experiments due to its fast time response and simple geometry [79, 95].

Remote measurements of Zeeman splitting effect or Faraday rotation have the benefit of

not perturbing the plasma dynamics but require high-speed spectroscopic equipment with

very fine wavelength resolution [102] or sensitive polarization detection capability.

In this chapter we present a high-speed three-dimensional (3D) magnetic probe designed

to measure the magnetic component of whistler waves generated in the Caltech plasma jet

experiment (Chapter 4). The frequency of the whistler wave is between the ion cyclotron

frequency and the electron cyclotron frequency, which are respectively fci ≈ 60 KHz and

fce ≈ 4 GHz in a B = 0.15 T magnetized argon plasma. The VME data acquisition device

used in the lab has a sampling rate of 100 MHz and so is capable of measuring oscillations
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up to ∼ 20 MHz. The velocity of the argon plasma jet is about 10 km/s, hence the magnetic

field variation due to the motion of the plasma across a 1 cm size probe has a characteristic

time scale of a microsecond. With all the factors considered, the magnetic probe needs to

have a good frequency response from 1 MHz to at least 20 MHz. This makes B-dot probes

the only option because other types of magnetic diagnostics are too slow.

In this chapter, we will first review some basic theories about B-dot probes and an RF

ground loop current diverting technique, and then show the 3D magnetic probe made out

of three pairs of differential B-dot coils and finally presents measurement results.

5.1 Theories of B-dot probe

The B-dot probe is simply a small coil of wire. The probe outputs voltage (electromotive

force) that is proportional to the changing rate of magnetic flux through the coil, i.e.,

Vemf =
d

dt

∫
B⊥ · dS ≈ NA

dB⊥
dt

, (5.1)

where N is number of turns of the coil and A is the cross-section area. The subscript ⊥

means that the probe is only sensitive to the magnetic component perpendicular to the coil

cross-section. In the following content we will assume B = B⊥ and omit the ⊥ notation. If

the magnetic field oscillates as eiωt then the emf voltage is

Vemf = NAḂ = iωNAB. (5.2)

The emf voltage applied on a finite load results in an electric current. This current, when

flowing through the B-dot coil, generates a secondary magnetic field. Lenz’s Law shows

that this secondary magnetic field is orientated in the opposite direction of the background

magnetic field, and therefore reduces the output of the coil.

An equivalent circuit of the B-dot probe is shown in Fig. 5.1. The load of the data

acquisition device is RL = 50 Ω. The output voltage of the probe is Vp = IRL where

I is the current. The total impedance of the circuit is Z = iωLp + RL, where Lp is the
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Figure 5.1: A simple equivalent circuit diagram of B-dot probe.

inductance of the B-dot probe. Hence I = Vemf/Z and

Vp =
RL

iωLp +RL
Vemf =

NAḂ

1 + iωLp/RL

=
NAḂ

1 + ω2L2
p/R

2
L

(1− iωLp/RL). (5.3)

Write Vp in polar form Vp = |Vp|ei∆ and get

|Vp| =
NA|Ḃ|√

1 + (ωLp/RL)2
=

ωNAB√
1 + (ωLp/RL)2

(5.4)

tan ∆ =
Im[Vp]

Re[Vp]
= −ωLp

RL
(5.5)

Phase delay −∆ = arctan
ωLp
RL

. (5.6)

The output of the probe has a delayed phase |∆| compared to dB/dt. Compared the above

equations with the expression of Vemf it is seen that the attenuation factor is

atten =
1√

1 + (ωLp/RL)2
. (5.7)

Hence finite self-inductance of a B-dot coil attenuates the probe sensitivity, especially

at high frequency. If we require no larger than 3 dB attenuation, then ωLp/RL ≤ 1 and

Lp ≤ 0.8µH · 10MHz

ω/2π
f =

ω

2π
≤ 8MHz · 1µH

Lp
. (5.8)
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The first relation can be understood as the requirement for Lp given the frequency of

interest; the second inequality gives the upper limit of the frequency the B-dot probe is

sensitive to.

If the B-dot probe has N number of turns and the cross-section is a circle, the inductance

of the coil can be calculated by

Lp = N2L0 , L0 = µ0r

(
ln

8r

a
− 2 +

Y

2

)
, (5.9)

where r is the loop radius and a is the wire radius; Y = 0 if the current is uniformly

distributed on the wire surface (skin effect) and Y = 1/2 if current is uniformly distributed

over the cross-section of the coil wire; L0 is the self inductance of a single turn circular

coil. At f = 10 MHz, the skin depth of copper is 21 µm, which is much thinner than the

wire we will use. Diffusion theory shows that in this case the electric current is primarily

distributed on the surface of the wire, so Y = 0.

The probe sensitivity of a B-dot probe, defined as the ratio of output voltage to ampli-

tude of magnetic fluctuation, is a function of number of turns, i.e.,

s ≡
∣∣∣∣ VpωB

∣∣∣∣ =
AN√

1 + (ωL0/RL)2N4
⇒ s2 = A2 N2

1 + (ωL0/RL)2N4
. (5.10)

Maximizing s2 by varying N2, it is easily seen that the optimal number of turns

Nbest(ω) =

√
RL
ωL0

(5.11)

gives the maximal sensitivity. The phase delay of Nbest is ∆ = arctan 1 = 45◦.

Figure 5.2 shows the sensitivity Vp/ωB of a test B-dot probe as a function of frequency.

The test probe is a r = 1.4 mm radius 7 turns coil made by AWG35 magnetic wire (a = 0.14

mm). The inductance of the probe is 0.21 µH according to Eq. 5.9, and is measured to

be L = 0.26 µH by a RLC meter. The total cross-section area is NA = 4.31 × 10−5 m2.

Figure 5.2 shows that the test results are well explained by the B-dot probe theory.
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Figure 5.2: Sensitivity Vprobe/(ωB) as a function of frequency of a test B-dot probe (N = 7,
r = 1.4 mm, a = 0.14 mm). The experiment measurements are represented by the open-
circle symbols, and the solid curve is the best fit to the measurement using Eq. 5.10 with
fitted values NA = 4.13×10−5 m2 and L = 0.254 µH. The best fit is obtained by performing
a least-square regression of y = a + bx where y = (ωB/Vprobe)

2, x = (ω2/RL)2. The best
fitted coefficients give NA = 1/

√
a and L =

√
b/a.

5.2 Capacitive coupling and RF ground loop

Capacitive coupling can exist between any two conductive materials. For example, any

probe that does not directly contact with a plasma is susceptible to capacitive coupling

with the plasma. See Fig. 5.3 for a sketch of this unwanted coupling. Extra attention is

required in high-speed applications because the capacitive coupling has low impedance at

high frequency. This issue is extraordinarily important in the Caltech plasma jet experiment

because the plasma is created via high voltage capacitive discharge.

Figure 5.3 (upper panel) illustrates the capacitive coupling between a plasma and a

probe. The impedance of a capacitor C at frequency ω is

Z =
1

iCω
=

1

2πiCf
|Z| = 16 kΩ · 1 pF

C
· 10 MHz

f
. (5.12)

With the nominal values in the above equation, even a 10 V electrostatic fluctuation at

f = 10 MHz can introduce a current 0.625 mA through the probe, which further gives a

notable 31.25 mV signal across a 50 Ω load.

Capacitive coupling at high frequency can also introduce radio frequency (RF) ground



150

Plasma

C ܼ ൌ ߱ܥ1݅

GND RF ground loop

Coax cable of a diagnostics
Data 
acquisition 
device

GND

Figure 5.3: Top panel: sketch of a capacitive coupling between a probe and a plasma.
Bottom panel: sketch of a RF ground loop caused by a capacitive coupling between the
grounded chamber wall and outer conductor of a coax cable of a diagnostics instrument.
The coax cable is connected to a data acquisition device which is also grounded.

loop. Ground loop is an unwanted electric closed loop that has two grounded points at

different locations. In RF and pulsed power applications the alternating current can gen-

erate fast varying magnetic field through the ground loop and induce a large electromotive

force. An RF ground loop can form even if the two grounded points are not directly con-

nected, but are coupled via some capacitive coupling [89]. The bottom panel of Fig. 5.3

illustrates an RF ground loop. In the system shown in the figure, the vacuum chamber

and the data acquisition device are grounded individually. However, if the chamber is ca-

pacitively coupled with the outer conductor of a coaxial cable that connects a diagnostic

instrument to the data acquisition device, an effective ground loop that can conduct high
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frequency current is formed. This RF ground loop has a large cross-section area and hence

has finite inductance. Therefore this RF ground loop is a LC circuit that can cause large

electromagnetic resonance at certain frequencies. An RF ground loop can also be formed

through the plasma if the outer conductor of the coaxial cable is capacitive coupled with

the plasma.

An electrostatic probe built by A. L. Moser is able to pick up ∼ 1V signal across a

RL = 50 Ω load in the range of 5 − 15 MHz at 8 µs and after 28 µ [80]. This corresponds

to a current I ∼ 0.02 A. If this current is caused solely by capacitive coupling between the

probe and the plasma, then the electrostatic potential of the plasma should be I/(Cω) ≈ 300

V, assuming C = 1 pF. This is comparable to the electrostatic potential across the entire

plasma, which is 1 ∼ 2 kV, but at a much lower frequency f ∼ 100 kHz. A possible

explanation to this anomalous large current is that the probe indeed picked up a wide-band

capacitive coupling signal, but some frequencies were amplified by the large RF ground

loop.

5.3 Design of 3D high-speed magnetic probe

Our goal is to build a compact magnetic probe that can measure 3D magnetic fluctuation

with good frequency response in the 1 − 20 MHz range, and have sufficient rejection to

capacitive coupling signal and RF ground loop.

In order to provide sufficient electrostatic shielding to the magnetic probe, it is necessary

to protect the probe with some grounded metal shield. To the author’s knowledge there are

primarily two methods to implement such a shielding, as listed below.

One method is to shield the entire probe by a grounded thin conductive surface. For

example, Greene (1984) [39] built a compact 3D magnetic probe with small hand-wired

B-dot coils using magnetic wire. The entire probe is covered by a high temperature epoxy

and then a thin layer of conductive silver epoxy (Emerson & Cuming Eccobond 66C). The

conductive layer is grounded and hence breaks possible capacitive coupling between the

probe and the plasma. One advantage of this method is that the entire probe can be made

very compact by using small diameter magnetic wire. However, the complete coverage of

conductive layer (silver epoxy) can conduct loop current. When the probe is immersed in

a time-dependent magnetic field, eddy currents can be induced on the silver layer, which
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generates magnetic field in the opposite direction of the background magnetic field and

hence attenuates the sensitivity of the probe. In an extreme case where the conductive

layer is super-conducting, no magnetic field is able to diffuse through the layer. Therefore

the conductive layer needs to be sufficiently thin in order to allow magnetic field to diffuse

through. Detailed calculation shows that the layer should be much less than δ2/a to have

insignificant attenuation of the probe sensitivity, where a is the radius of the cross-section

of the probe, and δ is the skin depth of the material of the layer. At 10 MHz, the skin depth

of silver is 0.02 mm. If the radius of the probe is a = 2 mm, then the thickness of the silver

layer d should be much less than 200 nm. Using the resistivity of silver ρ = 1.59 × 10−8

Ω·m, the resistance of the silver layer is

R =
ρl

2πad
= 3 Ω · l

5 cm
· 20 nm

d
, (5.13)

where l is the length of the conductive layer. The author built a probe similar to Greene

(1984) [39] and used MG Chemical 843 Super Shield Silver Coated Copper Conductive

Coating lacquer to protect the probe. The effective thickness of silver/copper of a single

layer lacquer painting was tested to be 10 nm, which gives a ≈ 6 Ω resistance between the

conductive layer and ground. It was found that this resistance is too big to give sufficient

electrostatic shield to the probe in the Caltech jet experiment.

Another method is to construct the B-dot probe using semi-rigid coaxial cable because

the center conductor of the cable is well protected by the outer jacket. A gap must be made

on the outer conductor of the coaxial cable to prevent a closed loop otherwise a loop of eddy

current can be induced on the outer conductor to attenuate the probe sensitivity [16, 104].

Figure 5.4 shows a sketch of a shielded loop probe constructed by a semi-rigid coaxial cable.

The effective circuit of the probe is simply a single turn loop. This design minimizes the

exposed area of the central conductor that can capacitively couple with the plasma. Unlike

the first design where the entire probe is fully enclosed inside a conductive layer, the shielded

loop probe is not completely covered by the shield (outer conductor) and so the sensitivity

of the probe is not attenuated. The major disadvantage of the loop probe is that it is

usually difficult to make the probe compact, because of the requirement of coaxial cable.

We choose the second method and use a 0.047 inch diameter semi-rigid coaxial cable to

construct the shielded loop probes. The semi-rigid coaxial cable (part no. SR-047ST-TC,
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GapSemi‐rigid 
coax cable

Equivalent circuitShielded loop probe Dummy porbe

Figure 5.4: Left: Sketch of a shielded loop probe constructed using semi-rigid coaxial cable.
The inner conductor connects back to the outer conductor after making a full loop. A small
lateral gap is made at the end of the outer conductor. Middle: equivalent circuit of the
loop probe. Right: Sketh of a dummy probe. The outer conductor is connected back to
itself to form a full coverage to the inner conductor. In all sketches, the dotted curves/lines
represent the inner conductor of the coaxial cable and the solid curves/lines represent the
outer conductor.

crossrf.com) has 50 Ω characteristic impedance and its center conductor has a diameter of

0.287 mm. At 20 MHz, the maximum attenuation by the cable is about 5.3 dB/100 ft or 0.17

dB/m. Detailed specification can be found here http://crossrf.com/pdf/SR-047ST-TC.pdf.

5.3.1 Elimination of RF ground loop current by studying dummy probe

As previously discussed, RF ground loop is unavoidable in high-speed diagnostics. However,

it is possible to reduce or even eliminate the impact from the RF ground loop. Perkins &

Bellan 2011 [89] identified a large RF ground loop as the cause of radio frequency noise

in a vacuum extreme ultraviolet probe array and invented a RF ground current diverting

technique to prevent the RF ground current from interfering with measurement.

Figure 5.5 illustrates the principles of this RF ground current diverting technique. A

capacitive coupling exists between a grounded conducting surface (e.g., chamber wall) and

the outer conductor of the coaxial cable of a probe. This allows an RF ground current

to flow on the outer conductor of the coax cable. A high frequency ferrite core is placed

around the coaxial cable next to the data acquisition device. A short wire (low impedance
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Figure 5.5: RF Ground loop diverting technique invented by Perkins & Bellan 2011 in [89].

shunt) links the ground of the data acquisition device to the outer conductor of the coax

cable before the ferrite core.

The effective schematic diagrams of the configuration are plotted in Fig. 5.6. Consider

a high frequency current caused by an RF ground loop. This current flows on the outer

conductor of the coaxial cable and generates magnetic field around the cable. Because the

ferrite has large magnetic permeability, the surface current experiences a large inductance

due to the ferrite core. At high frequency large inductance gives large impedance. On the

other hand, because a grounded bypass (shunt) with lower impedance is provided before

the ferrite core, the surface current will be diverted to ground before the data acquisition

device (Fig. 5.6B). Therefore the RF ground current does not impact the data acquisition

device. The signal current, on the other hand, is equal and opposite on both the inner and

outer conductor of the coaxial cable. The signal current does not generate any magnetic

field outside the coaxial cable and so does not experience the external ferrite core.

The RF ground current diverting is an intelligent way to reduce the impact of RF ground

loop. It is only effective to the surface current induced by the RF ground loop and has no

effect on the signal being measured.
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Figure 5.6: Effective schematics of the RF Ground loop diverting technique for signal current
(panel A) and RF ground loop current (panel B).

We built a dummy probe to study the RF ground loop. A dummy probe is a probe that

in theory should output absolute zero signal. Figure 5.4 shows a sketch of dummy probe

in the right panel. The dummy probe is made of a single 1 m long 0.047 in semi-rigid coax

cable. One end of the coax cable is the 6 mm diameter probe and the other end is mounted

with a female SMA connector. Unlike the loop probe, the dummy probe does not have the

gap between the outer conductor. Therefore the B-dot loop formed by the inner conductor

is fully covered by the outer conductor. When the dummy probe is in a time-dependent

magnetic field, an eddy current can be induced in the outer conductor loop. The thickness

of the outer conductor of the semi-rigid coax cable is 0.125 mm, equal to the skin depth of

copper at f = 250 KHz. Therefore magnetic fluctuation above 1 MHz is not able to diffuse

through the outer conductor and be picked up by the dummy probe.

We tested the dummy probe in four different configurations to identify and solve the

RF ground loop problem.

Configuration 1: flexible coax cable In this configuration, we used a 8 m long RG58

50 Ω flexible coaxial cable to connect the probe and the data acquisition device. Figure 5.7

gives the 2 MHz high-pass filtered signal from the dummy probe and the corresponding
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Figure 5.7: Output signals (left panels) of the dummy probe in different configurations
and the corresponding power spectra (right panels). From top to bottom: (1) shot 16876,
dummy probe with flexible coax cable; (2) shot 16883, dummy probe with semi-rigid coax
cable; (3) shot 16884, dummy probe with semi-rigid coax cable and RF ground loop diverting
(Fig. 5.5); (4) shot 16892, similar to (3) but with the semi-rigid coax cable wrapped around
the ferrite core by four turns. In all four left panels, components below 2 MHz have been
numerically filtered out using a 4-th order Butterworth digital filter. The y-axis of the first
spectrum plot (shot 16876) is 4 times higher than other spectra plots.
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spectrum (shot 16876). High frequency noises are found at 8 µs and after 17 µs, with

amplitude ∼ 0.01 V and frequencies primarily at 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Note that without any shield the electrostatic probe picked up ∼ 1 V signals at ∼ 8 µs and

after 28 µs in the range of 5−15 MHz. These results suggest that there exists a RF ground

loop in both the dummy probe and the electrostatic probe, with resonant frequencies at 5

MHz, 10 MHz, . . . . The actual capacitive signal by the electrostatic probe should be lower

than 1V , but is amplified by the RF ground loop at the resonant frequencies.

Configuration 2: semi-rigid coax cable In this configuration, we replace the 8 m long

flexible coaxial cable with a 5 m long RG402 50 Ω semi-rigid coaxial cable. The second row

of Fig. 5.7 shows the signal and spectrum of this configuration (shot 16882). The semi-rigid

coaxial cable provides a much better EMI/RFI shield to the central conductor and gives

much less noisy output. However, the RF ground loop resonances still exist.

Configuration 3: semi-rigid coax cable + RF diverting In this configuration, we

apply the RF ground loop diverting technique by putting a high frequency ferrite core and a

short shunt cable at the end of the semi-rigid coaxial cable, as shown in Fig. 5.12. The third

row of Fig. 5.7 gives the results in this configuration (shot 16884). The high frequency MHz

RF ground currents are all reduced by ≈ 50% compared to shot 16883. These validates our

conjecture that these high frequency components are caused by a RF ground loop. However,

the RF ground current is not fully eliminated by the ferrite and the shunt.

Configuration 4: semi-rigid coax cable + RF diverting with four turns around

the ferrite core The spectra of shot 16883 and 16884 shows that the shunt in shot 16884

diverts about 50% of the RF ground current, implying that the inductance of the shunt is

comparable to the inductance caused by the ferrite core. In order to divert more RF ground

current through the shunt, we wrap the semi-rigid coax cable around the ferrite core by

four turns. The inductance due to the ferrite seen by the surface current is expected to be

16 times as large as before. The last row of Fig. 5.7 shows the dummy probe output in this

configuration (shot 16892). The resonances at 5 MHz, 10 MHz, 15 MHz and 20 MHz are

essentially removed. The noises at 8 µs and 30 µs are reduced to the quiescent noise level

0.0005 V. The enormous resonance at 15 MHz is reduced from 0.8× 10−3 V in shot 16876
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to 1.2 × 10−5 V in short 16892, corresponding to a 66 times reduction in noise level or 36

dB attenuation in noise power.

In this section we studied RF ground loop by testing a dummy probe in several different

configurations. We show that by properly applying the RF ground current diverting tech-

nique by Perkins & Bellan 2011 [89], the RF ground current can be essentially eliminated.

The quiescent level of the dummy probe is 0.5 mV, comparable to the digitization error of

the data acquisition device (1/212) V= 0.24 mV. Recall that without any capacitive shield-

ing or RF ground current diverting, the electrostatic probe picked up ∼ 1− 2 V signals at

8 µs and after 28 µs. Therefore a ∼ 3000 times reduction in electrostatic signal is achieved

by using the shielded loop and RF ground current diverting technique, corresponding to a

70 dB rejection of electrostatic noise.

5.3.2 Construction of the 3D magnetic probe

Six shielded loop probes are constructed. Each probe is made out of a 1.7 m long 0.047

inch diameter semi-rigid coaxial cable (part no. SR-047ST-TC, crossrf.com) with one end

forming the 6 mm diameter shielded loop probe (left panel of Fig. 5.4) and the other end

mounted by a female SMA connector. The loop probe is painted by a layer of high voltage

insulating varnish (10-9002, red GLPT insulating varnish, GC electronics) and the long tail

of the semi-rigid coax cable between the probe and the SMA connector are protected by

fiberglass sleeving (Bentley-Harris, size 12).

The radius of the central connector of the semi-rigid coax cable is a = 0.144 mm. The

inductance of the single loop probe is therefore Lp = µ0r
(
ln 8r

a − 2
)

= 6.5 nH according to

Eq. 5.9, where r = 3 mm is the radius of the loop. Equation 5.8 then shows that the probe

is capable of measuring up to 1.2 GHz magnetic fluctuation. At 10 MHz, the attenuation

factor of the probe due to finite self-inductance is 0.99997 and the phase delay is just 0.46◦.

Two identical probes are placed next to each other but with the loops facing in opposite

directions. As shown in Fig. 5.8, when a changing magnetic field dB/dt is perpendicular to

both, the outputs of the two loop probes are

V1 = A
dB

dt
+ Vc

V2 = −AdB
dt

+ Vc,
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Figure 5.8: Sketch of a pair of magnetic probes facing opposite direction.

where A = πr2 is the cross-section area of the single shielded loop and Vc are the common

signal including capacitive coupling signal and RF ground loop current. The two probes

are expected to have the same common signal because they are placed at the same location.

The difference of the two probes’ outputs is

Vd ≡ V1 − V2 = 2A
dB

dt
. (5.14)

The common mode is thus eliminated and only the differential mode (magnetic field mea-

surement) survives. Similar techniques can be found in other high frequency magnetic

diagnostics [76]. It is important to point out that for these dual differential probes, the two

sub-probes need to be placed at the same location so that the capacitive coupling between

the probes and the plasma are the same.

Three pairs of the dual differential probes were made and placed orthogonal to each

other as illustrated in Fig. 5.9. The overall size of the 3D probe is about 6 mm in diameter

and 1 cm in length. In Fig. 5.10 we show the vacuum assembly of the high frequency 3D

magnetic probe. The probe is enclosed in a 30 cm long, 8mm inner-diameter (ID), and

10mm outer-diameter (OD) quartz tube. The tails of the loop probes (semi-rigid coax

cables) are wrapped around by insulating tape that contacts with the quartz tube firmly

to prevent sliding. The quartz tube is glued to a 3/4 inch OD custom-made stainless steel

(SS) cylindrical adapter by high vacuum Torr Seal epoxy. The 3/4 inch SS adapter is 1.5
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Figure 5.9: Sketch of the three pairs of dual differential probes enclosed in a 8 mm ID
quartz tube.

inch (38.1 mm) long and has an 11 mm diameter 33.1 mm deep cylindrical socket from one

side and an 9 mm diameter 5 mm deep cylindrical socket from the other side. The quartz

tube fits inside the 11 mm diameter socket against the 9 mm diameter socket. The 3/4 inch

SS adapter is welded to a Swagelok SS-12-VCO-3 O-Ring face Seal VCO fitting. This VCO

fitting has a 3/4 inch diameter tube socket that well fits the 3/4 inch SS adapter. The SS-

12-VCO-3 fitting is against to a Swagelok SS-12-VCO-1-12 VCO seal threaded connector,

with an O-ring in between. The O-ring vacuum connection is secured by a Swagelok SS-

12-VCO-4 316 SS female nut that threads on the SS-12-VCO-1-12 connector. The other

end of the SS-12-VCO-1-12 connector is welded to a polished 1 m long 3/4 inch OD 304

SS tube (McMaster-Carr, part no. 1750T116). The 3/4 inch SS tube is mounted through

a 2.75 inch flange on the vacuum chamber by a 0.75 inch quick-connect coupling (Kurt J.

Lesker, part no. F0275XVC075). Outside the vacuum chamber, the SS tube is through a

custom-made 1.5 inch OD 0.75 inch ID aluminum tube attached to the 2.75 inch flange,

with two lateral 1/4− 20 set screws threaded in the aluminum tube to hold the central 3/4

inch SS tube.

Figure 5.11 gives the photos of two single shielded loop probes and the finished 3D

magnetic probe in front of the coaxial electrodes. Figure 5.12 shows a photo indicating that

the coaxial cables of the probe are wrapped around the ferrite cores and the short cables

connect the outer conductors of the coax cables to a ground strip before the ferrite cores.
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Figure 5.10: Drawing of the vacuum assembly of the 3D magnetic probe. See the text
description for details.
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Figure 5.11: Left: photo of two single turn shielded loop with red insulating painting and
fiberglass sleeving. Right: photo of the 3D magnetic probe in the vacuum chamber.
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Figure 5.12: Photo of the ferrite cores and shunt cables used for diverting the RF ground
current flowing on the surface of semi-rigid coaxial cables of the magnetic probe.

5.3.3 Calibration and test

A high frequency Helmholtz coil was built for calibrating the 3D magnetic probe. The

Helmholtz coil contains two 2.25 cm radius 5-turn solenoids separated by 2.25 cm. When

conducting same current I through each solenoids, the Helmholtz coil generates a quasi-

uniform magnetic field along its axis

B =

(
4

5

)3/2 µ0nI

R
, (5.15)

where n = 5 is number of turns of each solenoid and R is the radius of the solenoid. The

inductance of the Helmholtz coil is measured to be LHC = 1.5 µH. The two solenoids are

parallel electrically, and hence the voltage across the entire Helmholtz coil is

VHC = 2LHC
dI

dt
. (5.16)
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The time derivative of the magnetic field generated by the Helmholtz coil is

Ḃ =

(
4

5

)3/2 µ0n

2RLHC
VHC . (5.17)

A B-dot probe inside the Helmholtz coil will output

VBdot = A⊥
dB

dt
= A⊥

(
4

5

)3/2 µ0n

2LHCR
VHC , (5.18)

where A⊥ is the total cross-section area of the B-dot probe perpendicular to the axial

direction of the Helmholtz coil.

We label the three orthogonal dual differential probes as probe 1, 2, and 3 and they

are approximately aligned in the radial, azimuthal, and axial directions of the cylindrical

vacuum chamber. Dual probe i contains two single loops i+ and i−. Three calibrations are

performed with the Helmholtz coil placed along to the radial, azimuthal, and axial direction,

respectively. In each calibration, we apply a 10 MHz sinusoidal voltage signal across the

Helmholtz coil and record the output of the six loop probes and also the voltage across the

Helmholtz coil.

Figure 5.13 shows the output of two single loops of each dual differential probe. Take

probe 1 for example. First we plot the output of loop 1−, denoted as V−, versus the output

of loop 1+, denoted as V+ (the upper left panel of Fig. 5.13). The measurement points in

the diagram fall on a −1 slope straight line, implying that the two loops output equal and

opposite signal. Linear regression shows that V− = αV+ and α = −0.89. In the lower left

panel, we plot V+ and V−/α as function of time from 2 to 4 µs and verify that the two

functions do coincide. We perform the same procedures for the other two dual probes and

obtain similar results. We then take (V+ − V−/|α|) as the output of each dual differential

probe.

We define Cij as the effective area of dual probe i perpendicular to direction j, where

i = 1, 2, 3 and j = r, θ, z. For given Ḃ = (Ḃr, Ḃθ, Ḃz), the output of the 3D probe V =

(V1, V2, V3) is

V = CḂ or


V1

V2

V3

 =


C1r C1θ C1z

C2r C2θ C2z

C3r C3θ C3z



Ḃr

Ḃθ

Ḃz

 , (5.19)
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Figure 5.13: Output of the two single loops of each dual probe with the Helmholtz coil along
the radial, azimuthal and axial direction, respectively. The top panels shows the output
of loop i− versus the output of loop i+ for each dual differential probe i and the linear
regression results. The bottom panels show the output of loop i+ as function of time and
also the corrected output of loop i−.

where C = (Cij) is the calibration matrix. When the Helmholtz coil is placed along the

radial direction, Ḃ = (Ḃr, 0, 0) and Ḃr is calculated by Eq. 5.17 given the voltage across the

Helmholtz coil. The first column of C is given by the ratio of each dual differential probe’s

output Vi to Ḃr. Similarly the second and the third column of C can be obtained by placing

the Helmholtz coil along the azimuthal and axial direction.

Figure 5.14 confirms the linear dependence of each dual probe’s output on the magnetic

field changing rate. The slopes of linear regressions in Fig. 5.14 give the elements of the

calibration matrix C. The latter one is found to be

C =


0.4350 0.0516 0.0823

−0.0016 −0.3500 0.1063

−0.0243 −0.1168 0.5092

× 10−4 m2. (5.20)
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Figure 5.14: Output of each dual differential probe versus the changing rate of the magnetic
field generated by the Helmholtz coil. The measurement is over a 2 µs period of time.

A 6 mm diameter single loop B-dot probe has a cross-section area 0.28 × 10−4 m−2.

Because each orthogonal dual probe contains two single loops, the total cross-section area

of each dual probe is about 0.56 × 10−4 m−2. This is consistent with the diagonal entries

of the calibration matrix C. C is quasi-diagonal, showing that the three dual probes are

approximately along the radial, azimuthal, and axial direction, respectively.

The inverse of matrix C is

C−1 =


2.2745 0.4926 −0.4705

0.0246 −3.0656 0.6362

0.1141 −0.6799 2.0873

× 104 m−2. (5.21)

When the probe is in an time-dependent magnetic field and the probe output is V =
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(V1, V2, V3), the changing rate of the 3D magnetic field is measured to be

Ḃ = C−1V. (5.22)

5.4 Measurements

Typical measurements by the 3D magnetic probe in the plasma jet experiment are given in

Fig. 5.15 (shot 17012). The probe outputs are attenuated by 50 Ω 20 dB attenuators. The

inset in the first panel shows that the quiescent noise level of the probe is ±0.005 mV or 1−2

times the data acquisition digitization error, same as the noise level of the dummy probe.

Note that the data acquisition digitization error is now 2.4 mV instead of 0.24 mV because

of the 20-dB attenuators. Figure. 5.15 shows that the magnetized plasma encounters the

probe as early as 12 µs; however, high frequency magnetic fluctuations are not detected

until 28 µs, when the Rayleigh-Taylor instability and fast magnetic reconnection occurs

(See Chapter 3 and Chapter 4).

We plot the detailed measurement of shot 17012 from 29.5 µs to 30.5 µs in Fig. 5.16.

The figure clearly shows that the two single loops of each dual probe give equal and op-

posite measurements. Therefore we have confirmed that the probe is capable of measuring

high frequency magnetic fluctuation and that the noise from capacitive coupling is small

compared to the magnetic measurement.

The quiescent noise level of the probe is 0.005 V with 20 dB attenuation, or 0.5 mV

without attenuation. Given Cii ∼ 0.5 × 10−4 m−2, the above noise levels correspond to

a probe sensitivity 100 T/sec or 1 Gauss/µs with 20 dB attenuator, or 10 T/sec or 0.1

Gauss/µs without extra attenuation.

Because the sampling rate of the data acquisition device used is 100 MHz, the probe

can not measure fluctuations with frequency larger than 20 MHz. However, due to the very

low inductance (Lp = 6.5 nH) of the single turn shielded loop probe, it is expected to be

capable of measuring very high frequency magnetic field. At 3 dB attenuation the B-dot

probe theory shows that the probe is sensitive to 1.2 GHz with a 45◦ phase delay. Simple

tests using USG LF44 USB function generator show that without the 20-dB attenuator the

probe is sensitive to 33 T/sec time-dependent magnetic field at 150 MHz.

We have presented more detailed analyses of the measurement in Chapter 4. In Chapter
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Figure 5.15: Output of the 3D magnetic probe in shot 17012. Upper panels give the raw
signal output and the lower panels give the signal after filtered by a 4-th order Butterworth
[2, 20] MHz bandpass digital FIR filter. In each plot, the solid curve is the output by the
loop probe + and the dashed curve is the output by the opposite loop probe − corrected by
the corresponding factor α obtained from Fig. 5.13. The inset in the first panel zooms into
the 10− 10.5 µs time window. Each probe is connected to a 12-bit VME digitizer through
a 50 Ω 20-dB attenuator. The probe is located at r = 6 cm and z = 29 cm in the chamber
coordinate.
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Figure 5.16: Measurement of shot 17012 from 29.5 to 30.5 µs. A 4-th order Butterworth
[4, 6] MHz bandpass digital filter is used to give the lower panels.

4 we utilize hodogram technique and show that the 3D magnetic probe successfully detects

circularly polarized magnetic component of high frequency whistler wave generated during

fast magnetic reconnection in the plasma jet experiment.

5.5 Summary

A high-speed 3D magnetic probe composed by three orthogonal pairs of oppositely ori-

entated B-dot coils is built for the Caltech plasma jet experiment. Each B-dot coil is a

single turn shielded loop probe made out of a 0.047 inch diameter semi-rigid coaxial cable

and the outer jacket of the coaxial cable does not connect back to itself to avoid a closed
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grounded shielding. An RF ground loop current diverting technique is implemented in the

magnetic probe following Perkins and Bellan [89]: near the data acquisition device, the

semi-rigid coax cable is wrapped around a high frequency ferrite core; a short grounded

cable is connected to the outer conductor of the coax cable before the ferrite core. The

shielded loop probe design and the RF ground current diverting technique together give a

70 dB rejection to electrostatic interference, making the magnetic probe ideal for high-speed

time-dependent magnetic field detection in an extremely noisy environment.
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Chapter 6

An Earth-Isolated Optically
Coupled Wideband High Voltage
Probe Powered by Ambient Light

An earth-isolated optically-coupled wideband high voltage probe has been developed for

pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast

LED that converts high voltage into an amplitude-modulated optical signal, which is then

conveyed to a receiver via an optical fiber. A solar cell array powered by ambient laboratory

lighting charges a capacitor that, when triggered, acts as a short-duration power supply for

an on-board amplifier in the probe. The entire system has a noise level ≤ 0.03 kV, a DC-5

MHz bandwidth, and a measurement range from −6 to 2 kV; this range can be conveniently

adjusted.

Primary part of this chapter was published by Xiang Zhai & Paul M. Bellan, in Review

of Scientific Instruments, Volume 83, 104703, 2012 [129].

6.1 Introduction

Measuring rapidly changing high voltages in the presence of large currents is challenging

because of substantial interference from ground loops, capacitive and inductive pickup, high

frequency radiation, etc.

Various high voltage probes [38, 96, 97] and some commercial products (e.g., Tektronix

P6015A) have been developed for measuring high voltage for different purposes. For ex-

ample, a passive HV probe developed by Sarjeant and Alcock [96] uses a resistive voltage

divider and can measure a < 100 ns voltage pulse with subnanosecond rise time. Another



171

passive HV probe developed by Gratton et al. [38] adopts a capacitive divider for measuring

nanosecond HV pulses. A capacitive-RC hybrid passive probe developed by Saw et al. is

designed for fast pulse discharge systems [97]. However, most of these passive HV probes,

including the Tektronix P6015A, require connection to earth ground, which makes them

neither convenient for long distance measurements because of ground loop susceptibility,

nor suitable for real floating voltage measurements. For example, the Caltech experimental

plasma group uses a Tektronix P6015A probe for pulsed power voltage measurements. To

isolate the data acquisition device from the HV source, and to avoid long wires in an envi-

ronment with fast changing magnetic fields, a commercial optical link is used to convert the

Tektronix probe voltage signals to optical signals near the HV source and then convert back

to electrical signals for recording data. However, the optical link requires a power supply

that plugs into the wall. Therefore the Tektronix probe ground lead is electrically connected

with mains ground through the optical link power supply, and hence cannot connect to the

HV source ground. Otherwise the entire system would have multiple points connected to

earth ground and form ground loops, the latter can induce huge EMFs in noisy environ-

ments, especially when a fast varying current exists close to the probe. With no ground

lead connecting to the HV source, the Tektronix probe is actually measuring the voltage of

one HV source terminal relative to the optical link power supply, not the ground reference

voltage of the HV source. An active optically-isolated HV probe by C. A. Bleys is eligible

for real floating voltage measurements since the probe uses optical fibers for conveying sig-

nal and batteries as the power supply [15]. However, the probe circuit rapidly drains the

batteries so the batteries must be replaced frequently. Since the probe is placed near HV

sources, battery replacement can be awkward and even an electric hazard. Also this probe

is built with a fixed measurement range and requires calibration before each measurement.

We report here a fully isolated HV probe that uses both optical fibers and ordinary solar

cells to isolate earth ground and avoid ground loops. The probe uses a low-capacitance lab-

constructed HV capacitor and a precise 100nF low voltage capacitor to form a voltage

divider. Several HV capacitors with different capacitance were built so that the probe

measurement range can easily be changed by switching the HV capacitors. The probe is

powered by normal laboratory ambient light and so has no batteries and no reference to earth

ground. The probe is well shielded and so can be used in extremely noisy environments.

The probe does not require frequent calibration thanks to its relatively low temperature
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sensitivity, and the calibration can be conducted using low voltage sources.

The HV probe has a DC-5 MHz bandwidth and a ≤ 30 V noise level when measuring a

fast varying HV source of −6 to 2 kV.

6.2 Probe design

The probe system consists of an RFI/EMI-shielded, solar cell-powered transmitter that

converts the high voltage signal into an amplitude-modulated (AM) optical signal, two low-

loss optical fibers that convey the AM signal and a trigger signal, and a battery-powered

receiver that converts the AM optical signal to a low voltage signal for a data acquisition

device. The use of optical fibers allows the data acquistion device to be far from the HV

source so that ordinary oscilloscopes or transient digitizers can be used to record data.

6.2.1 Transmitter

The transmitter circuit diagram is shown in Fig. 6.1, and the figure caption lists the part

numbers of the electronic components used in the circuit. The circuit contains four subsys-

tems: a capacitive voltage divider that converts a high voltage to a low voltage, an LED

driver that converts the low voltage signal to an AM optical signal, a power supply, and

a trigger system that turns on the power supply immediately before measurements.

Except for the HV capacitor C2, the entire circuit including the solar cells is mounted on

a single printed circuit board (PCB) and enclosed in a one-foot long 2” diameter aluminum

pipe (Fig. 6.2). A female BNC adapter is mounted on the pipe end cap with its outer

conductor connected to the pipe and the inner conductor connected to the junction point

of C1 and R1 (see Fig. 6.1 for detail). In operation, the pipe is electrically connected to

one electrode of the target HV source and constitutes the analog ground for the circuit.

Four large apertures are milled in the pipe at the solar cell position and a steel mesh snugly

covers these apertures. Light can thus shine on the solar cells inside the pipe, and yet the

entire circuit is well shielded by the pipe and steel mesh.

6.2.1.1 Capacitive voltage divider

C2 is a lab-constructed cylindrical HV capacitor. Figure 6.3 gives a sketch for C2; right

and left hand here refer to this sketch. C2 has two coaxial copper pipes (surface 2 and
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Figure 6.1: Circuit diagram of the probe transmitter (left) and receiver (right). A typical
configuration for the transmitter includes: C1= 100 nF (ECH-U1H104GX9 thin film; Pana-
sonic Electronic Components), C2= 60 pF (lab-made), R1= 20 kΩ, R2= 7.5 kΩ, Q1 NPN
transistor (MMBT3904; Fairchild Semiconductor), LED (HFBR-1414 transmitter; Avago
Technologies US Inc.), Q2 +5 V voltage regulator (LM340MP-5; National Semiconductor),
C3= 0.1 µF (ceramic bypass), C4= 0.22 µF (ceramic bypass), SCR1 (S6X8BSRP; Littel-
fuse Inc.), Q3 NPN transistor (BC847CMTF; Fairchild Semiconductor), D1 PIN photodiode
with ST mounting (OPF792; TT electronics/Optek Technology), Q4 PNP Darlington tran-
sistor (MMBTA64; Fairchild Semiconductor), R3= 10 kΩ, C5= 30 µF, C6= 10 µF. The
solar cell array I contains four mono-crystalline 33 mm×37 mm solar cells (SCC3733-MSE;
Solarbotics.com) in series; Solar cell array II contains two SCC3733 solar cells in series.
Except C2, the entire circuit is enclosed in the 2” aluminum pipe (denoted by the thick
solid polygon). The four dotted rectangles in the transmitter indicate the four transmitter
subsystems. A typical configuration for the receiver includes: Q5 +5 V voltage regula-
tor (LM340MP-5; National Semiconductor), C7= 0.22 µF (ceramic bypass), C8= 0.1 µF
(ceramic bypass), R4= 10 Ω, C9= 33 pF (ceramic bypass), D2 analog photodiode (HFBR-
2416; Avago Technologies US Inc.), C10= 47 µF (tantalum), R5= 100 Ω, D3 6.2 V zener
diode (BZT52H-C6V2; NXP Semiconductors), D4 green LED (LTL-4236N; Lite-On Inc.),
mom-off-on toggle switch (200MSP5T1B1M1QEH; E-Switch).
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Figure 6.2: Three dimensional cross-section drawing of the transmitter without HV capac-
itor C2.
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Figure 6.3: Cross-sectional sketch of the lab-constructed cylindrical HV capacitor (C2 in
Fig. 6.1). Five coaxial cylindrical surfaces/object are: 1. copper sheet, 2. outer copper
pipe, 3. Mylar insulation and air gap, 4. inner copper pipe, 5. central HV wire. Terminal
A and B are connected with HV sources terminals. 5 and 4 are connected with a female
BNC adapter’s outer and inner conductors, respectively. The sketch is not to scale.
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4 in Fig. 6.3) with radii a and b (a < b and |b − a| � a) as two electrodes and several

layers of 0.254 mm-thick Mylar sheet in between as the dielectric (surface 3 in Fig. 6.3).

The capacitance of C2 is calculated by C2≈ 2πaLε0εeff/d, where L is the overlap length

of two copper pipes, d ≡ (b − a) and εeff is the effective relative dielectric constant of air

(ε1 = 1) and mylar sheets (ε2 ≈ 3) [15] between the two copper pipes. εeff is calculated

by ε1ε2d/(d1ε2 + d2ε1), where d1 and d2 = d − d1 are the thickness of air and mylar,

respectively. A typical HV capacitor has a = 1.44 cm, b = 1.75 cm, d = 3.1 mm, L = 10

cm, and d2 = 2.54 mm (10 layers mylar sheet). Hence εeff ≈ 2.20 and C2≈ 60 pF. Mylar

has a dielectric strength 90 kV/mm [15]. Therefore C2 can be safely charged to 10 kV or

even higher. A 30 kV insulation high voltage wire (392275 WH005; Alpha Wire) is placed

along the central axis of C2 (object 5 in Fig. 6.3). At the right hand end of C2, the central

HV wire and the outer copper pipe connect with the two terminals A and B of the target HV

source (see Fig. 6.3). At the left hand end of C2, the central HV wire and the inner copper

pipe connect with the outer and inner conductor of a female BNC adapter, respectively.

To eliminate the possibility of capacitive coupling between C2 and any exterior charged

surfaces, a copper sheet (surface 1 in Fig. 6.3) is wrapped around C2 and connected to the

central HV wire.

A short RG58 coax cable links the HV capacitor’s BNC adapter and the adapter on the

aluminum pipe1. By doing so C2 and C1 inside the pipe form a capacitive voltage divider.

Note that in this configuration the common reference of the transmitter circuit and the

aluminum pipe are electrically connected with the central HV wire through C2 and the

electrode of the HV source that connects to the HV wire. Therefore the entire transmitter

uses the voltage of one HV source electrode as its reference voltage, and so the probe is

completely floating relative to earth ground.

C1 is a fixed 100 nF thin film capacitor mounted on the PCB inside the aluminum

pipe. The divided voltage by C1 and C2 equals C2/(C1+C2) times the high voltage, and

is approximately C2/C1 if C1�C2. Several versions of C2 are made with capacitance 20

pF, 40 pF, 60 pF, and so on. Because C2 is external and connected to the transmitter via

a coax cable, it is easy to change C2 and therefore adjust the measurement range of the

transmitter.

1Vernon Chaplin used a shot semi-rigid coax cable because the regular RG58 flexible coax cable picked
up some noise near high power RF facilities
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In the following discussion, we assume C2= 60 pF and the voltage of the HV source VH

is in the range of −6 to 2 kV. Hence the voltage across C1 is VL =C2/C1·VH and is in the

range of −3.6 to 1.2 V; the voltage across C2 is very nearly VH .

6.2.1.2 LED driver

The divided low voltage VL is converted into a current ∆I by resistor R1. ∆I modulates

a constant bias current I0 flowing through R2 and then to the base of NPN transistor

Q1. After being amplified β times by the transistor, this amplitude-modulated current is

conducted into the fast HFBR-1414 Light-Emitting Diode (LED). The LED sends an AM

infrared signal into an optical fiber, which is then captured by the receiver. The resistors

R1 and R2 are selected so that the LED works linearly when VH is in the range of interest.

At the same time, τ ≡R1×C1 must be significantly greater than the measurement time to

prevent loading of the voltage divider by the measuring circuit.

The power supply provides constant +5 V during measurements. The voltage at the

transistor’s base is about 2.3 V because of the forward voltage of Q1’s BE junction and the

LED. Typically, we choose R1= 20 kΩ and R2= 7.5 kΩ so that the amplitude-modulated

current β(I0 + ∆I) through the LED spans 13− 60 mA, given the transistor’s amplification

factor β ≈ 200. The current range 13−60 mA is located within the linear range 10−70 mA

of the HFBR-1414 LED. For measurement time much less than τ = 20 kΩ · 100 nF= 2 ms,

the voltage divider will not be significantly loaded by the LED driver during measurement.

6.2.1.3 Power supply

A capacitor (C5) charged by an array of solar cells (solar cell array I) with a voltage regulator

(Q2) provides a constant +5 V for several milliseconds after being activated by the trigger

system.

The solar cell array I shown in Fig. 6.1 contains four solar cells in series. Under normal

lab ambient light, each solar cell unit can output ∼ 30 µA at ∼ 4 V when inside the pipe.

Therefore solar cell array I can charge the 30 µF capacitor C5 to ∼ 15 V in about 15 s. After

the silicon controlled rectifier SCR1 is switched on by the trigger system, C5 constitutes a

short duration power source for voltage regulator Q2. The latter outputs a constant +5 V

to the LED driver for & 3 ms (i.e., much longer than the measurement time 50 µs) until

the pre-stored charge of C5 is drained. Then the SCR1 turns itself off automatically.
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This power supply system allows the HV probe to perform a millisecond duration mea-

surement every 15 s.

6.2.1.4 Trigger system

Solar cell array I cannot power the LED directly because the LED requires at least 5 mA

whereas Solar cell array I is capable of only 30 µA. Therefore SCR1 located at the output

lead of capacitor C5 allows C5 to become fully charged. When SCR1 is in the off state, the

probe is inactive and solar cell array I charges C5 to ∼ 15 V. SCR1 is switched on by the

trigger system just before measurements. The trigger system is powered by a separate solar

cell array II.

A 175 MHz pin photodiode D1 (OPF792, see Fig. 6.1) is used to receive an externally

generated optical trigger signal. D1 has a typical dark current 0.1 − 0.5 nA and outputs

current ≥ 20 nA when triggered by an optical signal. A PNP transistor Q4 amplifies the

current by a factor of 104. R3 is selected to be 10 kΩ so that its voltage exceeds 0.7 V

only when D1 is triggered. Since R3 is parallel to the BE junction of a NPN transistor

Q3, Q3 then switches on because its BE voltage exceeds 0.7 V. Therefore the fully charged

capacitor C6 is switched across the gate-cathode junction of SCR1, which turns on in ∼ 2

µs. The entire trigger system including SCR1 takes ≈ 3 µs to activate the voltage regulator

Q2 after receiving the optical trigger signal. Therefore the external trigger signal must be

sent to D1 at least 3 µs before measurements.

The dark current of the trigger system is only ≤ 0.5 nA·104 = 5 µA. Therefore, an

ordinary solar cell is fully capable of serving as a power supply for the system under normal

lab ambient light. To have the trigger system working reliably, the output voltage of solar

cell II must be at least 1.5 V to turn on the Darlington PNP transistor Q4. In a typical

configuration, two solar cell units in series form the solar cell array II (see Fig. 6.1).

6.2.2 Receiver

The receiver of the HV probe converts the AM optical signal sent by the transmitter into

a voltage signal. Its circuit diagram is shown in Fig. 6.1, essentially an analog HFBR-

2416 photodiode receiver. The part numbers are listed in the figure caption. HFBR-2416

outputs an analog voltage signal proportional to the AM optical signal. A voltage regulator

Q5 powered by a +9 V battery provides the HFBR-2416 photodiode with constant +5 V.
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A battery test can be done by switching the toggle to momentary position 2. The capacitor

C10 between HFBR-2416 and 50 Ω data acquisition device adds an AC coupling to the

voltage signal output. Its capacitance is 47 µF so that 47 µF×50 Ω = 2.35 ms>> 50 µs,

the measurement time.

With the HV source measuring the range −6 to 2 kV and the driving current in the

range of 10 to 60 mA for the HFBR-1414 LED, the receiver outputs a proportional voltage

signal of −0.15 to 0.05 V (see next section).

The optical fibers totally isolate the transmitter and the high voltage source, and so

allow long-distance remote measurement. Meanwhile, the receiver can be safely connected

to data acquisition devices directly, such as transient digitizers or oscilloscopes.

6.2.3 Calibration

Knowing the capacitance of C1 and C2, one can use a low voltage source to calibrate the

probe without utilizing a high voltage source standard. The calibration to the HV probe can

be conveniently done by disconnecting the HV capacitor C2 and connecting a low voltage

function generator to the BNC adapter on the aluminum pipe. By doing so we are applying

the low voltage directly to the junction point of the capacitive divider.

For example, we apply a 50 kHz ±10 V sine function to the junction point using a

WAVETEK model 143 function generator and measure the receiver output using a Tektronix

TDS1002 oscilloscope. After calculating the divided voltage in-out gain Vjunc/Vout, the total

gain Vin/Vout is obtained by multiplying it with (C1 +C2)/C2, where C1= 100 nF and C2

is measured to be 60 pF using a BK PRECISION model 885 LCR/ESR meter. Figure 6.4

shows the calibration result and verifies the linearity of the probe over the range from −6

to 2 kV.

6.3 Performance and measurement

Figure 6.5 shows a typical measurement of a pulsed power plasma experiment [42, 64, 107]

that produces a magnetohydrodynamic plasma loop. The plasma is formed by charging a

60 µF capacitor to −3 kV and discharging it across a neutral Hydrogen gas for ≈ 10 − 20

µs. The well-defined plasma loop lasts about 5− 10 µs and then exhibits complex dynamic

behaviors. The entire voltage/current profile lasts about 50 µs during which the voltage
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Figure 6.4: HV probe calibration result with C2= 60 pF. The solid line gives the least-square
fit to the experimental data (dotted curve) in −6 to 2 kV.

across the electrodes swings between ±3 kV and the current through the electrodes oscillates

over ±35 kA. The total power of the plasma can reach ≥ 100 MW. The measurement by the

HV probe described by this chapter (stated as the new HV probe in the following content)

is compared with the measurement by a Tektronix P6015A 75MHz probe that has been

properly compensated. A DC-10MHz analog fiber optic link (732T/R; Analog Modules

Inc.) is used to convey the Tektronix probe output to the data acquisition device and

break the ground loop. The power supply for the optical link is isolated from earth by a

transformer. The new HV probe is calibrated using the method presented in section II. The

HV wire and the outer copper pipe in C2 are connected to the anode and cathode of the

plasma gun, respectively. A 12-Bit 100MHz VMEbus digitizer (SIS3000, Struck Innovative

Systeme) with a 0.5 V dynamic range is used for recording the data.

The detailed voltage profile from 12 to 12.5 µs in the insert in Fig. 6.5 demonstrates

that the new HV probe has a white noise generally below 0.03 kV. Figure 6.5 shows that

the new HV probe and the Tektronix probe agree with each other quite well over a 50 µs

long measurement. The discrepancy between the two probes is generally ≤ 0.05 kV. They

both capture fast voltage fluctuations as short as ∼ 0.2 µs (see insert in Fig. 6.5 from 18 to

22 µs).
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The NPN transistor Q1, the HFBR-1414 LED and the HFBR-2416 photodiode used in

the probe are all high-speed devices with bandwidth ≥ 100 MHz. The bandwidth of the

probe is determined by the low-pass filter formed by R1 and the BE junction of Q1. The RC

time of this low-pass filter is ≈ 20 kΩ×2.5 pF∼ 50 ns, resulting in a ∼ 90 ns risetime for the

entire HV probe. Although this is sufficient for the ≤ 50 µs long voltage measurements, the

bandwidth of the probe could be improved by using a smaller R1, say, 3 kΩ (R1·C1= 300

µs>> 50 µs is still satisfied). However, this will change the probe sensitivity. Alternatively,

the probe could have a wider bandwidth by replacing Q1 by a high speed transistor with

sub-pF BE capacitance. A risetime as short as 15 ns should then be achievable using the

same LED and photodiode.

The HFBR-2416 photodiode in the receiver is responsible for most of the noise. The

unfiltered RMS output noise of the photodiode is ≤ 0.6 mV, corresponding to an input

voltage ≤ 0.025 kV assuming system gain 0.0229 V/kV. The digitization rounding error of

SIS3000 is 1V/212 = 0.25mV, corresponding to a 0.01kV input voltage. The combination

of the two noise sources gives ∼ 0.03kV, consistent with Fig. 6.5. The power of the output

noise is only ≤ (0.7 mV)2/50 Ω ∼ 10 nW, which is ≤ 10−16 times of the total power of the

pulsed power plasma.

The system has a temperature dependence of ≈ 1.5%/C◦ at room temperature in

Vout/Vin gain, mostly contributed by the HFBR-1414 LED in the transmitter. The heat gen-

erated by the circuit is negligible since each measurement lasts for milliseconds. However,

the probe should be recalibrated if the ambient temperature has varied significantly.

In conclusion, we have reported an ambient light powered wideband optically-coupled

floating-input active HV probe. Because of its excellent EMI/RFI shielding, the HV probe

is useful for precise measurement of pulsed high voltages over a DC−5MHz bandwidth in a

noisy environment. Due to the special connection design for the capacitive divider, the HV

probe has an adjustable measurement range and is easy to calibrate.

6.4 HV probes in usage

The optically coupled floating HV probes are being actively used in the Cross-Flux-Tube

experiment (Fig. 6.6AB), arched plasma loop experiment (Fig. 6.6C), and RF pre-ionized

jet experiment (Fig. 6.6D) in the Caltech Bellan group, and are also duplicated and used
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Figure 6.5: Voltage across a pulse powered Hydrogen plasma measured by the new HV
probe (the heavy curve) and a Tektronix P6015A HV probe (the light curve). Two boxes
at right lower corner zoom into the time interval 12 − 12.5µs and 18 − 22µs, showing the
detailed behavior of the voltage profile. The high voltage is applied at 14.5µs. The two
measurement curves are unsmoothed raw data multiplied by the corresponding calibration
factors. Shot number=9950.

A B C D

Figure 6.6: Optically coupled floating HV probes used in the cross-flux-tube experiment (A
and B), arched-loop experiment (C), and RF pre-ionized plasma jet experiment (D).
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by the You group at University of Washington, Seattle.

One of the greatest advantages of this HV probe is that it is totally floating on the HV

source. In the cross-Flux-Tube experiment, two arched plasma tubes are created by two

isolated power supplies. To measure the true voltages across each plasma tubes, we must

use the floating HV probes. If we use two Tektronix probes, the two plasma tubes will

be electrically connected via the ground clips. If we do not attach the ground clips of the

Tektronix probes to the electrodes, then we need four probes to be able to measure the true

differential voltages across the two plasma tube. Using two earth-isolated optically coupled

probes solves the problem.

6.5 Some discussion about the solar cells

It has been reported that sometimes the solar cells do not work very consistently. The

solar cells, despite their obvious advantages, can in fact be replaced by regular batteries to

provide more reliable performance. Another benefit of using batteries is that the transmitter

(not including the lab-made HV capacitor) can be made very compact since solar cells are

the primary reason for the size of the transmitter. However, it is crucially important to

point out that the batteries must be connected to large-value resistors in series to limit

the output current from the batteries. The current-limiting resistors should be selected so

that the maximum output current from the batteries is below the holding current of the

SCR, which is about 5 mA. Otherwise the transmitter will work continuously and drain the

batteries in hours.
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Chapter 7

Summary

The Caltech experimental plasma jet is created by a magnetized coplanar coaxial electrode

system and then collimated and accelerated by Magnetohydrodynamic (MHD) forces. When

the current-carrying plasma jet is sufficiently long, it undergoes a current-driven ideal MHD

instability, the kink instability as an attempt to relax to a lower energy state. As the kink

instability grows exponentially fast, an effective lateral gravity due to the accelerating kink

further induces a secondary instability called the Rayleigh-Taylor instability. The Rayleigh-

Taylor instability occurs on a much smaller scale and a much faster speed and quickly evolves

to a nonlinear phase. The plasma jet is pinched and compressed to a scale smaller than the

ion skin depth by the Rayleigh-Taylor instability so that ions are decoupled from electrons

and MHD theory fails. This further leads to a fast magnetic reconnection during which

the magnetic field lines break and reconnect to form a new topology. Whistler waves are

found to be associated with the reconnection event, indicating that the reconnection is in

the two-fluid regime.

The plasma jet experiment is related to the launching and propagation of highly colli-

mated astrophysical jets, plasma relaxation and spheromaks, plasma instabilities, magnetic

reconnection, and plasma waves.

This thesis has described a series of experimental, numerical, and analytical studies

about the Caltech plasma jet experiment.

First, the collimation and acceleration of the experimental jet is simulated numerically

using an astrophysical magnetic tower model as the baseline (Chapter 2). The fundamental

concept behind this work is that an ideal MHD plasma does not have any intrinsic scale.
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In the simulation, we implement a purely toroidal magnetic injection localized around the

central z = 0 plane and find that the simulation jet gains energy and helicity in a manner

analogous to both the electrode-driven experimental jet and to astrophysical jets driven

by accretion disks. The injected toroidal field near z = 0 generates a pinch force that

collimates the plasma and the embedded magnetic field. A radial force balance between

plasma pressure and Lorentz force is gradually established from small z to large z, resulting

in a pumping mechanism that accelerates the plasma jet away from the central z = 0 plane.

During this process, magnetic energy is converted to kinetic energy. The simulation jet

agrees quantitatively with the experimental jet including the energy evolution, jet radius,

velocity, and magnetic field structure.

The success of using an astrophysical model to simulate the lab experiment shows the

importance of using terrestrial laboratory experiments to study astrophysical plasma phe-

nomena. Because lab experiments share many advantages with numerical simulation such

as reproducibility, freedom in parameter space, and possibility of in-situ measurement, de-

tailed comparison between experiment and simulation can be made and then validation to

the astrophysical model is deemed applicable.

The secondary instability induced by the laterally accelerating kink instability has been

analytically modeled using ideal MHD (Chapter 3). We find that this instability is a

new hybrid lateral Rayleigh-Taylor-Current-Driven coupled instability. The coexistence

of lateral gravity and cylindrical geometry leads to a complex coupling of all azimuthal

modes of the cylinder, a fundamentally different situation compared to results from a 1D

or 2D Rayleigh-Taylor instabilities on planar interfaces. The coupled instability reduces to

the classic current-driven instability (kink instability) in the weak gravity limit and to the

conventional hydrodynamic or magnetic RT instability in the strong gravity limit. In the

general cases such as Caltech argon plasma jet and type II hydrogen jet, the Rayleigh-Taylor

and current-driven instabilities are coupled to result in a new hybrid instability.

We define a useful parameter Φ2 = µ0ρ0gR/b
2
θ to quantify the relative importance of

gravity versus toroidal magnetic field. This interesting parameter includes azimuthal mag-

netic field bθ, curvature R, plasma density ρ0, and gravity g. It is completely determined

by the equilibrium state. Φ2 can be written as Φ2 = (ρ0gR)/(b2θ/µ0), which is the ra-

tio of gravitational energy density to toroidal magnetic energy. It can also be written as
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Φ2 = g/(v2
Aθ/R), the ratio of real gravity to effective gravity due to the curvature of the

azimuthal magnetic field. The real gravity g is responsible for the RT instability and v2
Aθ/R

is responsible for the current-driven instability. Φ2 describes whether a flux rope is more

susceptible to the RT instability (if Φ2 � 1) or the current-driven instability (if Φ2 � 1),

or coupled instability (Φ2 ∼ 1).

The RT-CD coupled instability theory successfully explains the experimental observa-

tions. For the argon jet, the theory predicts correct instability wavelength and growth rate.

For the slow-growing type I hydrogen jet the theory shows that the RT effect is not im-

portant and the instability is dominantly current-driven and for the fast-growing type II

hydrogen jet, the theory gives RT-CD coupled instability. Conventional MRT instability

theory that only considers axial magnetic field and axial perturbation is able to partially

explain the argon jet, but fails to consider interchange mode or explain hydrogen jets.

This RT-CD coupled instability can be applied in many situations where a flux rope is

presented in a lateral gravity. In those situations, there are three ‘types’ of gravity: real

gravity due to mass attraction, effective gravity due to kinetic acceleration, and effective

gravity due to magnetic curvature. I have discussed several applications of the RT-CD

theory in § 3.7 including solar coronal loop, quiescent prominence, coronal mass ejection,

and flux emergence.

As the Rayleigh-Taylor instability grows to a nonlinear phase, MHD becomes invalid.

A fast magnetic reconnection is then induced. We detected 3D high-frequency magnetic

fluctuations consisting of broadband right-hand circularly polarized whistler waves associ-

ated with the fast magnetic reconnection (Chapter 4) using a specially designed high-speed

3D magnetic probe (Chapter 5). The 3D magnetic probe is composed of orthogonal pairs

of oppositely orientated shielded loop B-dot probes. An RF ground current diverting tech-

nique is implemented. The probe has an overal 70 dB rejection to capacitive interference.

The magnetic fluctuations measured by the probe reveal a continuous Ḃ ∼ f−1 power-law

spectra. The fluctuations are not random turbulence because different modes are somewhat

coherent, indicating that these modes may originate from a single source. We resolve the

circular polarization of obliquely propagating whistler waves, consistent with theoretical

modes and space observations. The oblique angles between the whistler wave propagation

direction and the background magnetic field are primarily within 60◦. The detection and
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recognition of whistler waves associated with the magnetic reconnection shows that the re-

connection is a Hall magnetic reconnection (fast magnetic reconnection) and the dynamics

are in the two-fluid, not MHD, regime.

In Chapter 6 we designed and built an earth-isolated optically coupled DC-5 MHz wide-

band high voltage probe powered by solar cells under lab ambient light. The excellent

EMI/RFI shielding and the earth-isolation property make the HV probe useful for precise

measurement of pulsed floating high voltages in a noisy environment.
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Appendix A

Two-color Imaging of the Plasma
Jet Experiment using VariSpec
Liquid Crystal Tunable Filter

A brief review of the VariSpec liquid crystal tunable filter was given in § 1.2.2.3. In this

appendix we provide more details about the tunable filter and the hot mirror. Then we

perform a two-color imaging of the plasma jet experiment using the tunable filter.

A.1 VariSpec liquid crystal tunable filter

The VariSpec liquid crystal tunable filter (VIS-7-35, serial No. 51892) is a compact, solid-

state optical filter with the wavelengths of the light transmitted controllable electronically.

The tunable filter was manufactured by Cambridge Research & Instrumentation, Inc. (CRi),

which is now part of PerkinElmer Life Sciences. The filter has a 35 mm diameter working

aperture and allows up to 7.5◦ incident angles. The tunable range of the filter spans the

entire visible band, i.e., the central transmitting wavelength can be adjusted continuously

from 400 nm to 720 nm with a 0.1 nm step size. When set at a fixed wavelength, the tunable

filter behaves like an interference filter with the transmission curve following a Gaussian

function. The peak transmission and Full-Width-Half-Maximum (FWHM) of the Gaussian

transmission curve are functions of the central wavelength (Figure A.1). For example, when

the filter is set at 667 nm, it has a peak transmission rate 0.51 at 667 nm and a FWHM 11

nm, meaning that at 656 nm and 678 nm the transmission rates are 0.5× 0.51 = 0.255.

The tunable filter when coupled with the IMACON 200 camera gives a powerful 2D

fast framing spectroscopic system. The drawbacks of the filter are the relatively low peak
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Figure A.1: Peak transmission rate and FWHM of the tunable filter as a function of central
wavelength.

transmission at short wavelengths and wide FWHM at long wavelengths.

A.1.1 Hot mirrors

The VariSpec filter has a built-in hot mirror to reflect unwanted near-infrared (NIR) pho-

tons. The hot mirror, as suggested from its name, reflects infrared photons which can

efficiently heat up materials when absorbed.

However, it is found that the plasma jet images taken by the IMACON 200 camera

filtered by the VariSpec filter at different wavelengths are very similar, even if at the wave-

lengths that the plasma is not supposed to emit. The IMACON 200 camera is sensitive

to visible and NIR light. On the other hand, the filter appeared to be working properly

when judged by human eyes. Therefore, it is suspected that the tunable filter still allows

significant amounts of NIR photons to pass through that are later recorded by the IMACON

200 camera.

We therefore mounted a 50.8 mm ×50.8 mm external hot mirror (Newport Optics,

20HMS-01) in front of the VariSpec filter. The hot mirror reflects more than 90% NIR

photons with wavelength from 720 nm to 1500 nm and allows incidence angle from 0◦ to

±15◦.

With the external hot mirror the VariSpec tunable filter works exceptionally (see Fig. A.4).

1see http://search.newport.com/?q=*&x2=sku&q2=20HMS-0

http://search.newport.com/?q=*&x2=sku&q2=20HMS-0
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A B C

Figure A.2: Sketches of the “spider-leg” configuration as the initial state of the plasma
(panel A) and two possible configurations of the plasma jet after collimated. Sketches from
Setthivoine You.

Hot mirror to 
reflect NIR photons

VariSpec
tunable filter

IMACON 
200 high-

speed camera

Figure A.3: Setup of the two-color imaging of the plasma jet filled by nitrogen and argon.

A.2 Two-color imaging of the plasma jet experiment

As the single collimated plasma jet forms after merging from an initial “spider-legs” config-

uration (Fig. A.2 panel A), two different configurations are possible. One is that the eight

plasma tubes twist around each other (Fig. A.2 panel B) and the other one is that the eight

plasma tubes remain parallel (Fig. A.2 panel C).

To resolve this question, we perform a two-color imaging of a dual-species plasma jet.

Four the eight initial plasma tubes are filled by nitrogen and the other four are filled by

argon. Figure A.3 shows the configuration of the experiment and the imaging system. Two

shots are performed with the tunable filter set at 568 nm and 667 nm, respectively. At 568
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1.90 µs 3.10 µs 4.30 µs 5.50 µs

6.70 µs 7.90 µs 9.10 µs 10.30 µs

11.50 µs 12.70 µs 13.90 µs 15.10 µs

False color composite image

N II (filter@568nm)

Ar II (filter@667nm)

Figure A.4: Top 12 panels: time-sequence of the two-color imaging of the N-Ar dual-species
plasma jet. Ar II emissions at 667 nm (shot 14365) are represented by red color and N
II lines at 568 nm (shot 14366) are represented by blue color. The frame at 10.3 µs is
magnified and presented as the bottom panel.

nm the tunable filter has a peak transmission = 0.37 and a FWHM = 7 nm and so transmits

four major N II lines (567.6 nm, 568.0 nm, 568.6 nm and 571.1 nm) but not argon lines. At

667 nm the tunable filter transmits five Ar II lines (663.8 nm, 664.0 nm, 664.4 nm, 666.6
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nm and 668.4 nm) but no important nitrogen lines.

Figure A.4 gives a time series of the two-color imaging of the nitrogen-argon dual species

plasma jet using the tunable filter with the hot mirror. The figure shows that the tunable

filter is fully functional as it distinguishes nitrogen plasma and argon plasma correctly and

clearly. It is shown that the plasma filaments are twisted around the central axis, following

a configuration shown in Fig. A.2 panel B. Magnetic reconnection is required in order to

have the plasma configuration change from Fig. A.2A to Fig. A.2B.
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Appendix B

Useful Signal Processing
Algorithms

In this appendix chapter we will review some signal processing algorithms. These mathe-

matical tools are very important to properly analyze wave/fluctuation measurements. In

Chapter 4 we used these tools extensively.

B.1 Fourier transform and discrete Fourier transform

Fourier transform is an operation that decomposes a function of time into an ensemble of

single-frequency oscillations. For a given function of time f(t), its Fourier transform is given

by

f̂(ω) =

∫ +∞

−∞
f(t)e−iωtdt, (B.1)

where both t and ω are real numbers. This equation is sometimes called forward Fourier

transform. The inverse Fourier transform is given by

f(t) =
1

2π

∫ +∞

−∞
f̂(ω)eiωtdω. (B.2)
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This is because

1

2π

∫ +∞

−∞
f̂(ω)eiωtdω =

1

2π

∫ +∞

−∞

(∫ +∞

−∞
f(t′)e−iωt

′
dt′
)
eiωtdω

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
f(t′)eiω(t−t′)dωdt′

=

∫ +∞

−∞

(
1

2π

∫ +∞

−∞
eiω(t−t′)dω

)
f(t′)dt′

=

∫ +∞

−∞
δ(t− t′)f(t′)dt′ = f(t), (B.3)

where the Dirac Delta function is

δ(x) =
1

2π

∫ +∞

−∞
eixpdp. (B.4)

Now consider a general function h(t) assembling all eiωt modes and each mode has a

different phase θ(ω), i.e.,

h(t) =

∫ +∞

−∞
g(ω)ei(ωt+θ(ω))dω, (B.5)

where g(ω) is the amplitude of mode eiωt. Without loss of generality, we assume g(ω) is

positive for all ω (if not, we can always choose θ(ω)→ θ(ω)+π to get a positive g(ω)). The

Fourier transform of h(t) is

ĥ(ω) =

∫ +∞

−∞
h(t)e−iωtdt

=

∫ +∞

−∞

∫ +∞

−∞
g(ω′)ei(ω

′t+θ(ω′))e−iωtdω′dt

=

∫ +∞

−∞
g(ω′)eiθ(ω

′)

[∫ +∞

−∞
ei(ω

′−ω)tdt

]
dω′

= 2π

∫ +∞

−∞
g(ω′)eiθ(ω

′)δ(ω′ − ω)dω′

= 2πg(ω)eiθ(ω). (B.6)

Therefore the absolute value of ĥ(ω) gives the amplitude of the corresponding mode and

the argument of ĥ(ω) gives the initial phase of this mode, i.e.,

|ĥ(ω)| = 2πg(ω) arg[f̂(ω)] = θ(ω). (B.7)
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The definition of Fourier transform Eq. B.1 involves continuous integration in an in-

finitely long time period. In reality, however, we only have finite-length, discrete-time

measurement. Therefore the discrete Fourier transform (DFT) is required. Assume a mea-

surement starts at time t0 = 0 and has a sampling rate Fs. Hence the sampling time interval

is ∆t = 1/Fs and the nth sampling time is tn = n∆t = n/Fs. Assume the measurements

are a length-N sequence {x0, x1, · · · , xN−1}. The DFT of {xn} is

Xk ≡
N−1∑
n=0

xn · e−2πikn/N =

N−1∑
n=0

xn · e−i(2πkFs/N)tn , k ∈ Z. (B.8)

Xk is the complex coefficient of the ωk ≡ 2πkFs/N = (2π/T )k sinusoidal component, where

T = N/Fs = N∆t is the total measurement period. Sometimes people use Xk/N instead

of Xk to represent the amplitude of the ωk sinusoidal component. The frequency interval is

∆ω = ωk −ωk−1 = 2π/T . Hence longer measurement period gives finner Fourier spectrum.

Because the DFT is performed on discrete time, an aliasing effect exists, i.e.,

Xk+N =
N−1∑
n=0

xn · e−2πik(n+N)/N

=
N−1∑
n=0

xn · e−2πikn/N · e−2πik

=
N−1∑
n=0

xn · e−2πikn/N

= Xk. (B.9)

In fact, it can also be shown that Xk+N/2 = Xk if k is even and Xk+N/2 = −Xk if k is

odd. Hence |Xk+N/2| = |Xk|. Hence we only have to compute Xk for k = 0, 1, · · · , N/2− 1,

corresponding to frequencies from DC to ωN/2−1 = (2π/T )(N/2 − 1) ≈ πN/T = π/∆t =

πFs. Intuitively, this is because the sampling rate Fs is finite, so the measurement is only

able to capture low frequency components with ω < πFs or f = ω/2π < Fs/2.

To obtain Xk for k = 0, 1, · · · , N/2 − 1, Eq. B.8 needs to be computed for N/2 times.

Therefore the time complexity of the DFT is O(N2), meaning that a total number of N2

multiplication operations need to be performed.

Fast Fourier transform (FFT) is an efficient algorithm to compute DFT, which has a

time complexity of O(N logN). FFT is most efficient if N is a 2-power number, i.e., N = 2m
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where m is an integer.

B.2 Finite impulse response (FIR) filter

Real measurement is usually an ensemble of modes of different frequencies. To study the

properties of a single frequency component, it is necessary to use bandpass filter to select

some specific component of interest. Digital filters are usually preferred because they are

the only option when post-measurement process is required. In this section we will have a

brief review of finite impulse response (FIR) filter, a type of widely used digital filter.

In a naive attempt we might perform a Fourier transform to an input data, multiply the

spectrum by a bandpass function, say, step function, and then perform an inverse Fourier

transform to get a ‘filtered’ signal. This method is in general not working at all because

it introduces significant numerical instabilities. A stable and more efficient way is to use

finite impulse response (FIR) filter.

Consider an input signal x0, x1, · · · . The output of an Mth-order discrete-time FIR filter

is a weighted sum of M most recent input values, i.e.,

yn = b0xn + b1xn−1 + · · ·+ bMxn−M =
M∑
i=0

bixn−i, (B.10)

where bi is the coefficient of the filter. The computation is in fact a discrete convolution. The

summation involves finite length of input signal and does not have any feedback. Consider

a single impulse input signal (delta function) xn = δn0, i.e., x0 = 1 and xi = 0 for i > 1,

the impulse response is

h[n] =

M∑
i=0

bixn−i =

 bn 0 ≤ n ≤M

0 otherwise
, (B.11)

i.e., the coefficients of a filter are the same as the impulse response samples of the filter.

Because M is finite, the filter has a finite response to an impulse. The filter’s frequency

response is

H(ω) =
N−1∑
n=0

h[n]e−inω, (B.12)

here ω = 2πf and f is normalized to Fs, the sampling frequency. With proper selected
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coefficients h[n] or bn, the FIR filter Eq. B.10 can select or stop components of certain

frequencies.

There are a lot of widely used FIR filters and most of them are named after some analog

electric filters, such as Butterworth filter, Chebyshev filter, and elliptical filter. These digital

FIR filters are designed so that the selection of h[n] gives same frequency and phase response

as the corresponding analog filters. In this thesis we will use Butterworth filter, which has a

flat frequency response in the favored band. Specifically, an Mth order low pass Butterworth

filter has a frequency response as

G(ω) =

√
1

1 + ω2M
, (B.13)

where the cutoff frequency has been normalized to 1 rad/sec. For ω � 1, G(ω) ∼ ω−M ,

corresponding to a power-law type cutoff. For ω � 1, G(ω) ∼ 1, corresponding to a flat

unit-gain response.

The following code shows how to use build-in functions in Matlab to implement Butter-

worth digital bandpass filter.

X = . . . ; %input data

Fs = 100 ; %sampling f requency

Band = [ 1 0 , 2 0 ] ; %frequency band

M = 4 ; %f i l t e r order

[ b , a ] = butte r (M, Band/( Fs / 2 ) ) ;

%genera te Butterworth f i l t e r c o e f f i c i e n t s

%Band needs to be normal ized by Fs/2

Y = f i l t e r (b , a ,X) ; %app ly Butterworth f i l t e r

[ h ,w] = f r e q z (b , a , 2 0 0 ) ;

%compute f r e q response h as func t i on o f angu lar f requency .

Figure B.1 demonstrates the efficiency of a 4th order Butterworth FIR digital filter. The
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Figure B.1: Upper left panels: input signal given in Eq. B.14. Four lower left panels: signal
filtered by different Butterworth bandpass filters. Right panels: spectra of the input signal
and filtered signals by FFT. The dashed curves show the frequency response of the digital
filters.
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input signal contains three single frequency components

x(t) = sin(2πf1t) + sin(2πf2t) + sin(2πf3t) t > 0, (B.14)

where f1 = 0.5 MHz, f2 = 2.5 MHz and f3 = 5 MHz. The measurement is from t = 0

to t = 10.24 µs with a sampling rate Fs = 100 MHz. A [0, 1.5] MHz low pass filter, [1, 3]

MHz bandpass filter, [4, 6] MHz bandpass filter and a [7, 9] MHz bandpass filter are applied

individually to the input signal. Fig. B.1 shows that the performance of the Butterworth

FIR digital filter is very good except for the first 0.5 µs. This is because the input signal

contains a step-function type impulse component at t = 0 and this impulse has a full

spectrum. According to the definition of FIR filter, an impuse at t = 0 impacts filtered

signal after t = 0 but this impact is limited to only a finite period.

B.3 Principal component analysis

Principal component analysis (PCA) is a data analysis procedure that converts a set of

measurements of possibly correlated variables into a set of values of linearly uncorrelated

variables called principal components. The PCA uses an orthogonal transformation to find

a new orthogonal coordinate system so that after projection to the new coordinate system

the variables are linearly independent from each other.

Figure B.2 shows an example of PCA that converts a coupled 2D data set into two

decoupled 1D data sets. Two principal components indicated by the two arrows are obtained

by PCA. The length of each arrow represents the importance of this principal components.

Note that the first principal component, represented by the longer arrow along (0.878, 0.478),

can also be considered as a linear fit to the data. This linear fit is equivalent to finding a

straight line ax+ by = c so that the summation of distance of each data point (x, y) to this

straight line is minimized. This is different from the conventional linear regression which

minimizes the summation of squared distances between y (the dependent variable of data)

and ŷ (fitted dependent variable). In PCA, variables x and y are treated equally but in

linear regression x is treated as an independent variable and y is treated as a dependent

variable. In statistics, independent variables are assumes to have zero uncertainties.

Measurements from the 3D Whistler probe contains three variables: x = dBr/dt, y =
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Figure B.2: An example of PCA to a 2D data set. The scattered data points are distributed
according to a bivariate Gaussian distribution centered at (1, 3) with a standard deviation
of 3 along the (0.878, 0.478) direction and of 1 in the orthogonal direction (−0.478, 0.878).
The two arrows gives the new coordinate system by PCA so that the data distribution
along each direction is independent on the distribution along the other direction. The plot
is created by Ben FrantDale under GNU Free Documentation License.

dBθ/dt and z = dBz/dt. If the magnetic fluctuations are indeed caused by whistler wave,

which has a circularly polarized magnetic component, then there should exist a 2D plane

in the 3D space so that the data points (x, y, z) fall on this 2D plane. By performing PCA

we can obtain three orthogonal principal components (directions). The first two principal

components define the 2D plane that has the minimal summation of the projected distances

of the data points (x, y, z). The third principal component defines the normal vector to the

2D plane, i.e., the wave vector of the circularly polarized whistler wave, with an ambiguity

of ±1 sign.
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