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ABSTRACT 

How do we come to the decision that we like a face?  This thesis investigates this important 

aspect of social processing and communication by examining preference decisions for faces 

and the role that visual behavior plays in the process.  I present a series of studies designed to 

investigate face preference formation and gaze patterns using eye-tracking and self-reported 

preference ratings.  I tested healthy control subjects and two clinical populations known to have 

deficits in social processing: people with autism and patients with amygdala lesions.  In studies 

one and two, I explore whether known social cognition deficits in people with autism and 

amygdala lesions also impair subjective decision-making regarding the attractiveness of faces.  

In study three, I investigate the flexibility of rule-based visual strategies used by these 

populations during face perception.  Additionally, I present a custom algorithm developed to 

process raw eyetracking data, which was used to analyze all eyetracking data in this thesis.  

People with autism and patients with amygdala lesions are known to have general deficits in 

social processing, including difficulty orienting toward and evaluating faces.  Nevertheless, I 

find that their behavior is markedly similar in many areas where we would expect them to have 

abnormalities or deficiencies.  Their preference decisions when judging facial attractiveness 

were highly correlated with those made by controls, and both groups showed the same biases 

for familiar faces over novel faces.  In addition, people with autism exhibit the same visual 

sampling behavior linking preference and attentional orienting, but reach their decisions faster 

than controls and also appear insensitive to the difficulty of the choice.  Finally, gaze to the eye 

region appears normal in the absence of an explicit decision-making task, but only when 

analyzed in a similar manner as previous studies.  However, when face sub-regions were 

analyzed in greater detail, people with autism demonstrate abnormalities in face gaze patterns, 

failing to emphasize the most information-rich regions of the face.  Furthermore, people with 

autism demonstrate impairments in their ability to update those gaze patterns to accommodate 

different viewing restrictions.  Taken together, these findings support the idea that the normal 

formation of face preferences can be preserved in the presence of general social processing 

impairments.  Patterns in the eyetracking and behavioral data indicate that this is made 

possible, in part, by compensatory atypical processing and visual strategies.  
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 C h a p t e r  I  

INTRODUCTION 

1.1 General Overview  

Human faces and facial expressions are central to social communication.  Our ability to 

accurately evaluate and make decisions about faces is a vital component of social functioning, 

enabling us to perceive emotions, decode others’ intentions, and form social bonds.  The visual 

and cognitive mechanisms involved in face processing are in large part subconscious and 

automatic, yet they wield an enormous influence on our judgments about faces and emotional 

expressions and, ultimately, on our social behavior.  While most of the extant research on face 

processing focuses on visual behavior during objective decision-making tasks, such as face 

discrimination or emotion recognition, few studies investigate the influence of visual behavior 

on subjective decision-making with regard to faces.  Much of our day-to-day social behavior is 

not based on objective and explicit processing, but is instead based on cues that are processed 

subjectively and automatically.  As such, an important but overlooked aspect of social decision-

making processes is the question of how we evaluate faces and ultimately determine if we like 

them.  While subjective judgments and the behavior that accompanies them can be more 

difficult to operationalize than objective judgments with empirically correct answers, subjective 

decision-making can be at least partially quantified through scientific methods such as 

eyetracking and behavioral measures in an effort to better understand how we subjectively 

evaluate faces. 

Autism is a pervasive developmental disorder in which social perception, and the processing of 

faces in particular, is disrupted.  Research has shown that individuals with autism spectrum 

disorders (ASD) have deficits in evaluating and making social judgments about faces, and 

demonstrate atypical gaze behavior toward social stimuli including inattention to faces and 

direct gaze aversion.  By examining the visual behavior of individuals with autism in social 

processing tasks, we can investigate the role of automatic responses to faces, as well as learn 

about the essential components involved in the formation of preference judgments for faces.  
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The aim of this thesis is to investigate the automatic and subconscious components of visual 

behavior that influence how we examine faces, and how these components of visual behavior 

can affect the way in which we subjectively evaluate faces.  Specifically, how do we come to 

the decision that we like a face or not?  One way to explore this question is to compare clinical 

populations that demonstrate impairments in social functioning, such as individuals with autism 

or amygdala lesions, to healthy controls (also referred to as neurotypicals) during social 

processing tasks.  We know that subjects with autism show deficits in orienting towards and 

processing socially-salient stimuli, with a particular deficit in the evaluation of faces, which 

may in turn be linked to amygdala dysfunction.   

The current research involves a series of studies investigating specific elements of visual 

behavior and preference formation for faces across three populations: healthy controls, people 

with autism, and amygdala lesion patients.  In the first study, I explore visual behavior during 

preference decision-making for both social stimuli and non-social stimuli.  When comparing 

healthy controls to autism and amygdala lesion patients, I examine whether the processes that 

are disturbed in making objective judgments about faces also affect subjective decision-making 

about faces.  In the second study, I investigate one well-known aspect of face preference 

formation reported in healthy populations—a preference bias for familiar faces over those that 

are novel—in order to examine whether social processing deficits affect preference formation 

for familiar faces.  In the last study, I explore the use and flexibility of atypical face viewing 

strategies that can partly compensate for social processing deficits.  

In the remainder of this Introduction, I will review the literature that is necessary for 

understanding the studies and results in this thesis.  First, I will present an overview of social 

attention and face processing in neurotypicals, and discuss what is known regarding face 

processing deficits in ASD.  Second, I will review neuroanatomical abnormalities that are 

linked to social processing deficits in ASD, and the possible association with amygdala 

dysfunction.  Lastly, I will present an outline of my dissertation and high-level findings from 

each of the studies. 



 

 

3 

1.2 Background and Context 

1.2.1 Social attention and face perception in neurotypicals 

Faces and facial expressions are a meaningful source of social and affective information, and 

studies show that faces and facial expressions have a unique ability to attract and hold our 

attention.   There is extensive research available on the social attention and face perception of 

neurotypicals, which is briefly reviewed in this section.  One powerful methodology used by 

researchers to study face processing is eye-tracking, whereby a person’s eye movements are 

recorded to analyze where a subject is looking and directing their attention in relation to a 

visual stimulus.  Eye movement patterns are widely regarded as an indicator of visual and 

attentional processes involved in performing a task.  Tracking subjects’ eye movements during 

viewing of social stimuli, such as faces, therefore provides a useful measure of where people 

are directing their attention during social and face processing tasks. 

In 1967, in one of the earlier eyetracking studies examining the social saliency of faces, Alfred 

Yarbus showed participants the painting Unexpected Visitors (Repin, 1884) and examined how 

the viewers’ gaze moved across the picture (Yarbus, 1967).  Yarbus recorded the participants’ 

eye movements using a homemade eyetracking device affixed directly to the eye with suction.  

He found that the faces of people depicted in the painting attracted the most visual attention 

compared to the rest of the elements in the scene.  That is, the viewers’ eyes would often pause, 

or fixate, upon faces rather than other parts of the picture.  Since Yarbus’s research, the social 

saliency of faces for neurotypicals has been demonstrated in many other studies (Palermo & 

Rhodes, 2007; Posamentier, 2003; Theeuwes & Van der Stigchel, 2006; Vuilleumier, 2000), 

particularly through experiments using increasingly more modern techniques such as 

eyetracking and neuroimaging.   Such experiments have demonstrated the important role that 

social attention plays in human interaction. 

As social animals, humans have a heightened attentional bias for biologically relevant stimuli, 

such as human figures and faces.  For example, neurotypicals show preferential attention for 

exploring social stimuli, including depictions of people and social interactions (Birmingham, 

Bischof, & Kingstone, 2008; Tipper, Handy, Giesbrecht, & Kingstone, 2008). Interestingly, 
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the attentional bias toward human figures is evident even in the first fixation made after an 

image is presented (Fletcher-Watson, Findlay, Leekam, & Benson, 2008), indicating that the 

presence of a person in an image can be processed rapidly and subconsciously prior to the first 

fixation.  This finding points to face-sensitive perceptual mechanisms that function pre-

attentively or within the bounds of attention, but at a remarkably swift speed, meaning a great 

deal of social processing occurs subconsciously and automatically.  This is particularly 

intriguing with respect to the amygdala, a key neural structure involved in directing social 

attention.  The relationship between social processing and the amygdala will be discussed later 

in this chapter.  

Several studies have examined the visual preference choices made by neurotypical individuals.  

For example, Shimojo and colleagues (2003) have shown that preference and gaze interact in a 

positive feedback loop to produce a phenomenon known as the “gaze cascade” effect (S. 

Shimojo, Simion, Shimojo, & Scheier, 2003).  The effect is observed when choosing between 

social stimuli, as well as when choosing between non-social stimuli.  When observers are 

shown pairs of images and instructed to choose which of the two they prefer, their gaze is 

equally likely to be on either picture.  However, in the few seconds before a decision is made, a 

gaze bias builds toward the stimulus that is eventually chosen, increasing until the person 

makes a decision.  The bias occurs outside of the person’s awareness, and is present before the 

person is conscious of his or her final preference.  It is hypothesized that this increasing gaze 

bias reflects a positive feedback loop between two behavioral factors that are critical for 

forming the eventual preference:  people tend to look more at an image they prefer, and people 

tend to prefer images that they have seen more.  

With regard to the latter factor, it is known that our preferences are strongly influenced by our 

previous experiences with certain stimuli.  Repeated visual exposure to a stimulus is known to 

increase our preference for it up to a certain point (Zajonc, 1968), a phenomenon termed the 

“mere exposure” effect since even subliminal exposure is sufficient for increasing preference 

for geometric stimuli.  More recent studies, however, have suggested that the familiarity 

preference is specific to certain stimulus categories but not others (Liao, Yeh, & Shimojo, 

2011; Park, Shimojo, & Shimojo, 2010).  When subjects are presented with pairs of faces, and 
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instructed to judge for preference, people prefer the faces that are familiar.  But the opposite 

occurs with nature scenes: when presented with pairs of nature scene images, people prefer the 

images that are novel.   In other words, healthy controls demonstrate a familiarity bias for faces 

but a novelty bias for nature scenes.  The authors suggest the familiarity preference for faces, 

which will be discussed further in Chapter 3.4, might be driven by the preferential attention that 

is afforded to faces over other non-social stimuli. 

There is considerable evidence to indicate that faces enjoy preferential attentional capture in 

normally developing individuals (Vuilleumier, 2000).  The reflexive attraction to faces is so 

robust in neurotypicals that it occurs even when it would be beneficial to inhibit it (Bindemann, 

Burton, Hooge, Jenkins, & De Haan, 2005; Gilchrist & Proske, 2006; Theeuwes & Van der 

Stigchel, 2006).  That is, by showing a face in the field of view, individuals cannot help but 

employ attentional resources to process it, even when doing so subsequently distracts from the 

goals of a competing task.  In one study, Langton and colleagues (2008) reported that 

participants were slower to find a non-social image when a face was also present on-screen 

compared to when a face was absent (Langton, Law, Burton, & Schweinberger, 2008).  In other 

words, a face that had no relevance to the visual target for which participants were searching 

slowed their ability to search for a different target because the face automatically engaged 

viewers’ attention.  These findings demonstrate that faces are not only spontaneously detected 

and attended to, but also indicate that it is harder to disengage from a face compared to a non-

face object once one’s attention has been captured by it.   

Healthy individuals have also been shown to be more attuned to changes involving faces than 

those involving other objects (Beck, Rees, Frith, & Lavie, 2001).  A study by Ro, Russell, and 

Lavie (2001) found that changes involving faces—such as a face changing to a different face—

are detected faster and more accurately than changes in other object categories, such as pictures 

of food or musical instruments (Ro, Russell, & Lavie, 2001).  Interestingly, reaction times for 

detecting changes to a face increased the less complex the scene was.  The authors interpreted 

this effect to indicate that the more competition there is for visual attention in a scene, the more 

privilege faces are afforded.  That is, faces have even greater saliency when competing against 
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other non-face stimuli for attention.  Thus, in typically developing people, faces enjoy 

privileged status, engaging and holding attention quicker and longer than non-social objects. 

The preference in attention toward faces and face-like configurations over other objects in the 

environment seems to be innate in many respects.  For example, spontaneous orienting to faces 

is a behavior present from birth: newborn infants (participants in the study were an average of 

nine minutes in age) show heightened interest in faces, turning their heads more frequently to 

gaze at images whose internal elements are configured to resemble actual faces than at images 

with the same internal elements scrambled, or a blank image (Goren, Sarty, & Wu, 1975).  

Infants also direct their first fixations to face-like patterns more often than would be observed 

by chance, even when other stimuli are competing for visual attention (Gliga, Elsabbagh, 

Andravizou, & Johnson, 2009). These results show that the basic neural architecture for 

attending to and evaluating faces for social information is present in some form even at an early 

age. 

Indeed, the brain is primed to attend to faces even in their most basic configuration and the 

presence of specific rudimentary visual cues automatically elicits face processing in 

neurotypicals.  One such cue is the arrangement of facial elements in an upright, T-shaped 

configuration.  In other words, neurotypicals rely more on the arrangement of facial features 

rather than on individual facial features while performing face processing tasks (Calder & 

Young, 2005).  For example, inverted faces are harder to recognize than upright ones, 

(Kanwisher, Tong, & Nakayama, 1998; Tanaka & Farah, 1993), and faces that are presented 

whole are detected more quickly than faces whose elements are scrambled (Hershler & 

Hochstein, 2005), indicating that facial features alone do not receive preferential attention, but 

that the appropriate configuration is preferentially processed and detected.  These findings 

highlight a key component of face perception in neurotypicals, which is configural processing.  

The tendency to attend to an upright, T-shaped configuration as a potential social stimulus is so 

entrenched in neurotypicals that the presence of actual facial elements is not necessary to 

capture visual attention—schematic faces (for example, a grey oval overlaid with two black 

circles positioned above a third black circle to resemble two eyes and a mouth) also elicit the 

same effect: individuals are quicker to direct attention to an upright schematic face than an 
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inverted one (Tomalski, Csibra, & Johnson, 2009).  Taken together, these findings 

demonstrate that the brain is primed to recognize and evaluate faces in even their most basic 

configurations. One reason behind these findings may be that the face holds special 

significance in its ability to communicate social information, which will be discussed next.  

1.2.2 Social processing of faces 

Faces communicate a wealth of information regarding people’s emotions, attention, and future 

intentions, and neurotypical individuals quickly and effortlessly evaluate faces to process this 

social information. One vital component underlying neurotypicals’ ability to process facial 

information is the spontaneous tendency to prioritize gaze to specific facial features over other 

parts of the face.  When viewing faces, individuals’ fixations are largely clustered around the 

key facial features that communicate the greatest amount of emotional and social information: 

first the eyes, followed by the mouth and nose (Luria & Strauss, 1978; Stephen, Wellens, 

Goldberg, & Dell'Osso, 1978; Walker-Smith, Gale, & Findlay, 1977).   At a glance, these 

regions are evaluated and processed to form an impression of another person’s mental state.  

Anger is quickly recognized by the downward turn of the inner eyebrows (Jones, 1974; 

Yarbus, 1967), combined with pursed or scowling lips (Kohler et al., 2004), disgust is 

perceived from a wrinkled nose and raised upper lip (Rozin, Lowery, & Ebert, 1994; McIntosh, 

2006), and fear is recognized by the widening of eyes and increased amount of visible sclera 

(Whalen et al., 2004), along with a stretched mouth (Kohler et al., 2004).  In addition to a 

smile, genuine happiness is recognized by the contraction of muscles surrounding the eyes, 

known as orbicularis oculi (Williams, Senior, David, Loughland, & Gordon, 2001).    

The eyes in particular are central to social communication and they convey an extensive 

amount of information regarding stable physical traits, such as age (Nguyen, Isaacowitz, & 

Rubin, 2009) and gender (Brown & Perrett, 1993), as well as dynamic, transient states such as 

intention and emotion (Kleinke, 1986).  Eye gaze direction, for instance, is a highly salient cue 

for establishing social intention and interaction, signaling either initiation or avoidance of social 

contact (Argyle et al., 1973; Argyle & Cook, 1976).  Direct eye gaze indicates a person’s 

attention is directed at the perceiver and that the person intends to engage with the perceiver, 

while averted gaze indicates a person’s attention is directed elsewhere (for a review of levels of 
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social gaze and their meaning, see Emery, 2000).  Emotions are another dynamic cue that can 

be communicated just by the eye region.  Complex emotional states—such as admiration, 

arrogance, boredom, and guilt—can be identified just as well from the eyes as from the whole 

face (Baron-Cohen, Wheelwright, & Jolliffe, 1997).  Thus, the eyes are a highly salient cue for 

social communication and interaction.  For this reason, in social processing tasks and in tasks 

investigating where neurotypicals naturally orient their gaze, the eyes are the elements of the 

face that are fixated upon most frequently and for longer durations of time than other regions of 

the face (Itier, Villate, & Ryan, 2007; Stephen et al., 1978).  Like the general salience of the 

face, the salience of the eyes is also present in early infancy.  Infants direct more of their 

attention to faces with open eyes compared to closed eyes (Batki, Baron-Cohen, Wheelwright, 

Connellan, & Ahluwalia, 2000), as well as to faces showing direct gaze compared to averted 

gaze (Farroni, Csibra, Simion, & Johnson, 2002).   

The visual cues contained in faces, such as emotional expressions and direction of eye gaze, 

also guide our attention to facilitate further processing.  For example, behavioral studies have 

shown that detection and discrimination of faces is enhanced when the faces depict emotional 

expressions.  Faces expressing happiness, surprise, or disgust are more likely to attract viewers’ 

first fixations and are also detected faster than neutral facial expressions (Calvo & 

Nummenmaa, 2008; Ro et al., 2001).  Calvo and Esteves (2005) reported that emotional 

expressions of anger, happiness, and sadness could be detected and discriminated in as little as 

25 milliseconds, whether faces were presented within or outside of the foveal field of view 

(Calvo & Esteves, 2005), indicating that facial cues can modulate attentional orienting.  Studies 

have also shown that emotional expressions can be perceived pre-attentively—meaning outside 

of conscious perception—and then guide our active attention to the face’s location (Eastwood, 

Smilek, & Merikle, 2001).   In addition to emotional expression, a similar facilitative effect is 

observed with direct eye contact.  Neurotypical individuals are quicker to detect faces showing 

direct gaze compared to averted gaze (Senju, Yaguchi, Tojo, & Hasegawa, 2003).  

Furthermore, studies have shown that direct eye contact facilitates recognition of gender 

(Macrae, Hood, Milne, Rowe, & Mason, 2002) and identity (Hood, Macrae, Cole-Davies, & 

Dias, 2003).  These studies demonstrate that the processing of certain basic social cues takes 



 

 

9 

place automatically and subconsciously, and that these cues can modulate further, and often 

more complex, social processing by directing visual attention.  

In addition to rapid processing of facial features for emotion and intention, people also form 

impressions of social traits based purely on facial features, and they do so in a remarkably brief 

amount of time.  With a quick glance at a person’s face, often as little as 50 milliseconds, 

people are able to make a variety of social judgments regarding others, evaluating intelligence, 

attractiveness, aggressiveness, and competence (Bar, Neta, & Linz, 2006; Olson & Marshuetz, 

2005; Rule, Ambady, & Adams, 2009).  The characteristics perceived in the initial stages of 

seeing a person’s face prove to be influential in determining the social traits ascribed to that 

individual. For example, one study showed that neurotypicals make inferences about 

attractiveness, trustworthiness, competence, and aggressiveness when perceiving a face in as 

little as 100 milliseconds after exposure (Willis & Todorov, 2006).  Additionally, judgments 

that were made in 100 milliseconds strongly correlated with judgments that were made in the 

absence of a time restriction, indicating that a time window of 100 milliseconds is sufficient to 

automatically invoke a variety of complex social inferences.  

The automatic and subjective inferences people make for characteristics such as trustworthiness 

and attractiveness affect social judgments and behavior in neurotypicals.  For example, research 

has shown that these social inferences affect election outcomes (Ballew & Todorov, 2007), 

professional success (Dipboye, Arvey, & Terpstra, 1977; Shahani-Denning, 2003), 

consumption behavior (Winkielman, 2005), and even sentencing leniency in the judicial 

system (Stewart, 1980).  Furthermore, people attribute different qualities based on perceptions 

of attractiveness: more attractive people elicit more positive impressions of competence (Eagly, 

Ashmore, & Makhijani, 1991) and even more attractive babies are viewed as being more 

responsive and intelligent than their less attractive peers (Langlois et al., 2000).   

The social and affective information communicated by faces, therefore, is largely evaluated 

subconsciously and automatically, and based on this information, neurotypicals make 

inferences that affect social behavior and real-world outcomes.  While the automatic processing 

and evaluation of faces is a crucial domain of social processing in neurotypicals, it has been 
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shown to be compromised in individuals with social disorders such as autism spectrum 

disorder (ASD) (Dawson et al., 2004; Katarzyna, Fred, & Ami, 2010; Remington et al., 

2012).  Studying face processing in people with ASD can provide insight into both the 

neurological processes underlying face perception and the underlying symptomology in ASD 

and other disorders in which social processing is impaired.  

1.2.3 Social saliency in autism 

Autism is a pervasive developmental disorder with core diagnostic criteria that include 

restricted and repetitive behaviors and interests, and deficits in social communication and 

interaction (Diagnostic Statistical Manual of Mental Disorders - 5th ed.; American Psychiatric 

Association, 2013).  Individuals with autism have impairments across a variety of domains, 

including deficits in orienting towards social cues such as eye gaze (Dawson et al., 2004; 

Elsabbagh et al., 2012; Jones, Carr, & Klin, 2008), and difficulty processing social and 

emotional information (Ashwin, Chapman, Colle, & Baron-Cohen, 2006; Forgeot d’Arc et al., 

2014; Smith, Montagne, Perrett, Gill, & Gallagher, 2010).  

Few studies exist on face preference formation in ASD.  Moreover, the two studies that have 

directly investigated face preference have drawn mixed conclusions.  Da Fonseca, Santos, 

Rosset, and Dereulle (2007) reported people with ASD have similar attractiveness preferences 

as neurotypicals, and moreover, they demonstrate a similar tendency to attribute more positive 

qualities to faces perceived as more attractive (Da Fonseca, Santos, Rosset, & Deruelle, 2011).  

While a study by White, Hill, Winston and Frith (2005) also reported that attractiveness 

judgments in ASD did not differ from the judgments made by neurotypicals, in contrast to da 

Fonseca and colleagues (2007), they found that people with ASD were impaired in the ability 

to judge attractiveness of faces if they were the same sex as the participant (White, Hill, 

Winston, & Frith, 2006). 

Studies examining social perception in ASD have found reduced saliency of social stimuli 

relative to non-social stimuli in the disorder (Dawson, Webb, & McPartland, 2005).  In addition 

to a decreased attentional bias in response to faces, when people with autism do look at faces, 

they demonstrate atypical fixation behavior towards them (Fletcher-Watson, Leekam, Benson, 
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Frank, & Findlay, 2009), fixating more on the mouth than neurotypicals (Klin, Jones, 

Schultz, Volkmar, & Cohen, 2002; Spezio, Adolphs, Hurley, & Piven, 2007), as well as 

showing reduced eye contact (Jones & Klin, 2013; Katarzyna et al., 2010).   

Although the exact abnormalities characterizing atypical eye gaze are still a matter of debate, a 

number of studies report differences in the eye gaze patterns of people with ASD, indicating 

they either avoid or simply lack interest in the eye region.  Eyetracking studies have revealed 

that individuals with autism look less at the eyes of an emotionally expressive face than do 

neurotypicals (Corden, Chilvers, & Skuse, 2008; Dalton et al., 2005; Klin et al., 2002; 

Pelphrey et al., 2002; Riby & Hancock, 2008).  Moreover, extant research has also indicated 

that people with autism fail to use information from the eyes to identify complex mental states 

such as shame or envy (Jolliffe & Baron-Cohen, 1997), and that they rely more on the mouth 

than the eyes for social information (Neumann, Spezio, Piven, & Adolphs, 2006).   

Atypical gaze behavior is also linked to abnormalities in individuals’ ability to evaluate social 

information expressed through faces.  For example, some studies have reported that high- and 

low-functioning individuals with autism present impaired recognition of facial expressions 

compared to controls (Hobson, 1986; Tantam, Monaghan, Nicholson, & Stirling, 1989).  While 

these impairments might be restricted to the recognition of specific emotions such as fear, 

anger, and sadness (Ashwin et al., 2006; Bal et al., 2009; Wallace, Coleman, & Bailey, 2008), 

there is also evidence to suggest a more global impairment in emotion recognition (Rutherford 

& McIntosh, 2006; Tardif, Lainé, Rodriguez, & Gepner, 2007).  

Social deficits in autism might also differ based on levels of intellectual disability.  In people 

with high-functioning autism (which generally refers to diagnosed individuals who can 

communicate, carry out basic tasks, and have less intellectual impairment), there is evidence to 

suggest social impairments are restricted to higher-order social judgments rather than basic 

aspects of social perception.  While social attributions that require higher-order judgments, 

mentalizing, or theory-of-mind inferences are more consistently impaired in individuals with 

high-functioning autism, some studies report that lower-level social processes are not impaired, 

such that basic skills, like emotion perception, remain intact (Adolphs, Sears, & Piven, 2001; 



 

 

12 

Jolliffe & Baron-Cohen, 1997).  The pathways associated with complex aspects of 

processing facial and emotional expressions—such as the retrieval of social knowledge that 

allows us to recognize a familiar face, conceptual information about others’ mental and 

emotional states, or the generation of complex emotional responses in the viewer—might be 

separate from or compensated for by other pathways that allow for basic social processing, 

such as the recognition of simple emotions or face preference judgments.  Therefore, high-

functioning autistic individuals’ ability to process more basic social information might not be 

affected by the face processing deficits commonly observed in autism. Such heterogeneity in 

symptoms among ASD sub-groups is common and, as discussed below, has led to some 

difficulty in finding consistent symptomology across the entire ASD population. 

1.2.4 Divergent behavioral findings in autism research 

Social processing deficits in ASD are poorly understood in relation to diagnostic sub-groups as 

well as the known heterogeneity in symptomology.  To add to this complexity, individuals 

within the same sub-group can express different subsets of reported symptoms, and differ in the 

severity of those symptoms.  Consequently, the large body of extant studies on face processing 

in ASD has generated somewhat mixed results.  Although researchers initially expected that 

people with ASD would present significant, overt deficits in the processing of faces and other 

social stimuli, it is now understood that social perception in autism is heterogeneous, resulting 

in widely varying reports of social impairment. Such highly conflicting results led to the 

conclusion in a recent review by Harms et al. (2010) that social perception in ASD depends on 

numerous factors, including the known heterogeneity in ASD in terms of symptom variability 

and severity, participant demographics (e.g., age, gender, etc.), experimental differences in 

stimuli and task demands, and the use of compensatory strategies in high-functioning 

individuals with ASD (Harms, Martin, & Wallace, 2010).  

Various studies have shown that the differences between high-functioning individuals with 

ASD and neurotypicals often appear to be subtle due to the use of compensatory, top-down 

strategies in autism that mask social deficits (Rutherford & McIntosh, 2006; Teunisse & de 

Gelder, 2001; Wong, Fung, Chua, & McAlonan, 2008).  For example, Grossman and 

colleagues reported that when children with ASD were shown pictures of basic emotional 
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expressions with matching labels, there was no impairment in recognizing emotions 

(Grossman, Klin, Carter, & Volkmar, 2000).  However, when faces were presented with 

mismatched labels, children with ASD had difficulty recognizing the emotions, indicating that 

the subjects had likely relied on the labels—perhaps even subconsciously—to facilitate 

emotion recognition.   

Recent research has expanded on the findings related to top-down strategies in autism by 

exploring the import of shorter response windows for emotion recognition. Clark and 

colleagues (2008) reported that while individuals with ASD could extract emotional 

expressions from faces at long presentation durations as well as neurotypicals could, emotion 

recognition in the autism group was impaired at shorter presentation durations (Clark, 

Winkielman, & McIntosh, 2008).  This suggests that, with longer presentation times, people 

with ASD might rely on higher-level cognitive skills to identify emotions, but that rapid, 

automatic processing is impaired.  Taken together, these results indicate that some high-

functioning individuals with ASD can compensate for social processing deficits by using top-

down, cognitive strategies.  However, it is important to note that the studies demonstrate that 

atypical strategies are limited in flexibility since they cannot be applied in uncommonly 

encountered situations.      

Perceptual (i.e., implicit) strategies for visual processing have also been shown to differ in 

individuals with ASD, enabling them to outperform controls in certain types of visual 

perception tasks with non-social stimuli.  Evidence in support of this visual processing 

advantage comes from studies that have shown faster reaction times among individuals with 

autism in finding embedded figures (Jarrold, Gilchrist, & Bender, 2005; Keehn et al., 2008), as 

well as enhanced detection of targets in visual search tasks (O'Riordan, Plaisted, Driver, & 

Baron-Cohen, 2001; O'Riordan & Plaisted, 2001).  Explanations for this effect have highlighted 

the use of implicit processing strategies that emphasize local over configural information by 

people with ASD (Dawson et al., 2005; Rondan & Deruelle, 2004).  More importantly, 

however, this atypical processing strategy is also believed to underlie the lack of a face 

inversion effect reported in the literature for ASD (Hobson, Ouston, & Lee, 1988; Langdell, 

1978; Tantam et al., 1989), which enables people with ASD to outperform controls in face 
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perception tasks emphasizing featural processing.  These findings indicate that atypical 

processing confers individuals with ASD an advantage in non-social perception tasks, which 

also extends to certain face perception tasks. 

These differences in face processing may be explained by differences in the default style of 

processing employed by neurotypicals versus individuals with ASD (Krysko & Rutherford, 

2009; Lahaie et al., 2006).  While neurotypicals generally engage a configural style of face 

processing, there is evidence that in some situations, individuals with ASD use a local, more 

feature-based style as their default (Dawson et al., 2005).  Some researchers have argued that 

in ASD, the face is examined and processed in terms of individual features rather than as a 

whole, perhaps through use of rule-based strategies.  Particularly with respect to emotion 

processing, people with ASD may learn to recognize social cues by identifying rules that 

characterize specific facial features in an expression, such as raised corners of the mouth for 

happiness or a scrunched nose for disgust (Rutherford & McIntosh, 2006).  In contrast to this 

explicit rule-based strategy, neurotypicals rely more often on a holistic, template-based 

strategy, processing the configuration of the entire set of facial features (Calder & Young, 

2005).  This is not to say that configural processing is entirely absent in individuals with ASD, 

as global processing can be engaged by other mechanisms such as attention cueing (Behrmann 

et al., 2006; Nishimura, Rutherford, & Maurer, 2008), but it does indicate that there is a bias 

among people with ASD for using local processing strategies as the default.  Taken together, 

the results from these and other face processing tasks point to the likelihood that high-

functioning individuals employ as their default a local, feature-based processing to process 

social information rather than the global, configural-based processing that is used by 

neurotypicals.  This suggests that atypical processing and compensatory strategies can be used 

to partially counteract deficits in face processing and may help to explain the seemingly 

divergent results of previous research on ASD individuals.  

1.2.5 Abnormal brain structure and connectivity in autism 

Altered brain connectivity and neuroanatomical differences are thought to contribute to many 

of the symptoms observed in individuals with ASD, particularly in the area of social behavior.  

Current theories regarding brain abnormalities in people with autism emphasize differences in 
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connectivity between regions, or anomalies in several functionally related structures that can 

affect a number of cognitive processes and result in the behaviors commonly observed in 

people with ASD.  Early abnormal overgrowth is found in regions underlying functions that are 

known to be impaired in autism, such as language, social skills, and cognitive skills.  

Courchesne (2004) reported abnormal overgrowth in both white and grey cerebral matter—

particularly dorsolateral and medialfrontal regions—and white cerebellar matter.  In addition, 

atypical growth of the cerebellum is believed to play a role in cognitive and motor dysfunctions 

that lead to the stereotyped behaviors and reduced exploration commonly reported in children 

with autism (Courchesne, 2004; Pierce & Courchesne, 2001).  Bilateral amygdala enlargement 

and cerebellar and hippocampal enlargement have also been reported in young children 

(Courchesne, 2004) and older children (Schumann, 2004) with autism.  In particular, the degree 

of enlargement in the amygdala is closely associated with the severity of impairment in social 

and communication skills (Munson, Dawson, Abbott, & Faja, 2006), including difficulty 

recognizing facial expressions (Bachevalier, 2006) and detecting eye gaze (Howard et al., 

2000).   

Regions that show overgrowth and enlargement in early childhood also show atypically slow 

growth as well as degeneration and volumetric loss later in life, in some cases.  In adolescents 

and adults with autism, the structures comprising the limbic system—particularly the 

amygdala, hippocampus, basal ganglia, and prefrontal cortices—are most often implicated in 

symptoms related to social dysfunction (Uddin, Menon, Young, Ryali, & Chen, 2011).  

Amygdala dysfunction is known to contribute to disruptions in face perception, which includes 

decreased eye movements to key features of the face and a lack of orienting toward social and 

emotional information.  However, the exact nature of this abnormality is unclear.  For example, 

Howard et al. (2000) reported impairment in facial expression recognition associated with an 

increase in amygdala volume (Howard et al., 2000), whereas Nacewicz et al. (2006) found 

smaller than normal amygdalae in people with autism (Nacewicz et al., 2006).   

Studies have also revealed structural abnormalities in the Superior Temporal Sulcus (STS) in 

the form of decreased gray matter (Boddaert et al., 2004), and functional abnormalities in the 

STS in the form of decreased activity during social judgments (Pelphrey, Shultz, Hudac, & 
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Vander Wyk, 2011).  Disruptions in STS function may drive some of the impairments 

related to social perception in autism, such as communication deficits involving speech 

perception and difficulty in understanding the intentions of others from movements of the eyes, 

mouth, and body.  

There is increasing evidence that abnormal functioning of the cerebellum also contributes to 

motor and cognitive impairments in ASD.  The cerebellum is a key brain structure for 

coordination of cognitive functions involving attention and perception.  In children with autism, 

disruptions in cognitive functions are expressed behaviorally in a restricted range of interests, 

reduced exploration, and stereotyped behaviors—all three of which have been linked to 

cerebellar dysfunction (Pierce & Courchesne, 2001).  Cerebellar function may similarly be 

compromised in adults with ASD, as there is evidence of increased cerebellar volumes (Sparks 

et al., 2002), as well as abnormal neuronal densities in this region in the form of decreased 

numbers of Purkinje cells (Belmonte et al., 2004). 

In addition to the structural differences reported in key brain regions, there is substantial 

evidence of abnormal functional and structural connectivity linking the various brain regions in 

adults and adolescents with ASD.  The hypothesis of underconnectivity proposes that 

underfunctioning long-range circuitry in people with autism might cause functional deficits in 

integrating and synchronizing information between related brain regions (Just, Cherkassky, 

Keller, & Minshew, 2004), and such deficits would cause a wide range of impairments in 

language processing, motor coordination and social processing.  Structural abnormalities 

appear as atypically high neuronal connectivity between local regions and low neuronal 

connectivity between brain regions that lie further apart (Courchesne & Pierce, 2005; 

Kleinhans et al., 2008), and might also contribute to social impairments observed in autism. 

Indeed, one study by Barnea-Goraly and colleagues (2004) reported disruptions in white matter 

tracts between brain regions in subjects with autism (Barnea-Goraly et al., 2004).  These 

regions—including the ventromedial prefrontal cortex, anterior cingulate gyrus, superior 

temporal sulcus, and amygdala—are strongly implicated in social functioning.  Taken together, 

these studies demonstrate that the brain regions and functional connectivity involved in social 
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processing are abnormal in individuals with ASD, and that these abnormalities likely 

contribute to impairments in face processing.  

The role of the amygdala in ASD has also been given greater attention in recent years, as the 

amygdala’s function or connections may be compromised in autism (Adolphs, 2002; Baron-

Cohen et al., 2000).  In neurotypicals, the amygdala is an integral part of the cognitive network 

for processing social information, and modulates social processing by directing visual attention 

to salient features of the face (Adolphs, 1999; Brothers, 1990).  It is therefore important to have 

a broader understanding of the role the amygdala plays in social processing, which will be 

discussed next.  

1.2.6 The amygdala: a conductor of social attention 

While the recognition and processing of social information in faces draws on multiple brain 

regions, the amygdala plays a particularly important part. According to Adolphs (2002), the 

amygdala serves an expansive role in face processing for neurotypicals through a number of 

mechanisms (Adolphs, 2002).  First, the amygdala orients bottom-up attention to socially 

salient features of the face—such as the eyes or mouth—via feedback mechanisms to visual 

and attention areas (Amaral & Price, 1984).  Modulation of these feedback pathways results in 

heightened perceptual processing of social stimuli as well as subconscious processing of 

emotional cues (Amaral, Behniea, & Kelly, 2003; Sander et al., 2005).  That is, the amygdala 

attaches salience to visual input (Adolphs, 1999) and subsequently directs visual attention to 

the areas of the face that are most informative for further processing of social information.  In 

addition to emotional cues, another salient cue is direct gaze, which elicits heightened 

activation in the amygdala compared to averted gaze (Kawashima et al., 1999), indicating that 

the amygdala plays a role in specific aspects of gaze processing.   

Second, the amygdala, along with the orbitofrontal cortex, directs retrieval of associated social 

knowledge about emotions from other neocortical regions and the hippocampus (Adolphs, 

2002; Allison, Puce, & McCarthy, 2000; Willis, Palermo, Burke, McGrillen, & Miller, 2010).  

Furthermore, it also links salient stimuli to the affective response felt by the viewer (Thomas et 

al., 2001).  In this way, the amygdala modulates not only emotional processing but also guides 



 

 

18 

interpretation of those emotions to form social judgments. Thus, through a variety of 

mechanisms, the amygdala influences attention to and processing of socially salient stimuli, 

which in turn influences the further processing of the information conveyed by faces.  

Many aspects of social processing that are linked to healthy amygdala functioning are known to 

be compromised in ASD.  Faces are less likely to draw the attention of people with autism, who 

show reduced orienting and attention to social stimuli (Dawson et al., 2004), less attention to 

the eye region (Dalton et al., 2005; Klin et al., 2002; Pelphrey et al., 2002), and impairments 

in processing social and affective information (Harms, Martin, & Wallace, 2010; Schultz, 

2005), functions which are associated, at least in part, with amygdala function in 

neurotypicals.  The exact nature of the dysfunction in ASD is unclear, but two plausible 

explanations include a failure of the amygdala to assign social saliency to faces (Aggleton, 

Burton, & Passingham, 1980), and a failure of the amygdala to signal feedback pathways that 

are necessary for processing social stimuli (Schultz, 2005).  Nonetheless, while the specific 

impairments remain an open question, neuroimaging studies in people with ASD do support a 

general link between abnormal amygdala functioning and social processing impairments, 

reporting hypoactivation of the amygdala in a range of face perception tasks (Baron-Cohen et 

al., 1999; Pelphrey et al., 2011; Pierce, Müller, Ambrose, Allen, & Courchesne, 2001; 

Schultz, 2005).  These findings highlighting the importance of the amygdala in social 

processing, and the impairments that can arise from abnormal functioning have been further 

validated in studies involving subjects with amygdala lesions. 

1.2.7 Amygdala lesion studies 

As discussed below, lesion studies have been particularly informative for illuminating the role 

of the amygdala in social cognition.  Amygdala lesion patients demonstrate many similar social 

processing impairments to those reported in ASD, and there is a great deal of overlap in how 

both populations view and evaluate faces.  For example, amygdala lesion patients demonstrate 

diminished eye contact (Adolphs et al., 2005; Spezio, Huang, Castelli, & Adolphs, 2007) and 

greater reliance on information from the mouth rather than the eyes (Birmingham, Cerf, & 

Adolphs, 2011).  Individuals with amygdala lesions are also significantly impaired in 

recognizing the expression of complex mental states—specifically related to social emotions 
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such as guilt, admiration, flirting, and arrogance—from both the whole face and from the 

eyes alone (Adolphs, Baron-Cohen, & Tranel, 2002).  Amygdala lesion patients also have 

deficits in making social judgments regarding traits such as trustworthiness and approachability 

(Adolphs, Tranel, & Damasio, 1998).  A study on a patient referred to as SM who has complete 

bilateral amygdala lesions found that her impairment in recognizing mental states arises from a 

failure to spontaneously orient to the salient parts of a face rather than from impaired ability to 

recognize the actual expression (Adolphs et al., 2005).  When viewing facial expressions, the 

proportion of fixations that patient SM would direct to the eye region was atypically low 

regardless of the emotion.  Furthermore, although her recognition of fear was significantly 

worse relative to controls, this impairment was reversed with a simple instruction to direct her 

gaze to the eyes. 

The findings of the study with patient SM had several implications.  First, the results indicated 

that the amygdala was not necessary for the recognition of emotions.  The fact that lesion 

patients retain a basic capacity to identify basic emotions and show varying degrees of 

impairment means that there likely exist parallel or redundant pathways for social processing.  

This also suggests that feedback between those pathways may overlap.  Second, the authors 

interpreted that, while patient SM’s gaze behavior was not spontaneous, deficits in emotion 

perception could be partially mitigated by active evaluation (Adolphs, 2006).  The fact that 

patient SM’s recognition of fear could be reversed with top-down control meant that in addition 

to spontaneously orienting to emotional cues, people can also learn to actively examine faces in 

order to judge the emotion.   These findings also demonstrate that there are multiple pathways 

for processing of social information. 

Given that research has found that the amygdala plays a major role in explaining social 

processing deficits, especially as it relates to autism, amygdala lesion subjects provide an 

interesting corollary to better understand the underlying neuroanatomical source of ASD social 

processing deficits and unimpaired social processing in neurotypicals.  Furthermore, studying 

visual behavior in response to faces in these two clinical populations can tell us about how we 

evaluate social stimuli, including where we look to gather information, and the role of gaze in 

social judgments. 
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1.3 Study Summary and Thesis Structure 

In this thesis, I investigate how we arrive at the decision that we like a face and find it 

attractive.  I use eyetracking and self-reported behavioral data to gain insight into the visual 

behavior that accompanies face gaze and preference decisions in people with autism and 

amygdala lesions.  Along the way, I also explore the use of atypical face gaze strategies in 

high-functioning autism and amygdala lesion patients.  To examine these topics, I utilized a 

variety of experimental paradigms and measures.  In the first two studies, participants 

performed a 2-alternative forced-choice task.  They made preference choices amongst pairs of 

social stimuli and pairs of non-social stimuli and indicated which image of the pair they 

preferred (eye gaze was recorded in the “Gaze Cascade” study).  In the third study, participants 

viewed images presented individually on-screen as eye gaze was tracked, and they were 

instructed to avoid specific salient features of the face.  Experiments and participants are 

summarized in Table 1.1. 

Table 1.1. Summary of dissertation structure and participants in studies. 

Study Chapter Participants 

Eyetracking 

Algorithm 2 ASD 
Matched 

Controls 

Amygdala 

Lesion 

Matched 

Controls 

Gaze 

Cascade 
3a 12 12 3 3 

Familiarity 

versus Novelty 
3b 12 12 -- -- 

Don’t Look 4 12 13 3 3 

 

I aimed to answer specific questions in each of the three studies.  In healthy controls, we have 

seen that gaze bias contributes to preference decision-making for both social and non-social 
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objects.  Based on this evidence, in the gaze cascade study I explored whether gaze 

contributes to social decision-making in autism in the same manner as it does in neurotypicals.  

That is, to what extent do social processing deficits impair preference judgments about faces?  

Moreover, do known deficits in objectively evaluating faces also interfere with the temporal 

evolution of those preference choices?  In the second study, “Familiarity versus Novelty,” I 

examined whether intact social processing is necessary for forming a preference bias for 

familiar versus novel faces.  Does a preference for familiar faces develop even in populations 

with diminished face expertise?  In the third and final study, I investigated atypical face 

viewing strategies.  There is evidence to indicate that people with autism—particularly those 

who are high functioning—compensate for social deficits by using compensatory viewing 

strategies, which give the general appearance of normal viewing behavior.  Based on this 

evidence, I ask, if people with social processing deficits use atypical face gaze strategies, to 

what extent are these strategies flexible across different situations (i.e., task demands)?  Are 

they flexible enough to resemble neurotypical viewing behavior even in situations that are not 

commonly encountered?   

My thesis is organized in the following structure.  In Chapter I, I discuss social processing in 

healthy controls and individuals with autism, particularly as it relates to faces and the key brain 

structures involved in face processing.  One of the vital structures that I reviewed is the 

amygdala, which plays an important role in identifying socially salient information in the 

environment, and whose function may be compromised in social disorders such as autism.  I 

also discuss sources of heterogeneity in autism that have led to divergent results, underscoring 

the necessity of developing new ways of identifying and classifying subtypes of autism in the 

future.   

In Chapter II, I review a custom eyetracking algorithm that I developed to address the limited 

transparency offered by commercially available analysis software, which was used to analyze 

all eyetracking data presented in this thesis.  I also review the types of eye movements that are 

analyzed in eyetracking studies, present an overview of the most commonly-used analysis 

filters, discuss how they contribute to extracting relevant eye movement data, and present 

pseudocode for the algorithm.   
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In Chapter III, I present the results of two studies examining face preference in which we 

tested two clinical populations: autism patients and amygdala lesion patients.  The first study 

investigates the link between gaze and face preference formation in autism and amygdala lesion 

patients, and the second study investigates preference decisions for familiar versus novel faces 

in autism.  I found that individuals with autism and amygdala lesions made similar preference 

choices as controls in judging face attractiveness and that people with autism demonstrated a 

similar, yet faster, visual sampling process compared to controls.  The second study in Chapter 

III looks at whether social processing deficits affect preference biases for familiar faces over 

novel faces.  We found intact familiarity preferences for faces and novelty preferences for 

social stimuli in individuals with ASD.   

In Chapter IV, I study face viewing strategies decoupled from explicit decision-making in 

controls and the same two clinical populations—ASD and amygdala lesion patients—and I 

manipulate face viewing strategies by instructing participants to avoid socially-salient features 

of the face.  I found that individuals with autism exhibit atypical face gaze—and, unlike 

controls—inflexible viewing strategies.  Moreover, amygdala lesion patients showed hints of 

more subtle abnormalities in face gaze.  

In Chapter V, I summarize my findings and discuss the contributions of my work to our 

understanding of autism and social decision-making. Additionally, I suggest some open 

questions and future directions for the field. 
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 C h a p t e r  I I  

A CUSTOM ALGORITHM FOR ANALYSIS OF EYETRACKING DATA 

2.1 Overview 

Eye movements constitute an objective reliable measure of where a person’s attention is 

directed, and as such we can use eye movement recordings as a quantifiable measure of visual 

and attentional processes involved in social processing tasks.  Eye-tracking metrics, such as the 

number of fixations people make on a feature, or the total dwell time in a region, provide 

information about what elements of a stimulus attract the most attention, require more 

processing, or provide the most relevant information.  The metrics that are derived from eye-

tracking data, however, are highly dependent upon the choice of parameters that are used to 

define and extract the various eye movements from the raw data, for example, the minimum 

duration for a fixation, or what amount of spread to allow in successive data points before 

dividing a fixation into two.  Different tools have been developed for the collection and 

analysis of eye-tracking data.  Most commercial eye-tracking systems also come with their own 

analysis software, and there are many open-source packages available online as well.  

Unfortunately, commercially-available analysis software cannot be modified beyond a set 

number of parameters.  Beyond this, there is a great deal of processing that occurs in the data 

collection stage and in the analysis stage that is not easily accessible to the user.  Furthermore, 

the software cannot be modified or used to analyze data collected across different platforms. 

So why develop a custom algorithm?  First, a custom algorithm is flexible across multiple 

platforms, accepting eye-tracking data recorded from any system in a simple text file format.  

This was advantageous for the studies in this dissertation, since data was collected using three 

different eyetrackers from two different companies, each with their own data parsing steps at 

the collection stage, and their own filters at the analysis stage.  Second, by analyzing all data in 

this dissertation with the same algorithm, we remove the variance that is introduced by using 

different analysis software based on the eye tracker used to collect the data.  Lastly, a custom 

algorithm offers consistency and transparency.  There is consistency in the filters that were 
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applied, without the addition of any steps that were unnecessary for our analysis, and the 

parameters used.  Additionally, I understand the necessity of every step of the process from 

input to output and can explain exactly why my data looks the way it does.  

After much research, coding, and trial and error, I determined a combination of filters and 

settings that was best suited for our data, and for our variables of interest.  In this chapter, I 

introduce the algorithm, discuss the data processing functions that were implemented as filters, 

and show examples of the algorithm’s use. 
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2.2 Introduction 

Eye-tracking research has been growing in popularity in recent years, with researchers using 

the method to study a variety of visual and cognitive processes including reading, scene 

perception, face processing, and decision-making.  This chapter will introduce a custom 

algorithm developed for analyzing eyetracking data used in the current study.  The algorithm 

uses a combination of velocity and acceleration thresholds to detect fixations and saccades, and 

implements filters to address noise and loss of signal in the data stream.  We also employ a 

data-driven methodology to derive threshold values.  Many commonly-available software 

packages, including commercially-available software such as Eyelink and Tobii systems, and 

open-source codes, use combinations and variations of the methods used in the algorithm we 

describe here.  By testing and tuning each of the individual subcomponents, I gained an 

understanding of their limitations, and also some insights into the technique of eyetracking 

itself.  The final algorithm thus has components selected and calibrated specifically for my 

research goals, equipment characteristics, and subject population.  This flexible, straight-

forward analysis pipeline is suitable for analyzing that data collected across different platforms 

and in different eye-tracking tasks, and can be further modified and expanded upon based on 

analysis needs.  

In describing the algorithm, I will first review and define various types of eye movements 

described in the literature.  Second, I will discuss the current methods being used to analyze 

eyetracking data as well as advantages and limitations of those techniques, and finally, I will 

describe the custom algorithm I developed based in an effort to address some of these 

limitations.  All the eye-tracking data in this thesis have been analyzed using this custom 

algorithm. 

2.3 Defining and Identifying common eye movements 

2.3.1 Fixations 

In the terminology of vision science, fixations are periods during which the eye remains still or 

makes minimal movement.  During these periods, the brain registers the visual input it receives 
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and begins to process this information (Irwin, 2004), and as such, fixations are regarded as a 

metric that can be associated with a number of cognitive functions, including a person’s 

interest, attention, and processing strategies for visual stimuli.  Surprisingly, there is no formal 

consensus as to how fixations should be mathematically defined, though nearly all definitions 

require that the point of gaze remain in a small spatially restricted area for some minimum 

amount of time (Lowenthal, 2007).  There is little agreement under this definition as to what 

the specific duration and spatial restrictions should be since there is a range of variability in 

these measures depending on factors such as task demands, subject population, and the analysis 

methods that are used derive them.  As a result, the specific values are predominantly 

determined by experimenter preference, the type of study, and the nature of the stimuli.  A 

review of major eye-tracking studies shows that the temporal restrictions generally range from 

50 to 500 milliseconds, and spatial restrictions range between one-half of a degree to five 

degrees of visual angle.  

The range of values reflects the range of reasons that researchers use eye-tracking equipment.  

For researchers interested in oculo-motor mechanisms, even the smallest displacements or 

pauses may have significance, signifying a series of short fixations in a small region.  However, 

for researchers interested in the visual information that is being gathered by an observer, the 

sustained inspection of a particular visual detail could be considered a single fixation, even if it 

involves many tiny movements.  This underscores the importance of tuning eye movement 

algorithms to ones research goals, rather than simply using a generic “industry standard.” 

2.3.2 Saccades 

Saccades are defined as the rapid eye movements that take place in between fixations.  During 

a saccade, eye position, and by extension visual attention, is shifted from one target toward 

another, and during this shift visual input from the eyes is suppressed.   However, saccades are 

short in duration, lasting from 10 to 40 milliseconds, such that the gap in visual input is 

generally imperceptible to the human brain and little visual processing takes place.  The speed 

of a saccade is not under conscious control and once underway, the eventual target cannot be 

changed. Saccades differ quantitatively from fixations in that they have greater spatial 

dispersion and higher velocity.  Consequently, in an algorithm they are usually identified by a 
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velocity threshold, and in some cases, a concurrent acceleration threshold.  Periods during 

which one or both of these thresholds are surpassed are classified as saccades. 

2.3.3 Other eye movements 

While fixations and saccades are the primary types of eye movements, there are other types of 

eye movements, such as smooth pursuit movements, glissades, and blinks (Nyström & 

Holmqvist, 2010; Purves, 2012).  Typically, however, not all movements are relevant to the 

specific research questions of interest, so algorithms are constructed such that they filter only 

the types of eye movements that are of interest.  Remaining eye movements are classified as 

either saccades or fixations depending on the choice of thresholds. 

2.4 Critical Data Processing Filters and What They Do 

2.4.1 Measures used in event detection 

At their most rudimentary level, eyetracking algorithms function to differentiate fixations from 

saccades, which are traditionally identified using a variety of spatial and temporal thresholds.  

Eyetracking data is recorded in the form of sequential (x,y) gaze position coordinates (see 

Figure 2.1).  From these coordinates, several other measures, such as velocity, acceleration, and 

dispersion, are calculated that are subsequently used for event detection (e.g. separating 

fixations from saccades).  By comparing the calculated values to spatial and temporal 

thresholds, these algorithms are able to discriminate fixations from blinks and saccades.
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A 

 

B 
 
 
 
 
 
 
 
Figure 2.1. Examples of raw eye gaze traces for the x and y position of the right eye 

recorded at (A) 250 Hz and (B) 500 Hz. 

The combination of filters that are implemented and the threshold settings used can 

dramatically impact the output returned by eye-tracking algorithms, affecting the accuracy of 

virtually all metrics that are collected (Blignaut, 2009; Shic, Chawarska, & Scassellati, 2008).   

For example, velocity or acceleration thresholds that are too high can result in short saccades 

being categorized as part of a fixation.  If this occurs, multiple fixations are merged and 

reported as a single fixation.  On the other hand, thresholds that are too low result in noise 

being categorized as saccades, which will incorrectly break up fixations into multiple smaller 

ones and even discard them completely. As such, any conclusions drawn from this data would 

be invalid. 

2.4.2 Addressing data quality 

Gaze position data contains noise and gaps that must be filtered out in order to get valid and 

interpretable results.  If it remains in the data, noise will negatively affect both the accuracy and 
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precision of measurements by introducing false position coordinates or erroneous gaps that 

affect the accurate measurement of fixations and saccades. Noise can be introduced from 

various sources, including participant movement, the experimental setting, as well as eye-

tracking hardware and software.  To mitigate the effect of noise on the data analysis, two 

different types of filters are commonly used: the first seeks to fill in short gaps of missing 

position data and the second to reduce noise.  

Noisy or ‘flickery’ data (i.e. meaning data containing gaps in the data stream during which the 

signal was lost) leads to incorrect classification of saccades, affecting both fixation duration and 

fixation number (Wass, Smith, & Johnson, 2012).  If a long fixation is incorrectly split into two 

smaller ones, and both parts of the fixation are above the minimum duration, the single long 

fixation will be reported as two short fixations.  As a result, the average duration calculation 

will be shorter and the average number of fixations will be greater than is actually the case. If 

one or both fixations are below the minimum duration, they would be discarded, resulting in 

calculations showing shorter and less frequent fixations.   

2.4.2.1 Gap fill-in and blink detection 

Gaps occur in eyetracking data when the camera briefly loses track of the eye or when a 

position sample is collected but fails to get relayed due to hardware or software malfunction 

(Holmqvist, Nyström, & Mulvey, 2012; Olsen, 2012).  These types of gaps are usually quite 

short in duration, ranging from 2 to around 60 milliseconds.  If they are allowed to remain in 

the data, the start of a gap will be incorrectly identified as the end of a fixation, cutting the 

fixation duration short.  Therefore, shorter gaps are filled in with position information from 

neighboring data points (see Figure 2.2). Gaps shorter than a pre-defined duration are filled in 

using a weighted scaling factor and the nearest valid samples, using the method described by 

Olsen and colleagues, and subsequently implemented in the Tobii system (Olsen, 2012).  With 

this method, missing points are interpolated based on proximity to two points: 1) the last valid 

position sample before the gap and 2) the first valid position sample after the gap. If a missing 

point is closer to one of these samples than the other, the position of the new point is 

proportionally weighted to give greater influence to the nearer valid sample.  A point positioned 
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in the middle of the gap is equally weighted by both valid samples, and is equal to the 

average of the two samples. 

A 

 

B 
 
 
 
 
 
 
 

Figure 2.2.  Eye gaze traces showing (A) raw gaze data recorded at 500 Hz, and (B) gaze 

data after gap interpolation has been performed.  Gaps are selectively filled based on 

duration.  Note that the smaller gaps (just before 500 ms, at 1500 ms, and at 

approximately 1750 ms) due to signal loss in (A) have been filled in the traces in (B), but 

the larger gaps (250-570 ms, and at approximately 1600 ms), which are blinks or gaps 

that are too large to interpolate without compromising data quality, have been retained. 

Blinks also appear as gaps in the data, usually as points where the gaze coordinates and/or pupil 

size is 0.  Gaps due to blinks are longer than those due to hardware or software malfunction, 

lasting at least 100 milliseconds (Olsen, 2012).  For our purposes, we retain blinks as valid 

gaps rather than interpolate them, so that a fixation interrupted by a blink will be registered as 

two distinct fixations.  To avoid interpolating missing data caused by blinks, the maximum gap 

duration parameter is chosen so that it is shorter than the duration of a normal blink, roughly 

100 milliseconds (Stava, Huffman, Baker, Epstein, & Porter, 1994; VanderWerf, 2003).  Gaps 

that are shorter than this parameter are interpolated, and gaps that are longer remain in the data. 
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2.4.2.2 Noise reduction 

Noise is a significant issue affecting data quality, particularly for high frequency recordings, 

due to the large number of samples collected per unit of time.  However, there is an advantage 

with high-frequency recordings in that noise can be detected and smoothed with less 

modification to the data than in low frequency recordings.  Noise in the position data artificially 

increases the distance traveled by the eye from one sample to the next.  As a result, the 

calculated velocity is also artificially inflated, and appears as random spikes in the velocity data 

stream.   

There are a variety of methods that can be used to reduce noise spikes found in time series data, 

such as a moving average or moving median filter, Savitzky-Golay filtering or loess filtering.  

We decided to use the “rLOESS” filter, short for “robust locally weighted scatterplot 

smoothing,” because of its flexibility and ease of use.  Loess smoothing uses a locally-weighted 

linear regression and a second-degree polynomial to smooth the data, filtering the x and y 

dimensions separately (see Figure 2.3).  Moreover, the robust version of “LOESS” assigns 

lower weight to outlier points, reducing distortion of smoothed values (The Mathworks, Curve 

Fitting Toolbox: User's Guide, 2002). There are a few caveats to note when using rLOESS: 

first, as is the case with other least squares methods, a large number of outliers can still skew 

results. Second, LOESS can be computationally intensive particularly for large data sets with 

many trials and subjects, and finally, as is the case with many noise reduction filters, there will 

be a loss of temporal resolution. 
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A 

 

B 

C 

Figure 2.3. Sample gaze data showing the stages of filtering used to address data 

quality.  (A) shows the raw gaze data, (B) shows the same data after gap interpolation, 

and (C) shows the effect of smoothing interpolated gaze data by applying an “rLOESS” 

filter for noise reduction. 

A symmetric moving window is iterated through the data stream, and the center point in this 

window is replaced by the new smoothed value.  There are several options for how to define 

the size of this window.  Matlab offers the option of setting window size equal to a predefined 

percentage of the total number of data points.  However, the disadvantage of this method is 

that, all other things being equal, trials of different length will receive different degrees of 

smoothing.  An alternative method is to set the window size equal to a specific number of 

samples.  This, however, leads to different degrees of smoothing when sampling frequency 
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differs.  To allow for comparison of fixation data recorded at different frequencies, we 

specify a window duration, which is then converted to a specific number of data points before 

being passed to the Matlab filter.  With this approach, a greater number of points are used for 

smoothing data recorded at a higher frequency, an approach that addresses the larger amount of 

noise in high versus low frequency recordings.  

2.4.3 Separating events (fixations and saccades) 

2.4.3.1 Velocity and acceleration calculation 

Velocity and acceleration are the measures most often used by common algorithms to define 

fixations and saccades. While Tobii systems use only a velocity calculation, the Eyelink system 

uses a combination of both in their algorithm.  

In our algorithm, a velocity value and acceleration value is computed for each timepoint in the 

data stream.  Calculating velocity between two consecutive points could potentially introduce a 

large amount of noise into the data, particularly for higher frequency recordings.  Thus, we 

calculate velocity and acceleration for each point as an average of the neighboring points in a 

symmetric window, with the point of interest positioned in the middle.  This method is similar 

to the approach used in Tobii systems (Olsen, 2012).  

To determine velocity for a sample, the Euclidean distance between the first and last point in 

the window is calculated and converted into degrees of visual angle, and then divided by the 

difference in timestamps between the first and last point in the window (see Figure 2.4).  

Acceleration is computed similarly to velocity, with the exception that the visual angle 

computation should be replaced with the absolute value of the difference in velocity between 

the first and last points in the window. 
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A 

 

B 
 
 
 
 
 
 
 
Figure 2.4.  (A) Interpolated gaze traces and (B) corresponding velocity and 

acceleration traces calculated from the interpolated data using a moving average 

window.  Note that for illustrative purposes, velocity and acceleration are not drawn to 

scale. 

2.4.3.2 Determining thresholds 

The velocity and acceleration values computed above are compared to threshold values that are 

calculated separately for each trial (see Figure 2.5).  If the velocity or acceleration value is 

below threshold, the algorithm marks this time point as a potential fixation in the data stream, 

otherwise it is marked as a potential saccade.   

Most fixation detection algorithms use a static threshold that is applied across all subjects and 

all trials.  However, static thresholds do not account for imprecision in the data and several 

studies have shown that fixation and saccade calculations are highly sensitive to variations in 

noise levels (Holmqvist et al., 2012; Wass et al., 2012) and may also vary between tasks and 

individuals (Lans, Wedel, & Pieters, 2010; Rayner, Li, Williams, Cave, & Well, 2007). As a 

result, if the threshold is too low, noise spikes are mistaken for saccades and fixations are 

incorrectly split, decreasing fixation durations and increasing the number of fixations.  If the 
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threshold is too high, short saccades are categorized as noise and incorporated into the 

surrounding fixation, increasing fixation duration and decreasing the overall number of 

fixations. 

A 

 

B 

C 

0 500 1000 1500 2000 2500
    

    

    

    

    

    

    

Time

Po
si

tio
n

 

 

0 500 1000 1500 2000 2500
0

50

100

150

200

Time

Ve
lo

ci
ty

 (d
eg

re
es

/s
ec

)

 

 

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

Time

Ac
ce

le
ra

tio
n 

(d
eg

re
es

/s
2 )

 

 

x smoothed
y smoothed

velocity

acceleration



 

 

36 

Figure 2.5. (A) Interpolated and smoothed gaze data for one trial, (B) the 

corresponding velocity trace (gold) and adaptive velocity threshold (dashed gray), and 

(C) acceleration trace (green) and adaptive acceleration threshold (dashed gray).  

Velocity and acceleration thresholds are calculated for each trial individually.  The 

saccade detector then checks each data point that exceeds either threshold (i.e. above 

the dashed lines) to determine if spatial dispersion criteria have been exceeded. If so, the 

points are marked as a potential saccade.  If not, it is re-classified as a fixation point. 

 

In contrast to a static threshold, another method is to use variable thresholds based on the 

amount of local noise.  Adapting the method described by Nyström and Holmqvist (Nyström & 

Holmqvist, 2010), we used an iterative, data-driven approach to calculate velocity and 

acceleration thresholds.  The strength of this approach is that it takes into account the variability 

in data quality across subjects and trials and also addresses the issue of differences in 

characteristics of fixation behavior, rather than using a one-size-fits-all approach that ignores 

differences across eye-trackers, individuals, and trials. 

This is especially important in our case, as we compare data across several eye-trackers and 

between different subject populations.  Tobii, Eyelink II, and Eyelink 1000 trackers sample at 

different frequencies and have different levels of noise.  Participants with high-functioning 

autism sometimes have more difficulty interfacing with the eye tracker, leading to different 

levels of noise. 

The steps in the adaptive threshold calculation outlined by Nyström and colleagues are as 

follows: first, the algorithm is given an initial starting threshold that can be any value as long as 

it lies in the range of observed velocities for that trial.  For all samples below this threshold, the 

mean and standard deviation are calculated.  The new threshold is updated by setting it equal to 

the mean plus a multiplier of the standard deviation.  (While Nyström and colleagues found that 

a multiplier of six was a reasonable value, here we found that a value of three worked best for 

our data.)  Again, the mean and standard deviation of all samples below this new threshold are 

calculated and the threshold is again updated. This process iterates until the new threshold is 

less than one degree per second greater than the previous threshold for velocity.  
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2.4.3.3 Displacement calculation 

In addition to velocity and acceleration thresholds, a motion (or displacement) threshold is also 

used to delay saccade onset until the eye has moved a minimum distance out of the most recent 

fixation.  This filter is similar to one implemented by Eyelink systems and adds an additional 

layer of security against false saccade onset.  While this calculation can be performed a number 

of different ways, here we calculate the distance between each potential saccade point and the 

nearest preceding fixation point to determine whether displacement since the previous fixation 

exceeds threshold.   

2.4.3.4 Saccade detector 

The saccade detector makes two passes through the data stream, once before the motion 

calculation and once after.  In the first pass, the detector checks the velocity and acceleration of 

each individual sample against the data-derived thresholds (see Figure 2.5 above).  If either 

velocity or acceleration exceeds threshold, the point is marked as a potential saccade. 

Otherwise, the point is marked as a potential fixation.  After performing the motion calculation 

described below, the saccade detector makes a second pass through the data stream, checking 

each point marked as a potential saccade against the displacement threshold. If this threshold is 

not surpassed, then the point likely belongs to the most recent fixation and it is re-classified as a 

fixation.  

2.4.4 Rejecting false saccades and fixations 

2.4.4.1 Saccade classifier 

As added insurance against imprecision in the data, the saccade classifier is triggered only 

when there have been a sufficient number of sequential samples identified as potential 

saccades, followed by a specific number of samples identified as potential fixations (see Table 

2.1 below).  This filter makes it so that the classifier is not activated by short, alternating 

periods of fixation and saccade points that remain in the data despite filtering. 
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Table 2.1. Illustration of the saccade classifier filter. Potential saccade points are 

marked as zeros, and potential fixations as ones.   In the example below, the minimum 

number of saccade points that must appear sequentially is two, and the minimum 

number of fixation points is 5, such that the saccade classifier does not signal the start of 

a saccade until a minimum fivef two saccade points appear sequentially, after which the 

saccade signal does not turn off again until the minimum number of fixation points 

appear sequentially. 

Pre-Filter 

Classification 

Post-Filter 

Classification 

1 1 

1 1 

0 1 

1 1 

0 1 

0 1 

1 1 

0 1 

0 1 

0 0 

0 0 

0 0 

1 0 

0 0 

0 0 

2.4.4.2 Merging fixations 

Despite addressing data quality issues with gap interpolation and noise smoothing, there will 

still be gaps in the data that cause fixations to be incorrectly classified as multiple smaller ones. 

Other studies have shown the most accurate results are obtained if this step is performed near 

the end of the data processing pipeline.  Consequently, in our algorithm we implement this 

filter in the second to last step, before short fixations are discarded.  
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To address the issue of incorrectly split fixations, consecutive fixations are checked to 

determine whether they are spatially and temporally close.  If both these criteria are met, it is 

highly likely the two fixations were originally part of one larger fixation. These fixations are 

subsequently merged on the basis of two criteria: the time interval between the fixation groups 

must not exceed a pre-defined duration threshold and the distance between fixation groups 

must not exceed a pre-defined spatial threshold.   

2.4.4.3 Discarding short fixations 

Lastly, fixations with durations shorter than the minimum duration are discarded.  While there 

is no consensus for how short a fixation can be, most studies use a bottom duration limit of 50 

to 100 milliseconds.  See Figure 2.6 for the outcome of algorithm after merging fixations and 

discarding of fixations that do not meet the minimum duration threshold. 

2.5 Conclusion 

In summary, this algorithm employs a combination of velocity and acceleration thresholds to 

detect fixations and saccades, implements an rLOESS filter to address noise, and interpolates 

missing points due to signal loss in the data stream.  We also employ a data-driven 

methodology to derive threshold values.  This flexible, straight-forward analysis pipeline is 

suitable for analyzing that data collected across different platforms and in different eye-tracking 

tasks, and can be further modified and expanded upon based on analysis needs.  
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A 

 

B 

C 

Figure 2.6.  (A) Interpolated data, (B) corresponding fixation output showing fixations 

with no minimum duration, (C) final fixation classifier output (purple) and discarded 

fixations (green). 

2.6 Pseudocode of Event Detection Algorithm 

1. Filtering & de-noising 

a. Identify gaps in the data stream where eye position data is missing. 
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b. Separate gaps that are longer than the maximum gap duration parameter from gaps 

that are shorter. Gaps that are longer than this parameter are retained as valid gaps. 

Gaps that are shorter than this parameter continue to the next step for interpolation. 

c. Interpolate each data point in the gap separately, using the last valid data point before 

the gap begins (t1), the first valid data point after the gap ends (t2), and a scaling 

factor (α). 

i. Scaling factor (α): Subtract the timestamp at t2 from the timestamp of the point 

being replaced (t*), and then divide by the total duration of the gap (t2 - t1).  

Namely, define: 

α = (t2 – t*) / (t2 – t1) 

ii. Multiply the scaling factor by the position data at t1 (x(t1)).  

iii. Subtract the scaling factor from 1, and multiply by the position data at t2 x(t2). 

Add this result to the result from the previous step for the new interpolated 

position coordinates (x(t*)), such that:  

    x(t*) = α x(t1) + (1-α) x(t2) 

iv. Repeat for each point until all missing points in the gap are interpolated. 

v. Repeat steps i-iv for each gap in the data stream. 

d. Iterate a moving window through the data stream, calculating a local regression for 

each data point using the “rLOESS” function in Matlab. 

2. Calculation of adaptive thresholds 

a. Velocity calculation: Iterating a moving window through the data stream, determine 

angular velocity for each sample; calculate the Euclidean distance between the first 
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and last points in the window, and then convert the distance to degrees of visual 

angle. Next, divide the visual angle by the difference in timestamps to get angular 

velocity for the data point. 

b. Acceleration Calculation: Repeat the same method as above to determine acceleration 

for each sample, with the modification of replacing Euclidean distance with the 

difference in velocity between the first and last samples in the window. 

c. Calculate adaptive thresholds for velocity and acceleration using the method 

described in the text. 

3. Saccade detection & classification 

a. Compare velocity and acceleration of each data point against the thresholds and mark 

as a potential saccade if either threshold is exceeded.  Otherwise, mark the point as 

potentially belonging to a fixation. 

b. Motion Calculation: For each potential saccade point, calculate the motion travelled 

from the most recent fixation point.  If this distance does not exceed the motion 

threshold, re-classify point as a fixation. 

c. Moving through the data stream, mark the saccade detector as active for any data 

point for which the motion threshold is exceeded and either velocity or acceleration 

exceeds threshold. 

d. Classify saccades as periods where the saccade detector has been on and off for the 

minimum number of samples. All other points marked by the saccade detector are 

considered noise, and should be classified as samples belonging to fixations. 

4. Fixation identification 

a. Calculate the distance and timestamp difference between sequential fixations. 
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b. If neither the spatial nor the temporal threshold for merging fixations is exceeded 

for a pair of fixations, then merge the fixations into one. 

c. Discard fixations that do not meet the minimum duration parameter. 

2.7 Summary of Suggested Parameter Settings 

Filtering Step Parameter Value 

Gap Fill-in Maximum Gap Duration 75 ms 

Noise Reduction Filter Robust loess (rLOESS in Matlab) 

Noise Reduction Filter Window Duration 40 ms 

Velocity Calculation Velocity Window Duration 22 ms 

Acceleration Calculation Acceleration Window Duration 22 ms 

Calculating Thresholds Velocity and Acceleration Threshold Adaptive 

Motion Calculation Motion Threshold 0.45 degrees 

Saccade Classifier Minimum Samples for Saccade On 2 

Saccade Classifier Minimum Samples for Saccade Off 5 

Merging Fixations Maximum Angle between Fixations 0.5 degrees 

Merging Fixations Maximum Time between Fixations 75 ms 

Discarding Fixations Minimum Fixation Duration 100 ms 

Table 2.2. Suggested initial parameter settings for eye-tracking data recorded at 500 

Hz. 
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C h a p t e r  I I I   

FACE PREFERENCE DECISION-MAKING AND VISUAL BEHAVIOR 

3.1 Overview 

Now that the methodological structure for analysis of the eyetracking data in Chapter II has 

been discussed, the attention should be turned to the empirical studies in this thesis.  Chapter III 

is composed of two studies that examine face preference and visual behavior.  In these studies, 

we tested people with autism spectrum disorder (ASD) and amygdala lesion patients to address 

two important questions regarding social processing: 1) do known deficits in objectively 

evaluating faces also interfere with making subjective decisions about faces? And 2) are the 

visual behaviors that accompany face preference decisions in controls the same in people with 

social processing deficits? 

There is considerable evidence for abnormal social processing in people with ASD, specifically 

in the context of objective decision-making, such as identification of familiar faces and 

recognition of emotional expressions.  It remains unknown, however, whether reported deficits 

in social processing also extend to making preference-based decisions amongst social stimuli, 

such as those regarding face preference or attractiveness.  The aim of the studies in this chapter 

was to explore the extent to which these known aberrations in social processing interfere with 

preference decision-making. 

We present two studies in ASD and amygdala lesion patients that investigate whether 

preference decisions for faces are altered in these conditions.  Both studies utilized a 2-

alternative forced-choice task in which subjects inspected pairs of face stimuli or pairs of non-

face stimuli and made a decision about which stimulus they prefer.   

In the first study in this chapter, the “Gaze Cascade” study, we examined the link between gaze 

and preference formation in people with ASD and amygdala lesions.  Specifically, we were 

interested in investigating whether reported deficits in social processing influence the temporal 
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evolution of preference-based decisions among social stimuli, as well as the eventual 

outcome of those preference-based decisions.  Furthermore, we sought to examine whether the 

eye movements of people with ASD and amygdala lesions would indicate a fundamentally 

altered evaluation process when deciding among social stimuli.  

In the second study, the “Familiarity versus Novelty” study, we examined the evolution of 

category-specific preference biases by investigating in high-functioning autism a principle 

reported in the literature for neurotypicals: the preference for familiar faces over novel faces.   

We have seen that repeated visual exposure to a face increases preference for that face, and that 

the effect is likely linked to how we acquire and develop face expertise.  But what happens in a 

population, such as people with autism, who demonstrate impairments in developing face 

expertise?  In this study, we explored established preference principles for social and non-social 

stimulus categories that have been observed in controls.   

We found that people with ASD and amygdala lesion patients made similar preference 

decisions as controls in judging face attractiveness in the “Gaze Cascade” study, and that 

people with ASD demonstrated similar preference biases and visual orienting as controls in the  

“Familiarity versus Novelty” tasks.   In addition, both ASD and amygdala lesion patients 

demonstrated a similar visual sampling process, linking preference and attentional orienting.  

However, people with ASD displayed two key differences compared to neurotypicals: the ASD 

group was significantly faster in making preference decisions, and reaction times in the ASD 

group were insensitive to decision difficulty, particularly for social preference decisions. 

We suggest that the known perceptual advantage in ASD, coupled with the absence of higher-

order social attributions and diminished interest in social stimuli in ASD, could confer a 

response time advantage to the ASD group in the face preference tasks.  Evidence in the 

literature is consistent with this possibility and we discuss these points in the Discussion.  

Furthermore, it could also be the case that face preference formation is not significantly 

impaired by the alterations in observed face processing or perhaps even social processing, 

given that subjective attractiveness judgments do not require the retrieval of social knowledge 

or high-order mentalizing.   
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That the ability to form social preferences remains intact in a clinically diagnosed population 

with putative deficits in social processing suggests that social preference formation is an aspect 

of social processing that operates by way of a different or perhaps similar but less complex 

underlying cognitive mechanism than other aspects of social processing. The results contribute 

to the growing literature, showing that many basic elements of social processing are spared or 

compensated for, and that social processing impairments in high-functioning autism become 

more prominent during higher-order complex judgments that require linking perceptual 

information with relevant social knowledge.  In other words, impairments in social cognition 

that occur earlier in the processing stream could be compensated for, or simply not relevant to, 

some aspects of social functioning.  Indeed, the results from the gaze cascade study and 

familiarity/novelty studies in this chapter indicate that the mechanism linking gaze to 

preference formation for faces, and the ability to form preferences about faces as well as 

maintain those preferences, appears intact in ASD.  However, we also discuss evidence that 

there are underlying differences in the behavioral strategy used by individuals with autism. 

 

The gaze cascade study in ASD has been published as (Gharib, Mier, Adolphs, & Shimojo, 

2015).  Daniela Mier also assisted with data collection in the Familiarity versus Novelty study.
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3.2 Gaze Cascade Study in Autism 

3.2.1 Abstract 

People with autism spectrum disorder (ASD) have been reported to show atypical attention and 

evaluative processing, in particular for social stimuli such as faces. The usual measure in these 

studies is an explicit, subjective judgment, which is the culmination of complex-temporally 

extended processes that are not typically dissected in detail.  Here we addressed a neglected 

aspect of social decision-making in order to gain further insight into the underlying 

mechanisms: the temporal evolution of the choice.  We investigated this issue by quantifying 

the alternating patterns of gaze onto faces, as well as nonsocial stimuli, while subjects had to 

decide which of the two stimuli they preferred. Surprisingly, the temporal profile of fixations 

relating to choice (the so-called “gaze cascade”) was entirely normal in ASD, as were the 

eventual preference choices. Despite these similarities, we found two key abnormalities:  

people with ASD made choices more rapidly than did control subjects across the board, and 

their reaction times for social preference judgments were insensitive to choice difficulty. We 

suggest that ASD features an altered decision-making process when basing choice on social 

preferences.  One hypothesis motivated by these data is that a choice criterion is reached in 

ASD regardless of the discriminability of the options.  

3.2.2 Introduction 

Autism Spectrum Disorder (ASD) is a pervasive developmental disorder characterized by 

impairments in social and cognitive processing.  One of the core diagnostic criteria for this 

disorder is a deficit in social communication and social interaction (DSM-V), which presents in 

real-life interactions as an inattention to faces and reduced eye contact, in addition to more 

complex social deficits such as difficulty recognizing emotional expressions and relating to 

others.   Several hypotheses propose that motivational or attentional social deficits in early life 

could disrupt a critical phase in normal brain development, during which early social orienting 

typically lays the framework for more complex social and cognitive processes to develop later 

in life (Chevallier, Kohls, Troiani, Brodkin, & Schultz, 2012; Dawson et al., 2004; 2002).  In 

people with ASD, these early-onset motivational deficits may cause reduced social orienting 
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and learning from a young age, resulting in decreased attending to social stimuli, which 

further disrupts normal development of cognitive processes related to social perception (Mundy 

& Neal, 2000).  

A large number of studies examining these social impairments have found a reduced attentional 

bias towards faces in ASD.  When viewing complex social scenes, people with autism make 

fewer initial fixations to the person and to the face within a scene relative to controls, indicating 

thatthere is reduced spontaneous attentional capture by social stimuli (Fletcher-Watson et al., 

2009).  Similarly, in a selective attention task for which controls are unable to ignore irrelevant 

faces, people with ASD were found to be un-distracted, leading the authors to suggest that a 

deficit in the automatic processing of faces may underlie the diminished attentional bias for 

faces (Remington et al., 2012).   

In addition to the reduced saliency of faces for people with autism, many studies have found 

that when people with ASD do fixate on faces, the pattern of visual behavior with respect to 

facial features differs from neurotypical viewing behavior. The exact nature of these 

differences, however, is far from clear.  Some studies report reduced gaze to the eyes and 

increased reliance on information in the mouth region (Klin et al., 2002; Spezio, Adolphs, 

Hurley, & Piven, 2007), while other studies that similarly report reduced gaze to the eyes find 

little difference in gaze to the mouth region (Corden et al., 2008; Dalton et al., 2005).  

Pelphrey and colleagues even reported reduced fixation time to all socially-salient regions of 

the face, including the eyes, nose, and mouth, and increased gaze to non-feature regions of the 

face (Pelphrey et al., 2002).  The variable results have been attributed to a number of factors, 

including experimental differences in stimulus type (e.g., static/dynamic, computer-

generated/real faces) and task demand (e.g., emotion judgment, gaze direction, etc.).  However, 

a growing number of studies also propose that discrepant results arise, in part, due to the use of 

compensatory mechanisms or atypical processing strategies during certain types of face 

perception tasks, particularly by individuals who are high-functioning (Harms et al., 2010; 

Joseph & Tanaka, 2003; Rice, Moriuchi, Jones, & Klin, 2012; Rutherford & McIntosh, 

2006). 
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Abnormal gaze behavior in ASD is often accompanied by difficulties evaluating social 

information conveyed by faces, such as recognizing emotional expressions.  Again, the findings 

are inconsistent, but some behavioral studies have found impaired recognition of basic 

emotions in ASD: compared to their neurotypical counterparts, people with autism are slower 

and less accurate in identifying certain negative emotional expressions such as anger, fear, and 

sadness (Ashwin et al., 2006; Bal et al., 2009; S. Wallace et al., 2008), though basic emotion 

recognition might still be preserved in high-functioning individuals (Castelli, 2005).  There is 

stronger evidence, however, in support of impairments recognizing complex emotions, such as 

jealousy and trustworthiness, and making higher-level social judgments from faces that involve 

attributions of mental state (Adolphs et al., 2001; Baron-Cohen et al., 1997).  Moreover, 

deficits in the ability to recognize facial expressions of emotions such as fear (Pelphrey et al., 

2002) and sadness by people with ASD (Corden et al., 2008) are correlated with abnormal gaze 

to central features of the face, and particularly the eyes.  

Two highly relevant aspects of social processing have, however, not been much investigated:  

our preference decisions among social stimuli, and the temporal evolution of preference-based 

choices.  First, most of the research on face processing to date focuses on emotion recognition 

or face perception in general, and few studies have investigated how these factors can influence 

our preferences of faces.  Thus far, much of the research examining visual behavior in ASD has 

focused on atypical visual behavior and the nature of these impairments specifically in the 

context of objective decision-making, such as correctly identifying emotional expressions.  

What is unknown, however, is whether these reported deficits also extend to making more 

subjective decisions, such as those involving face preference or attractiveness, which are just as 

relevant to social functioning, perhaps even more so.  Secondly, it remains unknown how 

abnormal social judgments about faces might arise—what is the timecourse and possible 

underlying mechanism as atypical choices unfold? 

Previous studies in typically developed individuals have investigated the cognitive processes 

involved in making preference choices. One class of models is known as drift diffusion models 

(DDM) and was initially proposed by Ratcliff and colleagues to describe two-choice decision 

processes (Ratcliff, 1978; Ratcliff & McKoon, 2008).  These models assume that evidence for 
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each alternative is accumulated and integrated over time until a decision threshold is reached.  

More recent studies have shown that integrating eyetracking data as an additional parameter in 

the DDM results in a model that better predicts choice and possibly reaction times (Krajbich, 

Armel, & Rangel, 2010). 

Similar in form to the drift diffusion models is the gaze cascade phenomenon proposed by 

Shimojo and colleagues (S. Shimojo, Simion, Shimojo, & Scheier, 2003), emphasizing the 

behavioral dynamics of preference choice.  In their model, it is proposed that preference and 

gaze mutually interact in a positive feedback loop to produce an effect known as a “gaze 

cascade.”  Given a choice between two stimuli, individuals are initially just as likely to inspect 

one image in the pair as the other. However, in the few seconds before a preference decision is 

made, an increasing gaze bias occurs toward the eventually-chosen stimulus. Shimojo and 

colleagues propose that in the moments before this decision is made, a positive feedback 

pathway is engaged in which the gaze bias towards the to-be-chosen image leads to increased 

preference, which in turn increases gaze bias further, and so on, until the preference signal 

surpasses threshold leading to a behavioral decision. Thus in this model, gaze orienting is 

intrinsically linked to and necessary for decision-making and vice versa.  Indeed, further 

evidence supporting the reciprocal effect of gaze on preference formation is demonstrated in 

experiment 2 of the same paper and a follow-up study using fMRI (Ito et al., 2014).  In both 

studies, one face in a pair is presented on screen for a longer duration than the other face.  After 

several repetitions, participants report a preference bias for the longer-presented face, indicating 

that manipulation of gaze can directly influence preference decisions.  While the gaze cascade 

effect has been observed in other studies examining preference choice (Noguchi & Stewart, 

2014; C. Simion & Shimojo, 2006), the effect may also extend to other types of visual 

decision-making tasks (Fiedler, 2012; Glaholt & Reingold, 2009; Wiener, Hölscher, Büchner, 

& Konieczny, 2011). 

Given that the literature suggests atypical viewing behavior in ASD is accompanied by deficits 

in processing social information, the current study sought to examine the influence of gaze on 

preference choice in autism and, specifically, whether eye movements reveal a fundamentally 

different evaluation process in ASD.  Eye-tracking was used to investigate gaze behavior in 
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adults with high-functioning autism while they made preference decisions amongst pairs of 

social and non-social stimuli.  Since direct gaze can elicit atypical visual behavior in ASD, we 

utilized face stimuli depicting open eyes as well as closed eyes so that we could determine 

whether a potentially abnormal “gaze cascade” effect was caused by an avoidance of direct 

gaze, or rather by an overall difficulty in making self-paced preference judgments for faces.  

Furthermore, we tested whether the typically robust gaze cascade would remain intact under 

time pressure by using a time restriction in one block.  Consistent with evidence that 

individuals with ASD have difficulty evaluating and making social judgments about faces, and 

given evidence of reduced attention to faces and direct gaze in ASD, we predicted that the ASD 

group would not have a normal gaze cascade, take longer than controls to make preference 

choices regarding faces, and end up making unusual preference choices.  To our surprise, we 

found an essentially typical gaze cascade, normal final preferences, and faster decision times in 

ASD.  

3.2.3 Materials and methods 

3.2.3.1 Participants 

Participants were a group of 12 high-functioning subjects with a DSM-IV diagnosis of Autism 

Spectrum Disorder (Mage = 35.4 years, SD = 12.8, age range = 22-58; Females = 3).  Sample 

size was determined by participant availability.  Diagnosis was confirmed by ADOS [Autism 

Diagnostic Observation Schedule, (Lord et al., 2000)] and ADI-R  [Autism Diagnostic 

Interview-Revised, (Lord, Rutter, & Le Couteur, 1994)] or SCQ [Social Communication 

Questionnaire, (Rutter, Bailey, & Lord, 2003)].  The comparison group consisted of 12 healthy 

controls (Mage = 33.3 years, SD = 11.9, age range = 20-59; Females = 1), group-matched for 

age, gender, and IQ, with no family history of psychiatric illness.  Table 3.1 summarizes 

demographic and diagnostic information for participants. 

Independent samples t-tests showed that the groups were not significantly different in terms of 

age (t(22) = 0.44, p = .685), gender (p = .590, 2-sided Fisher’s Exact Test), and IQ (t(22) = -

0.87, p = .392), as measured by the Wechsler Abbreviated Scale of Intelligence (Wechsler, 

1999).  All participants gave written informed consent to participate under a protocol approved 

by the Institutional Review Board of the California Institute of Technology. 
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Table 3.1. Demographic and diagnostic information for autism and control 

participants in the gaze cascade study. 

          Autism group Autism group: ADOS 

 Age Verbal IQ 
Full scale  

IQ 
SOC COM+SOC 

1 58 118 126 7 9 

  2 24 118 101 7 12 

3 22 102 107 14 21 

4 22 101 102 13 20 

5 42 80 93 14 20 

6 30 111 106 11 17 

7 57 119 102 8 12 

8 31 127 124 7 11 

9 26 89 93 7 10 

10 47 109 104 7 9 

11 29 117 115 14 20 

12 37 135 133 9 13 

Mean 35.4 110.5  108.8   

SD 12.8   15.5    12.9   

              Control group   

 
 Age  Verbal IQ 

Full scale  

IQ 

  

Mean 33.3 111.7 113.1   

SD 11.9 11.7 11.3   

a. Verbal IQ and full-scale IQ from the Wechsler Abbreviated Scale of Intelligence; 

ADOS: Autism Diagnostic Observation Schedule; SOC: social interaction subscale; 

COM+SOC: communication + social interaction subscales.  

 

3.2.3.2 Stimuli and apparatus 

Stimuli consisted of pairs of social stimuli (computer-generated human faces) or pairs of non-

social stimuli (nature scenes sourced from a google image search for “desert” and “mountain”).  
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Face images, generated using Facegen (Singular Inversions, Vancouver, Canada), were 

front-facing with neutral emotional expression and direct eye contact.   

To control for gaze bias due to differences in baseline attractiveness of the stimuli, all images 

were drawn from a larger set of face and nature scene stimuli pre-rated for attractiveness by a 

separate group of non-autistic participants on a scale of 1 (very unattractive) to 7 (very 

attractive) (n = 20, Females = 8; Mage = 28.2 years, SD = 7.5).  In accordance with the original 

gaze cascade study, images were then selected and paired such that half the pairs in each block 

had images that were equal in attractiveness pre-ratings (“high difficulty” trials) and the other 

half had a difference of 1.5 points (“low difficulty” trials).  Each image pair was presented in 

randomized order once per block, and the location of each image in a pair was left-right 

randomized.  The two Open Eyes blocks and the Roundness block (see Figure 3.1) used the 

same set of faces. For a further condition with a stricter time restriction, we created a novel set 

of face stimuli from the images that had been pre-rated by the same participants, in order to 

eliminate memory effects.  Image pairs in the Timed condition had the same mix of “high 

difficulty” and “low difficulty” trials as the untimed conditions.  

Images were presented on a 21” CRT monitor with a refresh rate of 100 Hz and pixel resolution 

of 1152 x 864.  The stimuli in each test pair were presented simultaneously on the left and right 

side of the screen.  At a viewing distance of approximately 57 cm, each stimulus pair had an 

overall size of 36.2 (width) x 14.4 (height) degrees of visual angle. 

Stimuli were presented using Matlab (Mathworks, Natick, MA), the Psychophysics toolbox 

(Brainard, 1997), and the Eyelink toolbox (Cornelissen, Peters, & Palmer, 2002).  Gaze data 

was collected using a head-mounted Eyelink II eye-tracking system (SR Research, Osgoode, 

Canada).  Corneal and pupil reflection were recorded at a sampling rate of 250 Hz.  At the 

beginning of each block, a 9-point calibration was performed.  Each trial began by requiring 

subjects to fixate on a central drift correction dot.  After the eye-tracker registered a successful 

fixation, participants pressed the space bar to start the trial. 
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3.2.3.3 Procedure 

Subjects performed various 2-alternative forced-choice (2AFC) tasks while eye-gaze was 

tracked (see Figure 3.1).  Subjects inspected a pair of simultaneously presented stimuli, then 

made the 2AFC choice by pushing either the left or right button. In advance of the experiment, 

subjects completed 20 trials with simultaneously-presented geometrical shapes in which they 

had to indicate which of the two was a triangle. This task was implemented to check for basic 

motor response time differences between groups. 

Experimental design consisted of five blocked conditions where either the stimulus or task 

instruction was varied (see Figure 3.1 for summary of experimental conditions and sample 

stimuli).  In three of the blocks, participants made self-paced preference decisions, viewing 

either faces with open eyes (Open Eyes), faces with closed eyes (Closed Eyes), or nature scenes 

(Nature Scenes), reporting which face (or nature scene) they liked the most.  In another block, 

participants viewed open-eyed faces but instead made objective decisions as to which face was 

rounder (Roundness), again with no time limit.  In the fifth block, participants viewed open-

eyed faces and made preference decisions, but were given only 1.5 seconds for each decision 

(Timed).  All blocks consisted of 40 trials, with the exception of our main condition of interest, 

Open Eyes, which consisted of 80 trials. Block order was counter-balanced across subjects.  

Lastly, we selected a subset of the images presented in the experiment (13-14% of all images) 

that had been given low, average, and high attractiveness pre-ratings and had all participants 

rate this subset for attractiveness on a scale of 1 (very unattractive) to 7 (very attractive).  
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Condition  

Name 

Stimuli 

Description 

Example 

Stimuli 

Time per 

Trial 

Decision 

Type 

Open Eyes 
Faces with 

Open Eyes 

 

Self-paced 

(2 x 40 trials) 

Preference 

Judgment 

Closed Eyes  
Faces with 

Closed Eyes  

 

Self-paced 

(40 trials) 

Preference 

Judgment 

Timed 
Faces with 

Open Eyes 

 

1.5 seconds 

(40 trials) 

Preference 

Judgment 

Roundness 
Faces with 

Open Eyes 

 

Self-paced 

(40 trials) 

Objective 

Judgment 

Nature Scenes Nature Scenes 

 

Self-paced 

(40 trials) 

Preference 

Judgment 

Figure 3.1. Summary of experimental conditions and example stimuli. 

 

3.2.3.4 Analyses 

Data were analyzed using custom scripts written in Matlab.  In the four preference decision 

conditions (Open Eyes, Closed Eyes, Timed, and Nature Scenes), high difficulty trials were 

compared to low difficulty trials (as defined above in Stimuli & Apparatus).  For the objective 

Roundness condition, we defined difficulty by calculating a height to width ratio for each face, 
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and then ranking the stimulus pairs according to face ratio differences.  The 20 trials with the 

smallest differences were defined as high difficulty; the largest 20 differences, low difficulty.  

We used two analysis methods to examine the level of consistency in preference choices 

between the two groups.  First, we calculated a between-group correlation of the proportion of 

subjects in each group that chose a given image in each pair, collapsing across the two 

difficulty levels.  Second, we examined whether both groups’ preference choices in the low 

difficulty trials agreed with the attractiveness ratings made by the pre-rating group.  We limited 

this second analysis to low difficulty trials because only low difficulty trials had an objectively 

correct (i.e., higher-rated) image for the preference tasks, allowing us to define accuracy.  A 

binary logistic regression analysis was carried for each subject and each block, regressing the 

dependent variable of preference decision against the consensus-preferred image as defined by 

the pre-rating group.  This resulted in a set of beta weights representing the degree to which the 

higher-rated image (or rounder image in the case of the Roundness condition) predicted a 

subject’s preference choices in a given block.  We compared beta weights between groups 

using independent samples t-tests.   

To compare our gaze results to those obtained in the original gaze cascade study (S. Shimojo et 

al., 2003), a similar post-experiment analysis was conducted.  Eye tracking data from all trials 

in a condition were aligned to the time of decision (i.e., button press).  For each eye-tracking 

point from decision time going back to 1 second before decision time, a “true” value was 

assigned when gaze was on the to-be-chosen stimulus, and a “false” value when gaze was on 

the unchosen stimulus.   Points outside either stimulus were treated as “not a number.”  The 

ratio of “true” to “false” values for each time-point was averaged across trials and subjects in 

each group to obtain the likelihood of gaze bias toward the chosen stimulus at each time point.  

The data from the ASD group and from the control group were then each fit with a four-

parameter sigmoid regression curve for each condition (see Figure 3.2), with the four 

parameters representing the following: (1) bottom plateau – baseline comparison probability 

between the two stimuli, (2) top plateau – gaze bias at which the participant made the conscious 

behavioral choice, and (3 & 4) point of inflection and slope at point of inflection – timescale 

indicating the quickness of the decision.  Lastly, 95% confidence intervals were calculated for 
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the four parameter estimates.  Note that because each time point is averaged over multiple 

trials to interpolate the sigmoid function, the fit describes the time course of gaze probability at 

a given time point ahead of decision time (i.e., button press) rather than trial-by-trial gaze 

behavior.  

    
Figure 3.2. Protoypically-interpolated sigmoid with four parameters describing the time 

course of gaze probability at a given time point ahead of decision time (i.e., button press).  

Each time point of the group curve is calculated by averaging the true values across 40 

trials and 12 subjects (80 trials in the Open Eyes condition).  The parameters represent 

the following: (1) bottom plateau – baseline comparison probability between the two 

stimuli, (2) top plateau – gaze bias at which the participant made the conscious behavioral 

choice, and (3 & 4) point of inflection and slope at point of inflection – timescale 

indicating the quickness of the decision. 

 

To test whether the sigmoid parameters differed significantly between groups, non-parametric 

permutation tests were used, with the difference between control and autism group parameter 

estimates as test metrics.  We reshuffled the group labels (ASD, Control) to create 10,000 

synthetic data sets, calculating the sigmoid fit parameters for each.  The empirical distribution 

of the parameters was used to calculate the probability of seeing between-group parameter 
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differences greater than those observed in the present study.  Parameter estimates were 

considered significantly different between groups if the difference between estimates was in the 

top 2.5% or bottom 2.5% of the permutation distribution for that parameter (most extreme 

positive or negative differences). 

Reaction times (RTs) were log-transformed prior to statistical analysis to rectify the positively 

skewed distribution.  Raw values are reported in the text and figures.  Trials were excluded if 

reaction times were greater than 3 SD outside the group mean, or if no valid button press was 

registered (< 1% of the data). 

Baseline reaction times in the preliminary geometrical shape recognition task were compared 

between groups with a one-way ANOVA.  For the five experimental conditions, RTs were first 

analyzed with a 2 x 5 repeated-measures ANOVA, with a between-subjects factor of group 

(ASD, Control) and within-subjects factor of condition (Open Eyes, Closed Eyes, Timed, 

Roundness, Nature Scenes).  For the second level of analysis (examining the effect of decision 

difficulty on RTs), four (2 x 2 x 2) repeated-measures ANOVAs were carried out comparing 

the Open Eyes condition to each of the other four conditions, with a between-subjects factor of 

group and an additional two-level factor of decision difficulty (high difficulty, low difficulty).  

In RT analyses with decision difficulty as a factor, we analyzed all trials belonging to that 

difficulty level, regardless of eventual preference choice.  Post-hoc tests were conducted when 

appropriate (2-tailed independent sample t-test, unless otherwise indicated).  Degrees of 

freedom were Greenhouse-Geisser corrected when violations of sphericity occurred.  Mean 

fixation durations, fixation rates, and inverse efficiency scores were each analyzed with a 2 x 5 

repeated-measures ANOVA, with a between-subjects factor of group and within-subjects factor 

of condition. 
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3.2.4 Results 

3.2.4.1 Fixation behavior 

A preliminary analysis comparing mean fixation durations and fixation rates between groups 

revealed no significant interactions (ps > .663) or main effects of group (ps > .351).  Results are 

summarized in Figure 3.3 below. 
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C  

 

 
Figure 3.3. (A) Mean fixation duration (B) mean fixation rate and (C) latency to first 

fixation on either stimulus for the autism (red) and control (blue) groups.  Error bars 

denote standard error. * p < .05,  but main effect of group across conditions was not 

significant, p = .132, η2 = .10. 

 

3.2.4.2 Preference choices  

A correlation analysis was conducted to assess the agreement between preference choices in the 

ASD and control groups (see Table 3.2).  There was a significant positive correlation between 

preference choices made by the two groups in all five conditions, four of which survived 

correction for multiple comparisons.  Attractiveness ratings for the post-rated subsets of stimuli 

were also strongly correlated between groups (see Table 3.3). 

Table 3.2. Between-group correlation of preference choices in low and high difficulty 

trials combined. 

 Open Eyes Closed Eyes Timed Roundness Nature Scenes 

Pearson’s r .676 * .445 * .389  .830 * .618 * 

p value < .001 .004 .012 < .001 < .001 
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a. * p < .01 (corrected for multiple comparisons).  Note that the listed 

significance is uncorrected. 

 

Table 3.3. Post-ratings of stimuli subset by control and autism participants (13-14% of 

all images presented in study) and between-group correlation of ratings.  A subset of the 

images covering a range of attractiveness ratings (low, average, and high) were rated by 

all participants for attractiveness on a scale of 1 (very unattractive) to 7 (very 

attractive). 

Stimulus Type Mean Rating SD Pearson’s r p value 

Female Faces     

Control 3.27 1.02 .784* .004 

Autism 3.35 0.59   

Male Faces     

Control 3.23 1.16 .739* .009 

Autism 2.81 0.45   

Desert Scenes     

Control 4.14 1.00 .914** < .001 

Autism 4.37 0.46   

Mountain Scenes     

Control 4.64 1.08 .942** < .001 

Autism 5.08 0.76   

a. * p < .0125, ** p < .0025 (corrected for multiple comparisons).  Note that the listed 

significance is uncorrected. 

 

To examine the degree to which each groups’ preference choices agreed with the attractiveness 

ratings made by the pre-rating group, a binary logistic regression analysis was carried out for 

the low difficulty trials, regressing the dependent variable of preference decision against the 

consensus-preferred image, and t-tests were performed on the resulting beta weights (see Table 

3.4). None of the group differences in beta weights were significant. 
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Table 3.4. Results of the binary logistic regression model for low difficulty trials, 

regressing the dependent variable of preference choice against the consensus-preferred 

image as defined by the pre-rating group (beta weight means and standard errors, and 

p values from 2-tailed t-tests). 

 Open Eyes Closed Eyes Timed Roundness Nature Scenes 

 Mean β SE Mean β SE Mean β SE Mean β SE Mean β SE 

Control 4.09 1.69 1.40 0.29 4.81 2.38 16.32 2.89 4.15 2.43 

Autism 1.89 0.31 2.83 1.81 1.19 0.32 16.20 3.06 2.97 1.86 

p value   .21   .45   .15     .98   .71 

 

 

3.2.4.3 Gaze cascade effect  

The likelihood that an observer’s gaze was on the to-be-chosen picture was plotted against time 

before decision (see Figure 3.4). The results showed that the gaze cascade effect was present 

for both groups in all five conditions.  For each group, a four-parameter sigmoid function 

(parameters: bottom plateau, top plateau, point of inflection, slope at point of inflection) fit the 

likelihood curves well in all five conditions.  
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A  B  
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Figure 3.4. The likelihood that a participant's gaze is directed at the to-be-chosen stimulus 

is plotted against time to decision for the autism group (red) and control group (blue) for 

(A) Open Eyes, (B) Closed Eyes, (C) Timed, (D) Roundness, and (E) Nature Scenes.  Dots 

represent raw data averaged across trials and subjects for each time point.  Four-
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parameter sigmoids (solid lines; Parameters: bottom plateau, top plateau, point of 

inflection, slope at point of inflection) were fit to each likelihood curve (all R2s > .942).  

Shading denotes 95% confidence bounds of the sigmoid fit. 

Based on non-parametric tests using 10,000 random group assignments, we calculated the 

empirical probability of seeing parameter differences greater than those observed in the present 

study.  To test whether the sigmoid parameters differed significantly between groups, 

parameter estimates for the control group were subtracted from parameter estimates for the 

ASD group and compared against the probability distribution from permutations testing (see 

Methods for details).  None of the parameter differences between groups in the five conditions 

reached p = .05 significance, even when a correction for multiple comparisons was not applied.  

Parameter estimates and results of permutation testing are summarized in Table 3.5. 
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Table 3.5. Permutation Analysis: Summary table of coefficient estimates for four-

parameter sigmoid fits (parameters: bottom plateau, top plateau, point of inflection, 

slope at point of inflection), 95% confidence intervals for estimates, and probability of 

observed difference in parameters from random group sampling. 

  
Control group Autism group p (observed 

 Condition Parameter Estimate 95% CIs Estimate 95% CIs difference) 

 Open Eyes Bottom Plateau 0.438 [0.435, 0.442] 0.449 [0.441, 0.450] .44 

 POI 134.0 [132.9, 135.0] 154.9 [152.8,157.1] .29 

 Slope 0.003  0.002  .89 

 Top Plateau 0.845 [0.838, 0.851] 0.855 [0.841, 0.867] .44 

 R2 0.997  0.996   

Closed Eyes Bottom Plateau 0.446 [0.443, 0.449] 0.485 [0.482, 0.489] .33 

 POI 137.6 [136.5, 138.6] 162.9 [160.6,165.2] .23 

 Slope 0.003  0.003  .59 

 Top Plateau 0.837 [0.831, 0.844] 0.855 [0.843, 0.867] .41 

 R2 0.997  0.993   

Timed Bottom Plateau 0.458 [0.454, 0.461] 0.463 [0.457, 0.469] .46 

 POI 176.5 [174.1, 178.9] 149.0 [146.0, 152.0] .82 

 Slope 0.004  0.003  .62 

 Top Plateau 0.800 [0.786, 0.813] 0.710 [0.699, 0.721] .91 

 R2 0.979  0.942   

Roundness Bottom Plateau 0.508 [0.504, 0.512] 0.477 [0.471, 0.483] .62 

 POI 169.0 [166.2, 171.9] 144.0 [140.6, 147.4] .68 

 Slope 0.003  0.002  .80 

 Top Plateau 0.865 [0.851, 0.878] 0.745 [0.731, 0.760] .78 

 R2 0.990  0.982   

Nature Scenes Bottom Plateau 0.428 [0.420, 0.436] 0.426 [0.416, 0.436] .51 

 POI 138.1 [135.3, 140.9] 139.7 [136.9,142.4] .49 

 Slope 0.002  0.002  .52 

 Top Plateau 0.777 [0.762, 0.792] 0.899 [0.876, 0.922] .14 

 R2 0.983  0.996   

 

 

3.2.4.4 Reaction times 

A one-way ANOVA comparing baseline reaction time in the preliminary geometrical shape 

recognition task confirmed the ASD and control groups did not differ in basic motor response 

times, F(1,22) = 0.02, p = .882. 
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Reaction times for the experimental conditions were first analyzed using a 2 x 5 ANOVA 

comparing all five experimental conditions (see Figure 3.5).  Compared to controls, the ASD 

group had faster reaction times overall, reflected in a near-significant main effect of group, 

F(1,22) = 4.23, p = .052, η2 = .16.  Post-hoc comparisons revealed significant group differences 

in the Closed Eyes condition (ASD: M = 2.16, SE = 0.32; Controls: M = 3.13, SE = 0.30), t(22) 

= -2.31, p = .030, and Timed condition (ASD: M = 1.22, SE = 0.14; Controls: M = 1.62, SE = 

0.14), t(22) = -2.13, p = .045, and a trend-level group difference in the Open Eyes condition 

(ASD: M = 2.04, SE = 0.20; Controls: M = 2.77, SE = 0.27),  t(22) = -1.93, p = .067.  

Differences in RTs in the Roundness and Nature Scenes conditions were not significant (p = 

.179 and p = .400, respectively).  

 

Figure 3.5. Mean reaction times for the preliminary geometrical shape recognition task 

and experimental conditions, for the autism (red) and control (blue) groups.  Error bars 

denote standard error. * p < .05, + p < .10. 

To investigate RT differences between groups in the Open Eyes condition in comparison to the 

other conditions, a (2 x 2 x 2) repeated-measures ANOVA (factors: group x condition x 

difficulty) was calculated each time comparing the Open Eyes condition to each of the other 
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four experimental conditions, with a between-subjects factor of group (ASD, Control) and a 

two-level factor of decision difficulty (high difficulty, low difficulty).  Means and standard 

errors for RTs in the individual conditions are shown in Table 3.6.   

Face Preference: Open Eyes vs. Closed Eyes  

The ANOVA comparing the effect of Closed Eyes versus Open Eyes on RTs indicated there 

was a significant main effect of group, F(1,22) = 4.93, p = .037, η2  = .183, for faster RTs in the 

ASD group compared to the control group.  None of the other main effects or interactions 

reached significance (all ps > .146).   

Face Preference: Timed vs. Untimed   

The ANOVA comparing the Timed condition to the self-paced Open Eyes condition revealed a 

significant interaction between group and difficulty on RTs, F(1,22) = 6.12, p = .022,  η2  = 

.218, as well as a trend-level three-way interaction, F(1,22) = 3.69, p = .068, η2  = .144.  Paired-

samples t-tests indicated trend-level differences in the Timed condition for controls (Controls: 

High difficulty: M = 1.63, SE = 0.14; Low difficulty: M = 1.60, SE = 0.15), t(11) = -1.75, p = 

.109, but not for the ASD group (ASD: High difficulty: M = 1.23, SE = 0.14; Low difficulty: M 

= 1.21, SE = 0.14), t(11) = -0.73,  p = .484. There was also a significant group effect for faster 

RTs in the ASD group compared to controls, F(1,22) = 6.59, p = .018, η2  = .230. 

Face Preference vs. Face Roundness   

The ANOVA comparing the Roundness condition to Open Eyes revealed a significant 

interaction between condition and difficulty on RTs, F(1,22) = 15.56, p = .001,  η2  = .414, as 

well as a trend-level group effect, F(1,22) = 2.99, p = .098, η2  = .120.  Paired-samples t-tests 

indicated both groups took significantly longer for high difficulty compared to low difficulty 

decisions in the Roundness task (Controls: High difficulty: M = 2.58, SE = 0.24; Low 

difficulty: M = 2.01, SE = 0.18), t(11) = -3.41, p = .006, (ASD: High difficulty: M = 2.08, SE = 

0.32; Low difficulty: M = 1.74, SE = 0.25), t(11) = -2.66, p = .022.  

Social vs. Non-social Preference   

The ANOVA comparing the Nature Scenes condition to Open Eyes revealed a significant 

interaction between group and difficulty, F(1,22) = 7.01, p = .015, η2 = .242, indicating that 
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decision difficulty had a different effect on RTs in the control group than on those in the 

ASD group. There was also a main effect of difficulty, F(1,22) = 4.53, p = .045, η2 = .171.  

None of the other main effects or interactions reached significance (all ps > .177).   

To examine the effect of decision difficulty on RTs in each group, within-group comparisons 

were performed on pooled data from the Nature Scenes and Open Eyes conditions.  Paired-

samples t-tests showed the control group took longer to make decisions in high difficulty trials 

compared to low difficulty trials (High difficulty: M = 2.85, SE = 0.29; Low difficulty: M = 

2.70, SE = 0.27), t(11) = -2.97, p = .013, whereas there was not a significant effect of difficulty 

on RTs in the ASD group (High difficulty: M = 2.21, SE = 0.26; Low difficulty: M = 2.22, SE = 

0.26), t(11) = 0.32, p = .757.  

Inverse Efficiency Scores   

Lastly, we checked for a speed-accuracy tradeoff by analyzing RT and accuracy together, 

computing inverse efficiency scores (i.e., reaction time divided by accuracy) for each 

participant and condition in the low difficulty trials.  A 2 x 5 ANOVA with a between-subjects 

factor of group and within-subjects factor of condition indicated there was no interaction 

between condition and group (p = .805) and no significant difference between groups (p = 

.108). 

Correlation with AQ 

There were no significant correlations between Autism Quotient scores (AQ) and RTs for the 

ASD group, nor IQ and RTs for either group.  
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Table 3.6. Mean reaction times in seconds (non-transformed values) and standard 

errors for high and low difficulty trials, and mean accuracy scores for low difficulty 

trials. 

  Control group Autism group 

  Reaction Time Accuracy Reaction Time Accuracy 

 Condition  Mean SE Mean SE Mean SE Mean SE 

Shape Recognition  0.66 0.04 99.6% 0.00 0.69 0.07 100% 0.00 

 Difficulty Level         

Open Eyes          

 High  2.89 0.30 - - 2.01 0.19 - - 

 Low  2.66 0.25 75.8% 0.03 2.07 0.21 70.4 % 0.03 

Closed Eyes          

 High 3.20 0.35 - - 2.18 0.33 - - 

 Low 3.07 0.27 65.1% 0.03 2.15 0.32 62.8% 0.04 

Timed          

 High 1.63 0.14 - - 1.23 0.14 - - 

 Low 1.60 0.15 59.6% 0.03 1.21 0.14 55.7% 0.03 

Roundness          

 High 2.58 0.24 - - 2.08 0.32 - - 

 Low 2.01 0.18 89.6% 0.06 1.74 0.25 92.5% 0.02 

Nature Scenes           

 High 2.81 0.32 - - 2.41 0.37 - - 

 Low 2.73 0.37 61.7% 0.04 2.36 0.35 65.4% 0.05 

 

3.2.5 Discussion 

Here, we found that individuals with ASD and controls made similar preference decisions in 

judging the attractiveness of faces, and that they arrived at those decisions using similar 

sampling processes, displaying the “gaze cascade” interaction between internal preference and 

attention bias.  Where the ASD group differed from controls was in faster decision times, and 

also in an insensitivity to task difficulty in the facial preference tasks.  Whereas reaction times 

generally increased for difficult judgments in controls, the ASD group responded equally 

quickly when judging the attractiveness of closely-matched faces.  
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People with ASD made similar preference choices compared to the control group. Preference 

choices were correlated between the two groups, and the ASD group chose the higher-rated 

image with generally the same frequency as controls across all conditions.  Additionally, 

attractiveness ratings for the post-rated subset of stimuli were strongly correlated between 

groups (see Table 3.3), which strongly suggests the initial ratings used to define difficulty level 

are also appropriate for the ASD group.  In other words, face pairs that were defined as equally-

attractive face pairs based on non-autistic pre-ratings were also likely to be considered equally 

attractive by ASD subjects. 

With respect to visual behavior, when we examined mean fixation durations and mean fixation 

rates, no significant group differences were detected in the details of the gaze pattern.  

Moreover, both the ASD and control groups replicated the gaze cascade effect observed in the 

original paper (S. Shimojo et al., 2003).  That is, the feedback loop linking visual orienting with 

preference decisions is intact in ASD, which was not expected given the literature on atypical 

gaze to faces in autism.  This indicates that the ASD group used similar preference decision-

making processes compared to neurotypicals even with social stimuli. Lastly, comparison of 

the four parameters of the gaze cascade curves using permutations testing revealed no 

significant differences between the groups in any of the conditions.  Thus, the process of visual 

orienting to the preferred stimulus and the temporal profile of fixations leading up to the choice 

exists in the ASD group independent of stimulus and decision type. 

Despite the lack of differences in decision outcomes and orienting behavior, the ASD group 

was significantly faster in making preference decisions overall.  This effect may seem 

incompatible with the lack of difference in gaze cascade fits, but the gaze cascade model is 

time-locked to the final response (decision), not the onset of the stimulus, and thus the model is 

relatively insensitive to variances in total performance time (RT), as well as the initial response 

(gaze) to the stimulus. The source of the speeded responses is unclear, but the data do contain 

some suggestive clues. First, the lack of significant group differences in the gaze cascade model 

fits strongly suggests that the processing advantage is not due to an abbreviated or otherwise 

abnormal feedback loop linking foveation and eventual preference. Second, post-hoc tests 

indicated that the main reaction time advantage stemmed mainly from faster response times in 
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preference decisions for faces, as opposed to the objective face decisions or the decisions for 

natural scenes, and that there was a complete lack of a reaction time advantage in the 

geometrical shape discrimination. This suggests that the mechanism lies in a higher-level 

component of preferential decision-making for faces, rather than in low-level motor, visual, or 

executive factors. 

Our other analyses of fixation behavior did not point to a particular source of the speeded 

responses.  However, we did find an isolated effect of shorter latencies to first face fixation in 

the Timed condition for ASD (see Figure 3.3-C).  A future study focusing on this high-pressure 

condition may be able to uncover more informative results regarding the early phases of 

preference formation. 

Given the faster reaction times in ASD, we also examined whether the difficulty of the decision 

affects reaction times.  Interestingly, the ASD group was insensitive to the difficulty of the 

decision, whereas controls had slower reaction times when images were similarly rated, as 

expected.  Most intriguingly, this insensitivity was strongest for face preference decisions: 

difficulty did increase RTs for face roundness judgments in ASD.  Our failure to find any 

robust RT differences in the nature scenes condition may have been due to lack of statistical 

power.  It is worth noting that even in controls there was not a strong effect of difficulty for 

nature scenes.  Thus, RTs in the ASD group seem to be particularly insensitive to decision 

difficulty for social preference decisions.  

We found no evidence to indicate the faster RTs were due to inattention or a random or rushed 

decision-making process. The ASD group’s preferences were not divergent from or noisier than 

the control group’s preferences.  The strong correlation of the ASD group’s choices with both 

the control group’s choices and the attractiveness pre-ratings from a separate non-autistic group 

indicates the ASD group used similar or convergent criteria to evaluate attractiveness.  Finally, 

the lack of a group difference in inverse efficiency scores reflects that faster RTs were not 

accompanied by a disproportionately large decrease in accuracy in ASD (i.e., there was not a 

corresponding loss in performance).  Thus, one possible explanation could be that a choice 

criterion is reached in social decisions regardless of the discriminability of the options, although 
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the fundamental mechanism underlying the choice decision may be shared between groups.  

Future studies with more formal modeling approaches than the methods used here would be 

needed to test this hypothesis. 

There is precedent for the idea that people with ASD may be faster on certain kinds of timed 

visual/perceptual tasks.  A study by Hayashi and colleagues reported that children with 

Asperger’s Syndrome scored higher than typically developing children on the Raven’s 

Standard Progressive Matrices test (RSPM) (Hayashi, Kato, Igarashi, & Kashima, 2008), a 

nonverbal intelligence test in which subjects identify the missing geometric element that 

completes a specific pattern.   Another study using the RSPM found that while people with 

autism performed the test with the same accuracy as controls (Soulières et al., 2009), their 

response times were significantly faster, suggesting that in certain situations visual processing 

was enhanced in ASD.  There is also evidence to indicate people with ASD can outperform 

neurotypicals in tasks involving mental rotation (Soulières, Zeffiro, Girard, & Mottron, 2011), 

visual search (Jolliffe & Baron-Cohen, 1997; Keehn et al., 2008) and visual discrimination 

(Joseph, Keehn, Connolly, Wolfe, & Horowitz, 2009). The explanations given for such results 

include an underlying local processing advantage, lack of engagement with stimuli allowing for 

more efficient processing, or perhaps fundamental differences in motivational state.  

One contrast between the above results and our results is that our task is ostensibly social in 

nature, a domain in which people with ASD are generally thought to be at a disadvantage. 

There are a few related factors that could help to interpret this discrepancy. First, it is known 

that individuals with autism can mitigate social deficits using explicitly and implicitly guided 

compensatory strategies, masking social impairments in spite of atypical processing of social 

stimuli.  The effectiveness of such explicit top-down strategies has been found in tasks 

involving facial discrimination and emotion recognition (Rutherford & McIntosh, 2006; 

Teunisse & de Gelder, 2001; Wong et al., 2008).  Similarly, implicit compensatory strategies, 

such as prioritizing of local over configural information (Dawson et al., 2005; Rondan & 

Deruelle, 2007) are reported to underlie the performance advantage observed in ASD relative 

to controls in certain types of face perception tasks (Hobson et al., 1988; Langdell, 1978; 

Tantam et al., 1989).  Second, it may be that the face preference task does not involve higher-



 

 

73 

level social judgments.  The task regarded personal preferences, and did not require mental 

state inferences or social attributions regarding the face or other potential viewers, domains in 

which high-functioning individuals are more likely to show impairments compared to lower-

level social processes that are often spared. In that sense, the task might even have been 

approached as a perceptual task, rather than a social one. This would be consistent with the 

faster RTs observed in ASD, and also the insensitivity of RTs to the relative attractiveness of 

the faces. Finally, it could be the case that face processing deficits in high-functioning ASD 

become apparent only when there are more complex attentional demands, such as in real-life 

situations, or when there is competing visual information, such as with dynamic stimuli. This 

could also occur if attentional demands become too great to sustain explicit or implicit 

compensatory strategies. 

The current study had several limitations.  First, while the use of computer-generated faces is 

favorable in terms of controlling for potential confounds (e.g., facial expression), social stimuli 

with greater ecological validity (such as photographs or dynamic stimuli) may be more likely to 

elicit atypical gaze behavior, particularly in individuals with high-functioning autism.  Second, 

the difficulty factor was predefined based on ratings obtained from a separate group of non-

autistic participants.  Due to time limitations during the actual experiment, we obtained post-

ratings for only a small portion of the stimuli that were used. While we chose images that 

reflected a range of attractiveness ratings, people with ASD may have different face 

preferences that were not captured by the stimuli presented in the post-rating set. Future 

directions include gathering ratings for all stimuli to be presented in the study and using these 

ratings to determine face pairings separately for each group, in order to eliminate the possibility 

that the two groups perceived task difficulty differently. 

In summary, individuals with high-functioning autism have a similar gaze cascade and also 

made similar preference choices across the stimuli compared to neurotypicals.  We can 

therefore conclude that in individuals with high-functioning autism, the preference formation 

mechanism linking gaze orienting and eventual choice is intact.  With these similarities in 

mind, however, there were two major differences between groups: reaction times in the autism 

group were faster compared to controls, and furthermore they were insensitive to the difficulty 
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of the choice. Thus, more detailed analysis of task difficulty, reaction times, and even face 

preferences would help here, and in the future, to determine whether subjective decisions about 

faces systematically differ in people with ASD. It may be worth especially paying attention to 

the initial phase of orienting and perceptual processing leading up to the preference decision, as 

discussed above.  In future work, researchers might investigate the extent to which deficits in 

processing social information affect preference decisions using dynamic or emotional stimuli.  
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3.3 Gaze Cascade Study in Amygdala Lesion Patients 

Here, we tested three patients with rare amygdala lesions to examine whether social 

processing impairments would affect preference decisions for faces and the temporal 

evolution of those decisions.  Due to the small sample size, group comparisons lacked the 

statistical power to allow us to draw quantitative conclusions.  Considering, however, the rarity of 

testing amygdala lesion patients, we decided to report the results here and discuss qualitative 

trends in the data worthy of future investigation. 

3.3.1 Materials and methods 

3.3.1.1 Participants 

AP, AM, and BG are three female participants with bilateral amygdala lesions caused by 

Urbach-Wiethe disease (Mage = 34.3 years, SD = 6.4, age range = 27-38). Two of the 

participants, AM and BG, are monozygotic twins. The anatomical scans of the lesions for the 

three participants are shown below in Figure 3.6.  
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Figure 3.6. Anatomical scans of the amygdala lesion patients. Red arrows indicate 

location of the amygdala calcification damage. (Source: Mike Tyszka, Caltech Brain 

Imaging Center). 

 

The comparison group consisted of 3 healthy female controls (Mage = 34.0 years, SD =4.6, age 

range = 29-38), group-matched for age and IQ (as measured by the Wechsler Abbreviated 

Scale of Intelligence; (Wechsler, 1999), with no family history of psychiatric illness. Table 3.7 

summarizes demographic and diagnostic information for participants. 

Independent samples t-tests showed that the groups did not significantly differ in terms of age, 

t(4) = 0.07, p = .945) and IQ (t(4) = -2.30, p = .083.  All participants gave written informed 

consent to participate under a protocol approved by the Institutional Review Board of the 

California Institute of Technology. 
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Table 3.7. Demographic information for amygdala lesion and control participants in 

the gaze cascade study. 

 

a. Verbal IQ and full-scale IQ from the Wechsler Abbreviated Scale of Intelligence; 

AQ: Autism Quotient.  

3.3.1.2 Stimuli and apparatus 

Stimuli were identical to the stimuli described in the Methods section of the Gaze Cascade 

study in autism participants (for details, see section 3.2.3.2  Stimuli and apparatus).  Stimuli 

consisted of either pairs of social stimuli (computer-generated human faces) or pairs of non-

social stimuli (nature scenes sourced from a google image search for “desert” and 

“mountain”).  Face images, generated using Facegen (Singular Inversions, Vancouver, 

Canada), were front-facing with neutral emotional expression and direct eye contact.  Stimuli 

were paired using the same procedures outlined in the previous study with autism 

participants.  

Amygdala participants 

 Age 
Verbal 

IQ 

Full scale 

IQ 
AQ 

AP 27 92 98 20 

AM 38 94 96 21 

BG 38 99 101 18 

Mean 34.3 95.0 98.3  

SD 6.4 3.6 2.5  

Control participants 

 Age 
Verbal 

IQ 

Full scale 

IQ 
AQ 

1 35 108 107 - 

2 29 116 116 9 

3 38 104 102 11 

Mean 34.0 109.3 108.3  

SD 4.6 6.1 7.1  
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Images were presented on a 23” TFT monitor with a pixel resolution of 1920 x 1080.  The 

stimuli in each test pair were presented simultaneously on the left and right side of the screen.  

At a viewing distance of approximately 62 cm, each stimulus pair had an overall size of 36.5 

(width) x 14.4 (height) degrees of visual angle. 

A desk-mounted Tobii TX300 eye tracker (Tobii Technology, Falls Church, VA, USA) was 

used to collect gaze data.  Stimuli were presented using Matlab (Mathworks, Natick, MA) and 

the Psychophysics toolbox (Brainard, 1997), and the T2T-Talk2Tobii toolbox (Deligianni, 

Senju, Gergely, & Csibra, 2011).  Corneal and pupil reflection were recorded at a sampling 

rate of 300 Hz.  At the beginning of each block, a 9-point calibration was performed.  Each trial 

began by requiring subjects to fixate on a central drift correction dot.  After the eye-tracker 

registered a successful fixation, participants pressed the space bar to start the trial.  

3.3.1.3 Procedure 

Experiment procedure was identical to the procedure described in the Methods section of the 

Gaze Cascade study in autism participants (for details, see section 3.2.3.3  Procedure).  

Subjects performed various 2-alternative forced-choice (2AFC) tasks while eye-gaze was 

tracked (see Figure 3.7 for summary of experimental conditions and example stimuli).  The 

same conditions were tested as in the study with autism participants, with the exception of 

Faces with Closed Eyes, which we omitted here. Each amygdala participant was tested twice 

on two different days to increase the likelihood of collecting reliable data.  
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Condition  

Name 

Stimuli 

Description 

Example 

Stimuli 

Time per 

Trial 

Decision 

Type 

Open Eyes 
Faces with 

Open Eyes 

 

Self-paced 

(2 x 40 trials) 

Preference 

Judgment 

Timed 
Faces with 

Open Eyes 

 

1.5 seconds 

(40 trials) 

Preference 

Judgment 

Roundness 
Faces with 

Open Eyes 

 

Self-paced 

(40 trials) 

Objective 

Judgment 

Nature Scenes Nature Scenes 

 

Self-paced 

(40 trials) 

Preference 

Judgment 

Figure 3.7. Summary of experimental conditions and example stimuli. 

 

3.3.1.4 Analyses 

Analyses were identical to the analyses described in the Methods section of the Gaze Cascade 

study in autism participants (see section 3.2.3.4  Analyses), unless noted here.  The general 

methods of the analyses are described below again for convenience, but for further detail, 

please refer to Chapter 3.2.   

Data from the amygdala group and from the control group were each fit with a four-

parameter sigmoid regression curve for each condition, with four parameters representing the 

following: (1) bottom plateau – baseline comparison probability between the two stimuli, (2) 

top plateau – gaze bias at which the participant made the conscious behavioral choice, and (3 
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& 4) point of inflection and slope at point of inflection – timescale indicating the quickness 

of the decision.  Finally, 95% confidence intervals were calculated for each of the four 

parameters estimated.   

Due to the small sample size in this study, the permutations test that was performed in the ASD 

subjects was determined to lack power and therefore was not performed.  For the comparisons 

presented here, differences between groups were considered significant when confidence 

intervals did not overlap. 

Analysis of accuracy was limited to low difficulty trials because only low difficulty trials had 

an objectively correct (i.e., higher-rated) image for the preference tasks, allowing us to define 

accuracy.   

Since the distributions for reaction times (RT) were positively skewed, log-transformations 

were conducted prior to statistical analysis.  Raw values are reported in the text and figures.  

Trials were excluded if reaction times were greater than 3 SD outside the group mean, if no 

valid button press was registered, or if more than 20% of the eyetracking data was invalid (< 

4% of the data). 

3.3.2 Results 

3.3.2.1 Fixation behavior 

A preliminary analysis between groups comparing mean fixation durations, fixation rates, and 

latency to first fixation on an image revealed no significant interactions (ps > .292) or main 

effects of group (ps > .110).  Results are summarized in Figure 3.8.   
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Figure 3.8. Mean fixation duration (A) mean fixation rate (B) and latency to first fixate 

on an image (C) for the amygdala (red) and control (blue) groups.  Error bars denote 

standard error. 

 

3.3.2.2 Preference choices  

A correlation analysis was conducted to assess the agreement between preference choices in 

the amygdala and control groups (see Table 3.8).  There was a weak correlation in the Open 

Eyes condition and a moderate correlation in the Roundness condition.  Only the latter result 

survived correction for multiple comparisons.  

 

Table 3.8. Between-group correlation of preference choices in low and high difficulty 

trials combined. 

 Open Eyes Timed Roundness Nature Scenes 

Pearson’s r .355  .253     .505 * -.172 

p value .024 .115 < .001   .288 

a. * p < .01 (corrected for multiple comparisons).  Note that the listed significance is 

uncorrected. 

To examine the degree to which each groups’ preference choices agreed with the attractiveness 

ratings made by the pre-rating group, a binary logistic regression analysis was carried out for 

the low difficulty trials, regressing the dependent variable of preference decision against the 

consensus-preferred image, and t-tests were performed on the resulting beta weights (see Table 

3.9). None of the group differences in beta weights were significant. 
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Table 3.9. Results of the binary logistic regression model for low difficulty trials, 

regressing the dependent variable of preference choice against the consensus-preferred 

image as defined by the pre-rating group (beta weight means and standard errors, and 

p values from 2-tailed t-tests).  

 Open Eyes Timed Roundness Nature Scenes 

 Mean β SE Mean β SE Mean β SE Mean β SE 

Control 0.56 0.45 1.08 0.43 0.50 0.87 1.70 0.47 

Amygdala 1.26 0.51 1.48 0.37 0.33 0.06 1.69 1.00 

p value .36  .52 .86  .99 

 

 

3.3.2.3 Gaze cascade effect  

Individual subject curves 

The likelihood that an observer’s gaze was on the to-be-chosen picture was plotted against 

time before decision (see Figure 3.9).   Analysis of individual subjects’ likelihood curves 

indicated that the gaze cascade effect was present for each individual subject in all 

conditions. 
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D   
 

 
 

Figure 3.9. Sigmoid fits for individual control subjects (blue) and amygdala lesion 

subjects (red) for (A) Open Eyes, (B) Timed, (C) Roundness, and (D) Nature Scenes. 

Large figures depict group averages, small figures depict individual subject fits. Dots 

represent raw data averaged across trials and subjects for each time point.  

Group curves 

The results showed that the gaze cascade effect was present for both groups in all four 

conditions (see Figure 3.10).  In the Open Eyes condition, the time course of the gaze cascade 

was shorter and reached a higher plateau in the amygdala group compared to the control 

group, as indicated by the lack of overlap of 95% confidence bounds at the points of 

inflections and peaks. 
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C  D  

 

 
 

 

 

Figure 3.10. The likelihood that a participant's gaze is directed at the to-be-chosen 

stimulus is plotted against time to decision for the amygdala lesion group (red) and 

control group (blue) for (A) Open Eyes, (B) Timed, (C) Roundness, and (D) Nature 

Scenes.  Dots represent raw data averaged across trials and subjects for each time point.  

Four-parameter sigmoids (solid lines; Parameters: bottom plateau, top plateau, point of 

inflection, slope at point of inflection) were fit to each likelihood curve (all R2s > .757).  

Shading denotes 95% confidence bounds of the sigmoid fit. 

 

For each group, a four-parameter sigmoid function (parameters: bottom plateau, top plateau, 

point of inflection, slope at point of inflection) fit the likelihood curves well in all four 
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conditions. Coefficient parameters for the sigmoid fits and 95% confidence intervals for 

parameter estimates are summarized in Table 3.10. 

 

Table 3.10. Summary table of coefficient estimates for four-parameter sigmoid fits 

(parameters: bottom plateau, top plateau, point of inflection, slope at point of 

inflection), and 95% confidence intervals for estimates.  

  Control group Amygdala group 

 Condition Parameter Estimate 95% CIs Estimate 95% CIs 

 Open Eyes Bottom Plateau 0.440 [0.426, 0.453] 0.459 [0.455, 0.462] 

 POI 125.8 [120.7, 130.9] 195.8 [193.2,198.3] 

 Slope 0.001  0.002  

 Top Plateau 0.728 [0.709, 0.748] 0.801 [0.789, 0.811] 

 R2 0.980  0.986  

Timed Bottom Plateau 0.519 [0.505, 0.518] 0.469 [0.463, 0.474] 

 POI 234.5 [226.6, 242.5] 220.2 [213.7, 226.6] 

 Slope 0.003  0.002  

 Top Plateau 0.732 [0.702, 0.761] 0.799 [0.772, 0.826] 

 R2 0.757  0.949  

Roundness Bottom Plateau 0.511 [0.505, 0.516] 0.477 [0.471, 0.482] 

 POI 204.1 [197.9, 210.3] 219.6 [214.4, 224.7] 

 Slope 0.002  0.003  

 Top Plateau 0.743 [0.724, 0.761] 0.812 [0.788, 0.835] 

 R2 0.912  0.939  

Nature Scenes Bottom Plateau 0.514 [0.508, 0.520] 0.468 [0.463, 0.474] 

 POI 230.8 [218.6, 242.9] 224.2 [218.7,229.7] 

 Slope 0.002  0.003  

 Top Plateau 0.776 [0.736, 0.815] 0.800 [0.773, 0.824] 

 R2 0.889  0.928  
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3.3.2.4 Reaction times 

A one-way ANOVA comparing baseline reaction times in the preliminary geometrical shape 

recognition task confirmed the amygdala and control groups did not differ in basic motor 

response times, F(1,4) = 0.26, p = .640. 

Reaction times for the experimental conditions were first analyzed using a 2 x 4 ANOVA, 

comparing all four experimental conditions (see Figure 3.11).  There was no group difference 

in RTs (p = .838, η2 = .01) and no interaction between group and condition (p = .225, η2 = .29).  

 

 

Figure 3.11. Mean reaction times for the preliminary geometrical shape recognition 

task and experimental conditions, for the amygdala (red) and control (blue) groups.  

Error bars denote standard error. 

 

To investigate RT differences between groups in the Open Eyes condition in comparison to the 

other conditions, a (2 x 2 x 2) repeated-measures ANOVA (factors: group x condition x 

difficulty) was calculated each time comparing the Open Eyes condition to each of the other 

three experimental conditions, with a between-subjects factor of group (Amygdala, Control) 
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and a two-level factor of decision difficulty (high difficulty, low difficulty).  Means and 

standard errors for RTs in the individual conditions are shown in Table 3.11.   

 

Table 3.11. Mean reaction times in seconds (non-transformed values) and standard 

errors for high and low difficulty trials, and mean accuracy scores for the low difficulty 

trials. 

  Control group Amygdala group 

  Reaction Time Accuracy Reaction Time Accuracy 

 Condition  Mean SE Mean SE Mean SE Mean SE 

Shape Recognition  0.78 0.23 100% 0.00 0.61 0.08 100% 0.00 

 Difficulty Level         

Open Eyes          

 High  1.94 0.26 - - 2.38 0.70 - - 

 Low  1.97 0.26 57.5% 0.05 2.29 0.59 63.8 % 0.05 

Timed          

 High 1.33 0.32 - - 1.62 0.23 - - 

 Low 1.40 0.34 61.7% 0.04 1.73 0.35 60.0% 0.03 

Roundness          

 High 1.96 0.14 - - 2.13 0.41 - - 

 Low 1.82 0.19 83.3% 0.07 1.50 0.30 96.7% 0.01 

Nature Scenes           

 High 1.87 0.24 - - 1.97 0.53 - - 

 
Low 1.81 0.22 71.3% 0.06 1.90 0.52 68.3% 0.10 

 

Face Preference: Timed vs. Untimed 

The ANOVA comparing the Timed condition to the self-paced Open Eyes condition revealed 

no significant interaction effects nor a main effect of group (all ps > .283).  

Face Preference vs. Face Roundness 

The ANOVA comparing the Roundness condition to Open Eyes revealed a significant 

interaction between group and difficulty, F(1,4) = 11.92, p = .026, η2 = .749, indicating that 

decision difficulty had a different effect on RTs in the control group than on those in the 
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amygdala group. There was also an interaction between condition and difficulty, F(1,4) = 

12.46, p = .024, η2 = .757, and a main effect of difficulty, F(1,4) = 23.68, p = .008, η2 = .855.   

To examine the effect of decision difficulty on RTs in each group, within-group comparisons 

were performed on pooled data from the Roundness and Open Eyes conditions.  Paired-

samples t-tests showed the amygdala group took longer to make decisions in high difficulty 

trials (M = 2.23, SE = 0.54) compared to low difficulty trials (M = 1.89, SE = 0.44), t(2) = -

10.81, p = .008, whereas there was not a significant effect of difficulty on RTs in the control 

group (High difficulty: M = 1.95, SE = 0.17; Low difficulty: M = 1.89, SE = 0.23), t(2) = -0.78, 

p = .515.  

Social vs. Non-social Preference   

The ANOVA comparing the Nature Scenes condition to Open Eyes revealed no significant 

interactions, nor a main effect of group (ps > .118).  

Inverse Efficiency Scores   

Lastly, we checked for a speed-accuracy tradeoff by analyzing RT and accuracy together, 

computing inverse efficiency scores (i.e., reaction time divided by accuracy) for each 

participant and condition in the low difficulty trials.  A 2 x 4 ANOVA with a between-subjects 

factor of group and within-subjects factor of condition indicated there was no interaction 

between condition and group (p = .292) and no significant difference between groups (p = 

.838). 

3.3.3 Discussion 

We tested three patients with rare amygdala lesions to examine whether social processing 

impairments would affect preference decisions for faces and the temporal evolution of those 

decisions.  Interestingly, amygdala lesions patients demonstrated an intact feedback loop 

linking gaze and preference for faces and made similar preference choices as controls. There 

were, however, hints in the fixation behavior of the amygdala group, suggesting that there are 

underlying differences in the pattern of gaze towards faces.  
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Due to the small sample size, group comparisons lacked the statistical power to allow us to 

draw quantitative conclusions.  There were, however, notable qualitative trends in the data 

worthy of discussion that I will review briefly in this section. 

At the individual level, the gaze cascade effect was observed for each of the amygdala subjects 

in all four conditions, indicating that the feedback loop between preference and foveation is 

normal and intact in the amygdala lesions subjects.  At the group level, the sigmoid curves fit to 

the raw data were generally similar between groups.  With the exception of the Open Eyes 

condition, inspection of the confidence bounds did not reveal any significant differences in the 

four parameters describing each group’s sigmoids. In the Open Eyes condition, the sigmoid for 

the amygdala group rose more rapidly than it did for controls, and also reached a higher 

plateau.  This suggests there may be an underlying difference in the time course of face 

preference formation in the amygdala group.  Moreover, the sigmoid curves appeared similar 

across the four conditions in the amygdala group whereas the sigmoid curves are notably 

different across conditions for healthy controls, indicating that the amygdala group 

demonstrated relatively invariant gaze during decision-making, regardless of task or stimulus 

type.  Preference decisions were also similar between groups, at least in the low difficulty trials, 

as indicated by the relatively similar beta weights resulting from the linear regression in the low 

difficulty trials.  While between-group correlations for preference choice in the low and high 

difficulty trials did not reach significance in the preference decision tasks, this is likely due to 

an issue of the statistics being underpowered.   

Analysis of gaze behavior indicated that fixation patterns towards faces were likely different in 

patients with amygdala lesions relative to controls.  First, fixation durations were longer for the 

amygdala group than the control group, particularly for preference decisions regarding faces.  

In both the Open Eyes condition and the Timed condition, the amygdala subjects made longer 

fixations relative to controls, while in the Nature Scenes condition, they made shorter fixations 

than controls.  Moreover, when we compared fixation rates in each condition (fixations per 

second), there was a trend for noticeably slower fixation rates in the Open Eyes condition and 

Timed conditions, marginally slower rates in the Roundness conditions, and no difference in 

the Nature Scenes condition.  In other words, the amygdala group made fewer and longer 
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fixations for decisions involving face preference, but not nature scenes or objective decisions 

for faces.  Longer fixations are generally believed to be an indication of difficulty extracting 

information (Fitts, Jones, & Milton, 1950; Goldberg & Kotval, 1998; Rayner et al., 2007).  On 

the other hand, they could also indicate increased engagement with the stimuli (Poole & Ball, 

2014).   Moreover, fixation rates might also simply reflect the speed of processing in mental 

tasks (Kahneman, 1973).  Hence, there is at least weak (however, non-significant) evidence for 

preference decisions involving faces to be associated with amygdala-functioning. 

There was also a trend for longer latency to first fixation on a stimulus in the amygdala group 

compared to controls.  This effect was observed in all four conditions, which could be 

associated with slower mental processing or could suggest a lack of interest in initially 

engaging with the task.  Though there were no differences in basic motor response times, the 

longer reaction times in the Open Eyes and Timed conditions suggest that the amygdala 

subjects were slower to make preference decisions for faces but not for nature scenes or face 

roundness.  

The lack of systematic group differences in the gaze cascade curves and the relatively similar 

preferences in the amygdala lesion group relative to controls suggests that the amygdala is not 

required for forming preferences for social stimuli.  While the amygdala plays a crucial role in 

processing faces and emotions, lesion effects might be stronger for tasks involving emotional 

processing rather than general face processing, since general face processing relies more on the 

fusiform gyrus and superior temporal sulcus (Haxby, Hoffman, & Gobbini, 2002).  

Alternatively, it may be the case that other brain regions have compensated for the processes 

impaired by amygdala lesions.  Indeed, there is evidence suggesting that some amygdalar 

functions can be partially compensated for, such that certain aspects of social processing, such 

as theory of mind (Shaw et al., 2004) and fear recognition (Becker et al., 2012) appear to 

remain intact or only moderately impaired (Brierley, 2004). 

In sum, while there were qualitative trends in the data suggesting there are underlying 

differences in patterns of face gaze in amygdala participants, the comparisons of gaze behavior 

and reaction time did not yield significant group differences with the exception of the gaze 
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cascade curve for the Open Eyes condition.   The absence of significant effects in our study 

may have been due to small sample sizes.  Only significantly large effects would be detectable 

in such a small group comparison and it may be the case that differences would be observed 

with a larger sample size.  Thus, while our findings suggest that the amygdala does not play a 

critical role in face preference formation, future studies using larger sample sizes will be 

necessary to elucidate if this conclusion holds true.  
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3.4 Familiarity versus Novelty Study in Autism 

3.4.1 Introduction 

In a paradigm by Park, Shimojo, and Shimojo (2010), which we applied in an adapted version 

for the present study, researchers showed participants pairs of faces and pairs of nature scenes 

and asked them to judge the pictures for preference (Park et al., 2010).  In each pair, one 

picture was novel, and the other picture was familiar (i.e., the picture was presented in every 

trial).  They found that for nature scenes, participants demonstrated a “novelty bias” in that 

participants grew to prefer the novel nature scenes over the familiar nature scenes. However, 

for the pictures of faces, they found that participants demonstrated a “familiarity bias” in that 

participants developed a preference for the familiar face and were more likely to choose the 

familiar face over the novel faces. A follow-up study further refined these results, reporting that 

familiar faces were preferred both in contexts where those faces were passively viewed and 

when an explicit judgment had to be made about them, whereas the novelty preference for 

nature scenes occurred only in the latter context (Liao et al., 2011).   

Several interacting factors have been proposed in order to explain the differential preference 

principles seen in the different stimulus categories.  One is the level of experience we have with 

certain types of stimuli.  People are subconsciously driven to acquire more knowledge about 

faces than virtually any other object categories from birth to adulthood (Fagan, 1972; Goren et 

al., 1975; Walton & Bower, 1993).  Given the larger range of within-category variability for 

nature scenes compared to faces, and the relative lack of nature scene expertise compared to 

face expertise (and by implication, the brain regions and networks attuned to evaluating them), 

it could be that people orient toward novel rather than familiar nature scenes in an attempt to 

understand the naturally-occurring parameters of such stimuli (Park, 2010).  In contrast, faces 

are relatively invariant, and as such, the bounds might be much more easily and quickly 

determined.  One could imagine then that while it would be valuable for survival to attend to 

novel nature scenes to acquire expertise regarding one’s environment, it would similarly be 

advantageous to orient toward familiar faces and learn to evaluate them for subtle differences to 

enrich and refine discrimination skills.  Furthermore, as a result of life-long orienting toward 
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social stimuli, we acquire a vast amount of knowledge about how to read faces.  In this 

respect, social attention and one’s level of face expertise could influence the preference for 

familiar faces.  Forming a familiarity preference also requires memory for faces (and by 

extension, the ability to form category representations of faces), because the face must be 

encoded to memory in order for it to be recognized as familiar when it is encountered again.  

Another factor is the level of processing demands of each stimulus category. Social processing 

requires the evaluation of faces, and for most people, evaluating faces occurs automatically, 

holistically, and subconsciously. In contrast, people are not often asked to make evaluations of 

nature scenes and as such the processing load may be higher for nature scenes than faces. This, 

in turn, could influence whether we prefer a familiar or novel stimulus.  On the other hand, one 

could also argue that social stimuli such as faces are more complex than non-social stimuli, and 

as such, require greater attention than nature scenes, which could also influence our preference.  

Thus, there are a variety of factors strongly linked to social saliency that could interact to 

produce a familiarity preference for faces (and not for non-social stimuli), including social 

attention, level of face expertise, social memory, and processing abilities. 

As discussed previously in Chapter I, aspects of social processing that are compromised in 

ASD might be linked to amygdala dysfunction.  Faces are less likely to draw the attention of 

people with autism, who show reduced social orienting and social attention to social stimuli 

than their neurotypical counterparts (Dawson et al., 2004).  It has been argued that these 

deficits could stem from a failure of the amygdala to assign social saliency to faces (Aggleton, 

Burton, & Passingham, 1980) and signal feedback pathways necessary for processing social 

stimuli (Schultz, 2005).   

While the evidence is mixed, there are also some studies that show that deficits in social 

processing could directly affect face recognition abilities (for a review, see Weigelt, Koldewyn, 

& Kanwisher, 2012).  Studies have reported that individuals with autism show impaired 

memory for faces (Arkush, Smith-Collins, Fiorentini, & Skuse, 2013; Hauck, Fein, Maltby, 

Waterhouse, & Feinstein, 1998; Klin et al., 1999) and impaired immediate and delayed recall 

for faces and social scenes but not for non-social objects, though whether this impairment 
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applies only to unfamiliar faces is less clear (Boucher & Lewis, 1992).  People with ASD 

also demonstrate abnormal face coding mechanisms (Pellicano, Jeffery, Burr, & Rhodes, 2007) 

and are impaired in their ability to form abstract representations of categories for both faces and 

non-face stimuli (Gastgeb, Rump, Best, Minshew, & Strauss, 2009; Klinger & Dawson, 2001), 

which would likely contribute to impairments in encoding and consolidating memory for faces.  

And finally, people with ASD show less accurate memory awareness for faces, meaning that 

even when they show deficits in face recognition, they have difficulty recognizing their own 

impairment (Wilkinson, Best, Minshew, & Strauss, 2010). 

Given the deficits in social processing in autism, we examine whether face preference 

formation according to familiarity is impaired in autism.  Subjects were shown pairs of social 

and pairs of non-social stimuli and asked to make a 2-alternative forced choice for which 

stimulus was preferred.  For each image subcategory, one stimulus in a pair was repeated in 

every trial.  We found similar patterns of preference segregation in the ASD group relative to 

controls, for both types of stimuli: ASD subjects showed a preference bias for face stimuli and 

a novelty bias for nature scene stimuli.  The results suggest that face preference formation for 

familiar faces might be spared from social processing deficits typically observed in autism. 

3.4.2 Materials and methods 

3.4.2.1 Participants 

Participants were a group of n =12 high-functioning subjects with a DSM-IV diagnosis of 

Autism Spectrum Disorder ranging in age from 22 – 58 years old (Mage = 33.0 years, SD = 

12.5) and included 9 males and 3 females.  Sample size was determined by participant 

availability.  DSM-IV diagnosis was confirmed by the Autism Diagnostic Observation 

Schedule (ADOS; (Lord et al., 2000) and either the Autism Diagnostic Interview-Revised 

(ADI-R; (Lord et al., 1994) or the Social Communication Questionnaire (SCQ; (Rutter et al., 

2003).  The autism comparison group consisted of 12 healthy controls ranging in age from 21 – 

59 (Mage = 31.7 years, SD = 11.2), and included 10 males and 2 females. The comparison group 

was matched on age, gender, and IQ, with no family history of psychiatric illness.  

Demographic and diagnostic information for the autism and control participants is found in 

Table 3.12. 
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Table 3.12. Demographic and diagnostic information for autism and control 

participants in the Familiarity/Novelty study. 

Autism group Autism group: ADOS 

 Sex Age Verbal IQ Full scale 
IQ AQ SOC COM+SOC 

1 F 22 102 107 28 14 21 

2 M 30 111 106 30 11 17 

3 M 57 119 102 33 8 12 

4 M 31 127 124 22 7 11 

5 M 29 117 115 39 14 20 

6 F 37 135 133 41 9 13 

7 M 26 89 93 31 7 10 

8 M 23 90 100 22 10 16 

9 F 19 128 124 31 6 9 

10 M 32 97 99 34 10 14 

11 M 32 50 91 26 11 15 

12 M 58 118 126 34 7 9 
Mean  33.00 102.50 108.50    

SD  12.48 22.40 13.03    

Control group	    

 Sex Age Verbal IQ Full scale 
IQ AQ   

1 M 44 122 116 -   

2 M 59 109 105 -   

3 M 23 123 123 12   

4 M 21 120 121 -   

5 M 37 108 120 -   

6 M 34 125 132 -   

7 M 25 106 107 8   

8 F 33 104 97 11   

9 M 21 104 109 25   

10 M 21 104 101 18   

11 M 31 95 104 15   

12 F 31 97 91 12   
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13 M 44 122 116 -   
Mean  31.67 106.62 105.54    

SD  11.23 9.43 7.04    

a. Verbal IQ and full-scale IQ from the Wechsler Abbreviated Scale of Intelligence; 

AQ: Autism Spectrum Quotient; ADOS: Autism Diagnostic Observation Schedule; 

SOC: social interaction subscale; COM+SOC: communication+social interaction 

subscales 

T-tests showed that the groups were not significantly different in terms of age t(22) = -0.22, p = 

.832, IQ, t(22) = .094, p = .493, as measured by the Wechsler Abbreviated Scale of Intelligence 

(Wechsler, 1999), or gender (p = .10, 2-sided Fisher’s Exact Test).  All participants gave 

written informed consent to participate under a protocol approved by the Institutional Review 

Board of the California Institute of Technology. 

3.4.2.2 Stimuli and apparatus 

Stimuli consisted of pairs of social stimuli (computer-generated human faces) or pairs of non-

social stimuli (nature scenes).  Male and female face images were generated using Facegen 

(Singular Inversions, Vancouver, Canada), and were shown front-facing with neutral emotional 

expression and direct eye contact.  Nature scenes were sourced from a google image search for 

“desert” and “mountain”. 

To control for preference bias due to differences in baseline attractiveness of the stimuli, all 

images were drawn from a larger set of face and nature scene stimuli pre-rated for 

attractiveness by a separate group of non-autistic participants on a scale of 1 (very unattractive) 

to 7 (very attractive) (n = 20, Females = 8; Mage = 28.2 years, SD = 7.5).   

We created 20 image pairs in each of the four subcategories (male faces, female faces, 

mountain scenes, desert scenes) using the following procedure for each subcategory: we 

selected the median-rated image in each subcategory as the “familiar” image and presented it in 

every trial, pairing it with a “novel” image chosen from the same subcategory.   Images were 

paired such that in half of the trials, the familiar image was more attractive, and in half of the 

trials, the familiar image was less attractive.  To control for preference bias based on 
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attractiveness, within each each group, pairs were presented such that half the participants 

saw the familiar image paired with a more attractive image, and half saw the familiar image 

paired with a less attractive image. Each image pair was presented in randomized order once 

per block, and the location of each image in a pair was left-right randomized. 

Images were presented on a 21” CRT monitor with a refresh rate of 100 Hz and pixel resolution 

of 1152 x 864.  The stimuli in each test pair were presented simultaneously on the left and right 

side of the screen.  At a viewing distance of approximately 57 cm, each stimulus pair had an 

overall size of 36.2 (width) x 14.4 (height) degrees of visual angle. 

Stimuli were presented using Matlab (Mathworks, Natick, MA), the Psychophysics toolbox 

(Brainard, 1997), and the Eyelink toolbox (Cornelissen et al., 2002).  Gaze data was collected 

using a head-mounted Eyelink II eye-tracking system (SR Research, Osgoode, Canada).  

Corneal and pupil reflection were recorded at a sampling rate of 250 Hz.  At the beginning of 

each block, a 9-point calibration was performed.  Each trial began by requiring subjects to 

fixate on a central drift correction dot.  After the eye-tracker registered a successful fixation, 

participants pressed the space bar to start the trial.  

3.4.2.3 Procedure 

Subjects performed a 2-alternative forced-choice (2AFC) task, making self-paced preference 

decisions while eye-gaze was tracked (see Figure 3.12).  Subjects inspected a pair of 

simultaneously presented stimuli, then made a 2AFC choice by pushing either the left or the 

right button. 

Experimental design consisted of two blocked conditions in which participants viewed pairs of 

social stimuli (Faces) or pairs of non-social stimuli (Nature Scenes).  There were 2 

subcategories in each category (Faces: male, female; Nature Scenes: mountains, desert), and 20 

trials in each subcategory (see Figure 3.12 for summary of experimental conditions and sample 

stimuli).  Category and sub-category order was counter-balanced across subjects. 
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Category Sub-category 
Example 

Stimuli 
Trials 

Faces 

Female 

 

20 

Male 

 

20 

Nature Scenes 

Desert 

 

20 

Mountain 

 

20 

Figure 3.12. Summary of experimental conditions and example stimuli.  Median-rated 

picture is shown on the left. 

3.4.2.4 Analyses 

Each subject’s preference choice was converted to a familiarity or novelty score, “1” if the 

familiar picture was chosen, and “-1” if the novel picture was chosen.  Familiarity-novelty 

scores were then averaged across subcategories and across subjects in each group for each 

sequential trial. 

For statistical analysis of the familiarity-novelty scores, we ran repeated-measures ANOVAs 

with a between-subjects factor of group (ASD, control), and within-subjects factor of image 

category (Face versus Nature Scene) or subcategory (female versus male; desert versus 

mountain).  To compare the initial preference in the first trial to the final preference in the last 
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trial across image categories, we ran one repeated-measures ANOVA with within-subjects 

factors of time (first trial, last trial) and image category (faces, nature scenes).   

To compare the initial stage of preference development to the later stage of preference 

development in the image categories, we averaged the first five trials and the last 15 trials in 

each category and ran an ANOVA, using a within-subjects factors of time (first five trials, last 

15 trials) and image category (faces, nature scenes).  To compare stages of preference 

development in the subcategories, we re-ran a similar ANOVA on the averages of the first 5 

trials and the last 15 trials in each subcategory, using a within-subjects factor of image 

subcategory (female faces, male faces, nature scenes, desert scenes).  

Second, we explored initial gaze by analyzing the eye-tracking data in two ways: analyzing the 

proportion of first fixations that were made to the novel image versus the familiar image, and 

the proportion of first fixations that were made to the eventually chosen image versus the 

unchosen image.  For each of these two measures, we carried out a repeated-measures ANOVA 

using as within-subjects factor of image subcategory and between-subjects factor of group.   

Lastly, we carried out one-sample t-tests in each subcategory to determine if any of the 

proportions differed significantly from chance.   

3.4.3 Results 

3.4.3.1 Familiarity-Novelty scores 

The time-course of preference bias in the two stimulus categories is shown below in Figure 

3.13.  The first ANOVA comparing familiarity/novelty scores in the first trial and last trial in 

the two image categories (faces, nature scenes) indicated there were no significant interactions 

involving group (all ps > .413) and no main effect of group (p = .383), indicating the likelihood 

of preferring the familiar image in the first trial and last trial did not differ between groups in 

the two image categories.  There was an interaction between time and category, F(1,22) = 4.50, 

p = .045, η2 = .170, indicating that, regardless of group, there was a stronger familiarity 

preference for faces in the final trial relative to the first trial, (First trial: M = -.125, SE = .164; 

Last Trial: M = .125, SE = .154), whereas there was a stronger novelty preference for nature 
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scenes in the last trial compared to the first trial (First trial: M = .000, SE = .136; Last Trial: 

M = -.458, SE = .122).  None of the main effects were significant. 

The ANOVA comparing the first five trials and last 15 trials across the two image categories 

also indicated there were no interactions involving group (all ps > .156) and no main effect of 

group (p = .365), signifying that preference development in the stimulus categories did not 

differ between groups in the initial trials nor the later trials.  There was a significant interaction 

between time and category, F(1,22) = 10.48, p = .004, η2 = .323, revealing a significant 

difference in preference bias within the first five trials, for familiarity in the face category but 

novelty in the nature scenes category, (Faces: M  = .142, SE = .083; Nature scenes: M  = -.233, 

SE = .088; t(23) = -2.67, p = .014).  The respective biases were also significantly different in 

the last 15 trials, (Faces: M  = .300, SE = .077; Nature scenes: M  = -.431, SE = .063; t(23) = 

7.71, p < .001).  Furthermore, within image categories, there was a stronger familiarity bias for 

faces in the last 15 trials than in the first five trials, t(23) = -2.05, p = .052, whereas there was a 

stronger novelty bias for nature scenes in the last 15 trials than in the first five trials, t(23) = -

3.55, p = .002. 

Lastly, there was a significant main effect of category, F(1,22) = 25.67, p < .001, η2 = .539, 

indicating a stronger familiarity preference for faces regardless of time or group, and a stronger 

novelty preference for nature scenes regardless of time or group (Faces: M = .553, SE = .109; 

Nature scenes: M = -.553, SE = .109).  
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Figure 3.13. Time-course of familiarity/novelty preference bias over 20 trials, collapsed 

across sub-categories in each image category.  The two categories consist of Face (sub-

categories: female and male), and Nature Scenes (sub-categories: desert scenes, 

mountain scenes). 

The time-course of preference bias in the four image subcategories is shown below in Figure 

3.14. The ANOVA comparing the first five trials and last 15 trials across the four image 

subcategories indicated that there were no interactions involving group (all ps > .156) and no 

main effect of group (p = .365), meaning preference development in the image subcategories 

did not differ between groups in the initial trials nor the later trials.  There was a significant 

interaction between time and subcategory, F(3,66) = 4.16, p = .009, η2 = .159, which we 

followed up with pairwise comparisons. 

Pairwise comparisons between image subcategories for the first five trials indicated there was a 

significant difference in preference bias between female faces and mountain scenes (Female 

faces: M  = .067, SE = .112; Mountain scenes: M  = -.333, SE = .107; t(23) = 2.18, p = .040) , 

and between male faces and mountain scenes (Male faces: M  = .217, SE = .103; Mountain 
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scenes: M  = -.333, SE = .107s; t(23) = 3.45, p = .002).  None of the pairwise comparisons 

involving desert scenes were significant. 

Pairwise comparisons of subcategories in the last 15 trials also indicated that all four 

subcategories differed significantly from each other.  Participants demonstrated the strongest 

familiarity preference for male faces (M = .433, SE = .071), followed by female faces (M = 

.167, SE = .111), and a moderate novelty preference for desert scenes (M = -.294, SE = .112), 

as well as a strong novelty preference for mountain scenes (M = -.567, SE = .062). 

 

Figure 3.14. Time-course of familiarity/novelty bias in the ASD group (top) and Control 

group (bottom) divided by sub-categories. 
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3.4.3.2 Likelihood of initial fixation on novel image 

A repeated-measures ANOVA was carried out comparing the proportion of trials in which the 

first fixation on an image was on the novel image, using as within-subjects factor image 

subcategory and as between-subjects factor group.  There was no significant interaction 

between group and subcategory (p = .717) or a main effect of group (p  = .275).  There was, 

however, a main effect of subcategory, F(3,66) = 13.53, p < .001, η2 = .381, showing that 

regardless of group, participants were significantly more likely to initially fixate on the novel 

nature scene image (M = 65.8 %, SE = 2.5) than the novel face image (M = 50.3 %, SE = 1.4).  

Follow-up comparisons indicated that there were no differences in first fixation likelihood 

between images in the same sub-category. 

One-sample t-tests in the face category indicated that the likelihood of initial gaze to the novel 

image did not differ significantly from chance for either female faces (M = 50.7%, SE = 1.7; 

t(23) = -0.32, p = .749), or male faces, (M = 50.0%, SE = 1.8; t(23) = 0.00, p = 1.00), whereas 

in the nature scenes category, participants were significantly more likely to make the initial 

fixation to the novel image, for both desert scenes, (M = 68.9%, SE = 3.5; t(23) = -5.28, p < 

.001), and mountain scenes, (M = 62.8%, SE = 2.5; t(23) = -4.98, p < .001) .  Results are 

summarized in Figure 3.15. 
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Figure 3.15. The probability of initial gaze on the novel image plotted against stimulus 

type.  Dashed line indicates chance (50/50) likelihood.  Error bars denote standard error.                         

 

3.4.3.3 Likelihood of initial fixation on eventually-chosen image 

A repeated-measures ANOVA comparing the proportion of trials in which the first fixation on 

a stimulus was on the eventually chosen image indicated that there was no significant 

interaction between group and category, no main effect of group, and no main effect of 

category (all ps > .547). 

One-sample t-tests indicated participants were significantly less likely to make the initial 

fixation to the image eventually chosen in all image subcategories, for female faces (M = 

36.3%, SE = 2.9; t(23) = -4.70, p < .001), male faces, (M = 37.1%, SE = 3.2; t(23) = -3.99, p = 

.001), desert scenes, (M = 33.4%, SE = 3.2; t(23) = -7.11, p < .001), and mountain scenes, (M = 

33.5%, SE = 2.8; t(23) = -5.69, p < .001) .   Results are summarized in Figure 3.16. 
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Figure 3.16.  The probability of initial gaze on the image that was eventually chosen 

plotted against stimulus type.  Dashed line indicates chance (50/50) likelihood.  Error bars 

denote standard error. 

3.4.4 Discussion 

In the present study, we explored category-specific familiarity and novelty principles in high-

functioning autism.   We found there were similar patterns of preference segregation between 

groups, such that people with ASD developed a familiarity preference for faces and a novelty 

preference for nature scenes, similar to controls’ preferences.  In addition, we found that 

patterns of initial gaze did not differ significantly between groups, such that both groups made 

similar proportions of their initial fixations to the familiar stimulus, and to the image that was 

eventually chosen.   
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Repeated visual exposure to stimuli often increases preference for those stimuli.  This 

familiarity preference has been shown to be specific to certain object categories, such as faces, 

whereas a novelty preference has been observed for non-social images.  Here we found a strong 

familiarity preference, with no difference between groups, for the face that was presented in all 

20 trials.  There was also a strong preference in the opposite direction with nature scenes for the 

novel image also presented in each of the trials.  The overall results replicate the segregation of 

preference bias reported by Park et al.’s (2010) original study.   

The familiarity preference for faces and nature scenes was apparent quickly (within the first 5 

trials), again with no significant difference between the autism and control group.  It is 

interesting to note, however, that while the male and female faces differed significantly from 

the mountain scenes, none of the pairwise comparisons involving the desert scenes were 

significant, indicating a lack of initial bias for the desert images.  This may be because desert 

images generally show less variability in color range and contrast than mountain images, 

making them less visually appealing, or perhaps because the images that were chosen were not 

particularly compelling enough to inspire a preference bias in the initial stages. 

On average, the preference biases for familiar faces and novel nature scenes were present 

through the remainder of the trials, with participants showing the strongest familiarity 

preference for male faces, followed by female faces, and the strongest novelty preference for 

mountain scenes, followed by a weaker novelty preference for desert scenes.  Since these 

results did not differ between groups, they suggest that the ability to form category-specific 

preferences, as well as maintain those preferences, is not significantly compromised in high-

functioning autism. 

Evidence in support of intact preference formation is also seen in the lack of group differences 

in likelihood of initial gaze to the familiar image.  Participants were more likely to make the 

initial fixation in a trial on the novel nature scene image than the novel face image, suggesting 

first that the use of top-down attentional strategies can likely be ruled out since these 

differences were apparent at the first fixation, presumably before participants had the 

opportunity to foveate on the images and determine consciously which image was the familiar 
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one.  Second, the similarity between groups in likelihood of initial fixation to the familiar 

image also suggests there is a shared underlying mechanism functioning pre-attentively to 

direct visual attention, rather than a post-hoc attentional strategy.  While the findings reported 

here are mostly negative (i.e., n.s.) relative to the controls, there are significant implications 

owing to the baseline positive results in the controls. Once again, it indicates that despite social 

impairments in ASD, certain aspects of face processing remain intact or can be compensated 

for by people with ASD to result in similar preference decisions as those made by controls. 

While our findings point to normal preference formation in autism, there are several open 

questions for future studies.  Given the significant amount of noise in each trial for both groups, 

averaging across a larger number of subcategories could reduce the variability and perhaps 

reveal differences in the time-course of preference development that were obscured in the 

present study.  This could be achieved by running either more repetitions of the existing 

subcategories or using a greater number of sub-categories.  

Future studies could also investigate individual familiarity and novelty preferences within 

subjects.  Given the putative preoccupation with non-social stimuli in autism, familiarity 

preferences may occur in different object categories for different subjects.  A study in which 

pre-ratings are obtained from each participant for different stimuli categories, and then used to 

construct image pairs could be informative to understanding if there are subject-specific areas 

of “expertise” that would elicit a familiarity bias similar to faces.  Future studies could also use 

multiple social stimuli to provide greater ecological validity, since many social situations 

involve more than one or two others.  It could be the case that deficits are only present, or 

become apparent, when there are more visual and social stimuli competing for attention.   

Lastly, it is unclear even in neurotypicals, whether the face familiarity preference is restricted to 

realistic faces and whether it would extend to face-similar categories, such as schematic faces, 

paintings of faces, or “man on the moon” type visual effects.  Would people with autism see 

faces in non-face objects (face-similar objects)?  In other words, what level of abstraction 

would be necessary to eliminate the preference bias for faces? Moreover, where is the boundary 

between face and non-face in autism and in neurotypicals?  It would be enlightening for our 
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understanding of face processing, both in neurotypicals and in individuals with autism, to 

explore to what degree of abstraction the brain will still respond to by forming a familiarity 

preference, as it would suggest what some of the necessary elements are for face perception and 

categorization, as well as for our emotional response to faces. 
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3.5 Conclusion 

In this chapter, I explored whether social processing deficits in people with autism and 

amygdala lesions would also affect subjective preference formation for faces.  I found that the 

feedback loop between foveation and preference formation remained intact in people with 

autism and amygdala lesions, and furthermore, that they made similar preference decisions as 

controls.  I also found similar patterns of preference bias segregation in the ASD group relative 

to controls, for both social and non-social stimuli: ASD subjects demonstrated a familiarity bias 

for face stimuli and a novelty bias for nature scene stimuli.  However, I also found that people 

with autism had faster reaction times for face preference decision, and their reaction times were 

insensitive to decision difficulty.  The findings indicate that while face preference formation is 

spared from social processing deficits typically observed in autism, there are differences in the 

behavioral strategy used by individuals with autism. 

The results from these studies are consistent with findings showing high-functioning autistic 

individuals’ ability to process more basic social information is not reliably affected by the face 

processing deficits commonly observed in autism.  One explanation for the lack of impairment 

in face preference formation is that face perception in a subjective context could require less 

complex social processing compared to face perception in an objective decision-making task, 

or in complex social interactions.  For example, a lower level of face processing ability may be 

sufficient to form a face preference versus correctly identifying a familiar face, which requires 

explicitly relating face identity to contextual and biographical knowledge.  In this sense, less 

complex aspects of social processing such as the recognition of basic emotions or the formation 

of preference for certain faces might be spared from deficits commonly observed in processing 

of more involved aspects of facial and emotional expressions, such as recognizing intentions or 

judging more complex mental states. 

An alternative issue to consider given the relatively high-functioning ability of the autism 

subjects in the current studies is the issue of compensatory functioning, both in the neural sense 

and in the behavioral sense.  Face preference formation could very well appear to operate 

normally despite an underlying impairment in processing.  There are multiple pathways for 

processing of social information, some of which could partially compensate for social 
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processing functions that are compromised in autism and amygdala lesion patients.  

Compensatory social processing from other brain regions could be sufficient for the formation 

of social preference.  

Moreover, the ability to process more basic social information in high-functioning autism can 

also be facilitated with the use of atypical, and perhaps top-down, compensatory behavioral 

strategies.  I found evidence for this possibility in the faster reaction times for face preference 

decisions in the autism group, and the insensitivity of their reaction times to the difficulty of the 

preference decision.  Given the lack of preferential attention to social stimuli, the use of 

atypical compensatory strategies might allow for a choice criterion to be reached in ASD 

quickly and without regard to the relative attractiveness of the faces.  The possibility that 

atypical or compensatory strategies could mitigate the appearance of social deficits of course 

poses challenges for how to study impairments in face processing, a topic which we examine in 

the next chapter, the Don’t Look study. 
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 C h a p t e r  I V  

TASK-DEPENDENT MODULATION OF FACE GAZE 

4.1 Overview 

The third and final study in this dissertation is the “Don’t Look” study.  The purpose of this 

experiment was to investigate the flexibility of face scanning strategies used by individuals 

with high-functioning autism and amygdala lesion patients.  Participants were instructed to 

view faces while avoiding specific facial features, so we could investigate strategies for face 

exploration and the ability to update those strategies under changing viewing contexts.   

In exploring why some aspects of gaze and preference behavior in ASD appeared no different 

from healthy controls in the prior studies, I became familiar with a growing discussion in the 

literature regarding inconsistent findings of social impairments in autism, particularly as they 

relate to deficits in face processing.   As discussed in the Introduction of this dissertation, there 

are a variety factors that contribute to seemingly divergent findings for face processing in 

autism, including task demands and the characteristics of stimuli that are used.  For example, 

differences in stimuli can affect the severity of social impairments in ASD, possibly due to the 

greater cognitive effort required to process more complex social stimuli.  Similarly, some 

studies have reported differences in eye gaze become more prominent in cognitively 

demanding tasks.  

Another (not mutually-excusive) factor that can mitigate the effect of social deficits is the use 

of compensatory strategies during social processing in ASD.   There is evidence to suggest that 

people with autism, particularly those who are high-functioning, compensate for social deficits 

by using atypical cognitive and visual strategies which give the appearance of behavior that 

differs very little from the behavior demonstrated by neurotypicals.  Though these strategies are 

usually not as flexible or adaptive in situations that are unusual or require high cognitive effort, 

they are often sufficient for many other day-to-day situations. 
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Given that in the Gaze Cascade study, people with ASD demonstrated rather normal face 

gaze and faster reaction times relative to neurotypicals when making face preference decisions, 

we suggested that people with ASD may have approached the task as a perceptual task rather 

than a social one, i.e., the decision-making aspect of the task had mitigated or circumvented the 

effect of social impairments on gaze and attention.  This is why, in the Don’t Look study, our 

aim was to examine face gaze separate from an explicit decision-making task in order to 

understand how people with autism spontaneously look at faces. 

To examine spontaneous face scanning strategies and the flexibility of those strategies, we 

designed a task in which we manipulated viewing strategies by giving instructions that were 

unrelated to our actual variables of interest: gaze to salient features of the face and propensity 

for face exploration. Subjects were instructed to avoid looking at the eyes while gaze to the 

remainder of the face was permitted, to avoid the mouth while gaze to the remainder of the face 

was permitted, or to look at the face without any restrictions.  

The primary questions of our investigation were: 1) How do people with social processing 

impairments spontaneously explore the face (i.e., decoupled from social or explicit decision-

making)? 2) How flexibly can face scanning strategies be adapted to changing social contexts? 

And 3) if face gaze strategies can mitigate the appearance of atypical face scanning, could these 

strategies be engaged elsewhere to elicit differences in viewing behavior?  

The amygdala group demonstrated similar gaze patterns to salient face regions as controls and 

appeared equally flexible in gaze strategies.  There was, however, a tendency in the amygdala 

group to look away from the salient parts of the face less often than controls, and also to look 

off the head less than controls.   

There were notable differences in the autism group relative to controls.  We found that while 

the general pattern of gaze on the screen and to salient features of the face appeared normal in 

high-functioning autism, there were differences between groups in the details of the ASD 

group’s gaze pattern, and in the strategies they used in response to the viewing restrictions.  

Similar to controls, the ASD group spent the majority of gaze time looking on the face (rather 

than off the face), and in the conditions in which gaze to the eyes was allowed, both groups 
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spent the most time looking at the general eye region regardless of stimulus type.  However 

we found that people with ASD showed impairments in orienting to the parts of the eye region 

that communicate the most information, instead showing a bias for looking between the eyes 

and at the nose.  Furthermore, people with ASD showed deficits in adapting their usual 

strategies for face scanning while simultaneously adhering to the task restriction to avoid 

specific features, indicating there was reduced flexibility of those strategies in people with 

high-functioning autism.  In summary, while individuals with ASD, at least superficially, did 

not appear to differ in the general pattern of gaze to larger regions of the face, there was clear 

evidence to indicate atypical face gaze in the details of visual behavior and in the flexibility of 

gaze strategies.  The results from these studies suggest that face scanning utilizes general 

perceptual process that might not be reliant upon amygdala functioning. 
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4.2 Don’t Look Study in Autism 

4.2.1 Introduction 

Autism spectrum disorder (ASD) is a developmental disorder characterized by a triad of 

deficits, consisting of impaired social interaction, impaired communication, and restricted 

interests and repetitive behaviors.  Deficits in orienting toward and prioritizing social 

information are widely implicated in the social deficits observed in ASD. Studies have found 

that individuals with ASD demonstrate unusual attentional and viewing patterns towards social 

stimuli, showing reduced interest in socially salient stimuli, and particularly for faces, relative 

to their typically developing counterparts.  People with ASD are slower to orient toward social 

stimuli (Fletcher-Watson et al., 2009; Freeth, Foulsham, & Chapman, 2011), are impaired in 

prioritizing social cues over non-social cues (Kikuchi et al., 2011; Klin et al., 2002), which 

could be accompanied by an attentional bias for non-social stimuli (Elison, Sasson, Turner-

Brown, Dichter, & Bodfish, 2012; Pierce & Courchesne, 2001; Sasson, 2006) and show 

reduced interest in exploration of social stimuli (de Wit, Falck-Ytter, & Hofsten, 2008). 

Face processing impairments are a characteristic symptom of Autism spectrum disorder, and 

behavioral abnormalities in this domain have been well-documented.  Individuals with autism 

have difficulty with emotion recognition (Baron-Cohen et al., 1997; Hobson, 1986; Klin et al., 

1999; Tantam et al., 1989), poor memory for faces (Boucher & Lewis, 1992; Klin et al., 1999; 

Teunisse & Gelder, 1994; Weigelt et al., 2012), and impaired perceptions of trustworthiness 

(Adolphs et al., 2001). The behavioral abnormalities are also supported by reports of abnormal 

brain activation during face processing in ASD (Dalton et al., 2005; Gotts et al., 2012; Koshino 

et al., 2008; Schultz, 2005; Whalen et al., 2004) implicating dysfunction in multiple 

neuroanatomical regions that are involved in face processing in typically developing 

individuals, including the fusiform face gyrus, amygdala, and superior temporal sulcus.  In 

sum, people with ASD demonstrate impairments in processing and evaluating the social 

information conveyed by face stimuli.    

Atypical social judgments in ASD might stem for abnormal gaze to faces.  Overall, the current 

research indicates there are abnormalities in face gaze, however the results regarding the exact 
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nature of these abnormalities are mixed. Some studies have reported people with ASD pay 

more attention to atypical parts of faces, such as the nose and mouth, rather than the eye region 

as neurotypicals usually do (Hobson, 1986; Klin et al., 2002; Yi et al., 2013).  However, there 

is also evidence to suggest that there is not a gaze bias for the mouth region (Bar-Haim, 

Shulman, Lamy, & Reuveni, 2006; Dalton et al., 2005; Rutherford & Towns, 2008).  Similarly, 

while there is evidence of reduced gaze to all “core” features of the face (de Wit et al., 2008; 

Pelphrey et al., 2002), meaning the eyes, nose, and mouth, other studies have found no 

significant differences in gaze patterns to features of the face (van der Geest, Kemner, 

Camfferman, Verbaten, & van Engeland, 2002a; van der Geest, Kemner, Verbaten, & van 

Engeland, 2002b). 

A key element of social impairment in ASD may be abnormal gaze to the eyes, though again 

the results have been mixed.  While some studies failed to find differences in gaze to the eye 

region (de Wit et al., 2008; Fletcher-Watson et al., 2009; Rutherford & Towns, 2008; Sawyer, 

Williamson, & Young, 2012), other studies have reported diminished gaze to the eye region 

(Corden et al., 2008; Dalton et al., 2005; Klin et al., 2002; Pelphrey et al., 2002; Speer, Cook, 

McMahon, & Clark, 2007; Sterling et al., 2008).  There is evidence to suggest that diminished 

eye gaze could be driven by a tendency to avoid direct eye contact and the general eye region, 

perhaps due to an underlying aversion to direct gaze (Dalton et al., 2005; Kliemann, Dziobek, 

Hatri, Steimke, & Heekeren, 2010; Tanaka & Sung, 2013).  According to the theory of 

amygdala hyper-arousal, direct eye contact could cause a discomforting state of over-activation 

in the amygdala for individuals with ASD, which is subsequently compensated for by 

avoidance of direct eye contact (for a review of eye contact mechanisms in ASD, see Senju and 

Johnson, 2009).  In contrast, people with autism might simply demonstrate a lack of preference 

for direct eye contact rather than actively avoiding it (Hernandez et al., 2009), due to hypo-

arousal in response to social stimuli.  The hypo-arousal account suggests amygdala under-

activation results in reduced reward value (Dawson et al., 2004; Kohls et al., 2013) or reduced 

saliency of stimuli (Grelotti, Gauthier, & Schultz, 2002). Consequently, people with ASD 

might not learn to orient toward the eyes for social information, and as such do not develop a 

bias for the eye region.  A refinement to this latter concept (Senju & Johnson, 2009; Senju, 

Tojo, Yaguchi, & Hasegawa, 2005; Senju, Yaguchi, Tojo, & Hasegawa, 2003) proposes that 
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there is no impairment in eye gaze in ASD but rather a lack of a facilitative effect of direct 

eye contact.  Behavioral studies by Senju et al. report that people with ASD were equally 

efficient as controls in detecting averted gaze.  With direct gaze, however, controls were faster 

and more accurate than with averted gaze, whereas people with ASD did not show an 

advantage for direct gaze relative to averted gaze. These results led the authors to suggest that 

direct gaze enhances performance in controls but not in people with ASD, and suggesting the 

putative eye gaze impairment in ASD was actually a lack of facilitative effect of direct eye 

contact.   

It is important to note the results of many studies are often based on gaze to the general eye 

region, or gaze to the left and right eye combined.  The results of a recent study (Yi et al., 2013) 

reported that while people with ASD did not differ from controls when comparing gaze to the 

eye region or both eyes combined, there were divergent results when the left and right eyes 

were analyzed separately.  Several of the studies investigating gaze to the eye region use a 

single eye ROI approach (Bal et al., 2009; Fletcher-Watson et al., 2009; Klin et al., 2002; 

Sawyer et al., 2012) or combine the left and right eyes (Pelphrey et al., 2002; Sterling et al., 

2008), which could confound differences in lateralization of gaze. 

There are several experimental factors that likely contribute to the discrepancy in findings 

regarding social processing in ASD.  One explanation is the effect of stimulus type and task 

demands used in the studies.  A study by Speer, Cook et al. (2007) that directly tested the 

differential effects of stimulus types found that in contrast to studies reporting face processing 

deficits with simpler stimuli, people with ASD showed impairments only with complex 

dynamic stimuli, leading the authors to speculate that the impairments are associated with the 

greater cognitive demands for complex stimuli but not simple stimuli (Speer et al., 2007).  

Another possibility is that in structured experimental contexts (and presumably explicit task 

instruction), people with high-functioning autism do not experience the same difficulty 

attending to facial features and processing social information as they do in spontaneous and 

unstructured situations.   In line with both of these ideas, it may be the case that face processing 

deficits in high-functioning autism would become apparent or more pronounced in situations 
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that require greater cognitive effort, for example when using more complex stimuli or 

unusual experimental paradigms.   

Gaze to salient features may also change based on compensatory strategies, obfuscating 

spontaneous gaze tendencies. There is already evidence for the use of compensatory strategies 

in ASD, particularly in people who are high-functioning, that minimize the appearance of 

social impairments, for example, by relying on cognitive and verbal abilities during emotion 

recognition (Grossmann, 2000) and theory-of-mind tasks (Hadwin, Baron-Cohen, Howlin, & 

Hill, 1997; Ozonoff & Miller, 1995).  There is growing evidence to indicate compensatory 

strategies also extend to face gaze.  Some of these skills might consist of more effortful rule-

based strategies that have been learned, for example increasing gaze to the mouth (Joseph & 

Tanaka, 2003) or eyes (Faja, Webb, Merkle, Aylward, & Dawson, 2009; Rice et al., 2012), 

while others may have been taught through interventional therapies for social skills (Tanaka et 

al., 2010; Teunisse & de Gelder, 2001) to facilitate social interactions.  There is also evidence 

for the implicit (i.e., subconscious) use of visual strategies that can partially compensate for 

impaired social processes (Krysko & Rutherford, 2009; Leung, Ordqvist, Falkmer, Parsons, & 

Falkmer, 2013; Spezio et al., 2007). 

While people with ASD may be able to use atypical strategies to partially compensate for social 

deficits, there is evidence to indicate that these strategies likely do not facilitate the processing 

and understanding of implicit social and emotional information in the same manner as in 

neurotypicals.  For example, people with ASD who show little impairment in emotion 

recognition over a long response window still demonstrate impairments relative to controls 

during shorter response windows, indicating that the compensatory strategies being used were 

likely slower and more effortful (Celani, Battacchi, & Arcidiacono, 1999).  Another study 

examining facial expression strategies found that the use of rule-based strategies in autism 

results in a greater tolerance for unnaturally exaggerated expressions (Rutherford and 

McIntosh, 2006), suggesting there is still an altered perception of emotions despite the use of 

these strategies.  Consequently, people with autism may learn or acquire skills, which allow 

them to minimize the appearance of social deficits, but without developing an accompanying 
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understanding of the meaning of the strategy, making these strategies less flexible and 

adaptive than those used by neurotypicals.  

The aim of the present study was to examine one of the most basic elements of social 

interaction, face scanning, to investigate atypical face gaze strategies that have been reported to 

compensate for social deficits and in particular, the flexibility of those strategies in response to 

changing viewing contexts.  Specifically, we sought to examine gaze to salient regions of the 

face and the spontaneous tendency for face exploration under atypical viewing instructions. 

Eye-tracking was used to investigate gaze behavior in adults with high-functioning autism 

during a face viewing task which was decoupled from an explicit decision-making task.  We 

utilized face stimuli depicting open eyes as well as closed eyes to investigate whether there was 

an effect of eye contact on face gaze.  Participants viewed either faces one at a time and were 

given instructions to view the face freely or to look at the face while avoiding either the eyes or 

the mouth.  

We hypothesized that for open-eyed stimuli, people with ASD would not show differences in 

gaze to salient facial features compared to controls.  Consistent with evidence showing 

diminished sensitivity to the eyes rather than avoidance of the eyes in ASD, we also predicted 

that gaze behavior in ASD would remain the same for closed eyes stimuli as for open eyes 

stimuli.  In the “Avoid the Eyes” condition we hypothesized that both groups would increase 

gaze to the mouth relative to the free-viewing condition and that the two groups would show 

little difference in gaze to remaining regions of the face.  In line with reports of top-down 

strategies for face gaze in ASD, we predicted that in the “Avoid the Mouth” condition, 

cognitive control would be engaged avoiding the mouth.  Consequently, there would be little 

spontaneous tendency for people with ASD to look at the eyes whether they were open or 

closed, whereas controls would look at the eyes as they did in the unrestricted condition.  

Therefore, we hypothesized that the ASD group would look less at the eyes relative to their eye 

gaze in Free View, and also relative to controls in this condition since cognitive strategies are 

engaged elsewhere.  While there was a superficially normal tendency for people with ASD to 

look in the general eye region, we found differences in the distribution of gaze to the center of 
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the eye region and the right eye, and reduced flexibility of the strategies used for face 

scanning in ASD. 

4.2.2 Materials and methods  

4.2.2.1 Participants 

Participants in the current study consisted of n = 12 (9 males, 3 females) high-functioning 

subjects with a DSM-IV diagnosis of Autism Spectrum Disorder ranging in age from 22-58 

(Mage = 31.8 years, SD = 11.5).  One additional ASD participant was tested but excluded from 

analysis due to equipment malfunctioning.  Sample size was determined by participant 

availability.  Diagnosis was confirmed using Autism Diagnostic Observation Schedule (ADOS; 

(Lord et al., 2000), the Autism Diagnostic Interview-Revised (ADI-R;  (Lord et al., 1994), or 

the Social Communication Questionnaire (SCQ;  (Rutter et al., 2003).  ADOS Calibrated 

Severity Scores (Gotham, Pickles, & Lord, 2009), a metric for measuring symptom severity, 

were available for all but one of the ASD participants.   

The comparison group consisted of n =13 healthy controls (10 males, 3 females) ranging in age 

from 24-54 (Mage = 34.9 years, SD = 11.6), group-matched for age, gender, and IQ, with no 

family history of psychiatric illness.  All participants also completed the Autism Spectrum 

Quotient scale, or AQ (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001).  Table 

4.1 summarizes demographic and diagnostic information the participants in the autism and 

control group, respectively.  
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Table 4.1. Demographic and diagnostic information for autism and control 

participants in the Don’t Look study. 

Autism group Autism group: ADOS 

 Sex Age Verbal 
IQ 

Full scale 
IQ 

AQ SOC COM+
SOC 

CSS 
SA 

CSS 
Overall 

1 M 26 131 133 32 9 13 9 9 
2 F 26 123 125 35 4 7 5 6 
3 M 48 115 109 37 6 8 7 9 
4 M 42 80 93 20 14 20 10 10 
5 M 25 87 103 21 11 16 10 10 
6 M 58 118 126 36 7 9 7 7 
7 M 30 111 106 28 11 17 -- -- 
8 M 26 94 106 28 8 12 8 7 
9 F 22 101 102 33 13 20 10 10 

10 F 22 102 107 32 14 21 10 10 
11 M 33 50 91 31 11 15 9 8 
12 M 24 118 101 14 7 12 6 5 

Mean  31.83 102.50 108.50 28.92     
SD  11.51 22.40 13.03 7.13     

Control Group     

 Sex Age 
Verbal 

IQ 
Full scale 

IQ AQ     

1 F 38 104 102 11     
2 F 29 116 116 9     
3 M 32 119 117 18     
4 M 45 85 97 18     
5 F 24 95 100 11     
6 M 24 111 109 12     
7 M 52 111 108 17     
8 M 25 106 107 11     
9 M 24 97 94 26     

10 M 27 108 111 15     
11 M 54 113 109 5     
12 M 51 108 102 15     
13 M 29 113 100 6     

Mean  34.92 106.62 105.54 13.38     
SD  11.63 9.43 7.04 5.65     

a. Verbal IQ and full-scale IQ from the Wechsler Abbreviated Scale of Intelligence; 

AQ: Autism Spectrum Quotient; ADOS: Autism Diagnostic Observation Schedule; 

SOC: social interaction subscale; COM+SOC: communication + social interaction 
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subscales; CSS SA: calibrated severity score – social affect; CSS Overall: calibrated 

severity score – overall. 

Independent samples t-tests showed that the groups were not significantly different in terms of 

age (t(23) = 0.67, p = .511), gender (p = .637, 2-sided Fisher’s Exact Test), and IQ (t(23) = -

0.72, p = .482), as measured by the Wechsler Abbreviated Scale of Intelligence (Wechsler, 

1999).  All participants gave written informed consent to participate under a protocol approved 

by the Institutional Review Board of the California Institute of Technology. 

4.2.2.2 Stimuli and apparatus 

Stimuli consisted of 144 computer-generated male and female faces, created with Facegen 

(Singular Inversions, Vancouver, Canada).  Faces were front-facing with a neutral emotional 

expression (see Figure 4.1-A for sample stimuli).  Half of the faces shown depicted open eyes 

and direct eye contact, and the other half depicted closed eyes. Each block had an equal number 

of faces with open eyes and closed eyes, and an equal number of male and female faces.  No 

faces were repeated.   

Images were presented on a 21” CRT monitor with a refresh rate of 100 Hz and pixel resolution 

of 1152 x 870.  The stimuli were shown individually in the center of the screen for five 

seconds.  At a viewing distance of approximately 52 cm, each face stimulus had an overall size 

of 22.9 (width) x 22.9 (height) degrees of visual angle. 

Stimuli were presented using Matlab 2010a (Mathworks, Natick, MA), the Psychophysics 

toolbox (Brainard, 1997), and the Eyelink toolbox (Cornelissen et al., 2002).  Gaze data was 

collected using the Eyelink 1000 remote eye-tracking system (SR Research, Osgoode, Canada).  

Corneal and pupil reflection were recorded at a sampling rate of 500 Hz.  At the beginning of 

each block, a 9-point calibration was performed.  Each trial began by requiring subjects to 

fixate on a central drift correction dot.  After the eye-tracker registered a successful fixation, 

participants pressed the space bar to start the trial.  
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4.2.2.3 Procedure 

Images were presented in three blocks, with 48 trials in each block.  Images were shown 

individually in the center of the screen for five seconds each while eye-gaze was tracked.  

Experimental design consisted of three blocked conditions where viewing instructions were 

varied for each (see Figure 4.1-B for summary of experimental conditions).  In one condition, 

viewing was unrestricted (Free View), and in the two remaining condition viewing was 

restricted (Avoid Eyes, Avoid Mouth).  At the start of each block, subjects were instructed to 

examine the faces while following one of the following three viewing instructions: 1) avoid the 

eyes (“Avoid Eyes” condition), 2) avoid the mouth (“Avoid Mouth”), or 3) view the images 

freely (“Free View”).  Lastly, to insure the faces were being inspected in the “Avoid” 

conditions, subjects were told they might be asked to answer questions about the faces at the 

end of the experiment, though no actual post-experiment evaluation took place.  Instruction 

order and image order were randomized. 
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A  

 

B 
Block Instructions 

   

 

 

 

Free View 

(48 Trials) 

  

 

 

 

 

  

 

 

 

Avoid the Eyes 

(48 Trials)  

   

 

 

 

Avoid the Mouth 

(48 Trials) 

 

Figure 4.1. (A) Example stimuli showing Open Eyes (top) and Closed Eyes (bottom) faces, 

and (B) summary of experimental conditions. 

4.2.2.4 Analyses 

Data were analyzed using custom scripts written in Matlab.  Trials in which more than 20% of 

eye-tracking data was missing (due to blinks and/or signal loss) were excluded from analyses 

(< 3% of trials).  Raw eye-tracking data was pre-processed to extract fixation locations and 

durations.  Fixations were defined as gaze points falling within 1 degree of visual angle for a 

minimum of 100 milliseconds.   

FREE 
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Because face stimuli differed in their locations of socially salient features, faces and the 

fixations on each face were normalized onto a template face using a morphing procedure (see 

Figure 4.2).  Each face was manually labeled with 94 anatomical landmark points (including 

eyes, mouth, nose, and head outline), and transposed using Delaunay Triangulation onto 

identical points marked on a prototypical template face.  Fixation locations were subsequently 

morphed from their locations on the stimulus face to the equivalent locations on the template 

face.  All subsequent analyses were performed on these normalized fixations on the template 

face. 
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Figure 4.2. Morphing procedure to transpose fixations from all stimuli onto a 

prototypical template face. (A) Template face labeled with 94 anatomical landmark 

points. (B) Analogous points marked on the template face (left) and a stimulus face 

(right). (C) Triangulation used to transpose fixation locations from the stimulus face 

onto equivalent locations on the template. 

 

To analyze gaze behavior, fixation heatmaps (or density maps) were calculated for each subject 

and condition by weighting fixation location by its duration, then spatially smoothing using a 

Gaussian kernel with sigma = 13, or 0.5 degrees of visual angle.  Heatmaps were averaged 

across trials and subjects, and the resulting group maps were used for the ROI analyses 

described next. 

We defined the following seven regions of interest (ROIs) on the template face: Left Eye, Right 

Eye, Eye Region Total, Nose, Mouth, Head Remainder, and Off-Head (see Figure 4.3 for a 

depiction of all regions on the template face).  With the exception of Eye Region Total, which 

included Left Eye and Right Eye, ROIs were mutually exclusive.  Designations for left and 

right eye are from the perspective of the viewer not anatomical. 
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Figure 4.3. Template face with all regions of interest defined: yellow- left eye, magenta – 

right eye, blue – eye region total, gray – nose, orange – mouth, green – head remainder, 

red – off-head.  With the exception of eye region total, which includes the left and right 

eyes, all regions were mutually exclusive. 

We conducted three analyses examining the following: 1) the proportion of gaze in all ROIs, 2) 

the distribution of gaze when it was in the eye region, and 3) center bias in the eye and mouth 

regions.  Each analysis used a different subset of ROIs (see Figure 4.4).  
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A  B  
 

 

 

 
C    
 

 

  

Figure 4.4. ROI configurations used for the various analyses. (A) Gaze proportions to 

all regions of interest, (B) Gaze proportion to the eye region only, (C) Center Bias – 

average distance to the horizontal and vertical midlines. 

For the first analysis examining gaze to all ROIs, we calculated the proportion of gaze time in 

each of the seven regions, summing the density map in each ROI then dividing by the sum of 

the entire on-screen density map.   

Given that total gaze to the eye region might be diminished in ASD, we then conducted a 

second analysis comparing where gaze was distributed only in the eye-related ROIs (Left Eye, 

Right Eye, and the remainder of the Eye Region ellipse), calculating the proportion of time in 

each relative to total gaze in the eye region only (i.e., Eye Region Total) rather than total gaze 

on-screen. This analysis would indicate whether the distribution of gaze among the three eye-

related ROIs differed between groups. 
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Finally, for the analysis of center bias, we analyzed the two ROIs defining the socially 

salient regions of the face (Eye Region Total and Mouth).  For the Eye and Mouth ROIs, we 

calculated the Euclidean distance for each point within the ROI to the vertical and horizontal 

midlines of the ROI, weighting each distance by gaze duration (i.e., the heatmap value for the 

point).  Next, we summed these values, and then divided by the sum of gaze in the ROI to 

obtain the average gaze distance to the horizontal and vertical midlines. 

Statistical analyses were conducted by carrying out repeated-measures ANOVAs for each ROI 

in the analysis subset, with a between-subjects factor of group (ASD, Control) and within-

subjects factors of condition (Free View, Avoid Eyes, Avoid Mouth) and stimulus type (Open 

Eyes, Closed Eyes).  In order to investigate the relationship of the two restricted conditions 

(Avoid Eyes, Avoid Mouth) against the unrestricted condition (Free View), appropriate 

contrasts were also conducted for gaze to the Right Eye, Left Eye, Eye Region Total, and 

Mouth.  Lastly, we calculated Pearson correlations between AQ and proportion of gaze to ROIs 

across all subjects, and ADOS-CSS-Overall scores and proportion of gaze to ROIs for the 

autism subjects only. 

4.2.3 Results 

Heat maps for ASD subjects and control subjects in all three conditions are shown below in 

Figure 4.5. 
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Figure 4.5. Heat maps for the Autism and Control groups, and condition with Open 

Eyes and Closed Eyes stimuli.  Maps were generated by using a Gaussian kernel 

FREE 
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function to spatially smooth each duration-weighted fixation point, then maps were 

averaged across trials and subjects.  Warmer colors represent longer total fixation time. 

 

4.2.3.1 Gaze proportions in all regions of interest  

The first set of analyses focused on gaze to the different regions of interest (see Figure 4.4-A 

for ROIs).  A repeated-measures ANOVA with between-subjects factor of group and within-

subjects factors of condition and stimulus was conducted for each of the seven ROIs (see 

Figure 4.6). 

 

Figure 4.6. Proportion of fixation time in the ROIs in the ASD (red) and control (blue) 

groups.  Error bars denote standard error. 

 

Right Eye 

The ANOVA for the right eye revealed a significant main effect of group on gaze time, F(1,23) 

= 5.56, p = .027, η2  = .195.  Overall, ASD looked less at the right eye than Controls regardless 

of stimulus type or condition (ASD: M = 7.7%, SE = 1.1; Controls: M = 11.4%, SE = 1.1).  

While the interaction between group and stimulus did not reach significance, F(1,23) = 2.77, p 
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= .109, η2  = .108, the effect size indicates there is likely a greater sensitivity of stimulus 

type on Controls than ASD, such that the decrease in gaze between open and closed eyes is 

larger in the Control group than the ASD group (ASD: 2.1%; Controls: 4.0%). 

There was also a marginally significant interaction between condition and group, F(1.59,36.61) 

= 2.86, p = .081, η2  = .111.  A planned contrast comparing the unrestricted condition to Avoid 

Eyes and Avoid Mouth indicated there was a significant interaction between condition and 

group for Avoid Eyes – Free View, F(1,23) = 10.78, p = .003, η2  = .319, but not for Avoid 

Mouth – Free View, F(1,23) = 0.42, p = .521, η2  = .018.  While Controls looked more to the 

right eye than ASD in the Free View condition (ASD: M = 9.3%, SE = 1.6; Controls: M = 

15.5%, SE = 1.5; t(23) = 3.05, p = .006), there was no group difference in “Avoid Eyes,” (p = 

.992).  

Left Eye  

The ANOVA for the left eye revealed no significant interactions involving group (all ps > 

.627), nor a main effect of group (p = .228).   

Eye Region Total  

The ANOVA for the total eye region revealed no significant interactions involving group (all 

ps > .309), and no main effect of group (p = .783).   

Mouth 

The ANOVA for the mouth region indicated there was a marginally significant interaction 

between group and condition, F(1.08,25.03) = 3.58, p = .067, η2  = .135. There was also a 

marginally significant interaction between group and stimulus, F(1,23) = 3.36, p = .080, η2  = 

.127, suggesting a greater influence of stimulus type on gaze to the mouth in Controls than 

ASD .  There was not a significant main effect of group (p = .473).   

Contrasts comparing the unrestricted condition to Avoid Eyes and Avoid Mouth revealed a 

significant interaction between group and condition for both Avoid Eyes – Free View, F(1,23) 

= 4.90, p = .037, η2  = .176, and Avoid Mouth – Free View, F(1,23) = 5.93, p = .023, η2  = .205.  

Both effects were driven by a significant group difference in the Free View condition, with 
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ASD looking less at the mouth than Controls (ASD: M = 4.5%, SE = 1.0; Controls: M = 

9.6%, SE = 1.0; t(23) = 3.05, p = .006), but no group differences in either of the other two 

conditions (ps > .153).  In other words, while ASD looked less at the mouth in Free View than 

Controls, both groups significantly increased gaze to the mouth in the Avoid Eyes condition 

and decreased gaze to the mouth in the Avoid Mouth condition relative to Free View. 

Nose 

The ANOVA for gaze to the nose revealed a marginally significant interaction between group 

and condition F(2,46) = 3.19, p = .074, η2  = .122.  There were no other significant interactions 

involving group (all ps > .381) and no main effect of group (p = .871).   

The contrast comparing Free View to Avoid Mouth revealed a significant interaction between 

group and condition, F(1,23) = 5.41, p = .029, η2  = .190, indicating that the ASD group looked 

more at the nose than Controls in Free View, (ASD: M = 18.7%, SE = 4.1; Controls: M = 

12.7%, SE = 1.7) but less than Controls in Avoid Mouth (ASD: M = 5.6%, SE = 1.1; Controls: 

M = 8.4%, SE = 2.0).  Both Controls and ASD also decreased gaze to the nose region in the 

Avoid Mouth condition compared to Free View, but that decrease was greater in ASD.   

Head Remainder 

The ANOVA for the head remainder revealed no significant interaction effects involving group 

(all ps > .327), and no main effect of group (p = .343).  

Off-Head 

The ANOVA for gaze off-head revealed no significant interaction effects involving group (all 

ps > .438), and no main effect of group (p = .934). 

4.2.3.2 AQ and ADOS correlations with gaze to ROIs 

AQ Correlations Across Groups  

In the Free View condition, AQ was negatively correlated with gaze to the right eye for Open 

Eyes stimuli (r = -.459, n = 25, p = .021), and gaze to the mouth for Closed Eyes stimuli (r = -

.463, n = 25, p = .020).  Also, in Free View there was a negative correlation with gaze to the 



 

 

136 

Head Remainder for Closed Eyes stimuli (r = -.401, n = 25, p = .047).  In the Avoid Eyes 

condition, AQ was positively correlated with gaze to the left eye for Open Eyes stimuli (r = 

.460, n = 25 p = .021).  No correlations were significant in the Avoid Mouth condition.    

 ADOS CSS-Overall Correlations in Autism Group 

In the Avoid Mouth condition, there was a negative correlation between ADOS severity scores 

and gaze to the right eye for Open Eyes stimuli (r = -.681, n = 11, p = .021), as well as a 

correlation for gaze off-head, for both Open Eyes stimuli (r = .670, n = 11, p = .024), and 

Closed Eyes stimuli (r = .664, n = 11, p = .026).  Also in Avoid Mouth, there was a positive 

correlation for gaze to the head remainder for Open Eyes stimuli, (r = .615, n = 11, p = .044), 

and a negative correlation with gaze to the nose for Closed Eyes stimuli (r = -.679, n = 11, p = 

.022).  None of the remaining correlations reached significance in any of the conditions. 

4.2.3.3 Gaze distribution in eye region  

To examine the distribution of gaze in the eye region, we calculated the proportion of gaze time 

in each eye ROI relative to the total gaze time spent in the entire eye region (see Figure 4.4-B 

for ROIs).  Results are summarized in Figure 4.7. 
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A Control Autism 
 
 
 

	    

 
B   
 

 
Figure 4.7. (A) Heatmaps and gaze proportions in the eye-related ROIs in the ASD (red) 

and control (blue) groups collapsed across condition and stimulus type.  (B) Gaze 
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proportions in the eye-related ROIs in the ASD (red) and control (blue) groups 

divided by condition and stimulus type. Error bars denote standard error. 

 Right Eye 

The ANOVA for the right eye revealed a marginally significant interaction between group and 

condition, F(2,22) = 3.09, p = .066, η2  = .219.  There was also a significant main effect of 

group, F(1,23) = 9.07, p = .006, η2  = .283, indicating the ASD group spent a significantly 

smaller proportion of gaze to the eye region fixating on the right eye relative to Controls, 

regardless of condition (ASD: M = 18.0%, SE = 2.5; Controls: M = 28.4%, SE = 2.4). 

Planned contrasts comparing the unrestricted condition to the two restricted conditions revealed 

that there was a significant interaction between group and condition in Avoid Eyes – Free 

View, F(1,23) = 6.45, p = .018, η2  = .219, indicating the ASD group  spent a smaller 

proportion of time in the eye region looking at the right eye in Free View (ASD: M = 18.2%, 

SE = 2.8; Controls: M = 33.6%, SE = 1.9; t(23) = 3.52, p < .001) but not in Avoid Eyes, p 

= .507. 

 Left Eye 

The ANOVA for the left eye revealed no significant interactions involving group (all ps > .448) 

and no main effect of group (p = .927). 

 Eye Region Remainder 

The ANOVA for the remainder of the eye region revealed no significant interactions involving 

group (all ps > .168).  There was, however, a significant main effect of group, F(1,23) = 5.54, p 

= .027, η2  = .194, indicating that the ASD group spent a greater proportion of their gaze in the 

eye region fixating between the eyes (ASD: M = 64.9%, SE = 3.1; Controls: M = 54.8%, SE = 

3.0). 

4.2.3.4 Center bias to horizontal and vertical midlines  

To compare average gaze distance (measured in degrees of visual angle) from the vertical and 

horizontal midlines in the socially salient regions of the face, we conducted two repeated-

measures ANOVAs for the Eye Region and Mouth ROIs (see Figure 4.4-C for ROIs). 
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 Eye Region 

The ANOVA for the eye region revealed a main effect of group for distance to the vertical 

midline, F(1,23) = 5.89, p = .024, η2  = .204, indicating the average horizontal distance to the 

midline was significantly less in the ASD group relative to the Control group (ASD: M = 1.49 

dva, SE = .08; Controls: M = 1.75 dva, SE = .07).  Center bias for gaze to the vertical midline in 

the eye region is shown in Figure 4.8.  

There were no significant interactions involving group for distance to the horizontal midline 

(all ps > .497).  There was, however, a marginally significant effect of group, F(1,23) = 3.32, p 

= .081, η2  = .126, for greater vertical distance to the midline in the ASD group (ASD: M = .84 

dva, SE = .03; Controls: M = .77 dva, SE = .03). 

 

Figure 4.8. Mean distance to the vertical midline in the Eye Region, collapsed across 

stimulus type and condition. Distance is measured in degrees of visual angle. Dots 

represent individual subjects and solid lines denote group mean.  
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 Mouth 

The ANOVA for the mouth did not reveal any significant interactions involving group for 

distance to the vertical midline (all ps > .291), nor a main effect of group (p = .799). There were 

also no significant interactions involving group for distance to the horizontal midline (all ps > 

.737), nor a main effect of group (p = .970). 

4.2.4 Discussion 

In this study, we investigated one of the basic building blocks of social processing, face 

scanning, to examine atypical face gaze in high-functioning autism as well as the flexibility of 

atypical fixation behavior.  We found differences between groups in the details of the gaze 

pattern, though gaze to some of the general regions were similar, as well differences in how the 

ASD group updated face scanning strategies in response to ROI restrictions.  We found that 

people with ASD exhibit a similar pattern of gaze to the face and off the face as controls, 

showing a preference for examining the face over non-face areas of the screen, and when 

looking at the face, favoring the most socially salient part, the general eye region.  Both groups 

also performed equally well in avoiding the eyes and mouth in the Avoid Eyes and Avoid 

Mouth conditions, respectively. Similar to the controls’ gaze behavior, when the eyes were to 

be avoided, the ASD group also increased gaze to the mouth, indicating that the ASD group 

recognized the significance of looking to these two regions for information, whether or not 

there is difficulty in subsequently processing that information.  There were two key differences 

in the details of gaze distribution to the face however: first, the ASD group demonstrated a 

significant center bias when looking to the eye region, spending more time looking between the 

eyes and less time looking at the right eye than controls.  Second, the ASD group also spent 

significantly less time than controls looking at the mouth.  

In contrast to studies that have reported avoidance of or reduced direct eye contact (Boraston, 

Corden, Miles, Skuse, & Blakemore, 2007; Kliemann et al., 2010), we found that for both faces 

with open eyes and faces with closed eyes, the proportion of gaze time spent in the eye region 

did not differ between ASD and controls, and people with ASD did not significantly change 

gaze to the eye region between open-eyed and closed-eyes faces, indicating that there was no 

avoidance of the eye region, nor an avoidance of direct gaze.   
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It is important to note, however, that there are hints of a differential effect of stimulus type 

on the two groups, supported by two marginally significant interactions (between group and 

stimulus) for the right eye and mouth ROIs.  These interactions suggest that the ASD group 

maintains their gaze to the eye and mouth regions in similar proportions regardless of stimulus 

type, whereas controls decrease gaze to the right eye and increase gaze to the mouth when the 

eyes are closed compared to open.  The suggestion of reduced sensitivity to the type of social 

stimuli is further supported by the negative correlations between AQ and gaze to eyes and 

mouth in the Free View condition, for open eyes and closed eyes stimuli respectively.  The 

controls seem to recognize the diminished social significance of closed eyes relative to open 

eyes, and adjust gaze behavior accordingly, shifting gaze to gather information from the next 

most socially-salient feature of the face.  The absence of a comparable gaze shift in ASD 

coupled with otherwise normal proportions of gaze to the eye region implies that there is 

relatively invariable gaze behavior with a failure to update viewing strategy in response to 

changes in information in the eye region.  The results also provide support for the idea that 

atypical gaze could be driven by diminished sensitivity to the quality of information in the eye 

region rather than an avoidance of direct gaze, or aversion to the eye region in general.   

This interpretation is consistent with previous studies that report diminished significance of 

visual social cues due to amygdala hypo-arousal (Senju & Johnson, 2009) rather than a hyper-

arousal/aversion account (Dalton et al., 2005).  It is known that gaze to the eyes is associated 

with amygdala activation in neurotypicals (Adolphs et al., 1998; Schultz, 2005; Whalen et al., 

2004).  The hyper-arousal model proposes that direct gaze is aversive to people with autism, 

perhaps due to hyper-activation in the amygdala in response to eye contact, and therefore 

diminished eye contact is an adaptive response meant to alleviate that discomfort.  The model 

would predict then that people with autism would actively avoid eye gaze, and also 

demonstrate greater avoidance of direct gaze relative to indirect gaze or closed eyes. On the 

other hand, the hypo-arousal claims there is under-activation in the amygdala in response to eye 

contact, the result of which is reduced reward value and saliency of the eyes.  The latter model 

would predict a reduced preference for rather than an active aversion of the eyes, and no 

difference in response to direct gaze and indirect gaze or closed eyes.   In line with the hypo-

arousal model for ASD, our results showed relatively normal gaze to the eye region in the 
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conditions in which eye gaze was permissible, indicating there was virtually no avoidance 

of the eye region or of direct gaze.  However, there was also little shifting of gaze to the mouth 

and eye regions based on stimulus type, suggesting that people with ASD had difficulty 

perceiving there was diminished quality of information with closed eyes.  

Interestingly, there was little difference between groups in the proportion of on-screen gaze 

devoted to the total eye region and to the left and right eye combined, but in comparing the left 

and right eye separately there were two notable differences.  First, the ASD group distributes 

gaze evenly between the left and right eye, whereas controls show a significant bias for the 

right eye over the left eye.  Second, the ASD group looks significantly less to the right eye than 

controls regardless of stimulus type and condition.  The discrepancy in interest in the right eye 

is further underscored by the finding that, while controls favored the right eye more than any 

other facial feature in Free View (followed by the nose, left eye, then mouth), people with ASD 

showed an unusually strong preference for a different facial feature, the nose, looking at it 

twice as long as the right eye (and four times as long as the mouth).   

When people with ASD looked at the eye region, the distribution of gaze time in the three eye-

related ROIs (left eye, right eye, remainder of eye ellipse) also revealed differences in eye gaze 

strategy.  An analysis comparing the relative distribution of gaze amongst the three regions, i.e., 

dividing gaze in each eye-related ROI by total gaze in the eye region, rather than by total gaze 

on-screen, confirmed there were differences in gaze to the right eye and to the eye region 

remainder.  First, the reduced interest to the right eye was maintained even after accounting for 

total time spent in the eye region, which was not surprising given the relatively comparable 

gaze time spent in the total eye region between the two groups.  The lack of right eye bias is 

consistent with findings from a recent study (Yi et al., 2013) which reported significantly less 

gaze to the right eye in children with ASD compared to controls.  Second and more strikingly, 

there was a significant difference in gaze to the remainder of the eye region, which consists 

largely of the region in between the eyes.  Compared to the controls, the ASD group devoted a 

greater proportion of gaze time in the eye region looking between the eyes, regardless of 

stimulus type or condition.  Our results demonstrate a lateralization of gaze to the eye region in 

controls that is absent in people with ASD.  



 

 

143 

Our analysis of center bias in the eye region revealed a tendency for people with ASD to 

look closer to the vertical midline in the eye region, but further away from the horizontal 

midline than controls.  Behaviorally, this amounts to participants with ASD looking above and 

below the pupil region rather than looking directly at the pupil, and looking between the eyes 

rather than lateralizing gaze to either eye (also supported by the results of our analyses above).  

The center bias in ASD together with a reduced reliance on the right eye demonstrates a 

diminished tendency for the ASD group to maximize perception of social information by 

lateralizing gaze to the eye region when eye gaze is allowed.  The results from our study are 

consistent with findings from an unpublished study (Wang et al., in preparation) that found 

people with ASD had a stronger bias toward the center of images, which they suggest could be 

attributable to a combination of factors, including slower saccade velocity and reduced saliency 

perception of faces and social cues.   

Gaze to the mouth also differed between groups in the unrestricted condition.  Though the ASD 

group did explore the mouth region in the unrestricted condition, they did so significantly less 

than controls.  Decreased gaze to the mouth contrasts with some studies reporting increased 

reliance on the mouth in ASD (Klin et al., 2002; Neumann et al., 2006; Spezio et al., 2007), but 

is consistent with others that have found reduced gaze to the mouth (Pelphrey et al., 2002).  Our 

results showing diminished mouth gaze in the unrestricted condition could be due to the use of 

static stimuli, which might result in reduced saliency of the mouth relative to dynamic stimuli 

(Irwin & Brancazio, 2014; Senju & Johnson, 2009). 

There was also a striking difference in gaze to the mouth in the Avoid Eyes condition relative 

to Free View.  In contrast to the minimal mouth gaze observed in Free View, the ASD group 

significantly increased mouth gaze when instructed to avoid the eyes, spending nearly a third of 

their gaze time in this region.  Furthermore, while gaze to the eyes and nose was equivalent 

between groups for the Avoid Eyes condition, the ASD group spent more time on the mouth 

than controls in this condition, whereas controls explored the head and face remainder more 

than ASD.  While controls did increase gaze to the mouth, they did so less drastically, 

continuing instead to explore the face by also increasing gaze to the remainder of the face.  
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The substantial bias toward the mouth appears to be driven by a strict adherence to the 

Avoid Eyes instruction rather than a gaze shift driven by inherent saliency of the mouth or an 

updated strategy to continue exploring the face for information:  that the ASD group originally 

showed little interest in the mouth in Free View makes it highly unlikely that they originally 

perceived the mouth as the next most informative feature.  Furthermore, the notable decrease in 

nose gaze between Free View and Avoid Eyes signifies the ASD group did not rely upon the 

feature they found so salient in the unrestricted condition.  This points to the use of a new 

strategy rather than an updating of the strategy used in Free View, one that involves avoidance 

of the eye region and the regions near it by fixating on the mouth at the expense of exploring 

the face.  

In the Avoid Mouth condition, the ASD group adhered to the ROI restriction by avoiding the 

mouth and regions near it.  People with ASD deviated from the scanning approach they used in 

Free View, spending significantly less time on the nose region than they had in the unrestricted 

condition, whereas controls generally returned to the behavior they demonstrated in the 

unrestricted condition with the exception of avoiding the mouth.  Moreover, correlations with 

ADOS severity scores suggest there may be different viewing strategies in ASD associated 

with the severity of impairment.  First, high-scoring participants spent less time on the nose of 

closed-eyes stimuli and more time looking off the head for both stimuli, which indicates high-

scoring participants make greater changes to their behavior relative to the unrestricted 

condition.  Furthermore, it is important to note that these changes do not appear to be socially 

adaptive, given the positive correlation with off-head gaze.  Second, while high-scoring 

subjects were more likely to look at the remainder of the face, they also looked less at the right 

eye of open-eyed stimuli.  In other words, high-scoring subjects were less likely to attend to the 

most salient feature of the face, even though they were not instructed to avoid it in this 

condition. 

If face scanning strategies remained similar in the restricted conditions to the ones used in Free 

View, gaze to the facial features typically relied upon for social cues would change very little 

with the exception of the restricted ROI.  The scanning approach adopted by controls when 

instructed to avoid the eyes or mouth demonstrates a flexible ability to update viewing 
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strategies to accommodate ROI restrictions, while also continuing to explore the face.  The 

ASD group, on the other hand, appears to have difficulty adapting the approach they used in 

Free View, instead changing their strategy for each condition. In the Avoid Eyes condition, the 

ASD group fixates on the mouth at the expense of exploring the rest of the face and in the 

Avoid Mouth condition the ASD group also avoids the nose even though they relied upon it 

heavily in the unrestricted condition.   

There are several (potentially interdependent) factors that could contribute to the group 

differences in viewing strategy.  One explanation for the differences in gaze behavior might be 

that the approach used by the ASD group in the unrestricted condition could not be easily 

adapted to the ROI restricted condition if it relied heavily on gaze between the eyes and on the 

nose, which is indeed consistent with our findings.  A second possibility is that exploring the 

face for social information might not be a natural, spontaneous tendency in ASD, but instead 

requires top-down engagement that is otherwise being utilized in the restricted conditions to 

avoid specified face features.  The possibility of diminished automatic face exploration would 

also be in line with our observations of a center bias in the eye region, reduced face exploration 

in the Avoid Eyes condition, and the change in strategy in the Avoid Mouth condition.    

With regard to the significant change in mouth gaze between conditions, it may be the case that 

looking at the eyes, mouth, and nose is part of a rule-based strategy for salient features that 

becomes imbalanced when instructed to avoid the eyes, the region to which people with ASD 

may normally try to attend to the most.  People with autism may also inhibit a tendency to 

naturally fixate on the mouth in the Free View condition by focusing on the eye region.  When 

the eyes must be avoided, the propensity for mouth gaze could become more apparent, possibly 

due to the high cognitive load experienced in an atypical social gaze task such as the one in the 

present study.  This interpretation would be consistent with reports of people with ASD 

demonstrating greater face processing impairments in more cognitively demanding tasks, but 

less so in simpler tasks (Baron-Cohen et al., 1997; Evers, Kerkhof, Steyaert, Noens, & 

Wagemans, 2014; Klin et al., 2002). 
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The lack of a right eye bias in ASD suggests that people with autism are less responsive to 

the differences in quality and/or quantity of social information communicated by the two sides 

of the face.   One theory that has been suggested for why controls show a right eye bias is that it 

is associated with the greater emotional expressivity communicated by the left hemiface, or 

right side of the face from the observer’s perspective (Powell & Schirillo, 2009).  Indeed, 

studies have demonstrated that the left hemiface is more involved in the expression of facial 

emotion, expressing emotions (and negative ones in particular) more intensely than the left side 

of the face (Borod, Haywood, & Koff, 1997; Sackeim, Gur, & Saucy, 1978).  In this respect, 

that the ASD group does not show a right eye bias suggests there is impairment in responding 

to the difference in expressivity.  One question that remains to be answered, however, is at what 

stage of perception and processing the impairment might occur.  One can imagine at least two 

possibilities: one, that people with ASD have difficulties perceiving any difference in 

expressivity in the first place, or two, that the impairment is not in perception of the 

information but rather what to do with it.  In other words, people with ASD may recognize that 

there is a difference in the quality of social information conveyed by the halves of the face, but 

have difficulty processing that information and relating it to social precepts, and as such, do not 

show a preference for the right side of the face.  

Moreover, our findings suggest that part of the atypical viewing strategy in ASD consists of 

fixating on the region between the eyes and on the nose, a strategy that can easily impart an 

impression of neurotypical gaze behavior in social interactions, as well as in certain 

experimental settings.  The underlying source of this gaze behavior is unclear, but a variety of 

influencing factors can be assumed.  One possibility is that subjects may have participated in 

interventional therapies for improving social skills (Faja, Aylward, Bernier, & Dawson, 2007; 

Tanaka et al., 2010; Rao, Beidel, & Murray, 2008), which teach people with autism to look 

between the eyes during social interactions to improve the quality of face-to-face interactions.  

Another possibility is that gaze between the eyes is a learned behavior (either implicit or 

explicit) that individuals with autism have learned can approximate normal social behavior, and 

additionally, may even help processing of social cues.  Several studies have demonstrated that 

high-functioning individuals are able to develop or adopt compensatory strategies to improve 

social skills (Bauminger, 2002; Yirmiya, Pilowsky, & Solomonica-Levi, 1999).  Though these 
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strategies are often not as flexible or adaptive in situations that are unusual or require high 

cognitive effort, they are often sufficient for many other day-to-day situations. 

Our results indicate that in the two restricted conditions, people in the ASD group were 

significantly impaired in their ability to simultaneously adhere to the ROI restriction and also 

update gaze behavior to continue exploring the face.   The difficulty in adapting gaze behavior 

could very well be associated with published reports of deficits in the domains of cognitive 

flexibility and cognitive switching, perhaps due to difficulty integrating and using new 

information (Geurts, Corbett, & Solomon, 2009; Hill, 2004).  One consequence of the 

impairment is the restricted and repetitive behaviors that are a characteristic feature of autism.  

Cognitive rigidity is observed in a variety of behavior, from a preoccupation with specific, 

limited interests (and objects), to perseveration in rituals, routines, and motor movements.  

Another notable outcome of this inflexbility is that people with ASD have difficulty updating 

behavioral strategies to adapt to new social situations and cues.  That is not to say that the 

ability to adapt is absent, but rather impaired or inflexible, such that they have difficulty 

interpreting and responding appropriately to the shifting contextual demands of a social 

interaction.  People with autism are known to compensate for some of these impairments using 

compensatory behavioral and processing strategies (Kasari, Chamberlain, & Bauminger, 2001; 

Plaisted, Swettenham, & Rees, 1999; Rosset et al., 2008; Sigman & Ruskin, 1999; Teunisse & 

Gelder, 1994). 

Closely related to the putative difficulty updating behavioral strategies, another explanation for 

the diminished updating of face scanning strategies could be what has been called “enhanced 

logical consistency” in autism (De Martino, Harrison, Knafo, Bird, & Dolan, 2008).   The 

results of De Martino’s study suggested people with ASD to show reduced integration of 

emotional and social information into decision-making processes, relying instead on more 

logical, rational patterns of decision-making.  While our task did not involve decision-making, 

it did involve coordinating social behavior to task instruction, which involves an element of 

(implicit or explicit) decision-making and therefore is susceptible to a decision-making bias, 

during which people with ASD may fail to incorporate social and emotional cues into their 

viewing strategy.  Instead, people with autism may have become task-focused, and prioritized 
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adhering to the task restrictions.  In this sense, “succeeding” at the task of avoiding salient 

regions also may come at the cost of reduced behavioral flexibility. 

We can draw two over-arching conclusions from the results of the present study.  First, the 

group differences in viewing strategy in response to task demands and social stimuli highlight 

the flexible updating of viewing strategies in controls, which aim to maximize the amount of 

social information gathered.  Our findings of a center bias toward the eyes and increased 

fixation on the nose indicate this tendency is compromised in ASD.  Second, our results also 

demonstrate that viewing strategies in ASD are less flexible and adaptive than controls’, 

particularly in a changing social context.  Our findings of reduced face exploration in the 

restricted conditions and significant deviation from the strategy used in the unrestricted 

condition by people with ASD support this conclusion. In sum, it appears that the ability of 

people with ASD to adjust and update viewing strategies is impaired, whereas controls 

demonstrate greater flexibility by exploring the face while avoiding the specified regions.  

These findings demonstrate a possible approach for assessing social functioning skills in a 

manner that circumvents the use of compensatory strategies, and which requires them to adapt 

to new situations, reflecting the challenges experienced in daily social functioning. 

Our findings suggest some clear future directions.  First, gaze behavior in the Avoid Mouth 

condition was more similar between groups than in Free View, though what conclusions can be 

drawn from this are uncertain at the moment.  Given the known heterogeneity in ASD, there 

are likely sub-types of individuals that exhibit similar behavior, as well as individual variations 

in behavior, that are obfuscated in a group level analysis.  While the sample size in the present 

study was too small to examine possible ASD sub-types, future studies should investigate 

whether there are distinct cognitive profiles in ASD that could be characterized by measures of 

flexibility in viewing behavior.  Second, people with ASD, particularly those who are high-

functioning, may respond differently to dynamic stimuli compared to the static stimuli we used 

in the present study, or to stimuli that require great cognitive effort to process.  Pilot results 

from our research group indicate face gaze impairments might be more pronounced in live 

social interaction (Wang, Shimojo, & S. Shimojo, 2015).  Future studies using dynamic face 
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stimuli and more complex social stimuli will be important in understanding the specific 

contexts in which social impairments occur in high-functioning autism.  

In summary, while the general gaze patterns to regions of the face appeared similar, there were 

functional and qualitative differences in the details of how the ASD group looked at faces in in 

the unrestricted condition and how they adjusted gaze in the restricted conditions. People with 

autism demonstrated a clear bias for looking between the eyes and showed a tendency for 

reduced sensitivity to the right eye.  Furthermore, when a condition was imposed to avoid 

certain facial features, people with ASD demonstrate rigidity in gaze behavior that adhered to 

the ROI restriction but at the cost of extensive exploration of the face, suggesting that people 

with autism have difficulty updating pre-existing face scanning strategies in changing social 

contexts.  
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4.3 Don’t Look Study in Amygdala Lesion Patients 

4.3.1 Materials and methods 

4.3.1.1 Participants 

AP, AM, and BG are three female participants with bilateral amygdala lesions caused by 

Urbach-Wiethe disease (Mage = 35.3 years, SD = 6.4, age range = 28-39). Two of the 

participants, AM and BG, are monozygotic twins. Anatomical scans of the lesions for the three 

participants can be seen in the Methods section of the Gaze Cascade study in amygdala lesion 

patients (section 3.3.1.1 Participants).   

The comparison group consisted of 3 healthy female controls (Mage = 30.3 years, SD = 7.1, age 

range = 24-38), group-matched for age and IQ, with no family history of psychiatric illness.  

Two of the controls were the same controls tested for the Gaze Cascade study in amygdala 

lesion patients. All participants also completed the Autism Spectrum Quotient scale, or AQ 

(Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001). Table 4.2 summarizes 

demographic and diagnostic information for participants. 
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Table 4.2. Demographic information for amygdala lesion and control participants in 

the Don’t Look study. 

          Amygdala group 

 
 Age 

 Verbal  

IQ 

Full scale 

IQ 
AQ 

AP 28 92 98 20 

AM 39 94 96 21 

BG 39 99 101 18 

Mean 34.3 95.0 98.3  

SD 6.4 3.6 2.5  

Control group 

 
 Age 

 Verbal  

IQ 

Full scale 

IQ 
AQ 

1 24 95 100 11 

2 29 116 116 9 

3 38 104 102 11 

Mean 30.3 105.0 106.0  

SD 7.1 10.5 8.7  

a. Verbal IQ and full-scale IQ from the Wechsler Abbreviated Scale of Intelligence; AQ: Autism Quotient.  

Independent samples t-tests showed that the groups did not significantly differ in terms of age 

(t(4) = -0.73, p = .507) and IQ (t(4) = 1.46, p = .217), as measured by the Wechsler 

Abbreviated Scale of Intelligence (Wechsler, 1999) or the German-language adaptation.  All 

participants gave written informed consent to participate under a protocol approved by the 

Institutional Review Board of the California Institute of Technology. 

4.3.1.2 Stimuli and apparatus 

Stimuli and apparatus were identical to those described in the Methods section of the Don’t 

Look study in autism participants (see section 4.2.2.2 Stimuli and apparatus).  They are 

described again here only for convenience.   
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Stimuli consisted of 144 computer-generated male and female faces, created with Facegen 

(Singular Inversions, Vancouver, Canada).  Faces were front-facing with a neutral emotional 

expression (see Figure 4.9-A for sample stimuli).  Half of the faces shown depicted open eyes 

and direct eye contact, and the other half depicted closed eyes. Each block had an equal number 

of faces with open eyes and closed eyes, and an equal number of male and female faces.  No 

faces were repeated.   

Images were presented on a 21” CRT monitor with a refresh rate of 100 Hz and pixel resolution 

of 1152 x 870.  The stimuli were shown individually in the center of the screen for five 

seconds.  At a viewing distance of approximately 52 cm, each face stimulus had an overall size 

of 22.9 (width) x 22.9 (height) degrees of visual angle. 

Stimuli were presented using Matlab 2010a (Mathworks, Natick, MA), the Psychophysics 

toolbox (Brainard, 1997), and the Eyelink toolbox (Cornelissen, Peters, & Palmer, 2002).  Gaze 

data was collected using the Eyelink 1000 remote eye-tracking system (SR Research, Osgoode, 

Canada).  Corneal and pupil reflection were recorded at a sampling rate of 500 Hz.  At the 

beginning of each block, a 9-point calibration was performed.  Each trial began by requiring 

subjects to fixate on a central drift correction dot.  After the eye-tracker registered a successful 

fixation, participants pressed the space bar to start the trial.  

4.3.1.3 Procedure 

Stimuli and apparatus were identical to those described in the Methods section of the Don’t 

Look study in autism participants (see section 4.2.2.3 Procedure).   They are described again 

here only for convenience.   

Images were presented in three blocks, with 48 trials in each block.  Images were shown 

individually in the center of the screen for five seconds each while eye-gaze was tracked.  

Experimental design consisted of three blocked conditions where viewing instructions were 

varied for each (see Figure 4.9-B for summary of experimental conditions).  In one condition, 

viewing was unrestricted (Free View), and in the two remaining condition viewing was 

restricted (Avoid Eyes, Avoid Mouth).  At the start of each block, subjects were instructed to 

examine the faces while following one of the following three viewing instructions: 1) avoid the 



 

 

153 

eyes (“Avoid Eyes” condition), 2) avoid the mouth (“Avoid Mouth”), or 3) view the images 

freely (“Free View”).  Lastly, to insure the faces were being inspected in the “Avoid” 

conditions, subjects were told they might be asked to answer questions about the faces at the 

end of the experiment, though no actual post-experiment evaluation took place.  Instruction 

order and image order were randomized. 

A  

 

B 
Block Instructions 

   

 

 

 

Free View 

(48 Trials) 

  

 

 

 

 

  

 

 

 

Avoid the Eyes 

(48 Trials)  

   

 

 

 

Avoid the Mouth 

(48 Trials) 

Figure 4.9. (A) Example stimuli showing Open Eyes (top) and Closed Eyes (bottom) 

faces, and (B) summary of experimental conditions. 

4.3.1.4 Analyses 

Analyses were identical to those described in the Methods section of the Don’t Look study in 

autism participants (see section 4.2.2.4 Analyses).   They are described again here for 

convenience.   
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Data were analyzed using custom scripts written in Matlab.  Trials in which more than 20% 

of eye-tracking data was missing (due to blinks and/or signal loss) were excluded from analyses 

(< 3% of trials).  Raw eye-tracking data was pre-processed to extract fixation locations and 

durations.  Fixations were defined as gaze points falling within 1 degree of visual angle for a 

minimum of 100 milliseconds.   

Because face stimuli differed in their locations of socially salient features, faces and the 

fixations on each face were normalized onto a template face using a morphing procedure (see 

section 4.2.2.2 Analyses and Figure 4.2).  Each face was manually labeled with 94 anatomical 

landmark points (including eyes, mouth, nose, and head outline), and transposed using 

Delaunay Triangulation onto identical points marked on a prototypical template face.  Fixation 

locations were subsequently morphed from their locations on the stimulus face to the 

equivalent locations on the template face.  All subsequent analyses were performed on these 

normalized fixations on the template face. 

To analyze gaze behavior, fixation heatmaps (or density maps) were calculated for each subject 

and condition by weighting fixation location by its duration, then spatially smoothing using a 

Gaussian kernel with sigma = 13, or 0.5 degrees of visual angle.  Heatmaps were averaged 

across trials and subjects, and the resulting group maps were used for the ROI analyses 

described next. 

We defined the following seven regions of interest (ROIs) on the template face: Left Eye, Right 

Eye, Eye Region Total, Nose, Mouth, Head Remainder, and Off-Head (see Figure 4.10 for a 

depiction of all regions on the template face).  With the exception of Eye Region Total, which 

included Left Eye and Right Eye, ROIs were mutually exclusive.  Designations for left and 

right eye are from the perspective of the viewer, not anatomical. 
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Figure 4.10. Template face with all regions of interest defined: yellow- left eye, magenta 

– right eye, blue – eye region total, gray – nose, orange – mouth, green – head 

remainder, red – off-head. With the exception of eye region total, which includes the left 

and right eyes, all regions were mutually exclusive. 

 

We conducted three analyses examining 1) the proportion of gaze in all ROIs, 2) the 

distribution of gaze when it was in the eye region, and 3) center bias in the eye and mouth 

regions.  Each analysis used a different subset of ROIs (see Figure 4.11).  
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A  B  
 

 

 

 
C    
 

 

  

Figure 4.11. ROI configurations used in the different analyses. (A) Gaze proportions to 

all regions of interest, (B) Gaze proportion to the eye region, (C) Center Bias – average 

distance to the horizontal and vertical midlines. 

 

For the first analysis examining gaze to all ROIs, we calculated the proportion of gaze time in 

each of the seven regions, summing the density map in each ROI and then dividing by the sum 

of the entire on-screen density map.   

Given that total gaze to the eye region might be diminished in the amygdala group, we then 

conducted a second analysis comparing where gaze was distributed only in the eye-related 

ROIs (Left Eye, Right Eye, and the remainder of the Eye Region ellipse), calculating the 

proportion of time in each relative to total gaze in the eye region only (i.e., Eye Region Total) 
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rather than total gaze on-screen. This analysis would indicate whether the distribution of 

gaze among the three eye-related ROIs differed between groups. 

Finally, for the analysis of center bias, we analyzed the two ROIs defining the socially salient 

regions of the face (Eye Region Total and Mouth).  For the Eye and Mouth ROIs, we calculated 

the Euclidean distance for each point within the ROI to the vertical and horizontal midlines of 

the ROI, weighting each distance by gaze duration (i.e., the heatmap value for the point).  Next, 

we summed these values, then divided by the sum of gaze in the ROI to obtain the average gaze 

distance to the horizontal and vertical midlines. 

Statistical analyses were conducted by carrying out repeated-measures ANOVAs for each ROI 

in the analysis subset, with a between-subjects factor of group (amygdala, Control) and within-

subjects factors of condition (Free View, Avoid Eyes, Avoid Mouth) and stimulus type (Open 

Eyes, Closed Eyes).  In order to investigate the relationship of the two restricted conditions 

(Avoid Eyes, Avoid Mouth) against the unrestricted condition (“Free View”), appropriate 

contrasts were also conducted for gaze to the Right Eye, Left Eye, Eye Region Total, and 

Mouth.   

4.3.2 Results 

Heat maps for the amygdala subjects and control subjects in all three conditions are 

shown below in 4.12.  

 

 

 

 

 

 

 

 

 



 

 

158 

 

A   Control       Amygdala 
 
 
 

 
 
 

 
O

pe
n 

ey
es

 
 

C
lo

se
d 

ey
es

 

 
B     
  

 
 

 
 

O
pe

n 
ey

es
 

 

C
lo

se
d 

ey
es

 

 
C     
  

 
 

 

O
pe

n 
ey

es
 

 

C
lo

se
d 

ey
es

 

 
 

 

FREE 



 

 

159 

Figure 4.12. Heat maps for the amygdala and control groups, and conditions with 

Open Eyes and Closed Eyes stimuli.  Maps were generated by using a Gaussian kernel 

function to spatially smooth each duration-weighted fixation point, then maps were 

averaged across trials and subjects.  Warmer colors represent longer total fixation time. 

4.3.2.1 Gaze Proportions in all regions of interest  

The first set of analyses focused on gaze to the different regions of interest (see Figure 4.10-A 

for ROIs).  A repeated-measures ANOVA with between-subjects factor of group and within-

subjects factors of condition and stimulus was conducted for each of the seven ROIs (see 

Figure 4.13).   

 

Figure 4.13. Proportion of fixation time in the ROIs in the amygdala (red) and control 

(blue) subjects.  Error bars denote standard error. 

Right Eye 

The ANOVA for the right eye indicated there were no significant interactions involving group 

(all ps > .211), and no main effect of group (p = .578).  Neither of the planned contrasts 

comparing the unrestricted condition to the two restricted conditions was significant (ps > 
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.216).  There was, however, a main effect of stimulus type, F(1,4) = 18.77, p = .012, η2  = 

.892, indicating that regardless of group, participants looked more at the right eye for Open 

Eyes stimuli than Closed Eyes stimuli (Open eyes: M = 13.4%, SD = 1.7; Closed eyes: M = 

10.7%, SD = 1.1). 

Left Eye  

The ANOVA for the left eye indicated there were no significant interactions involving group 

(all ps > .225), and no main effect of group (p = .148).  Neither of the planned contrasts 

comparing the unrestricted condition to the two restricted conditions was significant (ps > 

.218).   

Eye Region Total  

The ANOVA for the total eye region revealed no significant interactions involving group (all 

ps > .189), nor a main effect of group (p = .228).  Neither of the planned contrasts was 

significant (ps > .375).   

Mouth 

The ANOVA for the mouth indicated there were no significant interactions involving group (all 

ps > .253), and no main effect of group (p = .141).  Neither of the planned contrasts was 

significant (ps > .213). 

Nose 

 The ANOVA for gaze to the nose revealed a marginally significant main effect of group, 

F(1,4) = 4.40, p = .104, η2  = .524, suggesting greater gaze to the nose region in the amygdala 

group relative to controls (Amygdala: M = 9.4%, SD = 1.4; Controls: M = 5.4%, SD = 1.4).  

There were no significant interactions involving group (all ps > .691).   

Head Remainder 

The ANOVA for gaze to the head remainder revealed no significant interactions involving 

group (all ps > .200), nor a main effect of group (p = .109).  
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Off-Head 

 The ANOVA for gaze off-head revealed no significant interaction effects involving group (all 

ps > .145), but a marginally significant main effect of group, F(1,4) = 4.38, p = .104, η2  = .523, 

suggesting there was less gaze to off the head regions in the amygdala group than in the control 

group (Amygdala: M = 1.0%, SD = 0.7; Controls: M = 3.2%, SD = 0.7).   

4.3.2.2 Gaze distribution in eye region  

To examine the distribution of gaze in the eye region, we calculated the proportion of gaze time 

in each eye ROI relative to the total gaze time spent in the entire eye region (see Figure 4.11-B 

for ROIs).  Results are summarized below in Figure 4.14. 

 

Figure 4.14. Gaze proportions in the eye region in the amygdala (red) and control (blue) 

groups.  Error bars denote standard error. 

Right Eye 

The ANOVA for the right eye indicated there were no significant interactions involving group 
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.390).  There was, however, a significant main effect of stimulus type, F(1,4) = 30.77, p = 

.005, η2  = .980, again indicating that regardless of group, participants spent a greater proportion 

of gaze in the eye region looking at the right eye for Open Eyes stimuli compared to Closed 

Eyes stimuli (Open eyes: M = 26.4%, SD = 2.8; Closed eyes: M = 21.8%, SD = 2.3).  Neither of 

the planned contrasts was significant (ps > .390). 

Left Eye 

The ANOVA for the left eye revealed no significant interactions involving group (all ps > .124) 

and no main effect of group (p = .448). 

Eye Region Remainder 

The ANOVA for the remainder of the eye region revealed no significant interactions involving 

group (all ps > .255) and no main effect of group (p = .354).  Neither of the planned contrasts 

was significant (ps > .710). 

4.3.2.3 Center bias to horizontal and vertical midlines  

To compare average gaze distance (measured in degrees of visual angle) from the vertical and 

horizontal midlines in the socially salient regions of the face, a two repeated-measures 

ANOVAs for the Eye Region and Mouth ROIs was conducted (see Figure 3.3-C for ROIs). 

Eye Region 

The ANOVA for the eye region indicated there were no interactions involving group (all ps 

>.557) and no main effect of group (p = .403) for distance to the vertical midline.  There were 

also no interactions involving group for distance to the horizontal midline (all ps >.157), and no 

main effect of group for distance to the horizontal midline (p = .581).  

Mouth 

The ANOVA for the mouth did not reveal any significant interactions involving group for 

distance to the vertical midline (all ps > .291), nor a main effect of group (p = .799). There were 

also no significant interactions involving group for distance to the horizontal midline (all ps > 

.737), nor a main effect of group (p = .970). 
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4.3.3 Discussion 

We tested three patients with rare amygdala lesions to examine whether social processing 

impairments would affect spontaneous face gaze strategies, and also the flexibility of those 

strategies in response to changing viewing contexts.  Similar to the limitations of the gaze 

cascade study in amygdala lesion subjects, group comparisons lacked the statistical power to 

allow us to draw quantitative conclusions due to the small sample size.  Overall, the amygdala 

lesion patients exhibited a similar general pattern of face gaze, preferring to explore the face 

rather than off-face regions of the screen, and in similar proportions as controls.  However, 

there were a few notable effects as well as some qualitative trends in the data that seem worthy 

of discussion. 

In the unrestricted condition, amygdala group exhibits a similar pattern of face gaze as controls, 

spending the majority of gaze time looking at the eye region the most, followed by the 

remainder of the face.  The amygdala patients also spent the same proportion of fixation time 

looking at the mouth as the nose, which was similar to the pattern observed in controls.  This 

indicates that gaze to the core features in the absence of an explicit decision-making task is 

intact in amygdala lesion subjects. Both groups also performed equally well in avoiding the 

eyes and mouth in the “Avoid Eyes” and “Avoid Mouth” conditions, respectively.  Similar to 

the controls’ gaze behavior, when the eyes were to be avoided, the amygdala group increased 

gaze to the mouth, and when the mouth was to be avoided, the amygdala group increased gaze 

to the eyes, indicating that the amygdala group likely recognizes the saliency of these two 

regions.  

There was a main effect of stimulus type for gaze to the right eye, indicating that regardless of 

group, participants looked more at the right eye with Open Eyes stimuli compared to Closed 

Eyes stimuli.  This result is interesting given our previous finding for a right eye bias in 

controls, as well as reports in the literature of greater expressivity conveyed by the left 

hemiface (Borod, Haywood, & Koff, 1997; Powell & Schirillo, 2009; Sackeim, Gur, & 

Saucy, 1978).   That the right eye bias is intact in the amygdala group suggests that they are 

sensitive to the quality of information that is conveyed by the different sides of the face. 
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In the Avoid Eyes condition, there is an interesting parallel to our findings in the autism 

group, in that both the amygdala group and control group increased gaze to the mouth 

compared to their behavior in the unrestricted condition, but the magnitude of increase in the 

amygdala group was much higher than the control group.  We found a similar effect in the 

autism subjects, who showed a disproportionally large increase in gaze to the mouth in the 

Avoid Eyes condition, while controls also distributed their gaze to exploring the remainder of 

the face.  This could indicate a similarly diminished propensity for flexible face exploration in 

the two clinical groups. 

There was an additional parallel to the autism group in gaze to the nose region, such that there 

was an overall trend for greater nose gaze in the amygdala subjects compared to control 

subjects.  We observed this trend across all three conditions in the amygdala group.  The autism 

group showed a comparable bias toward the nose region, though it was limited to the 

unrestricted condition. 

In the Avoid Mouth condition, amygdala patients, as well as control subjects, returned to the 

gaze behavior they demonstrated in the unrestricted condition for the majority of ROIs, but 

there were differences in two regions that merit future study.  First, gaze to the remainder of the 

face decreased in Avoid Eyes compared to Free View for the amygdala group, but remained the 

same in the control group, which suggests again that there may be a reduced tendency to 

explore the face.  Second, the increase in gaze to the eye region compared to “Free View” was 

also larger in the amygdala group than in controls, indicating a bias for fixating the salient 

regions more than controls in the restricted conditions. 

Finally, though the difference between groups for gaze off the head did not reach significance, 

the findings suggest that the amygdala group spent less time off the head than controls 

regardless of condition, preferring instead to continue looking at the face.  Combined with the 

larger bias for fixating socially salient ROIs in the restricted conditions, one question to be 

explored in future studies is whether people with amygdala lesions experience the same level of 

negative arousal or discomfort from looking at salient face features.  There is already evidence 

to show that the amygdala contributes to one’s sense of personal space (Kennedy, Gläscher, 
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Tyszka, & Adolphs, 2009), such that people with amygdala lesions show less discomfort 

from standing in close proximity to strangers.  It would be interesting to explore if the sense of 

smaller personal space also extends to abnormally intense face gaze, especially to the eye 

region. 

An additional question for exploration is whether the amygdala group demonstrates less of a 

center bias than controls.  The heatmaps suggest that amygdala subjects were more intensely 

focused on the pupils of the eyes compared to controls, and also explored the region between 

the eyes less than controls.  A similar effect is evident in gaze to the mouth region, such that 

fixations in the amygdala group were tightly focused in a smaller region centered on the mouth 

when compared to controls’ fixations. 

The lack of systematic group differences in gaze to the ROIs suggests that the amygdala is not 

relied upon for basic perceptual processing of faces.  The findings are consistent with studies 

pointing to a greater role of the amygdala in emotional processing of faces rather than general 

face processing, which relies more on the fusiform gyrus and superior temporal sulcus (Haxby 

et al., 2002).   

Similar to the gaze cascade study in amygdala lesion patients, the absence of significant effects 

in our study may also have been due to small sample sizes. Thus, while our findings suggest 

that the amygdala does not play a critical role in basic perceptual processing of faces, future 

studies using larger sample sizes will be necessary to elucidate if this conclusion holds true.  
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4.4 Conclusion 

In this chapter I explored face gaze strategies and the flexibility of those strategies in changing 

viewing contexts in autism and patients with amygdala lesions.  I used an implicit behavioral 

task that investigated how flexible and automatic face processing is and how well it can be 

cognitively influenced outside of the context of preference decision-making. 

I found there was a general tendency to look at the eye region in the absence of an explicit task 

in both ASD and amygdala lesion patients.  While details of gaze to the eye region in the 

amygdala group were no different from controls, the ASD group showed several notable 

differences.  Consistent with evidence of abnormal gaze lateralization, people with ASD were 

less efficient than neurotypicals in distributing gaze to the eye region, demonstrating a center 

bias for the region between the eyes and a lack of gaze lateralization to the right eye.  I also 

found that people with ASD demonstrate less flexible viewing behavior due to either a 

diminished interest or a diminished ability to continue exploring the face in the restricted 

conditions.  It is interesting to note that in the people with ASD, part of the atypical 

compensatory strategy they used consisted of a rather strong center bias to the region between 

the eyes. This is quite different from the face scanning strategy observed in the amygdala lesion 

patients, who appear to show less of a center bias toward the eye region compared to controls, 

and indeed seem to fixate on the pupils of the eyes more than controls.  A similar intensity of 

fixation was also observed in the amygdala subjects when looking at the mouth region.  

The amygdala group demonstrated a similar right eye bias as controls and appeared equally 

flexible in gaze strategies.  There was, however, a tendency in the amygdala group to look 

away from the salient parts of the face less often than controls, and also to look off the head less 

than controls, which is consistent with evidence showing reduced discomfort during violations 

of personal space. 

The results from these studies suggest that face scanning utilizes general perceptual process that 

might not be reliant upon amygdala functioning.  Moreover, the results suggest that the reduced 

flexibility of face gaze strategies observed in people with autism is not primarily based on 

amygdala dysfunction.  One possibility to be explored is that the reduced flexibility of face 
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gaze strategies in ASD may be linked to structural and functional abnormalities that have 

been reported in the superior temporal sulcus (Zilbovicius et al., 2006) and the fusiform gyrus 

(Hubl et al., 2003; Schultz et al., 2000). 

 

 

  



 

 

168 

 C h a p t e r  V  

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

5.1 Summary 

In this dissertation, I investigated social gaze and face preferences in people with autism and 

amygdala lesions. In Chapter III, I examined visual behavior and face preference formation, 

exploring how social processing deficits affect gaze behavior and subjective decision-making 

for faces.  In chapter IV, I explored how flexible and automatic face processing strategies were 

and how well they can be cognitively influenced outside of the context of explicit decision-

making. 

I found that people with autism and amygdala lesion patients made similar preference decisions 

as controls in judging face attractiveness, and that both groups also demonstrated similar 

preference biases as controls.   In addition, people with autism demonstrated a similar visual 

sampling process linking preference and attentional orienting.  My findings provide evidence 

for the idea that face preference formation can be preserved, or compensated for, in the 

presence of general social processing impairments. 

The findings also indicate that face preference formation appears to circumvent face processing 

deficits reported in other studies of higher-order social decision-making, possibly through 

compensation by processing and attentional strategies.  There were two key differences in the 

autism group that pointed to the use of atypical social processing strategies.  First, with respect 

to reaction times, people with autism made preference decisions for faces faster than the 

controls, and their reaction times also appeared insensitive to the difficulty of the choice when 

deciding amongst faces.  Based on the absence of a reaction time advantage in comparison 

tasks involving objective decisions or non-social stimuli, this suggests that there is a higher-

level component of preferential decision-making for faces that is altered in people with autism 

while the preference formation mechanism linking gaze orienting and eventual choice remains 

intact.  The reaction time advantage observed in ASD with respect to face preference decisions 
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suggests specific hypotheses that should be investigated in further, more refined studies, 

and may point to an advantage that arises specifically during face preference formation.  

Second, I found that in the absence of an explicit decision-making task, people with autism 

demonstrated abnormalities in face gaze patterns, looking less at the parts of the eye region that 

communicate the most information.  People with autism also demonstrated rigidity in gaze 

behavior that adhered to imposed viewing restrictions but at the cost of extensive exploration of 

the face, showing people with autism have difficulty updating pre-existing face scanning 

strategies in changing social contexts. Therefore, while deficits in social processing do not 

appear to significantly impair the preference formation process for faces, there is also evidence 

showing that people with autism use atypical processing and visual strategies when looking at 

faces, perhaps in part to compensate for these deficits.  More detailed analysis of task difficulty, 

reaction times, and even face preferences would help here, and in the future, to determine 

whether subjective decisions about faces systematically differ in people with ASD.  

What are the broader implications that can be drawn from these results? First, an implicit and 

subjective approach to investigating social processing is a valuable tool for characterizing 

social impairments in ASD.  Indeed, the term “social processing” may be too large of an 

umbrella term to apply to the deficits observed in ASD, and there may be an array of unstudied 

implicit and subjective components that are unimpaired.  Because autism is so heterogeneous, it 

will be important to investigate specific aspects of social processing to understand if they are 

actually impaired.  Second, nuanced differences at the surface could belie larger differences in 

underlying mechanism.  There may be small differences in behavior in practiced conditions but 

these behaviors could reveal a lack of ability to adapt to new constraints.  Therefore, in addition 

to measuring various aspects of social behavior, we need to also characterize how these 

behaviors are adapted when they must be updated.  Third, information-seeking strategies in 

ASD can be better characterized by including behavioral responsiveness and resilience.  Real-

life situations demand continual adjustment and responsiveness to new situations.  To fully 

understand social deficits in ASD, we cannot simply measure the baseline behavior, but must 

also test responsiveness and resilience to better characterize and treat social impairments. 
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In conclusion, an implicit and subjective approach yields important insight into social 

processing in ASD.  By using this approach, in people with specific deficits, we learn not only 

about what causes known social impairments but we also learn more about what constitutes 

normal social functioning, with the hope that we can better characterize the difficulties 

experienced in ASD. 

5.2 Limitations 

It is important to acknowledge the limitations of these studies.  First, the autism participants 

consisted of individuals who were high-functioning.  We cannot rule out the possibility that the 

findings reported here apply to a very specific sub-type of high-functioning individuals who are 

on the rather social end of the spectrum given their willingness to interact with researchers and 

participate in hours of experiments.  Consequently, it remains an open question whether the 

findings reported here would also extend to low-functioning individuals who show greater 

impairment, and often have comorbid developmental disorders that impact social and executive 

functioning. Moreover, there is a further caveat with regard to the population demographics, in 

that males were heavily over-represented in the autism group, which partially reflects a 

problem with underdiagnosis of autism in women.  Recent research shows that there are gender 

differences in the symptoms of autism (Head 2014, Frazier 2014), with females more likely to 

demonstrate social impairments but not the restricted interests and repetitive behaviors that are 

characteristic of autism, which leaves open the question of whether females with autism would 

demonstrate the same patterns social preference and gaze behavior.   

There is also a limitation with respect to the experiment stimuli that were used.  As is often the 

case in experimental design, there is a tradeoff between ecological validity and experimental 

control.  While the use of computer-generated faces is favorable in terms of controlling for 

potential confounds such as lighting and facial expression, making preference decisions for 

computer-generated stimuli might not be the same as making attractiveness judgments for real 

faces.  Social stimuli with greater ecological validity (such as photographs or dynamic stimuli) 

may be more likely to elicit atypical gaze behavior, particularly in individuals with high-

functioning autism and the use of such stimuli should be considered for future studies. 
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5.3 Future Directions 

Based on the evidence that processing of social information and the appearance of social 

impairments can vary widely in people with autism based on explicit task demands, it will be 

important for future autism studies to examine implicit social processing.  Especially, it may be 

worth paying attention to the initial phase of orienting and perceptual processing leading up to 

the preference decisions.  In future work, researchers might focus efforts on investigating initial 

orienting to social stimuli and the perceptual processes involved in social processing by 

decoupling measurements of behavior from an explicit decision-making task. 

Another important piece of the autism research puzzle is improving our understanding of the 

brain behavior link.  There is a need to trace higher-level behavioral outcomes to the implicit 

and explicit processing mechanisms underlying them.  For this reason, concomitant 

neuroimaging or EEG during preference decision-making tasks would be highly informative to 

our understanding of how social deficits affect face processing in ASD.  Given that so much of 

our response to faces occurs automatically and sub-consciously, current decision-making 

paradigms are limited in that they largely measure the conscious realization of an explicit 

judgment, rather than the subconscious evaluative processes upon which the decision is 

predicated.  As a consequence, we might be in fact measuring the ability of people with autism 

to compensate for outcomes despite an underlying impairment, rather than measuring the actual 

deficit as it exists and is experienced by people with autism.  Mapping the brain mechanisms 

preceding or taking place during these social processing tasks can strengthen our understanding 

of how social processing deficits are directly linked to attentional and behavioral strategies, as 

well as the outcome of those strategies.   

Future studies of explicit decision-making tasks might also use more trials so that comparisons 

can be made between trials in which preferences were either congruent or incongruent with the 

preferences of controls, and to examine whether there are differences in gaze behavior in trials 

that were congruent versus incrongruent. Neuroimaging or EEG would also be advantageous 

here in that brain activity can be compared between congruent and incongruent trials, to 

explore whether there is an interaction between processing mechanisms, gaze behavior, and 

decision outcomes. 
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Studies using dynamic face stimuli and more complex social stimuli will be important in 

understanding the specific contexts in which social impairments occur in high-functioning 

autism.  It could be the case that face processing deficits in high-functioning ASD become 

evident only when there are more complex attentional demands, such as in real-life situations, 

or when there is competing visual information, such as with dynamic stimuli. This could also 

occur if attentional demands become too great to sustain explicit or implicit compensatory 

strategies.  In future work, researchers might investigate the extent to which deficits in 

processing social information affect preference decisions using dynamic or emotional stimuli. 

Symptoms, behaviors and even the underlying genetic causes of ASD are widely 

heterogeneous, which poses a significant challenge to researchers and clinicians alike.  On a 

more global level, an important future task for research and diagnosis will be to improve 

characterization of the autism phenotype.  Differences in social processing, face processing, 

decision-making are distributed across a wide range in the general population.  Research has 

shown this variability extends to ASD, with some people with autism showing no differences 

from the general population in certain tasks and others showing severe impairments.  Based on 

this evidence, a major question to consider is to what extent do the differences in people with 

autism overlap with differences observed in general population? Moreover, to what degree do 

these differences in autism really constitute a behaviorally and biologically distinct group 

versus simply being clustered at one extreme of an otherwise normal distribution?   

The considerable heterogeneity in phenotypic presentation also underscores one of many gaps 

in our understanding of ASD regarding the differences that distinguish subtypes of ASD.  

There is significant variability in the cognitive and behavioral profiles of individuals who meet 

diagnostic criteria for ASD and there is a need to identify and characterize meaningful sub-

types of ASD that map onto patterns of impairments (and the degree of those impairments) in a 

way that current diagnostic and research criteria fail to capture. 

To better diagnose each individual under the broader spectrum and develop new treatment 

approaches, future research needs to include tasks that would help identify these sub-types at a 

diagnostic level and characterize the specific social deficits experienced by the individual.  
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Consequently, it will be important in the next stage of autism research to move beyond 

group-level investigations, to examining within-group differences amongst sub-types of ASD, 

as well as drawing connections to what these sub-types mean for development and outcomes 

for the individual. 
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