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Abstract

This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery

and understanding of light-matter interactions in semiconductors and metals.

The first part of the thesis presents the discovery and development of Zn-IV nitride materials.

The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials

based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant

alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are

closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical

properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption

coefficients. The choice of different group II and group IV elements provides chemical diversity that

can be exploited to tune the structural and electronic properties through the series of alloys. The

first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for

III-nitrides is discussed here.

The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot

carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-

dielectric interface, have sparked renewed interest because of their quantum nature and their broad

range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics,

but the possibility to capture the energy normally lost to heat would open new opportunities in photon

sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot

carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally

calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for

these non-equilibrium carriers are shown.

Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals

and semiconductors for future light-based technologies.
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1

Light-based Technologies and
Materials Innovation

A great deal of my work is just playing with equations and seeing what they give.

– Paul A.M. Dirac

1.1 Introduction

On 20 December 2013, The United Nations (UN) General Assembly 68th Session proclaimed 2015 as

the International Year of Light and Light-based Technologies (IYL 2015). This thesis introduction,

written in 2015, presents a good opportunity to reflect on the current and future impact of light-

based technologies and the role of physics in guiding that impact. For example, when we think

of light and energy there are two approaches that come to mind: the here and now technologies

(Si-based photovoltaics, solar thermal) and the "around the corner", high-risk, high-reward directions

awaiting further development. A common link between both approaches is materials innovation and

introducing new physics of light-matter interactions.

1.2 Discovery of new materials: Predictive materials physics

In many ways, the light-based technologies technologies in use today are limited by the performance

of materials. This motivates the discovery of new materials, exploring materials physics of existing

1



1. LIGHT-BASED TECHNOLOGIES AND MATERIALS INNOVATION

materials and exploiting new device concepts.

Advanced materials share a common attribute: They are complex. Therefore achieving required

performance depends on exploiting the many degrees of freedom of materials development including

(but not limited to) multiple chemical components, nanoscale architectures, and tailored electronic

structures. This introduces enormous complexity in the discovery process, complexity that must be

understood and managed. A theory bias here would argue that we do not have the time or resources

to explore all the options experimentally. However, our current computational methods confer upon

us predictive power to accelerate discovery and innovation in materials.

During the past decade, computer simulations based on a quantum-mechanical description of

the interactions between electrons and atomic nuclei have had an increasingly important impact on

materials science, not only in fundamental understanding but also with a strong emphasis toward

materials design for future technologies. While the current theory tools are not perfect, they do

provide sufficient information for theory-directed design of new materials and new materials physics.

In addition to the computational design of materials for solar cells, artificial photosynthesis, and

photochemical pathways to fuels, the need to computationally predict and optimize the light-matter

interactions in materials is general and relevant to several light-based technologies including:

• Optical circuits

• Displays

• Solid-state lighting

• New light sources

A further link between established and to-be-developed technologies is that any new approaches

must to some extent be integrable with dominant pervasive technologies and processes. This raises

issues such as CMOS compatability and considerations of growth mechanisms, and on a more

fundamental level the importance of both interface and volume effects in any new materials. This is

particularly pertinent for nanostructured materials due to their increased surface-to-volume ratio.

Hence, an adequate description of the physics occurring at interfaces of any new optoelectronic

material must be taken into account in materials design and development from the start.

2



1.3. MATERIALS PHYSICS FOR ENERGY

In many cases, a single theory method or approach may not be enough. A strategy of multiscale

simulations must be used to translate the results of atomistic calculations to real-world scales. Some

aspects of this thesis (especially the chapters on ab initio plasmonics) illustrate the need and use of

multiscale theory.

1.3 Materials physics for energy

Solar technologies, whether photovoltaic or solar-fuel based, are ultimately limited by the efficiency

of the light absorber. One of the primary goals of this thesis has been to investigate new light capture

and conversion strategies through materials discovery. Artificial photosynthesis imposes unique

demands on the light absorbers, relative to conventional photovoltaics. In artificial photosynthetic

devices, either a single material, or two absorbers arranged in a tandem cell format (and current-

matched spectrally), must at minimum provide the thermodynamically required voltage of 1.23

V to split water, and must provide comparable voltages to reduce CO2 to methanol or other

fuel. However, very few Earth-abundant materials have been identified that have band-gaps in

the 1.5-2.2 eV range and satisfy the requirements for photoabsorbers in a solar fuels device. This

presents a unique opportunity for exploring new materials physics especially in context of wide

bandgap semiconductors. Optoelectronic properties and relaxation dynamics of these wide bandgap

semiconductors would find applications beyond artificial photosynthesis in solid state lighting and

photovoltaics.

1.4 High-throughput theory

As shown in recent work by Ceder, Jacobsen, Norskov, and others, it is now possible to scan hundreds

of thousands of possible combinations of elements across the entire periodic table, suggesting many

new materials solutions that far exceed the traditional intuition of experts in these fields. Even

incomplete and low-level theories have suggested novel combinations of materials for new energy

technologies. In principle, finding the best solution to solar harvesting and other issues related

to composition-dependent property optimization can now be accomplished using this approach.

Experimental synthesis and screening efforts to match the throughput of such computational

approaches are underway within the Joint Center for Artificial Photosynthesis and within other
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groups. The challenges associated with high-throughput theory (and to some extent experiments)

are picking the "level of theory" commensurate with the complexity of the material and the property

being screened for.

1.5 Optical phenomena in metals: Plasmonics

Prominent materials for photonic and optoelectronic components operating in the visible and

near-infrared part of the electromagnetic spectrum comprise metals and semiconductors. Metals

such as gold, silver, aluminium and copper are traditionally not materials of choice, due to their

substantial absorption losses caused both by intraband and interband transitions. However, metals

do provide a unique opportunity for photonics in this part of the spectrum, namely the existence

of highly confined surface waves at interfaces with dielectrics. Here, the electromagnetic field can,

under appropriate conditions, couple to the conduction electron plasma, setting up a hybrid mode,

termed surface plasmon. For extended interfaces, propagating modes with mode areas below the

diffraction limit are possible (surface plasmon polaritons), whereas metallic nanostructures act as

optical nano resonators with minute sub-diffraction-limit mode volumes (localized surface plasmons).

The last two decades have seen an explosion of interest in surface plasmons, and a distinct

research area of photonics, termed plasmonics, has emerged. This resurgence of interest in metal

optics was to great extend facilitated by rapid advances in nano fabrication, near-field optical

detection techniques, and computational modelling techniques taking the dispersion of the metal

into account.

The high mode confinement that surface plasmons offer is made possible by a substantial

penetration of the electric field into the metal itself, increasing with frequency until the surface

plasma frequency is approached. This leads to unavoidable absorption losses and hence to a trade-off

between localization and loss, which has hampered widespread applications of plasmonic waveguides

and nano resonators for applications in integrated photonics. However, over the past few years it has

been recognized that the optical losses also provide unique opportunities: Firstly, short dephasing

times of only a couple of femtoseconds allow, under appropriate circumstances, for substantial

emission enhancement of nearby (low internal quantum efficiency) nanoemitters. Secondly, decay of

surface plasmons via absorption creates electron/hole pairs, and if these hot carriers can be harvested

before thermalisation applications in hot carrier photodetector, catalysis, and nano chemistry seem
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possible.

1.6 Optoelectronics and Nanophotonics

The potential for an order of magnitude improvement in size reduction of optoelectronic devices

facilitated by plasmonic sub-diffraction-limit light confinement has intrigued researchers over the

last decade. This directly addresses both the size mismatch between current electronic and photonic

components, and furthermore promises substantial increases in modulation/switching speed, and

potentially also lower energy consumption. Yet as described in the previous section, the unavoidable

optical loss inherent in plasmonic light localization has to great extent hindered technological

adoption of this approach. Since the physical limitations and parameter space for localisation and

loss in plasmonic waveguides and nanostructures are well understood, focus has shifted to work on

the underlying plasmonic materials for further improvements in performance. On the one hand, for

the dominant plasmonic materials gold and silver, a substantial amount of research effort has been

put into achieving higher crystallinity and hence less domain- and surface-induced optical losses.

Examples include self-assembled-monolayer-assisted thin film growth for smoother films or back-

etching of silicon in silicon/noble metal multilayers in order to expose an essentially single-crystal

surface layer. At the same time, there is an active search for new plasmonic materials particularly in

the near-infrared part of the spectrum underway. Here, materials with improved temperature stability

such as TiN are attractive for applications such as Heat-assisted Magnetic Recording (HAMR), and

also from the viewpoint of CMOS compatibility. Other candidate materials for applications in the

near-to-mid-infrared are highly doped zinc oxides or perovskite-based ferroelectrics.

Apart from the physical properties plasmonic materials in isolation, it is also necessary to gain

understanding and control over the materials physics at interfaces, particularly if both photonic

and electronic phenomena associated with highly concentrated optical fields are to be exploited.

Examples include plasmon-enhanced carrier transfer in Schottky-type photodetectors, or metallic

nanostructures coated with molecular overlayers for catalytic applications. It is in all these areas

that improvements in materials deposition and multilayer assembly go hand-in-hand with predictive

theoretical studies enriching both our understanding of the underlying physics, and guiding further

improvements. The employed methods necessarily are inherently quantum in nature, in contrast to

the mainly classical modelling of plasmonic devices solely exploiting optical effects, which is firmly
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based on the macroscopic Maxwell’s equations, in most cases.

1.7 Contents of this thesis

The underlying theme of this thesis is exploring light-matter interactions, from a joint theory and

experimental standpoint, in the context of high-risk, high-reward optoelectronic and nanophotonic

technologies. This work is motivated in part by the materials-based challenges in current devices and

in part by the search for new phenomena to enable novel optoelectronic and nanophotonic devices.

First part of the thesis presents the work my collaborators and I have done on Zn-IV nitrides,

an example of theory-directed functional materials design. The second half of the thesis presents

our work on ab initio calculations for plasmon decays and dynamics of hot carriers with a focus on

understanding optical phemomena in metals. The chapters are organized as follows:

• In Chapter 2, theory and calculations to understand the stability and defect behavior of

ZnSnN2 are presented in context of Zn-IV nitride optoelectronics. The very small formation

enthalpy of ZnSnN2 and the donor defects in this semiconductor, with potential photovoltaic

and solid state lighting applications, are discussed in detail.

• In Chapter 3, first-principles calculations as well as the synthesis and optoelectronic and

spectroscopic characterization of a series of direct band-gap Zn(Sn,Ge)N2 semiconductor alloys

are presented.

• In Chapter 4, a theoretical evaluation of the energy-conversion efficiency of systems that

rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes is

discussed in addition to the drawbacks of such an approach to plasmon decays. This chapter

sets the stage for the last chapters of this thesis.

• In Chapter 5, ’Theoretical predictions for hot carrier generation from surface plasmon decay

in the interband limit’, we present predictions for the prompt distributions of excited ‘hot’

electrons and holes generated by plasmon decay, prior to inelastic relaxation, using a quantized

plasmon model with detailed electronic structure.

• In Chapter 6, we show the phonon-assisted and multi-plasmon contributions to plasmon decay

and in general discuss optical processes in metals in the ultrafast regime.
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• Finally, Chapter 7 summarizes the work done and future research directions for exploiting

light-matter interactions both in the II-IV nitrides and in metals.
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2

Zn-IV Nitride Optoelectronics

How wonderful that we have met with a paradox. Now we have some hope of making

progress.

– Niels Bohr

2.1 Chapter Overview:

ZnSnN2 is an earth-abundant and visible-light-absorbing semiconductor, and has recently been

synthesized, exhibiting an unexpectedly high electron concentration. Using first-principles calcula-

tions, we find that ZnSnN2 has a very small formation enthalpy, so it is challenging to synthesize

single-phase ZnSnN2 without the coexistence of secondary phases. Based on the calculated formation

energy of defects, we showed that SnZn (Sn on Zn antisite) is the dominant intrinsic defect with

a high concentration, and ON (O on N antisite) is a possible dopant. Both defects are donors,

and the high concentration of donor states form a defect band below the conduction band, making

the material degenerately n-type, which explains the observed high electron concentration. The

existence of the donor defect band does not induce any direct absorption of low-energy photons,

so ZnSnN2 is a degenerately doped metal-like semiconducting material with an optical bandgap

around 2 eV, which is narrower than the bandgaps of conventional transparent conducting oxides.
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2.2 Introduction

Direct bandgap, earth abundant semiconductors with Eg around 1.5 eV are essential for both

photovoltaic and solar to fuel (photocatalytic) energy conversion.[20, 6] Among the conventional

semiconductors, such as element Si and Ge, binary III-V (III=B, Al, Ga, In; V=N, P, As, Sb)

and II-VI (II=Zn, Cd; VI=O, S, Se, Te), only a limited number of candidates have suitable

bandgaps in the range 1.0-2.0 eV.[12] This motivates the search for earth-abundant alternatives

to current semiconductors for efficient, high-quality optoelectronics devices, photovoltaics and

photocatalytic energy conversion. One methodology for the search is to study ternary and multi-

ternary semiconductors with more elements and more flexible opto-electronic properties.

2.3 II-IV nitrides

Fifty years ago, the design of ternary and quaternary semiconductors through the cation mutation in

binary II-VI and III-V semiconductors was proposed by Goodman and Pamplin:[5, 15, 1] (i) Through

replacing two Zn atoms in ZnSe by one Cu and one In atom, ZnSe is mutated into ternary CuInSe2,

and if further replacing two In by Zn and Sn, CuInSe2 is mutated into quaternary Cu2ZnSnSe4. Both

CuInSe2 and Cu2ZnSnSe4 are high-efficiency light-absorber semiconductors for thin film solar cells,

which have been under intensive study during the past 30 years.[2, 25] (ii) Similarly through replacing

two Ga in GaN by Zn and Sn, GaN can be mutated into ZnSnN2, as shown in Fig. 2.1. In fact

this cation mutation, a cross substitution, leads to a class of ternary II-IV-V2 semiconductors with

II=Zn, Cd, IV=Si, Ge, Sn and V=N, P, As, Sb, e.g., ZnGeN2 and ZnSnP2. II-IV-N2 compounds are

closely related to the wurtzite-structure III-N semiconductors, but have a mixed A-site composition.

The choice of different group II and group IV elements provides chemical diversity that can be

exploited to tune structural and electronic properties through the series.

Compared to the well studied CuInSe2 (I-III-VI2 class), the II-IV-V2 semiconductors have not

been studied extensively, e.g., the crystal structures and bandgaps of some II-IV-V2 have been

determined until quite recently.[16, 19] One possible reason for the slow progress in the study of

II-IV-V2 materials may be related to the difficulty in synthesis of electronic quality samples. With

additional elements, it is more challenging to control the composition and to synthesize single-phase

and stoichiometric ternary compounds.
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(0001)

GaN ZnSnN2

N

Zn Sn

N

Ga Ga

Figure 2.1: The crystal structure plot of wurtzite GaN and ZnSnN2. Here GaN is plotted in a
supercell with the same size as the primitive cell of ZnSnN2 in the Pna21 symmetry. The Pna21
structure of ZnSnN2 is equivalent to the wurtzite-kesterite I2-II-IV-VI4 structure through replacing
I by Zn, II and IV by Sn, and VI by N.[3]

Using RF Magnetron Sputter Deposition, we recently synthesized a new II-IV-V2 compound,

ZnSnN2, for which the optical measurements reveal a direct bandgap about 2.0 eV.[10] This successful

synthesis of ZnSnN2 indicates that a series of II-IV-V2 semiconductors may be synthesized in the

future and a rich space of the material properties may be explored for different functionalities.

2.4 Phase Stability and formation of ZnSnN2

2.4.1 Phase Stability:

At the ground state, ZnSnN2 crystalizes in a structure in the Pna21 symmetry with a 16-atom

primitive cell,[16, 10] as shown in Fig. 2.1(b). To study its thermodynamic stability, we first

calculated its formation energy, ∆Hf(ZnSnN2), which is defined as the total energy change of the

following reaction,

Zn(hcp) + Sn(diamond) +N2(gas)→ ZnSnN2 (2.1)

where Zn is in the hexagonal-close-packed (HCP) structure, Sn is in the diamond structure and N2

is at the gas molecule state. Using the hybrid functional with α=0.31 (see the Experimental Section
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Figure 2.2: (a) and (b) The calculated chemical potential range (in yellow shadow) that stabilize
single-phase ZnSnN2 (a) and ZnGeN2 (b). Outside the yellow region, different secondary phases as
labeled will form.

for details), a very small ∆Hf(ZnSnN2)=-0.17 eV/f.u. (-3.92 kcal/mol) is found. Since the calculated

formation energy of compound semiconductors are sensitive to the specific pseudopotentials and

functionals,[4, 21] we also used a recently developed scheme which can predict the formation energy

of compound semiconductors with a high accuracy (the test calculations on 55 ternary compounds

show that the mean absolute error is only 0.048 eV/atom),[21] in order to evaluate the influence of

the calculation methods. Using the new scheme, ∆Hf(ZnSnN2)=-0.14 eV/f.u., in good agreement

with the value from the hybrid functional calculation. To compare with the experimental values,

similar calculations are performed for other compounds, ∆Hf(Zn3N2)=-0.33 eV/f.u. (experimental:

-0.25 eV/f.u.[21]), ∆Hf(GaN)=-1.43 eV/f.u. (experimental: -1.62 eV/f.u.[21]) Considering the small

error with the new scheme, we believe the small formation energy of ZnSnN2 has a high reliability.

We notice that a large ∆Hf(ZnSnN2)=-2.32 eV/f.u. had been reported from the calculation using

the linearized gradient muffin-tin orbital (LMTO) method,[17] which is in contrast with the present

results using the plane-wave pseudopotential method and the new scheme, and the origin of the

inconsistence is so far not clear.

Now we will discuss how the small formation energy influences the synthesis of ZnSnN2. In

the synthesis environment, the "richness" or partial pressure of the component elements can be
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tuned, which can be quantitatively described by the chemical potentials of the component elements,

µZn, µSn, µN . µZn=0, µSn=0, µN=0 are defined when Zn, Sn and N are so rich that their pure

elemental phase like HCP Zn, diamond Sn, N2 molecule can be formed. To avoid the formation of

secondary phase such as the elemental phases and binary compound Zn3N2, the following conditions

should be satisfied,

µZn < 0, µSn < 0, µN < 0

3µZn + 2µN < ∆Hf(Zn3N2)
(2.2)

Under the thermodynamic equilibrium state that stabilizes ZnSnN2, the following equation should

also be satisfied,

µZn + µSn + 2µN = ∆Hf(ZnSnN2) (2.3)

With all these requirements satisfied, µZn and µSn are limited in a certain region in the (µZn, µSn)

plane as shown in Fig. 2.2(a), and µN depends on them according Eq. 2.3. As a result of the small

∆Hf(ZnSnN2), the stable region of ZnSnN2 is quite narrow, and the tunable range of µZn and µSn
is less than 0.05 eV. In contrast, another closely related II-IV-V2 semiconductor ZnGeN2 has a much

larger formation energy (-1.31 eV/f.u.) and wider stable region in the (µZn, µGe) plane, as shown in

Fig. 2.2(b). The obvious difference indicates that it is much more difficult to synthesize single-phase

ZnSnN2 than ZnGeN2. Actually in the literature, ZnGeN2 had been synthesized for decades while

ZnSnN2 was synthesized recently. The reason for the large difference may be related to the weaker

Sn-N bond than Ge-N, which also causes the Sn-N compound Sn3N4 to have a positive formation

energy (so not shown in Fig. 2.2, the experimental value is still unavailable) while Ge3N4 have a

negative formation energy -0.98 eV/f.u. The much smaller formation energy of ZnSnN2 than that of

ZnGeN2 is comparable with the situation between InN (-0.06 eV/f.u.) and GaN (-1.43 eV/f.u.).[21]

As a result of narrow small stable region, the coexistence of secondary phases such as Zn, Sn metals

and Zn3N2 is highly possible in the synthesized smaples. The coexisting Zn or Sn metal can be one

possible origin of the high electron concentration. Based on these results, strategies to avoid the

formation and exclude the coexistence of these secondary phases are critical to future applications

and improvement of the ZnSnN2 semiconductor.
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2.5 ZnSnN2 defect physics

Alternative to the formation of secondary phases, the formation of point defects in the ZnSnN2

lattice is also possible, and influences its properties. Whether a point defect α in the charge state

q will form or not depends on its formation energy, ∆H(α, q), which is a function of the chemical

potential of elements and chemical potential of electrons (Fermi energy), as described by,

∆H(α, q) = ∆H0(α, q) +
∑
i

niµi + qEF , (2.4)

where ∆H0(α, q) is the formation energy when the chemical potentials µi of all elements i (i=Zn,

Sn, N) are zero and the Fermi energy EF=0 (EF is referenced to the valence band maximum (VBM)

eigenenergy of the host semiconductor), and can be calculated using the supercell model.[24, 22] ni
is the number of atom i, and q is the number of electrons exchanged between the semiconductor

and the atmosphere in forming the defect.

The calculated formation energies of six possible defects in ZnSnN2 is shown in Fig. 2.2(c),

where the lowest-energy charge state is shown for each defect at a certain Fermi energy and the

chemical potentials of the elements are set at the center of the stable region in Fig. 2.2(a). Two

obvious characters can be identified: (i) the donor defects such as SnZn antisite (Sn substituing Zn),

VN (N vacancy) and Zni (Zn on the interstitial site surrounded by four N anions) have much lower

formation energy than the acceptor defects, such as ZnSn, VZn and Ni. The much lower formation

energies of these donor defects determine the intrinsic n-type conductivity (self-doping) of ZnSnN2.

The values become negative when the Fermi energy approaches zero (VBM), i.e., they will form

spontaneously in p-type samples, quenching mobile hole conductivity and pinning the Fermi energy

close to the conduction band minimum (CBM) emergy, so the p-type doping is impossible based on

this thermodynamic analysis. This can also be understood according to the low VBM energy of

ZnSnN2 (the GaN/ZnSnN2 valence band offset calculation shows that the VBM of ZnSnN2 is as low

as that of GaN[13]) and the conventional doping limit rule, which states that a semiconductor is

difficult to be doped p-type if the valence band is too low in energy.

(ii) SnZn antisite has the lowest formation energy through the whole Fermi energy range, so it is

the dominant intrinsic defect of this ternary semiconductor. At the neutral charge state (q=0), the

formation energy is only 0.13 eV, which corresponds to a population around 1020 cm−3 at the room
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v8
 

Sn 5s, N 2s, 2p
CBM

Sn 5s, N 2s
SnZn defect band 

N 2p, Zn 3d, Sn 5d
VBM

(a) (b) SnZn (c) ON

Figure 2.3: (a) Schematic plot of ZnSnN2 band structure, with the SnZn defect band below the
lowest conduction band. (b) Calculated band structure of ZnSnN2 along high-symmetry lines in the
Brillouin zone. (c) the wavefunction of SnZn donor state, (d) the wavefunction of ON donor state.
For (c) and (d), the defect and dopant concentration is 5.6×1020 cm−3.

temperature, and a even higher population at higher growth temperature. As a donor defect, SnZn
induces a donor level below the CBM state, which are occupied by two electrons (Sn has two more

valence electrons than Zn). The calculated (0/2+) transition energy level of SnZn is 0.37 eV below

CBM, i.e., when the Fermi energy is below this level, SnZn will be ionized and the two electrons on

the donor level will be donated to the system. Since it has a much lower formation energy and thus

much higher population than any other intrinsic defects, the Fermi energy of the ZnSnN2 samples is

pinned by SnZn to above the (0/2+) transition energy level.

Although the transition energy level of SnZn is not shallow, the corresponding donor state is not

localized, as shown by the delocalized wave-function over the whole supercell in Fig. 2.3(c). This

can be understood according to its component. The bandgap of ZnSnN2 is opened between the

valence band states composed of N-2p +Zn-3d orbitals and the conduction band states composed of

Sn-5s+N-2s orbitals (see Fig. 2.3(a)).[13] The donor state of SnZn has the similar component to

the lowest conduction band states, and is distributed on all Sn and N atoms in the whole supercell.

Considering that the concentration of SnZn can be as high as 1020 cm−3 (one defect among hundreds

of atoms), the interaction between the nearby defects makes the donor states be continuous to form

an occupied defect band, as shown schematically in Fig. 2.3(a). Our calculation with one SnZn defect

in an 128-atom supercell and 2×2×2 k-point mesh shows that the SnZn defect band has a large

dispersion (2 eV band width) and overlaps with the conduction bands. Because of the overlapping,

the electrons in this defect band can be taken as the electron carriers (Note, this is insensitive to
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the calculated (0/2+) level, and different from the situation when the defect concentration is low

and the electrons on the donor states need to be ionized to the conduction band to become the

electron carriers) and the system becomes almost metallic, which gives an explanation to the high

concentration of electron carriers revealed by the Hall measurement.[10] Since the tunable chemical

potential range of Zn and Sn is very narrow (less than 0.05 eV), it is limited to increase the SnZn
formation energy by changing the chemical potential of elements, and thus it is difficult to suppress

the electron concentration in ZnSnN2 by changing the growth environment.

With the possible origin of the high electron concentration attributed to high population of SnZn
defects, we need to revisit the Burstein-Moss effect in ZnSnN2 samples,[10] which means that when

the free electrons fill the conduction bands, the absorption onset shifts to higher energy. However,

in ZnSnN2 the electrons are actually occupying the donor defect bands below the CBM, rather than

filling the conduction band as shown schematically in Fig. 2.3(a), so the absorption onset of photons

will not shift up significantly with the electron concentration, i.e., the high electron concentration

produced by the SnZn defects in ZnSnN2 does not result in obvious Burstein-Moss effect. On the

other hand, possible absorption may also happen through the electron excitation from the occupied

defect band to the higher-energy conduction band. However, both our calculated band structure

(Fig. 2.3(b)) and previously calculated band structure using different functionals show that the

second conduction band is more than 2.5 eV higher than the lowest conduction band,[16, 10] so

there is no direct absorption of lower-energy photons. Based on this analysis, the bandgap (about

2.0 eV) revealed by optical measurements[10] should be close to the fundamental bandgap of the

defect-free ZnSnN2. Because of the coexistence of metal-like high electron concentration and the 2.0

eV absorption onset (bandgap), ZnSnN2 can be taken as a new conducting material, which has a

narrower bandgap than the conventional wide-gap transparent conducting oxides.[23]

In addition to the intrinsic defects, unintentional doping by extrinsic impurity atoms is also

possible, e.g., the O impurity atom may exist in the lattice. The calculated formation energy of

ON is shown in Fig. 2.2(c) when the oxygen chemical potential µO=∆Hf(ZnO)-µZn=-3.43 eV, and

the value can be decreased significantly as µO increases (the oxygen partial pressure increases).

Therefore, a very low partial pressure of oxygen is required to suppress the formation of ON ansites,[9]

otherwise, ON donors can also cause a high electron concentration. The (0/+) transition energy

level of ON is 0.21 eV below CBM and the corresponding donor state is also delocalized over the

whole supercell, as shown in Fig. 2.3(d), so the ON states can also form a defect band, similar to
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the SnZn states. Therefore the above discussion about the donor defect band and optical transitions

work also for the ON impurities.

2.6 Conclusions

In conclusion, we find that ZnSnN2 has a very narrow stable region in the element chemical potential

space, so its single-phase synthesis is a challenge. The study of defect properties shows that the

semiconductor is intrinsically self-doped to n-type by high population of defects such as SnZn and

ON impurities. The high population of these donor defects results in a high concentration of electron

carriers, and make the system almost metallic, explaining the experimental observation. Since these

electrons stay on the donor defect band below the CBM, they do not influence the onset of the

optical absorption (optical bandgap). Therefore ZnSnN2 can be regarded as a new material that

combines a metallic conductivity with a direct semiconductor bandgap.

2.7 Computational details:

The structural relaxation and electronic structure calculations are performed within the density

functional theory (DFT) formalism as implemented in the VASP code.[7] The frozen-core projector

augmented-wave potentials[8] were employed with an energy cutoff of 400 eV for the plane wave

basis set. A 6×6×6 Monkhorst-Pack k-point mesh is included in the Brillouin zone integration for

the 16-atom primitive cell and single k-point is included for the 128-atom supercell, which is used

for the simulation of defects. Test calculations with denser k-point mesh show the calculated results

are well converged. For the exchange-correlation functional, we used the non-local hybrid functional

(HSE[14]) in which a percentage (known as the mixing parameter α) of the semi-local GGA exchange

potential is replaced by screened Fock exchange. Here based on the similarity in the crystal and

electronic structure between GaN and ZnSnN2, the mixing parameter α is set to 0.31, following the

previous calculation setup which predicts a bandgap of 3.5 eV for GaN, in good agreement with the

experimental value.[11, 18] It predicts a direct bandgap of 1.84 eV for ZnSnN2, close to the value

from the optical measurement (2.0 eV).[10] We notice that there are contradictive results in the

calculated bandgaps from different level of approximations to the exchange-correlation functional,
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from 1.42 eV (HSE with α =0.25[10]) to 2.02 eV (GW[16, 17]). To see if such approximations

influence the conclusions of the current paper, test calculations are also performed with different

α parameters (α=0, 0.25), which show that the conclusions are independent of the specific functionals.
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3. ZN-IV NITRIDE SEMICONDUCTOR ALLOYS

3

Zn(Sn,Ge)N2 Semiconductor
Alloys

I think nature’s imagination is so much greater than man’s,

she’s never going to let us relax.

– R. P. Feynman

3.0.1 Chapter Overview

This chapter describes the first-principles calculations as well as the synthesis and optoelectronic and

spectroscopic characterization of a series of direct band-gap semiconductor alloys, ZnSn(1−x)GexN2.

These materials have a crystal structure and electronic structure similar to that of the InGaN

alloys. ZnSn(1 − x)GexN2 alloys with various compositions were synthesized, with the elements

fully miscible across the composition range without evidence for phase separation, as shown by

X-ray diffraction and X-ray absorption fine-structure spectroscopy. The optical band gaps of the

ZnSn(1− x)GexN2 alloys range from ∼ 2.0 to ∼ 3.1 eV, and nitrogen K-edge X-ray absorption and

emission spectroscopy showed that the conduction-band minimum shifted to higher energy with the

addition of Ge, while the valence-band maximum remained at constant energy. Relatively small

values were measured (0.29 eV) and calculated (0.67 eV) for the band-bowing parameters for the

band gaps of the ZnSn(1− x)GexN2 alloys, indicating that the band gaps of the ZnSn(1− x)GexN2

alloy series could be tuned almost monotonically by control of the Sn/Ge ratio.
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3.1 Introduction

InGaN-based semiconductor materials have attained commercial prominence in optoelectronics

in part due to the large range in electronic band gaps facilitated by tuning the In/Ga ratio of

InGaN alloys.[14, 15] The experimentally determined fundamental gap of GaN is 3.51 eV[14], while

that of InN is 0.69 eV.[7, 10], Hence, InGaN alloys provide a simple class of semiconductors whose

fundamental band gap can, in principle, span the entire visible spectrum and beyond. However the

InGaN semiconductors are difficult to synthesize as homogeneous alloys, without phase separation,

across the full range of In/Ga ratios. This behavior has limited the compositional range for which

InGaN typically exhibits high radiative efficiency, in turn limiting the range of light-emitting,

photovoltaic or photoelectrochemical device applications of such materials. The large volume

difference between InN and GaN[15] promotes clustering to relieve internal strains, and precludes

the straightforward synthesis of high-quality crystals that have sufficiently high In concentrations

to produce a band gap of the alloy in the green range of the color spectrum.[15] Additionally,

the reliance on indium, with its limited economically viable sources, could potentially limit the

large-scale incorporation of InGaN in solar energy-conversion applications. These factors motivate

the search for alternatives to current III-nitride semiconductors for both optoelectronics and solar

energy-conversion applications.

3.2 Tunability in Zn(Sn,Ge)N2

The II-IV-N2 compounds, closely related to the wurtzite-structured III-N semiconductors, have

similar electronic and optical properties to InGaN, e.g. direct band gaps and large optical absorption

coefficients.[9, 11, 5, 13] The choice of different group II and group IV elements provides chemical

diversity that can be exploited to tune the structural and electronic properties through the series of

alloys.

ZnSnN2 (ZnGeN2) can be considered as derived from binary GaN by the replacement of two

Ga atoms by Zn+Sn (Zn+Ge) atoms.[2, 1] GaN is more stable in the wurtzite structure, therefore

ZnSnN2 and ZnGeN2 can crystallize in the wurtzite-derived structure with two primitive cells, (i)

the one with the Pna21 symmetry, shown in Fig 3.1(a(i)) (called wurtzite-chalcopyrite structure[2,

1] ) and (ii) the one with the Pmc21 symmetry (called wurtzite-CuAu structure[2, 1] , shown in
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Figure 3.1: (a) The crystal structure of (i) a random InxGa(1− x)N alloy, (ii) ZnSnN2 ground-state
structure with the Pna21 symmetry, and (iii) the special quasi-random structure of ZnSn0.5Ge0.5N2.
The structures can be derived from the GaN wurtzite structure by replacement of the Ga cations
by different cations: (i) In, (ii) Zn and Sn, and (iii) Zn, Sn and Ge; The green, purple, red, blue
and yellow balls show the N, Ga (In), Zn, Sn and Ge atoms in order. (b) The calculated formation
enthalpies of ZnSnxGe(1− x)N2 alloys with different compositions x (x = 0, 0.25, 0.5, 0.75 and 1).
Sn and Ge atoms are randomly distributed on the Sn sites in the ZnSnN2 structure with Pna21
symmetry. The red line shows the fit according to Equation ??, with the interaction parameters Ω
= 67 meV/atom, and the blue line shows the formation enthalpies of InxGa(1− x)N alloys, with the
interaction parameter Ω = 166 meV/ atom taken from Ref. [2] (c) XRD Θ-2Θ scans around the
(002) reflection for films with various compositions grown on c-plane GaN template substrates. For
comparison, data points are also shown for films grown on sapphire (d) Linear relationship between
the (002) peak position and the alloy composition. (e) Ge XANES and (f) FT EXAFS (k3-weighted)
spectra of ZnGeN2 and Zn(Ge,Sn)N2.
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Fig 3.1(a(ii))). Other structures have larger primitive cells than these two structures and thus can

be considered a mixing of these two structures, with intermediate properties.

Because our calculations, as well as previous calculations,[9, 13, 12] have shown that the

wurtzite-chalcopyrite structure has a lower energy than the wurtzite-CuAu structure, our theoretical

investigation of the ZnSn(1− x)GexN2 alloys focused on the wurtzite-chalcopyrite structure, with

Sn and Ge randomly distributed on the Sn/Ge sublattice. Calculations of disordered semiconductor

alloys must realistically describe the random cation lattice site occupancy for the isovalent elements

(Sn and Ge here). Hence we used the well-developed special-quasi-random structures (SQS[18, 17])

approach to describe the disordered occupation of Sn and Ge on cation sites. For a given supercell

size, special quasi-random structures (SQS) have site occupations (the Sn/Ge sites in this chapter)

optimized to best reproduce the structural correlation functions of a completely random alloy, so

the calculated formation energy and the calculated band gaps should also be close to those of the

random alloys. Fig 3.1(a(iii)) illustrates the SQS model having a composition x=0.5, for which the

Sn and Ge were randomized on the 16 Sn/Ge cation sites. Detailed structural information of SQS

are given in the computational details section.

Fig 3.1(b) shows the calculated formation enthalpy of the ZnSnxGe(1− x)N2 and In(1− x)GaxN

alloys, describing the solubility of mixing of Sn and Ge in their sublattice. The formation enthalpy

of the alloys is given by:

∆Hf (x) = E(x)− (1− x)E(0)− xE(1) (3.1)

where E(x) is the total energy of the alloy having the compositional parameter x, i.e., E(0) and

E(1) are the total energies of ZnSnN2 and ZnGeN2 respectively. The values of E(x) were calculated

using standard first-principles methods. The calculated formation enthalpies exhibited an upward

bowing in the dependence on the composition, x, indicating that these materials are expected to

prefer to phase separate at 0 K into ZnSnN2 and ZnGeN2. The calculated additional energy cost for

mixing Sn and Ge cations is given by the calculated formation enthalpies.

To compare these quantities with the formation enthalpies of other alloys, the calculated formation

enthalpies were fitted to Equation 3.2, to yield the interaction parameter, Ω, of the Sn/Ge-mixed

alloys:

23



3. ZN-IV NITRIDE SEMICONDUCTOR ALLOYS

∆Hf (x) = Ωx(1− x) (3.2)

The fit shown by the lines in Fig 3.1(b) indicated that the calculated data were in accord with

the relationship of Equation 3.2. The interaction parameter was calculated to be 67 meV/atom (268

meV/mixed-atom). For comparison, Fig 3.1(b) also plots the calculated formation enthalpies of the

In(1− x)GaxN alloy series using an interaction parameter of 166 meV/atom (332 meV/mixed-atom).

11 The smaller calculated interaction parameter of the ZnSn(1− x)GexN2 alloys indicates that Sn

and Ge are expected to be more easily mixed in the Sn/Ge sublattice than in the In/Ga sublattice

of the In(1 − x)GaxN alloys. Hence a higher compositional uniformity can be expected in the

ZnSn(1− x)GexN2 alloys relative to that of the In(1− x)GaxN alloys.

The theoretically predicted compositional uniformity of the ZnSn(1 − x)GexN2 alloys was in

accord with the structural characterization data of the experimentally synthesized alloys. X-ray

diffraction was used to characterize the long-range order of the materials, to thereby determine if

the material was a continuous alloy or a mixture of different phases. The observation of a strong

peak corresponding to the (002) reflection of ZnSnxGe(1− x)N2, coupled with weak peaks or no

peaks in any other crystallographic directions, indicated that the films were strongly textured, with

the (001) planes oriented parallel to the surface of the substrate. The (002) peak positions for

ZnSnN2 and ZnGeN2 were confirmed by calculations based on theoretical lattice parameters (a=6.70,

b=5.81, c=5.42 Å for ZnSnN2, and a=6.39, b=5.41, c=5.15 Å for ZnGeN2), and the intermediate

compositions of ZnSnxGe(1−x)N2 are expected to have peaks with 2Θ positions in between those of

ZnSnN2 and ZnGeN2. Fig 3.1(c) presents X-ray diffraction Θ-2Θ scans around the (002) reflection

for films with various compositions grown on c-plane GaN template substrates. The (002) peak

position increased steadily with increasing germanium content in the alloy series, indicating an

apparent lack of phase separation in the material. Additionally, the 2Θ position of the (002) peak

increased monotonically with increasing germanium content, implying that the unit cell continuously

expanded and contracted as the composition was changed, which is consistent with the calculated

volume change of the alloys with varied composition. Fig 3.1(d) further highlights the continuous

nature of the alloying of the films, indicated by the linear relationship between the (002) peak

position and the alloy composition. Data are shown from many samples with various compositions,

with a linear fit of the data for films grown on GaN templates. For comparison, data points are also
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shown for films grown on sapphire. The films grown on GaN were of higher crystalline quality than

those grown on sapphire30 because the lattice mismatch between GaN and ZnSnxGe(1− x)N2 is

about half of the mismatch between sapphire and ZnSnxGe(1− x)N2.

The observed compositional uniformity is in contrast to the behavior of the InxGa(1−x)N alloys,

in which the large lattice mismatch between InN and GaN causes the indium to segregate, resulting

in phase separation and the consequent formation of distinct domains of InN and GaN in alloys

with high indium content.[15] X-ray diffraction measurements for phase-separated InxGa(1− x)N

showed two separate peaks, representing the two different lattice parameters present in the material.

In contrast, one prominent peak was observed for ZnSnxGe(1− x)N2 in the 2Θ range of the (002)

reflection, and no peaks were observed at the 2Θ positions of ZnSnN2 or ZnGeN2 for films with 0

< x < 1. The existence of a single (002) peak reinforces the conclusion that ZnSnxGe(1 − x)N2

is an alloy with continuous variable composition and is not a mixture of different phases. Hence

this materials system should allow access to the entire range of band gap values by use of existing

growth strategies.

Fig 3.1 (e)-(f) show the Ge X-ray absorption near-edge structure (XANES) and extended- edge

X-ray absorption fine structure (EXAFS) spectra of the Zn(Sn)GeN2 alloys as a function of changes

in the Sn:Ge ratio. For comparison, the X-ray absorption spectrum of ZnGeN2 is also displayed

(Ge K-edge). Although the rising edge energy of Ge stayed constant as the Sn loading increased,

the EXAFS spectra clearly showed the structural changes of the alloys. In Fig 3.1(f), the intensity

of the first peak that corresponds to the Ge-N interactions increased when the Sn to Ge ratio was

increased above 50 percent (Fig 3.1 d). Additionally, the intensity of the second peak, that contained

contributions from Ge-Ge, Ge-Sn, and Zn-Ge interactions around 3.2 – 3.3 Å(note that the x-axis

of Fig 3.1 f is an apparent distance, and it is 0.5Å shorter than the actual distances), decreased

significantly. The EXAFS curve-fitting results are shown in the Appendix A. Figure A.1, with

the fitting parameters summarized in Appendix A. For ZnGeN2, the initial fitting parameters were

taken from the crystal structure, and the coordination number (N) was fixed accordingly. The fitted

result agrees well with the experimental data shown in Appendix ??. For ZnSnxGe(1 − x)N2, a

Ge-Sn path around 3.3 Å was included for the curve fitting, and the coordination numbers for the

Ge-Ge and Ge-Sn interactions were varied during the fitting. As the fraction of Sn increased, the N

number of Ge-Sn increased, while that of Ge-Ge decreased. However, the Debye-Waller factors (σ2)

of the Ge-Ge, Ge-Zn, and Ge-Sn interactions become large in the presence of Sn, as evidenced by
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the weak peak intensity around the peak II region (Fig 3.1(f)). The data therefore indicate that

a large distance heterogeneity around 3.3 Å was present in these samples, presumably due to the

presence of Ge-Ge, Ge-Zn, and Ge-Sn interactions.

Spectroscopic ellipsometric measurements were used to probe the optical absorption properties

of the alloys, particularly near the absorption onset of the materials. The absorption exhibited an

obvious blue shift as the Ge composition increased (Fig 3.2a). For direct band-gap semiconductors,

the value of the band gap can be estimated by linear extrapolation to the energy axis of a plot of

the square of the absorption coefficient (α2) versus the photon energy. The fitted gaps are 2.0 eV

for ZnSnN2 [3, 9] and 3.1 eV for ZnGeN2. These values are close to those measured previously for

different samples, around 2.0 eV (2.0 eV, 1.7 eV, and 2.12-2.38 eV) for ZnSnN2 and around 3.2-3.4

eV [4, 13, 12, 3, 5] for ZnGeN2. As we can see, there is still uncertainty in the exact values of the

gaps, but it is safe to say that the gap of ZnSnN2 is around 2.0 eV and that of ZnGeN2 is around

3.2 eV. Fig 3.2(b) shows the change in optical band gap as a function of composition, with the band

gap ranging from 2.0 to 3.1 eV and thereby allowing access to the entire range of band gaps between

ZnSnN2 and ZnGeN2, the two end-point compositions. For comparison, Fig 3.2(b) also presents the

experimental band gap change for the In(1− x)GaxN alloys (cited from Ref. [15]). The band gap

range spanned by the ZnSn(1− x)GexN2 alloys (2.0-3.2 eV from the experiments and 1.84 to 3.89

eV from the calculations) is much narrower than that of the In(1− x)GaxN alloys (about 0.6-3.4

eV from experiments). This difference can primarily be related to the higher band gap of ZnSnN2

relative to that of InN (replacement of two In in InN by Zn and Sn produces an increase of about

1.4 eV in the band gap).

The band gap of the alloy series clearly depended nearly linearly on the composition x, as

evidenced by the bowing parameter b, defined as:

Eg(x) = xEg(1) + (1− x)Eg(0)− bx(1− x) (3.3)

A bowing parameter of b = 0.29 eV was determined from the measured band gaps of ZnSn(1−

x)GexN2, whereas a value of b = 0.67 eV was obtained from the calculated band gaps of the same

alloy series (b = 0.3 eV was also predicted by Punya and Lambrecht for the x=0.5 alloy[12]), as shown

in Fig 3.2(c). Despite an obvious difference, both b values are small, and are significantly smaller

than b for the In(1−x)GaxN alloy series. The small value of b indicates that the ZnSn(1−x)GexN2
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alloy band gaps can be tuned almost linearly by control over the Sn/Ge composition.

Fig 3.3(a,b) presents the calculated band structures for the two end-point compounds, ZnSnN2

and ZnGeN2. The two band structures were similar in that both materials have direct band gaps.

Additionally both materials have a lowest conduction band with a large dispersion, with the width of

the band about 2 eV, while the highest valence bands are relatively flat in both cases. This behavior

is consistent with the orbital component of the two bands, in that (i) the lowest conduction band is

composed mainly of the antibonding state of the hybridization between Sn 5s (Ge 4s) and N 2s

orbitals, so this band is delocalized with a significant dispersion, and (ii) the highest valence bands

are composed mainly of the N 2p states, with a weaker hybridization with Zn 3d states (because the

Zn 3d eigenenergy is low and deep in the valence band, the hybridization is weaker, and the Sn 4d

eigenenergy is much lower, so the hybridization is negligible). Hence the states are localized and

have a small dispersion.

The primary difference between the band structure of ZnSnN2 and ZnGeN2 is in the value of the

band gap of each system. Calculations using the hybrid functional (mixing parameter=0.31) yielded

a band gap of 1.84 eV for ZnSnN2, which is much smaller than the band gap of ZnGeN2 (3.89 eV

). Because both compounds have the top part of their valence bands determined by the N 2p and

Zn 3d states, the valence band offset should be small. This expectation is supported by the direct

valence band offset calculations, and a valence band offset about 0.4 eV has been found.[12] The

much smaller band gap of ZnSnN2 compared to ZnGeN2 is therefore derived from the much lower

conduction-band minimum state, i.e., the large conduction-band offset between ZnGeN2/ZnSnN2.

This behavior occurs because the conduction-band minimum state is the antibonding state of Sn

5s (Ge 4s)+N 2s hybridization. In addition, (i) the Sn 5s orbital energy is much lower than Ge 4s

orbital energy; and (ii) the Sn atom has much larger radius than Ge, so the Sn-N bond length is

much larger than the Ge-N bond length, thus the Sn 5s + N 2s hybridization is weaker than the

Ge 4s +N 2s hybridization, resulting in a lower energy antibonding state for ZnSnN2 relative to

ZnGeN2.

Because the band-gap difference is about 1.6-2.0 eV and valence-band offset is only 0.4 eV, we

estimate that the ZnGeN2/ZnSnN2 conduction-band offset is large, i.e., larger than 1.2 eV. When

the Sn/Ge composition is changed in the ZnSn(1− x)GexN2 alloys, the band gap change therefore

results mainly from the shift in the position of the conduction band. Furthermore, because the band

gap depends almost linearly on composition, the conduction-band edge should shift almost linearly
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Figure 3.3: Calculated band structure of (a) ZnSnN2 and (b) ZnGeN2, along the high-symmetry
lines of the Brillouin zone. (c) Nitrogen K-edge XANES spectra for samples with different Ge content
as well as the end-point compositions, ZnSnN2 and ZnGeN2. The vertical line (red) indicates the
evolution of the conduction-band minimum towards higher energies as a function of increasing Ge
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with the composition parameter, x.

3.3 X-ray spectroscopy of Zn(Sn,Ge)N2

The analysis described above was supported by X-ray spectroscopic data of the electronic structure

of these alloys, which was used to complement the spectroscopic ellipsometry data. Ellipsometry is

typically restricted to the region close to the band gap, and provides information about the position

of energy levels but does not provide information about the localization or about the orbitals that

characterize the electronic states. X-ray spectroscopy has element selectivity due to absorption via

the core states, whereas chemical sensitivity is obtained due to the participation of valence electrons.

Furthermore, due to the dipolar nature of the transitions, particular symmetry information can be

obtained. X-ray absorption spectroscopy specifically probes the local unoccupied electronic structure,

and is therefore related to the conduction band, whereas x-ray emission spectroscopy (XES) provides

information about the local occupied electronic structure, and is therefore related to the valence

band. Although the nitrogen K-edge XES/XAS spectra do not allow for direct determination of the

band gap, due to the element specificity and selection rules of XES/XAS, the data do reflect the

conduction and valence band characteristics and additionally provide information on the role that

specific elements play in determining the electronic structure of the alloys. The spectral features are

sensitive to changes in the chemical environment around the element being probed and also provide

information about the oxidation state of the absorbing atom, the electronic configuration, and the

site symmetry. Thus, X-ray spectroscopy provides a complementary picture of the conduction-band

and valence-band states that is distinct from the information obtained via optical transitions.[6]

Using the dipole selection rules, the nitrogen K-edge XAS involves transitions from localized N

1s-like state to unoccupied states with p-character in the CB, whereas XES involves transitions from

occupied p states in the VB to the 1s core hole.

Fig 3.3(c) shows the X-ray absorption data for the ZnSnxGe(1 − x)N2 samples with varying

Sn:Ge ratios, as well as the XAS data for pure ZnSnN2 and ZnGeN2. As indicated by the vertical

line, the absorption threshold, which corresponds to the conduction-band minimum, shifted to

higher energies as the Ge content increased. For ZnSnN2, the absorption onset was around 396.6

eV whereas for ZnGeN2 the onset was observed at approximately 397.5 eV, with the values for the

alloys falling between these two extremes. This behavior is qualitatively consistent with the above
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analysis based on the large conduction-band offset between ZnSnN2 and ZnGeN2.

Fig 3.3(d) presents the N K α emission spectra, which reflect the valence band partial density

of states, for different samples with varying Ge concentration. Fig 3.3(d) also presents the X-ray

emission spectrum of ZnSnN2. Two features, labeled as A and B, were distinct in all of the spectra,

but upon incorporation of Ge, a shoulder labeled as C appeared between A and B, with this shoulder

becoming more prominent as the Ge content increased. Feature B also became more pronounced as

the Ge content increased. Feature A, appearing at 393.6 eV, mainly corresponds to N 2p occupied

states, whereas the low energy feature B, that appeared between 386.2 and 386.5 eV originates from

nitrogen 2p states hybridized with Zn 3d, Ge 4s and Sn 5s states. These assignments are in accord

with previous results.[6, 13] The appearance of shoulder C with the addition of Ge is ascribable to

the mixing of Ge 4p states with N 2p states, whereas the enhancement in feature B results from the

contribution of Ge 4s states. This increase in the partial density of states observed in the lower

energy part of the valence band below 392 eV, as displayed by the features B and C, indicates a

stronger s-p-d hybridization in case of the alloy samples. As indicated by the vertical black line, the

valence-band maximum did not shift upon addition of Ge, which is consistent with the calculated

small valence-band offset. Thus, a gradual increase in the band gap with increasing Ge content

primarily occurred by the reorganization of conduction-band minimum to higher energies.

3.4 Conclusions

In summary, the experimental observations and first principles calculations of the ZnSnxGe(1−x)N2

semiconductors described herein have shown that the alloys can be tuned to span a large portion

of the solar spectrum. The band gap in the ZnSn(1− x)GexN2 is tunable from 2 eV (ZnSnN2) to

3.1 eV (ZnGeN2), with a linear dependence on the composition arising from the smaller lattice

mismatch between ZnSnN2 and ZnGeN2 as compared to the lattice mismatch in the InxGa(1− x)N

alloys that span the same energy gap range, consistent with theoretical predictions. Thus, the

ZnSnxGe(1− x)N2 alloys potentially could be useful as earth-abundant light absorbers for artificial

photosynthetic devices as well as a replacement for InGaN in nitride-based optoelectronic devices.

31



3. ZN-IV NITRIDE SEMICONDUCTOR ALLOYS

3.5 Calculation methods:

The structural relaxation and electronic structure were calculated within the density functional

formalism as implemented in the VASP code. [8] For the exchange-correlation potential, both the

generalized gradient approximation (GGA) in the PBE form, and the non-local hybrid functional,

(HSE 23) in which 31 % (known as the mixing parameter) of the semi-local GGA exchange potential

was replaced by screened Fock exchange, were used. For the 16-atom orthorhombic unit cells of

ZnSnN2 and ZnGeN2, both the structural relaxation and electronic structural calculations were

performed using the hybrid functional calculations. For the structural relaxation of the 64-atom

special quasi-random structure (SQS) for the ZnSnxGe(1− x)N2 alloys, the structural relaxation

was performed using the PBE functional, due to the heavy calculation cost of the hybrid functional.

The following electronic structure calculation was also performed using the hybrid functional. The d

states of the group II and IV elements were treated explicitly as valence. The interaction between

the core electrons and the valence electrons was included by the standard frozen-core projector

augmented-wave potentials. An energy cut-off of 400 eV was applied in all cases. For Brillouin-zone

integration, k-point meshes that were equivalent to the 63 Monkhorst-Pack meshes for a 16-atom

orthorhombic unit cell were used. All lattice vectors and atomic positions were fully relaxed by

minimization of the quantum mechanical stresses and forces.

3.5.1 Calculated density of states

The calculated density of states for ZnSnN2 and ZnGeN2 is given ibelow, with the energy relative

to the valence band maximum (VBM) eigen-energy.

3.6 Materials Synthesis

3.6.1 Deposition via Reactive RF Magnetron Sputtering

Thin films were synthesized in an AJA International sputtering chamber (base pressure 10−8 Torr)

from a combined Zn0.75Sn0.25 target and an elemental Ge target in an Ar/N2 gas mixture (3mTorr)

with varying power on the Ge target to vary the composition. The films were deposited on c-sapphire

and LUMILOG c-GaN template substrates.
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Figure 3.4: Calculated total and partial density of states of ZnSnN2. The partial density of states is
projected on Zn, Sn, Ge and N s, p, and d orbitals respectively.
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projected on Zn, Sn, Ge and N s, p, and d orbitals respectively.
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3.7 Experimental methods:

3.7.1 X-ray spectroscopy:

X-ray spectroscopic data were collected at the Advanced Light Source (ALS) at Lawrence Berkeley

National Laboratory, with an electron energy of 1.9 GeV and an average current of 500 mA.

Soft X-Ray Measurements: Nitrogen K-edge XAS and XES measurements were performed

using beamline 7.0.1. The beam line was equipped with a 99-pole, 5 cm period undulator and a

spherical grating monochromator[16], and delivered intense radiation with a narrow band-pass. For

x-ray absorption, the beam-line resolution was set to 0.15 eV at 400 eV. Spectra were recorded in

total electron yield (TEY) mode by measurement of the sample drain current and total fluorescence

yield (TFY) mode using a channeltron. The incident photon energy was calibrated by measurement

of the X-ray absorption spectrum of hexagonal boron nitride (BN) during the experiment. The

spectra were normalized to the photocurrent produced by a gold mesh that was inserted in the

beamline between the last mirror and the sample. The incident radiation had a linear p-polarization

(E vector in the plane of incidence), and samples were oriented at a grazing incidence with an angle

of 20◦ with respect to the incident beam. X-ray emission spectra were recorded using a grazing

incidence spectrometer16 that had a resolution of 0.4 eV at the N K-edge. With a Rowland circle

geometry, the spectrometer consisted of a 20 µm wide and 2 cm long entrance slit, a spherical

grating with a 5 m radius and 1200 lines mm−1, and a two-dimensional detector. The emission

spectra were measured with the spectrometer mounted at angle of 90◦ relative to the incident

beam. The emission energies were calibrated using the elastic peaks of emission spectra of the N

K-edge that were produced by the BN reference sample. All data were collected at room temperature.

Hard X-Ray Measurements: Hard X-ray absorption spectra (XAS) were collected at beam

line 10.3.2. The radiation was monochromatized by a Si (111) double-crystal monochromator. The

intensity of the incident X-ray beam was monitored by use of a N2-filled ion chamber (I0) positioned

in front of the sample. Fluorescence spectra were recorded using a seven-element Ge solid-state

detector. The monochromator energy was calibrated relative to the rising-edge energy of a Ge

foil (11103.00 eV). Data reduction of the XAS spectra was performed using custom-made software

(Matthew Marcus). The pre-edge and post-edge contributions were subtracted from the XAS spectra,
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and the results were normalized with respect to the edge jump. Background removal in k-space

was performed by use of a five-domain cubic spline. Curve fitting was performed with Artemis and

IFEFFIT software using ab initio calculated phases and amplitudes from the program FEFF 8.2.

The details of the curve fitting are discussed in the Appendices.

3.7.2 X-ray Diffraction (XRD)

The structure and phase of the II-IV nitrides was evaluated by XRD obtained using a PANalytical

X’Pert diffractometer with a Cu K α source (λ = 1.5406Å ), over a 2Θ range of 30◦ to 43◦ for the

thin films on a c-plane oriented sapphire substrate.

3.7.3 Spectroscopic Ellipsometry:

Spectroscopic ellipsometry was performed on samples grown on c-sapphire. Data were collected

at an incidence angle of 70◦ for 250 nm < λ < 2300 nm, with a Xe lamp visible light source

and a Fourier-transform infrared spectrometer. The value of the band gap is estimated by linear

extrapolation to the energy axis of a plot of the square of the absorption coefficient (α2) versus the

photon energy as is typical for direct band-gap semiconductors.
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4. DECAY OF SURFACE PLASMONS

4

Decay of surface plasmons

Make things as simple as possible, but not simpler.

– Albert Einstein

4.1 Chapter Overview

The decay of surface plasmon resonances into hot electron-hole pairs has recently been utilized in

Schottky barrier optical detectors and energy conversion devices, in contrast to many applications

where damping is to be ardently avoided. Collection of hot electrons generated by the efficient

absorption of light in metallic nanostructures in contact with semiconductor substrates can provide a

basis for the construction of solar energy-conversion devices. In this chapter we evaluate theoretically

the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-

semiconductor Schottky-barrier diodes. In this calculation, the current-voltage characteristics are

given by the internal photoemission yield as well as by the thermionic dark current over a varied-

energy barrier height. The Fowler model in all cases predicts solar energy-conversion efficiencies

of less than 1 % for such systems. However, relaxation of the assumptions regarding constraints

on the escape cone and momentum conservation at the interface yields solar energy-conversion

efficiencies as high as 1-10%, under some assumed (albeit optimistic) operating conditions. Under

these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current,

the distribution of hot electron energies, and hot-electron momentum considerations. Drawbacks of

the IPE model and the question of quantum effects in describing plasmon decays will be addressed
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in this chapter.

4.2 Introduction

4.2.1 Device physics motivated use of plasmon decays

The energy-conversion efficiencies of record-setting pn-junction photovoltaics are rapidly approaching

the theoretical single-bandgap Shockley-Queisser limit of 32 % under unconcentrated sunlight.[20]

Multi-junction solar cells (that still operate within the Shockley-Queisser limitations for each absorber

and junction) can provide much higher efficiencies partly by reducing the amount of sub-bandgap

light lost, but such devices also have much higher costs than single-bandgap devices due to the need

to produce multiple high-purity semiconductor materials to capture the incident light and convert

it into a collected electrical current. Another possible device architecture considered here consists

of a single band gap semiconductor homojunction or heterojunction device used in combination

with a metal-semiconductor Schottky junction formed from that same light absorber. In such

an approach, in addition to collection of above band-gap carriers generated in the semiconductor

(again subject to the Shockley-Queisser limit), the metal would additionally serve to generate “hot

“electron-hole pairs in the metal which would then be emitted into the semiconductor and collected

as an additional photocurrent. The process of hot carrier internal photoemission (IPE) from the

metal to the semiconductor over a tunable Schottky barrier has therefore been proposed as a possible

solar energy conversion device formation strategy.[22] This metal-absorber device structure (similar

in some ways to a dye-sensitized solar cell) could therefore provide an interesting device integration

possibility when placed optically behind a single-junction solar cell, serving to increase the overall

efficiency of the whole system by virtue of the presence of this second capture and conversion system

in the overall device structure. Though referred to as “hot electron” or “hot hole” emission/capture,

we emphasize that the device physics are different from “hot carrier” solar cells.[19] Such hot carrier

metal/semiconductor device structures could in principle be beneficially used in solid-state[22, 4,

13] or photoelectrochemical systems[15, 16, 5, 14] to collect photons having energies lower than the

energy band gap of a semiconductor, in essence serving as the second junction in a tandem structure

but not requiring necessarily a second pure semiconductor light absorber as in a conventional tandem

cell arrangement. Plasmonic structures have been demonstrated to provide highly efficient light
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scattering and trapping elements, in some cases providing enhancements in solar energy conversion.[2,

1, 17] In the context of hot-electron devices, the large extinction cross-section at a surface plasmon

resonance enables very thin films of nanostructures to absorb a significant fraction of the solar

spectrum.[17]The collective plasmon oscillation may also play a role in increasing the photoemission

yield,[10, 12] though the details of the hot-carrier dynamics after surface plasmon decay are still

under study. At the small dimensions of plasmonic structures, the effects of electron scattering at

surfaces strongly modifies the yield even in the semiclassical IPE model.[12]

In this chapter an analysis of the efficiency limits for energy conversion via IPE, capturing the key

optical and electronic processes in such devices is presented. Section 4.3 presents the current-voltage

characteristics and energy-conversion efficiency based on simple Fowler theory and thermionic

emission; section 4.4 reviews the three-step model of internal photoemission and describes explicitly

the inherent assumptions of Fowler theory; section 4.5 refines the yield including the effect of

phonon scattering and thin-film enhancement; section 4.6 presents example calculations of the

limiting efficiency under various assumptions; and the discussion section goes over the application of

these approaches to plasmonic structures. Previous estimates of the internal photoemission (IPE)

yield and energy-conversion efficiency of such systems have used simple Fowler theory and/or have

used a simplified treatment of the carrier dynamics, with a recent study by White and Catchpole

consequently calculating a maximum best case solar energy-conversion efficiency of 8% for such

systems.[23] In contrast, we describe the situation in which realistic assumptions are made and

the carrier dynamics are fully treated. Our most generous efficiency estimates agree with previous

“absolute upper-limit” efficiency values,[12, 23, 4] which assumed that the momentum requirements

at the interface governing emission (the hot electron escape cone) can be relaxed for nanostructures.

However, our more in-depth analysis shows that even for nanostructures of dimensions on the

order of 20 nm, the practically obtainable efficiency is lowered by orders of magnitude due to

the limiting effects of the hot electron mean free path in conjunction with the requirement of a

critical momentum normal to the interface. The lowered efficiency limits calculated herein thus

serve as a more realistic framework for establishing the expected efficiencies, design parameters, and

performance characteristics, of an actual energy-conversion system based on metallic hot-carrier

internal photoemission.
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Figure 4.1: (a) Internal photoemission band diagram for hot electrons emitted from a metal into
an n-type semiconductor. (b) Schematic of isotropic distribution of hot electron momentum on a
sphere in momentum space with a limited escape cone. (c) Sketch of a possible energy conversion
device layout where light passing through a photovoltaic solar cell and the semiconductor collector
is absorbed in the metal emitter.
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4.3 Internal photoemission and efficiency

Fowler developed the basic theory of photon-induced emission of electrons from metals in the early

20th century.[7] Though refinements have been made,[23, 10] the simple Fowler equation has proven

to be in accord with experimental data for the internal photoemission yield26 in both magnitude

and spectral behavior:

YFow(~ω) ≈ 1
8EF

(~ω − φb)2

~ω
(4.1)

where ~ is the reduced Planck constant, ω is the incident light frequency, φb is the barrier height

(in units of energy), and EF is the Fermi energy of the emitter, with the value of EF describing the

curvature of the conduction band in momentum space (Fig. 4.1(a)). The Fowler yield is based on a

semiclassical model of hot electrons emitted over an energetic barrier, with the critical assumption

that the kinetic energy normal to the barrier must be greater than the barrier height. As depicted in

Fig. 4.1(b), for a spherical Fermi surface, this assumption gives rise to a limited escape cone for hot

electrons, because the momentum normal to the interface must be larger than a critical value, pcrit.

The escape cone limitation results in zero yield at the threshold photon energy as well as a slow rise

with photon energy if the Fermi energy is large compared to the photon energies of interest. This

latter condition is true for visible light incident on noble metal emitters; for instance, both silver

and gold have a Fermi energy near 5.5 eV (which was the value for EF used in our calculations).

The collector material can be either an insulator or a semiconductor, and the built-in electric

fields of metal-semiconductor Schottky barriers assist in the collection of the emitted hot carriers.

In principle a metal-insulator-metal diode could also be used for energy conversion, but in our

calculations the maximum energy-conversion efficiency was found to be equivalent to that of a

metal-semiconductor diode, so the conceptually and notationally simpler Schottky barrier case

will be discussed here, in which the metal is the emitter and the semiconductor is the collector.

Considering hot-electron emission, the optimal semiconductor will be a highly doped n-type material,

and the Fermi energy in the semiconductor should be nearly equal to the conduction-band energy.

Equivalent considerations apply to a p-type semiconductor that would collect hot holes, but here

for clarity we consider only the n-type case. To operate in power-generation mode, the diode

must be forward-biased (by applying a positive voltage to the metal), in contrast to most internal

photoemission detection experiments in which reverse bias aids in extracting the carriers. The
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4.3. INTERNAL PHOTOEMISSION AND EFFICIENCY

current-voltage characteristics can be determined by considering the reverse photocurrent density

due to internal photoemission Jphoto, the dark forward current density due to thermionic emission

from the collector to the emitter Jdark, and the properties of the illumination source. The efficiency

is given by:

Percent Efficiency = |Jphoto + Jdark|V
Pill

X100 (4.2)

=

∣∣∣∣−∫ ~ωmax
0 IillY (~ω)

(
q
~ω
)
d(~ω) + Jdark(V )

∣∣∣∣V∫ ~ωmax
0 Iilld(~ω)

X100 (4.3)

where V is the operating voltage, Pill is the illumination irradiance, Iill is the spectral irradiance,

and the integration is performed up to a maximum energy. Note that here the yield Y is the external

quantum yield, but Y is assumed to be equal to the internal quantum yield under the condition

of negligible optical reflection losses. To model the AM1.5 solar spectrum, the spectral irradiance

was assumed to be a 5800 K blackbody with a total irradiance of 95 mW cm−2. which provides an

easily integratable function that generally matches the shape and irradiance of the AM1.5 spectrum.

The thermionic dark current is given by:

Jdark,therm = A∗T 2e
q(V−φb)

kT (4.4)

where A* is the Richardson’s constant, T is the absolute temperature, and k is Boltzmann’s

constant. Here we are assuming that the operating voltage is less than the barrier height but a few

times greater than the thermal voltage kT. Though Richardson’s constant is given as 120 A cm−2

K−1, in our calculations we generously assumed the more optimistic value of A*= 50 A cm−2K−1

which applies for thermionic emission involving a semiconductor like silicon; however, this more

optimistic value only results in a maximum of 10% relative efficiency increase relative to the more

stringent condition with A*=120 A cm−2K−1.

Fig. 4.2(a) displays the efficiency for hot carrier internal photoemission assuming the simple

Fowler yield based on equations refeqn:JAPeqn1,eqn:JAPeqn2, eqn:JAPeqn3. Because one applica-

tion of this concept involves capture of sub-bandgap illumination below a traditional photovoltaic
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Figure 4.2: (a) Solar conversion efficiency for internal photoemission over a metal-semiconductor
Schottky barrier based upon the simple Fowler equation. (b) Optimized barrier height and maximum
power point voltage (Vmpp) used to calculate the curve in (a). Inset: Example current-voltage curve
with maximum power shown as the dotted box.
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cell as shown schematically in Fig. 4.1(c), the efficiency is plotted as a function of maximum photon

energy. Hence the maximum photon energy would be 1.1 eV for a Si solar cell, 3.0 eV for a TiO2

photoelectrochemical device, or about 4 eV for the entire solar spectrum. The inset shows an example

current-voltage behaviour, which has a shape that is similar to a standard pn-junction or Schottky

solar cell, but at a much lower operating voltage and current. Fig. 4.2(b) displays the barrier height

and voltage at the maximum power point, Vmpp for the maximum efficiency values displayed in Fig.

4.2(a). The yield is highest for a small energy barrier, but avoiding the thermionic dark current

requires a larger barrier. Specifically, for operation at 1 sun and 300 K, a difference of approximately

0.7 eV between barrier height and Vmpp is required to keep the thermionic dark current less than

the photocurrent. The thermionic dark current for metal-semiconductor Schottky barrier solar cells

can be reduced by introducing a higher barrier for majority carriers, but internal photoemission is

entirely a majority-carrier process, so any extra barrier will also reduce the photocurrent.

4.4 The three-step model for internal photoemission

Because the simple Fowler equation predicts that the maximum efficiency of an energy-conversion

device based on internal photoemission is approximately 1%, it is useful to analyze the assumptions

and mechanisms involved in derivation of the Fowler theory to determine the conditions, if any,

that could result in higher efficiencies. The semiclassical model of internal photoemission involves

three steps: hot-electron excitation, hot-electron transport to the interfacial barrier, and hot-

electron emission over the energetic barrier from the emitter material into the collector material.

Although the actual processes of light absorption and excitation of the collective electron cloud are

quantum-mechanical phenomena, we assume herein that after light absorption, the “hot electron”

behaves as a quasiparticle whose transport can be described semiclassically within a free-electron-

like band structure. Light is absorbed in the metal when the photon’s perturbing electric field

causes electronic transitions. Consequently the material response is described macroscopically by a

frequency-dependent dielectric constant, ε, determined empirically for bulk materials. Assuming

that this local, linear permittivity is a valid description for nanoscale structures such as plasmonic

absorbers, Maxwell’s equations yield the spectral power absorption as:
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Pabs = −1
2 Re[−∇.S] (4.5)

= −1
2ω|E|

2 Im[ε] (4.6)

∝ ηe (4.7)

where S is the Poynting vector, E is the electric field of the incident electromagnetic wave, and ηe
is the hot electron generation rate per length. The spatial distribution of absorbed power is obtained

from equation 4.7, and for antenna-like structures, the absorbed power is highest near the surfaces

around the midpoint where the highest currents flow. Assuming that the probability is low for an

absorbed photon to couple directly to phonons or multiple electron excitations (because many-body

excitations are not very probable), the spatial power absorption normalized by the incident power

then directly corresponds to the spatial distribution of hot-electron generation. Such calculations are

readily performed using e.g. full-field finite difference time domain simulations, but the generation

profile depends significantly on the geometry of the antenna and system as a whole. Hence, for

simplicity, the generation profile was assumed herein to be uniform throughout a film of thickness

d, i.e. ηe= 1/d. The electron-hole pair excited by light was assumed to have a total energy equal

to the photon energy, so the hot electron energy, Eel, can range from 0 to max photon energy. In

the simplest approximation, the distribution of energies would be uniform in this range. However,

considering the electronic density of states g(E) and nondirect transitions in which momentum can

be supplied by surfaces, defects, or phonons, the probability of excitation to a certain energy E=EF
+ Eel is just the multiplied probability of the existing initial and final states, normalized to the total

number of transitions possible:

P0(Eel)dE = g(E)g(E − ~ω)dE∫ EF+~ω
EF

g(E′)g(E′ − ~ω) dE′
(4.8)

For a free-electron-like metal with a parabolic band structure at low temperature, such that the

tails of the Fermi distribution can be ignored, the hot electron energy distribution becomes

P0(Eel)dE =
√
EF + Eel

√
EF + Eel − ~ωdE∫ EF+~ω

EF

√
E′
√
E′ − ~ωdE′

(4.9)
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which was used in these calculations. Many metals are free-electron like near the Fermi energy,

e.g. for gold the bands with d-orbital character lie about 1.6 eV below the Fermi level, so this

approximation is most valid for low photon energy excitation. The relative distribution of hot

electrons and hot holes varies depending on the material, and low-lying bands could favor hot holes

over hot electrons due to the increased density of states below the Fermi level; modification of the

“electron distribution joint density of states” could in principle enhance (or decrease) the yield and

efficiency. After excitation, the hot electron quasiparticle must move through the material to reach

a collecting interface. Because phonon scattering is a quasielastic process, only electron-electron

scattering is assumed to cause significant energy loss of the hot electrons. Typically about half of

the hot electron’s energy is lost in an electron-electron scattering event, and the resulting electron

can no longer surmount the barrier. The mean free path for electron-electron scattering therefore

determines the probability Pint that the hot electron will reach the interface, if starting at a depth z

at an angle θ away from normal:

Pint sin θdθ = 1
2e
−

z

λe−e(Eel) cos θ sin θdθ
(4.10)

where the factor of half results from half of the electrons initially travelling away from the

interface. A suitable analytical model for the electron-electron scattering mean free path was

developed by Quinn and is given as:

λe−e(Eel) =
24a0

√
αers/π(3EF /E2

el + 2/Eel)

tan−1
√

π

αers
+
√

αers/π

1 + αers/π

(4.11)

where a0 is the Bohr radius (0.0529 nm), αe = (4/(9π))1/2, and rs is the radius of a sphere equal

to the volume of one conduction electron in units of the Bohr radius; for gold rs = 3. The value

of λe − e approximately follows a Eel-sqaured behavior, with some example values being 100 nm

at 1 eV to 10 nm at 3.5 eV. Thus, the details of the spatial hot electron generation profile are not

critical, because the distances travelled are relatively long compared to the nanoscale dimensions of

exemplary plasmonic structures. Though the mean free path can be longer than the characteristic

dimension of the metallic nanostructure, the escape cone restriction (vide infra) dictates that, in

general, multiple reflections within the metal will occur before the hot electron can be emitted.

When the hot electron encounters the surface and energy barrier, Fowler’s theory asserts that the
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component of kinetic energy normal to the barrier must equal the barrier energy. This requirement

is illustrated as the limited momentum escape cone in Fig. 4.1(b), with the maximum angle of

approach for which a hot electron can escape given by:

cos θmax = pcrit/p (4.12)

=
√

EF + φb
EF + Eel

(4.13)

≈ 1− Eel − φb
2EF

(4.14)

where the approximation holds if barrier height, Eel < < EF . This angle defines the maximum

angle allowed in equation 4.9. Note that the fraction of hot electrons reflected by the barrier Relec
can be written as

Relec = 1− Telec (4.15)

= 1−
∫ θmax

0
sin θdθ (4.16)

≈ 1− Eel − φb
2EF

(4.17)

where Telec is the transmitted fraction. For large Fermi energies compared to the excitation

energy, the reflected fraction is nearly unity. The internal photoemission yield as a function of energy

is obtained by combining the probabilities of absorption, transport to the barrier, and emission over

the barrier:

Y (~ω) =
∫ ~ω

φb

dEel

∫ θmax

0
sin θdθ

∫ ∞
0

dzP0(Eel)Pint(z, θ, Eel)ηe(z) (4.18)

Under the conditions of pcrit = pF so that the escape cone is small, a small absorption length

compared to λe−e, and a constant distribution of hot electron energies, the integrals are easily

evaluated and result in the Fowler yield, 4.1, which is a good approximation for light incident on a

bulk slab of metal.
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4.5 Enhancements due to scattering

For thin metal emitters that have a thickness on the order of λe−e, the yield can be enhanced

significantly due to Lambertian reflections at the interfaces. Electron-phonon scattering with a

mean free path λe−p 20 nm (used in the calculations here) can additionally enhance the yield,

because the hot electron momentum can be redirected into the escape cone with little loss of energy

in the quasi-elastic collisions. Again considering the case above, Dalal has derived an enhanced yield

expression that takes into account both phonon and back-surface scattering. In this model, the

angular integral of Pint is replaced with a more detailed function q(z) due to a sum over multiple

reflections at various scattering angles, producing the following expression for enhanced yield:

Yenh(~ω) =
∫ ~ω

φb

dEel

∫ ∞
0

dzP0(Eel)q(Eel, z)ηe(z) (4.19)

q(Eel, z) = Awe
µz +Bwe

−µz (4.20)

Aw = e−2µwBw (4.21)

Bw = 1−Relec

(1−Relec)(1 + e−2µw) + (1 + λe−e/λe−p)−1/2(1 +Relec)(1− e−2µw)
(4.22)

µ =
√

(λ−1
e−e + λ−1

e−p)2 − λ−1
e−p(λ−1

e−e + λ−1
e−p) (4.23)

4.6 Theoretical efficiencies

Based on the equations for yield outlined in Sections 4.3 and 4.4, the efficiency given by equation

4.1 can be numerically evaluated for a variety of conditions and assumptions. Figure 4.3 shows the

optimized efficiency as a function of maximum photon energy, assuming that the incident light is

completely and uniformly absorbed over the film thickness with no reflection losses. Figure 4.3

includes (on a logarithmic scale) the result from Figure 4.1 (a) based on the Fowler yield but

also shows results for a 100 nm metal film (EF = 5.5 eV) at 300 K, a 20 nm film at 300 K, a 20

nm film at 300 K for which Relec=0, and a 20 nm film at 77 K, as well as the best-case scenario

at both 300 and 77 K for which the hot electron mean free path is much longer than the film

thickness. Note that when the momentum escape cone restriction is included, with either finite film

thickness, the calculated efficiency is much lower than the best-case scenario in which the escape

cone restriction is not explicitly included in the analysis. The 100 nm and 20 nm cases at 300 K
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show lower efficiency than the simple estimate from the Fowler equation, due to the inclusion of a

finite electron mean free path, which affects light absorbed deeply in the metal. In contrast, the

Fowler case assumed absorption at the surface. Operation of such devices at lower temperature

enhances the efficiency, because the dark current from thermionic emission is lowered significantly

as the temperature decreases. Clearly the efficiency reaches values significantly in excess of 1% only

if the escape cone restriction is lifted in the best-case scenario and if photon energies above 1.5 eV

are included.

4.6.1 Discussion of IPE results

In this semiclassical model of hot electron internal photoemission, the energy-conversion efficiency

is low for two primary reasons. First, the diode must be operated in forward bias to capture

the reverse photocurrent, so the thermionic current of electrons flowing from the collector to the

emitter strongly reduces the net current. Second, each photon creates a hot electron and a hot

hole, and the hot electron energy can easily be less than the photon energy. In contrast to a

semiconductor photovoltaic device in which the internal energy of the minority carriers is nearly

equal to the bandgap, the internal energy of the hot electrons involved here is distributed from

zero to the photon energy. Although the most optimistic assumptions were used in most cases, the

results could be modified by explicit consideration of some other effects. The band structure of

real materials can change the distribution of hot electron (and hot hole) energy, so the transition

probabilities linking initial and final electronic band states should be calculated to determine the

excitation probabilities as a function of both the hot electron/hole energy and momentum. An

optimized band structure or device layout may allow higher efficiency than that calculated herein.

We have used reasonable numbers for a Au/n-Si junction, but the efficiency estimates here should

be applicable to a wide range of metal/semiconductor materials because the hot electron mean

free paths do not vary wildly for various metals. Also, the efficiencies presented here are not

true detailed-balance efficiencies, because no re-radiation of light was considered. Considering

optical reflection and photon emission would further lower the efficiencies. Another limitation

exists due to the requirement of critical momentum normal to the interface, which leads to a

small escape cone for hot electrons having an energy just larger than the barrier energy. For an

interface that is rough on the scale of the electron wavelength, this classical restriction may be

relaxed. Indeed, some vacuum photoemission experiments have seen anomalously high yields from
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nanoparticles,[15] with a variety of explanations involving geometry, escape cone relaxation, and

surface chemistry modification.[5] In theory, the quantum mechanical details of plasmon-mediated hot

carrier production may introduce a momentum-polarization correlation. Qualitatively, this coupling

may enhance photocurrent along certain geometry-dependent directions at specific polarizations.

This coupling tends to relax the escape cone considerations, by allowing final electron momenta

that are usually disallowed by regular IPE processes. As a result, the yield may be increased

up to the Relec=0 case. However, simply relaxing the escape cone restriction without addressing

the dark current and hot electron energy distribution limitations still results in energy-conversion

efficiencies of a few percent at best (Figure 4.3). Because conventional photovoltaic cells do not

absorb light below the bandgap energy, exploitation of IPE might be a potentially interesting method

for capturing the otherwise unutilized part of the solar spectrum by placing the device behind

a solar cell. In this arrangement, use of the metal/semiconductor device would be analogous to

placing another, low band gap, semiconductor absorber and associated metallurgical junction in

the optical path. The system instead relies on optical absorption and charge carrier excitation in

the metal portion of the metal/semiconductor system (with a large band gap semiconductor, in

principle), to produce the additional current and thus augment the device efficiency. As displayed in

Figure 4.3, however, the yield and efficiency increase strongly as the photon energy is increased,

and IPE is particularly inefficient for a spectrum that only includes energies below 1-2 eV. Hence

such an approach would be more appropriate for larger-bandgap devices that normally only absorb

ultraviolet light, such as a TiO2-based photoelectrochemical system than for an additional absorber

approach to a conventional solar cell arrangement. The metallic emitter was implicitly assumed to

be a nanostructure that possessed plasmonic resonances so as to provide high absorption in a very

thin structure and additionally to take advantage of the enhancements in scattering. The spatial

distribution of hot electron generation may vary for such nanostructures, likely depending on the

position of absorption based on the Poynting vector (Eqn 4.7). For example, a dipole antenna

has the highest current and dissipation of energy near its center. The hot electrons may possibly

instead be generated near areas of high field enhancement. Regardless, for these relatively low-energy

hot electrons, the electron-electron scattering mean free path is on the same order as a plasmonic

nanoparticle’s dimensions, so the specific location of hot electron generation is of minor importance.

The hot electron’s initial momentum is however very important for the yield, as particles with a

momentum vector inside the escape cone have a much higher probability of escape than those with
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momentum vectors outside the escape cone.

4.6.2 Discussion of Efficiencies

The efficiencies presented here are somewhat lower than some previous published calculations.

Wang and Melosh [22] considered power conversion using Kretschmann coupling to surface plasmon

polaritons in a symmetric metal-insulator-metal geometry and obtained a calculated maximum

efficiency of 2.7%. Their calculation assumed no escape cone restriction, no carrier reflections, a

uniform energy distribution of excited carriers, and an energy-independent λe−e = 56 nm. The

result is on the same order as that calculated here including however the assumption (for which the

justification is unclear) of no escape cone restriction; similarly, White and Catchpole calculated a

maxiumum efficiency of 8% by assuming that all hot electrons with sufficient energy in a perfect

absorber were emitted.[23] Although it is tempting to assume that for nanostructured metallic

absorbers the hot electron mean free path will be sufficiently longer than the device dimension and

thus that the momentum escape cone restriction can be neglected, we have shown herein that even

a small non-zero thickness (of 20 nm) of metal lowers the efficiency from 8% to 0.25% (c.f. Figure

4.3 blue solid line).

4.6.3 Drawbacks of the model

Finally, some deleterious effects were not included in our model. Scattering of hot electrons back

into the emitter from the collector will reduce the yield, especially for diodes operated in forward

bias with a weak electric field in the collector. Similarly, internal photoemission from the nominal

collector to the emitter reduces the net photocurrent. Energetic losses due to phonon scattering

also could somewhat reduce the yield. Emission of hot holes into the same material could take

place if the collector is a low-bandgap semiconductor, reducing the yield. Last, interfacial and bulk

defects present in real materials will lower the hot electron mean free paths and collection efficiency,

decreasing the device efficiency.

4.7 Conclusions of IPE model calculations

The process of internal photoemission in which the absorbing material is a metal rather than

a semiconductor was evaluated as a candidate for utilization in solar energy-conversion devices.
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The semiclassical three-step model of internal photoemission for hot electrons over an energetic

Schottky barrier was reviewed, and the energy-conversion efficiency was calculated considering the

IPE photocurrent produced by complete absorption of a 5800 K blackbody spectrum in a nanoscale

metal and the thermionic emission dark current as a function of voltage. The optimum efficiency

values were found to be about 1 % for room-temperature operation with a metal similar to Au or Ag.

The efficiency could approach 10 % if the escape cone restriction is removed, the mean free path of

hot electrons is very long compared to the metal dimensions, and the illumination spectrum includes

visible and ultraviolet light, in which case the efficiency is still limited by the thermionic dark current

as well as by the distribution of hot electron energies (without modifying the metal’s joint density of

states). We have shown that from a semiclassical standpoint considering the momentum escape cone

imposes a significant limit on efficiency even for nanostructures. Additional work to determine the

applicability of this admittedly semiclassical model would be useful because the normal momentum

requirement might be relaxed when considering quantum effects or surface chemistry. Alternatively,

a device geometry in which light capture is decoupled from hot electron-hole generation in a metal

bi-layer could possibly reduce the emitter thickness to the nm-size thickness required to justify

neglecting the escape cone restriction.

4.8 Addressing drawbacks of the model: Can semiclassical

calculations describe plasmon decays?

One of the biggest criticisms of the model and conclusions presented in this chapter has been the

applicability of Fowler theory to describe plasmon decays and the use of experimental (and in some

cases steady state) values for electron-electron and electron-phonon scattering. Subsequent chapters

deal with quantum calculations of plasmonic hot carrier generation.

4.8.1 Quantum plasmonics and plasmon decays

A fundamental aspect of quantum plasmonics is the description of surface plasmons using quantum

mechanics and the various size/time and experimental regimes where such descriptions are applicable.

Treating the plasmon quantum mechanically, especially in the lossy regime is challenging.
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Much of the work laying the foundations for quantization was carried out in the 1950s by

Bohm and Pines, with work by Pines providing the very first model for quantizing plasma waves in

metals[3]. Here, electrons in the conduction band were considered to be free electrons in an electron

gas and the long-range correlations in their positions treated in terms of collective oscillations of the

system as a whole. The quantized form of these collective matter oscillations plasmons were found

to be bosons, with both wave-like and particle-like behavior, as expected for quantum excitations.

The ‘polariton’, a joint state of light and matter was introduced by Hopfield[8], who provided a

quantum model for the polarization field describing the response of matter to light. Depending on

the type of matter, Hopfield called the field a ‘phonon-polariton’, ‘plasmon-polariton’ and so on,

with the quanta as bosons. The concept of a surface plasma wave (SPW) was proposed soon after by

Ritchie.[18] Several years later, Elson and Ritchie[6], and others used Hopfield’s approach to provide

the first quantized description of SPWs as ‘SPPs’. Hydrodynamic effects were also included in the

quantization[9]. Despite its great success, Hopfield’s approach did not consider loss, which is caused

by the scattering of electrons with background ions, phonons and themselves in the conduction band

(ohmic loss) and at high frequencies by interband transitions.[21, 9]

4.8.2 Landau Damping

Landau damping [11] is a quantum mechanical process in which a plasmon quantum is transferred

into a single electron–hole pair excitation on a timescale τL ranging from 1 to 100 fs. The plasmon-

induced electric field, which represents a time-dependent perturbation on the conduction electrons of

the metal, can induce transitions of electrons from occupied to unoccupied states. Landau damping

is the typically invoked physical mechanism to describe contributions to the imaginary part of

the dielectric permittivities of a metal. The link between Landau damping and calculations for

generation of hot carriers perfomed (following the work in this chapter) are the subject of Chapter

6.
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5

Theoretical Predictions for
Hot-carrier Generation from
Surface Plasmon Decay

All that glisters may not be gold, but at least it contains free electrons.

(Lecture at Birkbeck College, University of London, 1960)

– John Desmond Bernal

5.1 Chapter Overview:

Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion,

photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot

carrier generation in real materials has remained incomplete. Here we report predictions for the

prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, prior to

inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find

that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and

copper produce holes hotter than electrons by 1-2 eV, while silver and aluminum distribute energies

more equitably between electrons and holes. Momentum-direction distributions for hot carriers are

anisotropic, dominated by the plasmon polarization for aluminum and by the crystal orientation

for noble metals. We show that in thin metallic films, intraband transitions can alter the carrier

distributions, producing hotter electrons in gold, but interband transitions remain dominant.
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Schematic of plasmonic hot carrier generation and injection
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Figure 5.1: (a) Schematic for optical excitation of surface plasmons followed by decay to hot carriers,
(b) tunneling of plasmonic hot electrons from gold through a Schottky barrier into n-type Gallium
Arsenide using the predicted carrier distribution from Figure 5.3(d) and typical experimental band
offsets [24], and (c) barrier-less injection of plasmonic hot holes from gold into p-type Gallium
Arsenide. (Ef is the Fermi energy, Ec the conduction band minimum and Ev the valence band
maximum energy.)

5.2 Decay of surface plasmons in the interband limit

Plasmons are collective oscillations of electrons that couple to electromagnetic fields. They exhibit

wave-like as well as particle-like behavior[15], support intense electromagnetic field concentrations[28],

and provide a pathway to couple optical energy from free space in nanoscale systems[2]. Surface

plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have

sparked recent interest because of their quantum nature[12, 34] and their broad range of applications,

including solar energy harvesting[17], non-linear optics, tunable-photodetectors[14], and spectroscopy.

Decay of plasmons to hot carriers has recently attracted considerable interest[4] due to applications

in energy conversion, photocatalysis and photodetection[29].

Surface plasmons can decay either radiatively[10] via emission of a photon or non-radiatively

through the generation of excited carriers, typically referred to as hot carriers. These photo-

excited hot carriers in metals could be used to directly drive energetically demanding chemical

reactions[23], or they could be transferred to a semiconductor for use in photovoltaics[33, 35] and

photoelectrochemical systems[22, 17]. At a metal-semiconductor interface, plasmonic hot-carrier

collection over a tunable Schottky barrier allows the collection of photons with energies lower than
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5.2. DECAY OF SURFACE PLASMONS IN THE INTERBAND LIMIT

the interband threshold of the semiconductor, thereby enabling additional energy harvesting[]. These

excited carriers, both electrons and holes, can be injected into other materials for example graphene[9]

and MoS2[13] thereby enabling plasmonic hot carrier induced doping and phase transitions.

Despite the significant experimental work in this direction, a complete theoretical understanding

of plasmon-driven hot carrier generation with electronic structure details has been evasive. Un-

derstanding the initial energy distribution of carriers generated by plasmon decay, before inelastic

relaxation, is the first key step towards exploiting these phenomena. Theoretical studies of plasmonic

systems have traditionally focused on their optical response, including quantum jellium models of

nanostructured systems such as nanoparticle dimers[30, 38, 18, 8], and detailed time-dependent

density-functional calculations of short-wavelength surface plasmons on noble metal surfaces[37].

Recently, the initial hot carrier distribution generated by plasmon decay has been estimated within

a simple electron gas model for various geometries[11], and within a jellium model for silver nanopar-

ticles and nanoshells.[19] These models provide insight into the mechanisms of plasmonic hot carrier

generation, but do not capture the material dependence of this process and miss interband transitions

in noble metals since they preclude transitions involving d bands.

In this Chapter we combine quantized plasmon modes from experimental dielectric functions

with electronic states from first-principles density functional theory, in order to calculate the initial

distribution of hot carriers in real materials. We first examine direct electron excitations generated by

the decay of surface plasmon polaritons on planar metal-dielectric interfaces, as shown schematically

in Figure 6.1(a). (Note that the surface plasmon and the initial photon have the same energy, and

a coupling geometry such as a grating provides the change in momentum.[6]) This allows us to

explore the effects of the electronic structure of the metal on the generated carrier distributions,

independent from other effects such as geometry. Additionally, we focus on interband transitions

which dominate at higher plasmon energies since these are expected to be more sensitive to the

electronic structure than intraband transitions; the latter dominate at lower plasmon energies and

have been described within simplified jellium models.[19] Finally, we analyze the effects of geometry

on the generated hot carrier distribution in real materials by studying the decay of plasmon modes

in thin metallic films of varying thickness.
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5. THEORETICAL PREDICTIONS FOR SURFACE PLASMON DECAYS

5.3 Interband transition rate formalism

We describe the surface plasmon using an explicit quantization of the surface modes [Tame:2008kl,

Archambault:2010kl, Elson:1971fk] derived from an experimental dielectric function [ExptDielFunc-

AppliedOptics98].

The vector potential operator for plasmons on the surface of a semi-infinite slab (with normal

along the z-direction) is Â(r, t) =
∑

k uk(r, t)âk + h.c., in terms of creation and annihilation

operators, â†k and âk, and the normalized mode functions of wave-vector k and angular frequency ω,

uk(r, t) =

√
2π~

ωSL(ω)

(
k̂− kẑ

γ(z)

)
ei(γ(z)z+k·r−ωt). (5.1)

The modes satisfy the dispersion relation k = ω
c

√
ε(ω)/(ε(ω) + 1), where ε(ω) is the experimental

dielectric function of the metal. The z-wavenumber satisfies γ2(z) = ε(z)ω2/c2−k2, where ε(z) = ε(ω)

for z < 0 and 1 for z > 0, and with the sign of Imγ(z) set so that the modes decay away from the

surface. Above, S is a test area with periodic boundary conditions for discretizing the modes and L(ω)

is a normalization length chosen so that each mode has energy ~ω. (See Ref. Archambault:2010kl

for details.) While this neglects the possibility of nonlocal effects in the dielectric matrix, such an

approximation is valid at the wavelengths of interest.

Next, given an approximation of the quasiparticle orbitals ψσqn(r) and energies εqn of the metal,

the electron field operator is Ψ̂σ(r, t) =
∑

qn ψ
σ
qn(r)e−iεqnt/~ĉqn. Here, ĉqn and ĉ†qn are Fermionic

creation and annihilation operators for electrons with wave-vector q and band-index n. We have

included the spinor index σ in the orbitals in order to fully treat relativistic effects such as spin-orbit

coupling, when necessary.

Finally, we approximate the plasmon-quasiparticle interaction Hamiltonian using the lowest

order unrenormalized vertex, Ĥint = e
2me

∑
σ

∫
drΨ̂

†
σÂ · p̂Ψ̂σ, where p̂ is the electronic momentum

operator. Fermi’s golden rule for the decay of a single plasmon with wave-vector k and angular

frequency ω to electron-hole pairs via interband transitions then reduces to
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Γ = π2

2ωL(ω)|γ(z < 0)|

∫
BZ

dq
(2π)3

∑
n′n

(1− fqn′)fqnδ(εqn′ − εqn − ~ω)

×

∣∣∣∣∣
(

k̂− kẑ
γ(z < 0)

)
·
∑
σ

∫
Ω
drψσ∗qn′(r)e~∇

ime
ψσqn(r)

∣∣∣∣∣
2

, (5.2)

where fqn are the occupation factors of the quasiparticles in the Fermi sea. The key approximation

above is that the plasmon mode function varies slowly on the atomic scale (interband approximation).

5.4 Electronic structure method selection

To calculate the carrier distributions from plasmon decays in real materials using (5.2), we need a

sufficiently accurate prescription for the quasiparticle orbitals and energies. Figure 5.2 compares

the accuracy of different electronic structure methods for the noble metals copper, silver and gold.

The different methods produce identical results for aluminum since it is a nearly-free electron metal;

we omit that comparison for brevity and select the PBEsol generalized-gradient approximation[25]

within density-functional theory.

In contrast, for the noble metals, generalized-gradient approximations such as PBEsol predict

the d-band positions to be closer to the Fermi level than experiment because of the self-interaction

error for localized electrons. The GLLB-sc orbital-dependent functional[16] partially remedies this

situation, as shown by a recent density-functional study of plasmon dispersions on noble metal

surfaces.[37] However, Figure 5.2 shows that the band structure predicted by this functional still

exhibits significant deviations from angle-resolved photoemission measurements.[5, 36, 21] These

deviations are largest (∼ 0.5 eV) near the L-point in the Brillouin zone, and this region of the Brillouin

zone is particularly active for interband transitions in these metals. Many-body perturbation theory

methods, such as the quasiparticle self-consistent GW approximation, significantly improve the

agreement with experiment as shown for gold in Figure 5.2(c) (GW results from Rangel et al.[27]),

however the error near the L-point remains large (∼ 0.5 eV).

We find that the DFT+U method,[7] which improves the description of localized electrons

with a local semi-empirical correction on each atom, yields the best agreement (∼ 0.1 eV) to the

quasiparticle bandstructure of all three noble metals (indicated by PBEsol+U in Figure 5.2, since we
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Comparison of theoretical and experimental band structures
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Figure 5.2: Theoretical band structures for (a) copper (b) silver and (c) gold as predicted by
different density functional approximations, compared to angle-resolved ultraviolet photoemission
measurements[5, 36, 21] and quasiparticle self-consistent GW calculations[27]. Panel (d) shows
the high symmetry paths in the Brillouin zone along which the band structures are plotted.
All calculations account for relativistic effects including spin-orbit coupling. The PBEsol+U
approximation, with U fit to the experimental Γ-point energies, provides the best overall agreement
with the experimental data for all three noble metals and particularly improves upon the accuracy
of the other methods near the L-point.
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combine the U correction with the PBEsol density functional). We pick the value of U to reproduce

the experimental energies at the Γ-point, which results in U = 1.63, 2.45 and 2.04 eV for copper,

silver and gold respectively.

The calculations presented here account for relativistic effects including spin-orbit coupling fully

self-consistently. The spin-orbit splitting at the X-point is particularly relevant, since it determines

the inter-band threshold energy. The magnitude of the effect is ∼ 0.5 eV in gold, ∼ 0.2 eV in silver

and ∼ 0.1 eV in copper. Therefore, the inclusion of spin-orbit splitting is critical in calculations of

optical transitions in gold, still quite significant for silver and negligible at the achievable accuracy

for copper (and aluminum).

5.5 Hot carrier distributions from surface plasmon decay

Substituting the electronic states and energies from the PBEsol+U density functional method in

(5.2), allows us to predict accurate carrier distributions. We histogram the contributions to the decay

rate Γ by the electron (final state) and hole (initial state) energies to generate the distributions

shown in Fig 5.3, and by the carrier energies as well as momentum directions to generate Fig 5.4.

Energy conservation determines which regions of the Brillouin zone contribute to the plasmon decay,

and the top panels of Fig 5.3 annotate the allowed transitions for each metal at selected energies.

For aluminum, the band crossing close to the Fermi level near the W point allows interband

transitions that originate from valence band states with energies ranging continuously from the Fermi

level to ~ω below it. Consequently, surface plasmon decay results in both hot electrons and holes

with continuous energy distributions that extend from zero energy to the plasmon energy, as seen in

the bottom panel of Fig 5.3(a). Additional transitions near the K point contribute predominantly to

hot holes with energies > 2 eV, and lead to the moderate asymmetry between the electron and hole

energy distributions.

For silver, the lowest energy interband transitions, originating from the d bands at the X and

L points as well as from the Fermi level at the L point, all appear at ∼ 3.6 eV. Consequently the

decay of a plasmon of that energy produces bimodal energy distributions for both the electrons and

holes as shown in Fig 5.3(b).

In copper and gold, the allowed interband transitions near the resonant surface plasmon polariton
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Allowed transitions and hot carrier energy distribution
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Figure 5.3: PBEsol+U band structure and predicted plasmonic hot carrier energy distributions for
(a) aluminum (b) silver (c) copper and (d) gold. The bottom panels show the energy distribution
of hot electrons (positive energies relative to Fermi level at 0) and hot holes (negative energies)
for various photon and plasmon energies, hν. The top panels show the band-structure and arrows
mark the allowed transitions for the plasmon energy plotted with a solid line in the corresponding
bottom panel. Contrast the almost uniform energy distribution of electron and hole energies in
aluminum, with the hole-dominant energy distribution in copper and gold and the bimodal hot-hole
and hot-electron distributions in silver due to the position of the d-bands.
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Hot carrier energy and momentum-direction distribution

Figure 5.4: Plasmonic hot carrier energy and momentum-direction distribution in (a) aluminum (b)
silver (c) copper and (d) gold. The radial coordinate in each panel is the carrier energy relative
to the Fermi level with the spherical shell indicating the plasmon (photon) energy, hν, while the
angular coordinates correspond to the carrier momentum direction. The asymmetry in electron and
hole energies in the noble metals from Fig 5.3 is manifest in the radial extent of the corresponding
probability clouds here. None of the metals exhibit the isotropic orientation distribution assumed in
the Fowler theory.
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energies occur near the X and L points for both metals, and additionally near the K point for copper,

as shown in Fig 5.3(c) and (d). Notice that all these transitions originate in the d-bands that are

approximately Et = 2 eV below the Fermi level. Consequently, for these metals, the generated holes

are on average more energetic than the electrons by Et.

The asymmetry between energy distributions for plasmonic hot electrons and holes in copper and

gold has important consequences for collection efficiencies across a metal-semiconductor interface.

Consider, for example, the gold to n-type gallium arsenide Schottky junction in Fig 6.1(b), which

includes the predicted hot carrier distributions from Fig 5.3(d). Most of the hot electrons are not

sufficiently energetic to overcome the Schottky barrier, and would either have to tunnel through the

barrier or would require an additional thermal boost to overcome it. In contrast, in the corresponding

junction to p-type gallium arsenide shown in Fig 6.1(c), all the holes are sufficiently energetic to

cross into the semiconductor. This barrier-less collection of holes would exhibit significantly higher

efficiency and would require lower biases than electron collection. Combining the results of Fig 5.3

with this picture, gold and copper are ideally suited for hot hole injection, whereas silver and

aluminum are capable of both.

The nature of transitions accessible by the plasmon also affects the angular distribution of the

excited carriers. For the four metals considered above, Fig 5.4 illustrates the momentum direction

and energy distribution for hot carriers generated by the decay of a surface plasmon polariton

propagating on a [001] surface along the x-direction. The radial direction indicates carrier energy

whereas the orientation indicates the carrier momentum direction. The maximum energy, illustrated

by the gray sphere, corresponds to the photon energy, and the color scheme indicates the relative

probability density of carriers at that energy and momentum direction.

The electric field due to such a plasmon is predominantly along the x-direction, and for a

free-electron metal we expect a dipole-antenna like momentum distribution that peaks along the

field directions. Only the electron and hole distributions in aluminum exhibit such an orientation

dependence; the remaining metals deviate significantly from that idealized prediction. For the

noble metals, the allowed transitions are on a surface in k-space containing the X and L points,

which contributes carriers in all directions, but with a strong anisotropy dominated by the crystal

directions rather than the plasmon field.

The collection efficiency of hot carriers in plasmonic structures depends on both the initial

distribution and transport of the carriers. In faceted structures smaller than the carrier mean free
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Energy distribution of hot carriers from thin-film plasmon decay
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Figure 5.5: Energy distributions of hot carriers (electrons in blue, holes in red) generated by the
decay of symmetric and antisymmetric plasmon modes of energy 2.8 eV on gold thin films of various
thicknesses. As the film thickness decreases, the relative probability for generating hot electrons via
geometry-assisted intraband transitions (compared to hot holes generated via interband transitions)
increases.

path, ballistic transport, which preserves the momentum direction, is significant compared to diffusive

transport. The crystal-orientation dependent anisotropy in the initial momentum distribution would

therefore become particularly important for such structures.

5.6 Geometry effects in decay of thin-film plasmons

Above, we considered the decay of surface plasmon polaritons on semi-infinite metal slabs in order

to minimize geometry effects and focus on the effects of electronic structure. In nano-confined

geometries, crystal momentum or q is no longer a good quantum number due to the uncertainty

principle and therefore the transitions excited by plasmon decay no longer need to be vertical unlike

the situation in Figure 5.3. This opens up the possibility of geometry-assisted intraband transitions

without involving phonons. This mode of localized plasmon decay has been studied within the
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context of jellium models with simplified electronic structure;[11, 19] here we analyze this decay

mode including the full electronic structure of the plasmonic metal.

Direct electronic structure calculations for nanoparticles require significant computational effort,

however, and we therefore make two simplifications to enable practical calculations for systems of

experimentally relevant sizes. First, we consider thin films which are of finite thickness along one

dimension; the electronic structure calculation can then exploit Bloch’s theorem in the remaining

two periodic directions. The resulting predictions would then be a lower bound on the corresponding

geometry effect in nanoparticles which are confined in all three dimensions. Second, we adopt

an ab initio tight-binding approximation for the electronic structure of the thin film using the

density-functional Hamiltonian expressed in the basis of maximally localized Wannier functions.[20,

31] This approach reproduces the full density-functional band structure of the bulk material exactly

by construction, but approximates geometry effects since changes in orbital shapes within a unit cell

are neglected.

A metal film of finite thickness supports symmetric and antisymmetric plasmon modes (with

respect to E · k̂, the electric field along the propagation direction) as shown schematically in the top

insets of Figure 5.5. We analytically construct the vector potential for one quantum of each of these

modes,[3] analogous to (5.1), and use Fermi’s golden rule to calculate the rate of their direct decay

to electron hole-pairs with the matrix elements and electronic energies obtained from the Wannier

representation. See the Methods section for details.

Figure 5.5 shows the resulting electron and hole energy distributions generated from the decay

of plasmons in gold films. The results for both the symmetric and antisymmetric plasmon modes on

a film of thickness 40 nm resemble that for the semi-infinite slab from Figure 5.3(d): most of the

energy is deposited in the hot holes. However, with decreasing film thickness, the finite-thickness

geometrical effects become stronger and the probability of generating hot electrons via intraband

transitions increases. The effect is particularly pronounced for the antisymmetric mode because this

lower wave-vector mode becomes more light-like with a smaller fraction of the field in the interior of

the metal which lowers the contribution of the interband transitions (note the scale factors in the

right hand panels of Figure 5.5).

This analysis allows one to weigh the relative importance of the interband transitions and

geometry-assisted intraband transitions. Confining geometries smaller than 10 nm enable finite

probabilities of intraband transitions and allow the generation of hotter electrons than allowed in
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the hole-dominant bulk copper or gold. However, interband transitions are still responsible for

a significant fraction of the generated carriers, and hence an appropriate choice of material (as

discussed in section 5.5) is important to maximize the efficiency of hot electron or hole generation.

5.7 Discussion

We have reported first-principles calculations that describe plasmon-mediated hot carrier generation

in aluminum, gold, silver and copper. These calculations illustrate that the generated carrier profile

is extremely sensitive to the details of the electronic band structure, especially to the position of the

d-bands in silver, copper and gold relative to unoccupied states above the Fermi level. Copper and

gold generate hot holes that are much more energetic than the electrons, silver produces narrow

energy distributions of hot holes as well as hot electrons, while aluminum generates continuous energy

distributions of holes and electrons. These findings inform material selection for efficiently collecting

carriers of a specific type and energy at metal-semiconductor interfaces or in surface-adsorbed

molecular species.

Geometry of the plasmonic structure also plays an important role in determining the efficiency of

carrier generation and collection. Nano-confinement effects allow the generation of hotter electrons

in copper and gold via geometry-induced intraband transitions. However, interband transitions,

which depend strongly on the electronic band structure, still dominate the initial energy distribution.

The initial momentum distribution of the carriers depends on both the crystallographic orientation

of the metal and plasmon polarization. The net efficiency of carrier collection in a specific geometry

depends on this initial distribution as well as the subsequent transport of the carriers to the

surface. Therefore, assessing and optimizing carrier collection efficiency of plasmonic nano-structures

additionally require models for the transport of hot carriers, a subject for future study.

Methods

5.8 Computational details

We perform density-functional calculations for face-centered cubic aluminum, silver, copper and

gold in the plane-wave electronic density functional software, JDFTx [32], using full-relativistic
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norm-conserving pseudopotentials at a kinetic energy cutoff of 30 Hartrees (816 eV) and at the

experimental lattice geometry. We use the PBEsol[25] exchange-correlation approximation along

with a rotationally-invariant DFT+U correction[7] for the d-electrons, with U = 1.63 eV for copper,

2.45 eV for silver and 2.04 eV for gold fit to reproduce experimental photoemission data (no U

correction for aluminum).

We use Kohn-Sham eigenvalues, Fermi occupations and momentum matrix elements on a

dense 1283 sampling of the Brillouin zone to calculate the inter-band transition rate of plasmon

mode equation (5.1) using equation (5.2). We use experimental dielectric functions from Ref. [26],

parametrized as a sum of Lorentz-Drude responses, to determine the plasmon mode. We replace the

energy-conserving δ-function in equation (5.2) with a normalized Gaussian of width ∼ kBT = 0.026 eV

in order to accommodate the discrete k-point sum that replaces the Brillouin-zone integral. We

histogram the contributions to the total transition rate Γ in terms of the electron and hole energies

and momenta to generate the distributions plotted in Figs 5.3 and 5.4.

For the thin-film calculations, we generate the Wannier functions, Hamiltonian and matrix

elements using a coarser 103 sampling of the Brillouin zone, which results in an ab initio tight-

binding like Hamiltonian with a range of approximately 5 unit cells in each direction. We then

calculate the electronic states of the thin film in the Wannier basis and calculate the transition rate

of plasmon modes equations (5.8–5.13) using equation (5.14), histogrammed by electron and hole

energies to generate the distributions shown in 5.5.

Surface plasmon polariton decay rate

Here we sketch the derivation of equation (5.2), the decay rate of a single surface plasmon to

electron-hole pairs via interband transitions. The initial state for this decay is the Fermi sea of

quasiparticles and a single surface plasmon with wave vector k, which we can denote by |k〉 =

â†k|0〉, if we define |0〉 to consist of the vacuum of surface plasmons and the Fermi sea. The

possible final states each consist of a single electron-hole pair on the Fermi sea and no plasmon,

|qn,q′n′〉 = ĉ†q′n′ ĉqn|0〉/
√

(1− fq′n′)fqn, and are therefore labeled by the electron and hole wave-

vectors q,q′ and band indices n, n′. (The occupation factors normalize the final states, since

{ĉqn, ĉ†q′n′} = δqq′δnn′ and fqn ≡ 〈0|ĉ†qnĉqn|0〉.)
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Fermi’s golden rule for this decay process is therefore

Γ = 2π
~

∑
q′qn′n

δ(εq′n′ − εqn − ~ω)
∣∣Mk

qn,q′n′
∣∣2 , (5.3)

with the transition matrix element

Mk
qn,q′n′ := 〈qn,q′n′|Ĥint|k〉

=
〈0|ĉ†qnĉq′n′√
(1− fq′n′)fqn

[
e

2me

∑
σ

∫
drΨ̂

†
σÂ · p̂Ψ̂σ

]
â†k|0〉

=
√

(1− fq′n′)fqn

[
Ω
LzS

∑
σ

∫
LzS

drψσ∗q′n′(r) e

2me
uk(r, 0) · ~∇

i
ψσqn(r)

]
. (5.4)

The expectation value of the plasmon and quasiparticle creation and annihilation operators in the

second line above against the vacuum and Fermi sea reduces to (1 − fq′n′)fqn. In the final line

above, S is the surface area for plasmon quantization [1] and we quantize the electrons on a box of

area S on the surface that extends a depth Lz into the surface, with Lz � 1/|γ(z < 0)|, the decay

length of the plasmon mode in the metal. The factor Ω/(LzS) above accounts for the fact that the

orbitals are normalized on the unit cell of volume Ω instead of on the quantization volume.

Substituting the plasmon mode function given by (5.1), noting that it varies slowly on the length

scale of the orbitals (both k and |γ(z < 0)| are small in atomic units), and splitting q = qz ẑ + q‖,

the normal and surface-plane components, the matrix element reduces to

Mk
qn,q′n′ :=

√
(1− fq′n′)fqn

dz
2Lz

√
2π~

ωSL(ω)

(
k̂− kẑ

γ(z < 0)

)
· δq′‖q‖

× 1
1− e−dz(|γ(z<0)|+i(qz−q′z))

∑
σ

∫
Ω
drψσ∗q′n′(r)e~∇

ime
ψσqn(r), (5.5)

where dz is the separation between lattice planes. The term with the exponential in the denominator

arises from the sum of a geometric series over lattice planes and is a sharply peaked function of

qz − q′z with width ∼ |γ(z < 0)|. We can therefore approximate it by δqzq′z in the total transition

rate with weight equal to

∑
q′z

∣∣∣∣ 1
1− e−dz(|γ(z<0)|+i(qz−q′z))

∣∣∣∣2 ≈ Nz
2dz|γ(z < 0)| , (5.6)
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where Nz = Lz/dz is the number of lattice planes in the quantization volume. Reducing the double

sum over q using δq′‖q‖ and δqzq′z , the total transition rate simplifies to

Γ = π2

2ωL(ω)|γ(z < 0)|
1

LzS

∑
qn′n

(1− fqn′)fqnδ(εqn′ − εqn − ~ω)

×

∣∣∣∣∣
(

k̂− kẑ
γ(z < 0)

)
·
∑
σ

∫
Ω
drψσ∗qn′(r)e~∇

ime
ψσqn(r)

∣∣∣∣∣
2

(5.7)

Finally, replacing the discrete average over wave-vectors 1
LzS

∑
q by its continuum limit

∫
dq

(2π)3 ,

gets rid of all dependence on the fictitious plasmon quantization area and electron quantization

volume, and results in equation (5.2) in the main text.

Thin-film plasmon decay rate

Here we briefly sketch the construction of the plasmon mode functions, the Wannier basis approxi-

mation to the electronic states and the Fermi golden rule calculation for the surface plasmon decay

in thin metallic films (section 5.6).

Given a thin metal film of thickness Lz = 2H centered at z = 0 described by a local dielectric

function ε(ω), we can solve Maxwell’s equations analytically to obtain the symmetric mode

usym
k (r, t) =

√
2π~

ωLsym(ω)S e
i(k·r−ωt)

e
−γout(|z|−H)

(
k̂ + ẑ ik

γout
sign(z)

)
, |z| > H

1
cosh(γinH)

(
k̂ cosh(γinz)− ẑ ik

γin
sinh(γinz)

)
, |z| ≤ H︸ ︷︷ ︸

≡usym0
k (z)

,

(5.8)

and the antisymmetric mode

uasym
k (r, t) =

√
2π~

ωLasym(ω)S e
i(k·r−ωt)

e
−γout(|z|−H)

(
k̂sign(z) + ẑ ik

γout

)
, |z| > H

1
sinh(γinH)

(
k̂ sinh(γinz)− ẑ ik

γin
cosh(γinz)

)
, |z| ≤ H︸ ︷︷ ︸

≡uasym0
k (z)

.

(5.9)
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Here, γout =
√
k2 − ω2/c2 and γin =

√
k2 − ε(ω)ω2/c2, where k satisfies the dispersion relation

k = ω

c

√
ε(ω)(ε(ω) tanh2(γinH)− 1)
ε2(ω) tanh2(γinH)− 1

(5.10)

for the symmetric mode and

k = ω

c

√
ε(ω)(ε(ω) coth2(γinH)− 1)
ε2(ω) coth2(γinH)− 1

(5.11)

for the antisymmetric mode (obtained by imposing continuity of D · ẑ across the interface).

Above, the prefactors in (5.8) and (5.9) normalize the energy of the plasmon modes on an area S

to that of a single quantum, ~ω. (See Ref. [3] for more details about quantization of surface plasmons

on thin films.) Integrating the field intensities and enforcing this normalization then results in

Lsym(ω) =
[
(γ2

in + k2) sinh(γinLz) + (γ2
in − k2)γinLz

] d(ωε)
dω +

(
ωε
c

)2 [sinh(γinLz)− γinLz]
2γ3

in (cosh(γinLz) + 1) + k2

2γ3
out

(5.12)

for the symmetric mode and

Lasym(ω) =
[
(γ2

in + k2) sinh(γinLz)− (γ2
in − k2)γinLz

] d(ωε)
dω +

(
ωε
c

)2 [sinh(γinLz) + γinLz]
2γ3

in (cosh(γinLz)− 1) + k2

2γ3
out

(5.13)

for the antisymmetric mode.

As for the electronic states, we start by computing the maximally localized Wannier functions[20,

31] wσa (r−R) = 1
Nq

∑
qb U

q
abe
−iq·(r−R)ψσqb(r) for the bulk metal, which involves finding the unitary

rotations Uq
ab that minimize the spatial variance of wσa (r−R). Here, ψσqb(r) are the eigen-orbitals

of the bulk metal and let εqb be the corresponding eigen-energies. Now, we can use the unitary

transformations to construct the Hamiltonian in the basis of Wannier functions, HRa,R′a′ =
1
Nq

∑
qb U

q
a′bU

q
abεqbe

iq·(R−R′)εqb. The fact that the Wannier functions are localized then implies

that the elements of HRa,R′a′ decrease rapidly with increasing |R − R′| and can be truncated

after a finite number of sites. This is therefore a multi-orbital tight-binding-like model (with many

neighbors) that exactly reproduces the original eigenfunctions and eigenvalues since it is obtained

from a unitary transformation of the original Hamiltonian. See Ref. [31] for a detailed exposition.

Next, we approximate the Hamiltonian for the thin film by starting with the above Wannier basis
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Hamiltonian for the bulk system and setting any matrix elements that involve a site outside the film

to zero. Diagonalizing this discrete Hamiltonian then gives us the eigenvalues εqn and eigenfunctions

ψσqn =
∑
aR CqnaZe

iq·Rwσa (r −R) as a linear combination of the localized Wannier functions on

various atom sites R. Here, we have used Bloch’s theorem in the two periodic directions to obtain

the diagonalizing factor eiq·R where q is a wave vector in the two-dimensional Brillouin zone. The

coefficients CqnaZ (where Z = ẑ ·R) are obtained from numerical diagonalization of the discrete

Hamiltonian matrix constructed above.

Finally, we apply Fermi’s golden rule to calculate the transition rates using the vector potentials

for the thin film plasmon modes and the eigenfunctions in the Wannier basis. Assuming that

usym/asym
k vary slowly on the atomic scale in the two periodic directions, we can show analogously

to the previous section that the transition rates for the symmetric/antisymmetric modes are

Γsym/asym ≈
π2~2e2

Ω‖m2
eωLsym/asym(ω)

∑
n′n

∫
dq

(2π)2 (1− fqn′)fqnδ(εqn′ − εqn − ~ω)

×

∣∣∣∣∣∣
∑

a′aZ′Z

C∗qn′a′Z′CqnaZusym0/asym0
k (z̄Z

′Z
a′a ) ·

∑
R‖

eiq·R‖〈i∇〉R‖a′a

∣∣∣∣∣∣
2

. (5.14)

Here, Ω‖ is the area of the two-dimensional surface unit cell, z̄Z′Za′a is the z-center of the product

density of the Wannier basis functions indexed by aZ and a′Z ′, and 〈i∇〉R‖a′a is the momentum

matrix element between Wannier functions a and a′ at two sites separated by R‖, a lattice vector

parallel to the surface. As before, we generate the carrier energy distributions by histogramming

contributions to the integral in the above expression in terms of the initial and final electronic state

energies.
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6

Phonon-assisted and
Multi-plasmon Contributions to
Plasmon Decay

All the cool electrons want to be in a band.

– Ravishankar Sundararaman

6.1 Chapter Overview:

Behavior of metals across a broad frequency range from microwave to ultraviolet frequencies is of

interest in plasmonics, nanophotonics and metamaterials. Depending on the frequency, losses of

collective excitations in metals can be predominantly classical resistive effects or Landau damping.

In this context, we present first principles calculations that capture all the significant microscopic

mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions

so generated. Specifically we report the first ab initio calculations of phonon-assisted optical

excitations in metals, which are critical to bridging the frequency range between resistive losses at

low frequencies and direct interband transitions at high frequencies. In aluminum and the noble

metals, commonly used plasmonic materials, we find that resistive losses compete with phonon-

assisted carrier generation below the interband threshold, but hot carrier generation via direct

transitions dominates above threshold. Finally, we predict energy-dependent lifetimes and mean free

paths of hot carriers, accounting for electron-electron and electron-phonon scattering, to provide
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insight toward transport of plasmonically-generated carriers at the nanoscale.

6.2 Introduction

Plasmons provide a pathway to manipulate electromagnetic radiation at nanometer length scales [2,

26] and at femtosecond time scales.[12] Illumination of a metallic structure produces strong optical

near fields that initiate a cascade of processes with multiple outcomes, including the excitation of

surface plasmons, their radiative decay to photons, and their non-radiative decay in the material.[18].

Non-radiative plasmon decay includes the generation of electron-hole pairs. These electron

and hole energies depend on the material and the plasmon energy, and are considered ‘hot’ if

significantly larger than those of thermal excitations at ambient temperatures. These hot carriers

undergo fast internal relaxation, but can be ejected into semiconductor and molecular systems

as clearly demonstrated in several recent device applications ranging from energy conversion and

photocatalysis to photodetection. In particular, demonstrations of photochemistry driven by both

hot electrons[21, 7] and hot holes[6] raise interesting questions regarding the timescales of plasmonic

hot carrier generation and transport.

In addition to the visible and ultraviolet plasmonic response of metals, the behavior of metals at

microwave and infrared frequencies is of broad interest.[28, 24, 10] Losses in metals can proceed either

through classical resistive dissipation or single-particle excitations. For plasmons, the collective

excitations of electrons in metals, these excitations constitute Landau damping that results in

the generation of highly energetic carriers. Direct optical excitation of carriers in most metals is

only allowed above an interband threshold energy due to crystal momentum conservation. Below

this threshold, which typically corresponds to optical frequencies, phonons provide the necessary

momentum to circumvent this selection rule. Additionally, in metals, confinement of fields to the

surface breaks translational invariance that can also provide the momentum necessary to excite

intraband transitions.[13] These ‘surface-assisted’ and phonon-assisted transitions are important

contributors to losses in metals at infrared frequencies, and hence important to understand from

both a fundamental and technological perspective.[32]

First principles calculations provide an opportunity to quantitatively analyze each microscopic

mechanism underlying plasmon decay individually (Fig. 6.1(a)) and gauge their relative contributions

in different materials and at different frequencies. These calculations can examine the process at
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various time scales, separating effects due to the initial distribution of hot carriers and their

subsequent transport. Such a detailed understanding, which is extremely challenging to extract

from experiment, will elucidate opportunities to enhance plasmonic hot carrier devices as well as

their fundamental limits.

Previously, we studied direct interband transitions in plasmonic metals in detail[33] and showed

that the plasmon-generated hot carrier distribution is extremely sensitive to details of the electronic

band structure. Specifically, we found that in noble metals, the positions of the d bands relative

to the Fermi level results in much hotter holes than electrons; subsequent studies confirmed these

results.[3] We also showed that the decay of surface plasmon polaritons is representative of decays in

plasmonic nanostructures and that effects of geometry on the generation of carriers are significant

only at dimensions below 10 nm.

This Chapter completes the theoretical picture of surface plasmon decay by adding ab initio

calculations of phonon-assisted transitions and resistive losses. Previous first principles calculations

of phonon-assisted transitions treat indirect-gap semiconductors below their optical gap.[22, 14] In

extending such calculations to metals, we show that it is necessary to carefully treat the energy-

conserving ‘on-shell’ intermediate states, that correspond to sequential processes (Fig. 6.1(b)).

We predict the relative contributions of these processes and direct transitions, and compare the

absolute decay rates to those estimated from experimentally-measured complex dielectric functions

for frequencies ranging from infrared to ultraviolet. Finally, we analyze the subsequent dynamics of

the generated hot carriers, account for electron-electron and electron-phonon scattering and present

ab initio predictions for the strongly energy-dependent lifetimes and mean free paths of hot carriers.

6.3 Results & Discussion

6.3.1 Plasmon decay

In order to compare various contributions to surface plasmon decay with experiment on equal

footing, we calculate contributions to the imaginary part of the dielectric tensor =ε̄(ω) and relate the

complex dielectric function to the plasmon decay rate. Specifically, the decay rate per unit volume

is 1
2πE∗(r) · =ε̄(ω) · E(r) at a point in the material where the electric field is E(r). For a surface

plasmon polariton with wave vector k and angular frequency ω on the surface of a semi-infinite
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Photon

Phonon
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Direct

On-shell
phonon-
assisted
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assisted

Surface-
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Γ X W L Γ K
Figure 6.1: (a) Schematic for decay of surface plasmons via direct and phonon-assisted transitions
to generate hot electrons and holes. (b) Illustrations of direct, surface-assisted and phonon-assisted
transitions on the band structure of gold. Surface-assisted transitions constitute the small but non-
zero probability of non-vertical transitions due to the momentum distribution of the plasmon. The
intermediate virtual state (empty circle) requires a sum over states (filled circles) in perturbation
theory. When the intermediate state is a real state on the band structure (goes ‘on shell’), it
corresponds to a sequential process of electron-phonon scattering followed by a direct transition (or
vice versa).
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metal slab extending over z < 0, substituting the electric field profile of a single quantum [1] and

integrating over space yields the total decay rate

Γ = ω

2L(ω)|γ(z < 0)|λ
∗ · =ε̄(ω) · λ. (6.1)

Here, L(ω) is the quantization length for the plasmon determined by normalizing the energy

density of the mode, |γ(z < 0)| is the inverse decay length of the plasmon into the metal and

λ ≡ k̂− ẑk/γ(z < 0) is the polarization vector. All of these quantities are fully determined by the

experimental dielectric function and described in detail in Refs. [1] and [33].

We calculate the total ‘experimental’ decay rate of plasmons as a function of frequency by using

(6.1) directly with the complex dielectric functions measured by ellipsometry.[25]

Within the random phase approximation, direct interband transitions contribute

λ∗ · =ε̄direct(ω) · λ = 4π2e2

m2
eω

2

∫
BZ

dq
(2π)3

∑
n′n

(fqn − fqn′)δ(εqn′ − εqn − ~ω) |λ · 〈p〉qn′n|
2
, (6.2)

where εqn and fqn are the energies and occupations of electronic quasiparticles with wave-vectors q

(in the Brillouin zone BZ) and band index n, and 〈p〉qn′n are momentum matrix elements.

Substitution of (6.2) in (6.1) results exactly in the plasmon decay rate we previously derived using

Fermi’s Golden rule within a fully quantum many-body formalism of the electrons and plasmons.[33]

We calculate the energies and matrix elements with the same relativistic DFT+U method as Ref. [33]

which produces band structures in excellent agreement with photoemission spectra. Since we use a

spinorial electronic structure method to fully treat relativistic effects, the band indices include spin

degrees of freedom.

Next, the contribution due to phonon-assisted transitions from second-order perturbation theory

is [22, 14]

λ∗·=ε̄phonon(ω)·λ = 4π2e2

m2
eω

2

∫
BZ

dq′dq
(2π)6

∑
n′nα±

(fqn−fq′n′)
(
nq′−q,α + 1

2 ∓
1
2

)
δ(εq′n′−εqn−~ω∓~ωq′−q,α)

×

∣∣∣∣∣λ ·∑
n1

(
gq′−q,α

q′n′,qn1
〈p〉qn1n

εqn1 − εqn − ~ω + iη
+

〈p〉q
′

n′n1
gq′−q,α

q′n1,qn

εq′n1 − εqn ∓ ~ωq′−q,α + iη

)∣∣∣∣∣
2

, (6.3)

where ~ωkα is the energy of a phonon with wave-vector k and polarization index α, nkα is the
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corresponding Bose occupation factor and gkα
q′n′,qn is the corresponding electron-phonon matrix

element with electronic states labeled by wave-vectors q,q′ and band indices n, n′ (with k = q′ − q

for crystal momentum conservation). The sum over ± accounts for phonon absorption as well as

emission. Since the ab initio matrix elements couple all pairs of wave-vectors in the Brillouin zone,

they implicitly account for wrap-around (Umklapp) processes.

We calculate the phonon energies and electron-phonon matrix elements consistently using the

same relativistic DFT+U approximation as for the electronic states. We use a Wannier representation

to efficiently interpolate the phonon energies and matrix elements to calculate the Brillouin zone

integrals in (6.3) accurately (See Methods section for details.)

The imaginary part of the energy denominator, η, in the second line of equation (6.3) corresponds

to the linewidth of the intermediate electronic state (with band index n1). The value of η does

not affect the phonon-assisted absorption at photon energies less than the optical gap of materials

previously considered,[22, 14] and is usually treated as a numerical regularization parameter. However,

above the optical gap (the interband threshold for metals), the real part of the denominator crosses

zero and the resulting singular contributions are inversely proportional to η. These singular

contributions correspond to sequential processes: electron-phonon scattering followed by a direct

interband transition or vice versa (Fig. 6.1). For a metal, including contributions from these

sequential processes would lead to a multiple counting of the direct transition. Scattering events

preceding the optical transition are a part of the equilibrium Fermi distribution, while scattering

events following the optical transition corresponds to the subsequent inelastic relaxation of the

generated carriers. We eliminate this multiple counting by taking advantage of the η independence of

the non-singular part and the η−1 variation of the singular part and extrapolating from calculations

done using two values of η (See Methods section for details.)

In metals, the strong confinement of fields at the surface introduces an additional mechanism

for intraband transitions. The exponential decay of the fields in the metal with inverse decay

length |γ(z < 0)| introduces a Lorentzian distribution in the momentum of the plasmon normal

to the surface with width ∼ |γ(z < 0)|. (This can also be interpreted in terms of the uncertainty

principle.) This momentum distribution allows diagonal intraband transitions on the band structure

(Fig. 6.1(b)), which contributes a ‘surface-assisted’ loss[13]

=εsurface(ω) =
ω2
p

ω3 ×
3
4 |γ(z < 0)|vF . (6.4)
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Here, ωp =
√

4πne2/me is the the bulk plasma frequency of the metal and vF = (~/me) 3
√
n/(3π2)

its Fermi velocity, where n is the bulk carrier density of the metal. See Ref. [13] for a detailed

derivation of this contribution.

The direct, surface-assisted and phonon-assisted transitions considered above are the lowest-order

processes for the decay of a plasmon to single-particle excitations, which correspond to the Landau

damping of the plasmon on the Fermi sea.[16, 4, 9] Higher-order processes including multiple

electron-hole pairs or multiple phonons are suppressed by phase-space factors at low energies and

become important only at higher energies that are not usually accessed by surface plasmons.[12]

Apart from Landau damping, an additional source of plasmon loss is the intrinsic lifetime of

the electronic states comprising the collective oscillation. This corresponds to a resistive loss in

the material which we calculate using a linearized Boltzmann equation with a relaxation time

approximation. We show in the Methods section that

=εresistive(ω) = 4πσ0

ω(1 + ω2τ2) , (6.5)

where the zero-frequency conductivity σ0 and the momentum relaxation time τ are derived from ab

initio electronic states and electron-phonon matrix elements.

Fig. 6.2 compares the plasmon linewidth and decay rates estimated directly from the experimentally-

measured complex dielectric functions with theoretical predictions for cumulative contributions

from direct, surface-assisted, phonon-assisted transitions and resistive losses. For all the common

plasmonic metals, aluminum and the noble metals, we find that direct transitions dominate above

the interband threshold (∼ 1.6− 1.8 eV for aluminum, gold and copper and ∼ 3.5 eV for silver). All

other contributions add to less than 10% above threshold, and hence the cumulative results overlay

the direct transition lines. In silver, the maximum plasmon frequency coincides with the interband

threshold and hence there is no accessible frequency range for which direct transitions dominate. In

aluminum, direct transitions are in fact possible at all frequencies due to a band crossing near the

Fermi level,[33] but an additional channel for direct transitions with much higher density of states

opens up at the effective threshold of ∼ 1.6 eV.

Below the threshold, direct transitions are forbidden (or for aluminum, are weak) and the

contributions due to the other processes become important. Surface-assisted processes only contribute

a small fraction (at most 3%) of the experimental linewidth in the entire frequency range below
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Figure 6.2: Comparison of calculated and experimental linewidths (left axis) and decay rates (right
axis) in (a) Al (b) Ag (c) Au and (d) Cu. The theoretical curves indicate cumulative contributions
from direct transitions alone (‘Direct’), including surface-assisted transitions (‘+Surface’), including
phonon-assisted transitions (‘+Phonon’), and including resistive losses (‘+Resistive’).
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threshold. Phonon-assisted transitions and resistive losses compete significantly and dominate this

frequency range. The relative importance of phonon-assisted transitions increases slightly with

frequency, with resistive losses dominating at very low frequencies (close to 0 eV in these plots), an

approximately even split at ∼ 1 eV, and a greater contribution from phonon-assisted transitions just

below threshold.

The total theoretical prediction including all these contributions agrees very well with experiment

over the entire range of frequencies. Above threshold for the noble metals, the theoretical predictions

overestimate experiment by ∼ 10− 20%, which is the typical accuracy of optical matrix elements

involving d electrons in density-functional theory.[19] Below threshold, the total theory result

underestimates the experimental value but is typically within a factor of two from it. This is, in part,

because material non-idealities could contribute additional losses and our theoretical calculations

estimate an ideal lower bound. In fact, the largest discrepancy is for silver because these ideal losses

are the smallest and the non-idealities become more important relatively. Also note that there

is significant spread in tabulated experimental dielectric functions for the noble metals,[25] with

discrepancies a factor of two or higher in the imaginary parts at infrared frequencies. (We used the

measurements that covered the greatest frequency range.) Therefore, more careful experimental

measurements in that frequency range with higher quality samples would be necessary and useful

for a stricter comparison.

The results in Fig. 6.2 are based on calculations at standard room temperature, T = 298 K. We

expect the direct and surface-assisted contributions to be approximately independent of temperature,

and the phonon-assisted and resistive contributions to decrease upon lowering the temperature.

Therefore, at very low temperatures, we predict the cumulative direct and surface-assisted contribu-

tion (green dotted line in Fig. 6.2) to dominate the surface plasmon decay.

Fig. 6.3 shows the initial carrier distributions generated via direct and phonon-assisted transitions,

which we calculate by histogramming the integrands in (6.2) and (6.3) by the initial (hole) and

final (electron) state energies. The carrier distributions are plotted as a function of carrier energy

(horizontal axis) and plasmon / photon energy (axis normal to the page). The color scale indicates

the fraction of carriers generated by direct or phonon-assisted transitions.

Direct transitions, shown in blue, dominate at high energies and exhibit the strong material

dependence we previously discussed in detail in Ref. [33]. For copper and gold, direct transitions

occur from the d-bands to unoccupied states above the Fermi level, which results in holes that are

92



6.3. RESULTS & DISCUSSION

Figure 6.3: Energy distributions of hot carriers generated by to phonon-assisted and direct transitions
in (a) Al (b) Ag (c) Au and (d) Cu. The color-scale indicates the fraction of carriers produced by
phonon-assisted (red) or direct (blue) transitions.
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much more energetic than electrons. Aluminum exhibits a relatively flat distribution of electrons

and holes, while silver exhibits a bimodal distribution of hot electrons as well as holes from direct

transitions in a very narrow frequency range close to the maximum plasmon frequency.

Phonon-assisted transitions, shown in red, exhibit a flat distribution of electrons and holes

extending from zero to the plasmon energy for all the metals. In aluminum, direct transitions are

also possible below the threshold at 1.6 eV and contribute ∼ 25% of the generated carriers. For the

other metals, phonon-assisted transitions generate a majority of the carriers since surface-assisted

transitions are negligible at room temperature as discussed above. Resistive losses compete with

phonon-assisted transitions, but dissipate thermally and do not generate energetic hot carriers. Due

to this competition, only ∼ 50% of the absorbed energy results in hot carrier generation below

threshold. Therefore, plasmonic hot-carrier applications could benefit from the higher efficiency above

threshold, where direct transitions dominate by far and result in high-energy carriers. Additionally,

we predict aluminum to be an excellent candidate for general hot carrier applications since it allows

direct transitions at all energies and has the smallest fraction of resistive loss (despite its absolute

resistivity being higher than other metals).

6.3.2 Carrier Transport

In experiments, hot carriers generated by plasmon decay must live long enough or travel far enough

to be collected or detected. The time and length scales of such non-equilibrium carrier transport

has been the subject of much recent debate.[21, 5, 12] Here, we present ab initio predictions for the

lifetimes and mean free paths of hot carriers as a function of energy in all four metals considered

above, accounting for electron-phonon and electron-electron scattering.

For the electron-electron scattering contribution, we calculate the imaginary part of the quasi-

particle self energy given by[15]

=Σe-e
qn =

∫
BZ

dq′

(2π)3

∑
n′

∑
GG′

ρ̃q′n′,qn(G)ρ̃∗q′n′,qn(G′)

× 4πe2

|q′ − q + G|2
=
[
ε−1

GG′(q
′ − q, εqn − εq′n′)

]
, (6.6)

where ρ̃q′n′,qn(G) is the plane-wave expansion of the product density
∑
σ u

σ∗
q′n′(r)uσqn(r) of Bloch

functions with reciprocal lattice vectors G, and ε−1
GG′(k, ω) is the microscopic dielectric function in

94



6.3. RESULTS & DISCUSSION

a plane-wave basis calculated within the random-phase approximation. See Ref. [15] for a detailed

exposition including its connection to Fermi golden rule for electron-electron scattering. Here, we

calculate (6.6) in JDFTx[34] using an explicit frequency integral with 0.1 eV resolution for the

dielectric function, retaining local field effects with a kinetic energy cutoff of 200 eV. The remaining

computational details are identical to the plasmon decay calculations described in the Methods

section.

We calculate the electron-phonon scattering contribution to the electron linewidth using Fermi

golden rule

=Σe-ph
qn = π

∫
BZ

Ωdq′

(2π)3

∑
n′α±

(
nq′−q,α + 1

2 ∓
1
2

)
× δ(εq′n′ − εqn ∓ ~ωq′−q,α)

∣∣∣gq′−q,α
q′n′,qn

∣∣∣2 , (6.7)

where the electronic states, phonon modes and electron-phonon matrix elements are computed

exactly as for the phonon-assisted decay (see Methods section). Additionally, we use a dense

48 × 48 × 48 grid to sufficiently resolve the q′ integral with electron and phonon occupations at

standard temperature, T = 298 K.

We then calculate the total carrier linewidth =Σqn = =Σe-e
qn + =Σe-ph

qn , the carrier lifetime

τqn = ~/(2=Σqn) and mean free path λqn = vqnτqn, where vqn ≡ ∂εqn
∂q is the group velocity of

electronic state qn. Figure ?? shows the resulting carrier lifetimes and mean free paths as a function

of carrier energy relative to the Fermi level, for aluminum and the noble metals. For each metal, the

axes for lifetime and mean free paths have been scaled relatively by the Fermi velocity so that the

two quantities approximately coincide for low energy carriers.

For all metals, we find that low energy carriers close to the Fermi level have the longest lifetime

and mean free path. At these energies, electron-phonon scattering dominates while electron-electron

scattering, which is nominally proportional to (ε − εf )2 due to the phase space available for

scattering,[15] is negligible. The noble metals have similar maximum carrier lifetimes ∼ 30 fs and

mean free paths ∼ 50 nm in the order Ag > Cu > Au, while aluminum has a smaller maximum

lifetime ∼ 10 fs and mean free path of ∼ 20 nm.

With increasing carrier energy away from the Fermi level, for both electrons and holes, the

electron-phonon scattering rates remain nominally constant while the electron-electron scattering
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Figure 6.4: Comparison of total, e-e and e-phonon contributions to carrier line widths in (a) Al (b)
Ag (c) Au and (d) Cu.
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Figure 6.5: Anisotropy of hot carrier lifetimes on the Fermi surface of (a) Al (b) Ag (c) Au and (d) Cu,
with variations of about a factor of two between regions of positive and negative curvature of the Fermi
surface.
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rates increase dramatically reducing the lifetimes and mean free paths. The electron-electron and

electron-phonon contributions become comparable roughly at 1 eV away from the Fermi level for all

four metals. The mean free paths drop to ∼ 10 nm in all four metals for 2 eV electrons.

Figure 6.4 also exhibits an asymmetry between electron versus hole transport in all the metals.

Electrons and holes of similar energies have similar lifetimes, but electrons have higher group

velocities, and hence higher mean free paths, because of the curvature of the dispersion relation.

This effect is particularly drastic for d-band holes in the noble metals, which are relatively localized

states with dramatically smaller group velocities. However, after the first scattering event, d-band

holes result in s-band holes with half the energy on average, which can transport much further.

Additionally, our results indicate that aluminum and silver are particularly attractive for the

transport of high energy holes.

6.4 Conclusions

In this chapter we report the first ab initio calculations of phonon-assisted optical excitations in metals,

allowing us to link the energy range between resistive losses at low energies (microwave-infrared)

and direct interband transitions at high energies (visible-ultraviolet). Along with surface-assisted

transitions due to field confinement in metals,[13] this completes the theoretical picture of surface

plasmon decay, accounting for all relevant mechanisms.

We find good agreement with experimental measurements for the total decay rate, but we

additionally predict the relative contributions of all these processes and the initial generation of

hot carriers in plasmonic metals. We find that direct transitions dominate above threshold and

generate hot carriers, while below threshold, hot carrier generation by phonon-assisted transitions is

diminished by competition from resistive losses. We also find that surface-assisted transitions, which

have been the subject of considerable recent debate, are negligible compared to phonon-assisted

and resistive contributions at room temperature. However, we predict that they could be important

below threshold at very low temperatures.

We suggest that aluminum is quite promising as a general-purpose plasmonic hot carrier generator

since it generates hot carriers efficiently for the widest frequency range, and generates high-energy

electrons and holes with equal probability. Compared to the noble metals, aluminum also exhibits

the best transport properties for high energy holes. A detailed analysis of the transport of energetic
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carriers in real metal nanostructures, based on the initial carrier distributions and scattering rates

predicted here, now enable directed design of optimal hot carrier devices.

6.5 Methods

6.5.1 Electronic Structure

We require an approximation to quasiparticle energies and optical matrix elements to describe the

decay of surface plasmons to quasiparticle excitations (6.2,6.3). We use the relativistic DFT+U

approach that we previously established[33] to best reproduce experimental photoemission spectra in

contrast to semilocal density-functional or even quasiparticle self-consistent GW methods.[29] Strong

screening in metals renders electron-hole interactions and excitonic effects negligible, so that we can

work at the independent quasiparticle level rather than with the more expensive Bethe-Salpeter

equation[30] that accounts for those effects.

Following Ref. [33], we perform density-functional calculations in the open-source code JDFTx[34]

with full-relativistic norm-conserving pseudopotentials at a plane-wave cutoff of 30 Eh (Hartrees).

We use the PBEsol[27] exchange-correlation approximation and a rotationally-invariant DFT+U

correction[8] for the d-electrons in noble metals (U = 1.63 eV, 2.45 eV and 2.04 eV respectively

for copper, silver and gold). See Ref. [33] for more details regarding the selection of the electronic

structure method.

We perform the self-consistent ground state calculations using a 12×12×12 uniform k-point mesh

centered at the Γ point along with a Fermi-Dirac smearing of 0.01 Eh to resolve the Fermi surface.

The optical matrix elements correspond to the momentum operator p̂ ≡ me
i~ [r, Ĥ] = ~

i∇+me
i~ [r, V̂NL],

which accounts for the fact that the nonlocal DFT+U and pseudopotential contributions (V̂NL)

to the DFT Hamiltonian (Ĥ), do not commute with the position operator, r. These nonlocal

corrections are usually insignificant for s and p-like electrons, but are critical for describing optical

transitions involving the d-electrons in the noble metals.[19]

Finally, we interpolate the electronic energies and matrix elements to arbitrary k-points in the

Brillouin zone using a basis of maximally-localized Wannier functions.[20, 31] Specifically, we use an

sp3 basis with 4 Wannier bands for aluminum and a relativistic d5t2 basis with 14 Wannier bands

for the noble metals (where t is an orbital centered on the tetrahedral void sites of the face-centered
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cubic lattice). These Wannier functions exactly reproduce the orbital energies and matrix elements

within the maximum surface plasmon energy of the Fermi level for all metals. We then evaluate (6.2)

by Monte Carlo sampling 6.4× 106 q values in the Brillouin zone for the noble metals (9.6× 107 for

aluminum), and histogram contributions by plasmon and carrier energies to get the direct-transition

results in Figures 6.2 and 6.3. Note that aluminum requires more q samples to get similar statistics

since it contributes fewer pairs of bands per q.

6.5.2 Phonon modes and matrix elements

We calculate the ab initio force matrix for phonons and electron-phonon matrix elements from direct

perturbations of atoms in a 4× 4× 4 supercell using exactly the same electronic DFT parameters as

above in JDFTx.[34] All four metals considered here have a single atom basis and hence exactly

three acoustic phonon modes. We then cast these phonon energies and matrix elements into a

Wannier basis to enable interpolation for a dense sampling of the Brillouin zone integrals. (See

Ref. [11] for a detailed introduction; we implement an analogous method in JDFTx, with additional

support for spinorial relativistic calculations.)

We use the aforementioned Wannier basis to cover the energy range close to the Fermi level, and

add random-initialized maximally-localized Wannier orbitals orthogonal to the first set to extend the

energy range of included unoccupied states. We use a total of 24 Wannier bands for aluminum and

46 spinorial Wannier bands for the noble metals that exactly reproduce the orbital energies, optical

and phonon matrix elements up to at least 50 eV above the Fermi level. We find this energy range

of unoccupied states sufficient to fully converge the sum over states in the second order perturbation

theory expression (6.3) at all plasmon energies considered.

Finally, we evaluate the double integral over Brillouin zone in (6.3) by Monte Carlo sampling

with 2× 107 {q,q′} pairs for the noble metals (3× 108 pairs for aluminum to get similar statistics).

We use standard temperature, T = 298 K, to calculate the Fermi occupations for electrons and Bose

occupations for phonons. Note that such low electronic temperatures (compared to the Fermi energy

∼ 105 K) necessitate extremely dense Brillouin zone sampling, which is, in turn, made practical

by the Wannier interpolation.[11] Histogramming by plasmon and carrier energies, we collect the

phonon-assisted contributions to Figures 6.2 and 6.3 (after incorporating the extrapolation discussed

below to eliminate sequential process contributions).
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6.5.3 Extrapolation to eliminate sequential processes

In the results section, we pointed out that (6.3) contains singular contributions when the intermediate

state conserves energy (is ‘on shell’) causing the denominators in the effective second-order matrix

element to vanish. We examine these on-shell contributions in more detail here.

By taking the limit η → 0 in (6.3) and noting that |1/(x+ iη)|2 → πδ(x)/η, we can show that

λ∗ · =ε̄phonon(q′n′,qn) · λ

=
=Σe-ph

qn′

η
(λ∗ · =ε̄direct(qn′,qn) · λ)

+ (λ∗ · =ε̄direct(q′n′,q′n) · λ) =Σe-ph
qn

η

+O(η0) +O(η1) + · · · , (6.8)

where =ε̄(q′n′,qn) denotes the contribution to =ε̄ due to a specific pair of initial and final electronic

states. Here, =Σe-ph
qn is the electron line width due to electron-phonon scattering, given by (6.7).

The above expansion in η clearly illustrates that the singular contributions correspond to

sequential processes. The first term corresponds to a direct transition followed by electron-phonon

scattering while the second term corresponds to the reverse. If we substitute the intermediate

state linewidth =Σqn for η as the formalism prescribes,[22, 14] and for simplicity focus only on

electron-phonon scattering contributions =Σe-ph
qn (which is dominant for low energy carriers), then we

see that the η-singular part reduces simply to twice the direct contribution (6.2). For a metal, this

contribution should not be counted as a separate decay rate since scattering events preceding and

following a transition are part of the initial Fermi distribution and the subsequent carrier transport

respectively.

We eliminate the singular contributions using an extrapolation scheme designed to exploit the

fact that the η dependence is different for on-shell and off-shell processes. To retain the non-singular

O(η0) terms while canceling the O(η−1) singular terms discussed above, we modify equation (6.3) as

(6.3)corrected = 2 (6.3)|2η − (6.3)|η . (6.9)

We find that η = 0.1 eV, which was previously used for semiconductors,[22] is sufficiently large to
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keep the singular terms resolvable for effective subtraction and sufficiently small to have negligible

impact on the physical non-singular contributions. We note that this extrapolation only has an effect

and is necessary above the optical gap of the material. Previous ab initio studies of phonon-assisted

processes did not deal with this issue since they focused on predictions for semiconductors above

the indirect gap and below the direct (optical) gap.

6.5.4 Ab initio estimate of resistive losses

Single electron-hole pair generation dominate the plasmon decay at high frequencies. As the Results

section discusses, resistive loss in the metal, which arises from the finite carrier lifetime and results

in heating rather than few energetic carriers, dominates at frequencies close to 0 eV. Here, we

estimate these losses from the frequency-dependent resistivity calculated ab initio within a linearized

Boltzmann equation with a relaxation time approximation.

The Boltzmann equation for electron occupations fqn(t) in a uniform time-dependent electric

field E(t) is[23]
∂fqn(t)
∂t

+ eE(t) · ∂fqn(t)
∂p = ∂fqn

∂t

∣∣∣∣
coll

. (6.10)

We then substitute fqn(t) = fqn + δfqn(t), where the first term is the equilibrium Fermi distribution

and the second contains perturbations to linear order due to the applied electric field, and collect

contributions at first order in E(t).

To first order, the collision integral on the right-hand side of (6.10) can be written as −δfqnτ
−1
qn ,

where τ−1
qn is the difference between rates of scattering out of and into the electronic state qn. Within

the relaxation time approximation, we assume that τ−1
qn is approximately constant for carriers near

the Fermi level, and replace it by an average τ−1 (inverse of momentum relaxation time). This is an

excellent approximation for metals where electron-phonon scattering dominates carrier relaxation

near the Fermi level,[23] which is the case for most elemental metals (except those with partially

occupied d-shells) including aluminum and the noble metals.

Switching (6.10) to the frequency domain, linearizing, invoking the relaxation time approximation,

and rearranging, we get

δfqn(ω) =
−ef ′qn
τ−1 − iω

vqn ·E(ω), (6.11)

where vqn ≡ ∂εqn
∂q is the group velocity of electronic state qn and f ′qn is the energy derivative of the

Fermi-Dirac distribution. We then calculate the current density j =
∑

qn efqnvqn, and obtain the
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Table 6.1: Ab initio momentum relaxation times and resistivities of plasmonic metals at T = 298 K,
compared to experimental resistivities from Ref. [17].

Metal τ [fs] ρ0 = σ−1
0 [Ωm] Expt ρ0 [Ωm]

Al 12.0 2.46× 10−8 2.71× 10−8

Cu 35.6 1.58× 10−8 1.71× 10−8

Ag 36.4 1.58× 10−8 1.62× 10−8

Au 26.3 2.23× 10−8 2.26× 10−8

conductivity tensor by factoring out vqn. Averaging over directions, the isotropic conductivity is

then

σ(ω) = 1
1− iωτ e

2τ

∫
BZ

dq
(2π)3

∑
n

(−f ′qn)
v2

qn

3︸ ︷︷ ︸
≡σ0

, (6.12)

where σ0 is the zero-frequency (DC) conductivity.

Finally we calculate the momentum relaxation time τ using Fermi golden rule for electron-phonon

scattering. In the average, we weight the scattering rates by (−f ′qn)v
2
qn
3 since that determines

the relative contributions to the conductivity above. It is then straightforward to show that

τ−1 = Γsum/wsum, where

Γsum = 2π
~

∫
BZ

Ωdqdq′

(2π)6

∑
n′nα±

(−f ′qn)
v2

qn − vqn · vq′n′

3

×
[
nq′−q,α + 1

2 ∓
(

1
2 − fq′n′

)]
× δ(εq′n′ − εqn ∓ ~ωq′−q,α)

∣∣∣gq′−q,α
q′n′,qn

∣∣∣2 (6.13)

with all the ab initio electron and phonon properties defined exactly as before, and where the

denominator for normalizing the weights is

wsum =
∫

BZ

dq
(2π)3

∑
n

(−f ′qn)
v2

qn

3 . (6.14)

Note that with this definition, we can simplify the DC conductivity, σ0 = e2τwsum = e2w2
sum/Γsum.

Given the frequency-dependent conductivity of the metal, we can calculate the resistive losses

=ε = = [4πiσ(ω)/ω], which results in (6.5) upon simplification. We calculate wsum and Γsum using

Monte Carlo sampling of the Brillouin zone integrals with 1.6× 106 q values for the single integral

103



6. PHONON-ASSISTED AND MULTI-PLASMON CONTRIBUTIONS TO PLASMON DECAY

and 5× 107 {q,q′} pairs for the double integral, which converges τ and σ0 within 1%. Table 6.1

lists the momentum-relaxation time and resistivity we predict for the common plasmonic metals.

The excellent agreement with experimental resistivities demonstrates the quantitative accuracy of

the ab initio electron-phonon coupling (better than 10% in all cases).

6.6 Multiplasmon and Nonlinear Processes

Now we focus on the imaginary part, =χ3, of the cubic susceptibility for two reasons. First, this

corresponds physically to two plasmons (or photons) exciting an electronic transition in the material

with the sum of their energies, resulting in higher energy carriers than the corresponding transitions

induced by single plasmons which contribute to =χ1. This opens up the unique possibility of

electrically detecting the two-plasmon process by discriminating carrier energies, as we discuss later.

Second, the imaginary parts of the susceptibility have a closer connection to the electronic structure

properties of the material such as the joint density of states at a given frequency. They are easier to

calculate and interpret physically compared to the real parts which require additional frequency

integrals.

We consider processes involving one or two plasmons of the same mode – frequency and

polarization – in order to keep the number of variables explored below (material, geometry, frequency,

carrier energy, intensity etc.) manageable. The extension to plasmons of different modes is

straightforward but that does not lend any additional insight and we therefore omit such cases

here for simplicity. With a single plasmon frequency ω, the one plasmon process =χ1 then excites

electronic transitions with energy ~ω whereas the two-plasmon process excites those with energy

2~ω.

We previously analyzed the one-plasmon process (=χ1) in great detail and showed that we can

quantitatively account for experimental decay rates with first principles calculations of direct and

phonon-assisted transitions. Figure ?? shows the Feynman diagrams associated with these processes.

The direct transition absorbs a plasmon and creates an electron-hole pair with net zero crystal

momentum, which is possible only above the interband threshold energy Et. Direct transitions

dominate above this threshold, and are forbidden below it. Below threshold, =χ1 is dominated by

phonon-assisted intraband transitions which derive momentum from the additional absorption or

emission of phonons to excite an electron-hole pair with net crystal momentum.
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Figure 6.6: Analogously to the one-plasmon case, the Feynman diagrams for multiplasmon processes
are shown here. The two-plasmon process (=χ3), similarly, includes direct and phonon-assisted
contributions. The lowest order process involves two plasmons decaying together to excite an
electronic transition with the sum of their energies. However, the total plasmon momentum is still
negligible compared to electron momenta requiring the initial and final electron states to have the
same crystal momentum, which implies that the total energy of the transition must exceed the
interband threshold energy Et. Therefore, this process dominates above plasmon energies Et/2.
Again, phonons can provide momentum to excite transitions with different initial and final electron
crystal momenta and this process dominates below the two-plasmon threshold energy Et/2.
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Figure 6.7: Comparison of contributions to linear and cubic susceptibilities, =χ1 and =χ3, as a
function of frequency in (a) gold (b) silver (c) copper and (d) aluminum. Direct transitions dominate
=χ1 above the interband threshold energy Et and =χ3 above Et/2. The lines labeled ‘+phonon’
show the total contributions from direct and phonon-assisted transitions, and the latter dominate
=χ1 and =χ3 below Et and Et/2 respectively. The experimental estimates for =χ1 are obtained
from ellipsometry.[25]
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Qualitatively, =χ3 exhibits a similar frequency dependence in all cases, except that the energy

scale is halved since two plasmons combine to excite the transition: direct transitions are allowed

and dominate above half the interband threshold energy, while phonon-assisted intraband transitions

dominate below it. Measuring =χ3 of plasmonic metals is challenging because the field inside the

metals is much smaller than exteral fields making it difficult to reliably access the nonlinear regime

in continuous wave measurements.

6.6.1 One-plasmon decay in terms of Imχ1

Imχ differs from Fermi golden rule for decay rate in the following ways. Instead of 2π/~, we have

just π since ~ was to convert energy to rate and 2 to convert linewidth to rate. Additionally, the

response is calculated at unit electric field i.e. A = 1
iω Ê and we normalize to unit volume instead of

per-unit-cell.

Imχ1 ≡ π

Ω
∑
f

δ(Ei − Ef )|Mif |2(withMif corresponding to Ê perturbation)

= π

Ω
1
Nq

∑
qn′n

(fqn − fqn′)δ(εqn′ − εqn − ~ω)

∣∣∣∣∣eÊiω · 〈v〉qn′n
∣∣∣∣∣
2

= πe2

Ωω2
1
Nq

∑
qn′n

(fqn − fqn′)δ(εqn′ − εqn − ~ω)|Ê · 〈v〉qn′n|
2

Γ1p
SPP ≡ 2

~

∫
dr|E(r)|2 Imχ1

= 2
~

∫
S

dxdy
∫ 0

−∞
dz

∣∣∣∣∣iω
√

2π~
ωL(ω)S e

|γ−|z
(

k̂− k

γ−
ẑ
)
ei(k·r−ωt)

∣∣∣∣∣
2

Imχ1

= 2
~
ω2 2π~
ωL(ω)S

(∫
S

dxdy
∫ 0

−∞
dze2|γ−|z

) ∣∣∣∣(k̂− k

γ−
ẑ
)∣∣∣∣2 Imχ1

= 2
~
ω2 2π~
ωL(ω)SS

1
2|γ−|

∣∣∣∣(k̂− k

γ−
ẑ
)∣∣∣∣2 Imχ1

= 2πω
L(ω)|γ−|

∣∣∣∣(k̂− k

γ−
ẑ
)∣∣∣∣2 Imχ1

= 2πω
L(ω)|γ−|

|λ|2 πe
2

Ωω2
1
Nq

∑
qn′n

(fqn − fqn′)δ(εqn′ − εqn − ~ω)|λ̂ · 〈v〉qn′n|
2

= 2π2e2

ωL(ω)|γ−|Ω
× 1
Nq

∑
qn′n

(fqn − fqn′)δ(εqn′ − εqn − ~ω)|λ · 〈v〉qn′n|
2
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Figure 6.8: Energy distributions of hot electrons and holes generated due to single plasmon decay
(left panels) and two-plasmon decay (right panels) in (a) gold (b) silver (c) copper and (d) aluminum.
In each panel, the carrier energy varies from left to right and the plasmon energy from front to
back. The color scale indicates the relative contributions of direct transitions (dark red) and
phonon-assisted transitions (white). The carrier probabilities (vertical axis) are normalized for each
plasmon energy such that a uniform distribution would be 1, as seen approximately for the single
plasmon results of aluminium and below threshold for the noble metals.
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6.6.2 Two-plasmon decay

Imχ3 ≡ π

Ω
∑
f

δ(Ei − Ef )|Mif |2(withMif corresponding to second order Ê perturbation)

= π

Ω
1
Nq

∑
qn′n

(fqn − fqn′)δ(εqn′ − εqn − 2~ω)

∣∣∣∣∣∣
∑
l

(
eÊ
iω · 〈v〉

q
n′l

)(
eÊ
iω · 〈v〉

q
ln

)
ε̄ql − εqn − ~ω

+ (ω1 ↔ ω2)

∣∣∣∣∣∣
2

= π

Ω
1
Nq

∑
qn′n

(fqn − fqn′)δ(εqn′ − εqn − 2~ω)
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(
eÊ
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q
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)(
eÊ
iω · 〈v〉

q
ln

)
ε̄ql − εqn − ~ω

∣∣∣∣∣∣
2
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= πe4

Ωω4
1
Nq

∑
qn′n
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q
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2
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~

∫
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~
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Figure 6.9: Comparison of contributions to linear and cubic susceptibilities, =χ1 and =χ3, as a
function of frequency in (a) gold (b) silver (c) copper and (d) aluminum. Direct transitions dominate
=χ1 above the interband threshold energy Et and =χ3 above Et/2. The lines labeled ‘+phonon’
show the total contributions from direct and phonon-assisted transitions, and the latter dominate
=χ1 and =χ3 below Et and Et/2 respectively. The experimental estimates for =χ1 are obtained
from ellipsometry.[25]
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Figure 6.10: One and two-plasmon decay rates per photon flux for various geometries in (a) gold (b)
silver (c) copper and (d) aluminum as a function of plasmon energy at a reference instantaneous
intensity of 1012 W/m2. The one-plasmon decay rates are independent of intensity and the two-
plasmon decay rates increase proportionally with intensity. The geometries affect the instantaneous
electric field and hence the relative contributions of one and two-plasmon processes: the left panels
show results for a roughened metal surface assuming ideal coupling, the center panels for a 20 nm
sphere and the right panels for a 100 nm sphere.
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6. PHONON-ASSISTED AND MULTI-PLASMON CONTRIBUTIONS TO PLASMON DECAY

6.6.3 Planar geometry

For a given angle of incidence of light, solve optics problem to calculate surface electric field

magnitude E0 and decay constant γ (of the field) i.e. |E(r)| = E0e
γz
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7

Summary and Outlook

Physics is really nothing more than a search for ultimate simplicity, but so far all we

have is a kind of elegant messiness.

– Bill Bryson

In summary, this thesis has explored various aspects of light-matter interactions in both metals

and semiconductors. The work on Zn-IV nitrides has been from both an experimental and theory

standpoint while the optical phenomena in metals have been approached from an ab initio plasmonics

perspective.

Prior to this work, a complete theoretical understanding of plasmon decays from a microscopic

perspective was missing. Chapters 4, 5, and 6 have established the various regimes of plasmon

decays and applicability of semi-classical and quantum plasmonic calculations in those regimes.

A complete theoretical investigation of real plasmonic hot carrier based energy conversion devices

is, however, extremely challenging. The optical response of these devices depends on length scales

ranging from a few nanometers to hundreds of nanometers or microns, and this presents challenges

even for classical electromagnetic simulations. On the other hand, carrier generation requires a

quantum mechanical electronic structure treatment where the relevant length scales are in Angstroms,

and the current practical upper limit for such theories is a few nanometers. Figure 7.1 illustrates

this disparity in length scales, and also points out the disparate time scales ranging from carrier

thermalization by electron-electron scattering tens of femtoseconds after excitation, to equilibration

with lattice by electron-phonon scattering picoseconds later.

Specifically the branching and relative contributions of interband, phonon-assisted intraband,
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Length scales and timescales associated with plasmonic hot carriers

-
-
-

--
+
+

+

+

+

Figure 7.1: Top panel: length scales in plasmonics vary from the atomic to the mesoscale. Shown
from left to right: atomic lattice, small gaps in nanoparticle dimers, nanoparticles and bowtie
antennae. Lower panel: typical time scales for the the excitation of hot carriers and their subsequent
relaxation. In the 10 fs regime, carrier distributions do not resemble Fermi distributions at any
temperature, but at later times the dynamics can be described approximately by distinct electron
and lattice temperatures, Te and Tl.
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two-plasmon and geometry-assisted transitions have been explicitly calculated and compared with

experimental results. Briefly, in the interband limit, we showed that (i) the plasmon generated ‘hot’

carrier profile is extremely sensitive to the details of energy band structure, especially to the position

of the d-band in silver, copper and gold relative to unoccupied states above the Fermi level; (ii) copper

and gold generate hot holes that are much more energetic than electrons; (iii) silver produces narrow

energy distributions of hot holes as well as hot electrons; (iv) the hot carrier momentum distribution

exhibits significant anisotropy dependent on the crystal orientation and plasmon field profile; (v)

nano-confinement effects allow altering these distributions of charged carriers via geometry-induced

intraband transitions. Our calculations show that direct interband transitions are the dominant

avenue for plasmonic decay above the interband threshold. Below this threshold, the plasmon has

roughly equal probability of decaying through phonon-assisted intraband transitions or classical

drude losses (pure dephasing from a quantum mechanical perspective). Finally we have completed

the picture of plasmon decays at a variety of intensity regimes and in different geometries by filling

in multi-plasmon and higher order processes. Employing a Feynman diagram approach here has

been critical to determine the relevant processes. Chapter 5 and 6 build on the conclusions

(and drawbacks) of the calculations for internal photoemission processes at metal-semiconductor

Schottky-barrier diodes presented in Chapter 4.

A complete understanding of plasmonic hot carrier generation requires accounting for material

as well as geometry effects. The decay mechanisms in bulk materials, direct and phonon-assisted

transitions, are strongly dependent on the electronic band structure of the metal, whereas the

geometry-assisted transitions occur predominantly in the free-electron like conduction band. Theo-

retically, the former require detailed bulk electronic structure calculations, whereas the latter can

be treated using free-electron-like jellium models but require explicit inclusion of geometry in the

quantum mechanical method. Different theoretical approaches spanning different levels of detail

and system size have been applied to different aspects of hot carrier generation, and we need a

combination of these to understand the relative contributions of all mechanisms as a function of

material, energy and geometry.

Overall, this work has provided useful quantitative insights about the energy and momentum

distributions for excited ‘hot’ carriers with impact in a variety of fields where observation or

exploitation of ‘hot’ carriers is important, including energy conversion devices, photodetection and

spectroscopy.

119



7. SUMMARY AND OUTLOOK

Plasmonic hot carrier dynamics: Generation, transport and collection
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Figure 7.2: Processes involved in the excitation of plasmons, their decay to hot carriers, the transport
of hot carriers in plasmonic nanostructures and their collection either in adsorbed molecules or
semiconductors (lower part). The top part of the figure shows the theoretical methods with a level
of detail appropriate for each stage: (a) dielectric functions for plasmon excitation (b) electronic
structure theory for carrier generation and transport and (c) band / energy-level alignment analysis
for collection. Feynman diagrams indicate the relevant processes at each stage: direct transitions,
phonon-assisted transitions and multi-plasmon decay (in the high-intensity range only) for generation,
and electron-electron and electron-phonon scattering for transport. Collection of hot carriers in
solid-state systems can be used for solar energy conversion devices, sensitive photodetectors and
nano-spectrometers. Hot carriers injected into molecules on a surface can induce photochemical
reactions e.g. CO2 reduction, which is mechanistically very different from solid state collection.
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7.1. FUTURE RESEARCH DIRECTIONS:

The work on II-IV nitrides has been a combination of materials physics calculations and

spectroscopy aimed at the discovery of a new class of active optoelectronic materials. Based on

the successful synthesis of ZnSnN2, we emabrked on a project to explore a series of II-IV-V2

semiconductors that may be synthesized and allow access to a rich space of the material properties

for different functionalities. That culminated in the success (first) synthesis, optoelectronic and

spectroscopic characterization of a series of direct band-gap semiconductors, ZnSn1−xGexN2. The

band gap in the ZnSn(1−x)GexN2 is tunable from 2 eV (ZnSnN2) to 3.1 eV (ZnGeN2), with a linear

dependence on the composition arising from the smaller lattice mismatch between ZnSnN2 and

ZnGeN2 as compared to the lattice mismatch in the InxGa(1−x)N alloys that span the same energy

gap range, consistent with theoretical predictions. Thus, the ZnSnxGe(1− x)N2 alloys potentially

could be useful as earth-abundant light absorbers for artificial photosynthetic devices as well as a

replacement for InGaN in nitride-based optoelectronic devices. Both ZnSnN2 and ZnSn1−xGexN2

semiconductor alloys are examples of theory-directed functional materials design.

7.1 Future Research Directions:

• Our work in plasmon decays and in understanding optical phenomena in metals sets the stage

for nonequilibrium carrier transport in metal nanostructures. Definitive experiments and

theory are both lacking in this direction which is of fundamental and technological importance.

Beyond plasmonics, there is an opportunity here to develop a microscopic understanding

of how optical excitations, in general, transfer energy in metals, on length-scales beyond

100nm and timescales ranging from the 100s of femtoseconds to beyond picosecond regime

(where current theory methods stop) taking into account electron-photon, electron-electron

and electron-phonon interactions. These calculations would directly intersect with ultrafast

spectroscopy experiments and could be used to predict/interpret results.

• Hot carriers generated by plasmon decay are limited by the photon energy. A given energy-

conversion process is usually associated with a characteristic energy, eg. semiconductor band

gap in photovoltaics, such that lower-energy photons are incapable of driving the process,

while the excess energy of higher-energy photons is wasted. The efficiency of solar energy

conversion could be improved by harvesting the energy of these higher and lower energy

photons, by producing multiple electron-hole pairs (down-conversion) or single electron-hole
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pairs from multiple photons (up-conversion). Sub-band-gap injection from plasmonic metals

to semiconductors can be used to achieve up-conversion, whereas careful design in geometry to

optimize for a single electron-electron scattering event could in principle achieve the generation

of two electron-hole pairs, analogous in effect to multiple exciton generation in semiconductors.

• As the fields of quantum plasmonics and quantum optics merge with electronic structure

theory, there are many questions about the fundamental nature of plasmons to be answered,

including a many-body understanding of plasmons in the dispersive regime. While there have

been demonstrations of the quantum behavior of plasmons, being close to light-line has limited

the insight we obtain of the quantum nature of ‘lossy’ plasmons.

• Plasmon driven catalysis is one of the most direct applications of our predictions. An interesting

direction would be to evaluate the limitations of plasmonic photocatalysis and its potential to

enhance carbon dioxide reduction for artificial photosynthesis.Photo-catalyzed carbon dioxide

reduction is particularly challenging because it requires a minimum of six electrons and some of

the steps have large barriers that require high overpotentials to achieve practical reaction rates.

These potentials are difficult to achieve with carriers generated from single photons in the solar

spectrum. Heterogeneous catalysts for carbon dioxide reduction additionally lack product

selectivity. Plasmonic catalysis has the potential to address some of these issues. A promising

direction could be to study the mechanisms by which hot electrons produced from surface

plasmons are injected into the surface adsorbed molecules specifically on the surface of Cu

and Cu alloys. Additionally, transport of hot carriers to the surface and carrier distributions

after scattering is a key step towards understanding the enegetics of plasmon-driven catalysis.

• Building on the work done with II-IV nitrides, an interesting direction could be to look at new

materials classes like mixed cation and anion (oxy)-nitrides that could merge the beneficial

properties of oxides (stability) and nitrides (optical), like the AMOxNy pervoskite oxynitrides

that are expected to be stable under oxidative conditions. Metal oxynitrides are a promising

class of emerging materials that, in optimal cases, would combine the advantages of oxides and

nitrides. Previous work has shown that their stabilities in air and moisture are greater than

those of the pure nitrides, but with smaller band gaps than those of comparable oxides. The

wide band gap of oxides is primarily attributed to a low valence band (VB) energy derived

from the 2p orbitals of the oxygen atoms whereas non-oxides such as nitrides have a higher
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VB (thus smaller Eg), but are unstable under OER conditions. Oxynitrides could potentially

retain the stability of oxides with an intermediate VB position that would give band gaps in

the 1.8-2eV ranges.
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APPENDIX A. EXAFS ANALYSIS

Appendix A

EXAFS Analysis

A.1 X-ray Absorption Fine Structure Spectroscopy Experi-

mental Details

Curve fitting was performed with Artemis and IFEFFIT software using ab initio-calculated phases

and amplitudes from the program FEFF 8.2. These ab initio phases and amplitudes were used in

the EXAFS equation:

χ(k) = S2
0
∑
j

Nj
kR2

j

feffj (π, k,Rj)e−2σ2
jk

2
e
−2

Rj
λj(k) sin(2kRj + φij(k))

The neighboring atoms to the central atom(s) were divided into j shells, with all atoms with the

same atomic number and distance from the central atom grouped into a single shell. Within each

shell, the coordination number Nj denoted the number of neighboring atoms in shell j at a distance

of Rj from the central atom. is the ab initio amplitude function for shell j, and the Debye-Waller

term e−2σ2
j k2 accounted for damping due to static and thermal disorder in absorber-backscatterer

distances. The mean free path term e
−2

Rj
λj(k) reflects losses due to inelastic scattering, where λj(k) is

the electron mean free path. The oscillations in the EXAFS spectrum are reflected in the sinusoidal

term, sin(2kRj + φij(k)) where φij(k) is the ab initio phase function for shell j. S0
2 is an amplitude

reduction factor due to shake-up/shake-off processes at the central atom(s). The EXAFS equation

was used to fit the experimental data using N, R, and the EXAFS Debye-Waller factor σ2
j as variable
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A.1. EXAFS ANALYSIS

Table A.1: EXAFS fit details

Path R(Å) N σ2(Å2) Rf (%)
EXAFS XRD

ZnGeN2

Ge-N 1.86 (0.03) 1.84 4.0 0.004 (0.002) 2.7
Ge-Zn 3.23 (0.08) 3.14 8.0 0.011 (0.001) ∆E0(eV ) = 2.3
Ge-Ge 3.20 (0.04) 3.11–3.20 4.0 0.015 (0.005)

ZnGeSnN2
(Ge:Sn=2:1)

Ge-N 1.88 (0.09) 4.0 0.004 (0.008) 1.6
Ge-Zn 3.26 (0.14) 8.0 0.012 (0.013) ∆E0 = 4.3
Ge-Ge 3.34 (0.01) 3.0 0.020 (0.001)
Ge-Sn 3.28 (0.60) 1.0 0.016 (0.020)

ZnGeSnN2
(Ge:Sn=1:1)

Ge-N 1.88 (0.08) 4.0 0.003 (0.007) 1.7
Ge-Zn 3.28 (0.14) 8.0 0.020 (0.002) ∆E0 = 4.3
Ge-Ge 3.24 (0.10) 2.0 0.020 (0.001)
Ge-Sn 3.29 (0.44) 2.0 0.020 (0.003)

ZnGeSnN2
(Ge:Sn=1:2)

Ge-N 1.87 (0.12) 4.0 0.002 (0.011) 1.4
Ge-Zn 3.29 (0.01) 8.0 0.020 (0.012) ∆E0 = 3.7
Ge-Ge 3.23 (0.01) 1.7 0.020 (0.012)
Ge-Sn 3.33 (0.30) 2.3 0.020 (0.002)

parameters. For conversion of the energy (eV) to wave vector (k, Å−1) axis, E0 was defined as

11111.0 eV and the S0
2 value was fixed at 1.0. All fits were performed in the R space.
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EXAFS Analysis: Data and Fits
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Figure A.1: (a)-(d) EXAFS curve-fitting results for Zn(Sn,Ge)N2 alloys with fitting parameters
summarized in Table 1
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A.1. EXAFS ANALYSIS

Table A.2: Basis vectors (in Angstrom) and atomic coordinates (relative to basis vectors) of the
SQS used in our calculation for the ZnSn(1− x)GexN2 alloys at concentration x=0.25, 0.50.

x=0.50 x=0.25
a -6.72 -5.81 5.47 a -6.72 -5.81 5.47
b 6.72 -5.81 5.47 b 6.72 -5.81 5.47
c 0.00 0.00 10.94 c 0.00 5.81 5.47
Zn 0.5000000 0.5000000 0.1875 Zn 1.09375000 0.09375000 0.1875000
Zn 0.1250000 0.3750000 0.1875 Zn -0.15625000 0.09375000 0.4375000
Zn 1.0833335 0.5833335 0.4375 Zn 0.88541675 0.38541675 0.6041665
Zn 0.7083335 0.4583335 0.4375 Zn 0.63541675 0.38541675 0.8541665
Zn 1.0000000 0 0.1875 Zn 0.59375000 0.59375000 0.1875000
Zn 0.6250000 0.8750000 0.1875 Zn 0.34375000 0.59375000 0.4375000
Zn 0.5833335 0.0833335 0.4375 Zn 0.38541675 0.88541675 0.6041665
Zn 0.2083335 0.9583335 0.4375 Zn 0.13541675 0.88541675 0.8541665
Zn 0.5000000 0.5000000 0.6875 Zn 0.34375000 0.34375000 0.6875000
Zn 0.1250000 0.3750000 0.6875 Zn 0.09375000 0.34375000 -0.0625000
Zn 1.0833335 0.5833335 0.9375 Zn 1.13541675 0.63541675 1.1041665
Zn 0.7083335 0.4583335 0.9375 Zn -0.11458325 0.63541675 0.3541665
Zn 1.0000000 0 0.6875 Zn 0.84375000 -0.15625000 0.6875000
Zn 0.6250000 0.8750000 0.6875 Zn 0.59375000 0.84375000 -0.0625000
Zn 0.5833335 0.0833335 0.9375 Zn 0.63541675 0.13541675 1.1041665
Zn 0.2083335 0.9583335 0.9375 Zn 0.38541675 1.13541675 0.3541665
Sn 0.2500000 0.7500000 0.1875 Sn 0.84375000 0.34375000 0.1875000
Sn 0.3333335 0.3333335 0.4375 Sn 0.13541675 0.13541675 0.6041665
Sn 0.8750000 0.6250000 0.1875 Sn 0.59375000 0.34375000 0.4375000
Sn 0.9583335 0.2083335 0.4375 Sn 0.88541675 0.13541675 0.8541665
Sn 0.3750000 0.1250000 0.1875 Sn 0.34375000 0.84375000 0.1875000
Sn 0.4583335 0.7083335 0.4375 Sn 0.63541675 0.63541675 0.6041665
Sn 0.2500000 0.7500000 0.6875 Sn 0.38541675 0.63541675 0.8541665
Sn 0.3333335 0.3333335 0.9375 Sn 0.09375000 0.59375000 0.6875000
Ge 0.7500000 0.2500000 0.1875 Sn 0.38541675 0.38541675 0.1041665
Ge 0.8333335 0.8333335 0.4375 Sn 0.84375000 0.59375000 0.9375000
Ge 0.8750000 0.6250000 0.6875 Sn 0.13541675 0.38541675 0.3541665
Ge 0.9583335 0.2083335 0.9375 Sn 0.59375000 0.09375000 0.6875000
Ge 0.7500000 0.2500000 0.6875 Ge 0.09375000 0.84375000 0.4375000
Ge 0.8333335 0.8333335 0.9375 Ge 0.88541675 0.88541675 0.1041665
Ge 0.3750000 0.1250000 0.6875 Ge 0.34375000 0.09375000 0.9375000
Ge 0.4583335 0.7083335 0.9375 Ge 0.63541675 0.88541675 0.354166
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Table A.3: Atomic correlation functions for the atomic clusters (k,m) with k vertices and up to
the m-th neighbor of the SQS used in our calculation, at the alloy concentration x=0.25, 0.5, and
compared with the ideal values of the random alloy.

(m,k) (2,1) (2,2) (2,3) (2,4) (3,2) (3,3) (3,4) (4,3) (4,4)
x=0.50
Random 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SQS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0
x=0.25
Random 0.25 0.25 0.25 0.25 - 0.125 0.125 0.0625 0.0625
SQS 0.25 0.25 0.25 0.25 - 0.000 0.250 0.0000 0.2500
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Appendix B

Plasmon decay rate derivations

B.1 Decay rate details

Let us take an alternate and simpler route to calculating the decay rates. Let us neglect the photon

momentum explicitly in the very first step. In the notation of our first paper’s method section, the

electric-dipole transition matrix element (neglecting the higher-order magnetic field coupling) is:

Mk
qn,q′n′ = 〈qn,−→q ′n′, k̄|Ĥe−pl|0〉

=
〈0|ĉ†qnĉq′n′ak√
fqn(1− fq′n′)npl

[
e

me

∑
σ

∫
drΨ†σÂ · p̂Ψσ

]
|0〉

=
√
fqn(1− fq′n′)npl

[
Ω
LzS

∑
σ

∫
LzS

drψσ∗q′n′(r) e

me
uk(r) ·

(
~∇+ [r, V̂NL]

i

)
ψσqn(r)

]

≈ δq′q

√√√√fqn(1− fqn′)npl

(
uk(r)
uk(0)

)2

LzS

[
uk(0) ·

∑
σ

∫
Ω

drψσ∗qn′(r)e(~∇+ [r, V̂NL])
ime

ψσqn(r)
]

= δq′q

√
fqn(1− fqn′)npl

1
2Lz|γ(z < 0)|

[
uk(0) ·

∑
σ

∫
Ω

drψσ∗qn′(r)e(~∇+ [r, V̂NL])
ime

ψσqn(r)
]

= δq′q

√
fqn(1− fqn′)npl

1
2Lz|γ(z < 0)| [uk(0) · e〈v̂〉qn′n]

〈v̂〉qn′n ≡
∑
σ

∫
Ω

drψσ∗qn′(r)~∇+ [r, V̂NL]
ime

ψσqn(r)

What we effectively showed painstakingly in the first paper is that the interband approximation for

a plasmon yields a matrix element squared which is the bulk interband matrix element interacting
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APPENDIX B. PLASMON DECAY RATE DERIVATIONS

with the RMS plasmon vector potential. We can motivate this easily now, since that is the only

form that will have the correct extensivity i.e. dependence on quantization box size in this case.

Γdirect = 2π
~

∑
qnq′n′

δ(εq′n′ − εqn − ~ω)|Mk
qn,q′n′ |2

= 2π
~

∑
qnq′n′

δ(εq′n′ − εqn − ~ω)δq′q
fqn(1− fqn′)npl

2Lz|γ(z < 0)|

∣∣∣∣∣
√

2π~
ωSL(ω)

(
k̂− kẑ

γ(z < 0)

)
· e〈v̂〉qn′n

∣∣∣∣∣
2

= 2π2e2

ωL(ω)|γ(z < 0)|
1

LzS

∑
qnn′

fqn(1− fqn′)nplδ(εqn′ − εqn − ~ω)
∣∣∣∣(k̂− kẑ

γ(z < 0)

)
· 〈v̂〉qn′n

∣∣∣∣2
= 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1
Nq

∑
qnn′

fqn(1− fqn′)nplδ(εqn′ − εqn − ~ω)|λk · 〈v̂〉qn′n|
2

λk ≡ k̂− kẑ
γ(z < 0)

This is the expression in the first paper, except for a factor of 4, and the extra nonlocal pseudopotential

contribution to the matrix element. In the code, we add an extra factor of wσ = 1 for relativistic

(spinorial) and 2 for non-relativistic calculations (the variable we internally call “spinWeight”),

because the above assumed that the different spin channels were accounted for explicitly, which is

the case for relativistic calculations. Also, this is the more general many-body expression including

the plasmon occupation number. (This therefore accounts for phenomena such as ‘super-radiance’

as well.)

B.2 Phonon-assisted transitions

Next, for the phonon-assisted transition:

Γindirect = 2π
~

∑
qnq′n′k′α±

δ(εq′n′ − εqn − ~ω ∓ ~ωk′α)|T kk
′α±

qn,q′n′ |
2
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B.2. PHONON-ASSISTED TRANSITIONS

where the second-order perturbation theory transition matrix elements are:

T kk
′α+

qn,q′n′ =
∑
M

[
〈qn,−→q n′, k̄, k′α|Ĥe−pl|M〉〈M |Ĥe−ph|0〉

EM − (~ω + ~ωk′α) + (pl↔ ph)
]

T kk
′α−

qn,q′n′ =
∑
M

[
〈qn,−→q n′, k̄, k′α|Ĥe−pl|M〉〈M |Ĥe−ph|0〉

EM − (~ω − ~ωk′α) + (pl↔ ph)
]

Ĥe−pl = e

me

∑
σ

∫
drΨ†σÂ · p̂Ψσ

≈

√
1

2Lz|γ(z < 0)|
2π~

ωSL(ω)
∑
qn′n

δqq′ [λk · e〈v̂〉qn′nakc
†
qn′cqn + h.c.](plasmon interband approx)

=

√
π~e2

ωL(ω)|γ(z < 0)|LzS
∑
qn′n

δqq′ [λk · 〈v̂〉qn′nakc
†
qn′cqn + h.c.]

Ĥe−ph =
∑
Rs

x̂Rs
∑
σ

∫
NRΩ

drΨ†σ∂RsVnuc(r)Ψσ(Rs label nuclear displacement modes)

= 1√
Nk′

∑
k′α

∑
qn

∑
q′n′

δq+k′,q′g
k′α
n′,qn(b†k′α + b−k′α)c†q′n′cqn(in terms of phonon ladder operators)

gk′α
n′,qn ≡

∫
Ω

drψ∗q+k′,n′(r)ψqn(r)
∑
Rs

fk′
αs

√
~

2msωk′α
eik
′·R∂RsVnuc(r)(standard definition)

=
Mk′α
n′,qn√
2ωk′α

(compared to theM defined in the previous derivation)
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Using the results of the final section below (done in a simpler notation without the extraneous

indices), we can simplify:

T kk
′α+

qn,q′n′ = δq+k′,q′

√
π~e2

ωL(ω)|γ(z < 0)|LzS
1
Nk′

fqn(1− fq′n′)nplnk′α

×λk ·
∑
l

[
〈v̂〉q

′

n′lg
k′α
l,qn

ε̄q′l − (εqn + ~ωk′α) +
gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − (εqn + ~ω)

]

= δq+k′,q′

√
π~e2

ωL(ω)|γ(z < 0)|Nk′LzS
fqn(1− fq′n′)nplnk′α

×λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]
(using energy conservation)

Similarly :

T kk
′α−

qn,q′n′ = δq+k′,q′

√
π~e2

ωL(ω)|γ(z < 0)|Nk′LzS
fqn(1− fq′n′)npl(nk′α + 1)

×λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]
(in the way written, only change in phonon occupation!)

⇒ T kk
′α±

qn,q′n′ = δq+k′,q′

√
π~e2

ωL(ω)|γ(z < 0)|Nk′LzS
fqn(1− fq′n′)npl

(
nk′α + 1

2 ∓
1
2

)

×λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]

132



B.3. ACCOUNTING FOR REVERSE TRANSITIONS

Above, ε̄qn ≡ εqn + i Im Σqn is the complex eigenvalue of the intermediate state.

⇒ Γindirect = 2π
~

∑
qnq′n′k′α±

δ(εq′n′ − εqn − ~ω ∓ ~ωk′α)|T kk
′α±

qn,q′n′ |
2

= 2π
~

π~e2

ωL(ω)|γ(z < 0)|Nk′LzS

∑
qnn′k′α±

fqn(1− fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2

)

×δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)

∣∣∣∣∣λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]∣∣∣∣∣
2

= 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1

NqNk′

∑
qk′nn′α±

fqn(1− fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2

)

×δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)

∣∣∣∣∣λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]∣∣∣∣∣
2

Γdirect = 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1
Nq

∑
qnn′

fqn(1− fqn′)npl × δ(εqn′ − εqn − ~ω)|λk · 〈v̂〉qn′n|
2

Note the exact parallelism between the direct and indirect expressions now. The key difference was

the redefinition of the electron-phonon coupling element g to include the factor of
√

1
2ωk′α

arising

from the phonon amplitude. (We need to make this change in the code to use this expression.) It

also looks like the previous derivation had another factor of 2 error besides the e/2me → e/me fix.

Finally, it was wrong to include the intermediate state occupation, which also affects multi-plasmon

(which is where we originally derived it).

B.3 Accounting for reverse transitions

Finally, if we want to look at the net transition rate from plasmon occupation number npl → npl− 1,

then we need to account for the above absorption process as well as the corresponding emission

processes that go from npl − 1→ npl. By detailed balance, the matrix element is exactly the same

and only the occupation factors for the fermion change: fv(1 − fc) → (1 − fv)fc. The difference

between the two processes has a fermion factor of fv(1− fc)− (1− fv)fc = fv − fc. Thus the final
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transition rates accounting for this are:

Γdirect = 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1
Nq

∑
qnn′

(fqn − fqn′)npl × δ(εqn′ − εqn − ~ω)|λk · 〈v̂〉qn′n|
2

Γindirect = 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1

NqNk′

∑
qk′nn′α±

(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2

)

×δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)

∣∣∣∣∣λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]∣∣∣∣∣
2

B.4 On-shell contributions

Let’s look at the dominant on-shell contributions i.e. one where the energy denominators get close

to singular. Note that there are second order poles from the diagonal terms in expanding the matrix

elements, and first order poles from the off-diagonal terms. In the limit of long-lived states (the
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regularization going to zero), the second order poles dominate, so let us focus on those:

Γsingular
indirect = Singular

 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1

NqNk′

∑
qk′nn′α±

(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2

)

×δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)

∣∣∣∣∣λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]∣∣∣∣∣
2

= Sum

Singular

∣∣∣∣∣λk ·
∑
l

[
〈v̂〉q+k′

n′l gk′α
l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω
+

gk′α
n′,ql〈v̂〉

q
ln

ε̄ql − εqn − ~ω

]∣∣∣∣∣
2

(will put back all the prefactors and sums in a few steps)

= Sum

Singular
∑
l

∣∣∣∣∣ λk · 〈v̂〉q+k′
n′l gk′α

l,qn

ε̄q+k′,l − εq+k′,n′ + ~ω

∣∣∣∣∣
2

+

∣∣∣∣∣gk′α
n′,qlλk · 〈v̂〉qln
ε̄ql − εqn − ~ω

∣∣∣∣∣
2
+

 subdominant

off diagonals


≈ Sum

[
Singular

∑
l

[
|λk · 〈v̂〉q+k′

n′l |2|gk′α
l,qn|2

(εq+k′,l − εq+k′,n′ + ~ω)2 + Im Σ2
q+k′,l

+
|gk′α
n′,ql|2|λk · 〈v̂〉qln|2

(εql − εqn − ~ω)2 + Im Σ2
ql

]]

Singular
[

1
x2 + η2 , η → 0

]
= π

η
Singular

[
η/π

x2 + η2 , η → 0
]

= π

η
δ(x)(as the argument is a normalized Lorentzian with width→ 0)

Γsingular
indirect = Sum

∑
l

 π
Im Σq+k′,l

|λk · 〈v̂〉q+k′
n′l |2|gk′α

l,qn|2δ(εq+k′,l − εq+k′,n′ + ~ω)

+ π
Im Σql

|gk′α
n′,ql|2|λk · 〈v̂〉qln|2δ(εql − εqn − ~ω)


= 2π2e2

ωL(ω)|γ(z < 0)|Ω ×
1

NqNk′

∑
qk′nn′α±

(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2

)

×
∑
l


π

Im Σq+k′,l
|λk · 〈v̂〉q+k′

n′l |2|gk′α
l,qn|2

 δ(εq+k′,l − εq+k′,n′ + ~ω)×

δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)


+ π

Im Σql
|gk′α
n′,ql|2|λk · 〈v̂〉qln|2

 δ(εql − εqn − ~ω)×

δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)




= Γ1 + Γ2
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Γ1 ≡ 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σq+k′,l

|λk · 〈v̂〉q+k′
n′l |2|gk′α

l,qn|2δ(εq+k′,l − εq+k′,n′ + ~ω)δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σq+k′,l

|λk · 〈v̂〉q+k′
n′l |2|gk′α

l,qn|2δ(εq+k′,l − εq+k′,n′ + ~ω)δ(εq+k′,l − εqn ∓ ~ωk′α)

(Using identity δ(x)δ(y) = δ(x)δ(x+ y))

≈ 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fq+k′,l − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σq+k′,l

|λk · 〈v̂〉q+k′
n′l |2|gk′α

l,qn|2δ(εq+k′,l − εq+k′,n′ + ~ω)δ(εq+k′,l − εqn ∓ ~ωk′α)

(Since |εqn − εF | � ~ωk′α for most of the contribution whenω � ωD)

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fqn′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σqn

|λk · 〈v̂〉qn′n|2|g
−k′α
n,k′+q,l|

2δ(εqn − εqn′ + ~ω)δ(εqn − εq+k,l ∓ ~ωk′α)

(Swapping dummy indices(q,k′,q + k′)→ (q + k′,−k′,q) andn↔ l)

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1
Nq

∑
qnn′(fqn − fqn′)nplδ(εqn − εqn′ + ~ω)|λk · 〈v̂〉qn′n|2

× 1
Im Σqn

[
π 1
Nk′

∑
k′lα±

(
nk′α + 1

2 ∓
1
2
)
δ(εqn − εq+k′,l ∓ ~ωk′α)|g−k′α

l,qn |2
]

(Since g−k′α
n,q+k′,l = (gk′α

l,qn)∗ by hermiticity of Ĥe−ph)

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1
Nq

∑
qnn′(fqn − fqn′)nplδ(εqn − εqn′ + ~ω)|λk · 〈v̂〉qn′n|2

Im ΣePh
qn

Im Σqn

Γ2 ≡ 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σql

|λk · 〈v̂〉qln|2|gk′α
n′,ql|2δ(εql − εqn − ~ω)δ(εq+k′,n′ − εqn − ~ω ∓ ~ωk′α)

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fq+k′,n′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σql

|λk · 〈v̂〉qln|2|gk′α
n′,ql|2δ(εql − εqn − ~ω)δ(εq+k′,n′ − εql ∓ ~ωk′α)

(Using identity δ(x)δ(y) = δ(x)δ(y − x))

≈ 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fql)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σql

|λk · 〈v̂〉qln|2|gk′α
n′,ql|2δ(εql − εqn − ~ω)δ(εq+k′,n′ − εql ∓ ~ωk′α)

(Since |εq+k′,n′ − εF
∣∣� ~ωk′α for most of the contribution whenω � ωD

)
= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1

NqNk′

∑
qk′nn′lα±(fqn − fqn′)npl

(
nk′α + 1

2 ∓
1
2
)

× π
Im Σqn′

|λk · 〈v̂〉qn′n|2|gk′α
l,qn′ |2δ(εqn′ − εqn − ~ω)δ(εq+k′,l − εqn′ ∓ ~ωk′α)

(Swapping dummy indicesn′ ↔ l)

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1
Nq

∑
qnn′(fqn − fqn′)nplδ(εqn′ − εqn − ~ω)|λk · 〈v̂〉qn′n|2

× 1
Im Σqn′

[
π 1
Nk′

∑
k′lα±

(
nk′α + 1

2 ∓
1
2
)
δ(εq+k′,l − εqn′ ∓ ~ωk′α)|gk′α

l,qn′ |2
]

= 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1
Nq

∑
qnn′(fqn − fqn′)nplδ(εqn′ − εqn − ~ω)|λk · 〈v̂〉qn′n|2

Im Σe−ph
qn′

Im Σqn′

Γsingular
indirect = 2π2e2

ωL(ω)|γ(z<0)|Ω ×
1
Nq

∑
qnn′(fqn − fqn′)nplδ(εqn′ − εqn − ~ω)|λk · 〈v̂〉qn′n|2

(
Im ΣePh

qn
Im Σqn

+
Im ΣePh

qn′

Im Σqn′

)
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Therefore, if we had used only the e-phonon carrier linewidths in calculating Γindirect, we would

have ended up with Γsingular
indirect = 2Γdirect. That is why we always see Γindirect > 2Γdirect for lower

energies where Σqn ≈ ΣePh
qn for all accessible states.

B.5 Intermediate state occupations in higher-order pertur-

bations

Scratch: figure out how intermediate state occupations work. For simplicity just work with a

lumped electron state index (not labeling k-points expliictly), and let the interaction hamiltonian

be H1 =
∑
i 6=j α1ij(a1c

†
i cj + a†1c

†
jci) and similarly H2.

T =
∑
M

〈F |Ĥ1|M〉〈M |Ĥ2|I〉
EM − EI︸ ︷︷ ︸
T12

+(1↔ 2)

where I, M and F are the many-body initial, intermediate and final states. Let I = |0〉 be the

normalized initial state with some distribution of the electrons and both types of bosons (could be

the Fermi sea + boson vacuum as a special case, but the following is more general), and set it as the

reference energy, EI = 0. Let F = c†ccva1a2|0〉√
(1−fc)fvn1n2

be the normalized final state with an electron-hole

pair and two bosons less compared to the initial state, with relative energy EF = εc − εv − ω1 − ω2.

The intermediate state should be summed over all possible many-body states. TheH2 expectation

value will be non-zero only if M differs from I by a single electron-hole pair and a single boson of

type 2. Likewise the H1 expectation value will be non-zero only if M differs from F by a single

electron-hole pair and a single boson of type 1. ThereforeM = c†
l
cma2|0〉√

(1−fl)fmn2
, indexed by two electron

indices l,m with l 6= m, and EM = εl − εm − ω2.
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T12 ≡
∑
M
〈F |Ĥ1|M〉〈M |Ĥ2|I〉

EM−EI

=
∑
l 6=m,w 6=x,y 6=z

α1wxα2yz〈0|a†2a
†
1c
†
vcca1c

†
wcxc

†
l
cma2|0〉〈0|a†2c

†
mcla2c

†
yc
†
z|0〉

(εl−εm−ω2)(1−fl)fmn2
√

(1−fc)fvn1n2

=
∑
l 6=m,w 6=x,y 6=z

α1wxα2yzn2n1n2〈0|c†vccc
†
wcxc

†
l
cm|0〉〈0|c†mclc

†
ycz|0〉

(εl−εm−ω2)(1−fl)fmn2
√

(1−fc)fvn1n2

=
√

n1n2
(1−fc)fv

∑
l 6=m,w 6=x,y 6=z α1wxα2yz

〈0|c†vccc
†
wcxc

†
l
cm|0〉〈0|c†mclc

†
ycz|0〉

(εl−εm−ω2)(1−fl)fm

(Simplifying the bosonic sector first)

〈0|c†mclc†ycz|0〉

= 〈0|c†m(δly − c†ycl)cz|0〉

= 〈0|(c†mczδly − c†mc†yclcz)|0〉

= δlyδmzfm − fmfy(δmzδly − δmlδyz)

= δlyδmzfm − fmfyδmzδly (y 6= z, l 6= m)

= fm(1− fl)δmzδly

T12 =
√

n1n2
(1−fc)fv

∑
l 6=m,w 6=x,y 6=z α1wxα2yz

〈0|c†vccc
†
wcxc

†
l
cm|0〉fm(1−fl)δmzδly

(εl−εm−ω2)(1−fl)fm

=
√

n1n2
(1−fc)fv

∑
l 6=m,w 6=x α1wxα2lm

〈0|c†vccc
†
wcxc

†
l
cm|0〉

εl−εm−ω2

〈0|c†vccc†wcxc
†
l cm|0〉

= 〈0
∣∣∣(δcwc†vcxc†l cm − c†vc†wcccxc†l cm)|0〉

= 〈0|(δcwδlxc†vcm − δcwc†vc
†
l cxcm − δlxc†vc†wcccm + c†vc

†
wccc

†
l cxcm)|0〉

= 〈0|(δcwδlxc†vcm − δcwc†vc
†
l cxcm − δlxc†vc†wcccm + δlcc

†
vc
†
wcxcm − c†vc†wc

†
l cccxcm)|0〉

= δcwδlx(δmvfv)− δcw(δvmδlxfvfl)− δlx(δvmδwcfvfc) + δlc(−δvxδwmfvfm)

−(−δvxδwmδlcfvfmfc − δvmδwcδlxfvfcfl) (using l 6= m,w 6= x, y 6= z)

= δvxδwmδlc(−fvfm + fvfmfc) + δvmδwcδlx(fv − fvfl − fvfc + fvfcfl)

= −δvxδwmδlcfv(1− fc)fm + δvmδwcδlxfv(1− fl)(1− fc)

= fv(1− fc)[δvmδwcδlx(1− fl)− δvxδwmδlcfm]
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T12 =
√

n1n2
(1−fc)fv

∑
l 6=m,w 6=x α1wxα2lm

fv(1−fc)[δvmδwcδlx(1−fl)−δvxδwmδlcfm]
εl−εm−ω2

=
√
n1n2fv(1− fc)

∑
l 6=m,w 6=x α1wxα2lm

[δvmδwcδlx(1−fl)−δvxδwmδlcfm]
εl−εm−ω2

=
√
n1n2fv(1− fc)

(∑
l 6=v,c α1clα2lv

(1−fl)
εl−εv−ω2

−
∑
m 6=v,c α1mvα2cm

fm
εc−εm−ω2

)
=

√
n1n2fv(1− fc)

(∑
l 6=v,c(1− fl)

α1clα2lv
εl−εv−ω2

+
∑
l 6=v,c fl

α2clα1lv
εl−εc+ω2

)
(Relabeling dummym→ l)

=
√
n1n2fv(1− fc)

∑
l 6=v,c

[
(1− fl) α1clα2lv

εl−εv−ω2
+ fl

α2clα1lv
εl−εv−ω1

]
(energy conservation)

T = T12 + T21

=
√
n1n2fv(1− fc)

∑
l 6=v,c

 (1− fl) α1clα2lv
εl−εv−ω2

+ fl
α2clα1lv
εl−εv−ω1

+(1− fl) α2clα1lv
εl−εv−ω1

+ fl
α1clα2lv
εl−εv−ω2


=

√
n1n2fv(1− fc)

∑
l 6=v,c

[
α1clα2lv
εl−εv−ω2

+ α2clα1lv
εl−εv−ω1

]
=

√
n1n2fv(1− fc)

∑
l 6=v,c

[
α1clα2lv
εl−εv−ω2

+ (1↔ 2)
]

Note that the occupation factors correspnd intuitively to whether the particle is being absorbed

or emitted. Switch n → n + 1 for each boson, and f → 1 − f for each fermion, when going

from absorption to emission. Besides that, switch the signs on the corresponding energy in the

denominator and energy-conserving delta, and complex conjugate the corresponding matrix element

coefficient (α).
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Appendix C

Electron-electron Scattering Rate
Derivation

C.1 Kohn-Sham susceptibility

Starting from the detailed derivation we performed for the jellium response case:

χKS(r, r′, ω) = −ws
∑
i6=j

fi(1− fj)
[
ψ∗i (r)ψj(r)ψ∗j (r′)ψi(r′)

εj − εi − ω̃
+
ψi(r)ψ∗j (r)ψj(r′)ψ∗i (r′)

εj − εi + ω̃

]

= −ws
∑
i6=j

fi(1− fj)
[
nij(r)n∗ij(r′)
εj − εi − ω̃

+
n∗ij(r)nij(r′)
εj − εi + ω̃

]
(nij(r) ≡ ψ∗i (r)ψj(r))

where ω̃ = ω + iη is the regularized frequency and ws is the spin weight (2 for regular unpolarized

and 1 for spinorial calculations).

When ω → −ω, ω̃ → −ω̃∗, so that the first term becomes the complex conjugate of the second

term and vice versa. Therefore χKS satisfies χKS(−ω) = χ∗KS(ω) exactly, as expected (and necessary

for a real response function). We can therefore store the polarizability and dielectric functions for

positive frequencies alone.

Further note that since the potential is real, ψ∗ is an eigenfunction with the same eigenvalue as

ψ. Therefore, we can reindex the second term so that i, j in the second term refer to the complex
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conjugate states of i, j in the first term. Hence:

χKS(r, r′, ω) = −ws
∑
i 6=j

fi(1− fj)
[

1
εj − εi − ω̃

+ 1
εj − εi + ω̃

]
nij(r)n∗ij(r′)

= −ws2
∑
i 6=j

[
fi(1− fj)

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
nij(r)n∗ij(r′) + (i↔ j)

]
(since i and j are dummy indices)

= −ws2
∑
i 6=j

 fi(1− fj)
[

1
εj−εi−ω̃ + 1

εj−εi+ω̃

]
nij(r)n∗ij(r′)

+fj(1− fi)
[

1
εi−εj−ω̃ + 1

εi−εj+ω̃

]
n∗ij(r)nij(r′)


= −ws2

∑
i 6=j

nij(r)n∗ij(r′)

 fi(1− fj)
[

1
εj−εi−ω̃ + 1

εj−εi+ω̃

]
+fj(1− fi)

[
1

εi−εj−ω̃ + 1
εi−εj+ω̃

]
 complex conjugate

reindexing as before


= −ws2

∑
i 6=j

nij(r)n∗ij(r′)

 fi(1− fj)
[

1
εj−εi−ω̃ + 1

εj−εi+ω̃

]
−fj(1− fi)

[
1

εj−εi+ω̃ + 1
εj−εi−ω̃

]


= −ws
∑
i 6=j

nij(r)n∗ij(r′)
[

1
εj − εi − ω̃

+ 1
εj − εi + ω̃

]
fi − fj

2

This seems to be the nicest form that makes best use of the nij computation, i.e. collect all energy

denominator and filling combinations that correspond to it.

Now, specialize to a periodic system and let i correspond to a band with crystal momentum k

and let j correspond to a band with crystal momentum k + q. Then, nkq
ij (r) ≡ ψk∗

i (r)ψk+q
j (r) =

uk∗
i (r)uk+q

j (r)eiq·r. We can then put the periodic part back in reciprocal space and expand

nkq
ij (r) =

∑
G ñkq

ij (G)ei(q+G)·r. Here, ñkq
ij is the reciprocal space version of the periodic product

density corresponding to the Bloch functions uk
i and uk+q

j . Also note that in a periodic system,

there are states infinitesimally separated from any given state which are distinct (correspodning to

an infinitesimally different Bloch phase for example). We can therefore drop the i 6= j constraint for
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periodic systems. Substituting above:

χKS(r, r′, ω) = − ws
N2

k

∑
ijkq

∑
GG′

ñkq
ij (G)ñkq∗

ij (G′)ei(q+G)·r−i(q+G′)·r′
[

1
εj − εi − ω̃

+ 1
εj − εi + ω̃

]
fi − fj

2

≡ 1
Nk

∑
qGG′

eiq·(r−r′)eiG·r−iG
′·r′χGG′

KS (q, ω)

χGG′
KS (q, ω) = −ws

Nk

∑
ijk

ñkq
ij (G)ñkq∗

ij (G′)
[

1
εj − εi − ω̃

+ 1
εj − εi + ω̃

]
fi − fj

2

χ̂KS(q, ω) = −ws
Nk

∑
ijk

fi − fj
2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
ñkq
ij ñ

kq†
ij (GG′matrix notation)

C.2 Scattering time

Within the GW approximation, the imaginary part of the self energy is:

Im Σk
i = 1

2π2

∑
j

∫
BZ

dq
∑
GG′

ñkq∗
ij (G)ñkq

ij (G′)
|q + G|2 Im[−ε−1

GG′(q, ε
k
i − ε

k+q
j )]

=
∑
j

∫
BZ

Ωdq
(2π)3

∑
GG′

ñkq∗
ij (G) 4π

Ω|q + G|2 Im[−ε−1
GG′(q, ε

k
i − ε

k+q
j )]ñkq

ij (G′)

= 1
Nk

∑
qj

ñkq†
ij K̂(q) Im[−ε−1(q, εk

i − ε
k+q
j )]ñkq

ij (K̂ = Coulomb operator)

= − 1
Nk

∑
qj

ñkq†
ij K̂(q) Im[(1− χKS(q, εk

i − ε
k+q
j )K̂(q))−1]ñkq

ij (RPA)

= − 1
Nk

∑
qj

ñkq†
ij Im[(K̂

−1
(q)− χKS(q, εk

i − ε
k+q
j ))−1︸ ︷︷ ︸

K̂scr(q,εk
i
−εk+q

j
)

]ñkq
ij

which has a very clear interpretation: it is the imaginary part of the sum of expectation values of

the screened Coulomb operator taken on pair densities with all other single-particle states.

Next, we examine how best to exploit symmetries to reduce the computational effort. The

scattering rate should be the same for states related by point group symmetries, so we only need to

compute Im Σk
i for k in the irreducible wedge of the Brillouin zone. Then, the sum over q would

be over the entrire BZ, so we would need to calculate χKS and ε for all q, and that is the most

computationally expensive part.

Instead, let us try to reduce the calculation of the dielectric function to the irreducible BZ. Let
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M be the point group containing orthogonal rotation matrices m.

Im Σk
i = − 1

Nk

∑
q∈BZ

∑
jGG′

ñkq∗
ij (G) Im[K̂

scr
GG′(q, εk

i − ε
k+q
j )]ñkq

ij (G′)

= − 1
Nk

∑
q0∈BZ0

∑
q∈Mq0

∑
jGG′

ñkq∗
ij (G) Im[K̂

scr
GG′(q, εk

i − ε
k+q
j )]ñkq

ij (G′)

(
Split

∑
q

into orbits of q0 in irreducible wedge BZ0

)

= − 1
Nk

∑
q0∈BZ0

|Mq0|
|M |

∑
m∈M

∑
jGG′

ñ
k(mq0)∗
ij (G) Im[K̂

scr
GG′(mq0, ε

mmTk
i − εmm

Tk+mq0
j )]ñk(mq0)

ij (G′)

(orbit− stabilizer theorem)

= − 1
Nk

∑
q0∈BZ0

|Mq0|
|M |

∑
m∈M

∑
jGG′

ñ
k(mq0)∗
ij (G) Im[K̂

scr
GG′(mq0, ε

mTk
i − εm

Tk+q0
j )]ñk(mq0)

ij (G′)

(ε′s are scalars)

ñ
k(mq)
ij (G) =

∫
Ω

dr
Ω uk∗

i (r)uk+mq
j (r)e−iG·r

=
∫

Ω

dr
Ω umm

Tk∗
i (r)um(mTk+q)

j (r)e−iG·r

=
∫

Ω

dr
Ω um

Tk∗
i (mT r)um

Tk+q
j (mT r)e−im

TG·mT r

=
∫

Ω

dr′

Ω um
Tk∗

i (r′)um
Tk+q

j (r′)e−im
TG·r′(r′ ≡ mT r)

= ñ
(mTk)q
ij (mTG)

K̂
scr
GG′(mq, ω) =

∫ dr
Ω ei(mq+G)·r

∫ dr′

Ω e−i(mq+G′)·r′Kscr(r, r′)

=
∫ dr

Ω ei(q+mTG)·mT r
∫ dr′

Ω e−i(q+mTG′)·mT r′Kscr(r, r′)

=
∫ dr

Ω ei(q+mTG)·mT r
∫ dr′

Ω e−i(q+mTG′)·mT r′Kscr(mT r,mT r′)(Kscr symmetric onM)

= K̂
scr
(mTG)(mTG′)(q)
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Im Σk
i = − 1

Nk

∑
q0∈BZ0

|Mq0|
|M |

∑
m∈M

×
∑
jGG′

ñ
(mTk)q0∗
ij (mTG) Im[K̂

scr
(mTG)(mTG′)(q0, ε

mTk
i − εm

Tk+q0
j )]ñ(mTk)q0

ij (mTG′)

= − 1
Nk

∑
q0∈BZ0

|Mq0|
|M |

∑
m∈M

∑
jGG′

ñ
(mTk)q0∗
ij (G) Im[K̂

scr
GG′(q0, ε

mTk
i − εm

Tk+q0
j )]ñ(mTk)q0

ij (G′)

(Relabeling dummy G→ mG,G′ → mG′)

= − 1
|M |

∑
m∈M

∑
q0∈BZ0

|Mq0|
Nk

∑
jGG′

ñ
(mTk)q0∗
ij (G) Im[K̂

scr
GG′(q0, ε

mTk
i − εm

Tk+q0
j )]ñ(mTk)q0

ij (G′)

= 1
|M |

∑
m∈M

Im Σ̃m
Tk

i

Im Σ̃k
i ≡ −

∑
q∈BZ0

w0
q

∑
jGG′

ñkq∗
ij (G) Im[K̂

scr
GG′(q, εk

i − ε
k+q
j )]ñkq

ij (G′)

w0
q ≡ |Mq0|

Nk

Therefore, we first compute the unsymmetrized scattering rates, Im Σ̃k
i , for all k using the original

formula, but summing over only q in the irreducible wedge of BZ but weighted by the cardinality

of the corresponding orbits. We then simply symmetrize the scattering rates over the point group.

This way we only need to compute the expensive dielectric matrix over the irreducible wedge.

Note: In degenerate subspaces, the symmetry that makes the eigenvalues equal will also ensure

that the scattering rates are equal. So the above procedure is robust against unknown unitary

rotations in degenerate subspaces.
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C.3 CEDA plasma frequency sum rule

χGG
KS (q, ω) = −ws

Nk

∑
k

∞∑
ij=0
|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi − fj

2

= −ws
Nk

∑
k

Nb∑
ij=0
|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi − fj

2

−ws
Nk

∑
k

Nb∑
i=0

∞∑
j=Nb

|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi
2

−ws
Nk

∑
k

∞∑
i=Nb

Nb∑
j=0
|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
−fj

2

(The term with i, j > Nb has fi = fj = 0 and hence drops out)

= −ws
Nk

∑
k

Nb∑
ij=0
|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi − fj

2

−ws
Nk

∑
k

Nb∑
i=0

fi

∞∑
j=Nb

|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
(swapping i↔ j in third term above)

≈ −ws
Nk

∑
k

Nb∑
ij=0
|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi − fj

2

−ws
Nk

∑
k

Nb∑
i=0

fi

∞∑
j=Nb

|ñkq
ij (G)|2

[
1

ε̄− εi − ω̃
+ 1
ε̄− εi + ω̃

]
(CEDA)

= −ws
Nk

∑
k

Nb∑
ij=0
|ñkq
ij (G)|2

[
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi − fj

2

−ws
Nk

∑
k

Nb∑
i=0

fi

[
1

ε̄− εi − ω̃
+ 1
ε̄− εi + ω̃

] 1
Ω2 −

Nb∑
j=0
|ñkq
ij (G)|2

 (completeness)

= −ws
Nk

∑
k

Nb∑
ij=0
|ñkq
ij (G)|2

([
1

εj − εi − ω̃
+ 1
εj − εi + ω̃

]
fi − fj

2 − fi
[

1
ε̄− εi − ω̃

+ 1
ε̄− εi + ω̃

])

−ws
Nk

1
Ω2

∑
k

Nb∑
i=0

fi

[
1

ε̄− εi − ω̃
+ 1
ε̄− εi + ω̃

]
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Plasma frequency sum rule:

πω2
p

2 = −
∫ ∞

0
ωdω 4πΩ
|q + G|2 Im[χGG

KS (q, ω)]

Nel = − Ω
2π2

∫ ∞
0

ωdω 4πΩ
|q + G|2 Im[χGG

KS (q, ω)](ω2
p = 4πNel)

= 1
2π2

4π
|q + G|2

ws
Nk

∑
k

∫ ∞
0

ωdω

× Im

 ∑Nb
ij=0 Ω2|ñkq

ij (G)|2
([

1
εj−εi−ω̃ + 1

εj−εi+ω̃

]
fi−fj

2 − fi
[

1
ε̄−εi−ω̃ + 1

ε̄−εi+ω̃

])
+
∑Nb
i=0 fi

[
1

ε̄−εi−ω̃ + 1
ε̄−εi+ω̃

]


∫ ∞
0

ωdω Im
[

1
E − ω̃

+ 1
E + ω̃

]
=

∫ ∞
0

ωdω Im
[
− 1
ω − E + iη

+ 1
ω + E + iη

]
=

∫ ∞
0

ωdω Im
[
−
(
P 1
ω − E

− iπδ(ω − E)
)

+
(
P 1
ω + E

− iπδ(ω + E)
)]

(η → 0)

= π

∫ ∞
0

ωdω[δ(ω − E)− δ(ω + E)]

= πE

Nel = 1
2π

4π
|q + G|2

ws
Nk

∑
k

 Nb∑
ij=0

Ω2|ñkq
ij (G)|2

(
(εj − εi)

fi − fj
2 − fi(ε̄− εi)

)
+

Nb∑
i=0

fi(ε̄− εi)



= 1
2π

4π
|q + G|2

ws
Nk

∑
k


Nb∑
ij=0

Ω2|ñkq
ij (G)|2


(εj − εi) fi−fj2

− fi2 (ε̄− εi)

− fj2 (ε̄− εj)

+
Nb∑

i/j=0

 fi
2 (ε̄− εi)

+ fj
2 (ε̄− εj)




(Restoring i↔ j symmetry)

= 1
2π

4π
|q + G|2

ws
Nk

∑
k

 Nb∑
ij=0

Ω2|ñkq
ij (G)|2

 fi
2 (εj − ε̄)

+ fj
2 (εi − ε̄)

+
Nb∑

i/j=0

 fi
2 (ε̄− εi)

+ fj
2 (ε̄− εj)


= 1

2π
4π

|q + G|2
ws
Nk

∑
k

 −(∑i fiεi −
∑
ij Ω2|ñkq

ij (G)|2 fiεj+fjεi2

)
+ε̄
(∑

i fi −
∑
ij Ω2|ñkq

ij (G)|2 fi+fj2

)

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ws
Nk

∑
ki

fi = 1
2πKq(G)ws

Nk

∑
k

 −(∑i fiεi −
∑
ij Ω2|ñkq

ij (G)|2 fiεj+fjεi2

)
+ε̄
(∑

i fi −
∑
ij Ω2|ñkq

ij (G)|2 fi+fj2

)


2πK−1
q (G)

∑
ki

fi = ε̄

∑
ki

fi − Ω2
∑
kij

|ñkq
ij (G)|2 fi + fj

2

−
∑

ki

fiεi − Ω2
∑
kij

|ñkq
ij (G)|2 fiεj + fjεi

2


ε̄ =

∑
qG wq(G)

[
2πK−1

q (G)
∑

ki fi +
∑

ki fiεi − Ω2∑
kij |ñ

kq
ij (G)|2 fiεj+fjεi2

]
∑

qG wq(G)
[∑

ki fi − Ω2∑
kij |ñ

kq
ij (G)|2 fi+fj2

]
=

∑
qG wq(G)[FEsum−Ω2 oNum +2πK−1

q (G) Fsum]∑
qG wq(G)[Fsum−Ω2 oDen]

Fsum ≡
∑
ki

fi

FEsum ≡
∑
ki

fiεi

oNum ≡
∑
kij

|ñkq
ij (G)|2 fiεj + fjεi

2

oDen ≡
∑
kij

|ñkq
ij (G)|2 fi + fj

2
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Appendix D

e−-phonon interactions in jellium

Consider a jellium solid consisting of uniform density n0 of electrons in a background of compensating

charge density −n0 with mass-density n0M (atomic units with electron-is-positive charge convention).

In the bulk configuration, the electron potential is constant everywhere and hence the electronic

states are simply plane waves with the dispersion εq = q2/2 . The number density of electrons with

energy less than ε is then n(ε) =
∑
s

∫
dq

(2π)3 θ(ε − εq) = 2
∫√2ε

0
4πq2

(2π)3 dq = (2ε)3/2

3π2 . Therefore, the

Fermi energy is εF = k2
F /2 with kF ≡ (3π2n0)1/3.

D.1 Jellium phonon dispersion

In order to derive the phonon dispersions, we will need to consider perturbations of the nuclear

background from the above uniform configuration. This will require the self-consistent electron

response to that perturbation. Let’s first derive that electron response. Working within the Born-

Oppenheimer approximations, the nuclear motion time scales are much larger than the electronic

ones, so we can work with the time-independent perturbation of the electronic system.

Note: The most involved piece of the electronic response is the response of the electron density

to the total electron (Kohn-Sham) potential, which we have previously derived in detail elsewhere.
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χKS(r, r′, ω) = −2
∑
m 6=n

fn(1− fm)
[
ψ0∗
n (r)ψ0

m(r)ψ0∗
m (r′)ψ0

n(r′)
εm − εn − ω

+ ψ0
n(r)ψ0∗

m (r)ψ0
m(r′)ψ0∗

n (r′)
εm − εn + ω

]

= −2
∑

q 6=q′

1
Ω2 fq′(1− fq)

[
ei(q−q′)·(r−r′)

q2/2− q′2/2− ω + e−i(q−q′)·(r−r′)

q2/2− q′2/2 + ω

]

= −2
∑

q 6=q′

1
Ω2

[
fq′(1− fq)ei(q−q′)·(r−r′)

q2/2− q′2/2− ω + fq(1− fq′)ei(q−q′)·(r−r′)

q′2/2− q2/2 + ω

]
(Swapping q ↔ q′ in second term)

= −2
∑

q 6=q′

1
Ω2

ei(q−q′)·(r−r′)

q2/2− q′2/2− ω [fq′(1− fq)− fq(1− fq′)]

= −2
∫

dq
(2π)3

∫
dq′

(2π)3 (fq′ − fq) ei(q−q′)·(r−r′)

q2/2− q′2/2− ω

= −2
∫

dk
(2π)3 e

ik·(r−r′)
∫

dq
(2π)3

fq − fq+k

(q + k)2/2− q2/2− ω ((q,q′)→ (k + q,q))

χKS(k, ω = 0) = −2
∫

dq
(2π)3

fq − fq+k

(q + k)2/2− q2/2(switching to reciprocal space)

≈ −2
∫

dq
(2π)3

θ(kF − q)− θ(kF − |q + k|)
(q + k)2/2− q2/2 (T = 0 occupations)

= −2
∫

dq
(2π)3

θ(|q + k| − kF )θ(kF − q)− θ(kF − |q + k|)θ(q − kF )
(q + k)2/2− q2/2

= −4
∫

dq
(2π)3

θ(|q + k| − kF )θ(kF − q)
(q + k)2/2− q2/2 (Swapping q↔ q + k in second term)

= −4
∫ kF

0

q2dq
(2π)3

∫
dφq

∫ +1

−1
dcos θq

θ(|q + k| − kF )
qk cos θq + k2/2(θq = angle between q and k)

= − 1
π2

∫ kF

0
q2dq

∫ +1

−1
dcos θq

θ
(√

q2 + k2 + 2qk cos θq − kF
)

qk cos θq + k2/2

= − 1
π2

∫ kF

0
q2dq


0, q < kF − k∫ +1
k2
F
−(q2+k2)

2qk

dcos θq
qk cos θq+k2/2 , k − kF < q < kF − k∫ +1

−1
dcos θq

qk cos θq+k2/2 , q < k − kF

= − 1
π2k

∫ kF

0
qdq


0, q < kF − k

log
∣∣∣k2+2kq
k2
F
−q2

∣∣∣ , kF − k < q and |q − k| < kF

log
∣∣∣k+2q
k−2q

∣∣∣ , kF − k < q and |q − k| > kF

= −kF
π2

∫ 1

0

Q

K
dQ


0, Q < 1−K

log
∣∣∣K2+2KQ

1−Q2

∣∣∣ , 1−K < Q and |Q−K| < 1

log
∣∣∣K+2Q
K−2Q

∣∣∣ , 1−K < Q and |Q−K| > 1

(
K ≡ k

kF
, Q ≡ q

kF

)
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This can be integrated analytically (Mathematica) to a pretty complicated piecewise function that’s

very well approximated in the relevant region (small k through k ∼ kF ) by

χKS(k, ω = 0) ≈ − 1
π2


√
k2
F − k2/6, k < kF

√
6

0, k > kF
√

6

Check: the Thomas-Fermi model replaces each point in space with a homogeneous electron gas.

Therefore, the response is independent of k. For a perturbation V , the Fermi energy εF → εF − V ,

so that the density response is χKS = − ∂
∂εF

(2εF )3/2

3π2 = − 3
2

(2εF )1/2

3π2 3 = −kFπ2 . This agrees with the

k → 0 limit of the above nonlocal response.

Now consider the response of the system to a perturbation to the nuclear charge density

δNeik·r. Let the corresponding electronic response be δneik·r. Then the net electric potential

is 4π
k2 (δN + δn)eik·r and the exchange-correlation potential is e′′XC(n0)δneik·r within the LDA

approximation. Thus the total electron potential is δV =
(

4π
k2 (δN + δn) + e

′′

XC(n0)δn
)
eik·r. Then

by definition of χKS, δn = χKS(k)δV , so that

δn = χKS(k)δV

= χKS(k)
(

4π
k2 (δN + δn) + e

′′

XC(n0)δn
)

⇒ δn =
χKS(k) 4π

k2

1− χKS(k)
( 4π
k2 + e

′′
XC(n0)

)δN
Now, consider a displacement field of the nuclear charge distribution, xeik·r. This essentially produces

a dipole density −n0xeik·r (minus sign due to electron-is-positive convention). The corresponding

nuclear charge density is δNeik·r = −∇·(−n0xeik·r) = ik ·xn0e
ik·r. The restoring force on the nuclei

is due to the total electric field of the system and hence −
(
−∇ 4π

k2 (δn+ δN)eik·r
)

= ik 4π
k2 (δn+ δN).

(First minus sign due to negative charge of nuclei, second sign for electric field from potential.)

Additionally, let the background jelly be intrinsically elastic with Young’s modulus Y and

Poisson’s ratio ν. This implies a shear modulus Y/2(1 + ν) and Bulk modulus Y/3(1− 2ν). The

strain tensor, eij = 1
2 (∂iuj + ∂jui) in terms of the displacement field ui = xie

ik·r. Therefore

eij = i
2 (xikj + xjki)eik·r. In terms of standard eleasticity theory for isotropic media, the stress

tensor is then σij = λekkδij + 2µeij , where λ = Y
3(1−2ν) −

2
3

Y
2(1+ν) = Y ν

(1+ν)(1−2ν) and µ = Y
2(1+ν) .
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Finally, the force per particle is

1
n0
∂jσij = 1

n0
∂j(λekkδij + 2µeij)

= i

n0
∂j(λxkkkδij + µ(xikj + xjki))eik·r

= − 1
n0

(λxkkkδijkj + µ(xikjkj + xjkikj))eik·r

= − 1
n0

(λxjkjki + µ(xjδijk2 + xjkikj))eik·r

= − 1
n0

((λ+ µ)kikj + µk2δij)xjeik·r

The equation of motion of nuclear background oscillations is therefore:

Mẍi = iki
4π
k2 (δn+ δN)− 1

n0
((λ+ µ)kikj + µk2δij)xj

= iki
4π
k2

(
χKS(k) 4π

k2

1− χKS(k)
( 4π
k2 + e

′′
XC(n0)

) + 1
)
δN − 1

n0
((λ+ µ)kikj + µk2δij)xj

= iki

 1
k2

4π −
χKS(k)

1−χKS(k)e′′XC(n0)

 ikjxjn0 −
1
n0

(
Y

2(1 + ν)(1− 2ν)kikj + Y

2(1 + ν)k
2δij

)
xj

ẍi = −

 n0/M
k2

4π −
χKS(k)

1−χKS(k)e′′XC(n0)

+ µ

(1− 2ν)n0M

 kikj + µ

n0M
k2δij

xj

= −


 n0/M

k2

4π −
χKS(k)

1−χKS(k)e′′XC(n0)

+ v2
T

1− 2ν


︸ ︷︷ ︸

A

kikj + v2
T k

2δij

xj
(
vT ≡

√
µ

n0M

)

Diagonalizing this matrix reveals normal mode frequencies ω2 = v2
T k

2, v2
T k

2, (v2
T +A)k2, where the

first two are transverse modes (x ⊥ k) and the last one is longitudinal (x > k). The transverse

modes have linear dispersion with transverse sound velocity vT by construction, and the longitudinal
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mode has dispersion:

ωph(k) = k

√√√√ 4πn0

M
(
k2 − 4πχKS(k)

1−χKS(k)e′′XC(n0)

) + v2
T

1− 2ν + v2
T

vL = ω′ph(0) =
√√√√ 4πn0

M
(

−4π(−kF /π2)
1−(−kF /π2)e′′XC(n0)

) + 2v2
T (1− ν)
1− 2ν

≈

√
π2n0

kFM
+ 2v2

T (1− ν)
1− 2ν (Neglecting XC : TDDFT→ RPA)

=

√
k2
F

3M + 2v2
T (1− ν)
1− 2ν =

√
v2
F

3M + 2v2
T (1− ν)
1− 2ν (since ~ = 1)

For real metals, we can now select the Poisson ratio ν of the background to match the transverse

and longitudinal sound velocities:

Metal εF [eV] vF [km/s] Expt vT [km/s] Expt vL [km/s] ν fit

Gold 9. 1800 1.20 3.24 0.38

Silver 9. 1800 1.61 3.65 0.26

D.2 Electron-electron scattering

The electron scattering process 1 + 2→ 3 + 4 involves the diagrams:

1 2 1 2

4343

+

The virtual photon line has energy-momentum ε1 − ε3,k1 − k3 in the first diagram, and

ε1 − ε4,k1 −
−→
k 4 in the second diagram. The photon propagator is simply the screened Coulomb

operator K(q, ω) = 4π
q2ε(q,ω) . Define Kij ≡ K(ki − kj , εi − εj); note that K13 = K24 and K14 = K23

using energy and momentum conservation and the fact that K(−q, ω) = K(q, ω). Then using the
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Feynman rules for non-relativistic QED:

M = i[δs1s3K13δs2s4 − δs1s4K14δs2s3 ]

Γ1 = 2π
∑
s2s3s4

∫
dk2

(2π)3
dk3

(2π)3
dk4

(2π)3 f2(1− f3)(1− f4)δ(ε1 + ε2 − ε3 − ε4)(2π)3δ(k1 + k2 − k3 − k4)|M|2

= 2π
∫

dk2

(2π)3
dk3

(2π)3 f2(1− f3)(1− f4)δ(ε1 + ε2 − ε3 − ε4)
∑
s2s3s4

|δs1s3K13δs2s4 − δs1s4K23δs2s3 |2

(assuming all distributions and hence f ′s are always spin balanced)

= 2π
∫

dk2

(2π)3
dk3

(2π)3 f2(1− f3)(1− f4)δ(ε1 + ε2 − ε3 − ε4)[2|K13|2 + 2|K23|2 − 2 Re(K13K
∗
23)]

= 4π
∫

dk2

(2π)3
dk3

(2π)3 f2(1− f3)(1− f4)δ(ε1 + ε2 − ε3 − ε4)[|K13|2 + |K23|2 − Re(K13K
∗
23)]
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Now for calculating the screened Coulomb interaction K(q, ω), we need ε(q, ω), which in turn we

get from χKS(q, ω) defined before.

Vout(q, ω) ≡ ε−1(q, ω)Vin(q, ω)

Vout(q, ω) = Vin(q, ω) + 4π
q2 χ(q, ω)Vin(q, ω)

=

1 + 4π
q2

χKS(q, ω)
1− χKS(q, ω)

(
4π
q2 + e

′′
XC(n0)

)
Vin(q, ω)(RPA like relation of TDDFT)

ε−1(q, ω) = 1 +
χKS(q, ω) 4π

q2

1− χKS(q, ω)
(

4π
q2 + e

′′
XC(n0)

)
= 1− χKS(q, ω)e′′XC(n0)

1− χKS(q, ω)e′′XC(n0)− χKS(q, ω) 4π
q2

ε(q, ω) = 1− 4π/q2

χ−1
KS(q, ω)− e′′XC(n0)

χKS(q, ω) = −2
∫

dk
(2π)3

fk − fq+k

(q + k)2/2− k2/2− ω

= −2
∫

dk
(2π)3

fk(1− fq+k)− fq+k(1− fk)
(q + k)2/2− k2/2− ω

= −2
∫

dk
(2π)3

[
fk(1− fq+k)

(q + k)2/2− k2/2− ω −
fk(1− fq+k)

k2/2− (q + k)2/2− ω

]
(swapping k↔ k + q in second term)

= −4
∫

dk
(2π)3 fk(1− fq+k) (q + k)2/2− k2/2

((q + k)2/2− k2/2)2 − ω2

= − 4
(2π)2

∫ ∞
0

kρdkρ
∫ +∞

−∞
dkzfεF

(
k2
ρ + k2

z

2

)(
1− fεF

(
k2
ρ + (kz + q)2

2

))
q2/2 + qkz

(q2/2 + qkz)2 − ω2

(cylindrical coordinates for kwith axis along q)

= − 1
π2

∫ +∞

−∞
dkz

q2/2 + qkz
(q2/2 + qkz)2 − ω2 g(kz, q)

g(kz, q) ≡
∫ ∞

0
kρdkρfεF

(
k2
ρ + k2

z

2

)(
1− fεF

(
k2
ρ + (kz + q)2

2

))

=
∫ ∞

0

dk2
ρ

2 θ(k2
F − k2

z − k2
ρ)θ(k2

ρ + (kz + q)2 − k2
F )(T → 0 occupations)

= θ(k2
F − k2

z + (kz + q)2 − k2
F )

2

∫ max(0,k2
F−k

2
z)

max(0,k2
F
−(kz+q)2)

dk2
ρ

= θ(kz + q/2)
2 [max(0, k2

F − k2
z)−max(0, k2

F − (kz + q)2)](too many cases to list explicitly)

χKS(q, ω) = − 1
π2

∫ +∞

−∞
dkz

q2/2 + qkz
(q2/2 + qkz)2 − ω2

θ(kz + q/2)
2 [max(0, k2

F − k2
z)−max(0, k2

F − (kz + q)2)]

= − q

2π2

∫ ∞
0

dy y

q2y2 − ω2 [max(0, k2
F − (y − q/2)2)−max(0, k2

F − (y + q/2)2)](y ≡ q/2 + kz)

= −kF
π2

∫ ∞
0

dY Y 2

Y 2 −W 2

[
max(0, 1− (Y −Q)2)−max(0, 1− (Y +Q)2)

4QY

]
︸ ︷︷ ︸

≡h(Y,Q)(
Y ≡ y

kF
, Q ≡ q

2kF
,W ≡ ω

kF q

)
h(Y,Q) ≡ max(0, 1− (Y −Q)2)−max(0, 1− (Y +Q)2)

4QY (defined and needed only forY > 0, Q > 0)

=




0, Y 6 −1 +Q

1− (Y −Q)2, −1 +Q < Y 6 1 +Q

0, Y > 1 +Q

−



0, Y 6 −1−Q

1− (Y +Q)2, −1−Q < Y 6 1−Q

0, Y > 1−Q


4QY

=




1, 0 < Y 6 1−Q
1−(Y−Q)2

4QY , 1−Q < Y 6 1 +Q

0, Y > 1 +Q

, 0 < Q 6 1


0, 0 < Y 6 Q− 1
1−(Y−Q)2

4QY , Q− 1 < Y 6 1 +Q

0, Y > 1 +Q

, Q > 1

χKS(q, ω) = −kF
π2


∫ 1−Q

0 dY Y 2

Y 2−W 2 +
∫ 1+Q

1−Q dY Y 2

Y 2−W 2

(
1−(Y−Q)2

4QY

)
, 0 < Q 6 1∫ 1+Q

Q−1 dY Y 2

Y 2−W 2

(
1−(Y−Q)2

4QY

)
, Q > 1

154



D.3. ELECTRON-PHONON SCATTERING

The integral is divergent as written, and needs to be regularized as usual with ω → ω + iδ. Taking

the limit δ → 0 after regularizing leaves behind the principal part of the above integral in the real

contrbution along with an imaginary part. There are 6 cases in total, for the three ranges of W for

each of the two Q cases. The integrals are analytically solvable in all cases (Mathematica), and can

be collected together as:

χKS(q, ω) = −kF
π2


1
2 +

(1− (Q−W )2) log
∣∣∣Q−W+1
Q−W−1

∣∣∣+ (1− (Q+W )2) log
∣∣∣Q+W+1
Q+W−1

∣∣∣
+iπ[min(1, (Q+W )2)−min(1, (Q−W )2)]

8Q


D.3 Electron-phonon scattering

Consider the matrix element fo the process: electron(k)+phonon(q)→electron(k + q). The longitu-

dinal phonon has a nuclear charge density iqn0√
ωq
eiq·r, with the denominator appearing due to the

mode normaliztaion of a phonon quantum. With a longitudinal sound velocity vL, ωq ≈ vLq for

small q, so that the effective nuclear charge density is δN = in0

√
q
vL
eiq·r. The net electrostatic

potential due to the phonon is:

V q
ph(r) = 4π

k2 (δN + δn)

= 4π
q2

δN +
χKS(q) 4π

q2

1− χKS(q)
(

4π
q2 + e

′′
XC(n0)

)δN


=
(
q2

4π + (e
′′

XC(n0)− χ−1
KS(q))−1

)−1

δN

≈
(
e
′′

XC(n0) + π2

kF

)
δN(For small q)

=
(
e
′′

XC(n0) + π2

kF

)
in0

√
q

vL
eiq·r

Me−ph =
∫
drψ∗k+q(r)V q

ph(r)ψk(r)

=
(
e
′′

XC(n0) + π2

kF

)
in0

√
q

vL
(ψ′s are plane waves)

Thus |Me−ph|2 ∝ q for small q, which cancels the 1/ωq divergence in the Bose factors.

155



APPENDIX D. E−-PHONON INTERACTIONS IN JELLIUM

Now consider the Fermi golden rule expression for the total scattering rate of state i (using the

same notation as the phonon-assisted derivation, but eliminating the plasmon):

Γe−ph
abs = 2π

~
∑

qjbj ;kα

(1− fqjbj )δ
(
εqjbj − ε−→qibi − ~ωkα

) ∣∣∣Mkα−→qibi,qjbj

∣∣∣2

= π

NR

∑
qjbj ;α

(1− fqjbj )n
(qj−qi)α

δ
(
εqjbj − ε−→qibi − ~ω(qj−qi)α

)
~ω(qj−qi)α

∣∣∣M (qj−qi)α
−→qibi,qjbj

∣∣∣2

= πΩ
∑
bjα

∫
dq

(2π)3 (1− fqjbj )n
(qj−qi)α

δ
(
εqjbj − ε−→qibi − ~ω(qj−qi)α

)
~ω(qj−qi)α

∣∣∣M (qj−qi)α
−→qibi,qjbj

∣∣∣2

Γe−ph
emit = πΩ

∑
bjα

∫
dq

(2π)3 (1− fqjbj )(n
−(qj−qi)α + 1)

δ
(
εqjbj − ε−→qibi + ~ω−(qj−qi)α

)
~ω−(qj−qi)α

∣∣∣M−(qj−qi)α
−→qibi,qjbj

∣∣∣2

Next assume that
∣∣∣M−(qj−qi)α
−→qibi,qjbj

∣∣∣2 = M2(k) where k ≡ |qj − qi| i.e. it depends only on the phonon

wave-vector, and for simplicity, assume a single acoustic phonon branch (lump the contributions into

a single branch) with ωq = vLq. Finally, neglect the energy of the phonon on the electronic scale, so

that the absorption and emission processes couple to almost the same electronic state. Then the

total rate is:

Γe−ph =
∑
bj

∫ Ωdq
(2π)3 (1− fqjbj )δ

(
εqjbj − ε−→qibi

) π(2nk + 1)
~vLk

M2(k)︸ ︷︷ ︸
≡M2

0

= M2
0 g
(
ε−→qibi

)
where g(ε) is the density of states in the unit cell. From the drude model, close to the Fermi energy,

Γe−ph = n0ρ in atomic units, where ρ is the resistivity. Therefore, M0 =
√
n0ρ/g(εF ).

Now making the same approximations for the phonon-assisted plasmon decay, and additionally

making the phonon-first and plasmon-first processes incoherent (since we don’t have the phase for
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the phonon matrix element; this sort of requires the phonon to behave classically and not interfere):

Γ = π2e2~2

4m2
eΩ|γ−|ωspL(ωsp)

∑
bibj

1
N2

k

∑
qiqj

f−→qibi(1− fqjbj )δ
(
εqjbj − ε−→qibi − ~ωsp

) 2nk + 1
vLk

M2(k)

×


∣∣∣∣∣∣
∑
bl

(
1− f−→qj ,bl

) (k̂sp − ksp
γ−

ẑ
)
· 〈i∂r〉

qj
bjbl

ε−→q jbl − ε−→q ibi

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
bl

(1− fqi,bl)

(
k̂sp − ksp

γ−
ẑ
)
· 〈i∂r〉qiblbi

εqibl − (εqibi + ~ωsp)

∣∣∣∣∣∣
2

Γ = πe2~3M2
0

4m2
eΩ|γ−|ωspL(ωsp)

∑
bibj

1
N2

k

∑
qiqj

f−→qibi(1− fqjbj )δ
(
εqjbj − ε−→qibi − ~ωsp

)

×


∣∣∣∣∣∣
∑
bl

(
1− f−→qj ,bl

) (k̂sp − ksp
γ−

ẑ
)
· 〈i∂r〉

qj
bjbl

ε−→q jbl − ε−→q ibi

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
bl

(1− fqi,bl)

(
k̂sp − ksp

γ−
ẑ
)
· 〈i∂r〉qiblbi

εqibl − (εqibi + ~ωsp)

∣∣∣∣∣∣
2

=
∑
bibj

1
N2

k

∑
qiqj

f−→qibi(1− fqjbj )δ
(
εqjbj − ε−→qibi − ~ωsp

)

×

∣∣∣∣∣∑
bl

(
1− f−→qj ,bl

) SΓ · 〈i∂r〉
qj
bjbl

ε−→q jbl − ε−→q ibi

∣∣∣∣∣
2

+

∣∣∣∣∣∑
bl

(1− fqi,bl)
SΓ · 〈i∂r〉qiblbi

εqibl − (εqibi + ~ωsp)

∣∣∣∣∣
2


SΓ ≡

√
πM2

0
4Ω|γ−|ωspL(ωsp)

(
k̂sp −

ksp

γ−
ẑ
)

(sqrtGammaPrefac in atomic units)

Note that in the Metropolis implementation, SΓ has an additional factor of
√
N1/Nkpts.
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Appendix E

Phonon Vertex

For a phonon mode αk, we have displacements xRs = Xαk
s eik·R for the d.o.f s in unit cell located

at R. The initial Hamiltonian is:

H =
∑
Rs

p2
Rs

2ms
+ 1

2
∑

Rs;R′s′
xRsGss′(R −R′)xR′s′

LetxRs =
∑
αk

Xαk fk
αs√
ms

eik·R√
NR

(where fk is some unitary matrix)

pRs =
∑
αk

Pαk√msf
k
αs

e−ik·R√
NR

(canonical transformation so thatX andP are conjugate)

H = 1
2
∑

αk,α
−→′k′

PαkPα
′k′
∑
s

fk
αsf

k′
α′s

∑
R

e−ik
′·Re−ik·R

NR

+1
2
∑

αk,α
−→′k′

∑
Rs;R′s′

XαkXα′k′fk
αsf

k′
α′s′

Gss′(R −R′)
√
msms′

eik
′·R′eik·R

NR

= 1
2
∑

αk,α
−→′k′

PαkPα
′k′
∑
s

fk
αsf

k′
α′sδk,−k′ + 1

2
∑

αk,α
−→′k′

δk,−k′X
αkXα′k′

∑
ss′

fk
αs

Fss′(k′)√
msms′

fk′
α′s′

= 1
2
∑
αα′k

PαkPα
′−k

∑
s

fk
αsf
−k
α′s + 1

2
∑
αα′k

XαkXα′−k
∑
ss′

fk
αs

Fss′(−k)
√
msms′

f−k
α′s′

At this stage, pick the unitary matrix fk to be the set of eigenvectors of Fss′ (k)√
msms′

with eigenvalues

ω2
kα, so that

∑
s′

Fss′ (k)√
msms′

fk
αs′ = ω2

kαf
k
αs by definition. Also note that G is real ⇒ F (−k) = F ∗(k)
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and hence f−k = fk∗ as well as ωkα = ω−kα. Continuing the simplification:

H = 1
2
∑
αα′k

PαkPα
′−k

∑
s

fk
αsf
−k
α′s + 1

2
∑
αα′k

XαkXα′−k
∑
s

fk
αsω

2
−kα′f

−k
α′s

= 1
2
∑
αα′k

[PαkPα
′−k + ω2

kα′X
αkXα′−k]

∑
s

fk
αsf

k∗
α′s

= 1
2
∑
αα′k

[PαkPα
′−k + ω2

kα′X
αkXα′−k]δαα′

= 1
2
∑
αk

[PαkPα−k + ω2
kαX

αkXα−k]

which is a set of Harmonic oscillators with unit mass and frequencies ω2
kα. It is a little strange in

the way the k and −k combine instead of having complex conjugates, but we can deal with that in

the quantization with a slight modification to the substitution of the ladder operators:

Xαk = 1√
2ωkα

(b†kα + b−kα)

Pαk = i

√
ωkα

2 (b†kα − b−kα)

H = 1
2
∑
αk

[PαkPα−k + ω2
kαX

αkXα−k]

= 1
2
∑
αk

[
−ωkα

2 (b†kα − b−kα)(b†−kα − bkα) + ωkα

2 (b†kα + b−kα)(b†−kα + bkα)
]

=
∑
αk

ωkα

4 [−b†kαb
†
−kα + b†kαbkα + b−kαb

†
−kα − b−kαbkα + b†kαb

†
−kα + b†kαbkα + b−kαb

†
−kα + b−kαbkα]

=
∑
αk

ωkα

4 [2(b†kαbkα + b−kαb
†
−kα)]

=
∑
αk

ωkα

2 [b†kαbkα + b†−kαb−kα + 1](using commutator)

=
∑
αk

ωkα

2 [b†kαbkα + b†kαbkα + 1](Replace dummy index k→ −k in second term)

=
∑
αk

ωkα

[
b†kαbkα + 1

2

]

A brief aside on the electronic states: given the standard unit cell normalized wavefunctions in Bloch

form ψqb(r) = uqb(r)eiq·r, the properly normalized wavefunctions on the supercell are 1√
NR

ψqb(r).

Then, the many-body real-space annihilation operator (also called the field operator) can be written
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as Ψ(r) =
∑

qb
1√
NR

ψqb(r)cqb, where cqb is the fermionic annihilation operator for state qb. Then

the real-space density operator is:

n̂(r) = Ψ†(r)Ψ(r)

=
∑
qb

1√
NR

ψ∗qb(r)c†qb
∑
q′b′

1√
NR

ψq′b′(r)cq′b′

=
∑
qb

∑
q′b′

c†qbcq′b′
ψ∗qb(r)ψq′b′(r)

NR

=
∑
qb

∑
q′b′

c†qbcq′b′
u∗qb(r)uq′b′(r)

NR
ei(q′−q)·r

Now consider the interaction hamiltonian between the electrons and phonons, it is the potential due

to the shift in nuclei acting on the electrons:

He−ph =
∑
Rs

xRs

∫
NRΩ

dr∂RsVnuc(r)n̂(r)

=
∑
Rs

∑
αk

Xαk fk
αs√
ms

eik·R√
NR

∫
NRΩ

dr∂RsVnuc(r)
∑
qb

∑
q′b′

c†qbcq′b′
u∗qb(r)uq′b′(r)

NR
ei(q′−q)·r

= 1
N

3/2
R

∑
αk

∑
qb

∑
q′b′

Xαkc†qbcq′b′

∫
NRΩ

dr
∑
Rs

fk
αs√
ms

eik·R∂RsVnuc(r)︸ ︷︷ ︸
≡gkα(r)

u∗qb(r)uq′b′(r)ei(q′−q)·r

gkα(r + R′) =
∑
Rs

fk
αs√
ms

eik·R∂RsVnuc(r + R′)

=
∑
Rs

fk
αs√
ms

eik·R∂(R+R′)sVnuc(r)

= e−ik·R
′∑

Rs

fk
αs√
ms

eik·(R+R′)∂(R−R′)sVnuc(r)

= e−ik·R
′
gkα(r)⇒ gkα(r) is in Bloch form with wavevector−k

gkα(r) = hkα(r)e−ik·r(with hkα(r) periodic on unit cell)

⇒ hkα(r) ≡
∑
Rs

fk
αs√
ms

eik·(R+r)∂RsVnuc(r) is periodic
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He−ph = 1
N

3/2
R

∑
αk
∑

qb
∑

q′b′ X
αkc†qbcq′b′

∫
NRΩ drhkα(r)u∗qb(r)uq′b′(r)ei(q′−k−q)·r

= 1
N

3/2
R

∑
αk
∑

qb
∑

q′b′ X
αkc†qbcq′b′

∑
R
∫

Ω drhkα(r)u∗qb(r)uq′b′(r)ei(q′−k−q)·(r+R)

(using periodicity of hkα anduqb)

= 1√
NR

∑
αk
∑

qb
∑

q′b′ X
αkc†qbcq′b′

∫
Ω drhkα(r)u∗qb(r)uq′b′(r)ei(q′−k−q)·r∑

R
ei(q′−k−q)·R)

NR

= 1√
NR

∑
αk
∑

qb
∑

q′b′ X
αkc†qbcq′b′

∫
Ω drhkα(r)u∗qb(r)uq′b′(r)ei(q′−k−q)·rδq+k,q′

= 1√
NR

∑
αk
∑

qb
∑

q′b′ X
αkc†qbcq′b′δq+k,q′

∫
Ω

dru∗qb(r)uq′b′(r)
∑
Rs

fk
αs√
ms

eik·(R+r)∂RsVnuc(r)︸ ︷︷ ︸
≡Mkα

qb,q′b′

=
∑
αk
∑

qbb′
Mkα

qb,(q+k)b′√
2NRωkα

(b†kα + b−kα)c†qbc(q+k)b′

Here, Mkα
qb,(q+k)b′ are the non-zero matrix elements you will get from the DFT/phonon code.

You can see that the momentum conservation works out properly for the emission and absorption

processes, and the weird k and −k combinations during the phonon quantization was necessary for

this to happen. Also note that the normalization has non-trivial modifications due to the ‘amplitude

of motion’ per phonon quantum.

Summary: the matrix element for absorbing a phonon kα between a pair of electronic states is

exactly the same as emitting the phonon −kα between the same pair of electronic states.
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