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Abstract

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all.
Only a handful of FRBs had been detected when we started this project. Taking account of the scant
observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for
their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions.
Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering
tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead
the scattering is probably caused by the interstellar medium in the FRB’s host galaxy, and indicates
that this burst sits in the central region of that galaxy. Pulse durations of order ms constrain source
sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields
near FRBs at cosmological distances would be so strong that they could accelerate free electrons
from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear
whether they were genuine astronomical signals as distinct from ‘perytons’, clearly terrestrial radio
bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered
that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when
their doors opened while they were still heating. Evidence for the astronomical nature of FRBs
has strengthened since our paper was published. Some bursts have been found to show linear and
circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope
to resume working on FRBs in the near future. But after we completed our FRB paper, I decided
to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing
to the precise timing of the central ms pulsar. The two orbits are highly hierarchical, namely
Porb,1 � Porb,2, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively.
Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular
interaction associated purely with eccentricity beyond the solar system. Secular interaction only
involves effect averaged over many orbits. Thus each companion can be represented by an elliptical
wire with its mass distributed inversely proportional to its local orbital speed. Generally there
exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To
maintain either mode, the eccentricity ratio, e1/e2, must be of the proper value, so that both apsidal
lines precess together. For J0733+1715, e1 � e2 for the parallel mode, while e1 � e2 for the anti-
parallel one. We show that the former precesses ∼ 10 times slower than the latter. Currently the
system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both
eccentricities especially e1 oscillate on ∼ 103y timescale. Detectable changes would occur within
∼ 1y. We demonstrate that the anti-parallel mode gets damped ∼ 104 times faster than its parallel
brother by any dissipative process diminishing e1. If it is the tidal damping in the inner WD, we
proceed to estimate its tidal quantity parameter (Q) to be ∼ 106, which was poorly constrained by
observations. However, tidal damping may also happen during the preceding low-mass X-ray binary
(LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills
its Roche lobe and probably suffers mass/angular momentum loss, which might cause e1 to grow
rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide
these into two groups according to their proximity to exact resonance. Proximity is measured by
the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and
Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is
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present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant
arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal
damping of eccentricity or inclination excites overstable librations that can lead to passage through
resonance on the damping timescale. However, after investigation, we conclude that the librations
in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in
small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment,
heat cannot conduct through voids; only radiation can transfer energy across them. We model the
effective thermal conductivity of a rubble pile and show that it is proportional the square root of the
pressure, P , for P ≤ ε3Y µ where εY is the material’s yield strain and µ its shear modulus. Our model
provides an excellent fit to the depth dependence of the thermal conductivity in the top 140 cm of
the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and
icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as
asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed
light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as
the GW event becomes observable. In this paper, we propose a computationally efficient time-domain
algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects
with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the
flexibility to trigger EM observation before the merger. The key to the efficiency of our algorithm
arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-
series data recursively. Computational cost is further reduced by a template interpolation technique
that requires filtering to be done only for a much coarser template bank than otherwise required to
sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending
to lower frequencies, our algorithm’s computational cost is shown to increase rather insignificantly
compared to the conventional time-domain correlation method. Moreover, at latencies of less than
hundreds to thousands of seconds, this method is expected to be computationally more efficient than
the straightforward frequency-domain method.
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Chapter 1

Physical Constraints on Fast Radio
Bursts

1.1 Introduction

FRBs are single, broad-band pulses with flux densities Sν ∼ Jy and durations ∆t ∼ ms detected
at ν ∼ GHz (Lorimer et al., 2007; Thornton et al., 2013). They were discovered by de-dispersing
data collected by the Parkes multi-beam radio telescope during pulsar searches. Thus far there are
no reports of FRBs detected by other radio telescopes. The procedure followed in the detection of
FRBs is similar to that which led to the discovery of rotating radio transients (RRATs, McLaughlin
et al. (2006)) now firmly identified as sporadically active pulsars. Thornton et al. (2013) report the
detection of four high-galactic-latitude (> 40◦) FRBs with DM of several hundred pc cm−3, well
above the contribution expected from our Galaxy (Cordes & Lazio, 2002). It has become popular
to attribute these large DMs to propagation through the intergalactic plasma indicating source
distances d ∼ Gpc.

Currently, it is unclear whether FRBs herald the discovery of a new type of astronomical source or
merely that of an unidentified source of noise. The strongest argument supporting the astronomical
origin of FRBs is the precise degree to which arrival times of individual pulses follow the ν−2 law
that characterizes the propagation of radio waves through a cold plasma. Some pulses detected in
searches for FRBs are clearly terrestrial although their origin is unknown. These have been named
Perytons. It is notable that the classification of the Lorimer burst (Lorimer et al., 2007) remains
controversial, although if it is a FRB it would be the first and brightest of those detected. For
the remainder of this paper, we cast aside our doubts and proceed as through FRBs are bona-
fide astronomical signals. Interest in detecting additional FRBs with other radio telescopes is high
(Lorimer et al., 2013; Trott et al., 2013)), so we expect their true nature to be revealed soon. In §1.2,
we show that the DMs of FRBs cannot arise from propagation through a stellar corona or a galactic
HII region. Then in §1.3, we argue that intergalactic electron density fluctuations are unlikely to
provide the angular deflections deduced from the temporal scattering tail resolved in FRB 110220.
§1.4 shows that the contribution of FRBs to the brightness of the radio sky is negligible. In §1.5, we
discuss the high brightness temperatures of FRBs and assess the possibility that FRBs are signals
beamed at Earth by advanced civilizations. §1.6 discusses the strength of the electric fields of FRBs
in terms of their ability to accelerate free electrons to relativistic energies in one radio wave period.
We summarize our results in §1.7 and briefly comment on possible emission mechanisms for FRBs.

1.2 Sources are Probably Extra-Galactic

In this section, we discuss two galactic candidates to produce DM for FRBs. One is a stellar corona,
suggested by Loeb et al. (2014); the other is an HII region. We then demonstrate that neither can
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account for the large DM of FRBs. Thus, the sources of FRBs are probably extra-galactic.

1.2.1 Free-free absorption in stellar coronas

Loeb et al. (2014) proposed that FRBs originate from flares on main-sequence stars and that the
DM arises from propagation through the stellar corona. This proposal has the attractive feature of
greatly reducing the source luminosity with respect to that required for an unspecified extragalactic
source. Nevertheless, free-free absorption limits a stellar corona’s DM to be well below that of
FRB’s.

In the Rayleigh-Jeans limit, hν � kBT , the free-free absorption coefficient including stimulated
emission reads (Spitzer, 1978)

α =
4

3

(
2π

3

)1/2
Z2e6neniḡff

c m
3/2
e (kBT )

3/2
ν2
, (1.1)

ḡff =

√
3

π

[
ln

(
(2kBT )3/2

πe2m
1/2
e ν

)
− 5γ

2

]
, (1.2)

where ḡff is the Gaunt factor and γ = 0.577 is Euler’s constant. Other symbols are standard: me is
the electron mass, e is the electron charge, and ne and ni are the number densities of electrons and
ions. For cosmic abundances and in the temperature range of interest here, it suffices to evaluate α
for a pure hydrogen plasma, i.e., Z = 1 and ne = ni.

For a homogenous medium, the optical depth for free-free absorption is τ ∼ αs ∝ n2
es, where s

is the path length along the line of sight through the medium. Since DM = nes, we express ne in
terms of s and τ . Then τ . 1 sets an upper limit on DM,

DM ∼ 33/4(mekBT )3/4(cs)1/2ν

25/4π1/4e3ḡ
1/2
ff

. (1.3)

For kBT . GMmp/R the base of the corona would be in quasi-hydrostatic equilibrium. Since
density drops rapidly with height in an isothermal atmosphere, we replace s in Eq. (1.3) by the scale
height 2kBT/(mpg), and kBT by GMmp/R to obtain

DM ∼ 33/4c1/2m
3/4
e (GMmp)

3/4ν

23/4π1/4e3R1/4ḡ
1/2
ff

(1.4)

∼ 50

(
M

M�

)3/4(
R

R�

)−1/4

pc cm−3 (1.5)

which is much smaller than the DMs of FRBs.
A hotter corona could provide a larger DM. If free to expand, it would essentially be a stellar

wind even close to the photosphere. For simplicity, the wind is taken to have constant velocity
and constant temperature. These approximations are not entirely consistent because a supersonic
isothermal wind would slowly accelerate as its density declined. This inconsistency leads us to
overestimate dispersion measure relative to free-free absorption because the former and latter are
proportional to density and density squared. At constant radial velocity, ne(r) ∼ ne(R)(R/r)2.

DM ∼
∫ ∞
R

nedr ∼ ne(R)R . (1.5)

From Eq. (1.2), α = Cn2
e/(kBT )3/2,

τ ∼
∫ ∞
R

αdr ∼
∫ ∞
R

Cn2
e

(kBT )3/2
dr ∼ Cne(R)2 R

3(kBT )3/2
. (1.5)
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The power carried by the wind would be1

Pw ∼ 4πmpne(R)R2v3
th ∼

26π3/2e6ḡffDM3

35/2cm
3/2
e m

1/2
H ν2τ

(1.6)

& 40L�

(
DM

103 pc cm−3

)3 ( ν

1 GHz

)−2

, (1.7)

where we have expressed ne and s in terms of DM and τ . The & on the second line follows from
setting τ . 1. Clearly a coronal wind cannot carry more energy than the luminosity of its star could
provide. Thus even the lowest DM measured for the FRB’s reported by Thornton et al. (2013),
DM∼ 553 pc cm−3, could not arise from propagation through a coronal wind from the flare stars
discussed by Loeb et al. (2014).

A hotter corona might be confined by a strong magnetic field provided the magnetic stress is
comparable to the gas pressure. Under this condition, the ratio of the electron cyclotron frequency
to the plasma frequency would be

ωce
ωp
≈
(
kBT

mec2

)1/2

. (1.7)

Then the dispersion relation for radio waves would depend on ω/ωce in addition to ω/ωp which
might cause the frequency dependence of the pulse arrival times to deviate by more than the limits
set by observations of FRBs.

Numerical results given above are scaled with respect to parameters pertaining to the sun.
Typical flare stars are lower main sequence dwarfs for which R ∝M0.9 and L ∝M3.4 (Demircan &
Kahraman, 1991). Application of these relations only strengthens our conclusion that the DMs of
FRBs cannot be attributed to passage of radio waves through coronas.

Before moving on, we offer a few additional comments about radio emission from flare stars.
This topic has been discussed for more than half a century, starting with the paper ”Radio Emission
from Flare Stars” by Lovell (1963). To our knowledge, no bursts sharing the common properties
of FRBs have been reported. Moreover, the most frequently studied radio flare stars are close by.
For example, AD Leonis and YZ Canis Minoris are at distance of ∼ 5 pc and ∼ 6 pc, respectively.
These two stars figure prominently, and in most cases exclusively, in each of the papers on radio
flares referenced in Loeb et al. (2014) and their strongest bursts barely reach the level of 1 Jy that
is typical of FRBs. Dynamic spectra of radio bursts from AD Leonis observed with wide bandwidth
and at high time resolution at Arecibo (Osten & Bastian, 2006, 2008) do not resemble those of
FRBs. Pulses suffering dispersion induced time delays should only show negative frequency drifts.
But the histogram of these bursts (Figure 4a in Osten & Bastian (2006)) exhibits both positive and
negative frequency drifts and is symmetric about zero drift with half width at half maximum of
∼ 3×10−4 s/MHz. Note that a DM ∼ 20 pc cm−3 produces a negative frequency drift rate of similar
magnitude.

1.2.2 HII region

An HII region is another candidate to account for the DM of a galactic FRB. A lower limit on
s is deducible from Eq. (1.3). With T ∼ 104 K, s & 0.2 pc. The angular size of such an HII
region at 500 pc is dθHII ∼ 80 arcsec. At 1.4 GHz, the 64 m, Parkes telescope’s beam size is dθ ∼
λ/D ∼ 20 cm/64 m ∼ 650 arcsec. Thus the antenna temperature of such an HII region would be
TA = THII × (dθHII/dθ)

2 ∼ 150 K. The sensitivity of Parkes at 1.4 GHz for a 270 s integration time
is 0.6 mK for 10σ detection of FRBs (cf. Parkes user guide). Thornton et al. would have recognized
an HII region with these properties in the data they search for FRBs.

The bottom line from this section is that neither a stellar corona nor an HII region is a plausible
candidate for the high DMs of FRBs’. Thus FRBs are likely to be extragalactic.

1In calculating the power needed to drive the wind, we neglect the heat that must be supplied in order to overcome
the cooling effect of adiabatic expansion.
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1.3 Temporal Scattering

We follow conventions developed in the investigation of angular and temporal scattering in the
interstellar medium (Rickett, 1990) and adopt the Kolmogorov spectrum, δne/ne ∼ (`/L)1/3, for
electron density fluctuations on scale ` where `min ≤ ` < L. Moreover, we assume that this spectrum
is associated with a turbulent cascade in which sonic velocity fluctuations are present at outer scale
L.2 Finally, the scattering is described by projecting the phase differences that accumulate along
the line of sight between source and observer onto a thin screen located midway between them. For
a source at distance d, we obtain

∆φ ∼ nee
2d1/2`5/6λ

πmec2L1/3
. (1.7)

We are concerned with strong scattering which requires ∆φ > 1. Then the scattering angle

∆θ ∼ λ

`
∆φ ∝ `−1/6 (1.7)

is dominated by the smallest scale for which ∆φ & 1. For sufficiently small `min, this is the diffraction
scale at which ∆φ ∼ 1;

`dif ∼
(
πmec

2

e2neλ

)6/5
L2/5

d3/5
. (1.7)

Otherwise it is `min. The temporal delay,

∆tsc ∼
d

c
(∆θ)2 (1.7)

is expressed as

∆tsc ∼


d
c

(
λ
`dif

)2

∝ λ4.4 , `min ≤ `dif ;

d
c

(
∆φλ
`min

)2

∝ λ4 , `min > `dif .

(1.7)

FRB 110220 exhibits a well-resolved exponential tail with ∆tsc ∼ 5.6 ± 0.1 ms that has been
attributed to plasma scattering (Thornton et al., 2013). Unfortunately, the data is not quite good
enough to distinguish between the two cases given in Eq. (1.3) (Thornton et al., 2013). But both
restrict the outer scale to be less than

Lmax ∼
(
e2 ne
πmec2

)3
λ11/2 d11/4

(c∆tsc)5/4
∼ 1013

(
d

Gpc

)11/4

×
( ne

10−7 cm−3

)3
(

∆tsc
ms

)−5/4

cm . (1.6)

Lmax is an impossibly small outer scale for extragalactic turbulence.3 Sonic velocity perturbations
dissipate their bulk kinetic energy into heat on the timescale over which sound waves cross the outer
scale. This would imply a doubling of the IGM temperature over several months since the cooling
rate is comparable to the Hubble time.

Based on the argument given above, it seems unlikely that propagation through the diffuse IGM
could make a measurable contribution to the scattering tail of a FRB. Indeed, an outer scale of
order 1024 cm is required to reduce the turbulent heating rate to a level compatible with the cooling
rate. With this value, ∆tsc . 10−12 s for d ∼ Gpc. Previously, Macquart & Koay (2013) expressed
doubt that propagation through the diffuse IGM could produce discernible scattering tails for FRBs.

2Conclusions reached in this section depend on the assumption that the electron density fluctuations arise from a
turbulent cascade.

3In a clumpy IGM with volume filling factor f , Lmax would be larger by f−3/2.
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However, they failed to recognize the incompatibility of a small Lmax with regulation of the IGM’s
temperature.

1.4 Contribution to Radio Sky

Thornton et al. (2013) estimate a FRB event rate of ∼ 104 sky−1day−1 ∼ 0.1 s−1. Given char-
acteristic flux densities of a Jansky and durations of a few milliseconds, FRBs add about 10−9 K
to the radio background at 1.4 GHz.4 This value is dwarfed by contributions of 2.7 K from the
CMB and even by minor additions from the galactic halo, the galactic plane and extragalactic radio
sources. According to Subrahmanyan & Cowsik (2013), these account for 0.79 K, 0.3 K and 0.14 K
respectively at 1.4 GHz.

1.5 Brightness Temperature

FRBs are not angularly resolved, and thus their brightness temperatures (TB) are unknown. How-
ever, the duration of a pulse, ∆t, constrains the linear size of the source and thus its angular size at
a fixed distance. Relativistic beaming is a complication. Radiation emitted from a spherical shell
expanding with Lorentz factor Γ is beamed into a solid angle ∆Ω ∼ Γ−2. Arrival times of photons
emitted simultaneously spread by R/(cΓ2) permitting a source size as large

R . c∆tΓ2 . (1.6)

Consequently, the brightness temperature in the observer’s frame is

TB ' Sνd
2

kBΓ2ν2∆t2
(1.7)

∼ 1036 K

Γ2

(
Sν
Jy

)(
d

Gpc

)2 ( ν

GHz

)−2
(

∆t

ms

)−2

.

Even at d ∼ kpc, TB ∼ 1023/Γ2 K. Incoherent broad-band radio emission from strong astronomical
sources is usually synchrotron radiation. Upper limits on TB are typically no larger than a few times
1013 K (Kovalev et al., 2005). This is consistent with an upper limit on TB ∼ 1012 K in the source
frame set by the Compton catastrophe (Frank et al., 1992) with somewhat higher values due to
beaming in AGN jets.

Terrestrial communications at radio wavelengths invariably involve coherent sources. Could
FRBs be signals beamed at us from advanced civilizations? Might negatively chirped ms pulses
be transmitted to facilitate their detection? Advanced civilizations would know the power of de-
dispersing radio signals to investigate pulsars. They would also be aware of planets in their neigh-
borhoods and have identified those with atmospheres suitable for, or perhaps even modified by,
biological life. After all, this information will be available to us before the end of this century.

How might advanced civilizations configure antennas to transmit narrow beams? Arrays of small
telescopes are preferable to large filled apertures and also limit capital costs. With baseline, b, and
transmitted power, PT , the flux density of a broad-band signal received at distance d would be

Sν ∼
(
b

cd

)2

νPT . (1.6)

Recasting the above equation with Sν scaled by Jy as appropriate for a FRB yields

PT ∼ 109

(
b

103 km

)−1(
d

kpc

)2 ( ν

GHz

)−1
(
Sν
Jy

)
watt , (1.6)

4Unless FRBs are extragalactic, this is merely their contribution to the radio background near our position in the
Galaxy.



6

a modest power requirement even by current terrestrial standards.5

Accounting for a burst arrival rate at Earth ∼ 0.1 s−1 is the most challenging part of this exercise.
With only a handful of detected FRBs, the fraction of planets hosting an advanced civilization might
be quite modest. But then, the Earth must have been recognized as a particular object of interest to
target. If this hypothesis has merit, the positions from which bursts arrive should eventually repeat.
That would provide a lower limit to the number of our more advanced neighbors.

1.6 Strong Electric Fields

The flux of energy carried by an electromagnetic wave is F = cE2/4π. Thus the electric field at the
observer associated with a broad-band pulse of flux density Sν is

Eo ∼
(

4πSνν

c

)1/2

∼ 10−12

(
Sν
Jy

)1/2 ( ν

GHz

)1/2

esu . (1.6)

At separation r from a source at distance d, the electric field is larger, E = (d/r)Eo. For r
smaller than

rrel ∼
eEod

2πmecν

∼ 1013

(
Sν
Jy

)1/2 ( ν

GHz

)−1/2
(

d

Gpc

)
cm , (1.6)

the electric field is strong in the sense that it could accelerate an electron from rest up to relativistic
energy on timescale comparable to (2πν)−1. A free electron would maintain a position of nearly
constant phase, in essence surfing on the wave (Gunn & Ostriker, 1969). For E given by Eq. (1.6)
and r � rrel, the electron would reach a Lorentz factor

γ ∼
(rrel

r

)2/3

. (1.6)

Acceleration of electrons in a thermal plasma by a strong broadband pulse would be more compli-
cated. It is plausible that the electrons would drag the positive ions along with them to create an
outgoing shock wave. Whether this might lead to the emission of coherent GHz radio waves is an
open question that is best left for a separate investigation.

It is informative to compare the strength of the electric field near a cosmological FRB with that
of giant pulses from the Crab pulsar. Sallmen et al. (1999) studied giant pulses in different frequency
bands. At 0.6 GHz, Sν ∼ 7000 Jy whereas at 1.4 GHz, Sν ∼ 3000 Jy. Since the Crab is estimated to
be at d ∼ 2.2 kpc (Manchester et al., 2005), the corresponding values of rrel are a few times 109 cm
in both bands. These values of rrel are about 10 times larger than the radius of the Crab’s light
cylinder (Manchester et al., 2005), but much smaller than rrel for FRB 110220.

1.7 Discussion & Conclusions

We discuss several properties of FRBs. We conclude that their high DMs cannot be attributed to a
stellar corona or a galactic HII region. Thus, if astronomical, they are extra-galactic sources. We also
argue that the propagation through the IGM is unlikely to lead to measurable scatter broadening of
GHz pulses. Thus if scatter broadening is confirmed, it would suggest that the sources are located
in dense regions of external galaxies and raise the possibility that a substantial fraction of their DMs
are produced there.

5Scattering by plasma density fluctuations in the interstellar medium of typical paths would not increase the
angular width of these beams.



7

Few sources at Gpc distances are plausible candidates for producing ms pulses with Jy flux
densities. Neutron stars and stellar mass black holes have dynamical timescales of the right order
and their gravitational binding energies are more than sufficient. How the release of binding energy
might power a FRB is not clear. Gravitational waves can be released on ms timescales, but their
coupling to GHz radio waves is likely to be much slower. Neutrinos carry away most of the binding
energy, but only over several seconds (Bionta et al., 1987). The sudden release of magnetic energy,
perhaps in a giant magnetar flare (Lyubarsky (2014)) or during the collapse of a magnetar into a
BH (e.g., Falcke & Rezzolla (2013)) seems a better bet. An advantage of these proposals is that
the initial energy is released in electromagnetic form. However, its rapid up-conversion to GHz
frequencies poses a hurdle. Whether it can be overcome by the acceleration of dense plasma in
strong EM fields is questionable. Moreover, it is doubtful whether these events occur with sufficient
frequency to account for FRBs.



8

Chapter 2

Secular Interaction in Pulsar Triple
System J0337+1715

2.1 Introduction

PSR J0337+1715 is a M = 1.4M�ms pulsar with two white dwarf (WD) companions. The inner and
outer have masses m1 ' 0.2M� and m2 ' 0.4M�, and move on nearly circular and coplanar orbits
with periods of P1 ' 1.6δ and P2 ' 327δ, and eccentricities e1 ' 6.9 × 10−4 and e2 ' 3.5 × 10−2.
Exquisite timing of the pulsar’s pulses enabled Ransom et al. (2014) to fit the system’s parameters
to striking accuracy. Because of the large disparity in orbital periods, mean motion resonances may
be neglected. Thus secular interactions govern the system’s long-term evolution.

Secular dynamics is an approximation in which each body is replaced by an elliptical wire spread
along its orbit. Unless apsidal lines align, mutual torques give rise to angular momentum exchanges.
Fractional energy exchanges are much slower than those of angular momentum, |Ė/E| � |J̇/J |,
where E and J denote orbital energy and angular momentum. We ignore energy exchanges and
take semi-major axes to be constants.

Conventional celestial mechanics was developed to study the solar system. It is optimized for
systems with a massive central body and multiple much smaller ones. Two-body Keplerian orbits,
each consisting of the central mass and one of its companions, comprise the zeroth order state.
Perturbations due to gravitational interactions among the small bodies modify the Keplerian orbital
elements. Because the WD masses are within an order of magnitude of the mass of the neutron
star (NS), the standard procedure fails for the pulsar triple system under consideration here . A
more appropriate procedure is to take the unperturbed system to consist of an inner and an outer
binary with the former made up of the NS and the 0.2M� WD and the latter by the 0.4M� WD
and the inner binary. Perturbations due to interactions between the binaries are small because their
semi-major axes are so different (Ford et al., 2000; Rafikov, 2014).

Our paper is organized as follows. We develop a compact formalism for secular interactions in
a hierarchical coplanar triple system in Section 2.2. Included are precession terms due to general
relativity (GR) along with tidal and rotational distortions of the inner WD. Interactions of modes
with convective eddies are considered in Section 2.3. Section 2.4 applies our model to J0337+1715.
We predict that secular evolution will be detected in the near future and that the effects of general
relativity (GR) will become apparent. In Section 2.5, we compare our secular formalism with results
obtained by direct numerical integrations obtained using the program Mercury (Chambers, 1999).
The agreement is good except that the numerical results yield short-term variations of the osculating
eccentricities. We argue that these are deceptive. Section 2.6 summarizes our conclusions.

Although couched in different language, some material in our paper is closely related to that in
Ford et al. (2000) and Rafikov (2014). The former provides a more general treatment of hierarchical
triple systems than we do whereas the latter contains an analytic analysis of the same system that
we are investigating. In areas of overlap, our results agree with those obtained in Rafikov (2014).
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2.2 Secular Interaction in Co-planar Triple System

We use 1 and 2 to label the inner and outer binary orbits and/or WDs. We denote the vector from
the NS to the inner WD by r1 and the one from the center of mass of the inner binary to the outer
WD by r2. Manipulation of the inertial-frame equations of motion yields

µ1r̈1 = −∇1U , (2.1)

µ2r̈2 = −∇2U , (2.2)

with potential

U = −GMm1

r1
− GMm2∣∣∣ m1

M+m1
r1 + r2

∣∣∣ − Gm1m2∣∣∣ M
M+m1

r1 − r2

∣∣∣ . (2.3)

Here∇j indicates gradient with respect to rj (j = 1, 2) and reduced masses are µ1 ≡Mm1/(M+m1)
and µ2 ≡ (M + m1)m2/(M + m1 + m2). We average U over the zeroth-order orbits described by
r1 = r1(cos θ1, sin θ1, 0), r2 = r2(cos θ2, sin θ2, 0) and

r1 =
a1(1− e2

1)

1 + e1 cos(θ1 −$1)
, (2.4)

r2
1 θ̇1 =

(
G(M +m1)a1(1− e2

1)
)1/2

, (2.5)

r2 =
a2(1− e2

2)

1 + e2 cos(θ2 −$2)
, (2.6)

r2
2 θ̇2 =

(
G(M +m1 +m2)a2(1− e2

2)
)1/2

, (2.7)

where a is semi-major axis, e is eccentricity, and $ is the longitude of pericenter. The mean motions
are n1 ≡ (G(M + m1)/a3

1)1/2 and n2 ≡ (G(M + m1 + m2)/a3
2)1/2. Retaining terms up to second

order in eccentricity,1 yields the secular potential

U
sec

= −3

8
α2(e2

1 + e2
2)

GMm1m2

a2(M +m1)
+

15

16
α3(e1e2)

× cos($1 −$2)
GMm1m2(M −m1)

a2(M +m1)2
, (2.8)

where α ≡ a1/a2.
We verify that the inertial-frame total angular momentum is given by

J =

2∑
j=1

Jj ≡
2∑
j=1

µjrj × ṙj

= ẑ

 2∑
j=1

Jj,c − δJj

 , (2.9)

where ẑ = (0, 0, 1). The circular part of angular momentum for each orbit, Jj,c ≡ µja
2
jnj , is

conserved because aj is constant. It is the angular momentum deficit, δJj ≡ Jj,ce
2
j/2, that is

exchanged under interactions. The total angular momentum deficit reads

J =

2∑
j=1

δJj = I†I , (2.10)

where I is a two dimensional column vector with components Ij ≡ (µjnj/2)1/2ajej exp(i$j) and †
1The zeroth order term is constant, and the one of first order vanishes.
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denotes Hermitian conjugate.
Secular evolution is governed by the equation of motion

İ = iBI . (2.11)

The Hamiltonian H ≡ Usec reads

H = −I†BI . (2.12)

Conservation of both H and J follows immediately from equations (2.11) and (2.12). Elements of
the symmetric 2× 2 matrix

B ≡
(
B11 B12

B12 B22

)
(2.13)

read

B11 =
3

4
n1α

3 m2

M +m1
, (2.14)

B22 =
3

4
n1α

7/2Mm1(M +m1 +m2)1/2

(M +m1)5/2
, (2.15)

B12 = −15

16
n1α

17/4 (M −m1)(Mm1m2)1/2

(M +m1)11/4

×(M +m1 +m2)1/4 . (2.16)

Ford et al. (2000) previously studied secular theory for highly hierarchical triple systems. Our ė and
$̇ are derivable from their equations (46)-(52).

Substituting the trial solution, I ∝ exp(igt), into Eq. (2.11), we obtain two modes represented
by the eigenvalues and normalized eigenvectors of B. Mode p (parallel) has $1 = $2, and Mode a
(anti-parallel) has $1 = $2 + π. In each mode, both pericenters precess at the same rate which is
the corresponding eigenvalue,

gp =
1

2
((B11 +B22)−∆g) , (2.17)

ga =
1

2
((B11 +B22) + ∆g) . (2.18)

The relative precession rate

∆g ≡ ga − gp =
√

(B11 −B22)2 + 4B2
12 . (2.19)

Components of the eigenvectors satisfy

Ip,1
Ip,2

= −Ia,2
Ia,1

=
(−B11 +B22 + ∆g)

2|B12|
. (2.20)

The first minus sign in Eq. (2.20) appears because exp i($1 − $2) = −1 for Mode a. The general
solution is a linear combination of the two modes,

I(t) = cpÎp exp(igpt) + caÎa exp(igat) , (2.21)

whereˆsignifies a normalized vector. Unless either cp or ca vanishes, e1/e2 and $1 −$2 oscillate at
frequency ∆g.
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Since B is symmetric, Î†aÎp = 0. Contributions from Îa and Îp to H and J are thus separable,

H =
1

2
gp|cp|2 +

1

2
ga|ca|2 ≡ Hp +Ha ,

J =
1

2
|cp|2 +

1

2
|ca|2 ≡ Jp + Ja . (2.22)

The ratios Ha/Hp and Ja/Jp are measures of the relative strengths of Modes a and p. We note
that |cp|2 and |ca|2 are actions and thus might behave as adiabatic invariants under slow variations
of the masses and orbits.

Given that α� 1 and B11 � B22 � B12, the following approximations apply:

gp ∼ B22 � ga ∼ B11 , (2.23)

∆g ∼ B11 −B22 . (2.24)

Thus Mode p precesses a factor gp/ga ∼ α1/2(m1/m2) more slowly than Mode a. For the eigenvec-
tors,

Ip,1
Ip,2

= −Ia,2
Ia,1
∼ |B12|

B11
∼ α5/4

(
m1

m2

)1/2

, (2.25)

which yields

ep,1
ep,2

∼ α , (2.26)

ea,1
ea,2

' α−3/2m2

m1
. (2.27)

2.2.1 Additional precession rates

General relativity (GR) and tidal and rotational distortions of the inner WD cause its pericenter to
precess forward at rates (Wu & Goldreich, 2002),

d$1

dt

∣∣∣∣
GR

= 3n1
G(M +m1)

c2a1
, (2.28)

d$1

dt

∣∣∣∣
tide

=
15

2
n1k2

M

m1

(
R1

a1

)5

, (2.29)

d$1

dt

∣∣∣∣
J2

=
1

2
n1k2

(
Ω1

n1

)2
M

m1

(
R1

a1

)5

. (2.30)

The Love number k2 ' 0.29 for an n = 1.5 polytrope (Chandrasekhar (1933)), which is a reasonable
proxy for a WD. The WD’s radius is denoted by R. We neglect these effects on the outer WD
because a2 � a1 and all the above precession rates decline with distance from the NS. The pulsar
is so dense that its tidal and rotational deformations are negligible. We denote the total additional
precession rate of $̇1 by ∆ and add it to B11. In so doing, we make the plausible assumption that
inner WD’s spin speed, Ω1, is synchronized with its mean motion, n1.

2.3 Mode Damping and Excitation

2.3.1 Damping

Dissipation associated with the tides raised in the WDs by the pulsar act to damp their orbital
eccentricities. We define τj ≡ ej/ėj |damp, which implies a complementary change rate for Ij , namely

İj |damp = −Ij/τj which we account for by replacing Bjj by Bjj + i/τj in Eq. (2.13). Because τ ’s
are much longer than the precession period, they introduce small corrections to B. Thus we retain
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the old eigenvectors while expanding the eigenvalues to first order in the 1/τj . This procedure adds
damping terms to gp and ga which read:

γp =
1

2τ2

(
1 +

B11 −B22

∆g

)
+

1

2τ1

(
1− B11 −B22

∆g

)
' 1

τ2
+
m1

m2

α5/2

τ1
(2.31)

and

γa =
1

2τ1

(
1 +

B11 −B22

∆g

)
+

1

2τ2

(
1− B11 −B22

∆g

)
' 1

τ1
+
m1

m2

α5/2

τ2
(2.32)

As a consequence of the orbital eccentricity ratios in modes p and a, dissipation in the inner WD
selectively damps Mode a and that in the outer WD selectively damps Mode p.

2.3.2 Excitation

Phinney (1992) argues that the orbital eccentricity of a binary composed of a pulsar and a low-mass
WD is set during the final stages of Roche lobe overflow (RLO) by the WD’s progenitor.2 Convection
in the progenitor’s extended envelope creates a fluctuating quadrupole that stochastically excites
orbital eccentricity while turbulent viscosity simultaneously damps it. These competing processes
drive the epicyclic energy, Eec ≡ nδJ , toward equipartition with the kinetic energy of eddies whose
lifetimes are closest to the orbit period. Equipartition is approached on the eccentricity damping
timescale, τe, which is much shorter than the duration of RLO. Eccentricities established in this
manner increase with orbit period as a consequence of the increase in eddy kinetic energy with eddy
lifetime. Observational data offers support for Phinney’s proposal (Tauris et al., 2012). In what
follows, we apply the equipartition concept to the pulsar triple system. However, our focus is on the
epicyclic energies of modes p and a rather than those of the binary orbits.

Modal epicyclic energies are defined by

Ep,ec ≡ n1|Ip,1|2 + n2|Ip,2|2

≡ 1

2
µ1(n1a1ep,1)2 +

1

2
µ2(n2a2ep,2)2 (2.33)

and

Ea,ec ≡ n1|Ia,1|2 + n2|Ia,2|2

≡ 1

2
µ1(n1a1ea,1)2 +

1

2
µ2(n2a2ea,2)2 . (2.34)

These epicyclic energies are constants of motion under evolution governed by the Hamiltonian in
equation (2.12). Epicyclic energies may also be defined for the inner and outer binary orbits. They
vary on the secular timescale. Moreover, their sum also varies and only equals the sum of the
modal epicyclic energies when the inner and outer binary apses are either parallel or anti-parallel,
sin($1 −$2) = 0.

Tidal interactions during the LMXB stage that gave rise to the outer WD drove the epicyclic
energy of Mode p toward equipartition with a single eddy. Based on estimates for the duration of
Roche lobe overflow and the rate of eccentricity damping by tides, energy equipartition should have
persisted until termination of the LMXB phase. During the outer LMXB phase, τ1 is essentially
infinite. Thus according to Eqs. (2.31) and (2.32), γa ∼ 10−4γp. It follows that the epicyclic energy
of Mode a probably experienced little progress toward equipartition. The same story applied during

2During RLO, these systems are observed as low mass x-ray binaries (LMXRB)
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the inner LMXB stage, except the roles of Mode p and Mode a were reversed. In this scenario, the
order in which the inner and outer WDs formed is not crucial. In either case, the epicyclic energy in
Mode p ends up much larger than that in Mode a because the energies of convective eddies whose
lifetimes are closest to the orbital period are greater for larger orbital periods.

As mentioned previously, the modal angular momentum deficits, Jp and Ja are actions of the
Hamiltonian given by equation (2.12). Thus they are invariants under slow changes of masses and
semi-major axis provided these occur independently of the secular oscillation. For example, orbital
evolution during the formation of the second WD would change the epicyclic energy of the mode
which achieved equipartition during the birth of the first WD. If the angular momentum deficit of
the mode remained invariant, its epicyclic energy would change in proportion to the change of its
precession rate.

2.4 Secular Oscillation of J0337+1715

We adopt stellar masses, orbital periods, eccentricities and longitudes of pericenter from Table 1
in Ransom et al. (2014). The semi-major axes are obtained from a1 = (G(M + m1)/n2

1)1/3 and
a2 = (G(M +m1 +m2)/n2

2)1/3. Inserting these parameters into the elements of matrix B, we obtain

B '
(

2.34405 −0.0119143
−0.0119143 0.129615

)
× 10−10 s−1 . (2.35)

Here B11 includes ∆,

∆ ≡ d$1

dt

∣∣∣∣
GR

+
d$1

dt

∣∣∣∣
tide

+
d$1

dt

∣∣∣∣
J2

' (6.77 + 0.0315 + 0.00210)× 10−11 s−1

' 6.80× 10−11 s−1 , (2.36)

which is dominated by GR and contributes ' 30% to B11. Table (2.1) and Fig. (2.1) compare results
obtained by either excluding or including ∆ from which we make several observations:

1. According to rows 7 and 8, the system is currently dominated by Mode p, which is consistent
with the equipartition scenario assumed in Section 2.3.

2. Row 4 shows that ∆ induces a shorter secular oscillation period, as predicted by Eq. (2.24)
since ∆ enhances B11. It also shrinks the oscillation amplitudes by an order of magnitude as
exhibited by comparing Fig. (2.2) with the solid line in the upper panel of Fig. (2.1). Secular
oscillations appear because the system’s state is not pure Mode p, but also contains a small
contribution from Mode a.

3. We see, from rows 9-12, that changes over a year exceed the measurement accuracies cited by
Ransom et al. (2014). Especially, measurements of e1 cos$1 and e1 sin$1 can separate the
cases with and without ∆. If an accurate determination of ∆ were made, it would constrain
k2 of the inner WD (cf. Eqs. 2.28-2.29).

4. From private communications with Scott M. Ransom and Anne M. Archibald, we know that
in fitting their timing data, orbit elements were assumed constant and GR was not taken into
account. With additional data, both restrictions may be lifted. As described in the previous
paragraph, the effects of GR should be apparent within a short time.
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Table 2.1. Secular Oscillation

Parameter Without ∆ With ∆ Difference

1 gp (10−11Hz) 1.2952 1.2955 −2.8E-4

2 ga (10−11Hz) 16.6 23.4 -6.8

3 ∆g (10−11Hz) 15.3 22.1 -6.8
4 2π/∆g (kyr) 1.298 0.899 0.40
5 (e1/e2)p 0.0278 0.0193 8.5E-3
6 (e1/e2)a 461.4 665.9 -204.6

7 Ja/Jp/10−8 536.6 4.5 532.1

8 Ea,ec/Ep,ec/10−6 64.9 1.01 63.9

9 δ(e1 cos$1)/10−8 114.0 −33.06 147.1

10 δ(e1 sin$1)/10−8 −1.620 −21.94 20.32

11 δ(e2 cos$2)/10−9 −1.44E4 −1.44E4 1.1E-3

12 δ(e2 sin$2)/10−9 −1.42E3 −1.42E3 −7.7E-3

Note. — Columns 3 and 4 show results without and with ∆ in-
cluded in B11. Column 5 is calculated by subtracting Column 4
from Column 3. The expression Ex means 10x in some of the nu-
merical values. According to Ransom et al. (2014), the accuracies

of measurements for e1 cos$1 and e1 sin$1 are 10−8, and those for
e2 cos$2 and e2 sin$2 are 10−9. Rows 9 to 12 show their changes
after 1y, in multiples of their corresponding accuracies. Although the
secular oscillation occurs on a thousand-year timescale, changes over
1y already exceed measurement accuracies. Differences between pre-
dictions without and with ∆ are also detectable in δ(e1 cos$1) and
δ(e1 sin$1). These could help test GR and constrain the tidal Love
number, k2, of the inner WD.

2.5 Comparison with Numerical Integration

We ran Mercury (Chambers, 1999), a symplectic integrator for Newtonian orbital dynamics, to
evolve the pulsar triple system over a secular period ∼ 103y. Secular changes of e1 were extracted
from a 10 year average of the osculating orbital elements. As displayed in Fig. (2.2), the numerical
and analytical results compare well; oscillation periods differ by ' 0.6% and oscillation amplitudes
differ by ' 2%. These differences are reduced by roughly half if the secular Hamiltonian is expanded
to fourth order in both α and eccentricities. Inclusion of even higher order terms yields negligible
improvement.

2.5.1 Osculating elements are deceptive

Classical perturbation theory is formulated in terms of osculating orbit elements. These are ob-
tained by fitting a Keplerian ellipse to the instantaneous position and velocity of a perturbed orbit.
Temporal variations of the elements describe how the perturbations evolve. Results of numerical
integrations of N-body systems such as Mercury are often expressed in terms of oscillating elements.
Osculating eccentricities obtained from short intervals of output from Mercury are displayed in fig-
ures 2.3 and 2.4.3 Each varies over the corresponding orbit period.4 These oscillations are deceptive.
In the following paragraphs we explain how they arise. Our focus is on the inner binary orbit because
the variation of its osculating eccentricity is more complex.

As a first step, consider a circular orbit in a potential consisting of a dominant monopole and an
external axisymmetric quadrupole. We define β � 1 to be the ratio of the quadrupole to monopole
potential evaluated at the orbit’s radius, r0. A simple exercise shows that the corresponding oscu-
lating elements aosc ≈ (1 + β)r0 and eosc ≈ β. Paradoxically, the osculating eccentricity does not
vanish. Moreover, the true anomaly stays fixed at fosc = 0 while the apse rotates with angular
velocity $̇osc ≈ n.

3This is a purely Newtonian simulation. GR is not included.
4In this subsection, we neglect the small difference between orbit and epicyclic frequencies.
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Section 2.2 with ∆ = 0. Oscillation periods are 1289y and 1297y respectively.
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Next we consider a less trivial example in which the orbit possesses a real eccentricity e. However,
we maintain the assumption of an axisymmetric quadrupole. Here we obtain e2

osc ≈ e2 +2βe cos(nt+
φ) + β2 along with the same aosc ≈ (1 + β)r0 as before. The value of φ is set as an initial condition.
In the limit β � e, eosc oscillates harmonically about e with amplitude β. Figure 2.3 displays an
example of this behavior. Because Porb,1 � Porb,2, the effects of the non-axisymmetric part of the
quadruple potential almost average to zero.

Lastly, we keep all the quadrupole terms depending on r1 in equation (2.3), which reduces to

U = −GMm1

r1
− Gm2µ1

r2

(
r1

r2

)2

P2(cos ∆θ) , (2.37)

∆θ = cos−1(r̂1.r̂2) circulates at frequency ∼ n1. Thus P2(cos ∆θ) ∼ (1 + 3 cos(2nt))/4. As a
consequence, the epicyclic motion possesses a forced oscillation at frequency 2n1 in addition to its
free oscillation at frequency n1. These two terms, together with the angle between the outer body’s
longitude and the inner body’s apse, are responsible for the non-harmonic behavior illustrated by
figure 2.4 which compares e1,osc derived analytically with the result obtained from Mercury.

2.6 Discussion and Conclusions

We study secular interactions in the pulsar triple system J0337+1715 utilizing a simplified version of
a formalism for highly hierarchical triple systems developed by Ford et al. (2000). To second order
in the orbital eccentricities, the secular evolution is described in terms of two orthogonal modes.
In Mode p, the apses of the inner and outer binary orbit align whereas they are anti-aligned in
Mode a. Mode a precesses more rapidly than Mode p. Eccentricities of the binary orbits oscillate
at the secular frequency, the difference between the precession frequencies of Mode a and Mode
p. The secular frequency corresponds to a long timescale ∼ 103y. Nevertheless, secular changes
are potentially detectable in the near future, thanks to the exquisite accuracy of measurements by
Ransom et al. (2014). These should easily reveal the effects of GR on both the period and amplitude
of the secular oscillation. Although more challenging, it might be possible to detect similar effects
from the tidal and rotational deformations of the inner WD and thereby constrain its Love number.
We generalize the beautiful theory of Phinney (1992) to apply to the excitation of eigenmodes. In
this form it explains why the current system is dominated by Mode p with Mode a making only a
minor contribution even to the eccentricity of the inner binary’s orbit.

Tidal dissipation in the inner WD mainly damps Mode a. The mode’s current amplitude, al-
though small with respect to that of Mode p, is at the high end of what might be expected from
the eccentricities of pulsar He-core WD binaries with orbital periods of order a few days. Thus it is
unlikely that Mode a’s tidal damping timescale is much shorter than ∼ 500 My, the age we estimate
from WD cooling models in Althaus et al. (2013). This enables us to place a lower limit on the
effective tidal Q parameter for this particular WD during its lifetime of

Q ' ((1 + k2)2M2n1R
8
1τ)/(a8

1m
2
1) & 106 . (2.38)

By comparison, Piro (2011) assumes that luminosities in the binary WD system J0651 are con-
tributed by asynchronous tidal heating and thereby sets upper limits for Q of ∼ 7 × 1010 for the
He-core WD and ∼ 2× 107 for the CO-core WD.
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Chapter 3

Mean motion resonances involving
solar system satellites

3.1 Introduction

An influential paper by Roy & Ovenden (1954) established that the number of mean motion res-
onances (MMRs) between pairs of solar system satellites exceeds that expected from a random
distribution of mean motions. Subsequently, Goldreich (1965) proposed that MMRs form as the
result of convergent outward migration of satellite orbits driven by tidal torques from their parent
planets. He argued that this could account for the origin of the MMRs between the Saturnian satel-
lites, Mimas-Tethys and Enceladus-Dione but not that between Titan-Hyperion.1 He also suggested
that MMRs between the Jovian satellites Io-Europa and Europa-Ganymede were tidal in origin.

Convergent migration does not guarantee the formation of a MMR so the probability of capture
into resonance is an important quantity. Initial steps toward calculating it were taken by Allan
(1969) and Sinclair (1972) who estimated a small, 0.04, capture probability for the MMR between
Mimas-Tethys. Yoder (1979) developed a more accurate diagrammatic method and Henrard (1982)
showed how capture probabilities were related to adiabatic invariants. Following Henrard (1982),
Borderies & Goldreich (1984) derived simple expressions for capture probabilities.

It is natural to wonder how long a MMR, once formed, will last. Lin & Papaloizou (1979) noted
that there exists an equilibrium state for some MMRs in which convergence toward exact resonance
is halted by tidal damping of one or both of the resonant satellites’ orbital eccentricities. In a more
recent development, it was found that eccentricity damping may promote librational overstability
leading to passage through resonance (Meyer & Wisdom, 2008; Goldreich & Schlichting, 2014). We
apply the analytic criterion for overstability derived by Goldreich & Schlichting (2014) to classify
MMRs between pairs of solar system satellites.

Our paper is structured as follows. Section 3.2 presents a physical picture of librational oversta-
bility. We divide satellite MMRs into two groups. Group I contains the pairs Io-Europa, Europa-
Ganymede and Enceladus-Dione. Their resonant arguments exhibit small librations. We treat this
group in section 3.3. Group II contains the remaining MMRs, Mimas-Tethys and Titan-Hyperion.
Their resonant arguments show large librations. We analyze this group in section 3.4. Our final
section 3.5 consists of two parts. The first compares resonant and tidal torques and speculates about
how Lainey et al. (2012) might have erred in concluding that Mimas is migrating toward Saturn.
The second part describes some vestiges of past MMRs. Particular attention is given to the or-
bital eccentricity of Mimas and the possibility that Mimas possesses an internal ocean. We relegate
technical details to the appendix. These include a table 3.3 listing relevant parameters for satellites
involved in MMRs and details regarding the resonant dynamics of MMRs that are not covered in
the main text.

1Peale (1978) discusses the origin of Titan-Hyperion MMR.



21

3.2 Classification of MMRs

We begin by reviewing selected features of first order, eccentricity-type, MMRs following the descrip-
tion given in Goldreich & Schlichting (2014). At this point we are only concerned with Hamiltonian
dynamics. Tidal effects will be introduced later. The reader may wish to consult standard references
or Goldreich & Schlichting (2014) for additional details. Each resonance is characterized by a single
critical argument φ = (j + 1)λ′ − jλ − $, where λ and $ denote mean longitude and longitude
of pericenter, and a prime labels the outer body. We assume that the orbits of both satellites lie
in the planet’s equatorial plane. We can also neglect the orbital eccentricity of the outer satellite.
For the moment it suffices to treat the inner satellite as a test particle. Although this is a special
example, the physical concepts we emphasize apply more generally to both eccentricity-type and
inclination-type MMRs.

As described above, the dynamical system has 2 degrees of freedom. Because the outer satellite
moves on a circular orbit, the Jacobi constant of the inner satellite, H ≡ E − n′L, is a constant
of motion.2 Denoting the Jacobi constant by H is deliberate. It is the Hamiltonian corresponding
to conjugate coordinate and momentum, φ and e2. Moreover, because λ and $ only appear in the
combination λ+$, λ−$ is an ignorable coordinate. This implies the existence of a second constant
of motion labelled k by Goldreich & Schlichting (2014). Expressions for k and H read:

k(φ, e2) ≡ 3

2
j2e2 − βµ′

e
cosφ+

φ̇

n
(3.1)

and

H(φ, e2) ≡ ke2 − 3

4
j2e4 + 2βµ′e cosφ . (3.2)

In the above, β is a j-dependent constant of order unity and µ′ is the ratio of the mass of the outer
satellite to that of the planet.

At fixed k, the system is constrained to move along level curves of H. At the maximum value of
H, denoted H0, φ = 0. Corresponding to H0, there exists a nested set of periodic orbits for which
conjunctions occur at periapse passage; $ = λ′ when λ = λ′. Orbital eccentricities, e0, increase
with proximity of n to the exact resonance value, nr = [(j + 1)n− $̇sec]/j, according to3

e0 =
βµ′

j(n− nr)
. (3.3)

Setting φ = 0 in equation (3.1), we obtain a relation between e0 and k. Comparing this relation
with that given by equation (3.3), we observe that k increases with proximity to exact resonance
although not at all linearly. The topology of the level curves of H undergoes a qualitative change
across

kcrit =
34/3

2
(jβµ′)

2/3
. (3.4)

For k < kcrit there is one stable fixed point at φ = 0 and H = H0 whereas two additional fixed
points, one stable and the other unstable, are present for k > kcrit. Both additional fixed points
are located at φ = π, but H(φ, e2) has a local minimum at the former, which we denote by Hπ,
and a saddle point at the latter.4 A second set of nested periodic orbits corresponds to Hπ. These
are pertinent to our investigation. They lie beyond exact resonance, n < nr, and since φ = π,
conjunction coincides with apoapse passage. Thus for k > kcrit, there is a door leading to escape
from resonance. Librational overstability leading to passage through the inner separatrix is the way

2Here n′ is the outer satellites mean motion and E and L are the orbital energy and angular momentum per unit
mass of the inner satellite.

3$̇sec is the contribution from secular terms to the rate of precession.
4For k > kcrit, the additional fixed points bifurcate from the inflection point at k = kcrit.
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Figure 3.1 Contour plots of the Hamiltonian (top) and the corresponding cross section along the
sinφ = 0 axis (bottom) for k/kcrit = 0.5 (left) and k/kcrit = 2.0 (right). Negative values on the
bottom x-axes correspond to φ = π. Stable fixed points are marked by a square at φ = 0,H0 and
a circle at φ = π,Hπ. A diamond is attached to the unstable fixed point at the intersection of the
inner (thick-dashed) and outer (thick-solid) branches of the separatrix.

to open it. Again, eccentricity increases with proximity to exact resonance;

eπ =
βµ′

j(nr − n)
. (3.5)

3.2.1 Tidal evolution

We consider systems in which the planet’s spin frequency ω > n. Then tides the satellites raise in
the planet produce positive torques that cause their orbits to expand.5 We denote the tidal timescale
for orbit expansion by τn ≡ −n/ṅT. From Peale (1999),

τn =
2

9

Mp

m

(
a

Rp

)5
Qp
k2pn

, (3.6)

5Here we no longer treat the inner satellite as a test particle.
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where the subscript ‘p’ labels the planet. To ensure convergent migration, we further assume that
τn′ > τn.6 We take the inner satellite’s spin to be synchronous with its mean motion. Thus tides
raised by the planet in the satellite dissipate energy at constant angular momentum. We denote the
timescales for eccentricity damping by τe ≡ −e/ėT.7 Again from Peale (1999) we have,

τe =
2

21

m

Mp

( a
R

)5 Q

k2n
. (3.7)

It is important to bear in mind that τn and τe set the timescales for tidal evolution of n and e for an
isolated satellite. Within a MMR, the resonant transfer of angular momentum and energy between
satellites modifies these timescales.

Tides cause both k and H to evolve. Tidal evolution is slow in comparison to the periods
characteristic of motions around the level curves of H. The evolution of k and H are governed by

dk

dt
= j

(
1

τn
− 1

τn′
− 3(j + 1)

e2

τe

)
. (3.8)

and
dH
dt

=
dk

dt
e2 − 2k

e2

τe
+ 3j2 e

4

τe
− 2βµ′e cosφ

τe
. (3.9)

In practice, the slow tidal evolution of k and H is evaluated by averaging the right hand sides of
equations (3.8) and (3.9) over a period of the motion around the level curves of H with k and H
held fixed.

From equation (3.8), we see that dk/dt = 0 at e = eeq, where

e2
eq =

τe(τn′ − τn)

3(j + 1)τnτn′
. (3.10)

Thus k increases almost linearly with time until it approaches keq where e = eeq. If keq ≤ kcrit

the system cannot escape from MMR. On the other hand, if keq > kcrit, librational instability will
ensue leading to passage through the inner branch of the separatrix and approach to the stable fixed
point that lies within it (cf. Fig. 3.1). This transition signifies escape from the MMR and occurs on
timescale τe.

Energy dissipated by damping orbital eccentricity is deposited as heat inside the inner satellite
at a rate

P =
m(nae)2

τe
. (3.11)

Substituting eeq given by equation (3.10) into equation (3.11) sets a τe independent upper bound
on the tidal heating rate;

Pmax2
=
m(na)2(τn′ − τn)

3(j + 1)τnτn′
. (3.12)

Evolution of H also deserves examination. From equation (3.9), it is obvious that convergent
migration acts to increase H whereas eccentricity damping decreases it. A stronger result is that
convergent migration drives H towards H0 even as it causes H0 to grow. This result may be derived
by noting that, in the absence of eccentricity damping, the area within a level curve describing
librations about H0 is an adiabatic invariant under convergent migration(Goldreich & Schlichting,
2014). Librations aroundH0 andHπ are analogous to anticyclones and cyclones in which Coriolis and
pressure forces are in stable balance around pressure maxima and minima. Librational overstability
promoted by eccentricity damping is analogous to the spreading and weakening of an anticyclone by
friction.

We classify the MMRs of satellite pairs in the solar system into two groups, one with k < kcrit

6This assumption is plausible because τn ∝ m−1n−13/3. Given the masses and orbits of solar system satellites
involved in MMRs, it would be valid provided the tidal Q′s of Jupiter and Saturn are independent of tidal frequency.

7We neglect the effect that tides raised by the satellite in the planet have on e.
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Table 3.1. Satellite pairs in MMR

Argument Satellites k

1 2λ′ − λ−$ Io-Europa < kcrit

2 2λ′ − λ−$′ Io-Europa < kcrit

3 2λ′ − λ−$ Europa-Ganymede < kcrit

4 4λ′ − 2λ− Ω− Ω′ Mimas-Tethys � kcrit

5 2λ′ − λ−$ Enceladus-Dione < kcrit

6 4λ′ − 3λ−$′ Titan-Hyperion > kcrit

Note. — The names of the satellites are ordered as ‘inner
satellite-outer satellite’. The concepts of k and kcrit are
the same for all MMRs although their specific definitions
vary. For the 1st, 3rd and 5th MMR, k and kcrit follow the
formulas in Goldreich & Schlichting (2014). Expressions for
k and kcrit appropriate to the 2nd, 4th and 6th MMR are
provided in the appendix. The $′ in the arguments for the
2nd and 6th MMRs imply that the outer body’s eccentricity
is excited.

and the other with k > kcrit (Table 3.1). We emphasize the distinguishing features of the members
in each group and investigate their origin.

3.3 Group I: k < kcrit

All MMRs with k < kcrit are first order eccentricity-type and exhibit only small librations about
H = H0. The 1st, 2nd and 3rd entries in Table (3.1) involve pairs Jupiter’s Galilean satellites. Each
of these satellites is also a member of the Laplace 3-body resonance. The 2nd entry is special in that
it is the outer body’s eccentricity that is perturbed. The 4th entry is the only MMR in Saturn’s
satellite system for which k < kcrit.

Ideally, Table (3.1) would have a 4th column displaying calculated values for eeq. Unfortunately,
there are too many uncertain parameters to make calculating eeq a useful exercise. Values of the
tidal Love number, k2, and the tidal quality factor, Q for both the planet and the perturbed satellite
enter into equation (3.10) for eeq. Jupiter and Saturn are fluid bodies and reasonable estimates
of their tidal Love numbers exist (Gavrilov & Zharkov, 1977). Reliable estimates for tidal Love
numbers of solid satellites are also possible, but there is compelling evidence that, as a result of tidal
heating, Io, Europa, and Enceladus have undergone limited internal melting.8 Melting enhances
k2, but without knowing its extent, we cannot determine by how much. Our ability to estimate
tidal Q’s is poor. The mechanism responsible for tidal dissipation in Jupiter and Saturn remains
a topic of active investigation (Ogilvie, 2014). In the past, estimates for the Q of Jupiter and
Saturn were made by assuming that the satellites formed contemporaneously with their planet and
that the MMRs resulted from tidal evolution (Goldreich, 1965; Goldreich & Soter, 1966). Recent
astrometric analyses of the secular accelerations of Jupiter’s Galilean satellites are consistent with
these assumptions but those for Saturn’s inner satellites imply that the satellites are younger than
the planet (Lainey et al., 2009, 2012). Estimates of tidal Q for solid material are also fraught with
uncertainty as relevant parameters such as composition, porosity, grain size and temperature are
poorly constrained.

An upper bound to the current time-average rate of dissipation within Io, Europa and Ganymede
is set by assuming the 2-body MMRs between Io-Europa and Europa-Ganymede have existed for
tss, the entire age of the solar system (Goldreich & Mitchell, 2010)9

Pmax3
=

21/3GMJ

26a1tss

(
m2 +

3

22/3
m3

)
≈ 3× 1013 W . (3.13)

8Evidence comes from volcanoes on Io, magnetic induction by Europa, and geysers on Enceladus.
9Quantities pertaining to Io, Europa and Ganymede carry subscripts 1,2, and 3, respectively.
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But infrared measurements made by the Galileo orbiter find Io’s net luminosity to be closer to 1014 W
(Veeder et al., 2012). This suggests that the tidal power dissipated in Io varies and thus its orbital
eccentricity also does (Ojakangas & Stevenson, 1986).10 How large might Io’s eccentricity have been
and could it ever have exceeded e0crit? Models by Ojakangas & Stevenson (1986) suggest not since
the most extreme eccentricity they reach is ≈ 3enow. According to Lainey et al. (2009), currently
Io’s semi-major axis is decreasing as might be expected if the satellite’s orbital eccentricity were
damping following an episode of higher than average tidal heating. Tides raised in synchronously
spinning satellites convert orbital energy into heat at fixed angular momentum and hence cause a
to decrease.

Next we examine the MMR between Enceladus and Dione. All the tidal heating occurs in
Enceladus so we appeal to equations (3.11) and (3.12) for guidance. Infrared observations from
the Cassini orbiter indicate that between 5 − 16 GW of power is being radiated from hot spots
associated with long cracks in the south polar region of Enceladus (Spencer et al., 2013). Even
the lower limit of this range is considerably greater than Pmax2

= 1.2 GW derived from equation
(3.12) with QS = 18000 from Meyer & Wisdom (2007). However, the lower bound of QS = 18000 is
a fiction because its derivation involves a number of questionable assumptions, namely that QS is
independent of time, tidal frequency, and tidal amplitude. Even more troubling is that it neglects
the effects of Mimas’s current and past MMRs with more massive outer satellites. Accounting for
these decreases the lower bound on QS below 18000.11 Finally, the biggest issue of all raised by
Lainey et al. (2012) is whether Mimas is as old as Saturn.

3.3.1 Similarities and differences between Io and Enceladus

Io and Enceladus each exhibit unmistakable signatures of thermal activity. Moreover, currently the
heat loss from each appears to exceed the maximum time averaged power attributable to the tidal
torques acting on them, at least if the satellite is as old as its parent planet. Here we apply equation
(3.11) to determine the value of τe required for tidal dissipation inside each satellite to equal its
current power output. Then we compare that value to calculations of τe based on models for each
satellite.

For Io to dissipate 105 GW with e = 0.0041 requires τe = 1.5× 105 y. A uniform density model
with µ = 1011 dyne cm−2 yields τe = 7 × 104QIo y. Thus it is not a stretch to imagine that with e
enhanced by a factor of 3, tidal dissipation in Io could match the satellite’s current net luminosity.

For Enceladus to dissipate 5 GW with e = 0.0047 requires τe = 2.5 × 106 y. Our models for
Enceladus are all spherically symmetric and contain a rigid core with ρ = 3 g cm−3. The core is
encased in a layer of water with ρ = 1 g cm−3 overlain by a shell of ice with ρ = 0.93 g cm−3 and
µ = 4× 1010 dyne cm−2. Absent an ocean, we calculate τe = 8.2× 107QEn y. So tidal dissipation in
a solid model falls far short of matching Enceladus’s current net luminosity. Models with thin ice
shells overlying thick oceans can do better. For example, a model with an ice shell 30 km thick as
estimated by Iess et al. (2014) yields τe = 1.2 × 106QEn y. An enhancement of e by a factor of 3
and a QEn = 20 would be a possible fit. Note however that the enhanced e would make e > e0crit

.

3.4 Group II: k > kcrit

The Mimas-Tethys 4:2 II ′ MMR and the Titan-Hyperion 4:3 e′ MMR are the only ones for which
k > kcrit. Unlike the MMRs with k < kcrit, their resonant arguments exhibit large librations. Could
this be a sign that they are experiencing librational overstability as described in section 3.2.1? Below
we argue that these librations are merely fossils and do not arise from overstability. We bolster this
claim by demonstrating that neither the inclination of Mimas nor the eccentricity of Hyperion has
suffered significant damping during the lifetimes of their respective MMRs.

10Tidal heating rate is ∝ e2/τe.
11Although it is not possible to reconstruct the history of Mimas’s orbital expansion, by considering potential

first-order MMRs we find that QS might be as low as 6000.
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Table 3.2. Eccentricity Comparison

Satellites enow e0crit e0crit/enow

Io-Europa (e) 0.0041 0.037 9.024
Io-Europa (e′) 0.009 0.0238 2.532
Europa-Ganymede 0.009 0.0538 48.91
Enceladus-Dione 0.0047 0.0157 3.340

Note. — Comparison of the current and critical values
of e. Io-Europa (e′) signifies that this row shows the
corresponding values for e′.

3.4.1 Mimas-Tethys

At present, Mimas and Tethys occupy a 4 : 2 mixed-inclination MMR. The leading resonant term
in the disturbing function has coefficient ∝ II ′ cosφ with inclination I measured relative to the
Saturn’s equator plane. The resonant argument φ = 4λ′ − 2λ− Ω− Ω′ with Ω the longitude of the
ascending node. Currently, φ is librating around zero with φmax ' 97◦ (Seidelmann, 1992). Lowest-
order inclination MMRs are of 2nd order because inclinations enter the mutual distance between
two satellites as cos(I − I ′) ∼ 1− (I)2/2− (I ′)2/2− II ′.

Tethys is significantly more massive than Mimas, m/m′ ' 0.06, and their orbital inclinations are
similar, I ' 1.57◦ and I ′ ' 1.11◦ (Seidelmann, 1992). In Appendix 3.5.3, we demonstrate that(

dI ′2

dt

)
r

'
(m
m′

)(dI2

dt

)
r

, (3.14)

where ‘r’ denotes resonance. Thus it seems likely that Tethys’s inclination originates from passage
through some other MMR, e.g., Tethys-Dione 4:6 inclination-type MMR. A similar hypothesis has
been investigated for the origin of the anomalously large inclination of the Uranian satellite Miranda
(Malhotra & Dermott, 1990), Tittemore & Wisdom (1990).

The dynamics of the Mimas-Tethys mixed-inclination 4:2 MMR is entirely analogous to that of
the eccentricity-type resonance discussed in 3.2. With the replacement of e/e0crit

by I/I0crit where
I0crit

= is defined in equation (3.36), Figure 3.1 applies equally well to this resonance. Moreover,
since k � kcrit, inclination damping excites overstable librations on timescale τI ≡ −I/İT, where
IT is the tidal damping rate of I.

It is imperative that we evaluate τI . To do so we need to understand the relation between
three unit vectors, those along the spin of Mimas, ŝ, the spin of Saturn, Ŝ, and the orbital angular
momentum of Mimas, L̂. Tidal friction drives ŝ to a Cassini state on a timescale comparable to
that over which it causes the satellite to spin synchronously with its mean motion (Colombo, 1966;
Ward, 1975), a mere instant relative to the age of the solar system. In a Cassini state, the three unit
vectors defined above lie in a plane. In addition to the orbital inclination, I = cos−1 L̂ · Ŝ, the state
is defined by the obliquity, the angle between the satellite’s spin and its orbit normal, ε = cos−1 ŝ · L̂.
For small values of I and ε, the ratio of these angles (Colombo, 1966)

ε

I
≈ − Ω̇

ω
. (3.15)

In the above, Ω̇ is the rate of nodal precession on the planet’s equator plane. It mainly arises
from the planet’s oblateness (Murray & Dermott, 1999),

Ω̇ ≈ Ω̇J2
≈ −3

2
J2,S

(
RS
a

)2

n , (3.16)

where J2,S ' 0.016 and RS ' 6 × 104 km are Saturn’s quadrupole coefficient and radius, and n '
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and a ' 1.8 × 105 km are Mimas’s orbital mean motion and semi-major axis (Seidelmann, 1992).
Also, ω is the rate that the spin axis of Mimas would precess about the orbit normal if the later
maintained a fixed orientation in inertial space (Ward, 1975);

ω ≈ 3

2

(
2C −B −A

2C

)
n , (3.17)

where C ≥ B ≥ A are the principal moments of inertia of Mimas. Mimas is tidally stretched along
the axis joining it to Saturn and flattened by its spin. Its low mean density, ρ̄ = 1.148 g cm−3 implies
a small rocky core that contributes little to its mass and less to its polar moment of inertia. Thus
in estimating its principal moments of inertial, it is reasonable to approximate Mimas by a body of
uniform density. It is more questionable whether a body of its size has relaxed to near hydrostatic
equilibrium. Making these two assumptions, it is a straightforward exercise to derive the relations

2C −B −A
2C

=
25

8

MS

m

(
R

a

)3

= 0.058 , (3.18)

and
B −A
C

=
15

4

MS

m

(
R

a

)3

= 0.069 . (3.19)

Substituting equations (3.18) and (3.19) into equation (3.15), we arrive at

ε

I
' 0.029 , (3.20)

which implies ε ≈ 0.045◦ given I = 1.57◦ (Seidelmann, 1992). Thus it appears that the spin of
Mimas is closely aligned with the normal to its orbit. Probably this explains why astrometry has
been unable to determine the obliquity, ε, although it has revealed an amplitude of 0.84◦ for Mimas’s
physical libration from which (B − A)/C ' 0.09 has been determined (Tajeddine et al., 2014). As
a sanity check we can compare this value with 0.069 predicted by equation (3.19). The agreement
is satisfactory although we note that according to Tajeddine et al. (2014), the difference between a
more accurate model calculation for (B − A)/C and the value deduced from the physical libration
hints that Mimas may have an ocean that comes within 30 km of its surface and reduces C by
decoupling the interior from the external icy shell.

Next we consider tides raised on Mimas by Saturn. Absent dissipation, the tidal bulge would
peak at the sub-Saturn point and the point diametrically opposite to it. Because Mimas has a finite
obliquity, the tidal bulge oscillates across the equator at frequency n. Time varying strains dissipate
energy and as a result damp orbital inclination on timescale τI where

1

τI
≈ 21

2

( ε
I

)2
(
MS

m

)(
R

a

)5
k2

Q
n . (3.21)

In the above, we have simply multiplied the standard expression for 1/τe by the small quantity
(ε/I)2. Thus it should come as no surprise that for any reasonable choice of parameters, τI exceeds
4.6 Gy, the age of the solar system. Consequently, although k � kcrit, the libration of φ is not due
to overstability. Sinclair (1972) attributes it to the evolution of the initial I following capture as
Mimas evolved deeper into resonance. We agree. Sinclair also estimated a capture probability of
≈ 4% for the whereas employing more modern methods (Borderies & Goldreich, 1984), we find 6%
with capture taking place at k ≈ 20kcrit when I = 0.35◦.

3.4.2 Titan-Hyperion

Titan and Hyperion are partners in a 4:3 eccentricity-type MMR with resonant argument φ =
4λ′ − 3λ−$′. Thus it is Hyperion’s orbital eccentricity that is affected by the resonance. Titan is
the most massive of Saturn’s satellites and Hyperion the least massive of the satellites included in
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Table 3.1. Titan’s semi-major axis is so large that tides do not currently play any role in driving
the expansion of its orbit. Speculations about the origin of the Titan-Hyperion MMR are the best
that have been offered so far (Peale, 1978). We have nothing better other than to suggest that the
MMR formed as the result of convergent migration at the time the satellites were embedded in their
natal disk. Tidal damping of Hyperion’s orbital eccentricity is utterly negligible so currently the
librations of the resonant angle, φ, are neither growing nor decaying. But if disk interactions were
responsible for the formation of the resonance, eccentricity damping at that time might have driven
overstable librations.

3.5 Discussion

3.5.1 Torque comparison

Lainey et al. (2012) analyze more than a century of astrometric data to determine the orbital
evolution of Saturn’s major satellites. They reach two surprising conclusions. The first is that
Saturn’s tidal Q is about an order of magnitude smaller than previously thought and that implies
the inner satellites are younger than the planet. The second is that the orbit of Mimas is shrinking
at a great rate. We are sympathetic to the first conclusion but find it difficult to believe that the
second is correct. Below we speculate about how an otherwise impressive investigation might have
slipped up on this particular point.

According to equation (3.26), the evolution of Mimas’s mean motion should satisfy,

ṅ

n
= −6f62nss

′αµ′ sinφ− 1

τn
. (3.22)

where the first and second terms on the rhs arise from the resonant torque by Tethys and tidal torque
from Saturn. The argument, φ, librates between −97◦ and 97◦ with period ≈ 74 years. At a time
when φ = π/2, the torque from Tethys exceeds that from Saturn by a factor 4.6×108/QS ≈ 2.7×105

where the value QS = 1700 obtained by Lainey et al. (2012) has been adopted to obtain the final
expression. Over a time span� 74 y, the time-average ṅ is positive and controlled by Saturn’s tidal
torque. However, the time span of the data in Lainey et al. (2012) is only slightly above a century.
Thus the ṅ/n they deduced, (2.2±0.61)×10−16 s−1, might have been corrupted by Tethys’s torque.

Enceladus’s mean motion is similarly affected by the torque from Dione. For this MMR, φ
librates between −1.5◦ and 1.5◦ with a period of ≈ 11.5 y;

ṅ

n
= 3βµ′en sinφ− 1

τn
+

3e2

τe
. (3.23)

The effect of eccentricity damping on ṅ/n is an extra complication. Neglecting this, we find the
ratio of the maximum resonant torque from Dione to the tidal torque to be 1.2×108/QS ≈ 7.2×104

for QS = 1700. However, in this case the libration period is much shorter than the time spanned
by the astrometric data in Lainey et al. (2012) so determination of ṅ/n for Enceladus may not be
adversely influenced by the torque from Dione.

3.5.2 Vestiges of MMRs Past

It is likely that the orbits of some satellites exhibit traces of their participation in extinct MMRs.
Mimas’s orbital eccentricity, eM ≈ 0.02, is a prime examples (Seidelmann, 1992). It might result

from the past participation by Mimas in a 3 : 1 MMR with Dione. For k > kcrit, there is a door
leading to passage through the MMR and librational instability due to eccentricity damping can
open it. As already mentioned in section 3.4, the inclination of Tethys might have been excited by
the Tethys-Dione 4:6 inclination-type MMR.

MMRs that excite eccentricity result in tidal heating that may cause internal melting. Thermal
activity of Io and Europa are outstanding examples of tidal heating in current resonances. It is less
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Table 3.3. Parameters

Satellite m (g) R (km) n (rad s−1) g (cm s−2) ρ (g cm−3) µ̃ Type

Mimas 3.7× 1022 198 7.7× 10−5 6.4 1.14 2700 Icy

Enceladus 1.1× 1023 252 5.3× 10−5 11.4 1.6 2000 Icy

Tethys 6.2× 1023 531 3.85× 10−5 14.7 0.984 500 Icy

Dione 1.1× 1024 561 2.65× 10−5 23.3 1.48 200 Icy

Titan 1.3× 1026 2576 4.56× 10−6 135.2 1.88 9 rocky/icy

Hyperion 5.6× 1021 135 3.42× 10−6 2 0.544 2.6× 104 icy

Io 8.9× 1025 1822 4.1× 10−5 179.6 3.53 40 rocky

Europa 4.8× 1025 1561 2.0× 10−5 131.4 3.01 80 rocky

Ganymede 1.5× 1026 2634 1.0× 10−5 142.8 1.94 8 rocky/icy

Note. — To calculate µ̃ ≡ 19µr/(2ρgR), we apply µr ' 4 × 1010 dyn cm−2 for icy satellite, µr ' 6 ×
1010 dyn cm−2 for rocky/icy satellite, and µr ' 5 × 1011 dyn cm−2 for rocky satellite. For Saturn, we adopt
QS ' 104, MS ' 5.7× 1029g and RS ' 6× 104 km. For Jupiter, we adopt QJ ' 105, MJ ' 1.9× 1030g, and
RJ ' 7× 104 km. All parameters except µ̃ and Q of the planets are taken from Seidelmann (1992). Jupiter’s
Q, QJ , is usually believed to be 105 ∼ 106 (e.g., Greenberg et al. (2008), Wu (2005), and references therein).
We adopt QJ ' 105. Saturn’s Q, QS , was believed to be beyond 104 (Meyer & Wisdom, 2007), but recent
observations of Saturnian satellites’ orbital evolutions indicate QS is only a few thousands (?). We adopt
QS ' 104. The Love number of Saturn, k2,S ' 0.34 (?), and Jupiter’s Love number is k2,J ' 0.38 (Gavrilov
& Zharkov, 1977).

certain but plausible that Mimas has an internal ocean that reduces the apparent polar moment of
inertia as deduced from the amplitude of its physical libration (Tajeddine et al., 2014). This could
be a consequence of its involvement with the MMRs mentioned above as candidates for exciting its
orbital eccentricity.

If the expansion rates for the orbits of Saturn’s satellites determined by Lainey et al. (2012) are
correct, the frequency at which satellites entered and escaped from MMRs must have been much
greater than previously imagined. Maximum rates of tidal heating associated with eccentricity-type
MMRs would also have been greatly enhanced. Thus more satellites are likely to possess internal
oceans.

Consider the putative ocean of Mimas. Tajeddine et al. (2014) estimate that its surface lies
below d ≈ 30 km of ice. Given the thermal diffusivity of ice, κ ≈ 0.01 cm2 s−1, an ocean of this
depth would retreat after δt ≈ 3 × 107 y. We also estimate the timescale for eccentricity damping,
τe ≈ 50(Q/100) My, from a model of Mimas consisting of an ocean sandwiched between a core with
ρ = 3 g cm−3 and an ice shell of thickness 30 km chosen to match the mean density ρ = 1.145 g cm−3.
Based on an assumed QS = 18000, Meyer & Wisdom (2008) calculate that Mimas escaped from the
3:1 resonance with Dione about 700 My ago. The much lower QS proposed by Lainey et al. (2012)
is more compatible with the survival of an ocean in Mimas.

There is an alternate scenario for the unexpectedly large physical libration of Mimas that does
not involve an internal ocean. It postulates that Mimas has a nonhydrostatic shape which enhances
(B − A)/C above its hydrostatic value (Tajeddine et al., 2014). We estimate τe ≈ 1 Gy(Q/100) for
a solid Mimas, a value consistent with the persistence of Mimas’s orbital eccentricity even with the
traditional value of QS .

Appendix

Satellite parameters

3.5.3 Mimas-Tethys MMR

Disturbing functions for the Mimas-Tethys 4:2 mixed II ′ MMR read

R = f62(na)2αss′µ′ cosφ , (3.24)

R′ = f62(n′a′)2ss′µ cosφ , (3.25)
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with φ = 4λ′ − 2λ − Ω − Ω′ the resonant argument and f62 < 0 a numerical coefficient (Murray &
Dermott, 1999). Other symbols follow conventional definitions, λ is mean longitude, Ω is longitude
of the ascending node, n is mean motion, a is semi-major axis, s ≡ sin(I/2) where I is inclination,
µ ≡ m/Mp is the mass ratio between satellite and planet, and α ≡ a/a′. Equations governing the
evolution of the orbital elements take the form

ṅ

n
= −6f62nss

′αµ′ sinφ− 1

τn
+
ps2

τI
, (3.26)

ds2

dt
= −1

2
f62nss

′αµ′ sinφ− s2

3τn
− 2s2

τI
, (3.27)

Ω̇ = f62n
s′

4s
αµ′ cosφ+ Ω̇J2 , (3.28)

ṅ′

n′
= 12f62n

′ss′µ sinφ− 1

τn′
+
ps′2

τI′
, (3.29)

ds′2

dt
= −1

2
f62n

′ss′µ sinφ− s′2

3τn′
− 2s′2

τI′
, (3.30)

Ω̇′ = f62n
′ s
4s′

µ cosφ + Ω̇′J2
, (3.31)

Ω̇J2
separates the different 4:2 inclination-type resonances sufficiently so that only terms in the

disturbing function with argument φ defined above need to be considered in treating the II ′ MMR.
Terms involving τn and τn′ are due to the tides raised in Saturn by its satellites, Mimas or Tethys.
Those terms involving τI and τI′ are due to inclination damping by tides the planet raises in the
satellites. Inclination damping conserves the component of each satellite’s orbital angular momentum
parallel to Saturn’s spin while decreasing its orbital energy. Therefore, cos I/n1/3 =constant which
establishes that p = 12 in equations (3.26) and (3.29).

We use lower index ‘Res’ to label the change rate due to the mean motion resonance. For example,
(ds2/dt)Res refers to the first term on the right hand side of equation (3.27). Notice that (ṅ′/n′)Res,
(ds′2/dt)Res and (Ω̇′)Res are all smaller than their corresponding rates for the inner satellite by a
factor ∼ (m/m′)� 1. Resonance dynamics mainly affects the inner body, and therefore we neglect
(ṅ′/n′)Res, (ds′2/dt)Res and (Ω̇′)Res. Considering only resonance terms, we find

12

(
ds2

dt

)
Res

−
(
ṅ

n

)
Res

= 0 , (3.32)

which yields a constant of motion in resonance dynamics,12

k ≡ 12s2 +
f62µ

′

211/3

s′

s
cosφ+

φ̇

4n′
, (3.33)

where we have set n/n′ = 2 and α = 2−2/3. A second constant of motion is the Hamiltonian

H ≡ ks2 − 6s4 +
f62µ

′

28/3
ss′ cosφ , (3.34)

from which the equations of motion follow as (φ̇)Res/(4n
′) = ∂H/∂(s2) and (ds2/dt)Res/(4n

′) =
−∂H/∂φ. Resonant dynamics in the phase space consists of motion along level curves of H whose
geometry is determined by k. A qualitative change in topology occurs across a value k we denote
by kcrit;

kcrit =
34/3

222/9
(−f62s

′µ′)2/3 . (3.35)

12This constant arises because 4λ′ − 2λ+ Ω + Ω′ is an ignorable coordinate.
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Corresponding to kcrit,

I0crit
=

(−f62I
′µ′)1/3

214/931/3
. (3.36)

Currently, k/kcrit ≈ 424 and I/Icrit ≈ 18.

1. For k < kcrit, there exists one fixed point where both ∂H/∂(s2) and ∂H/∂φ vanish. H is
maximal at this fixed point which is labeled by a filled square in the upper panel of Figure
(3.1).

2. For k > kcrit, two additional fixed points are present. As illustrated in the lower panel of
Figure (3.1), the new fixed points are represented by a circle at the local minimum of H and
a diamond at a saddle point. Fixed points at the maximum and local minimum are stable
whereas that at the saddle point is unstable. A separatrix emanates from the saddle point.
It has an outer branch shown by a thick solid line and an inner branch marked by a thick
dashed line. Level curves are of three types: Libration orbits as shown by the banana-shaped
thick dotted loop around the maximum of H; External circulation orbits as shown by the
outermost thin dotted circle; Internal circulation orbits as depicted by the small thin dotted
circle surrounding the relative minimum of H.

3.5.4 First-order e′ MMRs

Expressions for k and kcrit have been defined in the main text for all but two of the MMRS listed
in Table 3.1. The exceptions in the Io-Europa MMR with φ = 2λ′−λ−$′ and the Titan-Hyperion
with φ = 4λ′− 3λ−$′. These share the feature that the outer satellite’s orbit is perturbed and the
inner satellite is the perturber. We treat the perturbed satellite as a test particle, which is a good
approximation as long as m′ � m. This is valid for Titan-Hyperion, but not for Io-Europa. But
our discussion of Io-Europa is mainly conceptual so it does not depend sensitively on the accuracy
of the approximation.

For the MMR involving Io and Europa with argument 2λ′ − λ−$′,

k ' 3e′2 +
µ

2e′

(
f31 −

1

2α2

)
cosφ+

φ̇

n
, (3.37)

where α = a/a′ = (n/n′)−2/3 ' 2−2/3 and f31 ' 1.7. The critical k,

kcrit =
34/3

4

(
2f31 −

1

α2

)2/3

µ2/3 (3.38)

and

e′crit = (2/3)
1/3

µ1/3

(
f31 −

1

2α2

)1/3

. (3.39)

For the MMR involving Titan and Hyperion with argument φ = 4λ′ − 3λ−$′,

k = 6e′2 +
f31µ

4e′crit

cosφ+
dotφ

3n
. (3.40)

where f31 ' 0.825 and the critical k is

kcrit =
34/3

25/3
(f31µ)2/3 . (3.41)
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Chapter 4

Thermal Conductivity of Rubble
Piles

4.1 Introduction

Observational evidence for rubble piles is varied. Mean densities, ρ, below 1 g cm−3 are typical of
Saturn’s icy satellites with radii smaller than 140 km (Dougherty et al., 2009), indicating porosity
throughout their entire bodies. Lunar seismometers detected strong scattering in the upper 20 km
of the Moon implying the presence of fractures and voids (Heiken et al., 1991). The sharp decline in
the number of asteroids with spin periods below ∼ 3 h demonstrates both their low mean densities,
ρ ≤ 2 g cm−3, and weak cohesion (Waszczak et al., 2015). Thermal responses of asteroids and
satellites to time variations of the incident solar flux yield thermal inertias approximately two orders
of magnitude smaller than those of monolithic materials (Delbo’ & Tanga, 2009; Howett et al., 2010).
The lunar surface is covered by a layer of regolith whose density in the top 3 m ranges between 1 to
2 g cm−3(Heiken et al., 1991) and thus below that of rock, ρ ≈ 3 g cm−3.

Goldreich & Sari (2009) studied the elastic behavior of rubble piles. They pointed out that voids
rather than cracks are the essential difference between rubble piles and monoliths. We focus on
the thermal properties of rubble piles, which have broad applications. In the fluid free environment
pertinent to asteroids and satellites lacking atmospheres, voids impede heat transfer.

Our paper is organized as follows. In Section 4.2, we evaluate the condition for a rubble pile to
survive and show that it is consistent with indications from observations. We derive an order-of-
magnitude expression for the effective conductivity, and compare it to measurements of the thermal
conductivity of the lunar regolith in Section 4.3. Section 4.4 presents a model for the thermal inertia
of a rubble pile and tests it against observationally determined values for the Moon and the icy
Saturnian satellites. We conclude with a short discussion in Section 4.5.

4.2 Conditions For Existence Of Rubble Piles

Consider a typical monolithic element composing a rubble pile.1 Its surface is generally coarse, i.e.,
covered by nubs spanning a wide range of radii of curvature (Johnson, 1987). Contacts between
neighboring elements typically involve nubs with the smallest radii of curvature, r̂, that can survive
strains generated by the weight of the overlying material. Smaller nubs are crushed and flattened.
Figure (4.1) illustrates the geometry.

Although each element participates in several contacts, it suffices to focus on just one. As shown
in Figure (4.1), the nub is compressed by δr̂ resulting in contact area s2 ∼ r̂δr̂. Near contact, the
maximum strain, εY ∼ δr̂/s, and stress, σ ∼ µεY , concentrate in a volume ∼ s3 where εY and µ
denote yield strain and shear modulus, respectively.

1This section applies and extends aspects of the Hertz (1882) theory of contact between elastic bodies.
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Figure 4.1 The geometry of a rough-surface element.
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At average pressure P , each element must transmit force ∼ r2P across contact area ∼ s2.
Combining the above relations, we obtain

r̂ ∼ r

(
P

ε3Y µ

)1/2

, (4.1)

s ∼ r

(
P

εY µ

)1/2

, (4.2)

δr̂ ∼ r

(
εY P

µ

)1/2

, (4.3)

which apply for both r̂ < r and r̂ > r. At P ∼ ε3Y µ, r̂ ∼ r. Above this pressure voids shrink leading
the mean density to grow. At P ∼ εY µ, s ∼ r, i.e., the strain reaches εY throughout the element,
voids close and the density approaches its monolithic value. We refer to P < ε3Y µ as the low-pressure
regime and ε3Y µ < P < εY µ as the high-pressure regime. Rubble piles do not exist at P > εY µ.

The hydrostatic pressure at the center of a homogeneous sphere is Pc = (2π/3)Gρ2R2. Thus the
low-pressure regime would apply throughout bodies with R ≤ R∗;

R∗ ∼
(
µε3Y
Gρ2

)1/2

∼ 10
( εY

0.01

)3/2

km , (4.4)

whereas the limit of the high-pressure regime would be reached at the centers of bodies with Rmax;

Rmax ∼
(
µεY

Gρ2

)1/2

∼ 103
( εY

0.01

)
km . (4.5)

Values of R∗ and Rmax apply to bodies composed of either rock or ice; µ is about 10 times larger
for rock than for ice, but ρ for ice is about 3 times smaller than that for rock.

Mean densities as small as half that of the monolithic density of their constituents would be
restricted to R < R∗ although less substantial under-densities could persist up to R = Rmax.
Rubble piles may exist in the upper layers of bodies larger than Rmax. Given surface gravity g, low-
pressure and high-pressure regimes would extend to depths d∗ ≈ ε3Y µ/(ρg) and dmax ≈ εY µ/(ρg).
Assuming εY = 0.01 and parameters appropriate to the Moon, g ≈ 160 cm s−2, ρ ≈ 3 g cm−3, and
µ ≈ 5 × 1011 dyne cm−2, we estimate d∗ ≈ 10 m and dmax ≈ 100 km. Passive seismic experiments
on the moon indicate that wave scattering is strongest in the upper 20 km (Heiken et al., 1991),
presumably where fractures and voids are most abundant.

4.3 Effective Conductivity

4.3.1 Phonon Conductivity

Suppose the temperature drops by ∼ ∆T across an element. In steady state, with uniform monolithic
conductivity, k, and without heat sources or sinks, the temperature, T , satisfies ∇2T = 0. Like the
stress, the magnitude of the temperature gradient peaks in the vicinity of the contact. Away from the
contact, the conductive flux and hence ∇T diminish roughly quadratically with distance implying
|∇T | ≈ ∆T/s within distance s from the contact (Batchelor & O’Brien, 1977). Thus the total
conductive luminosity passing through the contact is ∼ k∆Ts, from which we deduce that the
effective conductivity

kcon ∼ k
s

r
≈ k

(
P

εY µ

)1/2

. (4.6)

Equation (4.6) applies in both low and high pressure regimes.
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In the low pressure limit, P < ε3Y µ, perfect elastic spheres would have

kcon ≈ k
(
P

µ

)1/3

> k

(
P

εY µ

)1/2

, (4.7)

but measurements of kcon in granular media consisting of commercially manufactured spheres (Wat-
son, 1964; Huetter et al., 2008) obtain results similar to those found using crushed materials of similar
composition and size. Presumably, even the surfaces of carefully manufactured spheres possess a
spectrum of small scale irregularities.

4.3.2 Photon Conductivity

Radiation contributes to the effective conductivity in three ways.

• In a fluid free environment and absent physical contacts, only radiation can transfer energy
between elements. To assess the rate at which it does so, we consider the simple setup displayed
in Figure 4.2 in which parallel monolithic slabs of thickness ` are separated by a vacuum gap
of thickness d. We assume steady state conditions and slabs opaque to thermal radiation. For
0 < δT < ∆T << T , the flux, F satisfies

F = 4σT 3δT , (4.8)

F =
k(∆T − δT )

`
, (4.9)

F = krad
∆T

`+ h
. (4.10)

These equations yield
krad

k
=

4(`+ h)σT 3

k + 4`σT 3
(4.11)

δT

∆T
=

k

k + 4`σT 3
(4.12)

In the limit most important to our investigation, k � 4`σT 3, krad ≈ 4(`+h)σT 3 and δT ≈ ∆T .
In other words, each slab is nearly isothermal and the conductive flux passing through it is
determined by the rate at which radiation transfers energy across the vacuum gap separating
adjacent slabs. Moreover, for h→ 0, krad → 4`σT 3.

• Next imagine cutting holes of radius ∼ ` in random locations through each slab. Now some
photons may travel a vertical distance ∼ (`+ h) before striking a slab. This provides a direct
radiative conductivity ∼ (`+ h)σT 3.

• Radiation can also transport energy through elements composed of transparent materials but
we neglect this effect because ice and rock are opaque to infrared radiation.

Combining the results of the first two items discussed above, we define the radiative conductivity

krad =
16`σT 3

3
, (4.13)

where following standard convention, ` is the inverse opacity per unit volume. In practice we expect
that ` ∼ r, the typical linear size of both elements and voids.

4.3.3 Application to the Lunar Regolith

Keihm et al. (1973)2 determined the thermal conductivity of the lunar regolith from temperatures
measured by thermocouples the Apollo 15 astronauts placed on the Moon’s surface. Their results

2These results may suffer from poor thermal linkage in the probe-borestem system as remarked by
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Figure 4.2 The central temperatures of the neighboring slabs differ by ∆T . Each slab has thickness
` and is separated from its neighbor by a vacuum of thickness d. the lower surface of the upper slab
is a distance d above the upper surface of the lower slab, and the temperatures of these surfaces
differ by δT .

are plotted as solid circles in Figure 4.3. The effective conductivity, keff = kcon + krad, includes
contributions from both phonon and photon diffusion. Because the latter is proportional to T 3, it
is important to note that the values of keff are those appropriate for the mean temperature at each
depth. Although temporal variations in surface temperature are large, spanning most of the range
between 100− 400 K, those of the mean temperature are modest, rising from ≈ 200 K at the surface
to ≈ 250 K at the maximum depth of 140 cm. Thus we neglect the latter and make a 2 parameter fit

to the data inspired by contributions to keff from phonon and photon diffusion expressed
by equations (4.7) and (4.13), respectively. We find

keff =

[
197

(
d

cm

)1/2

+ 72

]
erg cm−1 s−1 K−1 , (4.14)

where d denotes depth below the surface. In choosing such a simple form, we are ignoring not
only the depth dependence of the mean temperature but also potential variations with depth of grain
size and composition. Equating the form of kcon from equation (4.6) to 197(d/ cm)1/2 erg cm−1 s−1 K−1 ,
yields εY ≈ 5 × 10−4 for P ' ρgd, with ρ ≈ 1.5 g cm−3, k ∼ 2 × 105 erg cm−1 s−1 K−1 , µ ≈
5 × 1011 dyne cm−2, and g ≈ 160 cm/s2.3 Setting krad = 72 erg cm−1 s−1 K−1 and appealing to
equation (4.13), we obtain ` ≈ 102 (T/220 K)3 µm for the photon diffusion length. This length is
several times smaller than the depth at which phonon and photon diffusion contribute equally to
keff . Another relevant comparison is with grain sizes at the Apollo 15 landing site. As reported
by Papike et al. (1982), grains smaller and larger than ≈ 100µm contribute similar amounts to the
overall density of the regolith.

Langseth et al. (1976), in which k was estimated to be 30% ∼ 50% smaller than that in Keihm et al.
(1973).

3Given the order of magnitude nature of our analysis, the value of εY ≈ 5×10−4 should be viewed as unremarkable.
To fit the pressure dependence of the shear velocity in sand, Goldreich & Sari (2009) require εY ' 0.17.
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Figure 4.3 Filled circles with error bars are values of keff as a function of depth, d, at the Apollo
landing site (Keihm et al., 1973). Our 2 parameter fit to the data given by Equation (4.14) is shown
by the dashed red line. See main text for details.
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4.4 Thermal Inertia

A body’s thermal inertia is an important diagnostic of its surface. It is deduced from the amount by
which variations of surface temperature, Ts, lag those of the incident radiative flux. For monolithic
material, thermal inertia is defined by

Γmon ≡ (kρcp)
1/2 = ρcpκ

1/2 , (4.15)

where thermal diffusivity,

κ =
k

ρcp
, (4.16)

with cp denoting specific heat capacity.
Provided all vibrational degrees of freedom are classically excited, common monolithic insulators

share the almost universal values of ρcp ≈ 2×107 erg cm−3 K−1 and κ ≈ 10−2 cm2 s−1 (White, 2012).
Each nucleus contributes 3kB to the heat capacity and is surrounded by an electron cloud whose
volume is insensitive to the screened nuclear charge. Taking each nucleus to occupy a cube with
2.75Å sides yields ρcp ≈ 2× 107 erg cm−3 K−1. Most of the thermal energy is stored in the shortest
wavelength lattice vibrations and typically these propagate a few lattice spacings at speeds of a few
km s−1 before being scattered. With mean free path λ ≈ 10Å and propagation speed v ∼ 3 km s−1,
κ ≈ λv/3 ∼ 0.01 cm2 s−1. Consequently,4

Γmon ≈ 2× 106 erg s−1/2 cm−2 K−1 . (4.17)

We motivate the definition of thermal inertia by means of a simple example. Consider the
response of a body to the sudden imposition of a constant incident flux F at t = 0. In the interest
of simplicity, we treat a monolithic body with k independent of both P and T and assume zero
albedo. Surface temperature, Ts, is determined by balancing the incident flux against the sum of
the outward radiative flux and the inward conductive flux;

F = σT 4
s + k

dT

dz
∼ σT 4

s +

(
kρcp
t

)1/2

Ts , (4.18)

where we approximate dT/dz by Ts divided by the penetration depth, (κt)1/2, for thermal diffusion
during time t. Initially most of the incident flux is conducted inward and

Ts ∼
(

t

ρkcp

)1/2

F . (4.19)

At

tlag ∼
kρcp

(σT 3
s )2

=

(
Γ

σT 3
s

)2

, (4.20)

the outward radiative and inward conductive fluxes are comparable. Thereafter, the radiative flux
dominates and Ts asymptotically approaches (F/σ)1/4.

Fitting variations of surface temperature in response to variations of incident solar flux requires
a model for keff . Ours includes depth dependence from kcon and temperature dependence from krad.
Here we consider limiting cases in which either the former or the latter dominates.

• Suppose phonon diffusion dominates heat transfer; keff ≈ kcon.

We evaluate Γcon ≈ (kconρcp)
1/2 at the depth to which the thermal wave propagates in time

4We express thermal inertia in the cgs unit, erg s−1/2 cm−2 K−1, instead of the more convential mks unit
J s−1/2 m−2 K−1 = 103 erg s−1/2 cm−2 K−1.
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t, d ≈ (kcont/(ρcp))
1/2. This procedure yields

Γcon ≈
(
k2ρ2cp g t

1/2

εY µ

)1/3

, (4.21)

for flux variations on timescale t.

• Next consider the opposite limit in which photon diffusion dominates; keff ≈ krad.

Here

Γrad =

(
16`σT 3ρcp

3

)1/2

, (4.22)

which has no explicit dependence on t.

From observations during a lunar eclipse with umbral duration t ∼ 2 h, Muncey (1963) estimates
Γ ≈ 2.8 × 104 erg s−1/2 cm−2 K−1. Linsky (1966) estimates 3.9 < Γ < 6.7 × 104 erg s−1/2 cm−2 K−1

from data obtained during a lunation, t ≈ 28 d. From Keihm et al. (1973) and our fit to keff

in equation (4.14), it appears that both phonon and photon diffusion contribute significantly to Γ
during a lunar eclipse but that the phonon contribution dominates during a lunation. Unfortunately,
neither these old data nor our theory are precise enough to justify a more detailed analysis. Mid-
infrared measurements made by the radiometer on the Lunar Reconnaissance Orbiter presents a
comprehensive picture of the Moon’s surface temperature over 4 lunations (Vasavada et al., 2012).
It clearly warrants more careful modeling than we are currently capable of doing.

Microwave measurements from the Rosetta orbiter made prior to Philae’s landing on comet
67P/Churyumov-Gerasimenko, were interpreted to imply a representative thermal inertia, Γ, in the
range (1−5)×104 erg s−1/2 cm−2 K−1 for the overall surface (Gulkis et al., 2015). Shortly thereafter,
diurnal temperature variations measured at the Philae landing site, Abydos, yielded an estimate of
Γ = (8.5±3.5)×104 erg s−1/2 cm−2 K−1 for the local thermal inertia (Spohn et al., 2015) . These low
values imply a porous surface. Lack of knowledge of the local regolith prevents the direct application
of our formulae for Γ. However, in-situ measurements of the variation of the surface temperature
over the comet’s orbital period might separate contributions from phonon and photon conduction
because we expect Γcon ∝ t1/6 and Γrad independent of t.

Thermal inertia is an essential component of the Yarkovsky effect which drives significant orbital
migration of small asteroids (Bottke et al., 2006). This migration is responsible for the rate at which
the semi-major axes of members of asteroid families separate. It also impacts the timescale for the
delivery of meteorites from the asteroid belt to Earth. Phase lags expressed in radians of rotational
phase, ∆φ, can be estimated by multiplying tlag in equation (4.20) by the spin frequency of the
asteroid;

∆φ ≈ 2π

Psp

(
Γ

σT 3

)2

∼ 5× 104

(
Psp

h

)−1

×
(

T

200 K

)−6(
Γ

Γmon

)2

. (4.23)

Phase lags given by equation (4.23) are relevant to the diurnal Yarkovsky effect. There is also a
seasonal Yarkovsky effect which involves the phase lag expressed in terms of the orbital phase. In
each case, migration rates are optimized for phase lags of order a radian (Bottke et al., 2006).

Howett et al. (2010) estimate thermal inertias for the Saturnian satellites Mimas, Enceladus,
Tethys, Dione, Rhea and Iapetus from infrared data obtained by the Cassini orbiter. Each satellite
has an outer ice shell and spins synchronously so incident solar flux variations occur on timescales
of its orbital period, Porb. Thermal inertias are plotted in Figure (4.4). They are low and show
no obvious trend with orbit period. This suggests that heat transport by photon diffusion probably
dominates that by phonon diffusion at the top of their regoliths; i.e., κrad > κcon even for Iapetus.
Otherwise, it would be expected from equation (4.21) that the 103 fold increase of g2Porb in going
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from Mimas to Iapetus would lead to a noticeable, factor of ≈ 3, rise of Γ as indicated by the dashed
line in Figure (4.4).5

The average Γ for Saturn’s satellites is 1.3 × 104 erg s−1/2 cm−2 K−1 as shown by the dot-
ted blue line in Figure (4.4). With Γrad ≈ 7.8 × 104 (T/100 K)3/2 (`/ cm)1/2 erg s−1/2 cm−2 K−1,
it follows that ` ≈ 0.04(90 K/T )3 cm, an unremarkable value. But an upper limit of Γcon ≤
1.3 × 104 erg s−1/2 cm−2 K−1 for Iapetus is problematic. Substitution of ρ ∼ 0.93 g cm−3, µ ∼
4 × 1010 dyne cm−2, cp ∼ 2 × 107 erg cm−3 K−1, k ∼ 2 × 105 erg cm−1 s−1 K−1, g ≈ 22.4 cm s−2,
εY = 0.01 and t = 79/(2π) d into equation (4.21) yields Γcon ≈ 3.5 × 104 erg s−1/2 cm−2 K−1. The
astute reader will recognize that the substituted values are appropriate for water ice at 273 K. More-
over, although εY = 0.01 is a reasonable value for the yield strength of a single crystal of cold ice, it
is a large one for polycrystalline ice (Hobbs, 1974; Schulson, 2001). Substituting parameters suitable
for pure water ice at 90 K would not help; k would be larger and although cp would be smaller, the
product k2cp would be slightly larger. We have checked this statement for T down to 173 K and
see no reason why it would not apply for T as low as 90 K. A significant reduction of ρ is more
plausible; on Earth, accumulations of dry snow with water content below 30% are common. The
weaker gravity on Iapetus would permit even lower densities than on Earth. Even at temperatures
below 90 K, ice grains might bond to their neighbors.6 Bonding could enable both low ρ and large
εY . According to Borderies et al. (1984), bonding is the most likely explanation for the paucity of
sub-centimeter water ice particles in Saturn’s rings.

4.5 Summary

Together, phonon and photon diffusion determine the thermal conductivity of a rubble pile.
Phonons transmit heat through contacts between neighboring elements. Conductivity due to

phonon diffusion in granular materials is independent of the sizes of the individual elements. We
consider irregularly shaped elements whose mutual contact areas in the low pressure regime, P <
ε3Y µ, are smaller than those for spheres. Consequently, they provide a lower phonon conductivity
than spheres, but one that increases more rapidly with pressure, ∝ P 1/2, rather than, ∝ P 1/3 for
spheres. At P ≈ ε3Y µ, phonon conductivities of irregular elements and spheres are equal. At still
higher pressure, the contact areas of both spheres and irregularly shaped elements are governed by
equation (4.2).

The effective conductivity in the top 140 cm of the lunar regolith as deduced from radiometer
measurements of surface temperatures (Keihm et al., 1973) roughly agrees with our prediction
keff ∝ d1/2. But measurements of the annual temperature variation by probes analyzed by Langseth
et al. (1976) indicate that keff is nearly constant at about 10−2 of the monolithic conductivity for
d ≤ 250 cm. This result has no simple explanation since contact areas should monotonically increase
with increasing pressure.

Photons transmit heat across voids between elements. Photon diffusion contributes krad ∝ `T 3,
where ` is the linear size of a typical element. A subtle argument in 4.3.2 shows that the element
size is more important than the void size in determining the appropriate value of `.

Thermal inertias of Saturnian satellites exhibit little dependence on g2Porb suggesting that photon
diffusion may dominate keff . This is surprising both because their surface temperatures are low and
the implied values of keff are smaller than one might expect from phonon diffusion alone.

5Here we assume that these satellites have similar regoliths.
6Bonding increases contact areas at fixed pressure and implies finite contact areas at zero pressure (Johnson, 1987).
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Figure 4.4 Comparison between data (Howett et al., 2010) in black and theoretical estimates based
on the assumed dominance of either phonon diffusion (dashed red line) or photon diffusion (dotted
blue line). The former is normalized to pass through the lowest value for Γ of Mimas. Its rise
with increasing Porb is attributable to the ≈ 103-fold increase of g2Porb from Mimas to Iapetus.
The constant value of Γrad ≈ 1.3 × 104 erg s−1/2 cm−2 K−1 corresponds to setting ` ≈ 0.04 cm for
T ≈ 90 K. See main text for more details.
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Chapter 5

Towards Low-Latency Real-Time
Detection of Gravitational Waves
from Compact Binary Coalescences
in the Era of Advanced Detectors

5.1 Introduction

Coalescences of neutron-star (NS) binaries are primary sources for ground-based gravitational-wave
detectors. It has been estimated that Advanced LIGO may be able to detect 10 to 100 such events per
year O’Shaughnessy et al. (2010). The mergers of neutron star binaries are also possible progenitors
of short hard γ-ray bursts. Although these bursts are believed to be mostly beamed away from
us, the prompt emission and afterglow they induce in X-ray, optical, infrared and radio frequency
bands may well be less beamed, and therefore be visible to us Fox et al. (2005); Nakar (2007).
If a statistically significant gravitational-wave trigger can be obtained before or right after such
a coalescence, electromagnetic (especially optical) observatories can then be alerted to search for
possible prompt and afterglow emissions — such follow-up observations are likely able to resolve
whether these mergers are indeed the progenitors of short hard γ-ray bursts, and provide further
knowledge about the nature of these events.

Currently, neutron star - neutron star coalescence signals are being searched for in gravitational-
wave data using the matched filtering technique Finn (1992); Cutler & Flanagan (1994), which
calculates the correlation of data with theoretical templates weighted by noise. In order to reduce
the computational cost, current search pipelines use a frequency-domain method, which gathers a
long stretch of time-series data containing O(N) points (the duration of which should be longer than
the longest possible signal), then uses a Fast-Fourier-Transform (FFT) algorithm to search for all
possible signals that end within this stretch of data, with a cost of O(N logN), as opposed to the
O(N2) required by a one-by-one search over merger time. Such a trick, although efficient, implies
that we cannot start analyzing the data until the collection finishes.

Unless significant changes from current frequency-domain analysis method are made, the latency
caused by data collection will compromise our ability to obtain a trigger with the shortest possible
delay after the merger, and will totally prevent us from obtaining the trigger before the merger.
At least two efforts are underway to suppress latencies for coalescence signals, the Multi-Band
Template Analysis (MBTA) Buskulic et al. (2010) and the Low-Latency Online Inspiral Detector
(LLOID) Cannon et al. (2011c). MBTA is a two-band frequency-domain search method while LLOID
provides an infrastructure that accommodates either time or frequency domain searches. The time-
domain aspect of the LLOID pipeline based on Finite-Impulse-Response (FIR) filters Rabiner &
Gold (1975) is described in a parallel paper Cannon et al. (2011c). Note for a different search of
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Detector
fmin

(Hz)
duration

(s)
Ncyc N0.98

iLIGO 40 25 1.6× 103 1.7× 103

aLIGO 10 1.0× 103 1.6× 104 6.6× 103

ET 3 2.5× 104 1.2× 105 2.9× 104

Table 5.1 Basic information for the detection of Newtonian GW signals by initial, Advanced LIGO
and Einstein Telescope. The columns, from left to right list the names for present and future
detectors, the minimum frequency of the detector, signal duration and number of wave cycles for a
(1.4+14)M� NS-NS binary [see Sec. 5.3.1], as well as the number of templates required in order to
achieve a match of 0.98 for binaries with individual mass of 1 – 3M� [computed from the metric
Eq. (5.57)].

short gravitational waves of unknown waveforms, a program has been set up to analyze available
detector data in near real-time and seek for optical counterpart of candidate events Kanner et al.
(2008).

In this paper, we propose a straightforward and efficient time-domain search algorithm, which
allows zero and even negative latency (i.e., obtaining trigger before the merger if the signal-to-
noise ratio (SNR) condition and other consistency conditions are met) in the most natural way.
Admittedly, without the savings made available by FFT, the computational cost of a straightforward
implementation using FIR filters can be formidable. In the correlation calculation, each template
contains a large number of wave cycles, and there exists a large number of templates — and both these
numbers increase dramatically with the lowering of the minimum frequency cutoff fmin (Table 5.1
). This poses serious computational challenge for detecting GWs from compact object coalescence
for future GW detectors.

We propose two techniques that can dramatically increase the computational efficiency for time-
domain searches of GWs from coalescing binaries of compact objects in real-time, and make it feasible
for future detectors with frequency cut-offs at as low as fmin = 3 Hz. The first technique uses the
well-known Infinite Impulse Response, or IIR filters Rabiner & Gold (1975), which can be computed
with much higher efficiency than FIR filters. We propose to filter the data using a bank of IIR
filters, the sum of which approximates each individual binary coalescence waveform template. The
second technique reduces the number of templates by an interpolation technique that applies to the
proposed IIR filter method. In this approach, we first divide the bank of IIR filters associated with
each template into sub-groups, and then reconstruct the filter outputs of a fine template bank by
recombining the filter outputs from each of these sub-groups with appropriate complex coefficients
and time delays. This is similar to the generic multi-band interpolation scheme used in MBTA and
LLOID Buskulic et al. (2010); Cannon et al. (2010, 2011a).

Several conventions are used in this paper. The term latency refers generally to the delay from
the time when a signal arrives at the detector to the time the data containing the signal actually
starts to be analyzed. We specifically focus on the delay starting from the time when the data are
ready to be analyzed. One example of the latency is the delay due to data accumulation before a
Fast Fourier Transformation (FFT) can be performed. The term real time processing means that
data points or data segments are processed (with outputs generated) at a rate that is equal to their
input rate. Floating Point Operation is abbreviated as FLOP (plural FLOPs). FLOPS and flops are
used interchangeably to stand for Floating Point Operations per Second. Throughout this paper, we
follow the convention of counting each real addition and real multiplication equally as one FLOP.

This paper is structured as follows. In Section 5.2 , we briefly review the basics of matched
filtering technique and introduce time-domain IIR filters. In Section 5.3, we use Newtonian-order
templates as an example to construct IIR filters, characterize the error involved and calculate the
computational cost for each individual template. In Section 5.4, we present an interpolation tech-
nique that allows us to use a significantly decreased number of templates for which filter chains must
be implemented. In Section 5.5, we make a simple comparison between the computational cost of
IIR filtering and the straightforward frequency-domain algorithm. In Section 5.6, we summarize our
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main conclusions.

5.2 Matched Filtering Technique

The optimal technique to extract a signal from noisy data when we have reliable theoretical predic-
tions for the signal waveform is to use matched filtering Finn (1992); Cutler & Flanagan (1994). The
output of the matched filtering technique is basically the correlation of data with expected wave-
forms weighted by noise. This can be realized in the frequency or time domain. We will give a brief
overview of the matched filtering technique, and introduce its frequency-domain implementation and
its time-domain approach using the FIR and IIR filters.

5.2.1 Frequency-domain implementation

5.2.1.1 Single template

Suppose the output of the interferometer h is a sum of noise n and, if exists, a signal s:

h = n+ s (5.1)

For the moment, let us assume that s is a single known waveform. In Eq. (5.1), we have intentionally
left out the arguments of the functions h, n, and s, which reflects the point of view that each of
them can be equivalently represented both in the time and frequency domain. More specifically, we
use the following convention for Fourier transform, which relates h(t) and h̃(f) (we shall use tilde
to emphasize a frequency-domain representation):

h̃(f) ≡
∫ ∞
−∞

dtei2πfth(t). (5.2)

The power spectral density of n(t) is denoted by Sh(f), which is defined by

E[ñ(f)ñ∗(f ′)] =
1

2
δ(f − f ′)Sh(f). (5.3)

Here we use one-sided spectral density, E[ ] denotes the expectation value over an ensemble of
realizations of the noise and “∗” denotes complex conjugation. Sh(f) = Sh(|f |) as the noise in the
time domain n(t) is real.

In order to extract s from h, we perform filtering, which consists of taking the inner product
between data h and template u, forming a filter output of y:

y = 〈h|u〉 = 〈s|u〉+ 〈n|u〉 (5.4)

Here we define inner product as

〈a|b〉 ≡ 2

∫ ∞
0

df
ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sh(f)

= 4Re

[∫ ∞
0

ã∗(f)b̃(f)

Sh(f)

]
. (5.5)

In y, we have a signal component 〈s|u〉 and a noise component 〈n|u〉 which fluctuates around zero. If
s has a substantially high amplitude and if the template u is appropriate, the signal component 〈s|u〉
in y will raise to a high value that merely random fluctuation of 〈n|u〉 is very unlikely to account for.
As a consequence, we can impose a threshold on y — an incidence with y higher than the threshold
is viewed as a detection of a signal. The detection efficiency depends on the signal-to-noise ratio
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(SNR) defined generally as

ρ =
y(n = 0)− E[y(s = 0)]

σy(s=0)
, (5.6)

where σy(s=0) is the standard deviation of the filter output when data contain noise only. Assuming
zero-mean Gaussian noise, we have for Eq. (5.4)

ρ ≡ 〈s|u〉√
E[|〈n|u〉|2]

, (5.7)

Note that the SNR does not depend on the normalization of the template u, and it is conventional
to require that 〈u|u〉 = 1. In this case, the cross-correlation of a template with pure noise 〈n|u〉 is a
random variable with zero mean and unity variance. It is easy to show that E[〈n|a〉〈n|b〉] = 〈a|b〉.
So we have

ρ = 〈s|u〉. (5.8)

According to the Cauchy-Schwarz inequality,

ρ =
〈s|u〉√
〈s|s〉

√
〈s|s〉 ≤

√
〈s|s〉, (5.9)

where equal sign takes place when u = λs where λ is a constant, and normalization of u gives
λ = 1/

√
〈s|s〉. This means the optimal SNR is given by the modulus of the signal, 〈s|s〉, and the

reduction of SNR due to imperfectness of template is given by the match, which is also equal to
unity minus mismatch, ε:

〈s|u〉√
〈u|u〉〈s|s〉

≡ 1− ε. (5.10)

5.2.1.2 Intrinsic and extrinsic parameters

In reality, templates are not necessarily placed along each parameter dimension. The maximization
of SNR over certain parameters can be conducted analytically and therefore no templates are needed.
These parameters are called extrinsic parameters, while those that still have to be searched over one
by one are called intrinsic parameters.

As an example, for any generic waveform u(t) = Au0(t − tc)eiφc , where A is a real number, φc
is the phase difference between u(tc) and u0(tc), and tc is its ending time. The ending time tc is an
extrinsic parameter, because as a series of templates u0(t − tc) with a variety of tc are applied to
the data h, the SNR

ρ(tc) = 4 Re

∫ ∞
0

h̃∗(f)ũ0(f)

Sh(|f |) ei2πftcdf (5.11)

can be computed for all tc via a Fast Fourier Transform, which cost O(N logN) FLOPs in the
discretized case where N is the number of data points in the time domain. This is much faster than
computing the correlation for all possible ending times, one by one, which cost O(N2) operation
counts — and in this way ending time tc is converted into an extrinsic parameters. The method of
Fourier transformation will be discussed in detail in subsection 5.5.2. This process dominates the
computational cost for the matched filtering method. Further analytical optimization are known for
the search of the constant phase φc. We assume the process is similar for all methods discussed in
this paper and that its computational cost is negligible.
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5.2.2 Time-domain approach: FIR and IIR method

For the time-domain filtering we need to obtain a time series of SNRs as a function of presumed
signal arrival time t

ρ(t) = 2

∫ ∞
−∞

h̃∗(f)ũ(f)

Sh(|f |) e+i2πftdf

=

∫ +∞

−∞
w(t′)u(t′ − t)dt′ (5.12)

with

w(t) ≡ 2

∫ ∞
−∞

df
h̃(f)

Sh(f)
e−i2πft, (5.13)

which can be thought of as “over-whitened data”; it is a real-valued function of time. Note that
in order to generate the over-whitened data, we need to convolve h(t) with the Inverse Fourier
Transform of 1/Sh(f), which is a time-symmetric, oscillatory function that decays towards zero
when t is much larger than the inverse of the interferometer’s bandwidth (>∼ 100 Hz), which is about
<∼ 10ms. This means the over-whitening process has an inherent latency not much larger than 10ms,
which is negligible compared to the duration of the signal.

We now discretize the filtering algorithm. The discrete form of Eq (5.12) becomes,

ρk =

k∑
j=−∞

wjuj−k∆t, (5.14)

Here we assume tk = k∆t, and that u only have support within t ≤ 0. While in principle the
waveform uk could have an infinite support in time, −∞ < k∆t < 0. However, the waveform u(t) is
always assumed to begin only after its amplitude reaches sensitivity within the LIGO band. Hence
we instead define the waveform to exist on the domain −N∆t ≤ t ≤ 0, and Eq (5.14) becomes,

ρk =

k∑
j=k−N

wjuj−k∆t, (5.15)

This summation of the product of data and template at each step turns out to be the general form
of Finite Impulse Response (FIR) filters. The term finite comes from the fact that the output ρk of
the filter (its response) will become exactly zero after N time steps have passed since a single initial
impulse in the data. For example, if we assume w0 = 1, wk = 0 for k 6= 0, then ρk will vanish for
k > N . As seen from Eq. (5.15), each ρk costs N multiplications and N additions to calculate. This
translates into a computational cost, in terms of FLOPs per unit time, of ∼ N/∆t.

For certain types of waveforms, Infinite Impulse Response (IIR) filters can be used to dramatically
reduce computational cost. The simplest IIR filter is a first-order recursive algorithm, in which the
k-th output yk is a linear combination of the (k − 1)-th output, yk−1 and the k-th data, wk:

yk = e−(γ−iΩ)∆tyk−1 + wk∆t, (5.16)

where γ,Ω are real-valued constants with γ > 0 to ensure stable solutions. It can be shown that,
e.g., by using tools of Z-transform Oppenheim & Schafer (1975), as long as wk does not diverge
towards k → −∞, then even if the recursion starts at a finite time step, after an initial transient of
several times 1/γ, the output of the filter achieves a steady state of

yk =

k∑
j=−∞

wje
(γ−iΩ)(j−k)∆t∆t. (5.17)
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Note this is the discretized version of the continuous integration

y(t) =

∫ ∞
−∞

w(t′)e(γ−iΩ)(t′−t)Θ(t− t′)dt′. (5.18)

Note first that Eq. (5.17) indeed gives an infinite impulse response, because for a data series con-
taining only one impulse, w0 = 1 and wk = 0 (k 6= 0), the output of the filter, even at very late time
steps, never vanishes. More over, by comparing this with Eq. (5.12), the IIR filter can be viewed as
a template of a damped sinusoid:

u(t) = e(γ+iΩ)tΘ(−t), (5.19)

where Θ(t) is the Heaviside function

Θ(t) =

 0, t ≤ 0;

1, t ≥ 0.
(5.20)

The IIR filter described above requires only one complex multiplication and one summation per
sampling time, which means the computational cost is ∼ 1/∆t.

For a simple proof of concept on the computational efficiency of the IIR over the FIR filtering
technique, we examine the case when we do need to filter for a damped sinusoid signal with frequency
Ω and decay rate γ. The data to be filtered has a duration of at least on the order of 1/γ. The
Nyquist sampling theorem limits the sampling interval to be at most ∼ 1/Ω, meaning that the FIR
template would have the number of data points several times larger than Ω/γ. Subsequently the
computational cost of the FIR in FLOPs per unit time is larger than Ω2/γ. An IIR filter, on the
other hand, only has a cost of Ω, which means the cost of IIR filter is γ/Ω ∼ 1/Q times that of FIR
filter, where Q ≡ Ω/γ is the quality factor of the damped sinusoid. As a consequence, if we can
convert our waveforms into a sum of a series of of high-Q damped sinusoids, IIR filters can be used
over the FIR to dramatically reduce the computational cost.

5.3 Construction of IIR filters for an Individual Inspiral Wave-
form

The simple IIR filter discussed in the previous section has the special waveform of a decaying sinusoid
[Cf. Eq. (5.19)]. In this section, we will show that a chain of IIR filters can be used to “piece together”
the waveforms of compact binary coalescence. This is possible because these waveforms are basically
sinusoids with slowly varying amplitude and frequency. For simplicity, in this paper, we will restrict
ourselves to Newtonian Chirps.

5.3.1 The Newtonian chirp waveform

The Newtonian-chirp is the leading-order waveform from a compact coalescing binary. In the time
domain it can be written as the real part of the complex expression (see, e.g., Cutler & Flanagan
(1994), Sec. C),

u(t) ∝ (tc − t)−1/4e−i2(5Mc)
−5/8(tc−t)5/8+iφc ≡ A(t)eiΦ(t) (5.21)

where we follow the convention of the Planck unit that sets gravitational constant G = 1 and the
speed of light, c = 1, Mc is the chirp mass of the binary,

Mc = Mη3/5 (5.22)

which depends on the total mass of the binary M and η ≡ m1m2/M
2, the symmetric mass ratio.

The signal finishes at the ending time tc, and φc is the constant phase at the end time. Here we have
ignored time-independent factors of proportionality in the amplitude, which do not affect template
construction.
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We have assigned real-valued functions A(t) and Φ(t) to denote the amplitude and phase of the
waveform. Although the actual waveform is the real part of u(t), we have intentionally kept its
complex form, because the imaginary part of u(t) represents the waveform of a binary with a phase
shift of π/2 from the real part— therefore the real and imaginary parts together form a basis for the
linear space of signals of all phases. This is a feature of all adiabatic waveforms, which satisfy

Ȧ/(ΩA)� 1, Ω̇/Ω2 � 1. (5.23)

In other words, the amplitude A(t) and angular frequency Φ̇(t) both evolve at rates much slower
than the instantaneous frequency Φ̇. This allows us to use the Stationary Phase Approximation
(SPA) to compute the Fourier Transform of the waveform in Eq. (5.21),

ũ(f) ∝ f−7/6ei(Af
−5/3+2πftc+φc−π/4), f > 0 , (5.24)

where

A =
3

4
(8πMc)

−5/3 (5.25)

is the intrinsic parameter we need to search for in the case of Newtonian chirp. Note that when
we Fourier-transform the complex signal of Eq. (5.21), there is only positive-frequency component,
with ũ(f) = 0 for f < 0. On the other hand, if we took the real part of the signal, we would have
ũ(−f) = ũ∗(f) for f > 0.

The duration of a coalescence GW signal can be well approximated as a function of chirp mass
Mc (Eq. (5.22)) and the detector’s minimum cut-off frequency fmin,

T (Mc, fmin) =
647013

(fmin/Hz)8/3(Mc/M�)5/3
s. (5.26)

One can see that for a fixed fmin, the longest signal duration corresponds to the smallest chirp mass.
The sample signal durations for the initial, advanced and future GW detectors of various fmin can
be found in Table 5.1, column 3. It is shown that GWs from a canonical (1.4+1.4)M� NS-NS binary
system will have a duration 40 times longer for advanced detectors, and possibly 10000 time longer
for the future ET detector than that of the initial detector.

5.3.2 An IIR filter chain

The adiabatic condition in Eq. (5.23) also implies that the waveform can be divided into constant-
frequency intervals: within each interval it can be approximated as a sinusoid with constant fre-
quency, while neighboring intervals have slightly different frequencies. This further indicates that
we can attempt to write the entire waveform into the sum of a series of damped sinusoids: the fre-
quency of each sinusoid corresponds to a constant-frequency interval, the ending time of the sinusoid
corresponds to the ending time of this constant-frequency interval, while the decay time should be
comparable to the length of the constant-frequency interval. The amplitude of the decaying sinusoid
can be set to be comparable to the amplitude of the original waveform during the corresponding
constant-frequency interval.

Mathematically, our target is therefore to approximate the signal template u(t) with the sum of
a chain of IIR filters [Cf. Eq. (5.19)], which we denote by U(t):

U(t) ≡
M∑
l=1

Ble
(γl−iΩl)(t−tl)Θ(tl − t). (5.27)

Here the chain consists of M filters; for filter l (1 ≤ l ≤ M), Bl is the amplitude of the filter l, Ωl
and γl are the angular frequency and decay rate, and tl is its ending time.

As a first step, let us determine the relevant portion of the signal that we need to approximate:
this is bounded by the low frequency cut-off fmin, below which the chirp only contributes negligible
signal-to-noise ratio, as well as the high frequency cut-off fmax. The minimum frequency fmin is
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normally determined by the seismic wall of the detector which is set to be 40 Hz for initial LIGO,
10 Hz for Advanced LIGO, and might extend to lower frequencies in future detectors, such as the
Einstein Telescope (ET). The maximum frequency fmax is either determined by the end of the
Newtonian chirp or the upper end of the detection band. In this paper we set fmax = 2000 Hz.

Now suppose our Newtonian chirp has a particular value for the intrinsic parameter A, and
tc = 0, φc = 0. Let us define t0 ≡ tini as the time at which the instantaneous frequency of the
waveform is equal to fmin (which means |t0| = −t0 is the duration of the Newtonian chirp from fini

to coalescence), and incrementally define

tl = tl−1 + Tl ,

∣∣∣∣12Φ̈(tl)T
2
l

∣∣∣∣ = ε� 1 , l = 1, 2, . . . (5.28)

until we reach tM , which corresponds to a frequency at or beyond fmax. These intervals,

[t0, t1], [t1, t2], . . . , [tM−1, tM ] (5.29)

will be the constant-frequency intervals described previously. The parameter ε should be substan-
tially less than unity, so that the phase error caused by assuming a constant frequency is significantly
less than one radian.

For t ∈ [tl−1, tl], we expand Φ(t) at t∗ = tl−αTl (where α is an ad hoc parameter to be adjusted
later)

Φ(t) ' Φ(t∗l ) + Φ̇(t∗l )(t− t∗l ) +
1

2
Φ̈(t∗l )(t− tl)2 (5.30)

such that the first term is a constant phase, the second term gives a single angular frequency of
Φ̇(t∗l ), while the third term gives the error of a single-frequency approximation, which will be small

if ε is small enough in Eq. (5.28). We will then use Ωl ≡ −Φ̇(t∗l ) as the oscillation frequency of the
IIR filter assigned for this constant-frequency interval, and prescribe a complex amplitude of

Bl ≡ A(t∗l )e
iΦ(t∗l )−iΩl(tl−t∗l ) . (5.31)

These will assemble into

Ble
−iΩl(t−tl) = A(t∗l )e

iΦ(t∗l )+iΦ̇(t∗l )(t−t∗l )

≈ A(t)eiΦ(t), tl−1 ≤ t ≤ tl . (5.32)

We must still add a Heaviside function and a damping component to modify (5.32) into a form
realizable by an IIR filter. Since the validity of (5.32) is between tl−1 and tl, it is natural to have
the Heaviside function cut off values for t > tl, and to have the damping component have a time
constant comparable to Tl, which gradually cuts off the filter at t <∼ tl−1. Prescribing

γl = ζ/Tl , (5.33)

with ζ yet another ad hoc parameter, we write

Ul(t;A, tc = 0, φc = 0)

≡ Ble
−iΩl(t−tl)−γl(tl−t)Θ(tl − t) (5.34)

which is our IIR filter for interval l, for chirps with parameters A, tc = 0, φ = 0. Summing over all
Ul, we obtain an IIR chain that approximates the entire complex chirp signal:

U(t;A, tc = 0, φc = 0) =

M∑
l=1

Ul(t;A, tc = 0, φc = 0). (5.35)

If the sum of the complex filter chain U(t) indeed approximates the complex chirp signal u(t)
[Cf. Eq. (5.21)], then the real and imaginary parts of the output from the filter chain will be good
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approximations for filtering chirps with φc = 0 and π/2, respectively.
For non-zero tc, we will have to apply

U(t;A, tc, φc = 0) ≡ U(t− tc;A, tc = 0, φc = 0) (5.36)

Note that having Heaviside Function Θ(t− tc − tl) within Ul means we have to collect the IIR filter
result of filter l at tl + tc. The fact that all tl are negative means all results are obtained before the
coalescence (which happens at tc) and hence IIR filtering itself causes no latency — except for the
small latency due to over-whitening, as stated previously (sec. 5.2.2)

5.3.3 Filtering for general signal phases and goodness of match

Since the construction of the IIR filter chain is of an ad hoc nature, we must test how well the
resulting IIR filter chain U can approximate the original signal u. A natural candidate would be
imposing that the match between the signal u and the template U

ρcplx =
|〈u|U〉|√
〈u|u〉〈U |U〉

(5.37)

must be close to unity.
However, this needs to be connected to the signal-to-noise ratio achievable by IIR filtering. For

doing so, we must first elaborate how to use the output of the complex IIR filtering to recover signals
with arbitrary phases. If we write

u ≡ ur + iui (5.38)

with ur,i represent the real and imaginary parts of u in the time domain, and similarly,

U ≡ Ur + iUi , (5.39)

then the true signal of arbitrary phase is a linear combination of ur and ui written as A1ur +A2ui,
and we should use a linear combination of the real and imaginary parts of U , namely B1Ur +B2Ui
as the search template. For any particular coefficients A1,2, the optimal overlap is given by

ρIIR(A1, A2) = maxB1,2

〈A1ur +A2ui|B1Ur +B2Ui〉√
〈B1Ur +B2Ui|B1Ur +B2Ui〉

(5.40)

The worst-case scenario is given by a minimization over (A1, A2):

ρworst
IIR = minA1,A2

ρIIR(A1, A2)√
〈A1ur +A2ui|A1ur +A2ui〉

. (5.41)

In fact, when the signal and the template are both highly adiabatic, it can be shown that ρIIR(A1, A2)
is approximately independent of A1,2, and that to a very good accuracy:

ρcplx ≈ ρworst
IIR . (5.42)

Eq. (5.41) is therefore used to calculate the goodness of the match of the IIR filter chain.

5.3.4 Implementation for (1.4 + 1.4)M� binaries and initial LIGO

We first apply the prescription described in Sec. 5.3.2 to construct an IIR filter chain for (1.4+1.4)M�
binaries for initial LIGO and use Eq. (5.41) to test their overlap with the true signals. We choose
(by hand) α = 2.3, ε = 0.269 and ζ = 4, an overlap of 0.99 is achieved with NIIR = 200 IIR filters.

We next estimate the computational cost required by such IIR filtering. We focus on the floating
point operation count per unit time required to generate complex outputs from the sum of individual
IIR filter outputs of Eq. (5.16). Here we assume the maximum sample rate for compact-binary
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PPPPPPPPType

Rate Sk (s−1) 16 32 64 128 256 512 1024 2048 4096 8192
Ntot

Total
f/Hz 2 – 4 4 – 8 8 – 16 16 – 32 32 – 64 64 – 128 128 – 256 256 – 512 512 – 1024 >1024 Cost

iLIGO
FIR

NFIR,k 4547 3062 965 304 96 30
9004 20CFIR,k 4.7 6.3 4.0 2.5 1.6 1.0

IIR
NIIR,k 71 62 34 19 10 4

200 2.4CIIR 0.22 0.38 0.42 0.47 0.49 0.39

aLIGO
FIR

NFIR,k 45835 30868 9723 3062 965 304 96 30
90883 53CFIR,k 11.7 15.8 10.0 6.3 4.0 2.5 1.6 1.0

IIR
NIIR,k 220 198 111 62 34 19 10 4

658 3.0CIIR 0.17 0.30 0.34 0.38 0.42 0.47 0.49 0.39

ETB

FIR
NFIR,k 213010 311130 98000 30868 9723 3062 965 304 96 40

667198 120CFIR,k 13.6 39.8 25.1 15.8 10.0 6.3 4.0 2.5 1.6 1.0

IIR
NIIR,k 392 631 353 198 111 62 34 19 11 3

1814 3.3CIIR 0.08 0.24 0.27 0.30 0.34 0.38 0.42 0.47 0.54 0.29

Table 5.2 Break-down of number of filters and computational cost (over successive two-fold down-
sampling channels) of multi-rate FIR and IIR filtering, of a single template for a (1.4+1.4)M� binary
for initial, Advanced LIGO and the Einstein Telescope. See text in Sec. 5.3.4. Here computational
costs for each type of filtering and for different sampling channels are calculated using Eqs. (5.44)–
(5.47), with numerical values quoted in units of MFLOPS or 106 FLOPS. The minimum overlap is
0.99.

coalescence data analysis is 8192 Hz, with 2× down-sampling applied successively to provide channels
with sample rates of 4096 Hz, 2048 Hz, . . . , 256 Hz. The IIR filter bank is divided into 6 groups,
each corresponding to a frequency band of 2k+5–2k+6 Hz, for k = 0, 1, ..., 5. For filters in group k,
we assume they are applied to the channel with sample rate of

Sk = 2k+8 Hz . (5.43)

In Table 5.2, we list the actual number of IIR filters required to achieve a minimum overlap of 0.99 at
different frequency band with downsampling technique. For comparison, we list the corresponding
numbers for the FIR method also applied with downsampling technique.

At each time step, each IIR filter needs to perform a total of 12 real-number multiplications and
additions namely: 4 real-number multiplications plus 2 real-number additions for multiplying the
current output by the complex recursive coefficient, 2 real-number multiplications for multiplying
data (second term in Eq. (5.16)) with a complex normalization coefficient to yield proper SNR
output, 2 real-number additions for combining the previous two products, while finally 2 real-number
additions for adding the result of this filter into the total output.

If we ignore costs for down- and up-sampling, which are performed relatively rarely, the total
computational cost for initial-LIGO filters in Table 5.2 is

CIIR =

5∑
k=0

12SkNIIR,k ' 2.4× 106flops. (5.44)

On the other hand, if we carry out the same down sampling scheme for FIR filtering, the number
of points in group 0 will be

NFIR,0 = S0 · [t(64 Hz)− tini] (5.45)

where t(64 Hz) is the time at which the instantaneous frequency is 64 Hz. For k = 1, 2, 3, . . . 5, we
have

NFIR,k = Sk ·
[
t(2k+6 Hz)− t(2k+5 Hz)

]
(5.46)

At sample rate Sk, for each time step, we have to perform two real-valued correlations with array
length NFIR k, which cost 4NFIR,k floating point operations. The total computational cost of FIR
filtering is therefore

CFIR =

5∑
k=0

4SkNFIR,k ' 2.0× 107flops. (5.47)
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Figure 5.1 Theoretical (dashed curves) and numerical (labeled by “+”’s) scaling of the computational
cost with fmin for the FIR (red color) and IIR (blue color) method for one template, fixing fmax =
2000 Hz. The theoretical scaling is based on Eqs. (5.49) and (5.51) (see Sec. 5.3.5.2), numerical
values are taken from Table 5.2, column 15.

This is nearly 8 times the cost of the IIR filter method assuming downsampling technique applied
to both filtering methods. The result of above cost estimation for the IIR and FIR filtering are
also listed in Table 5.2. We will show in the next subsections that the improvement is much more
significant for advanced detectors as they venture into lower frequencies.

5.3.5 Dependence on initial frequency and future detectors

As initial frequency fmin is lowered in future gravitational-wave detectors, we anticipate much longer
signals (see Table 5.1), and therefore a possibly dramatic increase of computational cost. In this
subsection, we will first obtain analytical scalings in IIR and FIR computational costs, assuming an
idealized down-sampling scheme. We will then provide more realistic estimates of cost by construct-
ing actual IIR filters and adopting the same successive 2× down-sampling strategy.

5.3.5.1 Analytical estimates

Ideally, the minimum sample rate is twice the instantaneous frequency of the signal, or S = 2f . For
FIR filters, we have

NFIR ≥ 2Ncyc ∼
∫ tc

tini

Ωdt =

∫
Ω

Ω̇
dΩ ∼ f−5/3

min . (5.48)

Converting the summation Eq. (5.47) into integral, we obtain:

CFIR ∼
∫

ΩdNFIR ∼ f−2/3
min . (5.49)

For IIR filters, during a dephasing time of T =
√

2ε/Ω̇, we use one filter ∆NIIR = 1 and

∆Ω = Ω̇T =
√

2εΩ̇, which leads to

NIIR =

∫
dΩ

dNIIR

dΩ
=

∫
dΩ√
2εΩ̇

∼ f−5/6
min . (5.50)
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The computational cost of IIR filtering is

CIIR ∼
∫

ΩdNIIR ∼ f1/6
max − f1/6

min. (5.51)

Note that for IIR filtering, the positive power law means the computational cost scales predominantly
with the higher cut-off frequency, instead of the lower cut-off frequency — we therefore expect the
computational cost not to increase dramatically when fmin is lowered, if we already have fmax �
fmin.

5.3.5.2 Numerical estimates

More detailed constructions for Advanced LIGO and Einstein Telescope (ET) have been carried
out, following Sec. 5.3.4, assuming fmin = 10 Hz for Advanced LIGO and 3 Hz for ET. Assuming the
same successive 2× down-sampling strategy, we evaluate the single template computational cost for
(1.4 + 1.4)M� binaries for both FIR and IIR filtering. As it turns out, using the same ε = 0.269,
but (α, ζ) = (2.5, 4.25) for Advanced LIGO and (α, ζ) = (2.25, 4.5) for ET, will still give us match
above 0.99.

The number of filters in each down-sampling band, as well as computational cost break-down
for a single template are shown in the second and third tiers of Table 5.2, for Advanced LIGO and
ET, respectively. We also compare our numerical values with scaling laws predicted in Eqs. (5.49)
and (5.51), which are plotted in dashed curves in Fig. 5.1. [We determined the normalization of the
theoretical formulas using numerical values of computational cost at fmin = 40 Hz.] The agreement
is remarkable, especially considering that our successive 2-fold down-sampling is not continuous, and
therefore rather non-ideal.

As we can see from Table 5.2 and Fig. 5.1, the IIR reduces computational cost from (multi-rate)
FIR filtering by factor of 8 for initial LIGO. As we move to lower starting frequencies, the saving
factor increases to 18 and 40, respectively. The single-template cost, even when we extrapolate fmin

to the rather unlikely 1 Hz, stays at several MFLOPS.

5.4 Interpolation between IIR filters of Different Inspiral
Waveforms

In order to search for all possible kinds of compact binary coalescence, we must match the signal
with a family of templates parametrized continuously by the parameters of the binary, e.g., their
masses. In practice, although maximization of match over certain parameters (e.g., orbital phase of
the binary) can be done analytically, for the rest of the parameters, we must sample them discretely,
and build a template bank — and match the signal with each member of the bank. The density
of the discretization is usually determined by imposing that each member of the continuous family
can be approximated well enough by at least one member of the bank, with mismatch less than a
maximum tolerable value, εmax.

For advanced detectors, the number of templates can be as large as 105 Owen & Sathyaprakash
(1999) posing a significant computational challenges. Interpolation strategies have therefore been
conceived (e.g., Croce et al. (2000b,a); Mitra et al. (2005); Field et al. (2011)) to reduce the number
of templates, based on the fact that signal-to-noise ratio is a continuous function of the parameters
being searched over. More specifically, if we refer to the bank constructed by imposing the maximum
tolerance of mismatch εmax as the fine bank, then the hope is that even if match is calculated for a
coarse bank in which parameters are less densely populated, the signal-to-noise ratio of the fine bank
can still be recovered by interpolation, in such a way that the total cost of computing coarse-bank
SNRs plus interpolating fine-bank SNRs is less than the cost of directly computing fine-bank SNRs.

Our interpolation method differs from previous work in that we divide each coarse-bank template
into several sub-templates in frequency (thus time) domain, and recover fine-bank SNRs using SNRs
from the sub-templates. This approach has been inspired by the SVD approach Cannon et al. (2010,
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2011a) adopted by the LLOID Cannon et al. (2011c) and the 2-bank interpolation in MBTA Buskulic
et al. (2010) methods. We will show that, although the division into sub-templates increases the
cost of recombination, it allows a much coarser bank — and finally decreases the computational cost
by a large factor.

5.4.1 Template banks in general

To develop a scheme to discretize the parameter space without losing detection efficiency, we must
know how much the SNR is reduced by using a template whose parameter values differ from those of
the signal. We define the mismatch between two normalized templates of different sets of parameters
as

ε ≡ 1− 〈u(λ)|u(λ′)〉. (5.52)

The template u is specified by a parameter vector λ. If λ′ is near to λ, we can Taylor expand ε at
λ and have the approximation to second order of ∆λ ≡ λ′ − λ as

ε ' 1

2

∂2ε

∂λi∂λj

∣∣∣∣
∆λ=0

∆λi∆λj , (5.53)

from which we define a (positive definite) metric in the parameter space

γij ≡
1

2

∂2ε

∂λi∂λj

∣∣∣∣
∆λ=0

. (5.54)

Equations (5.53) and (5.54) indicates that mismatch between neighboring points in the parameter
space can be viewed as distance measured by metric γ.

Suppose we would like to place a template bank in a D-dimensional parameter space, with a
mismatch no higher than ε, then the most straightforward strategy would be laying down a cubic
grid with proper side length dl measured by the metric γij , such that template placed at each grid
point will be able to cover a cube whose vertices are centers of neighboring cubes. This means we
have

D(dl/2)2 = ε . (5.55)

The volume spanned by each cube (according to metric γij) is therefore

∆V = dlD = (2
√
ε/D)D. (5.56)

The total number of templates in the bank would be the total volume of the parameter space divided
by the volume of each cell, or

N =
Vtot

∆V
=

∫
dDλ

√
det‖γij‖

(2
√
ε/D)D

(5.57)

5.4.2 Newtonian chirps

Through the Stationary-Phase Approximation Sathyaprakash & Dhurandhar (1991), the Fourier
Transform of a Newtonian Chirp can be written as

ũ(f ;A, tc, φc) ∝ f−7/6ei(Af
−5/3+2πftc+φc), f > 0 , (5.58)
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and ũ(f) = ũ∗(−f) for f < 0. The mismatch between two neighboring templates with parameters
(A, tc, φ0) and (A+ ∆A, tc + ∆tc, φc + ∆φ0) can be written as

ε(∆A,∆tc,∆φ0) = 1−

∫ fmax

fmin

f−7/3 cos ∆Φ

Sh(f)
df∫ fmax

fmin

f−7/3

Sh(f)
df

(5.59)

where
∆Φ = f−5/3∆A+ 2πf∆tc + ∆φc (5.60)

Expanding Eq. (5.59) up to second order in ∆Φ, we obtain by comparing with Eqs. (5.53) and
(5.54) the metric

‖γij‖ =

 I(− 17
3 ) I(−3) I(−4)
∗ I(− 1

3 ) I(− 4
3 )

∗ ∗ I(− 7
3 )

 , (5.61)

where “∗” indicates terms obtainable by symmetry, and

I(β) =
1

2

[∫ fmax

fmin

df
fβ

Sh(f)

]/[∫ fmax

fmin

df
f−7/3

Sh(f)

]
, (5.62)

and we have used i = 1, 2, 3 to label ∆A, 2π∆tc and ∆φc, respectively. Note the metric depends on
the frequency division and noise spectral density only.

Here among the three parameters, search over φc is done analytically, as discussed in Sec. 5.3.3,
while search over tc is carried out systematically at the sample rate — the only parameter left to
discretize is A. Therefore, A is an intrinsic parameter as described previously. The correct way to
place templates along intrinsic parameter directions is to “project out” the intrinsic parameters, as
discussed, e.g., by Owen and Sathyaprakash Owen & Sathyaprakash (1999).

In our case, the projected metric along direction A is one dimensional given by

g11 = γ11 −
γ2

13γ22 − 2γ12γ13γ23 + γ2
12γ33

γ22γ33 − γ2
23

(5.63)

which depends on fmin, fmax and the noise curve Sh through I(β). Following Eq. (5.57), the number
of templates required to achieve a mismatch ε is then

N =

√
g11(Amax −Amin)

2
√
ε

, (5.64)

where Amin and Amax are the minimum and maximum values of A. Here we can be more specific
about template placement along the A direction. Given any A, which is associated with a member
of the template bank, and suppose its mismatch with a neighboring template with A±∆A is εmax,
or

g11(∆A)2 = εmax (5.65)

then neighboring templates should be placed at A± 2∆A, therefore we have

N =
Amax −Amin

2∆A
(5.66)

which recovers Eq. (5.64).
Here we give the noise spectral density we use for initial LIGO, Advanced LIGO, and Einstein

Telescope (ETB). For the initial LIGO Abbott et al. (2009), we have x = f/(150 Hz) and

Sh(f) = 9 · 10−46
[
(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2

]
. (5.67)



56

For Advanced LIGO LIGO Scientific Collaboration (2009), we have x = f/(215 Hz) and

Sh(f) = 10−49

[
x−4.14 − 5x−2 + 111

1− x2 + 1
2x

4

1 + 1
2x

2

]
. (5.68)

Note this is different from what is used in Cannon et al. (2011c). As a result, two methods are dealing
with different number of templates for the same parameter space. This should be taken into account
when we compare the computational cost of the two methods. For the Einstein Telescope The ET
Science Team (2011), we have x = f/(100 Hz) and√

Sh(f) = 10−25
(

2.39× 10−27x−15.64 + 0.349x−2.145

+ 1.76x−0.12 + 0.409x1.10
)
. (5.69)

Applying Eqs. (5.64) and (5.65) to these three detectors, we can show that the number of
templates increase by a factor of 3.9 when we upgrade from initial to Advanced LIGO, and another
factor of 4.4 when we upgrade from Advanced LIGO to the Einstein Telescope. These numbers are
listed in Table 5.1, column 5.

5.4.3 Subtemplates

5.4.3.1 General discussion

Now suppose we divide our entire signal frequency interval, (fmin, fmax) into M segments of

[f0, f1], [f1, f2], . . . , [fM−1, fM ], (5.70)

with f0 = fmin and fn = fmax. (When we later apply this to IIR filter chains, M will be much less
than the total number of filters, N .) For any template u, we define sub-template uJ , J = 1, . . .M ,
to have the same value as template u within the frequency interval [fJ−1, fJ ] but have zero values
elsewhere,

ũJ(f) =

 ũ(f), fJ−1 ≤ f ≤ fJ ,

0, otherwise.
(5.71)

Now let us consider two neighboring templates, u and v, their J th-sub-innerproduct can be naturally
defined as an integral over frequency segment J :

〈u|v〉J ≡ 〈uJ |vJ〉 = 4Re

[∫ fJ

fJ−1

df
ũ∗(f)ṽ(f)

Sh(f)

]
. (5.72)

This sub-innerproduct can also be regarded as the contribution to the full inner product 〈u|v〉 from
segment J [Cf. Eq. (5.5)], and

〈u|v〉 =

M∑
J=1

〈u|v〉J (5.73)

We denote u and u + ∆u as neighboring templates, and we also define their J th-sub-mismatch
specific to interval J , in the intrinsic parameter space, as

εJ ≡ 1− 〈u|u+ ∆u〉J√
〈u|u〉J〈u+ ∆u|u+ ∆u〉J

, (5.74)

which is equal to the “ordinary” mismatch between uJ and uJ + ∆uJ as defined in Eq. (5.52). Up
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to second order in ∆u, we can show that the total mismatch and the J th-sub-mismatch are

ε =
1

2

〈∆u|∆u〉
〈u|u〉 (5.75)

εJ =
1

2

〈∆u|∆u〉J
〈u|u〉J

(5.76)

Using Eq. (5.73), we can show that

ε =

M∑
J=1

εJ
〈u|u〉J
〈u|u〉 . (5.77)

Since
M∑
J=1

〈u|u〉J
〈u|u〉 = 1, (5.78)

the overall mismatch is therefore a weighted average of the sub-mismatches. This means to achieve
an overall mismatch of ε, we only need to make sure the sub-mismatches εJ average to ε. This
has dramatic implications in the sense that it allows the overall mismatch to be maintained by (1)
dividing the frequency band into several frequency intervals with non-uniform sub-mismatches, (2)
reducing the size of frequency intervals to allow larger step size for intrinsic parameters. These lay
the foundation for our template interpolation method.

2 5 10 20 50
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Figure 5.2 Illustration of the phase function Φ(f) vs frequency for the presumed parameter A (blue
solid line) and its neighboring parameter A+∆A (red line), the linear shift of the blue line to match
the red line (green dashed line), and a piecewise approximation (black dashed line) of the red line
by shifting segments from the blue line. It shows that with smaller frequency intervals, it is easier
to match phases arising from different intrinsic parameters.

To qualitatively understand the reason that the grid size for intrinsic parameter placement can be
enlarged when we restrict ourselves to smaller frequency intervals, we first note that in the frequency
domain, it is the phase that we need to match, while the amplitude as a function of frequency is the
same for all parameters. We note that the phase of ũ(f), which we denote by Φ(f), is determined
by A, as well as tc and φc (Eq. (5.58)). In Fig. 5.2, we plot the phase Φ(f) for a particular set of
parameters (A, tc, φc) in blue and also for a neighboring set of parameters (A + ∆A, tc, φc) in red.
If we were to use the template with parameter A to search for a signal with parameter A+ ∆A, we
could shift φc and tc used in the search, which corresponds to shifting the blue curve by a linear
function in frequency. The green dashed line illustrates a reasonably optimal attempt — yet the
difference between the green curve and the red curve cannot be reconciled very well due to the
fact that linear functions do not correct for curvature. However, if we divide the frequency range
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into several intervals, and allow different values of ∆tc and ∆φc to be applied to each interval,
then sub-templates with A can achieve rather low sub-mismatches with signal with A + ∆A. This
corresponds to the fact that a curve can be better approximated by straight lines when divided into
smaller intervals.

5.4.3.2 Newtonian chirp in the frequency domain

Let us now focus on a particular frequency segment J , with fJ−1 ≤ f ≤ fJ , and work out the
relation between ∆A and εJ , as ∆φc and ∆tc are allowed to readjust their values (to be different
from other segments). This simply requires us to repeat the procedure in Sec. 5.4.2 for each segment:
with ∆A, ∆tc and ∆φc, we have the J th-sub-mismatch of

εJ =
[

∆A 2π∆tc ∆φc
]
γJ

 ∆A
2π∆tc
∆φc

 (5.79)

with

γJ ≡

 IJ(− 17
3 ) IJ(−3) Ij(−4)
∗ IJ(− 1

3 ) Ij(− 4
3 )

∗ ∗ IJ(− 7
3 )

 . (5.80)

and

IJ(β) ≡ 1

2

[∫ fJ

fJ−1

dffβ

Sh(f)

]/[∫ fJ

fJ−1

df f−7/3

Sh(f)

]
. (5.81)

Note that the above are identical to Eqs. (5.59)– (5.61), except with integrations restricted to the
interval of [fJ−1, fJ ].

The next step is similar to the “projection” process described by Owen and Sathyaprakash,
but restricted to interval J . With Eq. (5.79), we ask the following question: if we are allowed
to freely re-adjust individually the values of ∆tc and ∆φc for interval J of the template (i.e., the
J th-subtemplate), what would be the J th-sub-mismatch achievable for ∆A, and what should the
corresponding ∆φc and ∆tc be.

The answer to the question is readily obtainable by a maximization of the mismatch ε over ∆tc
and ∆φc, fixing ∆A. This results in adjustments of[

2π∆tJc
∆φJc

]
= −

[
γJ22 γJ23

γJ32 γJ33

]−1 [
γJ12

γJ13

]
∆A (5.82)

which result in the J th sub-mismatch of

εJ = gJ11(∆A)2 , (5.83)

with

gJ11 ≡ γJ11 −
[γJ13]2γJ22 − 2γJ12γ

J
13γ

J
23 + [γJ12]2γJ33

γJ22γ
J
33 − [γJ23]2

. (5.84)

Following Eq. (5.77), we have the total mismatch

ε = geff
11 (∆A)2 , (5.85)

where

geff
11 =

∑
J

gJ11〈u|u〉J
〈u|u〉 (5.86)

is an effective metric coefficient for any division of the frequency band. More specifically, geff
11

describes the mismatch achievable by individually adjusting ∆φJc and ∆tJc , for each interval of the
division. It can be shown that in general a finer division of frequency intervals always gives a smaller
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geff
11 . As a consequence, if we define

∆Acb =

√
εmax

geff
11

, (5.87)

with the subscript “cb” indicating coarse bank, then ∆Acb will be greater than ∆A given by
Eq. (5.65) where g11 is evaluated using the full frequency band. In order to make a distinction,
we shall rewrite that same equation as

∆Afb =

√
εmax

g11
, (5.88)

but adding a subscript “fb” to indicate the fine bank. In order to maximize ∆Acb for a maximum
mismatch εmax, we should simply minimize geff

11 globally, over all possible frequency division schemes.
Because a template at A in the fine bank covers (A−∆Afb, A+ ∆Afb), the ratio of the number of
templates in the coarse bank to that of the fine bank is,

Ncb

Nfb
=

√
geff

11

g11
(5.89)

In summary, given a required maximum mismatch εmax with a particular frequency subdivision,
by adjusting ∆φJc and ∆tJc individually, a single template at A can cover the region (A−∆Acb, A+
∆Acb). For a signal with |∆A| ≤ ∆Acb, the J th-sub-template for parameter A + ∆A can be
constructed by adjusting ∆tJc and ∆φJc of the sub-template of template A using Eq. (5.82). The
interpolated template of parameter A + ∆A is therefore the sum of the constructed sub-templates
from a coarse-bank template A

ũ(f ;A+ ∆A, tc, φc)

=

M∑
J=1

ũj(f ;A, tc + ∆tJc (∆A), φc + ∆φJc (∆A))

=

M∑
J=1

ũj(f ;A, tc, φc)e
i2πf∆tJc (∆A)+i∆φJc (∆A). (5.90)

It is straightforward to establish the following properties of the effective metric: (i) geff
11 al-

ways becomes smaller when we insert one or more dividing frequencies into an existing division
of [fmin, fmax], (ii) if we continue to decrease the maximum size of intervals, we can decrease geff

11

indefinitely [in fact, for small intervals, gJ11 scales as (∆f)5, which means geff
11 should scale as (∆f)4,

and hence ∆A scales as (∆f)−2]. Furthermore, for template families with more than one parameter,
it is straightforward to generalize our result to

geff
ab =

∑
J

gJab〈u|u〉J
〈u|u〉 (5.91)

with the number of templates in the coarse bank given by

Ncb

Nfb
=

√
det‖geff

ab ‖
det‖gab‖

(5.92)

5.4.4 Application to IIR filtering technique

In this section, we will apply the formalism developed in the previous subsection and discuss how we
can implement IIR filter chains only for a much coarser bank of templates — while still obtaining
SNRs for the entire fine template bank. Discussions made in the previous sections, although strictly
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data

IIR filtering
(coarse bank only)
p=1,2,...,Ncb

reconstruction
(all fine bank members)
q=±1,...,±Nfb/(2Ncb)

filter result for

...
...

...
...

...
...

...
...

...
...

...
...

Figure 5.3 Schematic diagram of the IIR filtering process for a template with parameter A+p∆Acb +
q∆Afb. The first part is the IIR filtering for a member of the coarse bank, A+p∆Acb, which produces
a range of filter outputs, labeled by U1 . . .UlM . These are grouped into M groups of summed IIR
results V1, . . . , VM . The result for A+p∆cb + q∆Afb is obtained by combining these VJ ’s after each
one is multiplied by dJ(q∆Afb) and shifted by ∆tJc (q∆Afb). The entire data analysis process still
computes Nfb filter results, by including Ncb possible p’s and Nfb/Ncb possible q’s for each p. [In
the special case of q = 0, the VJ ’s are directly summed without having to go through multiplications
and time shifts.] The downsampling or upsampling process is not shown.
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Figure 5.4 Matches achievable with a Newtonian-Chirp signal at A+∆A, by various templates built
for A, using initial LIGO noise spectral density for a (1.4+1.4)M� NS-NS binary. Black solid curves
corresponds to the result for a Newtonian-Chirp template, therefore the match is equal to unity at
∆A = 0. Red solid curve corresponds to that using IIR filters, while red dashed curve corresponds
to the interpolated match that can be recovered by using 6 filter subgroups.

speaking only apply to sharp divisions in the signal frequency band, still qualitatively apply to IIR
filters that work in time-domain. The trick is to replace frequency intervals in the previous section
by groups of IIR filters. This approach will work as long as we include enough number of filters in
each “group”, so that overlaps between different groups are relatively unimportant. We note that,
as is the case for the construction of IIR filter chains, the construction of the interpolation scheme
by itself does not justify its efficiency — a separate test of achievable match will be carried out
explicitly after the interpolation scheme is constructed.

To be more specific, we re-group the entire chain of N IIR filters into m sub-groups, with group J
including those whose oscillation frequency lies within the frequency interval J defined in Sec. 5.4.3.
In other words, group J of IIR filters can be written as

VJ(t;A, tc, φc)

=
∑

Ωl
2π∈[fJ−1,fJ ]

Ul(t;A, tc, φc)

≡
lJ∑

l=lJ−1+1

Ul(t;A, tc, φc), J = 1, . . . ,M , (5.93)

where we have l0 = 0. We will treat VJ as corresponding to the ũJ(f ;A, tc, φc) of Sec. 5.4.3. As a
consequence, from Eqs. (5.82) and (5.90), signal u(t;A+ ∆A, tc, φc) can be interpolated by the IIR
filters constructed for u(t;A, tc, φc)

u(t;A+ ∆A, tc, φc)

'
M∑
J=1

VJ(t;A, tc + ∆tJc , φc + ∆φJc )

=

M∑
J=1

ei∆φ
J
c VJ(t;A, tc + ∆tJc , φc) . (5.94)

Here ∆tJc and ∆φJc should be computed from ∆A using Eq. (5.82).
In practice we can easily generalize the coefficients in front of VJ to further reduce the overall

mismatch, by using a slightly more general reconstruction formula:

u(t;A+ ∆A, tc, φc) '
m∑
J=1

dJVJ(t;A, tc + ∆tJc , φc), (5.95)
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Sk (s−1) 16 32 64 128 256 512 1024 2048 4096 8192 Cost
f/Hz 2 – 4 4 – 8 8 – 16 16 – 32 32 – 64 64 – 128 128 – 256 256 – 512 512 – 1024 1024 – Total

iLIGO
Ngroup,k 1 2 1 1 1

0.10{fJ} ∩ (fk−1, fk] 52.9 71.0, 97.3 141 244 2000

Crecomb,k 0.002 0.008 0.008 0.016 0.066

aLIGO
Ngroup,k 1 3 2 2 1 1

0.090{fJ} ∩ (fk−1, fk] 12.9
16.8, 22.1

29.6
40.1, 55.2 78.5, 122 228 2000

Crecomb,k 0.0005 0.003 0.004 0.008 0.008 0.066

ETB

Ngroup,k 2 2 2 1 1 1 1
0.083{fJ} ∩ (fk−1, fk] 5.1, 6.9 9.3,12.8 17.8, 25.3 37.4 60.3 122 2000

Crecomb,k 0.0005 0.001 0.002 0.002 0.012 0.008 0.066

Table 5.3 Break-down of recombination cost required for obtaining one fine-bank template using
the interpolation method, for initial, Advanced LIGO and the Einstein Telescope — assuming a
successive two-fold down-sampling and ignoring the cost of down- and up-sampling. The IIR filter
information is listed in Table 5.2. For each down-sampling channel, we list the number of filter
groups, as well as each of their upper-bound frequency (i.e., fJ for group J), and the computational
cost as computed by Eq. (5.99). Computational cost here is measured by MFLOPS, or 106 FLOPS.

where dJ are complex coefficients that depend on ∆A, given by

dJ =
∑
K

T−1
JK〈VK(A, tc, φc)|u(A+ ∆A, tc, φc)〉 (5.96)

with the matrix T given by
TJK = 〈VJ(A, tc, φc)|VK(A, tc, φc)〉 (5.97)

5.4.5 Full computational cost

Fig. 5.3 illustrates the procedure of obtaining the outputs from IIR filter chain for fine-bank cover-
age by interpolating coarse-bank filter outputs described previously. Upon obtaining outputs from
subgroups of IIR filters for the coarse bank, we need to reconstruct outputs for all members of the
fine bank. We hereby estimate the cost for reconstruction. Let’s assume that a member of the fine
bank that is not a member for the coarse bank is ∆A away from a coarse-bank template A. For
this ∆A, we need to go through each group J of filters, take the total output of this group (which
corresponds to filtering by VJ), multiply it by the complex number dJ (6 floating-point operations)
and shift in time by ∆tJc , and then add it to the sum (2 floating-point operations). The output
eventually yields the SNR corresponding to the member of the fine bank. Note that both dJ and
∆tJc are functions of ∆A, but they do not need to be recalculated for each time step.

Assuming our frequency division is made in a way such that each filter group has the same sample
rate (SJ for group J), then the total recombination cost is

Crecom =
∑
J

8SJ . (5.98)

In language of Sec. 5.3.4, if we assume there are Ngroup,k IIR filter groups for each down-sampling
channel, then the recombination cost can also be written as

Crecom =
∑
k

8SkNgroup,k . (5.99)
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As a consequence, assuming that ∆Acb = R∆Afb, we have a total cost of

Ctotal = Nfb

[CIIR
R

+

(
1− 1

R

)
Crecom

]
≈ Nfb

∑
k

[
12NIIR,k

R
+ 8Ngroup,k

]
Sk , (5.100)

with the approximation valid when R � 1. In this case, we can have a good estimate of the
computational cost of IIR filtering with interpolation. For a coarse bank with density 1/R the
fine bank, filtering cost naturally decreases to 1/R of the cost of conventional IIR filtering without
interpolation. The cost of recombination can be estimated with a simple rule: for each sample rate,
the cost of recombination is about 2/(3n̄k) times that of conventional IIR filtering, where

n̄k ≡
NIIR,k

Ngroup,k
(5.101)

is the average number of IIR filters in groups at the k-th sample rate. As a consequence, the total cost
of the IIR filtering with interpolation scheme including recombination can be lowered significantly
if we achieve a balance of R� 1 and n̄� 1. Note larger R means larger coarse-bank grid size ∆Acb
for a fixed ∆Afb. This is achieved by introducing finer frequency intervals. On the other hand, finer
frequency intervals means more IIR groups Ngroup or smaller n̄ within each down-sampling channel.

The computational cost for performing down- or up-sampling is implementation-dependent (see
discussions in Cannon et al. (2011c)). They are not included in our calculation for simplicity. We only
need to perform data downsampling once for all templates, so the cost should be negligible compared
to the total cost. The upsampling process is needed at least for each coarse-bank template, but only
for filter group outputs. Note the number of filter groups is much smaller than the total number of
the IIR filters. Depending on the type of upsampling filters, the upsampling cost can be negligible
compared to the total cost, but can also be in similar orders as the recombination cost. This requires
further investigation.

5.4.6 Implementation for initial, Advanced LIGO and Einstein Telescope

We first investigate the case of initial LIGO to demonstrate the feasibility of our interpolation
method. Taking into account the fact that even the optimal match between IIR filter and the real
signal is not unity, we need to place the fine-bank IIR template a little denser than that from
theoretical waveform. Theoretically for the Newtonian waveform, we have ∆Afb = 923 (in units of
s−5/3) to have a minimum match of 0.97 for templates based on the signal waveform. For the IIR
filter bank, we need a smaller spacing of ∆AIIR

fb = 800 s−5/3 in order for the bank to achieve the
same match between an IIR template and the signal at A + ∆AIIR

fb . Fig. 5.4 shows numerically
calculated match as a function of template spacing ∆A for templates from the signal waveform
(black solid line) and for the IIR filters (red solid line) for the case of (1.4+1.4) M� binary. Note
that the numbers of fine-bank templates here are slightly different from those given in Table 5.1, as
we use slightly different overlap and also we use numerically evaluated matches here, instead of ones
computed analytically assuming high match (in Sec. 5.4.2).

To test the coarse-bank template placement, for simplicity, we restrict ourselves with the case of
subdividing the frequency band into a total of six segments (or equivalently, six IIR filter groups in the
time domain). According to the idealized theoretical calculations in frequency domain (Sec. 5.4.3.2),
the optimal frequency subdivision predicts ∆Acb/∆Afb ≈ 26 for a minimum match of 0.97. This
calculation has assumed high match, and divides signals into parts that are strictly localized within
separate frequency bands. On the other hand, the numerical result using interpolation method on
the IIR filter groups in the time domain (as prescribed in Sec. 5.4.4) reveals that we can relax the
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coarse-bank spacing up to ∆AIIR
cb = 19845 s−5/3 (dashed curve in Fig. 5.4), meaning

∆AIIR
cb

∆AIIR
fb

≈ 25. (5.102)

This is in very good agreement with the idealized prediction. Fig. 5.4 shows in dashed line the
numerical result of the match as function of ∆A for the interpolated IIR filtering method.

We can now evaluate the total computational cost of the entire filtering-reconstruction process.
For filtering, since we only have

Nc = (Amax −Amin)/(2∆AIIR
cb ) = 92 (5.103)

templates in the coarse bank 1, and the cost for each full filtering is 2.4 MFLOPS (see Table 5.2),
the cost of IIR filtering is Cbank

IIR = 221 MFLOPS. Since the number of templates in the fine bank is

Nf = (Amax −Amin)/(2∆AIIR
fb ) = 2281 , (5.104)

while the reconstruction cost for each member is 0.10 MFLOPS, the total cost for reconstruction (for
members in the fine bank but not already in the coarse bank) is 228 MFLOP. Therefore the total
cost for searching for Newtonian Chirps in initial LIGO is 449 MFLOPS, or 0.5 GFLOPS.

We carry out the same procedure for Advanced LIGO and ETB, with frequency division informa-
tion listed in Table 5.3, and interpolation factor as well as break-down of filtering and recombination
costs listed in Table 5.4. As we can read from Table 5.4, the computational power required for a
real-time search of Newtonian Chirps, using IIR filters and interpolation, in initial, Advanced LIGO
and ET are 0.5 GFLOPS, 1.2 GFLOPS and 4.4 GFLOPS, respectively. The scaling of cost with fmin

is rather mild as expected, and the cost, even for ET, seems very manageable.
In summary, it seems possible that to search for tens to hundreds of thousands of fine-bank tem-

plates for advanced LIGO or ET, we can have the entire search done with a few desktop computers
and fewer if other acceleration technique such as the Graphics Processing Unit Chung et al. (2010b,a)
can be adopted. While our result is based on the Newtonian chirp, this outcome should be appli-
cable to Post-Newtonian (PN) cases. Note the low-latency pipeline LLOID with the FIR scheme
in combination with downsampling and SVD technique Cannon et al. (2011c, 2010) also predicts
manageable computing power for Advanced LIGO. MBTA method Buskulic et al. (2010), on the
other hand, can already perform network analysis to search for inspiral signals using PN waveforms
with a few CPUs for the initial LIGO. How it scales with advanced detectors while maintaining low
latency remains to be investigated (see also Sec. 5.5 for a comparison of frequency vs time domain
method). The integration of the time-domain IIR filtering method with the infrastructure of the
LLOID pipeline is currently under way. Preliminary result for the application of the IIR filterbank
method to PN waveforms can be found in Hooper et al. (2010) and Hooper et al. (2011).

5.5 Time Domain vs Frequency Domain Approach

5.5.1 General consideration

In terms of template interpolation, the ideas to divide the template into segments in the time or
frequency domain are equivalent in mathematics – both trying to represent the template by the
superposition of a complete basis of the continuous real-value function space on real axis. The
functions in the basis are much simpler than the template, and thus easier to deal with. We can
improve the computational efficiency by processing the basis functions first and then superpose them
in the right way to get the result for a template. Given that the data we get from the detector is in the
time domain, the advantage of working in the time domain is that we can avoid procedures required
to transform the data into frequency domain (e.g., data accumulation in Fourier transformation)

1Recall that since match between template at A and signal at A + ∆A is already satisfactory, the next template
needs to be placed at A+ 2∆A.
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∆AIIR
fb Nfb ∆AIIR

cb Ncb CIIR Ctotal
IIR Crecomb Ctotal

recomb Ctotal Ctotal/Cfb
total

iLIGO 800 2281 19845 92 2.4 221 0.10 228 449 0.082
aLIGO 255 7156 10500 174 3.0 522 0.090 628 1150 0.054

ET 70 26069 2713 673 3.3 2221 0.083 2108 4329 0.050

Table 5.4 Break-down of total computational cost in MFLOPS in searching for Newtonian Chirps
in initial LIGO, Advanced LIGO and ET, assuming interpolation for inspirals of 1–3 M� individual
masses. Here we list numbers of templates in both the fine (Nfb) and coarse banks (Ncb), the com-
putational cost for each full IIR chain (CIIR, taken from Table 5.2), as well as the recombination cost
for each template (Crecomb, taken from Table 5.3). We then give the total IIR filtering cost (Ctotal

IIR ),
the total recombination cost (Ctotal

recomb), and the grand total cost. We also list the ratio Ctotal/Cfb
total,

in which Cfb
total represents computational cost for the full bank without using interpolation.

and easily achieve low time latencies. On the other hand, working in frequency domain allows us to
easily combine the algorithm with down sampling technique and reduce the number of templates.

The frequency-domain template interpolation technique, e.g., that used in MBTABuskulic et al.
(2010), usually uses Heaviside function to cut the template. So the template can be superposed
smoothly in the frequency domain while in the time domain the joint of different basis functions can
be quite crude. This means that those methods with this technique could easily take advantages of
working in the frequency domain, but not both in the time and frequency domain without substantial
additional cost in computation.

Our algorithm, with IIR filters working in the time domain and template interpolation designed
from the frequency domain, takes advantages of the benefits from both the time and frequency
domain approach. Because we use a relatively smooth cut in both domains, we can both achieve
low latency in the time domain and reduce the total number of templates while taking advantages
of the down sampling technique.

5.5.2 Comparison of computational efficiency

When latencies of the analysis are not in concern, the frequency domain implementation of the
cross correlation of data with templates (Eq. 5.11) is probably the most computationally efficient
approach. This is due to the use of Fast Fourier Transform technique that has O(N logN) operation
count (N is the number of data points) as compared to the O(N2) operation count for the FIR
method described previously. On the other hand, the operation count of the IIR filterbank method
is O(N) but multiplied with a coefficient directly related to the possibly large number of filters
needed to achieve a desired match to the chirp signal. Here we take latencies into consideration and
compare the computational efficiency of the FFT-based method with the proposed IIR method.

To obtain low-latencies for the FFT-based matched filtering prescribed in Eq. (5.11), the most
straightforward approach is to analyze data in overlapping segments. We consider the analysis of
equal-length segments of duration Tstretch as shown in Fig 5.5 with the duration of overlap equal to
that of the longest signal, and the rest termed Tlatency, that is,

Tstretch = Tlongest + Tlatency. (5.105)

Here we assume the same strategy as in the current GW search pipeline where FFTs are performed
with fixed length that accommodates the longest signal to ensure the coverage of signals of all
possible duration. Note in practice, longer Tstretch might be needed to take into account of the
windowing effect of the FFTs and issues like the sharp notch filter problems due to lines in the noise
power spectrum Allen et al. (2005). For each data stretch, the output of Eq. (5.11) has also the
duration Tstretch, but due to the wrap-around effect of FFTs, only outputs (for signals with ending
time) within the last Tlatency are valid. This means that to obtain a valid output of duration Tlatency,
a data stretch of at least Tlongest + Tlatency needs to be processed.

The requirement to perform filtering in real-time implies that the entire analysis needs to be
completed within Tlatency seconds. The minimum total number of real multiplications and real
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Tlatency Tstretch

Figure 5.5 Analysis with overlapping data segments. The two horizontal lines represent two adjacent
data stretches used for FFT. The lower data segment starts data accumulation with a delay of Tlatency

relative to the upper one. The duration of the overlap between the two stretches is that of the longest
signal in the template bank (see text in Sec. 5.5.2).

additions for the FFT algorithm is about 4N log2N Johnson & Frigo (2007); Lundy & van Busbirk
(2007). Therefore the minimum computational cost in terms of FLOPS for each template for a
real-time FFT-based matched filtering is at least,

CFFT =
4S · Tstretch log2(S · Tstretch)

Tlatency
, (5.106)

where S is the data sampling rate. Here we assume a uniform sampling rate.
In the FFT method, the actual delay Tdelay between the end time of a GW signal and the event

triggering depends on where the signal lies in the data stretch. The longest delay occurs when the
ending time of a signal lies (Tlatency − dt) before the end of a data stretch where dt ≡ 1/S is the
sampling interval. In this case, after the signal ends, it takes the segment further (Tlatency−dt) time
to finish accumulating data, and then another Tlatency to be processed, resulting in a delay of,

TFFT,worst
delay = 2Tlatency − dt ≈ 2Tlatency (5.107)

The shortest latency is achieved when the ending time of a signal lies just at the end of the data
stretch, in which case the waiting time for the data to be analyzed is zero and the delay time of
obtaining the trigger is simply the analysis time,

TFFT,best
delay = Tlatency. (5.108)

Therefore, for the FFT method, the delay time between the end of the signal and the event triggering
is about 1–2 times of Tlatency. Although in previous LIGO inspiral search pipelines Tlatency is usually
chosen so that adjacent data stretches are overlapped by 50%, it can be chosen so that Tlatency is
much smaller, meaning data segments are analyzed with larger overlaps and higher computational
cost.

In comparison, for the IIR method, every new data point will be processed immediately when it
is available. The delay time between the end of the signal and the triggering time can therefore in
principle be as small as the data sampling interval. For real-time processing, the analysis time of the
IIR filters at each time step should also be within one sampling interval, dt. As discussed previously,
for each output of an IIR filter in (5.16), a total of 12 floating point operations are needed. Hence
to produce the IIR filter bank output in real time without downsampling for one template requires
the floating point operation per unit time of

C∗IIR = 12S ·NIIR, (5.109)
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and the delay
T IIR

delay = dt. (5.110)

Here asterisk is used to indicate the computational cost of the IIR filter method without the down-
sampling technique.

Fig. (5.6) shows the computational cost of one template for the FFT method as a function of
Tlatency when searching for a GW from a (1.4+1.4) M� NS-NS binary and its comparison to that of
the IIR filter method with and without downsampling technique. It shows that the computational
cost of the FFT based method increases as latencies decreases, the increase is particularly signif-
icant at latencies less than hundreds to thousands of seconds (Eq (5.106)), whereas IIR methods
(Eq. (5.44), Eq. (5.109)) have an inherent latency of the sampling interval (i.e not a function of
latency). It is clear that the IIR filter method presented in this paper has significant advantage
over the FFT method in computational efficiency when low latencies are in demand. In particular,
for Advanced LIGO, the IIR method can be much more efficient at latencies less than a few ×102

seconds. For the Einstein Telescope, IIR filter method can be much more efficient at latencies less
than a few ×103 seconds.

It should be mentioned that we compare only the core computational cost for the IIR and
the FFT method for one template. We purposely leave out the cost of whitening or the cost to
take care of other FFT effect such as windowing effect as they are very much implementation-
dependent. We also do not include template interpolation method for both methods as they are
very much implementation-dependent. In practice, both methods require that the raw data be
conditioned, transported, pre-whitened before they are ready to be analyzed. These are expected to
cause additional latencies on the order of tens of seconds.

5.6 Conclusion

In this paper, we show that a time-domain search algorithm, with the flexibility of being able
to detect a (non-precessing) compact-binary coalescence even before the final merger, is not only
feasible for advanced and even future ground-based gravitational-wave detectors — but in fact can
be realizable by a small number of state-of-the-art personal computers.

In addition to employing the multi-rate technique for time-domain filtering, we have developed
two additional key techniques in order to bring down the computational cost into the realm of
feasibility: (i) the conversion of a chirp signal into a chain of IIR filters, and (ii) an algorithm
that allows the reconstruction of filtering results of a finely spaced template bank from a much
coarser bank, when each template in the coarse bank is divided into sub-templates. In order to
illustrate the main techniques, we have restricted ourselves to the Newtonian Chirp, but it is rather
straightforward to generalize our algorithms into post-Newtonian templates.

Our main results on computational cost of the time-domain algorithm, for initial, advanced and
future detectors, are summarized in Table 5.4. With a simple comparison, we also conclude that our
time-domain algorithm should require less computational resources than the conventional frequency-
domain approach, when a short latency of less than hundreds to thousands of seconds is required —
as shown in Fig. 5.6.

Besides being computationally efficient at low (or even negative) latencies, the IIR filter bank
method is also much simpler to implement than the FFT-based methods, making it ideal for parallel
computing, e.g., with Graphics Processing Units Chung et al. (2010b).

Two further ingredients must be added into the search pipeline before we can set up an early-
warning system for EM follow-ups of compact binary coalescence: (1) a reliable veto strategy, and
(2) an efficient algorithm for sky localization. The fact that our numerical results for IIR filter groups
agree so well with frequency-domain analytical estimates (Sec. 5.4.3) assuming sharp divisions in
frequency indicates that the sub-IIR-groups can be well-approximated as independent contributions
to the SNR. This means a χ2-like test that compares relative SNR contributions from filter subgroups
to their expectations would be a promising veto strategy (see also Cannon et al. (2011b) for other
strategies that might be applicable for further efficiency improvement.)

As for localization, we could in principle adopt the existing algorithm already in place in the
LIGO/VIRGO pipeline, which is based on coincidences of SNRs among multiple detectors. Alter-
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natively, the fact that IIR filters are separated in both time and frequency may provide a possibility
of developing a coherent search pipeline with feasible computational cost. The reason for the high
number of templates in a coherent search is directly due to the multiplication of the high number of
templates along the direction of mass parameters and the high number of sky locations. However,
as we divide each template into frequency segments, we find that in low frequencies, although there
is a large number of cycles, and hence a requirement for a finer separation in mass parameters, the
sky resolution of a detector network is low and there does not need a high number of sky patches;
in high frequencies, we need a fine grid in the sky, but a coarse grid in mass parameters. As a
consequence, we may need a much lower number of sub-templates are required for each frequency
segment. This is currently being investigated.
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Figure 5.6 Computational cost as a function of Tlatency for a straightforward FFT analysis with
overlapping data segments (solid line) and for the IIR filter method with downsampling technique
(“+” symbols) and without (“×” symbols ) for real-time filtering with one template of a (1.4+1.4)
M� binary. The upper panel shows the cost for aLIGO and the lower one for ET. The dotted lines
illustrate the equal cost between the FFT and IIR method and the corresponding latencies. The
computational cost of the FFT method is calculated from Eq. (5.106) with the longest template
taken to be that of (1+1) M� binary and sampling rate S=4096Hz. The IIR data are from Table 5.2
(column 15) (with downsampling) and Eq. (5.109) (without downsampling).
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