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Chapter 1 

Asymmetric Dearomatization via Cycloaddition Reaction† 

 

1.1 INTRODUCTION 

 The ability to rapidly generate structural complexity remains one of the foremost 

challenges in synthetic organic chemistry. As such, cycloaddition reactions are highly 

valued for their ability to efficiently construct complex architectures in a single step. In a 

typical reaction, two or more unsaturated substrates are joined to form a cyclic product in 

which there is a net reduction of the bond multiplicity.1 The strong enthalpic benefit of 

exchanging π-bonds or non-bonded electron pairs for σ-bonds is the predominant driving 

force for these transformations, and it typically compensates for the unfavorable entropic 

cost of a highly ordered transition state. Catalytic asymmetric, dearomative cycloaddition 

reactions are an important subclass of these transformations, as they provide rapid access 

to a variety of cyclic or polycyclic scaffolds in a single step and often in high 

                                                
† Part of this chapter is submitted as a book chapter and co-written with Dr. Madeleine E. 
Kieffer (a graduate student in the Reisman laboratory). 
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enantiomeric excess. Due in part to the potential pharmaceutical properties of 

heterocyclic compounds, much of the research in this field has focused on the reactions 

of furans, pyrroles, indoles and other heteroaromatic compounds using transition metals, 

Lewis acids, Brønsted acids and organo-catalysts. This chapter will cover recent 

advances in catalytic, asymmetric dearomatization reactions that proceed by 

cycloaddition. 

 

1.2 (2 + 1) CYCLOADDITION 

1.2.1 Asymmetric Büchner Reaction 

One of the most ubiquitous aromatic motifs in organic chemistry is the benzene 

ring. Despite its high stability, which renders it challenging to dearomatize via 

cycloaddition, Büchner and co-workers discovered the cyclopropanation of benzene in 

1896.2 They reported that at elevated temperatures in benzene, ethyldiazoacetate 

underwent thermolytic dediazotization and subsequent cyclopropanation of solvent to 

afford a norcaradiene product. Doering and co-workers later used nuclear magnetic 

resonance spectroscopy to determine that the products of the Büchner reaction were 

actually a mixture of cycloheptatrienes, which result from facile 6π-disrotatory ring 

opening of the norcaradiene followed by a series of [1,5]-hydride shift events.3 Modern 

efforts to further develop this reaction and render it enantioselective have focused on 

transition metal-catalyzed intramolecular variants. 
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Scheme 1.1. Early investigations of the asymmetric Büchner reaction 

 

In 1990, McKervey and co-workers reported the first catalytic, asymmetric 

Büchner reaction.4 Subjection of α-diazoketone 1 to catalytic rhodium (II) carboxylate 4 

provided cycloheptatriene 3 in 80% yield and 33% ee, presumably via 6π-disrotatory 

electrocyclic ring opening of nocaradiene product 2 (Scheme 1.1a). In a similar system, 

Maguire and co-workers discovered that the complex generated from CuPF6 and 

bis(oxazoline) 8 catalyzed the cyclopropanation of α-diazoketone 5 in improved 

enantioselectivity (up to 95% ee, Scheme 1.1b).5 Unfortunately, the selectivity of this 

transformation depends heavily on the substrate substitution pattern, and does not provide 

a general solution for arene cyclopropantion.  In 2009, follow-up work by the same group 

found that addition of NaBARF further improves the ee,6 which they suggest reveals a 

beneficial role of the sodium cation7 (Scheme 1.1c). However, more detailed studies are 

required to elucidate the origin of this effect. 
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Scheme 1.2. Asymmetric Büchner reactions in naphthyl and diaryl systems

 

Doyle and coworkers found that Rh2(4S-IBAZ)4 catalyst (14) could promote the 

intramolecular cyclopropanation of naphthyl substrate 12 in 80% yield and 81% ee 

(Scheme 1.2a).8 Recently, the same group also disclosed the desymmetrization of diaryl 

α-diazoacetates 15 using catalytic Rh2[(S)-TFPTTL]4 (17, Scheme 1.2b).9 Good to 

excellent enantioselectivities and high diastereoselectivity for the trans products were 

observed using ortho-methyl or para-halogenated arenes.  
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Metal catalyzed carbenoid cyclopropanation has also been explored in 

heterocyclic arenes. Reiser and co-workers reported Cu/chiral bis(oxazoline)-catalyzed  

(2 + 1) enantioselective cycloadditions between acceptor-substituted carbenoids 

(diazoacetate 19 and 23) and furans 18 or N-Boc-pyrrole 22 (Scheme 1.3).10 While 
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Scheme 1.3. Copper-catalyzed asymmetric cyclopropanation of heteroarenes with 
acceptor-substituted carbenoids

 
 

methyl ester at the C2 position (18b, Scheme 1.3a). This superior selectivity was 

proposed to derive from a secondary H-bonding interaction between the methyl ester and 

the side chain of the chiral ligand. Interestingly, the opposite facial selectivity, in 

moderate ee, was observed when N-Boc-pyrrole 22 was employed (Scheme 1.3b). 
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Scheme 1.4. Rhodium-catalyzed asymmetric cyclopropanation of heteroarenes 
with donor-acceptor-substituted carbenoids 

 

ability and propensity of diazoacetate 30 to cyclopropanate a variety of aromatic 

heterocycles (Scheme 1.4).12 In contrast to the Cu-catalyzed reactions of acceptor-

substituted carbenoids discussed previously, double cyclopropanation of the heteroarenes 

was observed with these carbenoids (Scheme 1.4b). The monocyclopropanation product 
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observed with substituted indole and 2-methylbenzofuran substrates (34a–34d), while 

unsubstituted N-Boc indole was less reactive and resulted in carbene dimerization. 

 

1.3 (3 + 2) CYCLOADDITION 

 The unique chemistry of indoles, which possess reactivity analogous to enamines 

but are hydrolytically stable, has resulted in their extensive use in the development of 

cycloaddition and formal cycloaddition reactions. Although these types of 

transformations have been known for decades, it was only recently that catalytic, 

asymmetric variants were developed. 

Scheme 1.5. Rhodium-catalyzed enantioselective functionalization of indoles 
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cycloaddition to provide fused tricyclic products (Scheme 1.5a).13 Interestingly, the 

substitution pattern of the indole starting material greatly affects the product of this 

reaction. Whereas 1,3-dimethylindole (36) gives rise to indoline 40, the isomeric 1,2-

dimethylindole (37) delivers indoline 42; both reactions occur with good to excellent 

diastereo- and enantioselectivity. The authors rationalize these divergent reactivities by 

the steric encumberance of the C2- or C3-methyl substituent, which forces the initial 

nucleophilic attack to occur at the unsubstituted position of the indole. The same group 

later disclosed that in the presence of rhodium catalyst 48, 1-phenylsulfonyl triazoles 44 

can be used to generate α-iminocarbenoids in situ, which react with 1,3-dimethyl indoles 

(43) to furnish pyrroloindolines (47) in good yields and high enantioselectivities (Scheme 

1.5b).14 In the contrast to the zwitterionic mechanism proposed in the previous reaction, 

the authors suggest that this reaction might proceed through initial cyclopropanation to 

form 45, followed by cyclopropane opening and iminium trapping to afford the formal (3 

+ 2) cycloaddition product 47. 

 Hashimoto and co-workers have investigated the Rh-catalyzed (3 + 2) 

cycloaddition reactions between N-methylindoles and 2-diazo-3,6-diketoesters 49 to  

prepare tetracyclic products (51), presumably via Rh-bound carbonyl ylide 50 (Scheme 

1.6).15 Polychlorinated dirhodium complex 52 was found to catalyze the formation of 

exo-tetracycle 51 in good yields and high enantioselectivities. Whereas the reaction 

tolerates substitution of the indole backbone, use of the analogous 2-diazo-3,5-

diketoesters results in significantly lower enantioinduction. This is the only report of an 

asymmetric dearomatization reaction that proceeds by cycloaddition with a carbonyl 

ylide.  
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Scheme 1.6. Rhodium-catalyzed (3 + 2) cycloaddition between indoles and 
diazodiketoesters 

 

Scheme 1.7. Asymmetric (3 + 2) cycloaddition of indoles and donor-acceptor 
cyclopropanes 
 

 

Donor-acceptor cyclopropanes have also been explored as dipoles in asymmetric 
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substrates participate in highly diastereo- and enantioseletive annulations of indoles when 

chiral Cu(II)-BOX complexes are used as catalysts.16 When di-benzyl linked BOX ligand 

56 is employed, a variety of substituted indoles (53) and aryl-substituted cyclopropanes 

(54) react to produce enantioenriched indoline products (55). Whereas cyclopropanes 

bearing electron-rich arenes react through a mechanism in which both enantiomers 

converge to a single diastereomer of highly enantioenriched product (e.g. 57), 

N
Me

R1

O

N2

tBuO2C
+

52 (1 mol %)

CF3C6H5, rt, 1h N
Me

R1

H

H

Rh Rh
O O

H

tBu N

O

O

Rh2(S-TCPTTL)4 (52)

(76 – 86% yield, 
94 – 97% ee)

O

R2

Cl

Cl
Cl

Cl

N
Me

R1

O

R2

O[Rh]
CO2tBu

48 49 exo-51

48 50

O

CO2tBu

R2

N
Bn

R1

+
CO2MeMeO2C

R4 N
Bn

R2

R3

R1R2

R3

R4

CO2Me
CO2Me

Cu(OTf)2 (10 mol %)
56 (11 mol %)

PhMe, 0 °C
(45 – 98% yield, 

80 – 96% ee,
3.3 : 1 to > 50 : 1 dr) O

N N

O

tBu

tBu tBu

tBu

N
Me N CO2Me

CO2Me

PhO2C

N
Me

Me

59
96% yield, 95% ee

53 54 55

56

N
Bn

Me

H CO2Me
CO2Me N

Bn

Me

H CO2Me
CO2Me

OMe

57 
95% yield, 91% ee

20 : 1 dr

58
88% yield, 89% ee

10 : 1 dr
2 equiv 54 employed

9



Chapter 1 – Catalytic Asymmetric Dearomatization via Cycloaddition  

cyclopropanes bearing less electron-rich arenes undergo kinetic resolution, with only the 

(R)-configured cyclopropane proceeding to product (e.g. 58). This methodology was 

successfully applied to prepare the core of the natural product borreverine (59). 

Scheme 1.8. Formal enantioselective (3 + 2) cycloadditions of indoles 
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a tin enolate (63). A catalyst-controlled protonation of the enolate by SnCl4·65 followed 

by cyclization affords the enantioenriched pyrroloindoline (62) in good yield with high 

diastereoselection and excellent ee. 

Quinone monoimines (67, Scheme 1.8b) have also been found to engage in 

asymmetric cycloaddition reactions with indoles. Zhang and co-workers reported that 

chiral phosphoric acid 69 catalyzes the conjugate addition of indoles (66) to quinone 

monoimine 67.19 Subsequent rearomatization of enamide intermediate 70 followed by 

phenol cyclization furnishes benzofuroindoline products (68). This method tolerates a 

wide range of substitution on the indoles and generally proceeds with excellent 

enantioselectivities.  

Scheme 1.9. Formal enantioselective (3 + 2) cycloadditions between 3-nitroindoles 
and iminoesters 
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the presence of electron-withdrawing substituents at the N1 and C3 positions of indole 

are required to render these substrates sufficiently electrophilic at C2. 

 

1.4  (3 + 3) CYCLOADDITION 

 Few examples of asymmetric dearomatization via (3 + 3) cycloaddition reactions 

have been reported in the literature. In 2013, Tang and co-workers reported a highly 

enantioselective cycloaddition between isoquinoline-derived dipole 77 and donor-

acceptor cyclopropanes 78 (Scheme 1.10a).21 Lewis acid activation of cyclopropane 78, 

presumably through bidentate coordination to chiral Ni(II)-TOX catalyst (generated from 

80), results in nucleophilic attack by azomethine imine 77. Control experiments reveal 

that the reaction proceeds by a kinetic resolution of the cyclopropane, in which the (S)-

enantiomer reacts more quickly. In order to obtain high yields of product, two equivalents 

of cyclopropane 78 are employed under standard conditions. 

The Doyle group developed a highly enantioselective formal (3 + 3) cycloaddition 

between isoquinolinium or pyridinium methylides (81) and enol diazoacetate 82 (Scheme 

1.10b).22 Chiral dirhodium complex 84, in conjunction with enol diazoacetate 82, is 

proposed to form a chiral metallo-1,3-dipole, which can then undergo (3 + 3) 

cycloaddition to form a variety of quinolizidines (82) with good enantioinduction. 

Recently, the Guo group demonstrated an enantioselective (3 + 3) cycloaddition reaction 

between phthalazinium dicyanomethanides (85) and iminoesters (86), catalyzed by a 

Cu(I)/iPr-Phosferrox complex (88, Scheme 1.10c).23 The authors propose that iminoester 

86 is activated by the chiral Cu(I) complex to generate a metallo-1,3-dipole, which 

undergoes cycloaddition with phthalazinium dicyanomethanide 85. This mild method
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Scheme 1.10. Catalytic, asymmetric (3 + 3) dearomatizing cycloaddition reactions 
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activation of the 3-vinyl indole and hydrogen bond activation of the dieneophile. When a 

mixture of (E)- and (Z)-3-(prop-1-en-1-yl)-1H-indole is subjected to the reaction 

conditions, only the E-diene proceeds to product; the Z-diene, in which the required S-cis 

conformation is disfavored, is recovered unchanged. These findings provide empirical 

support for a concerted mechanism. 

Scheme 1.11.  Organocatalytic asymmetric Diels–Alder reactions of 3-vinyl indoles 
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Scheme 1.12.  Organocatalytic asymmetric Diels–Alder/cyclization cascade 
reaction 
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Scheme 1.13. Organocatalytic asymmetric Diels–Alder/elimination/conjugate 
addition cascade reaction 
 

 

conjugate addition of the pendant amine to access tetracycle 107 (Scheme 1.13).  From 

this common intermediate, MacMillan and co-workers successfully synthesized six 
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Scheme 1.14. Organocatalytic asymmetric Michael addition/Mannich cyclization 
cascade reactions  

 

In 2014, Chen and co-workers also utilized alkaloid 111 to catalyze (4 + 2) 

cycloaddition reactions of heteroaryl enones (115, Scheme 1.15).32 The reaction proceeds 
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Organocatalysis has also been utilized to effect dearomative Diels–Alder 

reactions of anthracenylacetaldehydes (Scheme 1.16, 120 and 124). In 2012, Jørgenson 

and co-workers reported the first asymmetric example of this transformation, which like 

the previously discussed reaction developed by Chen, utilizes a HOMO-raising strategy.33 

Good selectivity is achieved with bifunctional catalyst 123, which is proposed to operate 

through a cooperative mechanism involving enamine formation with the aldehyde (120) 

and H-bond activation of the nitroalkene (121).  A variety of (4 + 2) adducts are isolated 

in good yields and excellent enantioselectivities. Follow-up studies identified C2-

symmetric catalyst 126, which enabled the use of maleimides as dienophiles (124).34 

With this symmetric dienophile, the use of a bifunctional catalyst did not provide 

improved results. 

Scheme 1.16. Organocatalytic dearomative Diels-Alder reactions with 
anthracenylacetaldehydes 
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Scheme 1.17. Holmium(III)-catalyzed enantioselective Diels-Alder reactions 
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Scheme 1.18. Gold-catalyzed intramolecular formal (4 + 2) cycloaddition reactions 
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activated oxazaborolidine catalyst (138, Scheme 1.19) to promote an asymmetric Diels–

Alder cycloaddition between furans (136) and β-trifluoromethylacrylates.37 The fluorine-

containing bicycles 137 were produced in good yield with moderate diastereoselection 

and excellent enantioselection. Substituents are tolerated at the C2- and C3-position of 

the furan; β-difluoromethylacrylates are also suitable dienophiles. The cycloaddition 

products could be further elaborated to fluorinated bioactive compounds. 

Scheme 1.19. Asymmetric Diels-Alder cycloaddition reactions of furans and β-
trifluoromethylacrylates 
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A similar reaction was disclosed by Wang and co-workers in which copper 

catalyzes the asymmetric hetero-Diels–Alder reaction between indoles and α-halogenated 

hydrazones (Scheme 1.21).39 In analogy to the generation of nitrosoalkenes from α-

halooximes, it is proposed that coordination of hydrazone 143 to the chiral catalyst 145 

followed by base-induced elimination of chloride generates the catalyst-bound azoalkene 

in situ, which undergoes (4 + 2) cycloaddition with a variety of indoles to furnish the 2,3-

fused indoline products (144) in excellent yields and selectivities. The selectivities 

observed in this transformation are remarkable given the extremely facile un-catalyzed 

background reaction.  

Scheme 1.21. Enantioselective (4 + 2) cycloaddition reactions of indoles and α-
halogenated hydrazones 
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reactivity and selectivity issues were encountered when employing pyrroles, providing 

tropane products in low enantiomeric excess (Scheme 1.22b).41 

Scheme 1.22. Preliminary studies of asymmetric Rhodium-catalyzed (4 + 3) 
cycloaddition reactions of heteroarenes and vinyldiazoesters 
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Inspired by MacMillan’s work on secondary amine-catalyzed (4 + 2) 

cycloadditions, Harmata and co-workers described the first organocatalytic asymmetric 

(4 + 3) cycloaddition (Scheme 1.24a).43 Imidazolidinone 160 was found to catalyze the 

cycloaddition between disubstituted furans (e.g. 157) and siloxydienals (e.g. 156) to 

produce oxa-bicycl[3.2.1]octanones (e.g. 158) in modest to good yields and 

enantioselectivities. The major side products of this reaction were alkylated furan 

derivatives, suggesting a step-wise cycloaddition mechanism.  This methodology was 

subsequently employed by Lin and co-workers in their synthesis of core of englerin A 

(164).44 Although the regioselectivity of the cycloaddition with differentially-substituted 

furan 162 was poor, providing a mixture of 163a and 163b, the desired product was 

produced in promising enantioselectivity (Scheme 1.24b). 

Scheme 1.24. Organocatalytic (4 + 3) cycloaddition reactions of furans 
 

 
 

In 2004, a chiral Lewis acid-catalyzed (4 + 3) cycloaddition between furans and 

alleneamides was reported by Hsung and co-workers (Scheme 1.25).45 The reaction 

occurs by in situ oxidative generation of a nitrogen-stabilized oxyallyl cation from 

O
Me

O
CH2CHO

Me

Me O
Me

O
CH2CHO

Me

Me

2.7                 :                    1
77% ee                              88% ee

O
Me

Me

Me

O
O

OH

Me

HO

O
Ph

englerin A (164)

OSiR3

CHO

OR1 R1

160 (20 mol %)
TFA (20 mol %)

DCM, –78 °C
96 h

O
R1 R1

O
CH2CHO nBuNH2

O
R1 R1

BuN

15918 – 74% yield
81 –89% ee

N

N
H

Bn tBu

MeO

160 (20 mol %)
TFA (20 mol %)

DCM, –78 °C
96 h

37% yield

a)

b)

156

157

158 160

163a 163b

+

OTMS

CHO

OMe

161

162

+ +

Me

Me

23



Chapter 1 – Catalytic Asymmetric Dearomatization via Cycloaddition  

alleneamide 165. Following (4 + 3) cycloaddition with furan 166, the tricyclic products 

were isolated in moderate to good yields and enantioselectivities. The level of 

regioselectivity for the syn versus anti isomer of the product varied, and depended on the 

substitution pattern. It is proposed that enantioinduction occurs via coordination of the 

oxyallyl cation to Cu(OTf)2·168, providing facial differentiation for the incoming diene. 

The scope of this reaction is complementary to that of Harmata (see above), as 2,5-

unsubstituted furans provide the best yields and selectivities. 

Scheme 1.25. Copper-catalyzed asymmetric (4 + 3) cycloaddition reactions of 
furans 
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Nevertheless, recently development of catalytic dearomatization transformation 

has introduced new and powerful synthetic tools to quickly assemble complex natural 

products. Chapters 2 and 3 will focus on the direct application of enantioselective formal 

(3 + 2) cycloaddition reaction developed in our lab (Scheme 1.8a) to access 

pyrroloindoline-containing diketopiperazine natural products. 
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