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ABSTRACT

Numerical studies of the deformation near the tip of a crack are presented for a
family of incompressible solids in the context of the theory of finite anti-plane shear of
an elastic material. The numerical model computes the near-field and far-field solutions
simultaneously, enabling observations of both small-scale and large-scale nonlinearity.
The computed near-field solution is compared with a lowest-order asymptotic solution.
An approximation for the J-integral under conditions of very large loads is discussed
and compared with numerical results. The size of the region over which the lowest-order
solution applies is observed.

Numerical solutions are presented for the same crack problem with materials for
which the equilibrium equation changes in type from elliptic to hyperbolic as a result
of deformation. These results show the emergence of surfaces of discontinuity in the
displacement field in some cases. In other cases they show a chaotic mixture of elliptic
phases near the crack tip.

Analysis of the stability of such coexistent phases is carried out for a specific ma-
terial, the trilinear material. It is shown that the Maxwell relation, and therefore local
stability, cannot in general be satisfied exactly for an arbitrary boundary value problem
with this material. However, in those cases where it cannot be satisfied exactly, it may
be satisfied in the sense of a limit of a certain sequence of deformations. This sequence
produces a progressively chaotic pattern of two coexistent elliptic phases, as was ob-
served numerically. The phases mix over a definite region in a given boundary value
problem. This region may be computed using a constitutive relation which characterizes

the mixture in the limit of the sequence.



PREFACE

This dissertation is divided into two parts. Part I, “Numerical Studies of Anti-Plane
Shear Crack Problems in the Theory of Finite Elastic Deformations,” primarily concerns
results of computer simulations of a nonlinear crack problem. Some of these results
are for problems involving loss of ellipticity. Part II, “Consequences of the Maxwell
Relation for a Family of Anti-Plane Shear Deformations,” is devoted to interpretation
of the results presented in Part I for cases in which ellipticity is lost. So that each of
these parts may be read independently of the other, there is some redundancy between

them.
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PART I:

NUMERICAL STUDIES OF ANTI-PLANE SHEAR CRACK PROBLEMS
IN THE THEORY OF FINITE ELASTIC DEFORMATIONS
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Chapter 1. Introduction

The aim of this work is to explore numerically the equilibrium solutions of an anti-
plane shear crack problem for a variety of incompressible hyperelastic materials. For
some of these materials the equilibrium equation may change in type locally as a result
of deformation from the usual elliptic case to parabolic or hyperbolic, a situation which
will be referred to as loss of ellipticity.

The problem being modeled is that of a crack of finite length embedded in a homo-
geneous slab occupying the entire plane and subject to mode-III loading at infinity. This
problem has been the subject of extensive analysis in the past. It has a known exact
solution in the linear theory of elasticity which is readily found by conformal mapping
methods.

The problem has also been analyzed for a variety of plastic materials and nonlinear
elastic materials. The linear solution is also the exact solution for a neo-Hookean mate-
rial in the theory of finite elastic deformations. The case of an elastic-perfectly plastic
material was solved by Hult and McClintock [1] using the hodograph transformation.
Rice (2] extended this technique to strain-hardening plastic materials. Both of the above
solutions employed the assumption of small strains. Amazigo [3| applied the hodograph
method to the crack problem for a pure power-law plastic material.

Knowles [4] addressed this crack problem for finite deformations of a family of
hyperelastic materials by deriving an asymptotic solution valid near the crack tips. This
asymptotic solution was found by assuming that the displacement near the crack tip
has the form u ~ r™v(#), where m is a constant, 0 < m < 1, v is an unknown function,
and (r,d) are the polar coordinates in a frame centered at the crack tip. For most of
the materials in this family which do not lose ellipticity, this assumption together with
the boundary conditions on the crack faces results in a nonlinear eigenvalue problem
whose solution gives the asymptotic solution. Knowles found the exact solution to this

eigenvalue problem.



In spite of the availability of the exact solution to this eigenvalue problem, there
have remained some questions pertaining to this asymptotic solution, and these ques-
tions provide part of the motivation for the present work. One issue involves the role of
higher order solutions to the eigenvalue problem and whether or not they have physical
significance. Unlike the asymptotic solution for the linear theory of elasticity, in which
the value m = 1/2 is the unique eigenvalue in the interval (0,1), Knowles shows that in
some cases in the nonlinear problem there are multiple admissible values of m. So there
is a possibility that higher order terms have significance in the nonlinear case. However,
the numerical results presented here show that these higher order terms are apparently
not important, and the lowest order solution provides an accurate description of the

solution near the crack tip even when other admissible eigenvalues exist.

Another question about the solutions to the eigenvalue problem involves the region
over which they are valid. It is easy to find the size of the region in which the asymptotic
solution of the problem in the linear theory is an accurate approximation, since the
exact solution is available. However, there has previously been no way to estimate
where Knowles’ low-order solution applies in the nonlinear problem. The present work
provides direct numerical observations of this region. It also describes a simple way of
estimating the size of this region for large applied loads. It is shown that this estimate
also gives as a byproduct the value of the J-integral and hence the magnitude of the

nonlinear analogue of the stress concentration factor of linear elastic fracture mechanics.

The results described above apply to the elliptic cases only. The numerical solutions
to the crack problem involving loss of ellipticity are more surprising. In some cases they
are characterized by a chaotic pattern of equilibrium shocks owing to the nonuniqueness
of solutions to the problem. The numerical simulations of a “trilinear material” (to be
defined in Chapter 2) may be regarded as a two-dimensional analogue of the arbitrary
mixture of phases which Ericksen [5] predicted in a one-dimensional bar problem for a

similar material.
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There are some asymptotic solutions available for the cases of the crack problem
involving loss of ellipticity [6, 7] but these differ fundamentally from the numerical
results. In particular, these asymptotic solutions predict hyperbolic regions in the solu-
tion, while the numerical solutions never contain such regions. (In this work the term
hyperbolic region means a region in which the system of partial differential equations is
hyperbolic, and the term hyperbolic solution is defined similarly.) The reason for the
lack of agreement is the dynamic instability of any hyperbolic solution in a hyperelastic
body in anti-plane shear. The particular numerical method used in this study (dynamic
relaxation) has the property that it predicts only dynamically stable solutions, since the
method works by integrating the equation of motion in a suitably formulated dynamic
problem over time. Therefore it can predict a solution involving a complex mixture
of elliptic phases, but it never predicts a hyperbolic region. (The issue of the sense in
which dynamic notions of stability are appropriate in solutions involving equilibrium
shocks is not yet settled. Stability issues for loss of ellipticity are discussed further in

Part II of this work.)

Part I of this dissertation is organized as follows. Chapter 2 reviews the basic
equations of anti-plane shear and defines the constitutive relations used later. Chapter
3 describes the crack problem and summarizes the asymptotic solution by Knowles.
Numerical methods are discussed in Chapter 4, and validation problems are presented
there. Chapter 5 contains the numerical results for the crack problem in the elliptic cases
and compares these results with asymptotic solutions. In Chapter 6 approximations for
the J-integral and the size of the region of validity for the asymptotic solution are
considered. Chapter 7 discusses numerical results in cases where ellipticity is lost, both
for the crack problem and the simpler problem of a screw dislocation. Conclusions are

presented in Chapter 8.

Part II is concerned with interpretation of the numerical results for loss of ellipticity.

It shows how the chaotic numerical solutions may be interpreted using notions from
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elastic stability theory and the theory of phase transitions.
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Chapter 2. Anti-plane shear of a generalized neo-Hookean body

2.1 Basic equations

This section reviews the concepts of anti-plane shear of an incompressible hyper-
elastic body as applied to the generalized neo-Hookean family of materials. The next
section will discuss the particular materials used in the numerical simulations described
later in this work. The following is merely a summary of the basic equations, and a
more detailed treatment may be found in reference [4].

Let a rectangular coordinate system (z,, z;, z3) be given. Let B be a closed cylinder
with generators parallel to the z3-direction, and let R be the cross-section of B in the

(x1,z2)-plane. An anti-plane shear deformation is a mapping of the form
Y1 =21, Y2 =722, Y3=2z3+u(zy,72) (2.1)

where (y1,y2,ys) are the coordinates of the image of a material particle originally at
(z1,%2,23), and u is a function on R called the displacement field or simply the
deformation. The smoothness required of u will depend on the problem at hand.

The field Vu defined at all points in R where u is differentiable will be called the
displacement gradient field or simply the gradient field. The scalar field k£ on this
same subset of R, defined by k£ = |Vu|, will be called the amount of shear field or
simply the shear field.

Let e, be the unit vector in the z;-direction. At any point x € R where the
Cauchy stress tensor ¢ is defined (i.e., wherever u is sufficiently smooth) let T(x) be
the projection of o(x)es into the (z1,z2)-plane. T will be called the stress vector
field. Its components are Ty = 013 = 03; and Ty = 093 = 033. The scalar field 7 on R
defined by T = |T| will be called the shear stress field.

A stress vector field will be called equilibrated if for every simple closed curve C
in R,

/ T -nds=0 (2.2)
c



-

where n is the outward-directed unit vector normal to C and s denotes arc length. It
will be assumed throughout this work that there are no body forces. Cauchy’s theorem

shows that if T is equilibrated, and if x € R is a point at which T is differentiable, then

V-T(x)=0 (2.3)
or equivalently
aT, aT, _
92, (x) + 32, (x)=0 (2.4)

This work will be concerned exclusively with homogeneous, isotropic, hyperelastic

bodies whose constitutive relations in terms of the stress vector field may be written as

0, k(x)=0

T() = h(Vu(x)) = { r(k(X))Vu(x)/k(x), (x)# 0 (2:5)

where 7 is a piecewise continuously differentiable nonnegative scalar-valued function on
[0,00) such that r(0) = 0. h will be called the constitutive relation, and r will be
called the stress-strain relation.

One special class of materials of this type consists of the generalized neo-Hookean
materials. For these materials the strain energy density is a function of the trace of the
Green strain tensor only. In anti-plane shear, this means that the strain energy density
may be expressed as w(k) where w € C?([0,00)). The stress-strain relation is computed

from w by

(k) = w'(k), k>o0. (2.6)

The equilibrium equation (2.3) may be locally elliptic, parabolic, or hyperbolic
depending on the material and the deformation. Knowles [4] shows that the type is
established from the local slope of the stress-strain relation as follows:

' > 0 <= elliptic
r' =0 <= parabolic (2.7)

7' < 0 <=> hyperbolic



2.2 Stress-strain relations

Three types of generalized neo-Hookean materials will be considered here: a fam-
ily of linearizable power-law materials, a family of pure power-law materials, and the

trilinear material. These are described below.

2.2.1 Linearizable power-law materials. This family of generalized neo-Hookean
materials was proposed by Knowles [4] for purposes of demonstrating the asymptotic
nature of anti-plane shear deformations near the tip of a crack for various kinds of large-
strain constitutive behavior. It is a three-parameter family of materials in which the
large-strain behavior is determined by a hardening parameter n. Regardless of n, the
material is linearizable in the sense that the slope of the stress-strain relation is finite
and positive at zero shear.

The stress-strain relation will be denoted (k) = r¢(k;n) and is given by
b n—1
re(k;n) = pk (1 + ;k2> , k>0, n>0. (2.8)

where u is a positive constant (which equals the shear modulus after linearization near
k = 0) and b is a positive constant. A corresponding strain energy density function is
U b o "
w(k) = % [(1 + ;l-lc ) - 1} . (2.9)
Because of scaling considerations to be discussed in Chapter 6, the parameters y
and b are not important in investigating the essential nature of the crack problem at
hand. In all the numerical simulations for this family of materials the arbitrary values
= 10° and b = 1 were used. Six different values of n were used: 5, 1.5, 1, 0.6, 0.5,
and 0.25. The stress-strain relations for these values are illustrated in Figure 2.1. Note
that of these, only the case n = 0.25 can undergo a loss of ellipticity.
If n > 1, the material is a hardening material. If n = 1 the material is neo-Hookean,

and the equilibrium equation (2.3) reduces to Laplace’s equation. If 1/2 < n < 1 the
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material is softening. If n = 1/2 the stress-strain relation approaches a constant positive
value for large shear, but the equilibrium equation remains elliptic. The hyperbolic cases
are provided by 0 < n < 1/2, for which the stress-strain relation passes a maximum

and asymptotically approaches zero for large shear.

2.2.2 Pure power-law materials. This family of materials is identical to the lineariz-
able power-law materials for large-strain behavior. However, they do not in general have
stress-strain relations with finite slope at k = 0, so they are not linearizable.

The stress-strain relation for this family of materials will be denoted 7(k) = 7, (k; n)
and is given by

b n—1
1p(k;n) = pk (—kz) , k>0, n>0. (2.10)
n
where p is a positive constant (which equals the shear modulus after linearization near
k = 0) and b is a positive constant. A corresponding strain energy density function is

w(k) = -24‘-5 (-’-’-k?)n. (2.11)

n

The pure power-law materials are used in this work solely in the context of val-
idation problems for the numerical method, since there happen to be exact solutions

available for certain crack problems with these materials.

2.2.3 Trilinear material. The stress-strain relation of the trilinear material will be

denoted 7, and is given by

bk, 0<k< K-
ro(k) = pm K=+ (k- K-)E K= K" g- < k< g+ (2.12)
utk, K+<k

and where K+, K~, u*, and pu~ are positive constants such that K~ < K+, u~ > p¥,

and p~ K~ > utK*. (See Figure 2.2.)
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The strain energy density for the trilinear material is given by

—.2
nok 0<k< K-
2

walk) = EEZ 4 (k- K7) [ K-+ k- KT)EUS S K] K- <k < K
- -2 —_
WK +K+—2-K (,u+K++,u'K‘)+*‘i2i(k2—K+2), K+ <k

(2.13)
The trilinear material is interesting to study for two reasons. First, unlike the
hyperbolic cases of the power-law material, in the trilinear material the hyperbolic
segment in the stress-strain relation (denoted H) is bounded and lies between low-
strain and high-strain elliptic segments (denoted E~ and E't respectively). Second, for
subregions in the body in which k is in either of the elliptic segments, the equilibrium
equation (2.3) reduces to the Laplace equation.
The values of the constants used in the numerical simulations are as follows: K~ =
1, Kt =2, 4~ =10° and p* = 109/v/8.
Numerical results involving the trilinear material are presented in Chapter 7 of
Part I. Part II of this dissertation is devoted largely to interpreting these results in the

context of the general theory of stability and phase changes.
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Chapter 3. Anti-plane shear crack problem and asymptotic solution

Most of the remainder of this work will be concerned with the anti-plane shear crack
problem specified below. Let R be the entire plane, and let a rectangular coordinate
frame (z;,7;) be given. Let ¢ be a positive number, and let the crack occupy the line
segment L = {(xl,mg) f —c<z1<¢c, 9= 0}. Define D to be the complement of L
in the plane. (See Figure 3.1.)

Call the displacement field u. We seek a field u € C?(D) satisfying the equilibrium
equation (2.3) and the constitutive relation T(x) = h(Vu(x)) subject to the following
conditions:

Ju . du

li —_— = ] =0, —c< 11 < 1
mgl-l;%+ 89:2 a:gl—?(l)“ 312 ¢ o1 ¢ (3 )

and

U~ kooy as 23 + 73 — o0 (3.2a)

where ko, is a constant. Let 7o, = 7(ko). If the stress-strain relation is invertible at 7,
t.e., if koo is the only value of shear corresponding to 7o, then (3.2a) may be replaced

by a stress condition at infinity:
Ty~0, Ti~7e aszi+ai— oo (3.2b)

where 7o, = 7(koo).

From now on we will be concerned with the linearizable power-law material with
hardening parameter n, so 7(:) = r4(+; n). There is no known exact solution for this crack
~ problem except in the case of a neo-Hookean material (n = 1). However, Knowles [4]
presents an asymptotic solution valid near the crack tips for the elliptic cases (n > 1/2).
This asymptotic solution, which will also be called the low-order solution, is summarized
below for later reference. Define a polar coordinate system (r,8) centered at the right

crack tip. For the case n > 1/2, the low-order solution is

u~ r™u(f) asr—0, -m<f<mn (3.3)



U~Keo X

Figure 3.1. Anti-plane shear crack problem.
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where
m=1-1/2n, (3.4)
2 o2 1/2
1)(9) = Asin—g 1-— 2(1 *llina)j(;f)rsl)(o/z) [w(g)n) + (1 _ l/n) Cosgl(n—l)/Zn ,
(3.5)
w(f,n) = [1 — (1~ 1/n)?sin® 0] 1/2, -r<f<m (3.6)

and A is a constant which is determined by conditions far from the crack. The stress

vector field components associated with this asymptotic solution are
b n-1
T~y <;> " 1(6) [mu(8)ca() + 5(8)epucs(8)] r—™ (3.7)

and the out-of-plane normal stress component is

o33 ~ i (%) T ey (3.8)
where
c1(6) =cosh,  cy(6) =sin® (3.9)
and
p(8) = Aziz—'“m“a—l)z [(1 - %) cos + w8, n)] o (3.10)

The strain energy density is found to be

W~ %p"(o) <-b—>nr_1 (3.11)

n

For the case n = 1/2 Knowles found an asymptotic solution by use of the hodograph

transformation. The resulting displacement field is

—cV2b koo, - <0< —-w/2
u~ < V2 kolsing, -1/2<0<1/2 (3.12)

C\/Z_Ekooz, T/2<0<m
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The asymptotic solution quoted above requires evaluation of the constant A for

the n > 1/2 case. For the case of small k., Knowles accomplishes this using the path

independence of the J-integral, which is computable from the linear solution to the

global crack problem. This solution is assumed to be valid far from the crack. In the

linear solution, for a contour surrounding the right crack tip,

m
J = iﬂCkooz

(3.13)

while the corresponding integral over a small circle centered at the crack tip for the

low-order solution is
2n — 1)in-1pn3

J = bn—l 2n(
™ A (4n4)n

Equating these two expressions leads to the estimate
2n _ C11-n 2
A - “2'b f (n)koo

where
_ (4n4)n
f(n) = (2n — 1)2n-153"

(3.14)

(3.15)

(3.16)

This estimate holds only for small k.,. An estimate for large k., will be discussed in

Chapter 6.
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Chapter 4. Approximations and numerical methods

The numerical modeling of nonlinear crack problems continues to present difficulties
in spite of the considerable advances that have been made in computer hardware and
the technology of finite elements.

Various accurate and efficient numerical methods, such as the boundary integral
method, are available for modeling singular problems in the linear theory of elasticity.
The most common approach to representation of singularities in nonlinear problems
is the use of singular elements. These elements are designed to provide the stiffness
response of a given type of singularity located within the area represented by the el-
ement. Their limitation is that the properties of the singularity must be known or
assumed. In the present work, the properties of the singularity are precisely what are
being investigated, so it would be inappropriate to use such methods.

Another challenge presented by the nonlinear problems being investigated here
is the inherent nonlinearizability of some of the problems. When ellipticity is lost
in anti-plane shear problems, for example, the stress-strain relation may be locally
downward-sloping. Simple hand calculations show that methods relying on linearization
of the problem at any stage of the calculation would be expected to have difficulty in
converging, and the physical significance of such solutions would be suspect even if they
did converge. Therefore it is preferable not to use Newton-Raphson iteration or its
derivatives or any of the incremental methods that are in wide use for coknventiona.l
plasticity problems.

A third difficulty arising in the nonlinear elasticity problems considered here is the
issue of elastic stability. Part II of this thesis discusses in detail the tremendous degree of
nonuniqueness exhibited by boundary value problems involving loss of ellipticity and the
role of elastic stability in choosing physically meaningful solutions. While the question
of what is the correct notion of stability for these problems is far from resolved, it is
reasonable to exclude those equilibrium solutions which spontaneously decay to other

solutions when considered as initial conditions to a dynamic problem with the same
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boundary conditions. Therefore a desirable trait of a numerical method would be that
it predict only solutions that are dynamically stable in this sense. There is no reason
to believe that methods such as Newton-Raphson iteration or incremental methods
necessarily give solutions which have this stability property. (Note that nothing is being
said here about minimization of potential energy, whose relation to dynamic stability is
murky for equilibrium problems involving loss of ellipticity.)

The next section describes the numerical method developed for the present calcu-

lations.

4.1 The APE computer program

The APE program is the anti-plane shear version of CHIMP, which has been doc-
umented elsewhere [8]. The program uses a finite-difference method with dynamic
relaxation and explicit integration in time. Spatial differencing in APE is accomplished
using a Green’s theorem formulation [9], which allows great flexibility with regard to
mesh configuration. The displacement gradient vector field components are evaluated
using the same spatial differencing method as for the stress tensor field components.
Stress components are computed by substituting the displacement gradient components
into the constitutive relation.

Dynamic relaxation [10] is the calculation of an equilibrium solution as the large-
time limit of a damped dynamic problem. The equation of motion is integrated with a
viscous damping term starting from some reasonable set of initial conditions. The vis-
cous damping coefficient is chosen so as to provide critical damping for the fundamental
vibrational mode of the mesh, since this value provides the fastest convergence rate.

Explicit central differencing in time is used in APE. This method allows great flex-
ibility in the choice of constitutive relations, since there is no program modification
necessary when a new material is introduced. The time integration method is condi-
tionally stable. The stability condition is the Courant condition, which requires that the
time step must be less than the minimum transit time for an infinitesimal wave through

any zone in the mesh. In order to accommodate meshes in which the zone spacing varies
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over orders of magnitude, APE exploits the dependence of speed of infinitesimal waves
on mass density, a technique first suggested by Day [11]. Since the wave speed varies
with the square root of density, and since the density field is irrelevant to an equilibrium
solution, APE is able to assign zone mass densities so that the wave transit times are
equal for all zones in the mesh in spite of any differences in spacing.

APE is adapted from methods such as HEMP [12] in wide use for moderate-
distortion dynamic problems possibly involving interaction of many physical and chem-
ical phenomena. While seldom used for equilibrium solid mechanics problems because
of a lack of versatility compared with the finite-element method, this method has ad-
vantages with regard to the three difficulties mentioned at the beginning of this section.

Crack tips are readily modeled by APE as the ends of long thin elliptical holes.
Logarithmic spacing of zones is used to focus greatest numerical resolution near the
crack tip. For the present work, zone sizes near the ellipse tip were typically 105 times
the size near the outer edges of the mesh. The validation problems presented elsewhere
in this chapter show that this method of modeling a crack provides good resolution of
the singularity except in the case of a severely hardening material close to the crack tip.

The APE method does not use linearization at any step of the calculation. As
mentioned above, this is an inherent advantage because of the nonlinearizability of
the problems considered here. APE also has the property of predicting only solutions
that are dynamically stable with respect to the particular boundary value problem
chosen. This is true because the program computes an equilibrium solution as the
large-time limit of a dynamic problem. The viscous damping introduced as a means of
achieving convergence does not affect the dynamic stability of the converged solution,
since stability is a property of the solution itself rather than the means used to compute

it.
4.2 Approximation of cracks by elliptical holes and leading term solutions

This section discusses the errors involved in the modeling of crack problems by

elliptical hole problems and by asymptotic solutions. The following questions will be
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addressed here:

(a) In what region should agreement between the exact solution and these approxima-
tions be expected?

(b) In this region, how close should the agreement be?

These questions cannot be answered a prioriin the general nonlinear case, but it will
be shown here that they can be answered with precision in the linear case. Although the
quantitative answers for the linear case do not apply directly to the nonlinear problem,
they help explain the qualitative nature of the agreement that is observed, at least in
those problems where no loss of ellipticity is involved.

The leading term solution of the crack problem near the crack tip becomes more
accurate as the crack tip is approached. The approximate solution obtained by treating
the crack as an elliptical hole becomes less accurate as the crack tip is approached.
Therefore one would expect the best agreement between the leading term solution and
the elliptical hole solution in some annular region surrounding the crack tip.

In the linear theory of elasticity exact solutions are available for both the crack
problem and the elliptical hole problem by conformal mapping techniques. The lowest
order (leading term) solution near the crack tip is also readily obtained from this solu-
tion. These solutions will be used here to study the relation between the three problems
quantitatively.

Denote the anti-plane shear crack problem defined in Chapter 3 as problem P. Now
consider a second problem P’ whose exact solution is to be used as an approximation
to problem P. To decide how good the approximation is, it is necessary to define what
an erroris. For the crack problem, one suitable measure is as follows. Define a function
e on (0,c) by

mcaix ]T _ T,I

er) = L) O0<r<e 4.1
() CrxlT) ( )

where T and T' are the stress vector fields associated with P and P’ respectively, and
C, is the circle of radius r centered at the crack tip. The quantity ¢(r) will be called

the fractional error of P’ at radius r.
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Suppose one wishes to find the region in which ¢ is less than some required value,
say 0.20. To do this in the leading term and elliptical hole approximations, it will be
convenient to consider the way ¢ scales according to the characteristic lengths that are
present in the problems. In the leading term approximation the only characteristic
length is ¢. As mentioned above, this approximation becomes better for small . There-
fore one expects there to be some number r3/c independent of ¢ such that €(r) < 0.20
whenever r < rq.

For the moment assume that the elliptical hole model of the crack problem has
the semi-major axis a equal to the crack length ¢. (It will be shown later that this is
not in general the best model.) Then in the elliptical hole approximation there are two
characteristic lengths: the semi-major axis of the ellipse, ¢, and the radius of curvature
at the crack tip, p. (p is related to the semi-minor axis b by p = b2/c.) Therefore there
should be a number r;/p, dependent only on p/c, such that ¢(r) < 0.20 whenever r > r;.

So, to find the region of agreement, it is necessary to find the numbers r; and r9
for only a single value of ¢ and for variable p. Figure 4.1 shows ¢(r) for ¢ = 1/2 and for
three values of p in the linear problem. Both axes are on logarithmic scales. r; and r,
may be read off this figure for any desired value of €. The results for ¢ = 0.20 are shown

in Table 4.1. The value of ry/c for this € is 0.30.

c/b ple ri/p r2/p
100 1.00 x 10~4 1.50 3000
80 1.56 x 10~* 1.51 1923
50 4.00 x 1074 1.55 750
30 1.11 x 10~3 1.63 270
20 2.50 x 103 1.76 120
10 1.00 x 10~2 2.32 30

Table 4.1. Elliptical hole approximations, ¢ = 0.20.

This table shows that for a desired accuracy of ¢ < 0.20, one can use the elliptical
hole approximation with any thinness ratio between 10 and 100 on the region r > 2.32p.

For the leading term approximation, the desired accuracy is obtained if r < 0.30c¢.
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Figure 4.2 shows the shear stress T for the exact solution, the leading term approx-
imation, and two ellipses along the crack axis near the crack tip with ¢ = 1/2. Note
that since both axes are on logarithmic scales, the leading term solution is a straight
line of slope —1/2. The leading term solution becomes an excellent approximation close
to the crack tip. The ellipses provide good approximations at distances greater than a

few radii of curvature.

4.3 Optimum ellipse for nonlinear crack problems

Section 4.2 discussed approximation of the linear crack problem by an elliptical
hole whose major axis precisely equals the crack length. However, it happens that the
solution to the linear elliptical hole problem is an ezact solution (at points where it is
defined) to the crack problem in which the crack tips are located at the foct of the ellipse
rather than at the endpoints. This property of the linear anti-plane shear problem may
be confirmed by deriving the elliptical hole solution by the conformal mapping known
as the Joukowski transformation [13]. It will be shown here that in the nonlinear case,
while there is no elliptical hole problem which provides an exact solution to the crack
problem, there is nevertheless a family of optimum ellipses for the crack problem which
minimize errors near the crack tip.

Consider the crack problem for a linearizable power-law material with n > 1/2.
Suppose one wishes to model the crack by a thin elliptical hole. The cost of numerical
simulation of the elliptical hole problem increases with the thinness ratio a/b, where a
is the semi-major axis and b is the semi-minor axis. Assume that the thinness ratio has
been set by these cost considerations. It remains to find a for the given crack half-length
¢ such the numerical solution is as close as possible to the crack solution near the crack
tip.

Let a be the semi-major axis of the optimum ellipse for a given ¢ and a given value
of a/b. Let ¥ = a—c (see Figure 4.3). Let p denote the radius of curvature of the ellipse
at the tip, p = b2/a. Consider a polar coordinate system (r,8) centered at the right

crack tip.
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Figure 4.3. Optimum ellipse for a crack problem.
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Assume that the low-order asymptotic solution by Knowles discussed in Chapter 3
holds near the crack tip. Let u be the displacement field associated with this asymptotic

solution. Then

u=r"v(8), m=1-1/2n (4.2)

where v is given in (3.5).
Associated with the asymptotic solution is a family of traction-free curves. An
optimum ellipse is defined as an ellipse C' whose curvature at the endpoint equals that

of the traction-free curve which is tangent to it there. Therefore

g—% ~0 on C near § =0 (4.3)

where n denotes the normal direction along C. Evaluation of the normal derivative

leads to

g%:sf”“[mvwhuw)+bwﬁwwﬂ (4.4)

where n, and ny are the radial and tangential components of n, the normal unit vector
directed outward.

Let ¢(0) be the angle that n makes with the z;-axis at any §. Then (4.3) and (4.4)
imply that for 8 =~ 0O,

ne(6) mu(8) o mv(0)8

Referring to Figure 4.3, p¢ ~ 76. Thus (4.5) implies
Fé
Zx1-m). (4.6)
p
Hence
Fx(1-m)p (4.7)
or equivalently
Fmg-e= 2
FEa-c= - (4.8)

(4.8) gives the semi-major axis of the optimum ellipse, and the semi-minor axis is then

computed from the known thinness ratio.
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The efficacy of this choice of the ellipse geometry in modeling crack problems may
be seen in the validation problems discussed in the next section, both of which use the

optimum ellipse method.

4.4 Validation problems

This section presents numerical simulations of problems with known exact solutions
for purposes of evaluating the accuracy of the numerical method. First, the numerical
solution to the global crack problem is computed for the case of a linear (or a neo-
Hookean) material. This is compared with the exact solution which is obtained by
conformal mapping. The second test case is a boundary value problem whose ezact
solution is the low-order solution which Knowles introduced as an approzimate solution

to nonlinear crack problems (see Chapter 3).

4.4.1 Global solution to the linear crack problem. This validation problem
assesses the accuracy of the numerical method in finding the near-field and far-field
solutions simultaneously in the crack problem. The material modeled is a neo-Hookean
material, for which the displacement field found from linear elasticity theory holds
exactly. The exact solution to this problem may be found by a conformal mapping
technique using the Schwartz-Christoffel transformation or the Joukowski transforma-
tion. The resulting field is most conveniently expressed as the real part of a complex

function:

u(z1,72) = Re {—~ik°°\/ 2% - cz} , =1z + 1z, (4.9)

where the desired branch of the complex square root function is defined by /¢ =
l¢|M/2e*/2 ¢ = |¢le*?, -1 < 6 < 7.

The numerical model for this validation problem was the same as the one used for
the calculations presented later in this work for nonlinear cases. The mesh, shown in
Figure 4.4, was generated in such a way that nodes lie along families of hyperbolas and
ellipses. The total number of nodes was 1000. To model the condition at infinity, the

crack was embedded in a mesh which was nearly circular at its outer boundary, and
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whose radius was about 20c. Tractions derived from the homogeneous deformation cor-
responding to the condition at infinity were applied at the outer circular boundary. The
crack faces were traction-free, as was the rj-axis. The z,-axis was a zero-displacement
boundary for z; > c.

Figure 4.5 compares the shear stress T along the crack axis for the numerical and
the exact solutions. This graph employs the optimum ellipse method for making this
comparison (see previous section). This means that the crack being modeled has tips
on the foci of the ellipse. Figures 4.6(i)—(iv)compare the data for u, T, T}, and T, along
a circle of radius 0.02c centered at the right crack tip. Computation of the fractional

error €(r) defined previously shows that € < 0.02 near the crack tip.

4.4.2 A nonlinear singular problem. By identifying the terms in the equilibrium
equation which are neglected in the derivation of Knowles’ low-order solution for the
linearizable power-law material, one can show that this solution is an ezact solution to
a suitably contrived boundary value problem for the pure power-law material. In this
problem the displacements found from the low-order solution with an arbitrary value of
A are taken as boundary conditions for the mesh showﬁ in Figure 4.4 (except for the
crack faces, which remain traction-free).

For this admittedly artificial boundary value problem, the low-order solution dis-
cussed in Chapter 3 provides an exact solution. This problem allows direct observation
of the accuracy of the numerical method in nonlinear crack problems.

The same mesh used in the first validation problem was used here. The z,-axis
is no longer an axis of symmetry, and both this axis and the outer circular boundary
have fixed displacements along them found from the low-order solution. The crack faces
remain traction-free.

Figures 4.7(i)-(iv)compare the shearing stress T along the crack axis for four pure
power-law materials: n = 5, 1.5, 1, and 0.6. It may be seen from the figures that there
is some disagreement close to the crack tip for the nonlinear cases. This disagreement

is caused by the fact that any ellipse, even the optimum ellipse discussed above, is an
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imperfect model for a crack in the nonlinear cases. As discussed in Section 4.3, the
low-order solution for a given value of the hardening parameter is characterized by a
family of curves along which du/dn = 0. A more detailed analysis shows that the actual

curves in this family are given by

r(0):Fexp{/09 %th}, 0<b<n (4.10)

where r(8) is the distance from the crack tip to the free surface and the other parameters
are as discussed in Section 4.3. The optimum ellipse is the ellipse which provides the
best fit to one of these curves. Numerical tests have shown that the second validation
problem yields excellent agreement similar to that seen in the linear case (Figure 4.7(iii))
when the optimum ellipse is replaced by the curve described by (4.10). However, the
optimum ellipse solutions are sufficiently accurate for purposes of this work at distances

beyond about 0.001c, so use of a mesh based on (4.10) is not regarded as necessary.
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Chapter 5. Numerical solutions for elliptic cases

5.1 Results

This chapter presents numerical solutions for anti-plane shear crack problems which
do not involve loss of ellipticity. Cases in which ellipticity is lost are treated in Chapter
7. The purpose of the present section is to compare qualitative features of the solutions
for various values of the hardening parameter n for the linearizable power law material.
Properties of the J-integral and the low-order zone size are discussed in Chapter 6.

The following values of n are treated here: 5, 1.5, 1, 0.6, and 0.5. The properties of
these materials were discussed in Chapter 2. All simulations were done using the APE
program with the same numerical mesh used for the validation problems described in
section 4.4.

One property of interest in fracture mechanics, especially from the point of view of
predicting crack growth, is how the region of highest shear stress is oriented with respect
to the crack tip. Figures 5.1a-e illustrate this pattern, which will be called the “stress
concentration pattern,” for variable n. All cases shown are for loads large encugh so
that the problem is fully nonlinear. Figure 5.1a shows the stress concentration pattern
in the n = 5 case. The shaded region represents the area in which the shearing stress
exceeds that at infinity by a certain ratio, specifically T > 67.. The local density of
dots in the figure increases with T up to a value of T' = 127, above which the density
is constant. Figures 5.1b-d show similar data for the n = 1.5, 1, 0.6, and 0.5 materials.

For the case of a neo-Hookean material (n = 1, Figure 5.1c) the stress concentration
is circular in shape and centered at the crack tip, regardless of load. The region of highest
shear stress in located behind the crack tip in the hardening materials or ahead of the
crack tip in the softening materials. The present counterpart of the elliptical pattern
of the yielded region predicted by Rice [2] for the elastic-perfectly plastic material in a

deformation theory of plasticity may be observed in the n = 0.5 case, Figure 5.1e.



Figure 5.1a,b. Stress concentration pattern for (a) n = 5, (b) n = L.5.
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Figure 5.1c,d. Stress concentration pattern for (c) n =1, (d) n = 0.6.
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n=0.5

Figure 5.1e. Stress concentration pattern for (e) n = 0.5.
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Figures 5.2a-e compare the displacement fields near the crack tip for n = 5, 1.5, 1,
0.6, and 0.5 for large values of 7o,. The surface depicted in each figure represents the
shape into which an initially flat sheet in the plane is deformed. The tear along the
left side of the surface corresponds to the crack faces. It should be noted that each of
the five surfaces is normalized separately and is on a separate vertical scale. The two
plots on each page show the same surface from a different view, the second being from

a point directly ahead of the crack.

Figures 5.2a-e clearly illustrate the qualitative differences in the singularities in
displacement fields between the different materials. The hardening material has the
“smoothest” displacement field, while the softening materials have more violent behavior
near the crack tip. This trend is predicted by the asymptotic solution discussed in
Chapter 3. Recall that in the low-order solution for n > 0.5, Knowles found that
u ~ r™ near the crack tip, where m = 1 — 1/2n. Thus the weakest singularity in
displacement, i.e., the largest value of m, is found for the largest value of n. In the
case n = 0.5, Knowles found that the asymptotic solution for u depends on 6 only, and
therefore u is discontinuous at the crack tip. The numerical solution for n = 0.5 may

be readily interpreted as representing such a discontinuity.

Having considered some qualitative features of the numerical solutions near the
crack tip for some nonlinear materials, we now turn to quantitative observations of the
singularities. Figure 5.3a displays the variation of shear stress T along the crack axis for
n = 5. Each of the four graphs on the page corresponds to a different load r.,. Figures
5.3b-e display similar data for n = 1.5, 1, 0.6, and 0.5. The solid line on each graph is
the numerical solution. Also shown are the asymptotic solution discussed in Chapter 3
(the r~™ singularity) and the global solution from linear elasticity. Note that the axes
are both on log,, scales, so that a straight line with slope —m represents a variation
with r=™.

The asymptotic solutions shown in Figures 5.3a-e employ numerically computed
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Figure 5.2a. Deformation near crack t
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values of the J-integral from the computer simulations which are represented by the
solid lines. This is necessary because the asymptotic solution contains an arbitrary
constant A (see Chapter 3) which must somehow be assigned in order to evaluate the
asymptotic solution explicitly. Approximate methods of finding A will be discussed
in Chapter 6, but for present purposes it is evaluated using (3.14) with numerically
determined values of J.

Figures 5.4a-e compare the angular dependence of the displacement and stress fields
along a small circle centered at the crack tip. For the material n = 5, Figure 5.4a shows
the variation of u, T, Ty, and Ty with 8, § = O being the crack axis. The radius of the
circle is 0.006¢, sufficiently small that the asymptotic solution may be regarded as fully
developed there. The low-order asymptotic solution is also shown. Note that the axes
are not logarithmic here. Figures 5.4b-e show similar data for the other materials. The
n = 0.5 case includes a comparison with the Hult-McClintock solution [1] for an elastic-
perfectly plastic material. The radii of the circles used in these plots for each of the
five materials differ slightly and were assigned in order to best illustrate the asymptotic

behavior of the solution.

5.2. Discussion

The above results show that the low-order solution is generally valid for all the
materials considered. There is no evidence that any higher-order terms are significant
in the asymptotic solutions.

However, there are certain aspects of the extreme cases n = 5 and n = 0.5 that
require further explanation. The n = 5 curves (Figures 5.3a and 5.4a) show some
deviation from the low-order solution. Some further analysis was carried out to help
explain this. The primary contributor to the difference is that the simulations are for
the linearizable power-law material rather than for the pure power-law material. The

low-order solution assumes that k is large asymptotically. Thus the stress-strain relation
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of the linearized power-law material is, in effect, formally replaced by the pure power-
law relation in the derivation of the low-order solution. This replacement is valid except

1n two cases.

In the case of a severely hardening material, such as n = 5, the shears are not high
except at points very close to the crack tip. This occurs because although the stresses
become large at moderate distances, the shear stress varies with k°. Thus the strains
are relatively small even for large stresses. Therefore the low-order solution does not
become valid except at very small radii, too small to be observed with the numerical
mesh used here. To confirm that this explanation of the discrepancy is correct, the
second validation problem of Chapter 4 was run for both the linearizable and pure
power-law materials for n = 5. The resulting differences were comparable to those seen

in the results shown in this chapter for n = 5.

The other case in which the assumption of large strains is flawed is in the n = 0.5
case for the linearizable power-law material. The large-k assumption underlying the low-
order solution effectively means that the n = 0.5 material is treated like a rigid-perfectly
plastic material. In fact, the n = 0.5 constitutive relation more closely resembles that
of the elastic-perfectly plastic material considered by Hult and McClintock [1]. This
difference may be seen in Figure 5.4e(i), in which the numerical simulation shows u
varying near the crack faces while the low-order solution predicts constant u in those
regions. This difference occurs because the stresses are low there, and the low-stress end
of the stress-strain relation is where the difference between the linearizable and pure
power-law materials is the most prominent. The Hult-McClintock solution is plotted
along with the other solutions in Figure 5.4e, and while this does not provide perfect

agreement, it does show variation of u with # near § = .

It should also be noted that the use of an elliptical hole to model a crack is expected
to cause more significant errors for the n = 0.5 material than for the “more linear”

materials, since the exact free surface predicted by (4.10) for n = 0.5 is a slit with
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straight sides and a semicircular tip. This effect may be observed especially in Figure
5.4e(iv), which shows a larger value of T for § &~ n than is predicted by the low-order

solution.
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Chapter 6. Approximations for the low-order zone size

In the use of asymptotic solutions such as the low-order solutions discussed in
Chapter 3, it is important to know the region of validity of the approximation. It
is apparent from the results of the previous section that there is in general a sizable
transition zone between the region near the crack tip in which the low-order solution
is valid (the low-order zone) and the far-field solution. In the n = 5 case, for example,
Figure 5.3a(i)shows that this transition region is at least an order of magnitude larger
in radius than the low-order zone. (The reason for the large size of the transition zone
in this case was discussed in Section 5.2.) The situation is additionally complicated
by the fact that for small loads with the linearizable power-law material, there is an
intermediate region in which the asymptotic solution of linear elasticity holds, a situation
known as small-scale nonlinearity.

The above considerations suggest that it is not a worthwhile endeavor to attempt
to observe the size of the region of validity of the asymptotic solution directly from the
numerical data. Instead, the discussion below uses a notion of the low-order zone size
derived by fitting an asymptotic solution to the numerical data and observing where
this solution takes on the value r., along the crack axis. This notion of the low-order
zone size will be defined more precisely below.

It will be shown that the low-order zone size determines the J-integral and A, the
nonlinear analogue of the stress concentration factor. The two extreme cases of very
small loads and large loads allow approximations of these parameters (the former was
discussed in Chapter 3), and these approximations will be compared with numerical

data below.

6.1 Scaling considerations

Before discussing observations of the low-order zone size, it is useful to apply di-

mensional analysis to help shed light on its dependence on the various parameters which
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characterize a problem.

First, let us define the low-order zone size R. Recall that in the low-order zone, r
is given asymptotically on the crack axis by T ~ Cr~™, where C and m are positive
constants, 0 < m < 1. At points far from the crack tip, the condition at infinity requires
T ~ 75. Define the low-order zone size R as the point on the crack axis at which
the two solutions would intersect if they were extended into the transition zone, i.e.,
CR™™ = 7o, (See Figure 6.1.) Therefore the low-order solution for stress on the crack

axis may be written

T~ Too(r/R)™™. (6.1)

To apply dimensional analysis to the evaluation of R, first consider all the pa-
rameters that the stress vector T could depend on at a fixed point (z;,z3). For the
linearizable power-law material with n > 1/2, these are as follows: 1, 2, n, ke, 4,
b, and c¢. Consider the dimensions of these quantities. Displacement is a variable that
has its own dimension, like temperature in a heat conduction problem, and should not
be regarded as a length even though it represents the distance traveled by a particle.
Rather than using displacement as a fundamental dimension, it will be more convenient
to use strain, meaning displacement/length.

Taking stress (o), length (L), and strain (¢) as the fundamental dimensions, the
dimensions of the related quantities may be immediately written down: [T}] = o, [T}] =
o,(z1] =L, [z2] = L, [keo) =€, [u| = 0/e, B =" V2, [c] = L, [R] = L, [n] = 1.

In the following discussion, the notation X = F(Y;,Y;,...,Y;) will mean that a
quantity X depends only on 1 numbers Y;,Y5,,...,Y;.

Taking the parameters ¢, ko, and pko, as the fundamental groups with dimensions
of length, strain, and stress respectively, the following nondimensional groups may be

formed: T1/ukeo, Ta/ukoo, 1/¢, T3/c, n, R/c, and bko,?. Thus

T T, T
- :F(-f,?z,n,bkooz). (6.2)



-59-

area=
(I-R)Tm

crack R r
tip

Figure 6.1. Model for estimation of low-order zone size for large loads. R is just large
enough so that the T'(r) curve, after accounting for the transition terms, transfers the
correct vertical force through the crack axis.
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Noting that by the constitutive relation, 7o, = F(plcoo,n,bkooz), and it follows that
pthoo = F(7oo,n,bko?). (The unique invertibility of the constitutive relation has been

used here.) So (6.2) implies
T _ Iy o 2
Too —“F< ' e y 1, by )- (63)
Along the crack axis, it follows that
— r 2
T—rooF(c,n,bkoo ) (6.4)
Using the definition of R, this implies
R\™ r
Too (7) NTOOF(_C-)nykaOZ) asr — 0. (65)

Since m depends only on n (recall m = 1 — 1/2n) (6.5) implies

—?— = F(n,bk.?). (6.6)
The quantity bke,? appears in (6.6) because it represents “how nonlinear” the prob-
lem is at infinity. It therefore determines whether there is an intermediate zone where
the asymptotic solution of the linear theory holds (small-scale nonlinearity). A similar
analysis of the pure power law material, in which there cannot be small-scale nonlin-
earity, results in (6.6) being replaced by R/c = F(n). This additional simplification is
significant because for large shears, the linearizable power law material behaves like the

pure power law material:

b n—1 b n—1
pk (1 + —kz) ~ pk (—k’) . (6.7)
n n

Thus for very large loads in the linearizable power law material, R should depend only
on n. This is indeed observed in the numerical results, as may be seen in Figures
5.3a(iii)and (iv). The curves of shear stress as a function of distance along the crack

axis have roughly the same shape although the loads differ by a factor of 107.
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6.2 Small load approximation

For small loads with n > 1/2, the nonlinearity is expected to be small-scale, so the
low-order zone is contained within some larger zone in which the r~1/2 singularity of
linear elasticity theory is present. Evaluation of the shearing stress along the crack axis

in the low-order zone using Knowles’s solution discussed in Chapter 3 leads to

T=p (%) - g(n)a* =t (88)
where I\ /o 1 (2n~1)%/2n
=) (%) 6
A [%bl,,,f(n)sz]‘““, (6.10)
and
(4n?)"

fln)= @n—1)tn-ins (6.11)
Requiring T = pk, at radius R in (6.8) and using (6.9)—(6.11) gives the small-load

estimate for R:

bk 2y (n—1)/(2n-1) c .
. 0 b n/(2n-1)
R= (=) (2) rtmg () (6.12)

Of more interest in the small-load case is the radius at which the low-order solution
changes to the r~1/2 behavior of the linear elastic solution. Call this point of transition
R,. The asymptotic solution in the linear theory provides the following approximation

T. for shearing stress along the crack axis:

T.(r) = pkoo \/217 (6.13)

Now require T = T\, at R. along the crack axis making use of (6.8)-(6.11) and (6.13).

Carrying out the indicated computations leads to

2 (3n-2)/(n-1)
R, = Pheo (1) . (6.14)

2 n
The J-integral associated with the small-load approximation is that of the linear theory,

_ perko,?

J
2

(6.15)
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6.3 Large-load approximation

For large loads with n > 1/2, there is no annulus in which the r~1/2 singularity of
linear elasticity is present. Instead, the problem is entirely nonlinear.

An attempt to evaluate the constant A by use of the J-integral, as was done in
the small-load case, fails in the large-load case because J cannot be evaluated without
knowing the complete global solution to the nonlinear problem. Various methods have
been proposed to evaluate J in special cases (see [3] and [14], for example). The following
describes a simple way of estimating R and J based on a force balance through the crack
axis. This simple approximation is based on a model similar to that used by Irwin [15]
to estimate the plastic zone size in elastic-plastic materials.

Instead of the crack problem in an unbounded domain, consider the analogous
problem in a large circular disk of radius B >> ¢ with a traction field corresponding
to the conditions at infinity applied on the outer circumference. Consider the variation
of shear stress T along the crack axis extending from the right crack tip. Suppose one
ignores the terms which give rise to the transition region separating the low-order zone
from the homogeneous region. Then the following approximation holds on the crack

axis (see Figure 6.1):

_J1e(r/R)™, O0<r<R
T—{roo, R<r<B-ec (6.16)

Suppose further that all the force which would be transferred across the segment ~¢ <
z; < ¢ along the crack axis if the crack were not present is instead transferred by the
singular terms near the crack tip. Define the quantity I by

I= /OR (—é—)—m dr = 1—_‘%1— (6.17)

so that 7, I is the area under the low-order singularity curve in Figure 6.1.
The above model immediately needs modification because numerical simulations

indicate that the transition terms contribute significantly to the total transferred force.
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To account for them, assume that there is a constant ¢ independent of n such that the
force carried by the transition terms is 7o (I — R). Geometrically, this means that the
transition force is ¢ times the force carried by the low-order singularity in excess of the
homogeneous term. This approximation for the transition terms has no justification
except that it is geometrically plausible and gives reasonably good agreement with
numerical data.

The total force out of the plane exerted on the quarter disk at the outer boundary
is Bro,. Making the assumptions described above, a force balance along the crack axis

is expressed as

Bfoo = ool +qroo(l = R) + 700(B — R - ¢) (6.18)

in which the terms on the right represent forces carried by the low-order singularity,
the transition terms, and the homogeneous term in that order. Solving (6.18) for R/c

using (6.17) yields
R 1
¢ (L+¢)(2n-1)

(6.19)

Since ¢ is assumed to be independent of n, it may be evaluated using the known global
solution in the neo-Hookean case (n=1), which is R = ¢/2. Thus ¢ = 1. So the large-load
approximation for R is

R 1 1

—c—— - m, n > 5 (620)

Other quantities of interest which follow from this approximation and (3.7), (3.14), and

(6.1) are given below:

Woobl~"c(4nt)” 1/2n
A= —= 6.2
Eree (621
Woocmn?
J = Delrn 6.22
n—-1" (6.22)
I~ Too [2(2n - 1)%] ) asr —0, =0, (6.23)

and

-1
W~ We [2(2n - 1)2] asr—0,0=0, (6.24)
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where W, is the value of strain energy density corresponding to the condition at infinity.
The large-load approximation given above provides the correct near-field behavior

in the neo-Hookean case. Its adequacy in other cases will be discussed below.

6.4 Comparison with numerical results

Figures 6.2a-b(i)-(ii)compare the numerically observed values for J, R, and R, with
the small-load and large-load approximations discussed above for two materials: n =5
and n = 0.6. The plots show the applied shear k., on the horizontal axis. Note that for
large loads, R becomes independent of the load, a fact that was predicted earlier from
scaling considerations alone. For very small loads it is not possible to observe R and
R. using the current numerical model because the low-order zone is smaller than the

radius of curvature of the elliptical hole.
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Chapter 7. Loss of ellipticity: Numerical results

This section presents numerical results for the anti-plane shear crack problem with
materials in which the underlying partial differential equation describing the equilibrium
of the body may lose ellipticity as a result of deformation. Two materials will be
considered here: the linearizable power-law material with n = 1/4 and the trilinear

material described in Chapter 2.

7.1 Linearizable power-law material, n = 1/4

The stress-strain relation for this material is shown in Figure 2.1. The curve has a
maximum at ko = \/172—b, corresponding to a shearing stress of rg = ,u\/_172_b 3-3/4 For
shears greater than ko, the curve is monotonically strictly decreasing, and it asymptot-
ically approaches zero for large shears. As mentioned in Chapter 2, a locally decreasing
stress-strain curve in simple shear corresponds to a locally hyperbolic solution of the
equilibrium equation.

The numerical simulation of the crack problem for this material was carried out
for a loading of 7, = 0.1y, corresponding to a shear of ko, = 0.1. The shear at infinity
is small compared with the shear at the maximum of the stress-strain curve, which for
the current case is kg = 1/ V2. However, the load is large enough so that shears larger
than kg are expected to occur near the tip of the ellipse.

In the simulations which did not involve loss of ellipticity, experience has suggested
that the solution of the anti-plane shear crack problem is unique except for rigid de-
formations. This apparent uniqueness is not surprising, since a slight modification to
the Kirchhoff uniqueness proof in linear elastostatics, assuming strong ellipticity, suf-
fices to prove infinitesimal uniqueness in a large class of boundary value problems for
finite anti-plane shear. This is not the case in problems in which ellipticity is lost, and
experience has shown that the numerical solutions are sensitive to initial conditions and

the way boundary conditions are applied over time.
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In the simulation of the n = 1/4 crack problem, the initial conditions were quiescent.
A traction field s at the outer edge of the mesh was applied according to a ramp function
of time as follows. Denoting the angle in a polar coordinate system centered at the crack

midpoint by ¢, the traction field s(¢,t) was computed as

s(¢,t) = 1o min(1,¢/A)sin @, t>0,0<¢<n/2 (7.1)

where ) is a constant and ¢ is time.

In this simulation a value of A = 400 was used. This value is about 10 times as
large as the transit time for small waves from the origin to the outer edge of the mesh.
Therefore the simulation should be nearly quasi-static.

Figure 7.1 shows the distribution of shear at the time when the calculation was
terminated. Note the long, narrow band of intense shear extending from the crack tip
along the crack axis. This band occupies one finite-difference zone in width, and it may
therefore be regarded as having infinitesimal thickness. The band will be called a “shear
band” in an analogy with the localization phenomenon in plasticity. The shear in this
band is so large that there is effectively zero shearing stress inside the band. The band
is therefore essentially a fracture.

Although the dynamic relaxation technique is not designed to provide an accurate
model of the dynamics of the problem, it is nevertheless of interest to consider the
evolution of the band during the calculation. The discontinuity first appears at the
ellipse tip at the time when the shearing stress there first exceeds ro. The band then
propagates rapidly forward from the ellipse tip much in the manner of a propagating
crack.

The calculation fails to converge fully because the problem has no stable equilibrium
solution. The band evidently propagates unboundedly, and each half-plane moves more
or less as a rigid body into or out of the plane. Stability considerations will be discussed

further in Section 7.3 below.
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band

Figure 7.1. Shear band in crack problem for n = 1/4 material. Darkness increases with
shear.
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Figure 7.2 shows the displacement field near the ellipse tip at the time when the
calculation was stopped. Note the line of discontinuity of displacement. Figures 7.3a-d
show u, T/u, Ty /u, and Ty /p as functions of angle along a small circle centered at the
right crack tip.

7.2 Trilinear material

The trilinear material was described in Chapter 2. The downward-sloping segment
[K~,K*] in the stress-strain curve corresponds to locally hyperbolic solutions to the
equilibrium equation. The following discussion first presents numerical simulations of
the anti-plane shear crack problem for the trilinear material. It then presents numerical
simulations of a screw dislocation problem, whose solution is easier to interpret than

that of the crack problem.

7.2.1. Crack problem. The anti-plane shear crack problem was simulated for the case
koo = 0.3, oo = 0.3u~. Some modifications in the mesh were made for this material.
Because of a greater than usual need for resolution at intermediate distances from the
crack tip, it was feasible to model only the region near the crack tip (see Figure 7.4).
Because of an expected breakdown in symmetry across the crack axis, both upper and
lower half planes were modeled. The mesh contained 3,339 nodes.

Initial conditions were quiescent. Displacement boundary conditions were applied
as a ramp function of time as follows. Denoting the exact solution to the linear elliptical
hole problem by uy;,, the displacements at nodes along the outer edge of the mesh were

computed from

u(zy,z2,t) = upy min(1,¢/X), t>0 (7.2)

where A is a positive constant. For this simulation A = 100, a time interval on the order
of the wave transit time for the mesh, which is 62.
Figure 7.5 shows the distribution of the three phases (low-strain elliptic £~, hy-

perbolic H, and high-strain elliptic E*) in the converged solution. Note the chaotic
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Figure 7.4. Numerical mesh used for simulation of crack problem in trilinear material.
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Figure 7.5. Distribution of phases in simulation of crack problem, trilinear material.
E~ =low-strain elliptic, H =hyperbolic, E* =high-strain elliptic.
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Figure 7.6. Deformation of a sheet initially in the plane in crack problem, trilinear

material.
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appearance of the phases. Of particular interest is the almost complete absence of a
hyperbolic phase. Alteration of the initial or boundary conditions in the simulation
changes the details of the converged numerical solution but not the general features.
There is always a similar pattern of “dendrites” of the two elliptic phases extending
into each other in a region at intermediate distance ahead of the crack. The thickness
of these dendrites is always on the order of the finite-difference zone width, and they
invariably end in cusps. Using a finer mesh merely results in more dendrites rather than
enabling a closer look at any structure within them.

Figure 7.6 shows the displacement field near the crack tip. The wrinkled appearance
of the field is caused by the dendrites issuing from the high-strain elliptic region at the
crack tip. Figures 7.7a-d show u, T'/u, T1/u, and T;/u as functions of angle along a

small circle centered at the right crack tip.

7.2.2. Screw dislocation problem. A simpler boundary value problem which retains
many of the features of the crack problem is that of a screw dislocation, shown in Figure
7.8. In a body occupying the entire plane, a cut is made along the positive z,-axis, and
the lower face is displaced out of the plane by a constant amount ug. The upper face is
held fixed. It is also required that u ~ uo8/27 as r — co.

The screw dislocation problem has the interesting property that for any generalized

neo-Hookean material, linear or nonlinear, the field
u = ugl/2m, r>0, 0<@<2r (7.3)

provides a solution of the boundary value problem. This fact was apparently first
observed by Kachanov [16].

Numerical simulation of the screw dislocation problem for the trilinear material
was carried out using a mesh which modeled the first quadrant only. The mesh had
25 radial lines of nodes and 40 circular lines. Initial conditions were provided by (7.3),

and displacement boundary conditions derived from (7.3) were used around the entire
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boundary.

Figure 7.9a shows the distribution of the three phases (low-strain elliptic £, hy-
perbolic H, and high-strain elliptic E*) for the numerical simulation. Note the pattern
of dendrites very similar to that found in the crack problem.

In order to investigate the effect of mesh spacing on the solution, the screw dis-
location problem was also run using a higher density of radial lines (but modeling a
narrower wedge, occupying 0 < 6 < n/8). The displacement boundary condition on
the wedge was modified to correspond to the same ug as in the coarse mesh simulation.
The distribution of phases for the simulation with a fine mesh is shown in Figure 7.9b.

Figure 7.10 shows the quantity

2 / " (0 do (7.4)

w

as a function of r in the fine mesh simulation. Over a certain interval this average stress
is near the Maxwell stress, which is 2~Y/4u~ =~ 0.8409u~ for the trilinear material.
Since the Maxwell stress plays a prominent role in the stability of coexistent phases in
anti-plane shear, its appearance in the numerical solution suggests that the formation
of dendrites is related to stability. The significance of stability in these solutions is the
subject of Part II of this work. It will be shown there that the dendrites form in a way

that is geometrically predictable from stability considerations.

7.3 Discussion

Part II of this dissertation is devoted to explaining the behavior of the trilinear
material by considerations of elastic stability. However, some preliminary points will be
made here.

An asymptotic solution of the crack problem for a special material similar to the
n = 1/4 material was developed by Knowles and Sternberg [17,18]. This solution differs

in a fundamental way from the numerical results described above. The asymptotic
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Figure 7.8. Screw dislocation problem. Only the first quadrant is modeled numerically.
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Figure 7.9. Distribution of phases in simulation of the screw dislocation problem, tri-
linear material. E~ =low-strain elliptic, H =hyperbolic, £+ =high-strain elliptic: (a)
coarse mesh, (b) fine mesh.
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solution, while containing equilibrium shocks, has continuous displacements and does
not contain a shear band. A solution for a material similar to the trilinear material was
developed by Abeyaratne [7]. This solution also contains equilibrium shocks but does
not predict the chaotic pattern of dendrites observed numerically. Both of the above
asymptotic solutions contain hyperbolic regions, which are never seen in the numerical
results.

It is straightforward to show that any hyperbolic solution of the equilibrium equa-
tion in anti-plane shear for a hyperelastic body cannot be a minimizer of potential
energy. It is also a simple matter to show that if such a hyperbolic solution exists
in some region, then small plane-waves grow unboundedly in that region since strong
ellipticity is lost there [19,20]. (This statement assumes that the constitutive behavior
is the same in the dynamic case as in the equilibrium case.) Recall that the dynamic
relaxation method predicts locally stable solutions, solutions that do not spontaneously
change when used as initial conditions in the dynamic problem. It therefore makes sense
that this numerical method does not predict solutions that are hyperbolic in any region.

The emergence of a curve of discontinuity in Vu, i.e., an equilibrium shock, is not
at all surprising when ellipticity is lost [21-24]. However, a curve of discontinuity in u,
as is seen in the n = 1/4 simulation, is perhaps unexpected. One might expect that
the propagation of such a band would entail the expenditure of surface energy, as in
the propagation of fractures. However, the following simple analysis shows that no such
energy is required. Suppose the band has a small thickness §, and suppose the difference
in displacement across the band is U. Assuming that shear is constant across the width
of the band, the shear is k = U/§. The total strain energy per unit length of the band

is ® = fw(k) where w is given by (2.9). Letting 6§ become small,

n b n U 2n b n
q>~5-g-(%k2) ~5g— <;> (E) ~g~<;) Ungl=2"  asé — 0. (7.5)

So, for n > 1/2, the surface energy ® increases unboundedly as § becomes small. For n =

1/2, ® remains constant, which makes intuitive sense because the material in the band
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is in effect flowing like a perfectly plastic material. But for n < 1/2, ® approaches zero
for small 6, indicating that no surface energy is required to propagate the band. Thus
the numerical simulation of the n = 1/4 material showing the unbounded development

of the band is quite plausible.

A vivid demonstration of the dynarmic instability of hyperbolic solutions is shown
in Figure 7.11, which shows the maximum magnitude of velocity of any node in the
screw dislocation problem as a function of time. The initial conditions for this problem
were quiescent and were given by the classical displacement field (7.3), which is an ex-
act solution to the nonlinear problem. Thus, if the classical solution were dynamically
stable, there would be no motion induced in the numerical mesh except for the effects
of truncation and roundoff error. Since the shear field associated with this displace-
ment field is k = ug/27r, there is initially an annulus in which the shears occupy the
downward-sloping segment H of the stress-strain curve. Therefore in this annulus the
equilibrium equation is hyperbolic initially. Figure 7.11 shows exponential growth in
velocity during the early stages of the simulation. These velocities are initially on the
order of the roundoff error in the calculations, but they soon grow into sizable waves.
These waves decay only after the body separates into the two elliptic phases and the

hyperbolic phase disappears.

The above argument that a stable hyperbolic solution is not to be expected in any
region does not preclude loss of ellipticity along a curve in a stable equilibrium solution.
This is precisely what is seen in the n = 1/4 simulation in the shear band extending
from the crack tip. It is also seen in the equilibrium shocks which form the boundaries
of the dendrites in the trilinear material, since the existence of shocks necessarily means
a loss of ellipticity there.

It is apparent from Figure 7.5 that the solution to the trilinear crack problem is

not symmetric about the z;-axis. This loss of symmetry is consistent with the above

considerations regarding elastic stability. Gurtin [25] shows that a necessary condition
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for loss of uniqueness during a quasi-static process (i.e., a bifurcation) is that the process
pass through an unstable state. Indeed, loss of uniqueness is to be expected when such
an unstable state is reached. Gurtin uses the example of a buckling Euler beam to
illustrate this point. As a compressive force on the ends of the beam is slowly increased,
a force equal to the buckling load results in an unstable state of the body, heralding
a loss of uniqueness during further loading. This loss of uniqueness causes a lack of
symmetry in the process, as evinced by the fact the beam can buckle in any of an
infinite number of directions.

Since hyperbolic solutions are dynamically unstable, the trilinear crack problem
passes through an unstable state at some point along the loading path. Therefore
uniqueness and symmetry are expected to be lost. The actual path followed by the
numerical simulation depends on details of the calculation such as roundoff error. Ex-
perience with various types of meshes and loading conditions has suggested that there
are in fact an infinite number of solutions. Part II of this dissertation will show that
among this infinite number of solutions, those that are stable may be approximated by

assuming that the elliptic phases are very finely mixed.
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Chapter 8. Conclusions

The numerical simulations of elliptic cases for the anti-plane shear crack problem
have confirmed the low-order asymptotic solutions presented in Chapter 3. They have
also provided direct observations of the low-order zone size and the dependence of the J-
integral on load. It has been shown in Chapter 6 that a crude model of the force balance
near the singularity provides reasonably accurate approximations for these quantities
in large-load cases for n = 1/2. The main feature of the observed low-order zone sizes
for n > 1/2 is that for small loads the zone size is proportional to koo?, while for large
loads it approaches a constant value. Similarly, computations of J show that for small
loads J is proportional to k., (the small-scale yielding case) while it is proportional
to W, or equivalently to koo™, in the large-load case. For the n = 1/2 material the
Hult-McClintock estimate for plastic zone size provides a good estimate of the low-order
zone size for small loads. There is no large-load case for the n = 1/2 material.

The numerical simulations of materials which do lose ellipticity in the crack problem
have yielded unexpected results. In the n = 1/4 material, which becomes hyperbolic for
sufficiently large strains, the instability of the hyperbolic solutions results in a collapse
of the non-elliptic region onto a single band of very small thickness and very high
strain. The displacement field is discontinuous across this band. This band propagates
apparently unboundedly in the dynamic relaxation solution much in the manner of a
propagating crack.

In the trilinear material, unlike the n = 1/4 material, the portion of the stress-strain
curve which yields hyperbolic solutions is confined to a bounded interval. Therefore the
band which appears in the n = 1/4 material is not a possibility. Instead, a chaotic
pattern of equilibrium shocks separating the two elliptic phases emerges. It will be
shown in Part II of this dissertation that this pattern is predictable from considerations
of elastic stability. Potential energy is minimized only in the limit of an infinitely fine

mixture of the two phases such that neighboring shocks are always parallel to each
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other. This mixture occurs in a definite region which may be computed by finding the
solution to the crack problem in an “elastic-plastic-elastic” material in which the yield
stress occurs at the Maxwell line of the original trilinear material.

Preliminary work has shown that many of the phenomena observed in anti-plane
shear simulations of loss of ellipticity also occur in plane-strain conditions. In particular,
plane-strain crack problems for the Blatz-Ko material [26-28], a compressible hyperelas-
tic material which loses ellipticity under uniaxial stress conditions for sufficiently high

stretches, show failure at the crack tip similar to the n = 1/4 case in anti-plane shear.

This work will be documented separately.
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PART II:

CONSEQUENCES OF THE MAXWELL RELATION FOR A FAMILY
OF ANTI-PLANE SHEAR DEFORMATIONS
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Chapter 9. Introduction

The investigation of phase changes in solids is currently an active area in contin-
uum mechanics. One component of this field of research is the study of equilibrium
deformations of elastic bodies which contain jump discontinuities in the first derivatives
of displacement. Because boundary value problems may admit an infinite number of
solutions with such discontinuities, conditions of elastic stability have been proposed
as one means of identifying those solutions which are physically meaningful. However,
there are several different notions of elastic stability, and it is not known which of these,
if any, provides an appropriate criterion.

Even if one adopts the traditional notion of minimum potential energy as a condi-
tion for stability, one must identify a class of variations with respect to which a stable
solution is required to be a minimizer [1]. For example, for infinitesimal stability one
requires a stable solution to be a minimizer with respect to variations with sufficiently
small displacement gradients. For local stability one requires that it be a minimizer with
respect to variations with sufficently small displacements. These two requirements lead
to very different practical results in solving boundary value problems.

Because few boundary value problems have been solved for deformations with these
discontinuities, there has been little basis for discussion of the consequences of the
various stability criteria. The purpose of this paper is to examine some implications
of the Mazwell relation, which is necessarily satisfied by deformations that are locally
stable in the sense described above. The setting for this study is the anti-plane shear
of a trilinear material, whose equilibrium is described by a very simple set of equations.

It will be shown that many reasonable boundary value problems for this material
do not possess solutions which obey the Maxwell relation. However, the relation can be
satisfied in the sense of a limit of an infinite sequence of increasingly chaotic deforma-
tions. Examples of such chaos are provided by the numerical simulations described in

Chapter 7 of Part I of this work. This sequence corresponds to the minimizing sequence



-03-

for the potential energy functional, as discussed by Ball [2]. However, the properties of
the sequence as derived in a variational setting are not fully understood, especially for
multidimensional problems. In the present work, a purely mechanical approach to this
sequence will be used rather than a variational approach.

The remainder of this thesis is organized as follows. Chapter 10 reviews the basic
mechanics of anti-plane shear, two-phase deformations, and stability. Chapter 11 de-
scribes the trilinear material, which will be considered in much of the remainder of the
paper. Chapter 12 discusses two-phase deformations that satisfy the Maxwell relation.
Some properties of solutions that fail to satisfy the Maxwell relation are briefly discussed
in Chapter 13. Chapter 14 hypothesizes mixed deformations, which represent the limit-
ing case mentioned above. To make this idea precise, Chapter 15 derives general results
for the constitutive properties of the limit of a sequence of elastic states. Chapter 16
shows that a mixed deformation is the limit of a sequence which satisfies the Maxwell

relation in an asymptotic sense.
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Chapter 10. Anti-plane shear

10.1 Preliminaries

Let a rectangular coordinate system (z,, z3,3) be given. Let B be a closed cylinder
with generators parallel to the z3-direction, and let R be the cross-section of B in the

(z1,z2)-plane. An anti-plane shear deformation is a mapping of the form

Y1 =21, Y2 =7T2, Y3 =z3+u(z1,23) (10.1)

where (y1,y2,ys) are the coordinates of the image of a material particle originally at
(z1,22,73), and u is a function on R called the displacement field or simply the
deformation. The smoothness required of u will depend on the problem at hand. In
various contexts it will be convenient to express u and related quantities as a function
of either the position vector in the plane or the complex representation of it, and it is
to be understood that u(z;,z3), u(x), and u(z; + tz;) all mean the same thing.

The field Vu defined at all points in R where u is differentiable will be called the
displacement gradient field or simply the gradient field. The scalar field k on this
same subset of R defined by k = |Vu| will be called the amount of shear field or
simply the shear field.

Let e, be the unit vector in the z;-direction. At any point x € R where the
Cauchy stress tensor ¢ is defined (i.e., wherever u is sufficiently smooth) let T(x) be
the projection of o(x)es into the (z;,z;)-plane. T will be called the stress vector
field. Its components are T, = 013 = 0a; and T3 = 093 = 033. The scalar field T on R
defined by T' = |T| will be called the shear stress field.

A deformation u will be called a single phase deformation if u € C?(R). It will
be called a multiphase deformation if
(a) ve C(R), and
(b) There is a set (empty, finite, or infinite) of smooth curves I';, 1 = 1,2,...,N in R

which partition R into open subregions R; such that (1) the restriction of u to any



-95-

R; is in C?(R;), and (2) Iy UT; U.. .U Ty is the set of all points in R at which

Vu is discontinuous.

Each curve T'; will be called a shock. Define I' =T'y Ty, U...UT'y. The regions R;
will be called phases.
A stress vector field will be called equilibrated if for every simple closed curve C
in R,
/ T -nds=0 (10.2)
c
where n is the outward-directed unit vector normal to C and s denotes arc length. It will
be assumed throughout this work that there are no body forces. Cauchy’s theorem shows

that if T is equilibrated, and if x is an interior point of R at which T is differentiable,

then
V.-T(x)=0 (10.3)
or equivalently
oTy aT, _
9z, (x) + Bz, (x)=0 (10.4)

This work will be concerned exclusively with homogeneous, isotropic, hyperelastic

bodies whose constitutive relations in terms of the stress vector field may be written as

0, k(x)=0
T(x) = h(Vu(x)) = { r(k(x)) Vu(x)/k(x), kgg #0

(10.5)
where 7 is a continuous and piecewise continuously differentiable nonnegative scalar-
valued function on {0, o) such that r(0) = 0. h will be called the constitutive relation,
and 7 will be called the stress-strain relation.

One special class of materials of this type consists of the generalized neo-Hookean
materials. For these materials the strain energy density is a function of the trace of the
Green strain tensor only. In anti-plane shear, this means that the strain energy density

may be expressed as w(k) where w € C%([0,00)). The stress-strain relation is computed

from w by

(k) = w'(k), k>0 (10.6)
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The equilibrium equation (10.3) may be locally elliptic, parabolic, or hyperbolic
depending on the material and the deformation. Knowles [3] shows that the type is

established from the local slope of the stress-strain relation as follows:
' > 0 <= elliptic
7' =0 <= parabolic (10.7)
7! < 0 <= hyperbolic

Since h is a continuous function, the definition of a multiphase deformation requires

that the following limits exist at a point a on a shock separating subregions R* and

R~
y y
T+(a) = ,oa T(x) and T (a)= s T(x) (10.8)
xERY xER~

If T is equilibrated, then (10.2) implies the traction jump condition,
T*(a)-n=T7"(a)-n (10.9)

where n is the unit vector normal to I' at a directed into R*.
If u is a multiphase deformation, and if (10.3) holds in the interiors of the phases

while (10.9) holds on the shocks, then u is equilibrated.

Defining
I I
ut(a) = .on u(x) and u(a)= Lo u(x) (10.10)
xR+t xR~

and using the required continuity of u yields the displacement jump condition,
ut(a) = u~ (a). (10.11)

Suppose one defines the coordinate system so that the origin is at a point bon T,
the z,-axis is tangent to I' at b, and the positive z;-axis extends into R (see Figure
10.1). Since (10.11) must hold at any a on T', differentiation of it shows

du™t . Ju~

o (B) = 5 (0). (10.12)
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Also (10.9) implies T," (b) = T; (b). The constitutive relation (10.5) shows that h is
direction preserving, :.e., that Vu and T have the same directions. Then one can
unambiguously define R* and R~ as the sides such that k*(b) > k~(b). Referring to
Figure 10.1, it is clear that since Vu™(b) and Vu™(b) have same z,-component, and
since T*(b) and T~ (b) have the same z3-component, T*(b) < T~ (b). The following

result therefore holds, and may be proved rigorously:

PROPOSITION 10.1. Let u be an equilibrated multiphase deformation. Let b be a
point on I' separating subregions Rt and R~. Let k*(b) and k~(b) be the limiting
values of k at b, where k*(b) > k~(b). Then T*(b) < T~ (b).

10.2 Stability and the Maxwell relation

Let h now be the constitutive relation of what will be called here a nonmonotone

material, as shown in Figure 10.2:
r'(k) >0, O0<k< K~
(k) <0, K~ <k<K* (10.13)
(k) >0, K* <k

where K* and K~ are positive constants, K~ < K.

For at least two reasonable notions of stability, equilibrated deformations which
contain some x such that 7/(k(x)) < O are unstable. They are infinitesimally unstable
in the sense of Pearson [4], meaning that their potential energy is reduced by some
small perturbation. They also do not possess strong ellipticity [3], with the consequence
that a small plane wave in the vicinity of x would grow unboundedly in time, assuming
the same constitutive behavior in the dynamic case as in the equilibrium case. So,
when attempting to solve boundary value problems, there is good reason to exclude
the descending branch of the stress-strain relation. For the remainder of this paper it

will be required that if x is any point at which a deformation u is differentiable, then

' (k(x)) > 0.
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Figure 10.1. Vectors associated with limiting values on a shock.
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Figure 10.2. Stress-strain relation for a nonmonotone material.



-100-

Even after so excluding the descending branch, the stress-strain relation is not
uniquely invertible. It is this lack of invertibility that gives rise to multiphase equi-
librated deformations, since k can jump from one branch to the other across a shock
while the traction on the shock remains continuous.

If u is a multiphase equilibrated deformation of a nonmonotone material, then T
partitions R into low-strain phase R~ in which ¥ < K~ and a high-strain phase R*
in which £ > K. In this case the multiphase deformation will be called a two-phase
deformation.

Ericksen [5] found that in simple bar problems, if points on both branches are
present simultaneously in an equilibrated two-phase deformation that minimizes poten-
tial energy, then the stress in the bar is necessarily equal to s, the Maxwell stress
for the material. 7as is the unique value such that there are two numbers K, and K,t,
with the properties

™ = T(KL) =7(Kyy) (10.14)

and

w(Kpy) — w(Ky) = (K3 ~ Kyy)mm- (10.15)

The important role of the Maxwell stress has been explored extensively by other
authors. Gurtin [6], generalizing work by James [7], has shown that at in an equilibrated
deformation which is a local minimizer of potential energy, the Maxwell relation holds

on the shocks:

w(k*) —w(k™) = (k* -~ k7)7(k*) onT, (10.16a)
or equivalently (in view of the jump conditions)

T*=T =7yn onTl (10.16b)

where n is the unit vector normal to I’ directed into RT. The term local minimizer

means that the deformation minimizes potential energy with respect to variations that
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have sufficiently small displacements. If u is a local minimizer of potential energy, it

also follows that

k<KyonR™ and k> Kj onR* (10.17a)

or equivalently

T<rmgonR™ and T >rygonRT. (10.17b)

(10.17) follow from the localization theorem of Gurtin [6], and can also be proved by

other means. The importance of the Maxwell relation motivates the following definition:

DEFINITION. Let u be an equilibrated two-phase deformation. u is Maxwell-stable
or M-stable if (10.16) and (10.17) hold. u is Maxwell-unstable or M-unstable

otherwise.

The main reason for introducing the notion of Maxwell-stability as an idea distinct
from local stability is that we wish to study it in a mechanical setting rather than a
variational setting. This will allow discussion of unbounded regions, which are problem-
atic when minimization of potential energy is sought. Also, since the Maxwell relation
is a necessary but not sufficient condition for local stability, the question of whether or
not a deformation satisfies Maxwell-stability is more clear-cut than the question of local
stability. (In particular, Maxwell-stability is unrelated to the boundary conditions for
a problem.)

Let an equilibrated two-phase deformation u be Maxwell-stable. As consequences

of (10.16) and the displacement jump condition (10.11) it follows
u=u; =constant onl, ¢=1,2,...,N, (10.18)

and

r(k*) =r(k*)=r(k") =7m onT, (10.19a)

or equivalently

k*=K{, onl, k™=K, onTl. (10.190)
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Note that (10.18) and (10.19) together imply (10.16).

Equation (10.18) means that any shock T'; is a normal shock, i.e., the vectors shown
in Figure 10.1 are all normal to T';.

Note that if a deformation is a local minimizer of potential energy, then it is
Maxwell-stable. However, the converse of this statement is not true.

There is some experimental evidence that Maxwell-unstable deformations are of
physical importance. James, for example, interprets the nature of shape-memory alloys
in terms of Maxwell-unstable elastic behavior [8]. Yield phenomena such as Luders
bands, which are frequently observed in certain metals, are generally explained in terms
of plastic behavior that strongly resembles Maxwell-unstable behavior in the elastic
material considered here [9]. Also, a numerical model of a boundary value problem
involving phase changes typically predicts a Maxwell-unstable deformation as an ap-

proximation to some presumably locally stable exact solution.
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Chapter 11. Trilinear material

The trilinear material represents a prototype of the nonmonotone material intro-

duced in Chapter 10. Its constitutive relation is given by

0, v=20
h,(v) = { re(IV)v/Iv], v#0 (11.1)
where
uk, 0<k< K~
ra(k) = pm K~ + (k- K-) K- KD g << K (11.2)
utk, K+ <k

and where K+, K~ u*, and p~ are positive constants such that K~ < K+, u~ > u*,
and u~ K~ > ut K*. (See Figure 11.1.) Note that the high-strain branch in (11.2) lies
on a line directed through the origin.

A strain energy density for the trilinear material is given by

-2
"2’° , 0<k< K-

wa(k) = !‘—"2"2+(k—K-)[u~K-+§(k—K—)L‘i§%‘,{_—r—], K-<k<K*
#"1;—2+K+;K'(M+K++M—K—)+#2_+(kZ_K+2)’ K+Sk

(11.3)

The Maxwell stress is
™ =\Vutu  K+K- (11.4)
and the associated shears are

utK+K-
T

u—K+K-

K, =
M “+

and K = (11.5)

Let T' be a shock separating the phases R* and R~. The equilibrium equation in

terms of displacement takes a particularly simple form for the trilinear material. Setting

T(x) = ho(Vu(x)) in (10.3) yields

Au=0onR* on Au=0on R~ (11.8)
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Figure 11.1. Stress-strain relation for the trilinear material.
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where A is the Laplacian operator, A = V- V.
Letting du*/dn and du~ /dn denote the limiting values of Vu-n as I is approached,
the traction jump condition for the trilinear material is

L ou” _ou~

—_—= — r. )
Pl - =p 5= on (11.7)

If the deformation is M-stable as well as equilibrated, then the quantity in (11.7) also

equals 7.
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Chapter 12, M-stable deformations of the trilinear material

Suppose u is a two-phase deformation of a trilinear body occupying R and T is the
associated stress vector field. Let R~ and R* be the low-strain and high-strain phases
respectively. Let u~ and u™ be the restrictions of u to these regions, and let T~ and
T+ be the restrictions of T. Let I' be the shocks. As discussed in the previous chapters,
u is equilibrated and M-stable if and only if (12.1)-(12.3) hold:

Au” =0 onR™, Aut =0 onR* (12.1)
T~ <rmmy onR, Tt >rmq on R, (12.2)
T"=T*=ryn onTl (12.3)

where n is the unit vector normal to T' directed into R*. Equation (12.3) holds if and

only if (12.4) and (12.5) hold:

_du~ L Out
pogm=pT =T on T, (12.4)
v~ =uT =y, =constant onT, ¢=1,2,...,N. (12.5)

The main result of this chapter will be that infinitely many M-stable two-phase
deformations are possible, but they are solutions to only a very limited class of boundary

value problems. The results of this chapter apply only to the trilinear material.

12.1 The most general M-stable deformation

It will be shown here that any M-stable two-phase deformation (the phrase “two-
phase” will hereafter be omitted for brevity) is equivalent to a piecewise homogeneous
deformation under a certain conformal mapping. This equivalence provides a recipe for
constructing an infinite number of M-stable deformations.

Suppose that the deformation u defined above is M-stable. Let (X;, X;) be any

fixed point in R. Because of its lack of smoothness, the displacement field u is awkward
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to deal with directly. It is therefore convenient to define a new field ¢ which is essentially
the same as the displacement field, but which will be shown to have more smoothness.

Define this scalar field ¢ on R by the path-independent line integral

(z1,23) 3 8
ez = [ HED e e+ Te ], @mier 20

where u is the scalar function on R defined by

(Il,a?z) € Rt

+
K
l“(xl’aﬂ) - {[‘“, (11,272) = R~ R+. (127)

The path-independence of the above line integral follows from the fact that u is constant

along the shocks. The inverse of the transformation in (12.6) is supplied by the path-

independent integral

(z1,22) ™™ [0¢ 3¢
u(xl) 12) = u(X15X2) + -/(thz) N(E,f)) ['a—g(syn)d€+ 5—5(6) ﬂ)d"l], (231,1?2) € R.
(12.8)
Observing that
6¢/3x1 = Tl/TM, 8¢/8x2 = Tz/TM (129)

and using (12.3) shows that ¢ is continuously differentiable on the shocks. Thus ¢
is harmonic on all of R because u is harmonic on the individual phases. Since ¢ is
harmonic on R, it follows that ¢ € C*°(R).

Let ¢ be a harmonic conjugate of ¢ on R, and let ¢ = ¢ + iy be the associated
analytic function of the complex variable 2 = z; + tz;. Now consider the mapping
that this function provides from the z—plane into the ¢—plane. Let R, = ¢(R). The
requirement that u be constant on each shock I'; means that the image ¢(T,) is a vertical
line (see Figure 12.1).

The mapping ¢(z) is not necessarily one-to-one, since various parts of R could have
images that overlap in the ¢ —plane. However, the inverse mapping z(¢) may be rendered

single-valued by regarding it as a function on a generalized region in which one specifies
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Figure 12.1. Deformation in 2- and ¢-planes.
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a particular Riemann sheet when evaluating the function at any point [10]. Keeping
this possibility in mind, the issue of single-valuedness of the inverse mapping will not
be discussed further.

The derivative of the inverse mapping, dz/d¢, cannot have zeroes in R, since such
points would correspond to points at which the stress vector field is irregular, contrary to
assumption. It can, however, have isolated singularities. Therefore the inverse mapping
z(¢) is conformal at all points of R, except for these singularities.

Suppose one treats ¢ and 1 like physical coordinates. By applying the inverse
transformation in (12.8) to a field on R, whose value equals ¢ at any point (¢,v),
it may be seen that the displacement field u, derived in this manner is the piecewise

homogeneous deformation found by the following path-independent line integral:

L pew :
u*(¢,¢)—/(@’w) “*(m)dﬁ, (¢,¥) € R. (12.10)

where

e ($(21,22)), ¥(21,22)) = p(z1,22), (z1,22) €R

and (P, V) is an arbitrary point in R,.
Moreover, the analogues of (12.9) for the (¢,4) coordinates imply that the stress

vector component fields associated with u, are simply
Tip = ™, T., =0 onR,. (12.11)

So, by the M-stability criteria (12.2)-(12.3), u. is an M-stable piecewise homogeneous
deformation.

One other property of the inverse mapping z(¢) will be important. Since (12.9)
shows that T = rps|d¢/dz| at any regular point of the deformation, the M-stability

requirements (12.2) and (12.3) are equivalent to

|d¢/dz| <1 onR™, |d¢/dz|=1 onl, 1<|d¢/dz|<oo onR*. (12.12)



-110-

Let Ry = ¢(R™), Rf =¢(R*),T. =¢(I). Then (12.12) implies
|dz/d¢|>1 on R, |dz/d¢|=1 onl., 12>|dz/ds|>0 onR]. (12.13)

Thus the inverse mapping is length-preservingon T,.

The above results are summarized in the following proposition:

PROPOSITION 12.1. Let u be an M-stable deformation on a region R. Then there is a
generalized region R,, a piecewise homogeneous deformation u, on R,, and a one-to-one
mapping z on R, such that

(a) z is conformal on R. except possibly at isolated singularities,

(b) = satisfies (12.13),

(c) R =2(R.),

(d) u(z(s)) = uu(s), <€ R..

The following converse to the above proposition also holds:

PROPOSITION 12.2. If u, is any M-stable piecewise homogeneous deformation of a
generalized region R., and z is a one-to-one mapping on R, satisfying (a) and (b) of
Proposition 12.1, then the deformation u on R defined by (c) and (d) of Proposition

12.1 is an M-stable deformation.

Proposition 12.2 may be verified by reversing the arguments that led to the prop-
erties of z(¢) above.

One can now write down the most general M-stable deformation. Let u, and R,
be as stated in the propositions. (12.13) and the properties of the exponential function

imply that without loss of generality the mapping z(¢) may be written

s
z(s) = / ef?)dg, ¢ €R. (12.14)
o

where ¢o 1s an arbitrary fixed point in R., f is an analytic function on R, (except for

isolated singularities) such that

Imf<0 onR;, Imf=0 onl., Imf>0 onR], (12.15)
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and such that the resulting z is one-to-one. Then the deformation supplied by applying
(c) and (d) of Proposition 12.1 tp (12.14) is an M-stable deformation. Moreover, the

propositions show that any M-stable deformation may be generated in this manner.

EXAMPLE 12.1. Let
R ={¢+iplp <0, [¢| < 7},

RI ={¢+ip|¢ >0, |y| < 7},
I, = {iy||y| < 7},
flg)=¢/i.
(see Figure 12.2). Then (12.14) leads to
z(¢) = e® T 4 2

where zg = zo1 + 1202 is an arbitrary point. Thus I is the unit circle centered at zp, R+
is the punctured interior of this circle, and R~ is the exterior of this circle. A simple

calculation yields ¢ = In |z — zo|. Applying the inverse transformation (12.8) then shows

_J(rmnr)/put +ug, O0<r<1
u(ml’xz)_{(ernr)/u‘-f—uo, 1<r

where r = \/(z; — 201)% + (23 — T02)? and ug is an arbitrary real constant. This defor-
mation corresponds to a concentrated load of magnitude 2x7as applied into the plane

at point (zo1, Zoz2)-

The following example demonstrates why R. may be a generalized region and illus-

trates a mapping z which contains a singularity.

EXAMPLE 12.2. Let r. and 8. be polar coordinates in the ¢—plane. Let R, = R be

the circle of radius 1/9 centered at the origin, together with its interior. (12.10) shows

that u.(¢,¢) = rarp/u~. Let

z(¢) =¢"P=/rie?/t 0<0.<4n,0<r, <1/9.
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Figure 12.2. Deformation in Example 12.1 in ¢- and z-planes.
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There are two Riemann surfaces in R, which are accessed by the interval 0 < 8, < 4n.

Calculation gives the following deformation in the z—plane:

™
u(zy,22) = F(zf - :cg)

Also |dz/ds| = 1/(2./r%) > 3/2, so the first of (12.13) is satisfied. Note that dz/d¢ has a

singularity at the origin which corresponds to a point at which |Vu| = 0 in the z—plane.

A consequence of Proposition 12.1 is that in an M-stable deformation shocks cannot
intersect. This follows from an asymptotic analysis of the mapping 2(¢) in the vicinity
of such an intersection. Near an intersection, z ~ ¢%, with « a real constant, 0 < a < 1.
This is clearly inconsistent with the requirement that z be length-preserving on the
shocks.

Similarly, shocks cannot have endpoints in the interior of an M-stable deformation.

12.2 Traction boundary value problem

The above discussion showed that any M-stable deformation of the trilinear ma-
terial is obtainable by a conformal mapping of an M-stable piecewise homogeneous
deformation. This suggests that M-stable deformations are of a special nature, and it
is not to be expected that an arbitrary boundary value problem will have this kind of
deformation as a solution. It will now be shown that for a given traction boundary value
problem one can detect whether or not an M-stable solution exists. Those problems for
which such a solution does exist will turn out to be a very limited class.

First the role of ¢ as a stress potential will be examined, and it will be shown that
a traction boundary value problem has a unique stress field for all M-stable solutions

(if any exist).

DEFINITION. A traction boundary value problem consists of a region R, whose
boundary will be called R, and a given traction field S € C'(dR) such that [;, Sds =

0. A solution to such a problem is an equilibrated, multiphase deformation u with
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assoclated stress vector field T such that T .n = S on dR where n is the outward-

directed unit vector normal to K.

Equations (12.9) show that the field ¢ defined in (12.6) may be used as a stress
potential in an M-stable deformation. Thus the problem of finding the stress vector field
associated with an M-stable solution to a traction boundary value problem is equivalent

to the following Neumann problem:

Ap=0 onR, 9¢/dn=S/rpr ondR. (12.186)

We will restrict our attention to those traction boundary value problems whose associ-
ated Neumann problems (12.16) have solutions. It is well-known that such solutions are
unique except for an arbitrary additive constant. This immediately proves the following

result:

PROPOSITION 12.3. Let u and u’ be M-stable solutions to a traction boundary value

problem, and let their respective stress vector fields be T and T’. Then T = T'.

Another consequence of the role of ¢ as a stress potential is that T € C*°(R). This
follows because, as has been shown above, ¢ € C*(R).

Having established a uniqueness result for M-stable solutions of a traction boundary
value problem, let us turn to the question of ezistence of such solutions. Let such a
problem be given. Suppose temporarily that an M-stable solution u exists. If the stress
vector component fields associated with u are not identically equal to constants, the
implicit function theorem assures that the condition |V¢| = 1 defines a set of curves,
which will be called I';, + = 1,2,..., N. (This set may be empty, finite, or infinite.)

It will now be shown that these curves are shocks, 1.e., they are the boundaries
between different phases. To prove this, it is sufficient to show that a point P in the
interior of R which lies on any I'; is not an extremum point of the scalar field |V¢|.

Recall that |V¢| = |d¢/dz|. Applying the maximum modulus theorem to the analytic
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function d¢/dz shows that P cannot be a maximum. Applying it to (d¢/dz)~! shows
that P cannot be a minimum. So P is not an extremum of |V¢|, and therefore the I';
are shocks. Also, (12.2) shows that the I'; represent the totality of all shocks.

Recall also that as a consequence of M-stability u is constant on any shock. There-
fore ¢ is constant on any shock. Thus a necessary condition for a traction boundary
value problem to have an M-stable solution is that ¢ be constant on all curves such
that |V¢| = 1. With a view toward showing that this is also a sufficient condition, note
that a ¢ field which satisfies the Neumann problem (12.168) always exists regardless of
whether an M-stable deformation which generates this ¢ field exists.

No longer assuming that an M-stable solution exists, let ¢ be a solution to the
Neumann problem. Suppose that ¢ is constant on all curves such that {V¢| = 1, and call
these curves I';, 1 = 1,2,..., N. In this case the integral in the inverse transformation

(12.8) is path-independent provided (12.7) is replaced by

+
u(zy,z) = {Z_ {gzgizg{ Z i (z1,23) € R. (12.17)

Let u be the field defined in this manner.

Evaluation of the partial derivatives of v using (12.8) shows that (12.1) is satisfied at
all regular points of R. The same argument used above to show that the I'; are shocks
applies again here, with the consequence that (12.2) is satisfied. (12.3) is satisfied
because ¢ is constant on the shocks and because [V$| = 1 there. Thus u is an M-stable
deformation. Also, u satisfies the traction boundary conditions because it was derived

from a stress potential field which satisfies them. The following result has been proven:

PROPOSITION 12.4. Let a traction boundary value problem be given, and let ¢ be a
solution to the associated Neumann problem (12.16). Then a necessary and sufficient
condition for the boundary value problem to have an M-stable solution is that ¢ =

constant on all curves such that |[V¢| = 1.

The following example shows that not all traction boundary value problems have
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M-stable solutions.

EXAMPLE 12.3. Let R be the unit circle together with its interior. Let a traction field
on dR be given by S(6) = 2rarsin28, 0 < 8 < 27. The stress potential field which
solves the Neumann problem (12.16) in this case is ¢(z1,z2) = 2z1z,. The curve along
which |V¢| = 1 is the circle r = 1/2. But ¢ is constant only on the family of hyperbolas
T9 = ¢/2z,. So the condition of Proposition 12.4 is not satisfied, and therefore there
is no M-stable deformation which is a solution to this problem. Figure 12.3 shows a
numerical solution to this problem. Only the wedge 0 < § < 7 /4 is modeled. Each phase
of the solution is shown in the figure as a different shade. Note the chaotic pattern of
the phases near the z;-axis, suggesting that this chaos may be a consequence of the
nonexistence of an M-stable solution to the problem. (This is indeed the case, as will

be shown later.)

Experience with problems of physical interest has shown that the class of trac-
tion boundary value problems which have M-stable solutions is very limited (although
Proposition 12.2 shows that it is infinite). However, subsequent sections of this paper
will show that if one generalizes the idea of a deformation to include fields with an in-
finitely fine mixture of the phases, then M-stability may be satisfied in general in spite

of this result.
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Tn-=
2TMsin 28

Figure 12.3. Numerical solution of Example 12.3.
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Chapter 13. M-unstable deformations of the trilinear material

The previous section showed that M-stable deformations exist only as solutions to
a special class of boundary value problems. The present chapter is concerned with the
wider class of deformations which are M-unstable.

M-unstable deformations are amenable to conformal mapping techniques similar
to those described in the previous section. However, these will not be examined here,
since this paper is mainly concerned with M-stable deformations. M-unstable solutions
will be discussed merely as a transition to mized M-stable solutions, which will be dealt
with in subsequent sections. The property of interest in this transition is the ability of
shocks to intersect in M-unstable deformations.

As shown in the previous section, shocks never intersect in an M-stable deformation,
a consequence of the fact that they are level curves of displacement. But shocks need not
be level curves of displacement in an M-unstable deformation, so there is a possibility
that shocks could intersect. It will be shown here that an asymptotic solution near such
an intersection does exist in the M-unstable case. It will also be shown that such an
intersection is necessarily in the shape of a cusp.

Let two shocks I' and I'/ intersect at a point P, as shown in Figure 13.1. Assume
that the phases R~ and R* occupy the regions to the left and the right of the shocks
resepectively. For simplicity, assume that the z;-axis is a line of anti-symmetry for the
displacement field u, so that u = 0 there. Define a polar coordinate system centered at P
by z; = rcosf, z; = rsinf, r >0, -7 < § < 7. Let u~ and u™* be the restrictions of u
to R~ and R respectively, and define fields k= and k™ on these phases by k= = |Vu~|
and kt = |Vu™t|.

The deformation u is an M-unstable equilibrated asymptotic solution to this prob-

lem if and only if (13.1)-(13.4) hold:

Au” =0 onR~, Aut=0 onRT, (13.1)
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Figure 13.1. Intersection between two shocks.
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du~ du™t
-2 .. +___—
B B ~H 5n OF L, (13.2)
u” ~ut onT, (13.3)
k=<K~ onR~, kT>KT onR". (13.4)

The symbol ~ above is defined as follows: if f(r) and g(r) are two functions such that
f=g+o(|f|+|g]) asr — 0, then f and g are said to be asymptotically equal, and we
write f ~ g.

Let I' near P be parametrized by I' : § = o(r) on some interval containing O.

As an initial attempt at finding an asymptotic solution, let us try to construct a
lowest-order approximation of the form u* = #™v* (), u= = r™v~(8) where m is a
constant and v* and v~ are functions. Laplace’s equation (13.1) requires that v be
linear combinations of cos mé# and sinmf. It follows that m = 1 since (13.4) implies
that k* = O(1) as r — 0. The boundary conditions implied by the symmetries in the

problem then dictate that
ut(r,0) ~ Arsinf, 0<8< p(r), asr—0, (13.5a)

u~(r,0) ~ Brsinf, o(r)<8<w, asr—0, (13.58)

where A and B are nonzero constants. Note that A # B by (13.4). To relate the
constants, (13.3) implies

Arsinp(r) = Brsin p(r). (13.6)

So either ¢ = 0 or ¢ = 7. Thus the lowest-order solution is unsatisfactory, since it has
either one phase or the other collapsed onto the z;—axis. It does, however, correctly
suggest that one look for a cusp in a higher-order solution.

A higher-order solution is supplied by
ut ~ Arsinf + ar'sinvd, 0<60<p(r), asr—0, (13.7a)

u” ~ Brsin@ +br¥sinv(r —6), o(r) <0<, asr—0, (13.70)
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where v, a, b, A, and B are constants, v > 1. Once again A # B, and a and b cannot

both vanish. Applying (13.3) and expanding the sine terms in (13.7) for small ¢ yields
Arp + ar’vp = Bro + br¥ [sinvr — (cos vr)vpl, ©=p(r) (13.8)

This shows immediately that v cannot be an integer, for if sinvr = 0 it would follow
that A = B by equating the lower-order terms. Now assume that ¢ ~ Cr?Y for some
constants C' and v. Using this in (13.8), comparing the lower-order and higher-order

terms separately, and solving for ¢ gives

b
C =
A-B

o(r) ~Crv71, sinvm, a= —bcosvr. (13.9)

The asymptotic traction jump condition (13.2) may be applied by computing the
normal derivatives of displacement along the shock as du*/dn = Vu® .n. The asymp-

totic expression for n is

n~e C(v-1)r""1 e (13.10)

where e, and e, are the unit vectors in the polar coordinate system. The gradient fields
along ' obey
Vut ~ e, ACT" " + e4(A+ var’ 1), (13.11a)

Vu~ ~ e, (BC +vbsinvr)r’ ! + e4(B — vb(cosvm)r’™1). (13.118)

Using (13.10) and (13.11) the requirement (13.2) becomes
pt[-A-var' Y ~p [-B+ vb(cosvm)r’ 1. (13.12)
Comparing the lower-order and higher-order terms in (13.12) separately shows
utA=p" B, uta=p"beosvr. (13.13)
Now comparing the second of (13.13) with the third of (13.9) shows that

a=0 and v=1+1/2, {1=0,+1,%+2,.... (13.14)
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But » > 1 by assumption, and the only value of interest is the smallest value that is
consistent with the above analysis. Hence v = 3/2.

Summarizing, the asymptotic higher-order solution is as follows:

ut(r,8) ~ Arsind, (13.15q)
_ pto a2 . 3
u™(r,8) ~ — Arsin 8 + br®/ Sln‘2‘(7l' - 8), (13.15b)
@
Lo 0= p(r) ~ o (
0 =p(r)~ —m——. 13.15¢
(= wt/a)A )

The constant A is arbitrary except that by (13.4), K* < A < u~K~/u*. The constant
b must be nonpositive in order that ¢(r) be nonnegative on ', but b is otherwise
arbitrary. There is an analogous solution for the case of R~ inside the cusp and R*
outside of it.

It is of interest to find the choice of constants that leads to an asymptotic solution
which is as close as possible to an M-stable deformation. This choice is A = rps/u™,
since this choice makes the lower-order terms in (13.15a,b) correspond to an M-stable
homogeneous deformation.

It is also worth emphasizing that the asymptotic solution near an intersection be-
tween shocks has both bounded displacement fields and bounded stress fields as the
intersection is approached.

Although no exact solution for an M-unstable deformation with intersecting shocks

is known, the numerical solution of Example 12.3 above demonstrates a number of cusps.
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Chapter 14. Mixed deformations of a nonmonotone material

It was shown in Chapter 12 that only certain special boundary value problems
have M-stable solutions for the trilinear material. The present chapter proposes the
idea of mized deformations, in which the two phases are so finely interspersed that their
constitutive properties are in effect those of a mixture. This situation is similar to that
of a gas-liquid mixture in fluid mechanics, in which the gross properties of the mixture
are of more interest in practical problems than those of the individual phases.

The following discussion begins with the constitutive law for mixed deformations,
hypothesizing that they exist, based on a generalization of behavior in a one-dimensional
bar problem. Then solutions to the equilibrium equation in anti-plane shear for a
material with this constitutive law are examined. Finally, the properties of interfaces

between mixed regions and single-phase regions will be considered.

14.1 Constitutive behavior

The prototype for mixed M-stable deformations is the bar problem investigated
by Ericksen [5]. Ericksen considered the elastostatic solutions of a bar composed of
a hyperelastic solid similar to the nonmonotone material being considered here (see
Figure 14.1a). When subjected to displacement boundary conditions at the ends, M-
stable solutions produce loads at the ends as shown in Figure 14.1b. In the region of the
load-stretch curve corresponding to two-phase deformations, the load is constant and
equal to the Maxwell stress. Ericksen derives this result from the Weierstrass condition
of variational calculus. The distribution of the phases within the bar is indeterminable
by a static analysis and is totally arbitrary. Thus one may assume a very large number
of alternating layers of the two phases.

Since such a mixture can exist in bars, it is reasonable to conjecture that they can
exist in multidimensional problems as well, provided they are possible kinematically.

The question of kinematics will be discussed in Chapter 16, and for the time being it
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Figure 14.1. (a) Stress-strain relation for material considered in bar problem by Erick-
sen. (b) Load-stretch relation for hard-device bar problem.
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will be necessary to examine the constitutive properties of such mixtures without any
assurance that they exist.

Let u be an anti-plane shear deformation on R of a body composed of a nonmono-
tone material with stress-strain relation 7. Applying the analogy with the bar problem,
suppose that a similar mixture is present in some neighborhood of a point x in R. As-
sume that a very large number of layers of the two phases oriented parallel to the level
curves of displacement is present in this neighborhood. Then by localizing the load-
stretch relation of the bar problem, the following stress-strain relation 7 is obtained (see
Figure 14.2):

T(k), 0<k< Ky,
flk)=14q ™, Kpy<k<Ki, (14.1)
r(k), Kig<k
where 75z is the Maxwell stress. The material whose stress-strain relation is given by
(14.1) will be called the mixed material associated with 7. A subregion R of R in
which Ky, < k < K, will be called a mixed region, and the restriction of u to R will

be called a mixed deformation.

14.2 Solution of the equilibrium equation

Let u be a mixed deformation. It is easily shown that the equilibrium equation

(10.3) specializes to

a a . ~
5-:;::(:08 0(zy1,z2) + Esm 0(z1,22) =0, (z1,72)E R (14.2)

where 0 is a field on R defined by

9 : 19 .
cosezzﬁ, sm0=Ea—s;, -7r<f<7m onR (14.3)
The following gives the most general solution to the equilibrium equation on R.

PROPOSITION 14.1. Let R be an open region, and let u € C'2(I~Z) be a scalar field

whose gradient does not vanish at any point in B. Let 8 be defined by (14.3). Define
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Figure 14.2. Stress-strain relation 7 for mixed material in anti-plane shear.



-127-

a set of numbers G by G = {u(x)|x € R}. For any ug € G, let I',, be the curve in R
along which u = uy. Let s denote arc length along any I'y,, measured from an arbitrary
location on the curve. Then the deformation u is a solution of the equilibrium equation
(14.2) if and only if

de

i 0 onTl,,, forallug € G. (14.4)

The proof of the proposition will merely be sketched here since the details are
straightforward. It is possible to define a smoothly invertible mapping (z1, z3) — (u,s)
in some neighborhood N of an arbitrary point p in the interior of 2. The Jacobian

determinant field for this mapping is given by

ds Ju Jds Ju
Ll P Pl T . (145)

in N. Therefore A # 0in N. Let N, be the image of N under this mapping. Call
the inverse mapping z, = (s, u), 23 = z3(s,u). Define a function © by O(s,u) =
0(z1(s,u),z2(s,u)). Applying the chain rule for partial differentiation to (14.2) shows

that u is a solution of (14.2) in N if and only if

. 00 Js 30 Jdu 00 Js 00 Jdu
—sinf cos

35 92, T Buon, 35 92, 5;5;;):0 on N (146)

Suppose (14.4) holds in N. Then 9©/ds = 0. This together with (14.3) implies (14.6).
Conversely, suppose (14.6) holds. Then (14.3) and (14.6) imply

1 du (86 ds 06 8u> 1 du <8@ ds 96 du

"k 3z, \ 35 0z, | Buda;) | kda 5555+5;5;;)=0 on N (147)

which upon rearrangement yields

96 (0s du 9s ou) _, N 14.8
3s \ 3z, 8z 0z:0z,) (14.8)

The quantity in parentheses is A, which is nonzero in N, so d8/ds = 0 on N. Hence

(14.4) holds./
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Another way of stating the conclusion of Proposition 14.1 is as follows: u is a
solution of the equilibrium equation (14.2) if and only if all curves of constant u in
R are straight lines. It is worth mentioning that the proposition also gives the most
general solution for a perfectly plastic material in anti-plane shear, and this solution

was used by Hult and McClintock [11].

14.3 Interface with single-phase regions

It will now be shown that the interface between a single-phase region and a mixed
region consists of regular points, and it is therefore not a shock.

Let u be a deformation on R of a body composed of a nonmonotonic material.
Assume that u is partitioned by a curve I' into a low-strain single-phase region R~ and
a mixed region R. Call the restrictions of u to these subregions u~ and 1 respectively.
Let the shear fields be £~ and l::, so that k= < K, on R~ and K, < k < KL on Rt.
Let the stress vector fields be T~ and T. The constitutive relation (14.1) implies that

T

AL
Application of Proposition 10.1 shows that T~ > 7ps on I'. But the constitutive
law (14.1) shows that 7(k) is a non-decreasing function. Therefore, since k=~ < k, it

follows that T~ < ras on I'. So it must be that
T™ =y onl. (14.9)

Let x be a point on I', and let n and 8 be normal and tangential unit vectors on I

oriented as shown in Figure 14.3. Let 6~ and f be angles in (—m, x| such that
Vu~(x) =k~ (ncosf~ +ssinf”), Vi(x)=k (ncos§+ ssin§> (14.10)
The jump conditions (which must hold on I' whether or not it is a shock) require

k™ sinf~ = ksiné, T~ cosf~ = rpscosf. (14.11)



-129-

These together with (14.9) imply
- =6, k =k (14.12)

So Vu~™ = Vu on I', and therefore the deformation is continuously differentiable on T'.
Thus T is not a shock.
Similar considerations hold for the case of an interface between a mixed region and

a high-strain single-phase region.
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Figure 14.3. Interface between a single-phase region and a mixed region.
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Chapter 15. Sequences of states of a nonmonotone material

It will be shown in Chapter 16 that a mixed deformation is obtainable as the limit
of a sequence of two-phase deformations. To make this idea precise, it is first necessary
to establish some properties of such sequences. The results of Chapters 15 and 16 apply

to nonmonotone materials in general and are not restricted to the trilinear material.

15.1 Definitions

In discussing a sequence of functions, it is awkward if each term in the sequence
i1s not defined on the same set. Because the displacement gradient vector field and
stress vector field are not defined on the shocks in a two-phase deformation, these fields
will be extended to the shocks in the following arbitrary manner. For any field that is
continuous in the phases RT and R™, values on I' will be taken to be the limiting values
from the high-strain phase R*. This extension will be assumed for the remainder of

this paper.

DEFINITION. A state S is an ordered pair of fields [u,h(Vu)] on R in which u is a
single-phase or a two-phase deformation and h is a constitutive relation for a possibly

nonmonotone material.

DEFINITION. Let @ = {Snp} = {[un,h(Vu,)]}, n = 1,2,..., be a sequence of states.
Then h is called the underlying constitutive relation of the sequence. Let S = [u, T]
be an ordered pair of fields on R, with u a continuous scalar field and T a continuous
vector field. @ converges to S if the sequence {u,} converges uniformly to u and the
sequence {h(Vu,)} converges uniformly to T. In this case S is called the limit of Q,

and we write @ — S.

Note that a limit of a sequence of states need not be a state. In this discussion the

following will be assumed:
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(A1) h is direction preserving, i.e., there is a nonnegative continuous scalar function 7
on [0,00) such that h(v) = r(|v|)v/|v| for all v # 0 and 7(0) = 0.

(A2) The sequence {Vu,} and the field Vu associated with the limit S are uniformly
bounded by some number «.

(A3) There are positive numbers M; and M, such that M; < r(k)/k < M, for all
0<k<k.

(A4) limg_o7(k)/k exists and is equal to some positive number u, where M; < u < M,.

DEFINITION. A convergent sequence of states @ — S = [u, T] has an equilibrated

limit if T is continuous and is equilibrated.

DEFINITION. Let z be a continuous and piecewise continuously differentiable scalar
field on R. The gradient range G{z} associated with z is defined by G{z} =
{Vz(x)|x € R}.

DEFINITION. A convergent sequence of states @ — S = [u, T| has an elastic limit if
there is a vector-valued function hg defined on G{u} such that T =hg(Vu) on R. In

this case hg is called the limiting constitutive relation of Q.

Of special interest are those elastic limits whose limiting constitutive relations are
independent of the details of the sequences which converge to them, motivating the

following definition.

DEFINITION. Let Q — S = [u, T| be a convergent sequence of states with an elastic
limit. Let Q be a set of sequences of states, and let ) contain Q. Suppose that every
convergent sequence Q' € (1 such that u = v’ also has the property T = T', where

[u’, T'] is the limit of Q’. Then S is autonomous with respect to (2.

Even if a sequence has an elastic limit, the limiting constitutive relation need not be
the same as the underlying constitutive relation. This is demonstrated in the following

example.
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EXAMPLE 15.1. Consider the rectangle R = {(z1,2)|0 < z; < 27, 0 < 2, < 1}.
Let R be occupied by a homogeneous body composed of the trilinear material. Define
a square wave function w on (—00,00) by w(t) = sgn sint, —o0 < t < co. Define a

sequence of anti-plane shear deformations by

up (T, 72) = /xl {K;\t’ ; K + Ky ; K;’!w(nt)} dt, (z1,z2)€ R, n=12,...
’ (15.1)
(See Figure 15.1.) Each u,, is a piecewise homogeneous deformation composed of vertical
strips with amount of shear alternately KIJ{,, and K,,. The total number of strips in
each deformation is 2n. The stress vectors for each term are given by h(Vu,) = rpe;,
since either of the two values for amount of shear correspond to the Maxwell stress. It
is easily shown that the sequence of states @ = {[u,,h(Vu,)|} converges to S = [u, T|
where u(z,,z;) = (K;} + Kp)z1/2, T(z1,22) = 7mey, (21,22) € R. So Q has an
equilibrated elastic limit, and the domain of hg consists of the single vector ke;, where
k= (K + Ky;)/2. Note that hg(ke;) # h(ke;). It is easy to find other sequences
of states which have equilibrated elastic limits and converge to some limit [u, T'] where
T’ # T, demonstrating that the limit S is not autonomous with respect to the set of all
sequences. (However, it will be shown later that this limit is autonomous with respect
to an important class of sequences, the asymptotically M-stable sequences.)
Note that in the Example 15.1 the sequence {Vu,} diverges. Subsequent sections

will show that the convergence properties of this sequence are crucial in determining

the constitutive properties of the limit.

15.2 General convergence properties

This section discusses convergence properties of {Vu,, } and related fields. Example
15.1 showed that {Vu,} does not necessarily converge even if the sequence of states
converges. Nevertheless, this sequence of gradients has many interesting properties. The

following proposition shows that even if it does not converge, the associated sequence
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Figure 15.1. A term in the sequence of states considered in Example 15.1.
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of area-averages does in any subregion.

PROPOSITION 15.1. Let Q@ = {[un,h(Vu,)]} be a sequence of states converging to a

limit § = [u,T|. Let x be a point in R, and let D be a neighborhood in R centered at

{]D Vu,dA } - /DVu dA. (15.2)

PROOF. Let 3D denote the boundary of D. Each deformation in the sequence has

x. Then

sufficient smoothness to apply Green’s theorem:

du,, du,
/ Undzy = —f ZEn g4, / undzy = | ="dA. (15.3)
ap p 922 aD p 921

The first of these upon subtracting a similar equation for u leads to

du, du
/aD(un - u)dml = A (E d 5;;) dA. (154)

Since {u,} — u uniformly, the sequence of line integrals defined by the left-hand side of
(15.4) converges to zero. This fact combined with the analogue of (15.4) derived from

the second of (15.3) implies { [,(Vu, — Vu)dA} — 0 which proves the result./

COROLLARY. Under the assumptions of the above proposition, let D, be the neigh-

borhood in R of radius r centered at x. Then

lim 1
e ;72—/0 (Vun — Vu)dA = 0. (15.5)
-+ 00 r

The next three propositions establish certain properties of the sequences of direction
vectors associated with sequences of states. They show that the sequence of unit vectors
in the direction of Vu,(x) converges, provided Vu(x) # 0. In each term of the sequence,
Vu,, and h(Vu,) have the same direction, so the limit of the sequence is the direction
of T. Further, it will be shown that this limiting direction is the same as the direction
of Vu. Thus T and Vu have the same direction. So in a sense all convergent sequences

of states have elastic limits to the extent that the directions of T and Vu must coincide.
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Define a function d on the set of all vectors by

= {5 VS 15

Call d(v) the direction of v. The following very plausible result may be proved using

the elementary properties of uniformly convergent sequences.

PROPOSITION 15.2. Let {v,} be a sequence of vector-valued functions on a set V
converging uniformly to a function v. Then

(a) {|val} — |v| uniformly on V;

(b) {d(va(x))} — d(v(x)) pointwise at any x € V such that v(x) # 0;

(c) {d(vn)} — d(v) uniformly on any compact subset of V' in which v does not vanish

at any point.

For any deformation u on R define the fields k¥ and 8 on R by k = |Vu| and
8 = d(Vu). For any stress vector field T on R define the fields T and t on R by
T = |T|, and t = d(T). Thus Vu = ks and T = T't. The next result follows from

assumption Al above and from (b) and (c) of Proposition 15.2.

PROPOSITION 15.3. Let @ = {[u,,h(Vu,)|} be a sequence of states converging to a
limit S = [u, T|. Then

(a) sp=tn,n=1,2,..;

(b) {tn(x)} — t(x) and {8,(x)} — t(x) pointwise at any x such that T(x) # 0;

(¢) {tn} — t and {8,} — t uniformly on any compact subset in which T does not

vanish at any point.

The next result shows that the sequence of area-averages of shear may converge
regardless of whether the sequence of gradient vector fields converges. The proposition
is proved using the corollary to Proposition 15.1, the uniform convergence of {T,}, and

the direction-preserving property of h (assumption Al).
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PROPOSITION 15.4. Let Q = {{un,h(Vu,)]} be a sequence of states converging to a
limit S = [u,T]. Let a be a point in R at which Vu is continuous. For any r > 0, let
D, be defined as the neighborhood in R of radius r centered at a. Then:

(a) s(a) = t(a).

(b)

Im 1
lim m/D (kn — k)dA = 0. (15.7)

15.3 Pure limits and constitutive invertibility

Example 15.1 above suggests that a failure of the limiting constitutive relation, if
one exists, to coincide with the underlying constitutive relation may be related to a
failure of the sequence of gradient vectors to converge. This is indeed the case, as will
be shown in this section. The primary result will be that invertibility of the underlying
constitutive relation implies that the limiting constitutive relation exists and coincides

with it.

DEFINITION. Let Q = {[un,h(Vu,)]} be a sequence of states converging to a limit
S = [u, T]. Let x be a point in R. If the sequence {Vu,(x)} converges to Vu(x) then

S is pure at x. Otherwise it is mixed at x.

PROPOSITION 15.5. Let @ = {S,} = {{un,h(Vu,)]} be a sequence of states converg-
ing to a limit § = [u, T|. Let S be pure at some point x in R at which Vu is continuous.

Then T(x) = h(Vu(x)).

PROOF. Let x be as stated, and choose any ¢ > 0. Since h is continuous, there is a
& > 0 such that |h(v) — h(Vu(x))| < € whenever [v — Vu(x)| < §. Since the sequence
{Vun(x)} converges to Vu(x), | Vu,(x) - Vu(x)| < 6 for n sufficiently large. Thus, for n
sufficiently large, |h(Vu,(x)) —h(Vu(x))| < e. This proves {h(Vu,(x))} — h(Vu(x)).
But by the definition of convergence of a sequence of states, {h(Vu,(x))} — T(x). So
by the uniqueness of limits, T(x) = h(Vu(x))./
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The next two propositions concern sufficient conditions for a limit to be pure. These
results involve underlying constitutive relations that are continuously invertible at points
in the limit. The significance of these results is that under certain conditions the limit

is necessarily elastic and autonomous with respect to all sequences, and hg = h.

DEFINITION. Let h be any constitutive relation. Suppose there is a domain of vectors
Hr such that there is a uniformly continuous vector-valued mapping h~! on Hp with
the property h(h~!(v)) = v for all v € Hr. Let Hg = h~}(H). Then h is invertible
on Hg. Hg is the gradient domain of invertibility of h, and Hg is the stress

domain of invertibility of h. h™! is called the inverse of h.

It is easily shown that if h has a gradient domain of invertibility Hg, then h~!(h(v))
=v for all v € Hg. Since h is direction-preserving (see assumption A1) r has an inverse
mapping 7! defined on the set |Hr| in the obvious way. Since H7 is an open connected
set by assumption, so is Hg. Therefore in general one can write |Hr| = (T1,T2) and
|Hg| = (ki, k2) for some constants Ty, Ty, k1, and k;. The only exception is the special
case Ty} = k; = 0, for which it is possible that |Hr| = [0,T%) and |Hg| = [0,k;). Note

also that by assumption A1, 7 is monotonically strictly increasing on |Hg]|.

PROPOSITION 15.6. Let Q@ = {S,} = {{tn,h(Vuy,)]} be a sequence of states converg-
ing to a limit $ = [u,T|. Suppose h has a stress domain of invertibility Hy. Suppose
further that there is a point a in R such that Vu is continuous at a and T(a) € Hr.

Then S is pure at a.

PROOF. Let € be any positive number. Since h~! is uniformly continuous on Hr,
there is a §; > O such that |h~1(v) — h—!(T(a))| < € whenever |v — T(a)| < 6,
and v € Hr. T(a) is an interior point of Hr, since Hr is a domain. Therefore
there is a neighborhood of T(a) contained entirely within Hy. Call the radius of this
neighborhood 6;. The sequence {h(Vu,)} converges to T uniformly on R, by the

definition of a convergent sequence of states. Then there is a positive number N such
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that n > N implies |h(Vun(a)) - T(a)| < min{61,68,}. So for n > N, h(Vu.(a)) € Hp
and [h™' (h(Vu,(a))) ~h~*(T(a))| < € which implies | Vu,(a)~h~1(T(a))| < €. This
proves that {Vu,(a)} — h™!(T(a)).

It remains to prove that {Vu,(a)} — Vu(a). To do this, first note that since
T(a) is an interior point of Hr, the above argument is valid for all points in any closed
neighborhood D, with radius r centered at a provided r < §;. Therefore {Vu,} —
h~!(T) on D,. Moreover, the convergence is uniform, since h~1 is uniformly continuous

and since the sequence h(Vu,) converges uniformly on R. It follows that

y
o #/B (h~Y(T) - Vu,)dA = 0. (15.8)

The termwise sum of any two convergent sequences is convergent. Then, using (15.8)

and the corollary to Proposition 15.1,

lim 1 _

o /D (b™}(T) - Vu)dA =

T m 1 lim 1 (15.9)
r—0 _—'—/ (h.—l(T) - Vu'n)dA + r—0 _/ (Vun - Vu)dA = Q.
nooo "% /D, nooo T2 /D,

This result together with the continuity of h~!(T) and Vu at a proves that h~!(T(a)) =
Vu(a). It was already shown that {Vu,(a)} — h~1(T(a)). So, by the uniqueness of
limits, {Vu,(a)} — Vu(a)./

The following lemma may be readily proved using the definition of uniform conver-

gence.

LEMMA. Let {f,} be a sequence of real-valued functions on some region D each of
which is bounded on D. Suppose the sequence converges uniformly to a function f.

Then
{sgp fn} — s;x)pf and {%f fn} — 1gff.

The following result is similar to Proposition 15.6, but its premise is that Vu(x) €

Hg rather than T(x) € Hr.
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PROPOSITION 15.7. Let Q = {S,} = {[un,h(Vu,)]|} be a sequence of states con-
verging to a limit § = [u, T|, with underlying constitutive relation h. Suppose h has a
gradient domain of invertibility Hg. Suppose further that there is a point a in R such

that Vu is continuous at a and Vu(a) € Hg. Then S is pure at a.

PROOF. By Proposition 15.6 it is sufficient to show that T(a) € Hr, t.e., that T'(a) €
|Hr|. This proof will show that every neighborhood of a contains points with T values
in | Hr|, and that this is inconsistent with the assumption that 7'(a) is not contained in
|Hr|.

Let the subscript a denote evaluation of a quantity at a. Assume that T, is not
contained in |Hr|. Recall that the domains of invertibility may be expressed as |Hg| =
(k1,k2), |Hr| = (T1,T2). (The lower endpoints of the intervals may be closed if k; =
T; = 0, but this possibility will be temporarily ignored.) Then k; < k, < k;, but
either T, < T; or Ty > T3. First assume the former. Recall that r is monotonically
strictly increasing on |Hg|. Let w = (r(k,) — T1)/3. So w is a positive number. Let
€ = ks — 771(r(ks) — w). Since T is continuous at a, there is a positive number r such
that |T — T4| < w on D,, where D, is the neighborhood in R of radius r centered at a.
Hence

supT < w+Ty < w+ Ty = ’("a)2+T1 _ f(ka)e— T,
D,

(15.10)

Proposition 15.4 ensures that there is a positive number N such that n > N implies

1

Tre

<e (15.11)

/ (ko — ko) dA

r

If kn — kg < —€ everywhere in D,, then (15.11) could not be satisfied. So for any
n > N there is some x € D, such that k,(x) > k; — e = 7~1(r(k,) — w), which implies
Tn(x) > 7(ks) — w since 7 is increasing. Hence

T(ks) + Ty + r(ks) = T
2 6 '

supTy, > r(ks) —w = (15.12)
Dr
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So (15.10) and (15.11) imply

ik—“)fs——"—:‘r—‘. (15.13)

supTy, —supT >
D, D,
Since the right hand side of (15.13) is positive and independent of n, the preceding
lemma is contradicted. The case of T, > T, similarly leads to a contradiction. Thus
Ty <T, <Ty,s0T, €|Hr|
In the case |Hg| = [0,k2), |Hr| = [0,T,), the fact that each T}, is nonnegative and
the preceding lemma show that T, cannot possibly be negative. There is no change

needed to the proof that T, < T;./
The key results of this section are summarized as follows:

PROPOSITION 15.8. Let @ = {Sn} = {[un,h(Vu,)]} be a sequence of states con-
verging to a limit S = [u, T|. Suppose Hr and Hg are stress and gradient domains of
invertibility of h, respectively, with inverse h=!. Suppose that there is a subregion R;
of R on which Vu is continuous, and that Vu(R;) C Hg or T(R;) C Hr. Then:

(a) S is pure on R;.

(b) S is elastic and autonomous on R; with respect to the set of all sequences of states.

(c) hg is the restriction of h to Vu(R;).

Part (c) shows that pure limits do not exhibit any surprising constitutive behavior.
However, the properties of pure limits will enable the constitutive properties of mixed

limits to be derived, as shown in the next section.
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Chapter 16. Mixed limits in a nonmonotone material

The previous two chapters established general results about convergent sequences
of states in a nonmonotone material and the constitutive properties of their limits. It
was shown that any such limit has T and Vu vector fields that are parallel. If these
fields assume only values for which h is invertible, then the limit is necessarily pure and
elastic, with the limiting constitutive relation a restriction of h to the gradient range of
the limit. The first objective of this section is to define a sense in which a limit may be
regarded as M-stable. Then it will be shown that any limit which is M-stable in this

sense is essentially a mixed deformation.

16.1 Asymptotically M-stable limits

DEFINITION. Let h be the constitutive relation of a nonmonotone material, and let
K, and Kj; be the shears associated with the Maxwell stress (see Chapter 11). Let
Q = {Sn} = {[un,h(Vuy,)]} be a sequence of states converging to a limit S = [u, T|. Q
is asymptotically M-stable if for any ¢ > O there is a number N such that n > N
implies

{k(x)| Kpp+e<k(x)< Ki;—¢, xe R} =0. (16.1)

The above definition means that in an asymptotically M-stable sequence, for n
sufficiently large, the admissible k, values become restricted to the intervals [0, K 5]

and [K};,00).

PROPOSITION 16.1. Let @ = {Sn} = {[un,h(Vu,)]} be an asymptotically M-stable
sequence of states converging to a limit S = [u, T]. Suppose there are curves collectively
called T in R which partition R into open subregions Rg and R, and that Vu is con-
tinuous on Rg U R. Suppose further that for any x € Rs, k(x) < Koy or k(x) > K,
and that for any x in R, Ky <k(x) < KR:{- Then:

(a) S is pure on Rs.
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(b) S is elastic and autonomous on Rg U R with respect to the set of all asymptotically
M-stable sequences.

(c) hg is a restriction of h, the constitutive relation for mixed deformations, to G{u}.

PROOF. Let a be a point in Rs. Then k(a) < Ky, or k(a) > Kj;. First assume
the latter. Let § = (k(a) — K5;)/2, k1 = k(a) — 6, and ky = k(a) + 6. Since Q is
asymptotically M-stable, there is a number N such that n > N implies that if k; <
k.(x) < ks for some x in R, then k, (x) is the only number k such that 7(k) = r(k,.(x)).
Therefore r is effectively invertible on (ki, kz) for terms in the sequence beyond N. If
the proof of Proposition 15.7 is modified so that r is chosen to be sufficiently small that
|k — k(a)| < 6 on D, and n > N, then the conclusion holds in the present case. So S is
pure on Rs and T = h(Vu) on Rs.

Now choose a in R. Suppose T(a) # 7as. Then T(a) is in an effective stress
domain of invertibility of h similar to the above situation for gradients. Therefore by
Proposition 15.6, S is pure at a, contra&icting the assumption that S is mixed at a.
Hence T(a) = p, and so T = 7pr on R.

It has been shown that T = }~1(Vu) on RU Rs. Therefore S is elastic there and hg
is a restriction of h to G {u}, the gradient range of u. Because of the arbitrariness of Q,

S is also autonomous with respect to the set of all asymptotically M-stable sequences./

16.2 Sequence convergent to a mixed deformation

A converse of Proposition 16.1 will now be established. The following shows how to
construct, given any mixed deformation, an asymptotically M-stable sequence of states
whose limit is that deformation.

Suppose u is an equilibrated mixed deformation, partitioned into single-phase and
mixed regions R*, R~, and R by a set of curves collectively called I'. Let I~ = RN R~
and I't = RN R*. For the sake of simplicity, assume that R is a connected convex

region in the interior of R. Let u,, ., = maxr u and uy;, = minr u.
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Let T be the stress vector field associated with u, so that T = h(Vu) on R, where
h is the constitutive relation of the mixed material defined earlier. The monotonocity of
von 't and '™ as a function of arc length follows from the fact that u is equilibrated
on R. Therefore one can define vector-valued functions Pt and P~ on [upin, Umax)
as follows. For any U € [tmin, Umax), let PT(U) be the unique point on I't such that
u(P*T(U)) = U, and let P~(U) be the unique point on I'™ such that «(P~(U)) = U.
Note that P* and P~ are continuous functions since u is a continuous function.

For any integer n > 2 define a set of n + 1 equally spaced numbers U,; €
[Umin, Ymax] BY Uni = tmin + (1/7)(¥max — min), £ = 0,1,2,...,n. Now construct
a network of line segments connecting the P+ (U, ;) and the P~ (U, ;) as shown in Fig-
ure 16.1. For fixed n, consider the piecewise homogeneous deformation u, on R which
takes on the u-values of the vertices in each triangular subregion. This deformation is
clearly continuous along the line segments.

Define a sequence of states on R by Q@ = {[un,h(Vu,)]}. The convergence of this
sequence to S = [u,ﬁ(Vu)} is easily established using the fact that for large n, the line
segments become oriented along the level curves of displacement for mixed solutions
(Proposition 14.1). The asymptotic M-stability of the sequence follows from the special
properties of intersections between single-phase and mixed regions (Section 14.3), which
require that k = Ky, onI'” and k = KX’,, on I'*. Thus for increasing n the shears in
the triangular subregions approach the values K, and K;, alternately.

The above argument is easily extended to the case of nonconvex R and cases in
which R intersects the boundary of R. The following result has therefore been estab-

lished.

PROPOSITION 16.2. Let u be an equilibrated mixed deformation on R. Then there
is an asymptotically M-stable sequence of states Q = {[u,,h(Vu,)|} converging to a
limit S = [u, h(Vu)].
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Figure 16.1. A term in an asymptotically M-stable sequence of states converging to a
mixed deformation.
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16.3 Example: screw dislocation in the trilinear material

This example illustrates the convergence of an asymptotically M-stable sequence of
states to a mixed deformation.

Let R be the entire plane, occupied by a body composed of the trilinear material.
Suppose one seeks an equilibrated deformation equation on r > 0 and 0 < ¢ < 2r

subject to the following conditions:
u(r,0) =0, wu(r,27r)=0b, r>0, (16.2)

and

u(r,0) ~b0/2r asr — o0, 0<8<2r (16.3)
where b is a constant. Define the field uy on R by
ur(r,0) =540/2x, r>0, 0<6< 2. (16.4)

Direct evaluation of the stress vector field hy(Vur) and substitution into the equilib-
rium equation shows that this is a solution to the nonlinear boundary value problem.

However, it is an M-unstable solution, since kz(r,8) = b/2rr and therefore

<r<

b
- +
K~ <kg(r,6) < K™ for S T K="

(16.5)

So ug is not an acceptable solution.

Now suppose one looks for solutions containing shocks in the hope of finding an M-
stable two-phase solution. Because of the unboundedness of k expected near the origin
and the vanishing k values expected as r — oo, it is safe to assume that any shocks will
be confined to some annular region. Because of the evident symmetry that the problem
exhibits with respect to 8, one possibility for a solution might contain a single smooth
shock having endpoints on # = 0 and 4 = 27 in this annulus. But along such a shock u
would necessarily vary from O to b, in contradiction of the M-stability requirement that

u be constant along shocks.
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Terms in a sequence constructed as prescribed by the remarks preceding Proposition
16.1 form a network of shocks in the shape of a star (see Figure 16.2). Call the term
in this sequence with n vertices on the star u,. By raising n, the total path length of
shocks is raised. Therefore the tangential derivative of displacement along any shock
is progressively reduced as n is raised. Each u,, field resembles spiral staircase in the
annulus R, whose inner and outer radii are given in (16.5).

By taking the limit of this sequence as n — oo, an equilibrated limit of an asymp-
totically M-stable sequence is obtained. Call this limit u. Surprisingly, it happens that
u = ur. But the limit of the sequence of stress vector fields, {h (Vu,)}, is different
from hy(Vuy). The limiting constitutive relation is that of mixed deformations, h. The

limiting stress vector field is

ptbeg/2nr, 0<r<b/2rK}7,
T(r,0) = { raey, b/2n K, <r<b/2nK,, (16.6)

pbeg/2rr, b/2n Ky, < r.
Substitution of this field into the equilibrium equation shows that u is equilibrated.

In this context the utility of the analysis presented in this section is evident. It
frees us from any obligation to examine the details of whatever sequence converges to
the mixed limit, since it proved that the limit is independent of those details.

It is of interest to see what a numerical model predicts as a solution to this boundary
value problem. The solution found using the APE program [12] is shown in Figure
16.3. APE uses a dynamic relaxation algorithm, so it predicts only dynamically stable
solutions. Note the strong resemblance between the numerical solution and the M-

unstable terms in the sequence discussed above.
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R
u=const
> R /U:O
e
27Ky u=b

Figure 16.2. A term in an asymptotically stable M-sequence of states converging to a
mixed solution of the screw dislocation problem.
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Figure 16.3. Numerical solution of screw dislocation problem in the trilinear material.
Shading represents phases: E~= low-strain elliptic, H=hyperbolic, E*=high-strain
elliptic.
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Chapter 17. Conclusions

This work has shown that in general M-stability can be achieved only approximately
in the anti-plane shear of a nonmonotone elastic material. For the trilinear material,
an arbitrary M-stable deformation can be generated by a conformal mapping from a
piecewise homogeneous deformation. For a given traction boundary value problem with
this material, Proposition 12.4 provides a test for whether or not there is an M-stable
two-phase solution. If there is no such solution, M-stability may be achieved in the
sense of a limit of a sequence of increasingly chaotic deformations. The limit of this
sequence for a given boundary value problem is found by computing the solution for a
mixed material.

There is experimental evidence of chaos in the growth of crystals in liquids [13]
and in other cases. However, in attempting to relate the present results to physical
problems, the question arises of how to interpret the infinite complexity of the defor-
mations required to satisfy M-stability. It is possible that there is some phenomenon
in solids analogous to surface tension in fluids which limits the ultimate complexity of
a solution. The modification of the underlying constitutive relation in solids to include
a dependence of the strain energy density on second derivatives of displacement has
been proposed as such a phenomenon [14]. An alternate approach would be to relax the
requirement of local stability, which implies M-stability, in favor of some concept such
as weak stability. The cusps discussed in Chapter 13 are weakly stable but not locally
stable.

It appears probable that the results discussed here for anti-plane shear can be
generalized to plane or three-dimensional deformations. A possible stumbling block in
such an extension is the issue of constitutive invertibility, which plays an important
role in deriving the properties of mixed deformations, but which is quite subtle outside
the context of anti-plane shear. It seems likely that some limited notion of constitutive

invertibility making use of kinematical considerations along shocks would be sufficient.
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