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Abstract

Though coding theory suggests long error correcting codes chosen at random perform
close to the optimum, the problem of designing good codes has traditionally been
attacked by developing codes with a lot of structure, which lends itself to feasible
decoders. The challenge to find practical decoders for long random codes has not
been seriously considered until the recent introduction of turbo codes in 1993. This
methodology of multi-stage iterative decoding with exchange of soft information, ap-
plied to codes with pseudo-random structure, has provided a whole new approach to
construct good codes and to decode them with low complexity. This thesis examines
the theoretical ground as well as the design and implementation details of thesé iter-
ative decoding techniques. The methodology is first applied to parallel concatenated
unit-memory convolutional codes and generalized concatenated convolutional codes
to demonstrate its power and the general design principle. We then show that, by
representing these coding systems with appropriate Bayesian belief networks, all the
ad hoc algorithms can be derived from a general statistical inference belief propaga-
tion algorithm. A class of new binary codes based on low-density generator matrices
is proposed to eliminate the arbitrariness and unnecessary constraints in turbo cod-
ing we have recognized from this Bayesian network viewpoint. Contrary to the turbo
decoding paradigm where sequential processing is accomplished by very powerful cen-
tral units, the decoding algorithm for the new code is highly parallel and distributive.
We also apply these codes to M-ary modulations using multilevel coding techniques
to achieve higher spectral efficiency. In all cases, we have constructed systems with

flexible error protection capability and performance within 1 dB of the channel ca-

pacity.
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Chapter 1

Introduction

With the advance of digital logic design, the last decade has observed wide application
and deployment of digital communication and error protection techniques. These sys-
tems have enabled, and induced explosive demands for, high-quality and high-speed
voice-band modems, digital subscriber loops, personal wireless communications, mo-
bile and direct-broadcast satellite communications. To achieve efficient use of band-
width and power and, at the same time, combat against adverse channel conditions,
new engineering challenges have arisen. For example, the systems should have low
physical and computational complexity to increase portability and reachability, allow
seamless data rate changes to cope with time-varying channel conditions and higher
level network protocols, and provide unequal error protection to accommodate differ-
ent service rates and to differentiate bits of nonuniform importance from advanced
source encoders. In this thesis, new high-performance error correcting techniques

with low system complexity are developed to address these new challenges.



2
1.1 Error Correcting Codes for Digital Communi-

cations

The basic structure of a digital communication system [63,70] is illustrated in Fig. 1.1.
The function of the modulator is to convert a digital sequence into signals that are
compatible with the characteristics of the channel. The channel, however, is unre-
liable and, hence, the demodulator is usually unable to reproduce the input to the
modulator exactly. One way to increase the reliability of the system is to introduce
some structure into the information sequence by adding redundant bits [46,51, 52].
This process (encoding) is furnished by the encoder and the new digital sequence
is termed a codeword. The collection of all the digital sequences is called an error
correcting code. Because of the structure introduced, the decoder is able to infer the
original information from the demodulator output with high probability, despite the
corruption from the channel. In fact, it was shown by Shannon that, by operating on
very long sequences of data with rates below the “capacity” of the channel, which is
defined as the theoretical limit performance limit, the encoder and decoder are able
to achieve error-free communication [23,52,68,75].

These ideas are best illustrated by an example: the classic (7,4) Hamming code.
The encoder takes four bits of input, (ui,us,us,us), and outputs three redundant

parity bits (p1, p2, p3) according to:

P1 = U1 D us ® uy,

u c
—| Encoder Modulator
S
Channel
- r
171 X
~<— Decoder Demodulator

Figure 1.1 Digital communication system.
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P2 = U1 D uz D ug,

p3 = Uz D U3z D Ug.

The structure thus imposed on the codeword can be illustrated as the diagram in
Fig. 1.2: a valid codeword will have even number of ones (even parity) in each circle.
As claimed before, this will enable us to correct some errors that occurred during the
transmission of these bits. For example, suppose there is only one bit whose value

was changed because of the noisy channel. There are three cases to be considered:

1. If only one circle has odd parity, then it is the parity bit of the circle that was

changed. The information bits are intact.

2. If two circles have odd parity, then it is the information bit of the intersection
of the two circles that was damaged. The error can corrected by flipping the

value of that information bit.

3. If none of the circles has even parity, then it is the value of u4 that was changed.

The correct information bits can be obtained by flipping the value of this bit.

Therefore, we can correct transmission errors so long as there is only one error bit
within a block of seven bits (a codeword). The above procedure (decoding algorithm),
however, does not produce correct answers if there are more than one error within a

codeword and thus results in decoding errors. The purpose of this thesis is to construct

ey
S

Figure 1.2 The structure of the (7,4) Hamming Code.
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codes that are able to correct large number of errors with low error probabilities and

require low complexity in the decoding algorithms.

1.2 Thesis Outline

Though coding theory suggests that error correcting codes chosen at random perform
close to the optimum if their block lengths are large enough [52,68,75], the problem of
designing good codes has traditionally been attacked by developing codes with a lot of
structure, which lends itself to feasible decoders [51,52]. The challenge to find prac-
tical decoders for long random codes was not seriously considered until the recent
introduction of turbo codes in 1993 [7]. This methodology of multi-stage iterative
decoding with exchange of soft information, applied to codes with pseudo-random
structure, provides a whole new approach to construct good codes and to decode
them with low complexity. The thesis will first apply this decoding method to a wide
range of codes and will clarify some ambiguities and problems in the decoding algo-
rithms that have appeared in the literature. The connection between these decoding
algorithms and a statistical inference framework [58] from the artificial intelligence
community will then be made so that, when any of the codes is represented by a “be-
lief network,” the application of this framework leads directly to the corresponding
decoding algorithm without any ad hoc arguments used in the literature. A class of
generalized turbo codes based on low-density generator matrices are then proposed
and shown to achieve near-capacity performance with this belief propagation algo-
rithm. These low-density generator matrix (LDGM) codes can be applied to binary
or M-ary signaling schemes with performance approaching the channel capacity. The

content of subsequent chapters is briefed as follows:

N Unit Memory Hamming Turbo Codes (Chapter 2)

The coding scheme of parallel concatenation of two simple recursive system-
atic convolutional codes (turbo codes) was recently proposed to achieve near

Shannon-limit error correction performance with reasonable decoding complex-
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ity [7]. The underlying component code adopted in these results is a single-input
convolutional code, or, more specifically, a (2,1,4,7) code which is of memory
v = 4 and free distance d; = 7. On the other hand, in many cases of inter-
est, multi-input unit-memory codes have been demonstrated to have larger free
distances than the single-input codes with the same rate and the same num-
ber of memory elements [1]. In this chapter, new turbo codes based on the
(8,4, 3,8) unit-memory Hamming code are proposed and BCJR’s optimal bit
decision algorithm [2] is modified for this multiple input recursive convolutional
code. Our results show that the new codes achieve marginally better perfor-
mance than conventional turbo codes. Better performance can be obtained by

using two different component codes in the design of turbo codes.

Generalized Concatenated Convolutional Codes (Chapter 3)

Since the decoders of turbo codes usually require maximum a posteriori (MAP)
algorithm [2], which is of relatively high complexity if implemented straightfor-
wardly. Modified MAP algorithms [3,60,65] and soft-output Viterbi algorithm
(SOVA) [38,40] have thus been proposed in place of MAP decoders to reduce
system complexity. Alternative high-performance coding systems of low com-
plexity are proposed in this chapter via the generalized concatenation of convo-
lutional codes. Two classes of generalized concatenated (GC) codes with convo-
lutional outer codes are studied. The first class is based on the classical Plotkin
la @ b]b| construction. A new suboptimal multi-stage soft decision algorithm
is proposed and the corresponding performance bounds are obtained. These
codes are shown to achieve better performance than conventional convolutional
codes with equal or less decoding complexity, and are capable of unequal error
protection. The Plotkin construction is then generalized using an inner differen-
tial encoding structure to obtain a second class of GC codes. A low-complexity
two-iteration decoding algorithm using traditional hard-output Viterbi decoders
is proposed. Numerical results show that the new coding systems can achieve

comparable and sometimes superior performance to low-complexity turbo codes
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with similar computational complexity.

Turbo Decoding and Belief Propagation (Chapter 4)

Though the turbo decoding method has been applied to a wide range of codes
with remarkable success, a satisfactory theoretical explanation as to why the
turbo decoding algorithm performs so well has been lacking. In addition, some
pathological cases where the algorithm never converges or converges to the
wrong answer have been identified [53]. In this chapter, we establish a close
connection between the turbo decoding mechanism and the “belief propagation”
algorithm [58], well-known in the artificial intelligence community. We show
that, by representing a turbo code with a “belief network”, the application of
the belief propagation algorithm directly leads to the turbo decoding algorithm.
This framework also prescribes explicitly how the decoders for multiple turbo
codes should proceed without any ad hoc arguments. In fact, it is also argued
that the decoding algorithms for a wide range of turbo code constructions as
well as low-density parity check codes [33] can be explained by this Bayesian

network and belief propagation principle.

Low-Density Generator Matrix Codes (Chapter 5)

It is the purpose of this chapter to further examine the applicability of the belief
propagation algorithm to coding theory. It is observed that the turbo codes sep-
arate parity bits into subsets in their Bayesian network representation, which
is unnecessary for the belief propagation algorithm. A class of codes based on
low-density generator matrix, where the parity bits are not differentiated, are
proposed as a generalization of classical turbo codes. Contrary to the turbo
decoding paradigms where sequential processing is accomplished by very pow-
erful central units, the decoding algorithm proposed here is formulated in a
distributed parallel form. The decoders can thus enjoy modular pipeline design
and the systems therefore seem more suitable for practical applications. For
high-rate applications, numerical results show that these codes achieve perfor-

mance within 1 dB of the channel capacity.
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N Efficient Multilevel Coded Modulations (Chapter 6)

In this chapter, the low-density generator matrix codes are applied to M-ary
signaling schemes by multilevel coding methods [12,42,62, 66, 72]. The equiva-
lent channel capacities [41] for individual partition levels used in the multilevel
coding systems are first computed. Partition rules other than Ungerboeck’s
maximum intra-set distance criterion are examined. LDGM codes for individ-
ual levels are then selected according to the corresponding equivalent capacities.
We show this approach can be used to devise systems that achieve near channel

capacity performance and are also able to provide unequal error protection.



Chapter 2
Unit Memory Hamming Turbo Codes

The coding scheme of parallel concatenation of two simple recursive systematic convo-
lutional codes—the turbo code—was recently proposed to achieve near Shannon-limit
error correction performance with reasonable decoding complexity [7,24,25,64]. The
underlying component code used in these constructions is a single-input (SI) convolu-
tional code or, more specifically, a (2,1, 4, 7) code, which is of rate 1/2, memory v = 4,
and free distance dy = 7. On the other hand, in many cases of interest, multi-input
unit-memory (UM) codes have been demonstrated to have larger free distances than
SI codes with the same rate and the same number of memory elements [1,45]. In this

chapter, new turbo codes based on the (8,4, 3,8) UM Hamming code are developed.



2.1 Encoder

The generator matrix of the (8,4, 3,8) unit-memory Hamming code is [1]

r

1 1 1 1 1 1 1 1
1+4D 1+D 1 D |1+D 0 0 0
G = = [A|B].
14D 0 14D 1 | D 14D 0 0
| 1+D 0 0 1+4D| 1 D 1+D 0|

To convert this into a systematic recursive code with a generator matrix of the form
G = [I|A™'B], one needs to find a column permutation such that (1) the matrix A
is nonsingular and (2) the matrix A~ B is in its simplest form. There are (}) = 70
permutations to be considered, since those that group columns into the same sub-

matrices are all equivalent for our purpose. The following matrix was found to fulfill

the requirements through computer search:

(1 1 1 1 1 1 1 1
0 1+D 1+D 0 1 D 0 14D
G = = [4|B].
0 1+D 0 0 |1+4D 1 14D D
|0 1+D 0 1+D| 0 1+D D 1|

Therefore, the generator matrix of the equivalent systematic recursive code is

100075 1 # 1

- 01001 5 1
G=[IA"'B]= D+ i
0010/ 1 1 %

(0001 1 P mp ]

Because the McMillan degree of the generator is three [55,73], it can be implemented
with three memory elements as shown in Fig. 2.1. If we use the average edge com-
plexity of the trellis per information bit 2*™” /k as the decoding complexity D of a
convolutional code [54], both the SI (2,1,4,7) code and the UM (8,4, 3,8) code have

the same complexity, D = 32, and hence are fair competitors.



Figure 2.1 Encoder of the recursive partial unit-memory Hamming code (additions
are performed in the vertical direction only.)

The encoders of parallel concatenated codes are illustrated in Fig. 2.2, where P
represents the shift-register circuits for implementing the parity-check part A-1B' of
the generator P and I is a pseudo-random bit interleaver. The first encoder operates

on the input information bits directly and outputs eV =u and cl(pl). The second

encoder operates on the interleaved information sequence 1 and outputs c® =@ and
c,(gz). After encoding a block of K information bits, the trellises of both codes can
terminated by selecting two four-bit sequences for each of the encoders. These bits

can be generated by the circuit in Fig. 2.3. This results in a (4(K + 4), K) block

u = cS,l)
= P —= cE,l) u = eV
AI = P = W
/WA
i ——_ﬁg c.(f) I
e == o SR =2

(A) (B)
Figure 2.2 The encoders of rate 1/4 and 1/3 turbo codes.
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Ug

Figure 2.3 Trellis termination circuit.

code. The interleaved information sequence 1 can be discarded to increase spectral
efficiency. This will give us a (3(K+4)+4, K) block code. Note that the 4 terminating
bits for the second encoder should be kept and transmitted.

Since the minimum distance of the component UM code is larger than that of
the SI code, the new unit-memory turbo (UMT) code is expected to have better
performance than the SI turbo (SIT) codes. The estimate of the performance of
a code requires information about its weight distribution. However, obtaining this
weight distribution is a particularly challenging problem for turbo codes because of the
pseudo-random interleaver. Though some bit error rate (BER) bounding techniques

have been developed [26], they are not useful here. As to be shown later, the operating

cumulative number of codewords

I ................... //Coefﬁclent ,,,,,,,,,,,,,,,, ..................

& 1 1
15 20 25 30 35 40
weight

Figure 2.4 The weight distributions of (80,16) SIT and UMT codes.
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Ey /Ny range of interest is below 2 dB, but the bounds diverge above that. Before
plunging into full-scale simulations, short-block (K = 16) cases of both SIT and UMT
codes are compared. While the best found interleaver for the (80, 16) SIT code gives
a minimum distance of 15 [24], the new (80, 16) UMT code enjoys a larger minimum
distance of 18, achieved using the interleaver {13, 5, 10, 1, 11, 14, 0, 12, 6, 4, 15, 7,
3, 9, 2, 8}. The weight distributions of both codes and a “random code,” which is

computed from the binomial coefficients A4, = 28" (g), are plotted in Fig. 2.4.

2.2 Decoding Algorithm

In this section, the classical maximum a posteriori (MAP) algorithm for computing
the a posteriori probabilities [2] will be modified to deal with multiple input recursive

trellis codes. Turbo decoding based on this algorithm will then be described.

2.2.1 MAP Algorithm for Multi-Input Recursive Trellis Codes

Let the state of the encoder for the (n, k,v) code at time ¢ be S; € {0,1,... ,2 — 1}

for t = 0,...,K, where the initial and final states, Sy and Sk, are known. As

shown in Fig. 2.5, the input symbol u; = (ut1,... ,u,,) causes a transition from

S,_1 to S, and the corresponding output codeword c; = (cy1,... ,Cn) is Observed

over an AWGN channel as y; = (Y1.1,... ,Un), for t = 1,..., K. Note that ¢; =

(U, -+ U, Ceptts - - - »Cen) Since the code is systematic. The log likelihood ratios
A

of the a posteriori probabilities, given all the received signals yE £ (y1,¥2,-- -, ¥K),

are computed as

S, Pr{S,=s,u,; =+1|yf}

. (21
> Pr{S=su; =—-1]|yf} (21)

Pr{u; = +1|y¥
Aluy;) = log g i)

o = log
Pr{uy;=-1]y{'}

fort=1,...,K,and j =1,... k. The summations are over all the possible states at

time ¢. In order to compute (2.1) recursively, the following quantities are introduced:
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Trellis
transition

Input
daIt)a

Output c ¢
Codewords i t+1

%gﬁiﬁed Yy Yit1

Figure 2.5 The variables involved in the MAP algorithm.

Uy Uiiq

The probability of S; = s given the past signals yt £ (y1,¥2,... ,¥s):

ay(s) =Pr{S, =s|yi}.

The normalized probability of the future signals yX; £ (yit1,Yer2,--- »YK)

given S; = s:

2 Pri{yfi S =syi} Pr{y/i[S =s}
Pr{yf.lvi} Pr{yE, |y}

Bi(s)

which follows from the Markov property of the trellis.

The branch transition probability from S;_; = §' to S; = s with the present

signal y;:
Ty(s',s) 2 Pr{S;, =s,y:|Si_1=5}.

The joint probability of the transition from s’ to s and a the jth input of

'7:,3'(8/75) 2Pr{S, = s,u; =i,y: |81 =}
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Consider the terms in the summands of (2.1):

Pr{St = 8, U :7}|y{{}
Pr {St =8, U; = i,yli,)’i’-{u}

Priyt,yk,}
Pr{S: =s,us; =4, yi} Pr{yfi| S = s,us; = i, y}}

Pr{y}} Pr{yf:lyi}
S Pr{Si=su; =1,y S-1=5,y7"}Pr{S, 1 =4, v}

Pr{y:|yr "} Pr{yi'}
D0 i (8,8) a1 (s') Bi(s)
Pr{y:|yi"} ’

Bi(s)

where

Pr{yt{({—1|st = S5, U4 zzayiil} :Pr{Yg-llst = 3}

Pr{S; =s,uy; =4,y:|S-1=5,y7"} =Pr{S; = s,us; =4,y | Seu1 = 5'}

because of the Markov property. Therefore,

2 2y Vg (8 8) aw1(s') Bi(s)

A(uy ;) = log - . 2.2
(i) =108 3 5 i (5> 5) s () B 22)
Similarly,
P S, = : t—1
a(s) = r{Si=s Y:,_|1Y1 )
Pr {Yt |Y1 }
— Zsl Pr {St =8Y: St—l =5 I yi_l}
Pr {Yt |y7i—1}
_ X Pr{Si=sy:|S5-1=5yi "} Pr{S1 =45y}
Pr {}’t lyg_l}
_ S Tu(s5)ana(s)
Priy.|yi”'}
and
Bi(s) = Sy Pr{Si = 5", y5: |5 = s}

Pr {ygi2 | .Vi“} Pr{y.1|y}}
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_ > o Pr{Si1 =", y141] S, = s} Pr {Yfi2 | St41=8",5: = S,Yt+1}
Pr {Y5|—2 |Y§+1} Pr{y:1|yi}

_ T Ten(s,8") B (s”)
Pr{y1|yi}

Since

Priy:.|yi"'} = ZZPI {S,=5,y1,81 =45y}
= Y Pr{Si=ayilSis = 37 Pe (S = o 3171}

= Z Z Pt(slv 5) at—l(sl)’

we have

TS aals)

s = S S T ) e ()] (2.3)
2w Dera(s,8") B (8”)

Be) = S S (5, 57 auls) 24)

If the trellis is terminated, then these two recursions are initialized as:

ap(0) =1 and ap(s#0) =0,
Bn(0)=1 and Sn(s#0)=0.

The branch transition probabilities are given by

Yi;(s's8) =Pr{ug; = 1|81 = '} Pr{y:|S; = s,u; = 1,81 = 5'}
. PI‘{St =8 ] Ut,; = i,St_l = 8/}
(
Pr{u,; =i} Pr{y:| S = s,u; =,5_1 =5},
= 9 if &' — s is allowed by u;; = ¢

0, otherwise
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and similarly,
Ft(SI,S) = Z Pr{ut = i}PI‘ {yt l St =s U = i, St-—l = 8/},
i:s'—>s
where the summation is over all possible inputs i that allow the transition from s’ to

s. If the a priori likelihood ratios V(u;;) = log %E—Z%;_L% are provided, then

eV(u,j)
Pr{u,; = +1} = T3 V@)
eV(u,5)
Pr{u;=-1}=1- T4 V@)

and Pr{u; = i} = [, Pr{u;; = i;}.

2.2.2 Extrinsic Information

Let g(y|c) be the channel transition function for receiving y if ¢ is transmitted, and ¢

be the codeword specified by {S; = s,u;,S;_; = §'}. Then

Pr{y:|S; = s,us; =14,Si-1 =5}
= Z Pr{y:|S: = s,ut; = & {usm}mzj, Sim1 = 8’} H Pr{usm}

:;;g;. m#j

= > qly:le) J] Pr{um}
c_. m#j

U, ;=1
= Z Hq ytl’Cl HPT{Utm}

u f_z m#j
= yt,]l ZHQ ytl|Cl HPT{Utm}

C_; #i m#j

U, 5=

= q(y; 1) 0,;(5',5),
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where the last equation follows because the code is systematic. Therefore, if the

transition from state s’ into state s is allowed by u, ; = ¢, we have
3(s'y8) = Pr{us; =i} qys; 1) 07 (', 5)-

Substituting this into (2.2), we can then decompose the a posteriori log likelihood

ratios into three terms:

Zs Zsl ’Yt+,j1 (s'y8) ag-1(s’)

Auy ;) =log Gil)
t,7) — —
? Zs Zs’ 7t,j1 (8’7 S) at—l(sl) ﬁt(s)
P c= 41 |+ 1 0 s) oy (S
Zl()g r{utaJ + } +].Og Q(ytﬂl + ) +10g ZSZS t—Jl( t I(S)ﬂt(S)
Pr {Ut,j = _1} Q(yt,j | - 1) Es Zs’ o 7 (S,? S) 01 s’ IBt 3)
q(ys| +1)
= V(us;) + log + Wy,
(te5) q(yei| — 1) (te3)
For an additive white Gaussian noise channel, g(y|c) = ﬁexp =55 (y — )],

where 02 = Ny/2E, = Ny/2RE,. E, is the average energy per symbol, E is the
average energy per bit, R is the overall code rate, and Ny is the single-sided noise

power spectral density. The above equation can then be reduced to
2

There three terms are the a priori information, systematic information, and extrinsic

information, respectively.

2.2.3 Turbo Decoding

The presentation in this section follows historical accounts. A more solid theoretical

ground is given in Chapter 4. Given the received signals y) = (y{,l),yg)) and

Priu , =41 y(l),y(Z)
{us=+1] } and the
Pr{u; ;=—1|yM,y@}

yv® = (v y®), the optimal bit decision is based on log

. . . . Pr{ufy(l),y(z)} )
optimal sequence decision is based on log P l{aly Dy @} Both are, however, difficult to

compute because of the presence of the pseudo-random interleaver, which is usually

of large size. The wisdom of turbo decoding is to compute these optimal decision
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Figure 2.6 Turbo decoder for (3(K + 4) + 4, K) codes.

variables separately for each of the component codes, which is feasible using a Viterbi
or a MAP decoder, and then combine them “intelligently” to obtain good suboptimal
decisions. The innovation in turbo decoding is the recognition that the extrinsic
information W(u, ;) produced by the current MAP decoder is rid of the a priori and
systematic information and thus is suitable to be used as an independent estimate by
the next MAP decoder [7,64].

For example, the decoder structure for rate 1/3 codes, generated by the encoder
shown in Fig. 2.1 (b), is illustrated in Fig. 2.6. The parity parts of the received signals
for the two component codes are used by the corresponding MAP decoders. The
systematic part is used by the first decoder and its interleaved version is used by the
second. The decoding process begins by setting the a priori input to MAP1 decoder
to zero. The extrinsic part computed by MAP1 is passed through an interleaver
to MAP2 decoder as its a priori input. The likelihood output from this decoder is
taken as the decision variables for this iteration. The process is repeated by setting
the interleaved version of the extrinsic output from MAP2 decoder as the a priori
input to the MAP1 decoder. As will be seen in the next section, performance can be

" improved by executing more iterations but with diminishing gains.

2.3 Simulation Results

In this section, the performance of rate K /(3(K +4)+4) codes, obtained by discarding
the systematic bits from the second branch but retaining the termination bits as shown

in Fig. 2.1 (b), are studied by computer simulations. For K = 512, the bit error
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probabilities for different numbers of iterations are shown in Fig. 2.7. Performance
improvements from the first few iterations are quite substantial but saturate after
about 20 iterations. For BER = 107>, the coding gain over a rate 1 /3, constraint
length v = 6 convolutional code [80] is about 3 dB. The performance is also better
than the complicated rate 1/4, constraint length v = 14 convolutional code used by
JPL for the Galileo mission [24]. Performance for larger block lengths and comparison
to those for the conventional single input turbo (SIT) codes are shown in Fig. 2.8.
For K = 16384, the performance of the code is within only 0.7 dB of the Shannon
capacity for the corresponding rate [10,52]. It is also observed that the proposed
UMT codes achieve marginally better performance than SIT codes. The performance
is improved further by an unbalanced constructions where one UM code and one SI
are used as the two component codes. The performance of these unbalanced codes
are also shown in Fig. 2.7, where we observe only marginal improvements which seem

to diminish for very low BER.

[ ——— Iterations;

S
~

Bit error probability
=
T

\
-6 | | ! L 1 | © 9\f 5
0 02 04 06 08 1 12 14 16 18 2
Eb/No in dB

Figure 2.7 Performance of the (1552, 512) unit-memory turbo code.
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Figure 2.8 Performance of several turbo codes, code rates ~ 1/3.

2.4 Conclusions

We have presented an extensive introduction to the methodology of turbo coding by
constructing new turbo codes and a new iterative decoding algorithm for multiple
input trellis codes. By iterative decoding with exchange of soft information between
the decoders for two simple component codes, these codes achieve near-capacity per-

formance. As will be presented in the next chapter, substantial coding gains are also
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attainable even if the information exchanged between the decoders is not so “soft.”
Empirically, the methodology provides ways to achieve low bit error probabilities at
low SNR that were not possible in the past using even very complicated codes. How-
ever, a theoretical explanation as to the choice of extrinsic information and why the
decoding algorithm performs so well are not available. We will return to this problem

in Chapter 4 from a more general probabilistic inference framework.

2.A Symbol MAP Algorithm for Multi-Input Re-
cursive Trellis Codes

Though only the bit-by-bit MAP algorithm was used in this chapter, the symbol MAP
algorithm is included here for completeness. Let 0 be the k-tuple (—1,—1,... ,—1).
Fori=1,2,...,25 ~1landt=1,2,...,K, define

Pr{ut=i|}’{(} 1o ZSPI’{StZS,Ut:iIY{{}

Alu=i)=lo _ |
(u, =1) gPr{ut:OIY{{} ngPr{St=8,ut:0|y{(}
and
4 O{t(s) = Pr{StZSIyi}
Be(s) _ Pr{vi,IS=s}

Pr{yK,|yt}

(
’Yti(3'> 3) = Pr {St =s,u =1iy; | Siq1 = SI}
Ty(s',s) = Pr{Si=s8,y:|Si-1=5}=3,7i(s,s)

Then the log likelihood ratios can computed iteratively as:

Do 200 (8, 8) au1(8') Bi(s)
D5 2w 108, 8) cu1(s') Bi(s)’
at(s) — Zs’ Ft(sla 5) at—l(s/)

20 2oy Tels', 8y aua(8)
,Bt(s) — Zs’ Ft+1(87 S,) ﬁt-l-l (8,) .

Yoo doe Ter1(s, 8) au(s)

Afu; =1i) = log
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Let the codeword specified by {S; = s,u; = i,5,-1 = ¢’} be ¢ = (i, p), where i are
systematic bits and p are the parity-check bits, and the corresponding received signal
¥t = (¥is» Yp,). As shown in the previous subsection, if the transition from state s’
into state s is allowed by the input u, = i, then ~}(s', s) can be expressed as a product

of three terms, namely,
7i(s'8) = Pr{u, =i} q(yi, [1) ¢(¥p, | P) = Pr{u; = i} g(ys; ) 63(s', 5).

Therefore,

Priu =i} o olul) 0 250 8(5) ami(s) Als)
Pr{u, = 0} q(yi, | 0) Zs ZS' 57?(3,a 5) a1 (') Bi(s)
= V(u;=1i)+ % Z Y; + W(u, = 1).

<k, jiij=+1

+ log

Aluy=1i) = log
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Chapter 3

(Generalized Concatenated Convolutional

Codes

Two classes of generalized concatenated (GC) codes with convolutional outer codes
are studied. The first class is based on the classical Plotkin |a & b|b| construction.
A new suboptimal multi-stage soft decision algorithm is proposed and the corre-
sponding performance bounds are obtained. These codes are shown to achieve better
performance than conventional convolutional codes with equal or less decoding com-
plexity, and are capable of unequal error protection. The Plotkin construction is
then generalized using an inner differential encoding structure to obtain a second
class of GC codes. A low-complexity two-iteration decoding algorithm using tradi-
tional hard-output Viterbi decoders is proposed. Numerical results show that the
new coding systems can achieve comparable and sometimes superior performance to

low-complexity turbo codes with similar computational complexity.
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3.1 Introduction

Let C = (n, k,v,dy) be a k input and n output binary convolutional code with mem-
ory v and free distance dy. The asymptotic coding gain of the code is characterized by
%df, but the maximum likelihood Viterbi decoding complexity for this code, defined
as the average number of operations per information bit D £ %2’“‘“’, grows exponen-
tially with the number of inputs and the size of memory. Though the introduction of
(rate-compatible) punctured convolutional codes [11,37] reduces this complexity to
%2””, the tradeoff between performance and complexity using convolutional codes
still exhibits an exponential relationship. The recent introduction of multi-stage iter-
ative decoding with exchange of soft information [7,47,50,53], applied to codes with
pseudo-random structure, has provided a whole new approach to construct good codes
and to decode them with low complexity. This methodology has been applied to par-
allel concatenated convolutional (turbo) codes [7,13,25,64], and serial concatenated
convolutional codes [6] with remarkable success. (Similar results are also obtained
for product codes [40] and long block codes based on low-density parity-check ma-
trices [49] or generator matrices [16,18,19].) These approaches have the effect of
reducing the exponential dependence on v of the complexity at the cost of the lin-
ear dependence on the number of decoding iterations. To achieve best performance,
however, these decoders usually require maximum a posteriori (MAP) algorithm [2],
which is of relatively high complexity if implemented straightforwardly. Modified
MAP algorithms [3,60,65] and soft-output Viterbi algorithm (SOVA) [38,40] have
thus been proposed in place of MAP decoders to reduce system complexity.

Alternative high-performance coding systems of low complexity are proposed in
this chapter via the generalized concatenation of convolutional codes. Of central
focus is the classical Plotkin |a @ b|b| construction [61] and its generalizations to be
presented later.

Suppose a and b are codewords of two codes, C; and Cs, of the same length N,
the Plotkin construction leads to a new codeword (a @ b,b) of length 2N, i.e., the

first half of the new codeword is the superimposing of those of the component codes
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and second half is the same as that of one of the component codes. This construction
can be interpreted as the concatenation of C; x Cy with a block inner code of the
generator matrix
o= | O (3.1)
Iy Iy
where Iy is an N x N identity matrix, Oyn is an N X N matrix with all zero
elements, and P stands for the Plotkin structure. If the minimum distances of the
two component codes are d; and ds, respectively, then the new code has minimum
distance dpin, = min(dy, 2d,) [51]. This construction has given good block codes,
mostly notably Reed-Muller codes [51], and can be equally applied to convolutional
codes [14, 15,29, 36]. Refinements of the encoding and the hard-decision cascaded
decoding procedures [8,31] for this class of generalized concatenated convolutional
codes of the Plotkin type (GCC-PT codes) are proposed in Section 3.2 to address
the issue of error propagation. A new suboptimal multi-stage soft-decision decoding
algorithm of the same structure as the hard-decision one is proposed in Section 3.3.
Probability distribution functions of decision variables and the corresponding bit error
rate (BER) bounds are obtained. Numerical results show that these codes achieve
better performance than conventional convolutional codes with equal or less decoding
complexity, and are capable of unequal error protection. An additional advantage of
our approach is that the new decoding systems are based on standard hard-output
Viterbi decoders with minimal modification in the input instead of custom designed
devices as the case for SOVA.
In Section 3.4, memory is introduced into the Plotkin structure by replacing the

inner block encoder Gp with a differential encoder:
¢ =Inv+ DVIy, (3.2)

where D represents delay and C indicates the convolutionalness of the inner differen-

tial encoder. Namely, if a®) a® ... a™) is a sequence of M codewords of C, this
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construction results in a new sequence of M + 1 codewords:

With a two-iteration decoding algorithm based on the clipped soft decision algorithm
from Section 3.3, this class of generalized concatenated convolutional codes of the
convolutional type (GCC-CT codes) achieves significant gains over conventional con-
volutional coding systems with comparable complexity. If the underlying component
code is (recursive) systematic, an alternative construction arises by excluding nonsys-
tematic bits from the superimposing operation. Compared to nonsystematic GCC-CT
codes, this class of codes, denoted by GCC-SCT codes, give smoother performance
curves. Coding systems based on both classes of GCC-CT codes achieve performance
that is comparable and sometimes superior to that of low-complexity turbo codes

with comparable computational complexity.

3.2 Generalized Concatenated Convolutional Codes

of the Plotkin Type

Suppose the code rates of the two component codes (CC1 and CC2) are R; and R,
respectively. Find positive integers J, K, and N such that % = Ry and % = R,.
Let A and B be independent random vectors of lengths J and K with equiprobable
values from a binary field F = {41, —1}. +1 represents the additive identity of the
group, i.e., +1@+1 = +1 and —1®—1 = +1. An encoder for the GCC-PT code and
the channel model is illustrated in Fig. 3.1. The two information blocks A and B are
first encoded by the encoders of the two component codes, & and &, to obtain the
codewords a and b, respectively. b is then scrambled by an interleaver Iy of size N
and let b denote this interleaved codeword. The superimposed code block c = a® b

and the scrambled code block b are then transmitted. Notice that we have replaced
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Figure 3.1 Superimposed code encoder and channel model.

the Plotkin structure of (3.1) by

= |V O] (3.3)

Iy Iy
based on reasons to presented in the next subsection. An additive white Gaussian
noise (AWGN) channel is assumed, so the received signals z; and y; are the sum of
the transmitted signals and independent white Gaussian noises n; and n! with zero
mean and variance 0? = Ny/2E, = Ny/2REy, where E, is the average energy per
symbol, E; is the average energy per bit, R is the overall code rate, and Ny is the

single-sided noise power spectral density. An example of this construction is given

below.

Example Code 1 Let the two component codes CC1 and CC2 be rate-compatible
punctured convolutional codes [37] of memory ¥ = 6 and with rates R; = 1/3,
Ry = 2/3, and free distances dy, = 14, dy, = 6, respectively. Let IIy be a 32 x 32
regular rectangular interleaver. The resulting GCC-PT code, denoted by EC1, is of
overall code rate R = 1/2 and free distance dy = 12.

3.2.1 Hard-Decision Decoding

The basic idea of decoding codes of the Plotkin structure with multiple stages [8,31] is
to decode CCl1 first and then subtract its effect from the received signal. The modified

received signal is then used to decode CC2. In this multi-stage decoding scheme,
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Figure 3.2 Block diagram of the generic decoder.

the quality of the first decoder output plays an essential role in the performance
of the second decoder. For Viterbi decoding of convolutional codes, the errors in
the output tend to be correlated and appear in bursts, which seriously impairs the
performance of the subsequent decoder. To mitigate this problem, an interleaver
Iy and a deinterleaver IT' are introduced in the encoder and decoder, as shown in
Fig. 3.1 and Fig. 3.2.

For the case of hard decision, the combining operation (COM) in Fig. 3.2 will be
the addition of the field F and the two decoders will be Viterbi decoders for the two
component codes. That is, the combiner output u £ x @y is fed into Viterbi decoder
D;, which then produces the estimate of the source sequence A and the estimate of
the codeword &. The latter is then combined with the received signal x to yield t
as an estimate of the sequence b. The two noisy copies, y and t, of the interleaved
codeword b comprise a repetition code of CC2 and hence can be decoded using a
Viterbi decoder for the repetition of CC2. Alternatively, by defining a real addition
'+’ on F, these signals can be combined into soft inputs for the Viterbi decoder of

CC2 with values from {+2,0, —2}. The algorithm is summarized as follows:

Hard-Decision Decoding for GCC-PT Codes

HD1 u=x6y.

HD2 (A,4) = ViterbiDecoder; (u).

HD3 t=x@a.

HD4 A = ViterbiDecoder,(Delnterleaver(t + y)).
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The complexity of this algorithm is therefore the average of those of the two com-
ponent codes, i.e., D = r;D; + ryD,. Note that if the two component codes are
punctured codes from the same parent code (as in the case for EC1), they can share

the same decoder and only one physical implementation is required.

3.2.2 Performance Bounds

The bit error probabilities of the individual decoder can be bounded by the transfer

function method [52]:

1 o0
P, < Z Z cqPy, (3.4)
d=d;

where ¢4 is the number of information bit errors associated with all the incorrect
paths with distance d from the correct path and P, is pairwise error probability for

the two paths. For binary symmetric channels,

d d d—e :
etz (0)p°(1—p)*e, if d odd
py = | e (P ., (35)

Yema (D21 =) + 5 (,5)p¥2(1 = p)¥?, if d even

where p is the channel transition probability. Since u; = z; ® y; and Pr{z; # ¢;} =

Pr {yZ #* 52} =Q (W), we have

p=2Q< 2]\%) [1——@( 2NEOS>J’ for CC1,

where Q (z) = [° \/%; exp [—1y?] dy. By assuming correct decoding for CC1, &; = a;

and hence d; is independent of z; and y;. Thus,

2F,
p~Q< N0>’ for CC2.

Note also that, since two copies of CC2 codewords are transmitted, every d on the

right-hand side of (3.5) should be replaced by 2d.



30
3.2.3 Numerical Results

Numerical evaluation of these bounds and computer simulation results for EC1 are
shown in Fig. 3.3. Only the six leading terms in (3.4) were used for computing
the curves. For BER around 107% CC1 achieves a coding gain of 0.8 dB over the
NASA standard convolutional code. The NASA standard code is of rate 1/2 and
memory 6 with free distance 10 and generator polynomials 133 and 171 in octal form.
The introduction of the interleaver/deinterleaver pair increases the coding gain of
CC2 from 0.8 dB to 1.5 dB. The overall BER for EC1, though not shown in the
figure, is the appropriately weighted sum of the BERs for CC1 and CC2 and, in the
present case, is close to that for CC1l. The discrepancy between the bound and the

simulation results for CC2 at low signal-to-noise ratios is due to the many errors made

107k

Bit error probability
=
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10—5;NASA code: sim: \ |
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Figure 3.3 Bit error performance of EC1 with hard decision decoding (overall code
rate is 0.5).
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by the decoder of CC1, which invalidate the assumption that p ~ Q ( v/ 2E, /NO). In

addition, the length of the error bursts from the first decoder exceeds the interleaver
depth and hence invalidates another assumption that the distribution of errors is
random at the input of the second Viterbi decoder. For this example code and all
those to be considered later here, random interleavers do not show any performance
improvement over rectangular ones in our simulation, and hence only the results for
rectangular interleavers are presented.

The unequal error protection capability of GCC-PT codes is a natural prop-
erty of these codes since each of the two component codes yields a different level
of error protection. This is illustrated by the numerical results here. Two thirds
of the source bits enjoy a bit error rate more than ten times lower than for the
rest. This can be exploited by some source coders (such as subband coders) to en-
hance the overall system performance. In spite of this excellent performance, the
decoding complexity of EC1 is almost the same as the NASA code. Indeed, the av-
erage decoding complexity of the NASA code is Dyasa = 256, and that of EC1 is
Drc1 = 11Dy + 12Dy = %384 + %192 = 256. (Note that C, is punctured from an
r =1/3 code).

3.3 Clipped Soft-Decision Decoding Algorithm

For soft channel outputs, the combining operation @ is no longer applicable, but we
would still like to use Viterbi decoders as the main decoding devices. The operation
COM in Fig. 3.2 should be modified to provide some likelihood information of the
received sequences for the Viterbi decoders. Ome such modification, clipped soft-
decision decoding algorithm, is derived below.

Since a;, 5,-, n; and n} are assumed to be independent, and a; and l;i take values

from {+1, -1} equiprobably, z; and y; are independent. Furthermore,

f@oyila) = f(zi| ) fys)
Fi,vi | B) = F(=:) Fyi | )
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where f(-) and f(-|-) are the probability density function (pdf) and the conditional
pdf of the random variables. Hence, the log-likelihood ratio of ¢; is

Pr{z;,yi|ci=+1} 2

A i) — = —I;
(c1) = log Pr{z;,yi|lc;= -1} o2

and similarly A(Ez) = ;%—yz Because a; = ¢; ® b;,

Pr{z;,y;|a; = +1}
Pr{z;,y;|a; = -1}
5ot (@) + W+ | 5rl(e—1)*+(y-1)7]

Ala;) = log

= log — =
& et D7 + ezezl@=12+(y+1)?] (3.6)

1+ eAB)+A)
og ———
& eA(®) -+ eAle:)

~ sgn(A(b:)A(c;)) min(|A(B:)], |A(e)])

Therefore, for soft decision decoding, the COM operation in Fig. 3.2 will be defined

COM(z,y) = sgn(wy) min(|z], |y|) (3.7)

The decoding process defined in the previous section can then be applied to soft value
inputs by simply modifying the first and third steps. More specifically, the algorithm

proceeds as follows:

Clipped Soft-Decision Decoding for GCC-PT Codes

CSD1 u = COM(x,y).
CSD2 (A, 3) = ViterbiDecoder; (u).
CSD3 t = COM(x,4).

CSD4 A = ViterbiDecoder,(Delnterleaver(t + y)).

Since @; takes value in {+1,—1} only, COM(z;, a;) functions like a “double-sided
clipper” on z;, as shown in Fig. 3.4. The above algorithm is similar to the generalized

multiple concatenation decoding (GMCD) algorithm [67], which prescribes that t; =
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Figure 3.4 The input-output relationship of ¢; = COM(z;, d;).

4;T;, i.e., unclipped. Our simulation, however, shows that the proposed clipped soft-
decision algorithm gives better performance than the GMCD does, especially for the

class of codes to be presented in Section 3.4.

3.3.1 Performance Bounds

Without loss of generality, suppose a; = +1, then z; = b; + n;, Y = b + n;. By the

independence of n; and n}, the joint conditional pdf of z; and y; is

Joy(Ziy i | a; = +1) = gy [e%[(”"_l)u(yi_ly] + 65_57[(““)2“““)2]] .
o

Since u; = sgn(z;y;) min(|z;||y:]), the marginal cumulative conditional pdf of u; can

be obtained by integrating the above function over the regions shown in Fig. 3.5:

2Q (—u;—l—l) Q (—u;—l) : u; < 0
1- Q) - @2(4), w20

7 0

foru <0 foru>0
Figure 3.5 The integration regions for computing the cumulative conditional
probability density function of w;.
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Differentiating this gives the conditional pdf of w;:

fulwloi=+1 =2 @ (M=) g - 1+ @ (B2 ) 1)
(3.8)

where g,(z) = G/%’ieXp [—%} This function is plotted in Fig. 3.6 for several
different signal-to-noise ratios. When compared to the input to the Viterbi decoders
for conventional convolutional codes, which is a Gaussian random variable with unit
mean and variance o2, here the conditional mean p, of u; is smaller, the conditional

variance o2 of u; is also smaller. Since the bit error probability can be bounded by

(3.4) with

0
P; = / fu(uzlaz = —|—1) E I 3 fu(uz|az = +1) dui, for CC].,
—oo N

if the free distance of CC1 is large (e.g. dy, = 14 for EC1), then by the central limit

theorem argument, one would expect

2
Py~ Q (1 /%) . for CCL. (3.9)

oer ES/N0=3 d

of B, /No=0d

O-Q_ES/NO - -

0.2

0.1

K -1 -0.5 o 0'132 1 1.5 2 25 3
Figure 3.6 The conditional pdf f,(u;|a; = +1).
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~1Inp°ut E, /]VO 111 dB )
Figure 3.7 The SNR at the output of COM(z;, d;).

As shown in Fig. 3.7 by numerical integration of (3.8), the ratio u2/02 approaches
2F, /N, at large input signal-to-noise ratios. That is, because Py = @ (M)
for maximum likelihood decoding, the performance of this suboptimal decoder ap-
proaches that of maximum likelihood decoding asymptotically.

If CC1 decodes perfectly, (e.g., at high signal-to-noise ratios,) @; = a; and hence

a; is independent of z; and y;. Thus the conditional pdf of ¢; can be approximated by

(5(tz - 1) + Q (52_') (S(tz -+ 1) + ga(ti - 1)[S(tz + 1) - S(ti — 1)],

~ 1
fultilbs = +1) = 5

where §(t) is an impulse function at ¢ = 0 and s(¢) is a unit step function: s(t) =0

for t < 0 and s(¢) = 1 for t > 0. Since n; and n; are independent,

fululb = +1) = 30— 2) +Q (2 ) 09

+ go(vi — 1) * {go(v; — D)[s(v; + 1) — s(v; — 1)]}. (3.10)

This function is plotted in Fig. 3.8 for two different signal-to-noise ratios. Also shown
in the figure is a histogram obtained from computer simulation for E,/N, = 0 dB,
which agrees with the theoretical values so well that the two curves are hardly dis-

tinguishable. The bit error probability of CC2 can be bounded by (3.4) with

0
Py~ / fv(vi]bi =41)*---* fy(vi|bi = +1) dv;, for CC2. (3_11)
oo ~
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Figure 3.8 The conditional pdf f,(v;|b; = +1).

Unlike the case of CC1, however, dy, is usually too small (e.g. dy, = 6 for EC1) to

justify the central limit theorem. The evaluation of P; generally can not be closely

approximated by the approach used in (3.9), and (3.11) should be applied instead.

3.3.2 Numerical Results

QOur first concern for the clipped soft-decision algorithm is about how well the ap-

proximation in (3.6) performs. Fortunately, simulation results show that the approx-

imation introduces a penalty of about 0.1 dB loss in E,/Ng. This is a small price to

pay, in view of the fact that the approximation not only gets rid of the log exponen-

tial sums but also allows the decoder to work without the knowledge of the channel

signal-to-noise ratio.

Fig. 3.9 shows numerical results for EC1, where only the six leading terms in (3.4)

CC1 candidates CC2 candidates
Ry |dy | Es/No Ry | 2dy, | Es/Ny
172 [10 | 206 [8/9] 6 3.31
4/9 | 10 2.57 4/5| 8 2.15
2/5 | 11 2.16 2/3 | 12 0.52

4/11 12 1.78 4/7 | 14 -0.24
1/3 | 14 1.42

Table 3.1 The required E,/N, in dB for BER = 107°.
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were computed. With the same code rate and decoding complexity, EC1 outperforms
the NASA code: while CC1 has comparable performance to the NASA code, CC2
provides a coding gain of 1.1 dB at BER=10"%. The bit error probability bounds
derived in the previous subsection prove to be tight and thus useful for performance
prediction, especially at high signal-to-noise ratios. The discrepancy between the
bound for CC2 and the simulation results at low signal-to-noise ratios is due to the
many errors made by the first decoder, which invalidates several assumptions used in
the derivation, as described before.

Table 3.1 lists the required signal-to-noise ratios for BER=10"° for several rate-
compatible punctured convolutional codes of memory v = 6 [37] computed by the

bounds (3.4), (3.9) and (3.11). Using these values, it is possible to design a wide

Bit error probability

10k . t 3
NASA code: sim. ------- \
. CClL: sim. x bound——
CC2: sim. + bound-—---- \+ ,
10' ] ] ] 1 1 ] N ] -
0 05 1 1.5 2 25 3 35 4 45 5
Eb/Noin dB

Figure 3.9 Bit error performance of EC1 with soft decision decoding (overall code
rate is 0.5).
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Figure 3.10 Bit error performance of EC2 with soft decision decoding (overall code
rate is 0.567).

range of error control systems, from unequal error protection such as EC1, to codes
that maximize channel throughput. To illustrate the latter idea, a second example of

GCC-PT code is constructed as follows.

Example Code 2 Let the Ry = 1/3 code from Table 3.1 be CC1 and the R, = 4/5
code from Table 3.1 be CC2. With the same interleaver as that for EC1, the new code
EC2 has an overall code rate of 0.567 (=2.46 dB), which is about 13% higher than that
of the NASA code. Table 1 predicts that the F,/N, values at BER=107% will be about
3.9 (=1.4242.46) dB for CC1 and 4.6 (=2.15+2.46) dB for CC2, which are equivalent
to coding gains of about 0.7 dB and 0.1 dB over the NASA code. Simulation results
shown in Fig. 3.10 confirm these predictions. Note that EC2 also has a lower average

decoding complexity than the NASA code, viz., Dgge = 137384 + }—?160 ~ 226 < 256.
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We also notice that the bound for CC2 agrees with the simulation points very well
even at low signal-to-noise ratios. This is because of the relative small number of

errors made by the first decoder.

3.3.3 Iterative Decoding

It should be noted that GCC-PT codes also allow iterative decoding to improve
performance. For the example of EC1, Fazel [29] has proposed a scheme using soft-
output Viterbi algorithm (SOVA) and “soft-re-encoding” to bring the performance of
CC1 to be about the same as that of CC2, which is about 2.7 dB at BER=107*, as
shown in Fig. 3.9. Because of the back-tracking operations in SOVA [38], the decoder
is more complex than an ordinary Viterbi decoder. In terms of VLSI implementation,
it is estimated that a SOVA decoder requires about 40-60% more chip area than a
Viterbi decoder [44]. However, with the new constructions and iterative decoding
algorithms of the next section, it is possible to achieve better performance using

conventional hard-output Viterbi decoders.

3.4 Generalized Concatenated Convolutional Codes
of the Convolutional Type

Memory can be incorporated into the Plotkin structure by replacing the inner block
code with a convolutional code. Two such constructions based on a simple differen-
tial encoder are presented below for general convolutional outer codes and recursive

systematic convolutional outer codes.

3.4.1 General Construction

For the same reasons presented in Section 3.2, the differential encoder (3.2) is modified

as follows to address the issue of error propagation in a multistage decoder:

Gec = Iy + DVly. (3.12)
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Figure 3.11 Hyperimposed code encoder.

The corresponding encoder block diagram is illustrated in Fig. 3.11, where &¢ is the
encoder for the underlying component code C' and Ily is an interleaver of size N.
The m-th input information block A(™) is first encoded by £z to obtain a code-
word al™, which is then fed into the interleaver. The current output from the in-
terleaver is the scrambled version, 4™V, of the previous codeword a™ Y, which
corresponds to the information block A1, The m-th codeword of the GCC-
CT code is then defined as the superimposing of the current output from both of
the devices: c¢™ = al™ @ &Y, For a sequence of M input information blocks
ADO A@ A et a® a® . aM) be the corresponding codewords encoded
by & and &V, 2, ... A&M) be the interleaved versions of those. The construction

results in a sequence of M + 1 codewords:

c® — o)

c™ = a(™ g 3(m=1) m=2,3,...,M,

c(M+1) _ (M)

Let x(0, x® ... x(M+1) denote the received blocks corresponding to those codewords
over the AWGN channel defined in Section 3.2.

This construction embeds two copies of a codeword of the underlying component
code C in the new code blocks: a®™ in ¢(™ and &™) in ¢(™*1). Using the techniques
from the previous sections, estimate signals of these two copies can be recovered and
combined for better decoding performance. More specifically, begin with the first
received block x(. Since ¢® = a(), this can be decoded by the Viterbi decoder

of C to obtain the estimate &1). Moreover, let xU) = t1), which denotes the first
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recovered signal of the codeword a(®). The next received block x(?) is a noisy version
of the superimposed code block ¢® = a® @ &M, Since an estimate of a® is available
from decoding the previous block, the combining operation from the clipped soft-
decision algorithm can be used to obtain the first recovered signal of the codeword
a®: t@ = COM(x®, Interleaver(a(!))). Applying the Viterbi algorithm on this re-
covered signal gives the estimate 4(® of codeword a®. Combining this estimate 4
with the received signal x(®) again recovers the signal for 41, Hence, a second recov-
ered signal for a) can be obtained by passing this signal through the deinterleaver:
u® = Delnterleaver(COM(x(?),a®)). At this point, signals for both of the copies of
codeword al) are recovered. The final estimate for the information block A® can
then be made based on both of these signals: A1) = ViterbiDecoder(t® + u®).
Since 42 and t(® are available, these procedures can be applied recursively to the
subsequent received signals. The complete decoding algorithm is summarized as fol-

lows:

Extended Decoding Algorithm for GCC-CT Codes

Step 1t =x®),
a®) = ViterbiDecoder(x().
Step2 Form=1,2,..., M —1do
t(mt1) = COM(x(™+1) Interleaver(at™)),
a(m+) = ViterbiDecoder(t(™+1),
u(™ = Delnterleaver(COM (x(™+1), 4(m+1))),
A™ = ViterbiDecoder(t(™ + u(™),
Output A,
Step 3 u™) = Delnterleaver(x(M+1),
AM) — ViterbiDecoder(t™) + u®)),
Output A0,

Stop

Because each of the code blocks is decoded twice, the complexity of this algorithm is

about twice that of decoding the underlying component code.
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Example Codes 3 and 4 Define EC3 as the GCC-CT code with the NASA stan-
dard code as its component code and a 64 x 64 rectangular interleaver in the encoder.
M = 100 so the overall code rate is about 1/2. Simulation results of EC3 with ex-
tended decoding are shown in Fig. 3.12. At BER=10"%, EC3 achieves a coding gain
of 1.9 dB over the NASA code. Apart from the extra storage requirement for the
interleavers, the arithmetic decoding complexity of EC3 is about twice that of the
NASA code. Also shown in Fig. 3.12 is the performance of EC4, which is constructed
with a 64 x 64 rectangular interleaver and a rate one half convolutional code with

five memory elements. The generators of this code are 53 and 75 in octal form. The

NASA code

10_4:___._0_._ \

Turbo code, SOVA N

o

Bit error probability
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: R
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Figure 3.12 Bit error rates of hyperimposed codes and a turbo code with SOVA
(overall code rate is 0.5).
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decoding complexity of EC4 is roughly the same as the NASA code, but it achieves
a coding gain of about 1.7 dB relative to the later at BER=10".

It is observed that the bit error rate curves of GCC-CT codes exhibit a threshold
effect: the bit error rates rise to a uselessly high level when the signal-to-noise ratio
(SNR) drops below a certain point. We believe the explanation is as follows. If the
decoding of the previous stages is perfect (e.g., 41 = a(m=1) gpd a(m+1D = a(m+1)
when a™ is to be re-decoded), then the effective minimum distance of the code is
almost doubled, though the metric used in decoding algorithm is not optimal. This
explains why the performance is so good for higher SNR. On the other hand, for
every error decision made in the previous stages, there are at least dy errors in the
re-encoded sequence which are then spread by the interleaver. The effective distance
of the current stage is reduced by two for every “hit” of such errors. Consequently,
the performance of extended decoding deteriorates dramatically as the bit error rates

of the decoding previous stages increase.

3.4.2 Systematic Recursive Construction

The re-encoding process that causes error propagation could be avoided by (1) using
systematic codes (preferably recursive ones for larger free distances) and (2) excluding
nonsystematic bits from the superimposing operation. Suppose the block length of

the underlying component code C is N, of which the first K bits are systematic. The

/(o E—
P

A

-

[10% Al(cm—l)

Figure 3.13 CC-SCT code encoder.
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inner encoder is defined as

Tx  Oxn.
Gsc=Iy+DV| 5% TENEL (3.13)

Onv-rkx Orx
where Ilx is permutation matrix of size K, 0 m,z 18 a H x L matrix of all zero elements,
and SC indicates the systematic convolutionalness of the inner code. The correspond-
ing encoder is illustrated in Fig. 3.13, where P represents the parity-check generator

of C. Namely, for a sequence of M input information blocks AN, A® = A®) jet

p®,p@, .. p®) bethe corresponding parity blocks encoded by P and A(l), A

be the interleaved versions of the information blocks. The construction results in a

sequence of M + 1 codewords:

cM = (™, c,D) = (AM pM),
¢ = (™, ¢,(™) = (A @ A1 ptm)y i —23 . M,

M) = (G441, ¢, 011) = (A4, o),

The block of N — K zeros in the last codeword do not need to be transmitted. Let
™ m=12,... M+ 1, denote the received blocks corresponding to the systematic
blocks ¢;™, and Xp(m),m = 1,2,..., M, denote those corresponding to the parity-
check blocks cp(m), respectively. The decoding algorithm for this GCC-SCT codes is
similar to that for the GCC-CT codes except that now only the systematic bits of the
codewords are to be recovered and combined. The complete algorithm is summarized

as follows:

-~

,AM)
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Extended Decoding Algorithm for GCC-SCT Codes

Step 1 TM =x,M),
A® = ViterbiDecoder((x;V, x, ).
Step2 Form=1,2,... , M —1do
T+ = COM(x; ™+, Interleaver(A (™)),
A(m+1) = ViterbiDecoder((T™+Y), x, (m+)),
U™ = Delnterleaver(COM(x; ™), A(m+1))),
A = ViterbiDecoder((T™ 4 U™ x,m)),
Output A(™).
Step 3 UM = Delnterleaver(x;(M+1),
AM) = ViterbiDecoder((T®™) 4 U1, x, (M),
Output AM).

Stop

Example Codes 5 and 6 The performance of two designs with 64 x 64 rectangular
interleavers are shown in Fig. 3.14, where EC5 is based on the recursive systematic
version of the NASA code and EC6 is based on the recursive version of the memory
five code that was used in EC4 with half of the parity bits punctured to increase
the rate to 2/3. As predicted, these codes exhibit less threshold effect and hence
achieve better performance than the nonsystematic GCC-CT codes for low SNR.
However, since less received signals (only those correspond to the systematic bits) are
accumulated in the decoding algorithm, they are not as good as the nonsystematic
codes for higher SNR. For example, the coding gain for EC3 is 0.5 dB higher than
that of EC5 at BER=107°. The decoding complexity for EC5 is about twice that of
the NASA code, and that of EC6 is about 80% of the NASA code. Also shown in
Fig. 3.12 and 3.14 are the performance of a turbo code of memory 2 and block size
900 with six-iteration SOVA decoding for rates 1/2 and 2/3, taken from [40]. The
complexity of both schemes is about twice of that of the NASA code. In the region of

practical interests, however, the performance of GCC-SCT codes is superior to that
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of these low-complexity turbo codes.
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E ...... o ..... E
Turbo code, SOVA, R=2/3 ]
101955'\ =%~ TR -
; Thg 0 EC6 (v=5), extended ]
>10'25- S 3
:
g |
5.10_35“ E
° | R=1/2 |
5 o
10_4;‘ N . E
_ o
SV *\ )
10°t Turbo code, SOVA, R=1/2 0 3
S \'\’
[ EC5 (v=6), extended *
10_ 1 1 1 | | | | |

0 05 1 1.5 2 25 3 35 4 45 5
Eb/No in dB

Figure 3.14 Bit error rates of systematic hyperimposed codes and turbo codes with

SOVA.

3.5 Conclusions

Powerful coding systems are obtain with the generalized concatenation of convolu-
tional outer code. We proposed new suboptimal multistage decoding algorithms for
codes of the Plotkin structure, and obtained the corresponding upper bounds on bit

error probabilities. Numerical results show that these codes provide good coding gains
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and unequal error protection. The classical Plotkin construction was then generalized
to incorporate memory in the inner code. With a two-iteration decoding algorithm,
these codes achieve comparable and sometimes superior performance to that of low-
complexity turbo codes. Unlike turbo codes, random interleavers do not show any
performance improvement over rectangular ones for all the example codes we con-
sidered. Our systems can be considered a very pragmatic approach to the iterative
decoding paradigm since the new decoding systems can be easily constructed with off-
the-shelf industry standard hard-output Viterbi decoders with minimal modification

of the input.
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Chapter 4
Turbo Decoding and Belief Propagation

Though the turbo decoding methods have been applied to a wide range of codes
with remarkable success, a satisfactory theoretical explanation as to why the turbo
decoding algorithm performs so well has been lacking. Some pathological cases where
the algorithm does not converge or converge to the wrong answers have even been
identified [53]. In this chapter, we establish a close connection between the turbo
decoding mechanism and the “belief propagation” algorithm [58], well-known in the
artificial intelligence community. An introduction to the Bayesian belief network and
Pearl’s belief propagation algorithm are given in Section 4.1. The optimal symbol
decision rules for conventional systematic and general parallel concatenated (turbo)
codes are discussed in Section 4.2. We show, in Section 4.3, that the turbo decoding
algorithm is in fact a special case of the belief propagation algorithm applied to the
Bayesian network of turbo codes. Section 4.4 concludes the chapter with a brief

review of some other decoding algorithms that are related to belief propagation.



49
4.1 Introduction to Bayesian Networks and Belief

Propagation

The general probabilistic inference problem and the Bayesian belief network approach
to this problem are introduced. A detailed description of Pearl’s belief propagation

algorithm, which solves some special Bayesian networks efficiently, is given next.

4.1.1 Probabilistic Inference and Bayesian Networks

Consider a set of N discrete random variables V = {V4, V4, ..., Viy}, where V; assumes
values in a finite alphabet F;. Let the marginal and joint probability density functions

be:

q(v;) 2Pr{Vi = v},
g(v) EPr{Vi=v,Va=vy,...,Vy = vy}.

The marginal density function g(v;) represents our “a priori belief” about the random
variable V;. Now suppose realizations of some of the variables are observed: the
random variable V; is known to be v;, for all j in J C {1,2,... ,N}. Define the
“evidence” to be this event £ = {V; =v,:j € J}. The fundamental probabilistic
inference problem is to compute the “a posteriori beliefs” given the evidence &, i.e.,

to find the conditional probability densities
q(vi| €) = Pr{V; = v | £},

for all ¢ ¢ J. A brute force approach to this problem is to sum over all of the random
variables of ¢(v) that do not involve either ¢ or J. That is, without loss of generality,

ifJ={n+1,n+2,... N}, then

Z’Ul V2yees yUn—1 q(V)
Q('Un,g): Z’ — q(v) *
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By defining A as a normalization operator on a collection of nonnegative numbers Ys

such that > . z; = 1 if z; = A;y;, we can rewrite the equation as

q(vn |E) = A, Z q(v). (4.1)
V1,U2yee U1
If V; can assume |F;| = M; values, then the above sum involves MM, - - - M,,_; terms,
which implies this approach is impractical unless n and the M;’s are small.

The idea behind the “Bayesian belief network” approach [43,58] to this inference
problem is to exploit the “partial independence” that may exist among the random
variables to simply belief updating. For example, if all the variables are independent,
then the computation can be completely avoided. More generally, the partial inde-
pendence can be described systematically by a “directed acyclic graph” (DAG), which
is a finite, directed graph without any directed cycles [9]. If there exists a directed
edge from vertex U to vertex V, denoted by U — V, then U is called a parent of
V. Define A(V) to be the set of all the parents of V. For example, for the DAG
in Fig. 4.1, we have A(V1) = @,A(V2) = @, A(V5) = {Vi},A(V4) = {14, 15}, and
A(Vs) = {V4}. If V is a set of random variables in one-to-one correspondence with

the vertices of a DAG G, the joint density function ¢(V) factors according to G if

N
Q(Ulav21 s 7UN) = HQ('Uq; l A(Uz))7
i=1
Vi Va
V3 Vi
Vs

Figure 4.1 Example of a directed acyclic graph.
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where A(v;) denotes a value assignment for the set A(V;) of the parents of V;. For

example, a five-variable density function factors according to the graph of Fig. 4.1 if
q(v1, V2, U3, va,5) = q(v1)q(v2)q(vs | v1)q(va | v1v2)q(vs | va).
Note also the Markovian property implied in the graph: If V; — V; — V4, then
q(ViVi | V;) = a(Ve | V})a(Vi | V7).

This set of random variables V and the corresponding DAG G is called a Bayesian
belief network [43, 58].

By systematically exploiting the partial independence described by the belief net-
work, it is possible to simplify the computation considerably over the brute force
approach (4.1). While the probabilistic inference problem for general belief networks
may still be very hard, (NP-hard, in fact [21,69],) Pearl [57,58] has found an efficient
distributed algorithm to solve this problem for the special case where the DAG is a
tree, i.e., if there are no undirected loops. His “belief propagation” algorithm, to be
described in the next section, solves the inference problem with O(NM") computa-
tions, where 7 = max;(|A(V;)|) the largest number of parents of any vertex, rather

than the exponential complexity O(M; M, - - - M,,_1) required by (4.1).

Uk

V knows ¢(v |u)

Figure 4.2 The local environment of a vertex V.
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4.1.2 Pearl’s Belief Propagation Algorithm

Pearl’s belief propagation algorithm is a decentralized “message passing” algorithm,
in which there is a processor associated with each vertex of the Bayesian Network
G. Each processor can communicate only with its immediate neighbors, which are
further divided into its parents and children. The processor associated with a variable

V is assumed to know the conditional density function
q('UIU) éPI‘{Vv:’UIUH :Ul,U2 = Ua,... ,UK:’LLK},

where Uy, Uy, ..., Uk are the parents of V. If V has no parents, this knowledge
degenerates to the variable’s marginal density ¢(v). Thus the local environment of a
node V is illustrated as in Fig. 4.2.

When a processor is activated, it reads the messages sent from each of its parents
and children, updates its belief based on these messages, and then sends new messages

back to its parents and children. That is, each updating involves the following two

phases:

> Fusion Phase

The message a node V' receives from its parent Uy, denoted by 7y, v(uz), is a
list of probabilities, one for each possible value u, € Fy,. Roughly speaking,

Ty,,v (ur) is the probability of the event Uj, = uy, given the evidence in the tree

U &
| A
I |
Mo, v (L) ' Avin (u)
y
V e V M |
A :
' Aw,,v (v) L Ty w, (V)
i 'R
W, Wn

Figure 4.3 The messages in Pearl’s belief propagation algorithm.




93

already “known” to Uj,.

The message V' receives from its child W,, denoted by Aw, v (v), is a list of
likelihoods, one for each possible value v € Fy. Roughly, speaking, Aw,,v (V) is

the probability of the evidence W,, “knows”, given the event V = v.

The processor V' then computes the probability of V = v given the evidence
from its parents, and the likelihood of V' = v given the evidence known to its

children, for each value v € Fy -,

7"-V(/U) = Z Q(v l u) HwUk,V(uk)’ (42)
Av(’U) = H )\Wmv(’l)). (43)

For the special cases where (a) V' has no parents then 7y (v) = q(v); (b) V has
no children, then Ay (v) = 1. These two quantities can then be combined to

obtain the updated belief about the variable V:

Yv € Fy, By (v) = A, v (v) Ay (v). (4.4)

Fission Phase

To keep the algorithm going, V' should then pass to its parents messages similar
to those it receives from its children, and to its children messages similar to
those it receives from it parents. More specifically, the message V' passes to
its child W, denoted by my,w, (v), is a list of probabilities, one for each value
v € Fv. Roughly speaking, my,w,(v) is the probability of the event V = v,
given the evidence in the tree already known to V, which now includes any
new evidence which may have been contained in the incoming messages. The

updating rule is, Vn € {1,2,... ,N} and v € Fy,

Brlv) (4.5)

T V) = Ay
viwa (V) g
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Similarly, the message V passes to its parent Uy, denoted by Avu, (ug), is the
list of probabilities of the evidence it now knows about, given the event U, = Up,
for each possible value uy € Fy,. The updating rule is, V& € {1,2,... . K } and
be Fy,

Aviu, (Ux = b) = Ay Z [Z Av(v)g(v] U)jl HWUJ-,V(UJ‘)- (4.6)

wur=>b v j=
J#k

The algorithm is initialized by setting all Ay,7(u) to 1 unless the corresponding
variable V' has been observed to be v in which case Ayy(u) = q(vo |u). If V has
no parent, then 7y (v) is initialized to ¢(v) unless a V has been observed to be v,
in which case 7y (v) = §(v,v9), where 6(z,w) is Dirac’s delta function. A node can
be activated only if all of its incoming messages exist. Otherwise the order of node
activation is arbitrary. If the graph is a tree, the algorithm terminates after a number
of iterations equal to the diameter of the tree when no change in the messages occurs
if any of the nodes is activated. Each node then has correctly computed its belief, i.e.,
the probability of the associated random variable, conditioned on all of the evidence

in the tree.

4.2 General Optimal Symbol Decision Rules

General optimal symbol decision rules for both conventional systematic codes and
parallel concatenated (turbo) codes are defined in this section. The decision rule for
conventional systematic codes is also shown to be consistent with the belief propaga-

tion algorithm.

4.2.1 Conventional Systematic Codes

Let U = (U, Us, ... ,Uxk) be a K-dimensional random vector of independent, but
not necessarily equiprobable nor identically distributed, symbols from an alphabet F

with a priori probabilities Pr {U; = u;} = m;(w;), for u; € F. An (N, K) systematic
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D)

A
(__ Channel

Figure 4.4 System model and the corresponding Bayesian network representation
of a systematic code.

encoder C takes U as input and produces a codeword of the form
C=¢(U) = (U,P)=(U,P(U)),

where U is systematic part and P, a (N — K)-dimensional vector, is the parity part
of the codeword. The codeword is then transmitted over an unreliable memoryless
channel with transition probability ¢(r|c) that a symbol ¢ is received as r. Suppose
the codeword is received as R = (X, Y), where X is the portion of R corresponding to
the systematic symbols U, and Y is portion corresponding to the parity symbols P,
as shown in Fig. 4.4. Because the encoding process is deterministic, the conditional

density factors as

g(r|u) =q(r|c) = ¢(x,y|u,p) = g(x|u) q(y|u,p)

- [H e luj)J Qly |w), (4.7

wherer, u, ¢, x,y, p are particular realizations of the random vectors R, U,C, X, Y, P,
and Q(y | u) is the overall conditional density for Y = y given that the input to the
encoder is u.

The optimal symbol decision rule minimizes the probability of inferring an incor-

rect value for individual symbol U; based on the observation of R = r [74]. This rule
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concludes

where the belief B;(u;) £ Pr{U; = u; | R = r}. The following lemma shows that the

belief B;(u;) factors in a very special way.

Lemma 4.1

Bi(b) = Apmi(b)g(z: | D) ZQYIH)H?T;(% Jg(z; | us). (4.9)

J#z

Proof

Pr{U;=b|R=r}= A, Pr{R=1,U; = b}
= Ap Z Pr{R=r,U =u}

wu;=b
—Abz r|u)Pr{U=u}
wu;=b b
=4 > Qylw]]e@i|w)Pr{U=u} by (47)
wu;= 7j=1
b K
= Ap Z Q y I u H (uj)q(xz qu)
wu;=b 7j=1

Q.E.D.
Just as the decomposition presented in Chapter 2, the belief B;(b) is the product
of three terms: the systematic evidence g(z;|b), the a priori belief m;(b), and the

extrinsic term

Z Qy|u) HQ(ZUJ | i) (uy) (4.10)

wu;=b
J#z

that contains information about the structure of the code and other evidence.

The corresponding Bayesian network representation for the system is also shown
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in Fig. 4.4. Since X; and Y are terminal observation nodes (dummy nodes [58]), all
meaningful message passing happens between X; and P nodes. We have thus marked

the edges from U; to X; and P to Y with dashed lines to indicate this.

Proposition 4.2 For conventional systematic codes, where the corresponding Bayesian
network representation forms a tree, the belief propagation algorithm and the optimal

symbol decision (4.9) are consistent.

Proof The following quantities are initialized and also fixed at the corresponding

values:

ﬂ—Ui(ui) = ﬂ-i(ui)a
/\Xz',Ui (ul) = Q(mi l ui)a

My p(P) = a(y|p)-

Since Apy, (u;) is initialized to 1, U; nodes can be activated to perform the following

computations:

v, (us) = q(i | us),
By, (u:) = Ay, miuwi)g(zs | us), (4.11)

iy, p(us) = Ay, mi(us)q(zi | ug).

The P node then has all the necessary messages and is activated. Since Ap(p) =

Ay, p(p) = q(y | p) and the encoding process is deterministic, (4.6) becomes

/\P,Ui (Uz = b) = Ab Z )\p(P = P(U)) H’]'('Uj,p(’u,j)

wu;=b j;zéi
=4 Y Qy|w [ mw)alz; | u). (4.12)
wu;=b j=1

J#i
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Therefore,

K

By, () = Aumi(w)g(zi|w) > Qy|u) T 7iw)a(z; ),
wu;=b :77;1

which is the same as (4.9). Note that the algorithm terminates at this point since the
new 7y, p(u;) remains unchanged. Q.E.D.

Some important insights about (4.9) can be learned from the proof. First, the
effect of the systematic evidence g(z;|u;) is to change the a priori distribution of
U; from m;(u;) to m;(u;)q(x; | u;), evidently shown in (4.11). Second, the mysterious
extrinsic information, as defined in (4.10) and also in Chapter 2, is actually Ap y, (u; =
b), the likelihood of U; computed by node P based on the evidence it observes from
Y and other systematic nodes Uj, j # i.

4.2.2 General Turbo Codes

Suppose the input sequence has the same characteristics as defined in the previous
section and two systematic codes with parameters (N, K) and (N, K) are available.
The component codes are not restricted to be convolutional codes and no relationship

between their code lengths is imposed. Let the encoding processes be defined as:

C: = G,(U) = (U, Py) = (U, P1(U)),
C; = G;(U) = (U, Py) = (U, P2(U)).

A turbo code based on C; and C, is the parallel concatenation of their codewords,

C= T(U) = (U)PI(U)7P2(U)) = (U7 P17P2)7

as shown in Fig. 4.5. Suppose the three parts of the codeword are received as R =

(X,Y1,Y,), respectively. Since the channel is memoryless and the encoding process
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Figure 4.5 System model and the corresponding Bayesian network representation
of a general turbo code.

is deterministic, we have

Q(r I U) = Q(I' | C) = Q(X,}’1,Y2 l u,Pl,p2)

= g(x|u) q(y1|u,p1) ¢(y2| u, p2)

= [H q(z; | uj)J Q1(y1|u) Q2(y2 ), (4.13)

j=1

where Q1(y:1|u) and Q2(y2|u) are the overall conditional density for Y; = y; and
Ys = yo, respectively, given that the input to the encoder is u. From Lemma 4.1 and

(4.13), the optimal symbol decision for a turbo code is based on the beliefs

Bi(b) = Asg(zi |0)mi(®) D Qu(y1|w) Qa(yz|w) [ [ mi(us)a(z; |uy).
wo=b o (4.14)

4.3 Turbo Decoding Is Belief Propagation

A general abstract version of the turbo decoding algorithm is defined in this section.
The algorithm is then shown to be equivalent to belief propagation with a specific

node activation order.
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4.3.1 The Turbo Decoding Algorithm

To motivate turbo decoding, it suffices to observe the excessive complexity of (4.14)
since the encoders are usually cascaded with pseudo-random interleavers of large size.
The algorithm combines the output of “turbo decision modules” (TDM) to approxi-
mate the optimal decisions. Taking the same input as the optimal symbol decision,
Q(y|u) and m;(u;)g(z; | u;), and an additional input, the old extrinsic information

ng) (u;), a TDM computes an updated extrinsic information as

o™ () = TDM ({wP () }, Q(y | w), {m(us)a(a: | us)})

K

2 a0 Y Q) [T miu)a(: | ui)w™ (u)). (4.15)
w:u;=b Jj=1
JFi

The algorithm is initialized by setting an unbiased extrinsic information:
W) =1,vie {1,2,... ,K},u; € F. (4.16)
The updating rules are

W7D i) = TOM ({72 ()}, Quyr | w), {ms(ws)a (e | w)})

(4.17)
WP () = TDM ({w™ " (w) b, Qa(ya | w), {mi(us)a(e: | w)})
(4.18)
{wi)
{1,1,... ,1}~J\_> ™) J

Qi(y1|u) ——=| tom1 | @2(y2lu) ——=| TDM2

Figure 4.6 Turbo decoding modules.
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The T-th decision is based on

037 (ui) 2 Aumilus)a( | u)w ™D (w)wl (). (4.19)

That is, it concludes U; = b if 8¢ (b) > 67 (w;), Vu; € F.

4.3.2 Turbo Decoding as an Instance of Belief Propagation

In the following, we will show formally that if Pearl’s belief propagation algorithm
is applied to the belief network of a turbo code with a specific activation order, the

results is the turbo decoding algorithm described in the previous section.

Theorem 4.3 The turbo decoding algorithm for the turbo code of Fig. 4.5 is equiva-
lent to the application of belief propagation on the corresponding belief network, also

shown in the same figure, with the following node activation order:
{U:}, P, {U:}, Py, {U;}, P, {U;}, P, ..., (4.20)

and taking decisions at odd numbers of activation of the U; nodes.

Proof The following quantities are initialized and also fixed at the corresponding

values:

(i),

A

)

Ax,u; (wi) = q(z: | wi),

Ap, (P1) = Ay, p,y (P1) = ¢(¥1 | P1),
)

Ap, (p2 = )‘Yz,Pz (P2) (Y2 l Pz)-

Since both Ap, y;(u;) and Ap, v, (u;) are initialized to 1, U; nodes are activated and

perform these computations:

Av, (us) = g | ug),
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By, (u;) = Ay, mi(u;)q(z; | w;),

TU;, Py (UZ) = Auiﬂi(ui)Q(xi I uz)

P; node is then activated and gives

)‘Pl,Uz(U = b = Ab Z )\Pl(Pl Pl HTFUJ’Pl uj
wu;=b

J#z

= Ay Z Q1(y1|u) HWJ (u;)q(; | uj)

wu;=b
J#z

= DM ({w? (@)}, Qu(y1 | w), {mi(us)alos | w)}) = wf®(w).

U; nodes are activated again and

v, (ui) = g(=; | Uz‘)%‘”(%‘);
By, (u:) = Aw,mi(u;)q(z: | us)w (us),

TPy () = Auymi(u)q (@i | ug)w™ ().

According to the order, P, node is activated and outputs

Ao, v (Ui =b) = Ay > Ap, (P2 = Py(u Hij,pQ (u;)

wu;=b
J#z
_AbZQ2y,u HWJUJ q(m]!u]) (z)
w:u;=b

Jsﬁz

= DM ({wP(w) } , Qalya | w), {m(w)a(e: | u)}) = w ().

Now at the U; nodes, we have

M (i) = q(zs | ws)w® (u;)w® (uy),
BUi (Uz) = Auﬂi(uz’)Q(u’Uz’ | ui)wi(l)(ui)wi(z)(uz') = 92(1) (Uz),
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TU;,Pq (Uz) = Auiﬂ'i(ui)Q(mi [ ui)wi(2)(uz')-

By repeating the procedure, one can conclude that

Ap, (U = ) = TOM ({wf D (w) b, Qu(v1 | w), {ma(us)a(e: | u)}) = w7V (wy),
Ao (Ui = ) = TOM ({wf "V w) }, Qa(ya | w), {mi(u)a(: [ w)}) = o™ (w),
and at (27" + 1)-th activation of the U; nodes,
Bu,(w:) = Aumi(u)g(e: |us)of™ 2 (wi)wl (us) = 007 (u).
Q.E.D.

4.4 Concluding Remarks

We have shown that the belief propagation algorithm is consistent with both the op-
timal symbol decision rule for conventional systematic codes and the turbo decoding
algorithm for parallel concatenated codes. Though the chapter discusses turbo codes
using two component codes only, codes with three or more parallelly concatenated
components have been proposed [25]. If there are M parallel components, the ap-
propriate belief network representation is given in Fig. 4.7. By applying the belief

propagation algorithm to this network with the activation order:

one would obtain the decoding algorithm proposed in [25]. This application is es-
pecially fruitful, since it convinces us of the “correctness” of the combining method
for extrinsic information from different components proposed in [25]. More decoding
algorithms, including those for serially concatenated codes [6] and low-density parity-
check codes (33,48, 49], have been identified as special cases of belief propagation

in [50]. Pearl’s algorithm thus provides a systematic method for devising suboptimal
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Figure 4.7 Belief network for a multiple turbo code with M parallel components.

iterative decoding algorithms for a wide variety of error-control systems. Since Pearl
has proved the validity of his algorithm for loop-free network, there is no guarantee
yet that these algorithms will give useful results for loopy networks. However, the
great body of experimental work done in the “turbo code & variations” literature
strongly suggests that the performance is very close to optimal. We thus conjec-
ture that there are general undiscovered theorems about the performance of belief
propagation algorithms on loopy DAG’s. These theorems, which may have nothing
directly to do with coding or decoding, will show that in some sense the computed
beliefs converge with high probability to near-optimum values of the desired beliefs on
a class of loopy DAG’s that, however, includes the Bayesian network representations
of the codes discussed in this chapter. If such theorems exist, they will no doubt find

applications in realms far beyond information theory.
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Chapter 5

Low-Density Generator Matrix Codes

It is the purpose of this chapter to further examine the applicability of the belief
propagatioh algorithm to decoding error correcting codes. It seems unnecessary for
the turbo codes to separate parity bits into subsets as shown in their belief network
representations in Fig. 4.5. A class of codes based on low-density generator matri-
ces, where the parity bits are not differentiated, are proposed as a generalization of
classical turbo codes. Contrary to the turbo decoding paradigms where sequential
processing is accomplished by very powerful central units, the decoding algorithm
proposed here is formulated in a distributed parallel form. The decoders can thus
enjoy modular pipeline design and the systems, therefore, seem more suitable for
practical applications. These new codes can be encoded and decoded in linear time
and, for high-rate applications, experimental results further show the performance of

these new systems to approach the capacity of the Gaussian channel.
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5.1 Introduction and Construction

We have shown in the last chapter that the turbo decoding algorithm for a turbo code
is equivalent to the application of belief propagation to the corresponding Bayesian
belief network with a specific sequential activation order. Two characteristics about
this turbo decoding approach seem immediately unnecessary from this point of view.
First, since the belief propagation algorithm allows nodes to be activated in any
order, the special activation order (4.20) seems arbitrary and unlikely to be the most
efficient. A parallel activation like (4.21) used in the decoding algorithm for multiple
turbo codes [25] seems more attractive. Second, as the belief network illustrated
in Fig. 4.5, or Fig. 5.1 with the parity check nodes expanded, indicates, the turbo
coding approach separates the parity checks into subgroups. Compared to a network
that does not differentiate the parity checks such as the one shown in Fig. 5.2, this
approach imposes unnecessary restriction on the design of good codes, since belief
propagation can be applied on both networks and allows arbitrary activation.

In this chapter, we consider a class of codes whose corresponding Bayesian belief

networks have random regular bipartite structure as the network shown in Fig. 5.2.

O1 2&.23 4 .5 6 QK

~

D11 P12 P13 D1s D21 P22 P23 Das

Figure 5.1 Expanded belief network representation of a turbo code.

Uy Uz Uz Ug Us Ug Uk

D1 P2 P33 P4 Ds—1 Ps

Figure 5.2 A random regular bipartite belief network.
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The regularity of the network is not essential for our decoding algorithm, but, in
practice, it could lead to simplified modular hardware implementation. This repre-
sentation allows two interpretations of the new codes. First, as already explained,
they are generalized turbo codes which treat all the parity checks equally. Second,
they can be viewed as multiple turbo codes with a large number of simple parity
check component codes.

The first step is to construct a random regular bipartite graph Bxg with the size of
the two partite sets as K and S. Call these two subsets the systematic nodes and parity
nodes, and label the vertices in them by uy, us, ... ,ux and py, ps, ... , pg, respectively,
as shown in Fig. 5.2. The degree of each of the systematic nodes is designed to be
and hence the degree of each of the parity nodes is %X- The construction of such a
graph can be accomplished either by trial-and-error with a computer program or by
combinatorial methods [20]. Let G = [I|P] be the corresponding generator matrix of
the new code, where I is a K x K identity matrix and P is a K x S matrix. The
entry P;; of the matrix P will be 1 if and only if there is an edge connecting u; and
pj, and 0 otherwise. This construction thus results in a K input, N = K + S output
systematic linear code with random parity bits. This class of codes is termed low-
density generator matrix (LDGM) codes since G is sparse by this construction. We

can also interpret the bipartite graph as a blueprint for the encoder in the following

way:
1. Each of the systematic nodes is a buffer for an input information bit.
2. All the edges are directed from the systematic nodes towards the parity nodes.
3. Each of the parity nodes is in fact a modulo 2 adder.

Since x is independent of K, the total encoding complexity Ky is, therefore, linear
in the information length K.

The input information bits to the encoder are assumed to take values from GF(2) =
{0, 1} equiprobably. An encoded bit ¢ is mapped into £1 by (1 — 2¢), i.e., 0 = +1

and 1 — —1, and then sent over an additive white Gaussian channel. That is,
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Figure 5.3 Bayesian network for the error-correcting system.

the received signals are assumed to be the sum of the transmitted signals and in-
dependent white Gaussian random variables with zero mean and variance o2 =
No/2E, = No/2RE,, where E, is the average energy per symbol, Ej the average
energy per bit, R the code rate, and Ny the single-sided noise power spectral den-

sity. Therefore, the channel transition probability q(r |c) for receiving r if ¢ is sent

is \/5;? exp [—ﬁ(r -1+ 20)2}. Denote the received signals corresponding to the
systematic bits by z;, (i = 1,2,... , K), and the received signals corresponding to the
parity bits by y;, ( = 1,2,...,5). The complete Bayesian belief network represen-
tation of this system is shown in Fig. 5.3. As explained in Chapter 4, since X; and Y;
are terminal observation nodes (dummy nodes [58]), all meaningful message passing
happens between X; and P nodes. We have thus marked the edges from U; to X; and
P to Y with dash lines to indicate this.

5.2 Decoding Algorithm

Just as the encoding process is based on the belief network, the decoder is also
matched to the network with the application of Pearl’s belief propagation algorithm
described in Section 4.1. Let i = {1,2,..., K} be the index set for the systematic
nodes, and P = {1,2,...,S5} the index set for the parity nodes. Furthermore, let
U(j) C U be the index set of the systematic nodes that are neighbors of the par-
ity node j, and P(i) C P the index set of the parity nodes that are neighbors of
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the systematic node 7. The following quantities are initialized and also fixed at the

corresponding values:

Ty (us) = 1,
)‘Xi,Ui (UZ) = q(xi ,’U,Z),

Ap, (P;) = Av;,p, (05) = a(y; | pj)-

Since Ap,,v;(u;) is initialized to 1, we have the initial beliefs By, (u;) = Ay, q(2; | u;)
according to (4.2)-(4.6). Let U; denote the set of variables U, with k € U(5), and u

be a set of assignments to U;. Because the encoding process is deterministic, (4.6)

becomes

Ap v, (Us = b) = Ay Z Ap, | Py = @ Ug H T, (Uk)

uju;=b kel (5) kel (5)
ki
= Ay Z qly; @ U H 7TUle,Pj(uk)-
ujiu;=b kel (y) kel(4)
ki

Therefore, the belief propagation updating rules (4.2)-(4.6) for our LDGM coded

system are

BU(Uz)
o (Ug) = Ay, —2 L 5.1
WU,,PJ( ) )‘Pj,Ui(ui) ( )

Ap, v, (Us = b) = Ay Z qly; EB Up, H T, p; (Ue), (5.2)

wjui=b kel(j) kel(s)
ki
BUi (uz) = Aui >‘Ui (uz) = Ay, q(xz I uz) H )\Pj,Ui (’U,z) (53)
JEP(3)

The most computationally demanding part of these updating rules is obviously (5.2):
a naive implementation would require 25X operations. The exponential complexity

can be substantially reduced using the discrete Fourier transform techniques of the

next section.
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5.2.1 Fourier Transform Techniques for Belief Propagation

Consider a general M-ary case. Let X = (X1, X,,...,X u) be an M-dimensional
random vector of independent, but not necessarily equiprobable nor identically dis-
tributed, symbols from a cyclic group G = {0, 1, ... ,Q — 1} with probability distribu-
tions Pr {X; = b} = m;(b), for b € G. Moreover, let Y = ZJ 1 Xjand Z; = 3., X;
Our problem is to find the probabilities

Ai(a]b) £Pr{Y =a|X; =b} = Pr{Z; = a— b}, (5.4)

for every a,b € F. Define the discrete Fourier transform (DFT) [56] of m;(b) by
Q-1
VB eg, &(8) = > _ mOWS, (5.5)
b=0

where Wg = exp ( j%), a (J-th root of unity. The inverse transform is given by

m(b) = = > &(BW™. (5.6)

a() = [I&0) = 23,
i

where n(8) = H]Ail &;(8), the transform of the distribution of Y. By the inverse

transform, we have

A (a | b QZ —,B(a b) _ _ l Qz_l (ﬂ) W—ﬂ(a b) (5 7)
Q2 Q 2= &(P) |

For the special case G = GF(2), we have Wy = —1 and

§O) =m0 +m() =1, = n0)=1,
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&(1) = m(0) — mi(1).

Therefore, (5.7) becomes,

{ZX =a

5.2.2 Further Tricks to Speed Up the Algorithm

1 n(1) adb
b} 3 [1 + &) (—1) ‘BJ i (5.8)

Define 6;; = my, p.(0) — 7y, p, (1), and let

= H 5_7"57 and Ajiz j/dji-

i€U()

Using (5.8), (5.2) becomes

Ap,u:(0) = Ap{a(y;10) [1 4 (=1)°A5] +q(y; [1) [1 = (=1)°Ai] } .
(5.9)

The normalization can be avoided if we operate on likelihood ratios. Hence, let

10) 2
o, 2 9wl0) _ (- ) 5.10
I QD) - P\ Y (5.10)
then
Argn0) (L4800, + (1— Ay)
L,&log—" < =1o Ll ] AL 5.11
’ B3 @) P (1000, + (1+ D) (5:11)

(5.3) can also be converted into likelihood ratios:

By, (0)
B; 2 log 257 B () =¢i+ » Ly, (5.12)
i JEP()
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where

a(z:]0) _ 2
S |1) o2

¢ =lo (5.13)

Because of (5.1),

dji = v, P, (0) — T p, (1) = A [AI:UU((()())) - /\ljUU(g)}

By,(0) By, (1) By,(0) /Ap;u;(0) 1
_ Ap;u(0)  Apyu;(1) _ By, (1) / Ap;,u, (1) . exp(Bi — Lﬂ) -1

By, (0) Bu,() — By(0) /Apu(0) = ep(B— L)1
/\Pj’Ui ©) + )‘Pj’Ui(l) BUi (1) )\Pj’Ui(l) + 1 Xp( 2 )

5.2.3 Decoding Algorithm for LDGM Codes

> Initialization

1 foriel do

2 B; == ¢i;

3 for 7 € P do
4 Lj; :==0;
5 end

6 end

> Updating Rules for Parity Nodes!

7 for jeP do

8 for i € U(j) do
9 o exp(Bi - L]z) - ].
e exp(Bi —_ L],,) -+ ]_,

10 end

11 D; = Hiebl(j) Ojis
12 for i € U(j) do
13 Ajz' = ]/(5]“

IThe decision rule for parity bits is listed in Section 6.2.2.



(1+ Aji)@j + (1 - A)
14 L;; :=1o e
I & (1-2;)0;+ (1+Aj)
15 end
16 end

N Updating and Decision Rules for Systematic Nodes

17 for i €U do

18 Bz = ¢@ + ZjeP(i) LJz,
0, if B,>0
]., if B; <0

20 end

5.2.4 Comments about the Algorithm

The most significant characteristic of the proposed algorithm is its highly distribu-
tive parallelism, which contrasts to the turbo decoding paradigms where sequential

processing is accomplished by very powerful central units [6,7,13,25,40]. More specif-

ically,

e The operations in steps 8-15 can be executed locally at each of the parity nodes.

No communication is necessary between them.

o Further parallel processing can be done within each parity node: steps 8-10 and

steps 12-15 can each be executed in parallel.

o As with the parity nodes, the operations at each systematic node can be done

locally without any exchange of information.

A direct implementation of the algorithm would require, for each iteration, about
5% x multiplications/divisions (MUL/DIV) and 3% x additions/subtractions (ADD/SUB)
for each of the parity nodes, and % x ADD/SUB for each of systematic nodes. The to-
tal decoding complexity is thus about 5Ky MUL/DIV and 4Ky ADD/SUB, which is
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linear in the information length K. The complexity, however, can be greatly reduced

as follows:

e The complex operation in step 9 can be avoided by approximating the function

with a piece-wise linear function.

e The number of computations in step 14 can be reduced by noticing that

:‘:o_%yj, if A]z — =*1

Lji — .
+log 722, if £y, 0

e Though many MUL/DIV are used in the above algorithm, for most cases, they

can be replaced by ADD/SUB by converting the appropriate variables to the

log domain. Since these considerations depend on specific hardware implemen-

tation, details will not be further explored here.

5.3 Simulation Results

The performance of two (1536, 1024) codes with x = 6 and x = 7 is shown in Fig. 5.4.
It is observed that iterative decoding improves the performance by a large amount.
For example, at Ey/Ny = 3.5 dB, the bit error rate (BER) of the systems with y = 7
is 2 x 1072 after the first iteration. It is decreased to 8 x 10~ after four iterations and
further reduced to 1.6 x 10 after 25 iterations. However, it is also observed from these
plots that about ten iterations are enough to obtain most of the performance gains.
At BER = 107°, these two coding systems offer gains of more that 6.5 dB over an
uncoded system and, in fact, their performance is within 2 dB of the channel capacity
with rate 2/3 and binary signaling. These impressive performance improvements are
achieved with a relatively short block length of 1024. We expect larger coding gains
can be achieved with longer block lengths.

An “error floor” phenomenon similar to those reported for turbo codes [26] can be

observed in the performance curves for the y = 6 code. It has been argued that this
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Figure 5.4 Performances of the (1536,1024) systematic random linear codes with
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floor is caused by the true minimum distance of the code [4]. Since no such floor is
observed for the y = 7 code for BERs down to 1079, it seems to be a better code than
the x = 6 one in the sense that it has a larger minimum distance or a smaller number
of nearest neighbor codewords. As shown in Fig. 5.5, however, the performance of the
X = 8 code is inferior to that of the y = 7 code. Though there is no guarantee that
the x = 8 code is better, it is suspected that the proposed algorithm might not be
able to extract all the power of codes with small cycles such as the x = 8 code. This

might be because of the smaller sizes of girths in the bipartite graphs [33, 34,48, 49]

with these high connection parameters.

K S | Rate R | x
16 | 0.985 |3
32| 0970 |4

1024 | 64 | 0.941 |5
128 | 0.889 | 4
256 | 0.800 |5
512 | 0.667 |7

K S |RateR | x
256 | 0.985 | 3

512 | 0.970 | 4

16384 | 1024 | 0.941 | 5
2048 | 0.889 |4

4096 | 0.800 | 6

8192 | 0.667 | 8

Table 5.1 Parameters of some low-density generator matrix codes.
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Figure 5.5 Performances of the (1536, 1024) systematic random linear codes with

x = 3,4,5,6,7,and 8 after 16 iterations.

More high-rate codes with the parameters listed in Table 5.1 have been constructed
and studied. The performance curves of the codes with K = 1024 after 16 iterations
of decoding are shown in Fig. 5.6. With only 3% redundancy, the (1056,1024) code
achieves an impressive coding gain of 3.5 dB over an uncoded system at BER = 1075,
In addition, with a relatively short block length of 1024, the performance of these
codes are all within about 2 dB of the channel capacities for their rates. Another
distinguishing characteristic of the proposed decoding algorithm is its ability to base
its decisions more on the systematic bits than on the parity bits when the signal-to-
noise ratio is low. This is exhibited in the figure by the fact that the performance
curves are roughly upper-enveloped by the curve for the uncoded systems, especially
for very high rate codes.

To further explore the performance of these new codes, we have plotted in Fig. 5.7
the channel capacities of memoryless AWGN channels with equiprobable BPSK,
QPSK, and 8PSK signaling given by [72]:

M-1
si+n—s;* — nf”
lo ex ’ :
ANEEES-

=0

S

-1

1
E

C(A) =log, M — i i

i
o

(5.14)
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Figure 5.6 Performances of (1024/R, 1024) systematic random linear codes after 16
iterations.

where M is the size of the signaling alphabet, s; is a signaling symbol with E[|s;|?] =
1, and n is a Gaussian random variable with zero mean and variance Ny/2. The
performance of the codes listed in Table 5.1 with K = 16384 after 16 iterations of
decoding is marked in Fig. 5.7 by cross-plus signs and labeled by “BPSK with LDGM
Codes.” Their performances is within about 1 dB of capacity, as shown in the figure.
The longer length thus contributes about one more dB to the coding gains of the
codes with K = 1024 listed in Table 5.1. The frequency efficiency can be easily
doubled by using QPSK signaling instead of BPSK. These systems are marked in
Fig. 5.7 by cross-plus signs and labeled by “QPSK with LDGM Codes.” As shown
in the figure, they achieve higher coding gains than those of Ungerboeck’s trellis
coded (TC) 8PSK [72] (marked by circle-plus signs) with marginally lower spectral
efficiencies. The combination of QPSK and the R = 0.941 code achieves a coding
gain higher than even the TC8PSK with a constraint length 16 code and sequential
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decoding [22], though with a slightly lower spectral efficiency.

3 T T T T T ,
: 8PSK
; ; ; Multlevel LDGMCBPSK
25 L. ............... ............... ............ # e @ ............... .
E : 5 TC8PSKx8PSK
S TC8PSK ;
= v=17 v=6 v=2. :
% 2 e D - - Mmoo & ) !
3 QPSK
é )
>
5 T 2 T T O SOOI SR
O :
L] :
> .
e ;
g 1 /O |
] BPSK
Lt ,
0.5_ .............................. o +216)VD ......................................
(2 1,31) Sequential -
;(4,1,14) BVD
0 i i ! i !
-2 0 2 4 6 8 10
Eb/No in dB

Figure 5.7 Spectral efficiency comparison of codes. (Marks for specific coding

systems are based on the code rates and the required E,/N, for BER = 1075.)
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As to be discussed in the next chapter, it is also possible to apply these new
codes to multilevel coded modulations [12,42,66] for even higher spectral efficiency.
The performances of two such construction are marked in the figure by circle-cross-
plus signs and labeled by “Multilevel LDGMC8PSK.” Their frequency efficiencies are
about 2.5 bits per symbol. They achieve coding gains that are within about 1 dB
of the capacity and are 2 dB higher than that of a multidimensional TC8PSK [59]
(labeled by “TC8PSKx8PSK” in Fig. 5.7). Please refer to the next chapter for details.

5.4 Conclusions

A class of high-rate linear binary codes based on low-density generator matrices was
proposed. There codes are inherently linear-time encodable. A distributive parallel
decoding algorithm of linear complexity based on the belief propagation algorithm
was presented. Experimental results showed that performance approaches the channel
capacities for binary and multiphase signalings. Compared with low-density parity-
check codes [33, 34, 48,49], the proposed systems achieve similar performance but
require lower encoding complexity. This is because, since H is sparse, the generator
matrix G is dense and, hence, the encoding process involves O(N?) additions [48].
For lower rates, the performance of these new codes seems to be not as good as that of
the turbo codes [13,25,26,40]. Our systems, however, seem more suitable for physical
implementation and practical application because of the distributive parallelism in

the decoding algorithm.
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Chapter 6
Efficient Multilevel Coded Modulations

To achieve higher spectral efficiency, low-density generator matrix (LDGM) codes
introduced in the last chapter are applied to M-ary signaling schemes using multilevel
coding methods. An introduction to this technique is given in Section 6.1. The
equivalent channel capacities for individual partition levels used in the multilevel
coding systems are discussed. Multilevel coded modulations based on LDGM codes
and a multistage decoding algorithm are proposed in Section 6.2. Partition rules other
than Ungerboeck’s maximum intra-set distance criterion are examined in Section 6.3.
LDGM codes for individual levels are then selected according to the corresponding
equivalent capacities. We show that this approach can be used to devise systems that
achieve near channel capacity performance and are also able to provide unequal error

protection.
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6.1 Multilevel Coding Based on Partitioning

The construction of many channel codes begins with a geometric partitioning of the
signal sets [12,22, 32,42, 59, 62,66, 72]. In Section 6.1.1, we present a definition of
partitioning based on subsets, which is deliberately made more general than cosets [32]
to allow some partitioning methods that have no direct algebraic meanings. The
problems with the conventional design rules for multilevel codes are discussed in
Section 6.1.2. The equivalent channel capacities for individual partition levels are

defined in Section 6.1.2, and serve as new guidelines for designing multilevel codes.

6.1.1 Subset Partitioning

If A, is a subset of a signal set A, a partition Ag/A; of Ag is defined as the collection of
A, and its non-overlapping cosubsets. We restrict our attention to regular partitions
where all the cosubsets have the same number of signals and the same channel capacity
when regarded as individual modulation schemes. In most cases, this means that all
the cosubsets are shifts of each other in the Euclidean space. The members of the
partition Ag/A; can thus be denoted by 0,1,...,|Ao|/|A1] — 1, where |A;| denotes
the size of the signal set. For example, in Fig. 6.1, Ay (an 8PSK) is partitioned by

Figure 6.1 Partitioning of 8PSK by the maximum intra-set distance (Ungerboeck)
criterion.
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A; (a QPSK) and the partition Ag/A; contains 0 and 1. In this case, the partition
is binary since it has just two members. The partitioning operation can be applied
recursively to form a partition chain Ag/A1/--- /AL, where A; is a subset of A;_y,
l =1,2,...,L. This partition chain then induces a bijective mapping between Ag
and Ag/A; X Ay /Ao X ---x Ap_1/Ap x Ar. That is, a symbol s; in Ay will be uniquely
labeled by (bg,b1,...,br) iff s; € b for all [ = 0,1,...,L, where b, € A;j/A;y for
[l =01,...,L —1and by € Az. In this notation, we assume b; is a singleton
subset of A = {0,1,...,|Az] — 1}. For example, the left-most symbol of the 8PSK
constellation in Fig. 6.1 is labeled by (0,0, 1).

6.1.2 Multilevel Codes

Multilevel coding is a systematic method of combining general error correcting codes
(binary or @-ary, block or convolutional) and modulations to form efficient channel
coding systems [12,42,62,66]. It is constructed by selecting separate component
codes, Cy,Cy, ... ,Cy, to associate with each of the partition levels, Ag/A1, A1/Ag,
..., Ap—1/Ar, Ap, in the partition chain Ag/Ay/--- /AL. A generic encoding structure
for multilevel coded modulation is shown in Fig. 6.2.

Traditionally, the component codes in a multilevel coding scheme are selected ac-
cording to the rule of balanced minimum Euclidean distance. Namely, if the minimum
distance of code C; is d; and the minimum Euclidean distance within subset A, is d;, for
! =0,1,..., L, then the codes are chosen such that the numbers doéZ, d10%,... ,d.6%

are as close to each other as possible [12,42,62,66]. This rule is based on the argument
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u ] X1 18| g
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Figure 6.2 Encoding structure for multilevel coded modulation. (E; is the encoder
for code C}, [ =0,1,...,L.)
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that, for high signal-to-noise ratios, the codeword error probability is approximately
PE 2 N(Dm) Q(Dm/QU)a

where D, = \/dn62 and Q (z) = [ \/%_ﬂ exp [—4y?] dy. Therefore, the asymptotic

coding gain is determined by
DiCG = mln(do(sg, d15]2_, ey dL(SIZ;)

This rule, however, cannot capture the exponential increase in the numbers of nearest
codewords in the higher coding levels' because of “multiple representation” of their
letters [41,78]. For example, in Fig. 6.1, the letter 0 of Ag/A; is represented by
either one of the four symbols in A; equiprobably. Since this increase in the number
of nearest neighbors degrades performance significantly, this rule cannot serve as a
reliable design criterion or a performance indicator. In addition, there are times
where this rule cannot even be properly used because the component codes do not
have clearly defined minimum distances or cannot be adequately characterized by
minimum distances. Turbo codes, product codes, and LDGM codes are examples of
such codes. For these codes, the equivalent channel capacities to be introduced in the

next section provide better guidelines for selecting component codes.

6.1.3 Equivalent Channel Capacity

Recall that the capacity of a discrete-time memoryless channel with equiprobable

input from an M-ary signaling set A is defined as [35]

2 [ aweron, 5

s;€EA

IAI

where s; € A with E[|s;|?] = 1 and r is the received signal. ¢(r|s;) is the channel tran-

sition probability density function for receiving r if s; is sent, and the density function

1By higher coding levels, we refer to those partition levels A, /A1+1 with smaller 1.
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for the received signal r is f(r) = 3 Zz o ! g(r|s;). For example, the capacity of the
additive white Gaussian noise (AWGN) channel is given by (5.14). The equivalent

channel capacity for a regular partition A;/A;4; is defined formally as [41]

g(r|b;)
Ch /M) & —— > / (r|b;) log, T2 dr,
lAl/ el Xt f( )
where
olel) £ o 3 q(rs)
|Al+1| S;€AL+1+b;
It is shown by Huber and Wachsmann that
C(Ai/Aii1) = C(A) — C(Aiya). (6.1)
Moreover, for a regular partition chain Ag/A;/--- /AL,
C(Ag) = C(Ao/A1) + C(A1/A2) + -+ C(A_1/AL) + C(AL). (6.2)
_._C(/\O)‘ : : 082 /./Tf,
25F= = CM) | RN RN P L,
one ‘ : | : 081!
51 R i T T 803_.. : |- ce)
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Figure 6.3 Capacities of 8PSK partitioned by the maximum intra-set distance
(Ungerboeck) criterion. (A) Capacities of the subsets. (B) Capacities of individual
partition levels.
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That is, the capacity of the channel can be achieved by multilevel codes. As a
numerical example, the capacities of the sets Ag, A1, and A, that form the partition
chain in Fig. 6.1 are computed by (5.14) with the Monte Carlo method [30] and plotted
in Fig. 6.3(A). The corresponding equivalent capacities of the three partition levels

Ao/A1, A1 /As, and A, are computed according to (6.1) and plotted in Fig. 6.3(B).

6.2 Multilevel Coding and Multistage Decoding
with LDGM Codes

The performance of low-density generator matrix codes introduced in the last chapter
can be quite reliably characterized by the channel capacities at their rates. For
example, the required E,/N, to achieve a BER = 107 for LDGM codes with K =
1024 information bits is about 2 dB of the channel capacity, and about 1 dB for
codes with K = 16384 information bits. The component codes for the multilevel
coded modulation are thus chosen to match the equivalent channel capacities for
the corresponding partition levels. Examples for explicit construction and numerical
results will be given in the next section. In the remainder of this section, we discuss

details about the decoding algorithm.

6.2.1 Multistage Decoding

Maximum likelihood decoding of a multilevel code would require a complexity that is
the product of the complexities of its component codes. This formidable complexity
can be substantially reduced to the sum of the MLD complexities of the component
codes by a suboptimal multistage decoding scheme [12,42,62,66], as shown in Fig. 6.4.
Namely, beginning from the highest level, the decoder for the component code Cj tries
to infer the information ug based on the received signal r. This decoder also provides
the estimated codeword Xo. The decoder for the component code of a lower level
infers the information bits of that level using the received signal and all the estimated

codewords produced by the higher level decoders. This approach is clearly suboptimal
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Figure 6.4 Multistage decoder for multilevel coded modulation. (D; is the decoder
for code C;, 1 = 0,1, ... ,L, and B denotes for buffers.)

but not as dismal as some authors had predicted [62]. For practical applications,
this algorithm might suffer from error propagation from higher levels to lower levels.
However, because of (6.2), the channel capacity is achieved by multilevel coding
and the multistage decoding algorithm asymptotically, so long as the partitioning
is regular and the component codes are chosen such that their rates are matched to
the equivalent channel capacities for the corresponding partition levels.

For codes of finite length, however, there are several variations to this multistage
decoding scheme with better performance. For example, the estimates from a lower
level could be fed back to the decoders of higher levels if the multistage decoding
process is executed twice. It is shown in [12] that for multilevel coded modulation us-
ing punctured convolutional codes, this algorithm improves the performance by more
than 1 dB. It is also possible for the decoders of higher levels to send soft estimates,
instead of hard decisions, to low-level ones in the hope of improving performance. As
shown in the next section, we have obtained performance that is so good that these

modifications are unlikely to achieve an significant performance improvement.

6.2.2 Belief Propagation Decoding Revisited

Multistage decoding algorithm implies that estimates for the parity-check bits are
required. Instead of reencoding the estimated information bit, which might lead to

serious error propagation problems, estimates for parity bits can be made directly
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from their beliefs. Because the encoding process is deterministic, using the notations

in Section 5.2, we have

mpe) = Y. [l mv.p(us)  (from (4.2)) (6.3)

u k ;
@ukZPj €U(4)

= 21+ (-1pD] (by (5.8)). (6.4)

Therefore, we can append the following to the decoding algorithm for LDGM codes

in Section 5.2.3:

> Decision Rule for Parity Bits

21 for j€Pdo

22 P=poj;

0, iflP; >1
23 pj = )
1, ifP; <1

24 end

Because of multiple representation of the alphabets, the input to the belief propaga-
tion decoding algorithm ¢; and ©;, defined by (5.13) and (5.10), should be modified

as follows. For partition level /, the encoded bits u;,p; € A;/A;+1. Hence,

ZSkEAl—f—l q(rj |Sk)

ZSkEAH_l-i-l q(rjlsk) .

Zsk EA[+1 q(r’L |Sk)

ZSkEAl+1+1 Q(rzlsk) ,

and ©; = (6.5)

¢; = log

These metrics are usually approximated by taking the distance between the received
signal and the signal point that is closest to it {12]. This approximation, however, is

not used in the simulations to be presented in the next section.

6.3 Partitioning Rules for Multilevel Coding

In this section, we discuss the design and characteristics for several partitioning rules.
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6.3.1 Partitioning by Ungerboeck’s Criterion

Ungerboeck’s maximum intra-set distance partitioning criterion is one of the most
celebrated innovations in coding theory. The criterion prescribes that the selection
of subsets should be made such that the minimum distance within the subsets is
maximal [72]. The partitioning of 8PSK in Fig. 6.1 is an example of this criterion. In
the following, we shall illustrate the idea of constructing multilevel codes using the
equivalent channel capacities.

From Fig. 6.3(A), the capacity of 8PSK is about 2.5 bits per symbol for E,/Ny =
4.7 dB. At this signal-to-noise ratio, the equivalent channel capacities of the three
partition levels are about 0.5, 0.96 and 1 bits per symbol from Fig. 6.3(B). Two
multilevel codes are then constructed accordingly. Both constructions use codes with
rate Ry = 1/2 at the Oth level and do not encode the 2nd level (R, = 1). The first
one has length N = 16896 and uses a code with rate R; = 32/33 at the 1st level.
The second construction uses length NV = 17408 and a code with rate R; = 16/17
as the 1st component code. Sixteen iterations of belief propagation are applied for

each of the encoded levels. Their performance is shown in Fig. 6.5 and is also plotted

Bit error probability

| — RO=1/2, R1=32/33, R2=1
“[~-- RO=1/2, R1=16/17, R2=1
-6 ; : ; ; ; i i ; i
44 48 48 5 52 54 58 58 6 82 64
Eb/No in dB

Figure 6.5 Performances of coded 8PSKs with frequency efficiencies = 2.5
bits/symbol. (Channel capacity is at E,/Ny = 4.7 dB.)
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in Fig. 5.7 where it is marked by circle-cross-plus signs and labeled by “Multilevel
LDGMCS8PSK.” The overall performance is within about 1 dB of the channel capacity
and is more than 2 dB better than a multidimensional trellis coded 8PSK [59] (labeled
by “TC8PSKx8PSK” in Fig. 5.7).

6.3.2 Other Partitioning Criteria

Ungerboeck’s partitioning criterion has the effect of maximizing the equivalent chan-
nel capacities of lower partition levels since minimum intra-set distances are maxi-
mized. This criterion, however, results in very low equivalent capacities for higher
levels, as shown in Fig. 6.3(B), since subsets in the higher levels are highly mixed
with their cosubsets as shown in Fig. 6.1. Multilevel coding based on this partition
criterion might thus require significant decoding latency because most of the infor-
mation bits are concentrated in the lower levels. Though Ungerboeck’s criterion has
long been deemed the only way to partition signal sets, this is not the case in light of
(6.2). The total capacity is the sum of the equivalent capacities of the levels as long
as the partitions are regular. Therefore, we have much more freedom in the ways we

partition a signal set to cater to specific system requirements.

® Al
®
(o] [ ]
L/ U 1 N0 Ai/Ag

Q [} ® 0 o] o] o} o] [ ] 0

o] o] 1 [ ] (o] o] o] o] 1 [ ]

Ay

0 o] [} [e] o] [ ] 0 (o] (o

1 [ ] o] o] o} o] ]' [ ] (o] o]

Figure 6.6 Partitioning of SAMPM by the most separable criterion.
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Figure 6.7 Capacities of SAMPM partitioned by the most separable criterion. (A)
Capacities of the subsets. (B) Capacities of individual partition levels.

In Fig. 6.6, the criterion of most separable partitioning is demonstrated for
the SBAMPM constellation. The subsets are chosen so that the cosubsets are as “sep-
arable” as possible. Contrary to Ungerboeck’s criterion, this one has the effect of
maximizing the equivalent capacities of the higher partition levels at the expense of
the capacities of the lower levels. The corresponding equivalent capacities for the

partition of 8AMPM in Fig. 6.6 are plotted in Fig. 6.7. In this specific case, the

N0 A/As

° 0

Figure 6.8 Partitioning of 8AMPM by the mixed criterion.
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Figure 6.9 Capacities of SAMPM partitioned by the mixed criterion. (A)
Capacities of the subsets. (B) Capacities of individual partition levels.

proposed criterion has resulted in a relatively uniform distribution of capacity among
the three partition levels.

The two partitioning criteria can also be mixed: the subsets are chosen to be
most separable first and then to maximize intra-set distance. This idea is illustrated

in Fig.6.8 and the corresponding equivalent capacities are plotted in Fig. 6.9.

6.3.3 Application: Unequal Error Protection Using One Code

We present here a very interesting application of the most separable partition crite-
rion. It is found in Fig. 6.7, the capacity of SAMPM is 2 bits/symbol at Ej/Ny =
2.4 dB. At this signal-to-noise ratio, the equivalent capacities C'(Ag/A1) and C(A;/As)
are about 0.7 bit/symbol, with C'(A1/A;) slightly higher, and C(A2) = 0.6 bit/symbol.
A multilevel code can be constructed by using a length N = 24576 and rate R = 2/3
for all of the three partition levels. The decoding system of this design has signif-
icantly lower complexity since only one component decoder is needed to decode all
the three coding levels. Comparing the rate and the equivalent capacities, we can
expect that the performance in the first level will be the best, then the Oth level, and

the second level will be the worst. Simulation results plotted in Fig. 6.10 confirm

these expectations. Notice that, though the design is not completely matched to the
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Figure 6.10 Performances of the three coding levels in a coded 8AMPM for
unequal error protection. In each of the plots, the curves correspond to the BERs
after 1st, 2nd, 4th, 8th, and 16th iterations of decoding. (Frequency efficiency is 2

bits/symbol and channel capacity is at E,/Ny = 2.4 dB.)

equivalent channel capacities, the performances of the Oth and 1st levels are about

1 ~ 1.2 dB of the channel capacity.

6.4 Conclusions

We presented a class of efficient multilevel coded modulations based on low-density
generator matrix codes. In order to achieve good performance, the rates of the com-
ponent codes should be selected to match the corresponding equivalent capacities for
the partition levels. The component codes for each partition level are decoded by the
belief propagation algorithm. Hard decisions are then forwarded to the lower levels.
The design and characteristics for several partitioning rules are discussed. Simulation
results show these systems achieve performance within 1 dB of the channel capacity

and provide flexible error protection capability.
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Chapter 7

Conclusions

This thesis examines the theory and application of multi-stage iterative decoding
with exchange of soft information to codes with pseudo-random structure. On the
practical side, the turbo decoding algorithm is generalized in Chapter 2 to handle
multiple-input trellis codes. We showed that turbo codes based on these multiple-
input codes achieve marginally better performance than those based on single-input
codes. In Chapter 3, alternative high-performance coding systems of low complexity
are proposed via the generalized concatenation of convolutional codes. Of central
focus is the classical Plotkin |a @ b|b| construction and its generalizations. A low-
complexity two-iteration decoding algorithm using traditional hard-output Viterbi
decoders is proposed. Numerical results show that the new coding systems can achieve
comparable and sometimes superior performance to low-complexity turbo codes with

similar computational complexity.
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On the theory side, we showed in Chapter 4 that the turbo decoding algorithm
is special case of Pearl’s belief propagation algorithm applying to the appropriate
Bayesian belief networks. More decoding algorithms, including those for serially con-
catenated codes and low-density parity-check codes, can also be shown to be special
cases of the belief propagation algorithm. Pearl’s algorithm thus provides a system-
atic method for devising suboptimal iterative decoding algorithms for a wide variety
of error-control systems. Since Pearl has proved the validity of his algorithm for loop-
free network, there is no guarantee yet that these algorithms will give useful results
for loopy networks. However, the great body of experimental work done in the “turbo
code & variations” literature strongly suggests that the performance is very close to
optimal. We thus conjecture that there are general undiscovered theorems about the
performance of belief propagation algorithms on loopy DAG’s. These theorems, which
may have nothing directly to do with coding or decoding, will show that in some sense
the computed beliefs converge with high probability to near-optimum values of the
desired beliefs on a class of loopy DAG’s that, however, includes the Bayesian network
representations of the codes discussed in this chapter. If such theorems exist, they
will no doubt find applications in realms far beyond information theory.

In Chapter 5 and 6, we return to problem of constructing good error-correcting
codes. Especially, we observed in Chapter 4 that the classical turbo codes make un-
necessary differentiation of the parity-check bits and use a specific node activation
order for the belief propagation algorithm. We constructed a new class of high-rate
codes based on low-density generator matrices. The decoding algorithm based on
belief propagation treats all the parity-check bits equally and use a uniform parallel
activation order. These codes are then combined with M-ary modulations using mul-
tilevel coded modulation techniques to achieve higher spectral efficiency. In all cases,
we have constructed systems with flexible error protection capability and performance

within 1 dB of the channel capacity.
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