NEW CATALYTIC METHODS FOR THE PREPARATION OF TRYPTOPHANS AND PYRROLOINDOLINES: TOTAL SYNTHESIS OF (+)-NASESEAZINES A AND B AND (−)-ASPERGILAZINE A

Thesis by
Madeleine Eileen Kieffer

In Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2015
(Defended May 21, 2015)
ACKNOWLEDGEMENTS

My time at Caltech has been truly enriched by all of the amazing people and scientists I have had the opportunity to meet.

Specifically, I need to thank my advisor, Professor Sarah Reisman, for allowing me to join a young and vibrant lab as well as for the opportunity to work on innovative research projects. Working with such a creative and ambitious advisor has encouraged me to grow as a scientist and reminds me to always strive for excellence. It is really Sarah’s enthusiasm for science and for research that keeps our lab going.

I am also grateful for my thesis committee, Professors Brian Stoltz, Dennis Dougherty, and Jonas Peters, who have all offered invaluable advice over the years. In particular, Brian has been a constant source of encouragement for all members of the Reisman lab. His unconditional support and generosity with his time and resources has been instrumental in the success of our lab.

Dr. Scott Virgil does an amazing job running the Caltech Center for Catalysis and Chemical Synthesis. He is an outstanding chemist and has the incredible ability to fix everything that we manage to break. Beyond science, Scott is one of the most optimistic people I have ever met and definitely lifts the spirits of everyone on the 3rd floor of Schlinger.

Throughout my time at Caltech, I’ve had the opportunity to work with two amazing project partners. Dr. Lindsay “Czepka” Repka and Kangway Chuang are both incredible scientists. Their creativity and work ethic has pushed me to work harder and leave no questions unanswered. Although not an official project partner, Dr. Jake Cha,
has been an unbelievable resource, especially during my first two years. Jake taught me how to be a productive graduate student and kept our bay lively with music and jokes.

I must thank all other members of the Reisman lab, past and present, who are really some of the best chemists and people I know. Although the size and environment has changed dramatically in the past five years, it remains a fun and energetic place to conduct research. Specifically, Dr. Jake Cha, Dr. Raul Navarro, Dr. Lindsay Repka, Dr. John Yeoman, Dr. Jay Codelli, Kangway Chuang, Haoxuan Wang, Victor Mak, Lauren Chapman, and Alice Wong have all been wonderful friends and have made graduate school a more enjoyable experience.

Of course none of this research would be possible without the excellent support staff at Caltech. Agnes Tong, Dr. Dave Vandervelde, Rick Gerhart, Joe Drew, Tom Dunn, Leah Mentch, Lynne Martinez, and Silva Virgil keep our department running, fix all of the problems we create, and work very hard to make graduate life as happy as possible. Thank you!

I have also been very fortunate to come from an extremely nurturing undergraduate institution. I don’t think I could have asked for better mentors than Professors David Haines and Don Elmore. Throughout my time at Wellesley and Caltech, they have encouraged me to not give up and treated me to more than my fair share of free lunches. I am extremely grateful for their mentorship and friendship.

I am also grateful for my friends outside of the Reisman lab. Zach Wickens, Nick O’Connor, Matt Griffin, Clint Reagan, Christopher Haley, Allen Hong, Hosea Nelson, Carson Mattier, Claire Droste, and Lena McCauley have all been great supports!
I would have never made it through my time here without my family. Thank you Mom, Dad, and Tony for loving me all of these years! I am thankful for your unconditional support and enthusiasm for everything I do. Although my visits home have been few and far between, I’m looking forward to more frequent trips home! During my time at Caltech, I’ve gained a little more family in the Chuangs. I feel very lucky to have gotten to know them over the past 4 years and have greatly enjoyed our trips up to Palo Alto.

Finally, I need to thank Kangway Chuang, who is really the biggest reason I ever made it through this place. Although he is the most talented chemist I have ever met, I think what makes him especially unique is his willingness to drop everything he’s doing to help others. Beyond lab, I have really appreciated his love and patience these past five years, without which I don’t think I would have made it! We’ve had five years of fun in southern California and I’m very excited to see what is to come in Boston!
ABSTRACT

Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.

Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the copper-catalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-nasesezaine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.
TABLE OF CONTENTS

CHAPTER 1

An Introduction to Trytophan

1.1 INTRODUCTION .. 1

1.2 SYNTHESIS OF TRYPTOPHAN DERIVATIVES ... 2

1.3 TRYPTOPHAN DERIVATIVES IN TOTAL SYNTHESIS .. 6

1.4 STRATEGIES FOR THE SYNTHESIS OF PYRROLOINDLINES 9

1.5 PYRROLOINDLINES IN TOTAL SYNTHESIS ... 14

1.6 CONCLUSIONS .. 18

1.7 NOTES AND REFERENCES ... 18

CHAPTER 2

Enantioselective Synthesis of Tryptophan Derivatives by a Tandem Friedel–Crafts Conjugate Addition/Asymmetric Protonation Reaction

2.1 INTRODUCTION .. 22

2.1.1 Precedence for Asymmetric Protonation .. 25

2.1.2 Previous Conjugate Addition/Asymmetric Protonation .. 26

2.2 SCREENING AND OPTIMIZATION .. 27

2.2.1 Initial Screening of Acrylate and Additives ... 27

2.2.2 Screening of Chiral Ligands .. 29

2.3 SUBSTRATE SCOPE .. 30

2.3.1 Friedel–Crafts/Asymmetric Protonation of Indoles .. 30
CHAPTER 3

Direct and Selective Copper-Catalyzed Arylation of Tryptamines and Tryptophans: Total Synthesis of (+)-Naseazaines A and B

3.1 INTRODUCTION

3.1.1 Limitation of the Formal (3+2) Methodology

3.1.2 Previous Syntheses of C3-arylated Pyrroloindolines

3.2 REACTION DESIGN

3.2.1 Initial Investigation into Palladium Catalysis

3.2.2 Investigation into Copper Catalysis

3.3 SCREENING AND OPTIMIZATION

3.4 SUBSTRATE SCOPE OF RACEMIC ARYLATION

3.4.1 Tryptamine and Iodonium Scope

3.4.2 Scale-up Procedure

3.5 DIASTEREOSELECTIVE ARYLATION REACTION DESIGN

3.5.1 MacMillan’s Enantioselective Method

3.5.2 New Reaction Design

3.6 OPTIMIZATION OF DIASTEREOSELECTIVE REACTION

3.7 SCOPE OF DIASTEREOSELECTIVE ARYLATION

3.8 MECHANISTIC HYPOTHESIS

3.9 TOTAL SYNTHESIS OF (+)-NASESEAZINES A AND B

3.9.1 Retrosynthetic Analysis

3.9.2 Forward Synthesis
3.10 CONCLUSION

![Page Content](image)

3.11 EXPERIMENTAL SECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11.1 Materials and Methods</td>
<td>199</td>
</tr>
<tr>
<td>3.11.2 Optimization of Racemic Arylation</td>
<td>200</td>
</tr>
<tr>
<td>3.11.3 Preparation of N-tosyltryptamine Derivatives</td>
<td>203</td>
</tr>
<tr>
<td>3.11.4 Preparation of Diaryliodonium Tetrafluoroborates</td>
<td>211</td>
</tr>
<tr>
<td>3.11.5 Preparation of N-tosylpyrroloindolines</td>
<td>214</td>
</tr>
<tr>
<td>3.11.6 Catalyst Efficiency and Scalability</td>
<td>228</td>
</tr>
<tr>
<td>3.11.7 Preparation of Diimine Ligands</td>
<td>229</td>
</tr>
<tr>
<td>3.11.8 Preparation of Diketopiperazine Substrates</td>
<td>229</td>
</tr>
<tr>
<td>3.11.9 Preparation of Diaryliodonium Triflate Salts</td>
<td>233</td>
</tr>
<tr>
<td>3.11.10 Optimization of Diastereoselective Arylation</td>
<td>237</td>
</tr>
<tr>
<td>3.11.11 Substrate Scope for Diastereoselective Arylation</td>
<td>239</td>
</tr>
<tr>
<td>3.11.12 Stereochemical Assignment of Tryptophan Arylation</td>
<td>249</td>
</tr>
<tr>
<td>3.11.13 Total Synthesis of (+)-Nasesezaines A and B</td>
<td>249</td>
</tr>
</tbody>
</table>

3.12 NOTES AND REFERENCES

![Page Content](image)

CHAPTER 4

A Mild and General Larock Indolization Protocol for the Synthesis of Natural Tryptophan Derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 INTRODUCTION</td>
<td>411</td>
</tr>
<tr>
<td>4.1.1 The Larock Indole Synthesis in Natural Products</td>
<td>413</td>
</tr>
<tr>
<td>4.2 REACTION DESIGN</td>
<td>415</td>
</tr>
<tr>
<td>4.3 REACTION OPTIMIZATION</td>
<td>417</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[a]_D</td>
<td>angle of optical rotation of plane-polarized light</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom(s)</td>
</tr>
<tr>
<td>p-ABSA</td>
<td>para-acetamidobenzenesulfonyl azide</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric pressure chemical ionization</td>
</tr>
<tr>
<td>app</td>
<td>apparent</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl group</td>
</tr>
<tr>
<td>At</td>
<td>benztriazolyl</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere(s)</td>
</tr>
<tr>
<td>BHT</td>
<td>2,6-di-tert-butyl-4-methylphenol (“butylated hydroxytoluene”)</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>bp</td>
<td>boiling point</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>i-Bu</td>
<td>iso-butyl</td>
</tr>
<tr>
<td>n-Bu</td>
<td>butyl or norm-butyl</td>
</tr>
<tr>
<td>t-Bu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>c</td>
<td>concentration of sample for measurement of optical rotation</td>
</tr>
<tr>
<td>13C</td>
<td>carbon-13 isotope</td>
</tr>
<tr>
<td>14C</td>
<td>carbon-14 isotope</td>
</tr>
<tr>
<td>/C</td>
<td>supported on activated carbon charcoal</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celcius</td>
</tr>
<tr>
<td>calc’d</td>
<td>calculated</td>
</tr>
<tr>
<td>CAN</td>
<td>ceric ammonium nitrate</td>
</tr>
<tr>
<td>Cbz</td>
<td>benzyloxy carbonyl</td>
</tr>
<tr>
<td>CCDC</td>
<td>Cambridge Crystallographic Data Centre</td>
</tr>
<tr>
<td>CDI</td>
<td>1,1’-carbonyldiimidazole</td>
</tr>
<tr>
<td>cf.</td>
<td>consult or compare to (Latin: confer)</td>
</tr>
<tr>
<td>cm$^{-1}$</td>
<td>wavenumber(s)</td>
</tr>
<tr>
<td>cod</td>
<td>1,5-cyclooctadiene</td>
</tr>
<tr>
<td>comp</td>
<td>complex</td>
</tr>
<tr>
<td>conc.</td>
<td>concentrated</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>CSA</td>
<td>camphor sulfonic acid</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>d</td>
<td>dextrorotatory</td>
</tr>
<tr>
<td>D</td>
<td>deuterium</td>
</tr>
<tr>
<td>dba</td>
<td>dibenzylideneacetone</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
</tbody>
</table>
de diastereomeric excess
DIAD diisopropyl azodicarboxylate
DMAD dimethyl acetylenedicarboxylate
DMAP 4-dimethylaminopyridine
DME 1,2-dimethoxyethane
DMF N,N-dimethylformamide
DMSO dimethylsulfoxide
DMTS dimethylthexylsilyl
DNA deoxyribonucleic acid
DPPA diphenylphosphorylazide
dppp 1,3-bis(diphenylphosphino)propane
dr diastereomeric ratio
DTT dithiothreitol
ee enantiomeric excess
E methyl carboxylate (CO$_2$CH$_3$)
E$^+$ electrophile
E trans (entgegen) olefin geometry
EC$_{50}$ median effective concentration (50%)
e.g. for example (Latin: exempli gratia)
EI electron impact
eq equation
ESI electrospray ionization
Et ethyl
et al. and others (Latin: *et alii*)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>Fmoc</td>
<td>fluorenylmethyloxycarbonyl</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>^1H</td>
<td>proton</td>
</tr>
<tr>
<td>^2H</td>
<td>deuterium</td>
</tr>
<tr>
<td>^3H</td>
<td>tritium</td>
</tr>
<tr>
<td>[H]</td>
<td>reduction</td>
</tr>
<tr>
<td>HATU</td>
<td>2-(7-aza-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate</td>
</tr>
<tr>
<td>HMDS</td>
<td>hexamethyldisilamide or hexamethyldisilazide</td>
</tr>
<tr>
<td>HMPT</td>
<td>hexamethylphosphoramidé</td>
</tr>
<tr>
<td>hn</td>
<td>light</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>half maximal inhibitory concentration (50%)</td>
</tr>
<tr>
<td>i.e.</td>
<td>that is (Latin: id est)</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectroscopy</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>k</td>
<td>rate constant</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie(s)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MS</td>
<td>molecular sieves</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>N</td>
<td>normal or molar</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer(s)</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear Overhauser enhancement spectroscopy</td>
</tr>
<tr>
<td>Nu−</td>
<td>nucleophile</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>[O]</td>
<td>oxidation</td>
</tr>
<tr>
<td>t-Oct</td>
<td>tert-octyl (1,1,3,3-tetramethylbutyl)</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>PCC</td>
<td>pyridinium chlorochromate</td>
</tr>
<tr>
<td>PDC</td>
<td>pyridinium dichromate</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen ion concentration in aqueous solution</td>
</tr>
<tr>
<td>pKₐ</td>
<td>acid dissociation constant</td>
</tr>
<tr>
<td>PMB</td>
<td>para-methoxybenzyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium para-toluenesulfonate</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
</tbody>
</table>
n-Pr propyl or norm-propyl
psi pounds per square inch
py pyridine
q quartet
R alkyl group
R rectus
REDAL sodium bis(2-methoxyethoxy)aluminum hydride
ref reference
R_f retention factor
RNA ribonucleic acid
s singlet or seconds
S sinister
sat. saturated
SEM 2-(trimethylsilyl)ethoxymethyl
SOD superoxide dismutase
Su succinimide
t triplet
T thymine
TBAF tetra-n-butylammonium fluoride
TBAT tetra-n-butylammonium difluorotriphenylsilicate
TBDPS tert-butyldiphenyilsilyl
TBS tert-butyldimethylsilyl
TCA trichloroacetic acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temp</td>
<td>temperature</td>
</tr>
<tr>
<td>TES</td>
<td>triethylsilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethanesulfonyl</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TFE</td>
<td>2,2,2-trifluoroethanol</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>THIQ</td>
<td>tetrahydroisoquinoline</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>N,N,N,N'-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight</td>
</tr>
<tr>
<td>tol</td>
<td>tolyl</td>
</tr>
<tr>
<td>Troc</td>
<td>2,2,2-trichloroethoxycarbonyl</td>
</tr>
<tr>
<td>Ts</td>
<td>para-toluenesulfonyl (tosyl)</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>X</td>
<td>anionic ligand or halide</td>
</tr>
<tr>
<td>Z</td>
<td>cis (zusammen) olefin geometry</td>
</tr>
</tbody>
</table>