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Chapter 1 

An Introduction to Tryptophan 

 

1.1 INTRODUCTION 

Tryptophan and unnatural tryptophan derivatives are important building blocks in 

the total synthesis of natural products, as well as for the development of new drugs,1 

biological probes,2 and chiral small molecule catalysts.3 The central tryptophan motif can 

be found within numerous biologically active natural products, either explicitly or 

implicitly, some of which are shown in Figure 1.1. Furthermore, the utilization of 

functionalized tryptophans for the study of complex biological systems has served as an 

important strategy for studying protein conformational dynamics as well as elucidating 

key protein interactions, such as the identification of a critical cation–π interaction of the 

nicotinic acetylcholine receptor.2c 

Biosynthetically, these key amino acids serve as the basis for another fascinating 

class of natural products, the pyrroloindoline alkaloids.4 This family comprises a large 

class of compounds characterized by their unique indoline fused pyrrolidine core (Figure 
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1.1).  These compounds have been shown to exhibit a broad array of biological activity 

across a range of cell lines that is intricately related to their broad structural diversity. 

Given their promising medicinal relevance, these products have inspired innovative work 

on new synthetic methodologies to access the central pyrroloindoline framework that 

have culminated in the total synthesis of a number of these challenging natural products.5  

Figure 1.1. Trytophan and cyclotryptophan natural products 

 

 Together, these molecules have served as topics of intense interest from synthetic 

chemists and chemical biologists alike. The following introductory chapter serves to 

briefly summarize and highlight modern synthetic strategies and tactics to access 

unnatural tryptophan derivatives as well as pyrroloindoline alkaloids with selected 

examples in total synthesis. 

 

1.2 SYNTHESIS OF TRYPTOPHAN DERIVATIVES 
 
 Due to their pervasiveness across many fields, the development of new methods 

to access enantioenriched tryptophan derivatives represents an important endeavor in 

synthetic chemistry.1,2,3 This is particularly true due the inherent challenges associated 

N
H

N

H

H
N

N
H

N

N

O

O

O

O

MeMe
S
S

S
S

N
H

N
NH

O

H

pestalazine A (3)
antiviral activityNH

N
H

H
N

O
O

H

Me

Me

N N
Me

Me

H N
H

N

Me

OMe
O

OH

OH

Me

O
MeHN

O

chaetocin (2)
histone methyl transferase inhibitor

vincorine (4)
anticancer activity

physostigmine (1)
anti-cholinesterase activity

O

N

N
N

N

Me MeMe

HO

O

Me

H

H

H
lansai B (6)

anti-inflammatory activityMe

Me
N

N

O

O
H

H

N
H

Me
Me

MeO

fumitremorgin C (7)
BCRP inhibitor

HO
HN

O
O

O

N
Me

jaspamide  (5)                
antimicrofilament acitivity

Me

Me

O HN

Me

O

Me

Me

N
H

Br



Chapter 1 – An Introduction to Tryptophan  
 

3 

with selective backbone functionalization of the indole nucleus, making simple 

derivatization of natural (L)-tryptophan largely untenable. As a result, a range of methods 

for the preparation of enantioenriched unnatural tryptophans, including auxiliary 

controlled, enantiospecific, and enantioselective methods, have been reported.6  

 Surprisingly, to date, there exist relatively few convergent and enantioselective 

syntheses of tryptophan derivatives lacking β-substitution. Perhaps the most common 

method to access unnatural amino acids is through the asymmetric hydrogenation of 

dehydroamino acids.  In 1980, Townsend and co-workers demonstrated that subjection of 

6-methyl dehydrotryptophan to [Rh(COD)Cl]2, copper-phosphine complex 10, and 45 psi 

of hydrogen gas gave 6-methyl tryptophan (9) in high enantiomeric excess (Scheme 1.1, 

a).7 Subsequent work on asymmetric hydrogenation has further streamlined this process 

to provide excellent ee’s at low Rh-catalyst loadings, making it an efficient choice in 

many instances. Still, the preparation of the dehydroamino acids, often from the 

corresponding carboxyaldehyde, can sometimes require a laborious synthetic 

undertaking. 

An alternative enantioselective method was described by Leckta and co-workers 

in 1998.  By employing 5 mol % of copper-BINAP catalyst 13, tosylindoline 11 can 

undergo an enantioselective imino-ene reaction to furnish tosyl tryptophan derivative 12 

in 90% yield and 85% ee (Scheme 1.1, b).8  While this method offers access to 

enantioenriched products, strict substrate requirements limit the generality of this 

approach and thus this method has largely not been broadly adopted for tryptophan 

synthesis. 
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Scheme 1.1. Enantioselective methods for the synthesis of unnatural tryptophans 

 

Given the dearth of catalytic, enantioselective methods reported to date, 

alternative strategies are also commonly employed, including enantiospecific and 

auxiliary-controlled methods. One such enantiospecific approach utilizes ortho-

iodoanlines (14) in conjunction with an amino-acid derived coupling partner (Scheme 

1.2, a).9 In 1999, Cook and co-workers reported the Pd(0)-catalyzed heteroannulation 

(Larock indole synthesis) of o-iodoaniline with Schöllkpf-auxiliary derived triethylsilyl 
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Scheme 1.2. Enantiospecific methods for the synthesis of unnatural tryptophans 
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Scheme 1.3. Enantiospecific and auxiliary based approaches for the synthesis of 

unnatural tryptophans 
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aryl bromide. Cook and co-workers have also utilized their methodology in their total 

synthesis of the complex polycyclic alkaloid alstophylline (Scheme 1.4, b). Employing a 

Larock indole synthesis on 300-gram scale with only 1 mol % Pd(OAc)2, aniline 27 is 

readily advanced to 6-methoxytryptophan en route to the natural product.15 Similarly, Jia 

and co-workers have utilized their Pd-catalyzed aldehyde-aniline coupling to synthesize 

4-nitrotrytophan derivative 32, which is then advanced to the natural product 

aurantioclavine (33).16 

Scheme 1.4. Tryptophan in total synthesis 
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iodoaniline 35 underwent a Larock indole synthesis with a serine-derived derived alkyne 

in a moderate 49% yield. Debenzylation and concomitant Cbz deprotection furnished 

pyrroloindoline 37, which existed in equilibrium with α-carboline 38. Addition of EDC 

and HOAt resulted in facile and selective macrocycle formation from α-carboline 38, 

providing the product in 64% yield. The synthesis of kapakahine B was completed in a 

further two-steps. This elegant synthesis, which assembles the key tryptophan moiety in 

an exceptionally complex setting, illustrates both the power of the Larock indole 

synthesis, but also its limitations – the key step requires upwards of 20 mol % catalyst for 

prolonged reaction times (24 h) in order to achieve two productive turnovers.  

Scheme 1.5. Baran’s synthesis of kapakahine B 
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Scheme 1.6. Boger’s late stage tryptophan synthesis  
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Scheme 1.7. Overman’s Heck strategy to access pyrroloindolines  
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Scheme 1.9. Stoltz’s asymmetric alkylation of oxindoles  
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This strategy is applicable with a range of electrophiles. As shown in scheme 

1.10, addition of N-bromosuccinimide and pyridinium p-toluensulfonate to tryptophan 54 

results in clean formation of bromopyrroloindoline 58. Subsequent treatment with excess 

base and catalytic AgNO3 results in stereoretentive substitution by an indole nucleophile. 

Extension of this strategy to other electrophilic atom sources as well as a range of 

enantioselective variants have been reported.25  

In contrast to heteroatom based electrophiles, carbon-based electrophiles can also 

be utilized with great success. In 2004, MacMillan and coworkers illustrated the success 

of this strategy via iminium activation. Utilizing imidazolinone catalyst 61 with acrolein 

as an electrophile, a highly enantioselective preparation of C3-alkylated pyrroloindolines 

was achieved (Scheme 1.11).26  
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Activation of Michael acceptors can also be realized utilizing chiral Brønsted 

acids, such as (R)-TRIP (Scheme 1.12). As demonstrated by Antilla and co-workers, 

addition of catalytic (R)-TRIP phosphoric acid 65 to an excess of methyl vinyl ketone 

resulted in a highly enantioselective, double conjugate addition to provide 

pyrroloindoline 66, which was readily advanced to the natural product (–)-

debromoflustramine B in an additional three steps.27 

  

N N
H BocprenylN

prenyl
O

NHBoc

N
NHBoc

prenyl
(78% yield)

(90% ee)

OH

N N

O
Bn

tBu

Me

N
O

N
H

Bn

Me

tBu

DCM, –40 ºC;
NaBH4, MeOH

• p-TSA

(20 mol %)
Br

Br

N N
HH

Me

Me
Me

Br
Me5-steps

(–)-flustramine B
(63)

Br

60

61

62



Chapter 1 – An Introduction to Tryptophan  
 

13 

Scheme 1.12. Antilla’s organocatalyzed pyrroloindoline synthesis  
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1.5 PYRROLOINDOLINES IN TOTAL SYNTHESIS 

Given the enormous body of research dedicated to the total synthesis of 

pyrroloindolines, only a small sampling of total syntheses will be presented in the section 

below. One of the first successful examples employing a diastereoselective 

pyrroloindoline synthesis comes from the Danishefsky lab (Scheme 1.14).24 Beginning 

with Boc protected tryptophan 54, they were able to effect a selenation/cyclization 

sequence to furnish exo-pyrroloindoline 55 as a 9:1 diastereomeric mixture. Activation of 

the phenyl selenide with MeOTf and exposure to prenyl stannane 56, provided the 

reverse prenyl adduct in 60% yield. Saponification of the methyl ester, peptide coupling 

with the free amine, and successive diketopiperazine formation provided amauromine in 

only four-steps from tryptophan 54. 

Scheme 1.14. Danishefsky’s synthesis of amauromine  
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alkyne 77 in excellent yield. C–N bond formation, followed by treatment with Red-Al 

provided the natural product psychotrimine (79) in excellent overall yield. 

Scheme 1.15. Baran’s synthesis of psychotrimine  
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Scheme 1.16. Movassaghi’s synthesis of (+)-naseseazines A and B 

 

 A similar approach was adopted by Stephenson and co-workers in their synthesis 

of gliocladin C using photoredox catalysis.30 Following an oxidative cyclization of 

protected tryptophan 87, the bromopyrroloindoline underwent amidation to furnish 

carboximide 89.  Subsequent exposure to [Ru(bpy)3Cl2] and visible light generated a 

tertiary benzylic radical, which was trapped with five equivalents of indole 90 to form the 

desired C3–C3’ aryl linkage. Notably, C2 substitution of the indole nucleophile is 

imperative to achieve the desired regioselectivity in the transformation.  Additional 

elaboration to the natural product was accomplished in six-steps.   

Scheme 1.17. Stephenson’s synthesis of gliocladin C 
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 An intermediate bromopyrroloindoline 94, formed via the oxidative 

bromocyclization of tryptophan, was also utilized in Li’s synthesis of drimentine G.31 

Employing a photoredox strategy similar to Stephenson’s, generation of a tertiary 

benzylic radical followed by conjugate addition into enone 95 provided complex 

pyrroloindoine 96 in excellent yield. An additional five-steps is subsequently required to 

construct the diketopiperazine moiety and effect deoxygenation to provide the natural 

product.  

Scheme 1.18. Li’s synthesis of drimentine G 
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cyclocondensation to prepare the diketopiperazine assembles the natural product in short 

order. 

Scheme 1.19. Reisman’s synthesis of nocardioazine A 

 

1.6 CONCLUSIONS 

These interesting scaffolds still serve as fascinating motivations for new synthetic 

methodologies and the basis for novel chemistry in total synthesis. Although much work 

has been done, the implementation and actualization of new synthetic strategies to meet 

unmet challenges will clearly be of interest in the coming times. 
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