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Abstract

The LIGO gravitational wave detectors are on the brink of making the first direct detections of gravi-

tational waves. Noise cancellation techniques are described, in order to simplify the commissioning

of these detectors as well as significantly improve their sensitivity to astrophysical sources. Future

upgrades to the ground based detectors will require further cancellation of Newtonian gravitational

noise in order to make the transition from detectors striving to make the first direct detection of

gravitational waves, to observatories extracting physics from many, many detections. Techniques

for this noise cancellation are described, as well as the work remaining in this realm.
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Chapter 1

Introduction

Einstein predicted the existence of gravitational waves as a consequence of general relativity in

1916 [1]. Unfortunately, gravitational waves couple very weakly to matter, so direct measurements

require massive sources to create relatively large waves. The most promising sources are all

astrophysical and cosmological, and include compact inspiralling binary systems and pulsars.

In the nearly 100 years since general relativity was first described, no direct measurements

of gravitational waves have yet been made, although many projects have worked toward such

detections. Projects such as Weber bar detectors (starting in the 1960’s) [2] and Forward’s interfer-

ometer (starting in the 1970’s) [3] looked directly for gravitational waves in their output signals,

while projects such as pulsar timing [4] look for periodic changes in the travel time of pulses from

millisecond pulsars. LIGO, the Laser Interferometer Gravitational wave Observatory, built a 4 km

long baseline interferometer and began collecting data in the 2000’s, although no detections were

made. Despite a lack of detections, each experiment provides useful technological experience for

all subsequent projects, as well as sets upper limits on how strong gravitational waves from differ-

ent sources could be. Utilizing this knowledge, Advanced LIGO, a follow-on of the Initial LIGO

project, has constructed a world-class interferometer, and intends to make a first direct detection of

gravitational waves within the next few years [5]. One of the ways that Advanced LIGO will meet

its goals is the use of noise cancellation techniques developed and described in this thesis.

This thesis briefly introduces gravitational waves and the astrophysical motivations for mea-

suring them in Chapter 2. Since the work in this thesis primarily improves the low-frequency

sensitivity of the LIGO detectors, low-frequency gravitational wave sources are highlighted.

LIGO interferometers are the primary application of these techniques, and so they are discussed

in Chapter 3. Also, the 40 m Prototype Laboratory on the Caltech campus is described in Chapter 4,

as this is where much of the development of the techniques occurred.

One of the main results of this thesis is the global seismic noise cancellation that was developed

and then deployed during the 2009-2010 5th LIGO Science Run. This work is discussed in Chap-

ter 5, and draws from work published in [6] and [7]. In addition, adaptive variants of this noise
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cancellation are under development and testing at the 40 m Lab, and are described.

Another significant result presented in this thesis is the analysis of Newtonian gravitational

noise, including measurements and simulations that show Newtonian noise will not be a significant

issue for Advanced LIGO, but will be important for future generations of gravitational wave

detectors. In preparation for the noise cancellation that will be required in the future, simulations

were performed to determine the requirements for sensing Newtonian noise in order to suppress

it below quantum noise levels. Chapter 6 discusses this work, and draws from work in a LIGO

Technical Report [8], as well as work published in [9]. The final section of this chapter describes

in detail future work that must be done before Newtonian noise cancellation can be applied to our

interferometers.

Conclusions and future work are discussed in Chapter 7, an overview of basic control theory is

given in Appendix A, a review of Pound-Drever-Hall locking is given in Appendix B and photos

of the 40 m Lab’s optical layout are included in Appendix C.
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Chapter 2

Gravitational waves and astrophysical
motivations

Various wavelengths of electromagnetic radiation have been used over the years to study many

astrophysical events and phenomena. With the advent of new technology and telescopes that are

able to observe in different wavelengths, humans have progressively been able to get an ever-

clearer picture of the universe. One of the major restrictions of observations with electromagnetic

radiation is the fact that light interacts strongly with matter; it will not pass unchanged through

dense materials.

Gravitational waves interact very weakly with matter, and so are able to propagate through many

materials, such as intergalactic dust, without significant distortion. Also, they are uniquely able to

propagate unimpeded from the moment of the big bang to now, in contrast with electromagnetic

waves that only propagate freely since the era of recombination, about 380,000 years after the

big bang. Measuring gravitational waves and using them as another spectrum for observing the

universe provides a whole host of new information. Gravitational wave astronomy will add a new

dimension to our understanding of extreme conditions, including the core of neutron stars, black

holes, and the moments immediately following the formation of the universe.

LIGO is a ground-based observatory, and so suffers from limitations at low frequencies, mostly

due to seismic noise and thermal noise in the fibers required to suspend the test masses. Advanced

LIGO expects to be sensitive to gravitational waves in the band between 10 Hz to a few kHz;

inspiralling binary systems of neutron stars or solar mass black holes are some of the most promising

sources in this frequency range.

LIGO aims to unveil the new era of gravitational wave astronomy with a first detection in

the next few years [10]. Following that first detection, LIGO and companion gravitational wave

observatories including VIRGO [11] and KAGRA [12] hope to measure many gravitational wave

events with enough precision to determine parameters that describe the astrophysical event itself.

With a network of detectors, we can infer the sky location of a source, allowing us to follow up
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a detection with electromagnetic telescopes, and garner even more information. Parameters such

as distance to the source, mass ratio of the inspiralling objects, and spin of the objects, all depend

on the makeup of the system creating the gravitational waves, and so extracting these parameters

from the measured waveforms will provide invaluable information about the system.

While there are some uncertainties in the expected rates of detection of gravitational waves, due

to uncertainty in population densities of various astrophysical systems, Advanced LIGO is expected

to have many measurable signals per year. A summary of the best estimates for detection rates

and the assumptions that are taken into account for binary systems is provided in [13]. As shown

in Table 2.1, which shows pessimistic (Ṅlow), realistic (Ṅre), optimistic (Ṅhigh) and maximal (Ṅmax)

rates of detections per year, Advanced LIGO expects to detect several tens of “standard” binary

coalescences involving neutron stars (NS) and black holes (BH) per year. More unusual binary

systems, such as an intermediate mass ratio inspiral merging into an intermediate mass black hole

(IMRI into IMBH) or a pair of inspiralling intermediate mass black holes (IMBH-IMBH) have much

lower expected rates.

Interferometer Source Ṅlow Ṅre Ṅhigh Ṅmax
generation yr−1 yr−1 yr−1 yr−1

NS-NS 2 ×10−4 0.02 0.2 0.6
NS-BH 7 ×10−5 0.004 0.1

Initial BH-BH 2 ×10−4 0.007 0.5
IMRI into IMBH < 0.001 0.01

IMBH-IMBH 10−4 10−3

NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300

Advanced BH-BH 0.4 20 1000
IMRI into IMBH 10 300

IMBH-IMBH 0.1 1

Table 2.1: Table V from [13] comparing Initial LIGO’s range of expected detection rates with
Advanced LIGO. Pessimistic (Ṅlow), realistic (Ṅre), optimistic (Ṅhigh), and maximal (Ṅmax) rates
of detections per year are shown for various types of compact binary inspirals. The source type
indicates what the elements of the binary system are comprised of: a neutron star (NS), a black
hole (BH), or an intermediate mass black hole (IMBH). IMRI into IMBH indicates a pair of compact
objects with an intermediate mass ratio (between 10−2 and 10−3) coalescing into an intermediate
mass black hole.

The detection and measurement of gravitational waveforms will open a new window on the

universe. The work described in this thesis will facilitate the commissioning of the latest generation

of gravitational wave detectors, and thus help bring this new era of gravitational wave astronomy

into being.
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2.1 Gravitational waves

Gravitational waves are perturbations of the spacetime metric. We assume that the dominant term

in the metric of the universe is a flat Minkowski metric, η. With a perturbation term h(t) to describe

the gravitational waves, we have a total metric of the form

g(t) = η + h(t). (2.1)

This follows from general relativity, which assumes that moving massive objects change the curva-

ture of spacetime. Any accelerating mass quadrupole moment (mass moving with a lack of perfect

spherical symmetry) will create time-dependent changes in spacetime, which we refer to as gravi-

tational waves. Because of conservation of mass and momentum, the lowest order multipole term

describing h(t) will be the quadrupole moment of the expansion of the post-Newtonian solutions

to Einstein’s equations.

One of the quintessential examples of an astrophysical source that should be seen by Advanced

LIGO is the inspiral of two compact objects, such as black holes or neutron stars. In the simple case

of a pair of compact objects before the merger time, with the system optimally pointing toward

Earth, the perturbation term in Equation 2.1 will look like

hinspiral(t) = −

(
GM

c2Deff

) (
t0 − t

5GM/c3

)−1/4

cos (2θ0 + 2θ(t)) . (2.2)

Here, G is Newton’s gravitational constant, c is the speed of light in a vacuum, and t0 is the time of

coalescence as measured at the detector. M is the chirp mass,

M = Mρ(3/5), (2.3)

where M = m1 + m2 is the total mass of the system and ρ is the symmetric mass ratio,

ρ =
m1m2

(m1 + m2)2 . (2.4)

Deff is the effective distance to the binary system. Since we cannot (with a single detector) disentangle

the true distance from the orientation of the system, they are both included in this variable. θ0 is

related to the phase of the wave at the time of coalescence, and θ(t) is the orbital phase of the

binary [14]. θ(t), up to the second post-Newtonian order, is given by Equation 7 of [15] as

2θ(t) = −
1
ρ

[
Θ5/8 +

(3715
8064

+
55
96
ρ
)
Θ3/8

−
3π
4

Θ1/4 +
( 9275495

14450688
+

284875
258048

ρ +
1855
2048

ρ2
)
Θ1/8

]
, (2.5)
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where

Θ =
c3ρ

5GM
(t0 − t). (2.6)

Figure 2.1 shows an example of the inspiral phase of a waveform for a pair of 1.4 solar mass (1.4 M�)

neutron stars 1 Mpc from Earth. The inspiral phase is followed by a merger lasting a fraction of a

second, which is followed by a ringdown of the final compact object.

Figure 2.1: An example waveform described by Equation 2.2 for a pair of 1.4 M� neutron stars,
optimally oriented, 1 Mpc from Earth.

Since gravitational waves are changing spacetime, we should be able to detect these perturba-

tions by observing distance changes between freely falling test masses. While much more detail on

the theory behind gravitational waves and the way they perturb spacetime can be found in books

such as Gravitation [16], here I sketch a derivation of how light can be used to measure gravitational

waves. This motivates the use of interferometric measurement devices that can precisely measure

the phase of light as a function of time for this purpose.

Let φ be the phase of an electromagnetic wave of frequency ω0. Assuming that the light begins

with a phase of 0 and travels at the speed of light c, after it has gone a distance L it will have a phase

δφ. We can express this as a distance integral over the spacetime metric,

δφ =
ω0

c

∫ L

0
g dx, (2.7)

where g is defined by Equation 2.1. Plugging Equation 2.1 into Equation 2.7 gives
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δφ(t) =
ω0

c

∫ L

0

(
η + h(t)

)
dx. (2.8)

Since the Minkowski metric η is time-independent and we are only interested in the time-

dependent perturbations, we can drop the first term, which leaves us with

δφ(t) =
ω0

c

∫ L

0
h(t) dx. (2.9)

We would now like to evaluate the integral to determine how the phase of the light changes

with the spacetime perturbation. We declare that the perturbation of spacetime has a frequency

fgw, and that for the purposes of this derivation we are dealing in the long wavelength limit where

the light travel time is much smaller than the timescale of variations in the metric,

L
c
�

1
fgw

. (2.10)

Under these assumptions, we have

δφ(t) =
ω0L

c
h(t). (2.11)

This tells us that if we allow some light of frequency ω0 travel a distance L, in the presence of a

gravitational wave that is described by h(t), we will see the phase of the light change by δφ as given

in Equation 2.11. To maintain the condition defined in Equation 2.10, we require that the length

of time an average photon is in the detector be smaller than the period of a gravitational wave. A

gravitational wave with fgw of 5 kHz will have a period of 200µs. A photon travelling 4 km to an

end mirror in a simple Michelson interferometer and reflecting back will take about 13µs. If the

condition in Equation 2.10 is not met, then the analysis problem of inferring h(t) from φ(t) is slightly

more complicated, since the integral in Equation 2.9 must be evaluated at all points.

2.2 Motivations for low frequency sensitivity improvement

Advanced LIGO’s low frequency sensitivity limit will be approximately 10 Hz; why is it useful to

suppress noise at lower frequencies? Several reasons exist. Section 2.2.1 through Section 2.2.3 will

describe astrophysical events that will be easier to detect with improved low frequency sensitivity.

Section 2.2.4 will discuss why reducing noise at frequencies below the LIGO low frequency limit

can prevent nonlinear up-conversion of noise that significantly contaminates data for transient

gravitational wave searches.
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2.2.1 Early part of neutron star / neutron star inspiral

One of the primary methods of extracting gravitational waveforms from the interferometer’s data

stream is known as matched filtering. The idea is to compare a numerical version of Equation 2.2

with measured data. If the template filter matches the data well, then the parameters chosen for

that template are correct for the astrophysical system. The complication is that a template must be

created for every set of parameter values to be checked, and we must be able to differentiate which

template matches the data with the highest fidelity.

To determine if a template matches the data, we evaluate

z(t) = 4
∫
∞

0

s̃( f ) h̃∗template( f )

Sn( f )
ei2π f t d f , (2.12)

where Sn( f ) is the one-sided strain noise power spectral density of the interferometer, h̃∗template( f ) is

the Fourier transform of a waveform template, and s̃( f ) is the calibrated output of the detector [14].

This implies that improving the detector sensitivity will increase the SNR of a candidate signal.

In particular, if the sensitivity at low frequencies is improved, template waveforms can be much

longer, which helps to constrain the astrophysical parameters that describe the signal in the data.

Another way to look at the improvement to be gained by lowering the low-frequency detection

limit is to determine how long a gravitational wave will be measurable in our detectors. If we define

a time to coalescence, τ, as the time it will take for a binary system orbiting currently at a frequency

fL to inspiral to the point of merger, we can write τ up to second post-Newtonian order [14] as

τ =
5

256ρ
GM
c3

(
v−8

L +
(743

252
+

11
3
ρ
)

v−6
L −

32π
5

v−5
L +

(3058673
508032

+
5429
504

ρ +
617
72
ρ2

)
v−4

L

)
, (2.13)

where

vL =
(GM

c3 fL
)1/3

. (2.14)

If fL is the lowest frequency that can be confidently detected, τ is the amount of time the signal

will be measurable (assuming that the merger happens within the bandwidth of the interferometer

– see Section 2.3). For the Advanced LIGO detection limit of fL ∼ 10 Hz, the inspiral of a pair of

1.4 M� neutron stars will be present in the detector band for the next 258 seconds. In contrast, Initial

LIGO with a low frequency detection limit of fL ∼ 40 Hz would only see the same inspiral for the

final 6.6 seconds before merger.

This increase in the time to coalescence is particularly useful in cases where we would like to

perform an electromagnetic counterpart follow-up. The sooner we can be confident of a detection

candidate, the sooner we can ask electromagnetic observatories to look at a localized point in the

sky. Low latency electromagnetic followup is especially useful for sources such as gamma ray
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bursts, supernova, etc.

2.2.2 Pulsars

Another interesting source for Advanced LIGO is pulsars. Pulsars emit beamed radiation, and as

they spin the beam is periodically pointed at Earth. The gravitational wave from a pulsar will be

a simple sine wave, although the signal detected will be modulated by the motion of the earth. At

this time, millisecond pulsars are the primary class of pulsars to which LIGO is sensitive. They are

often found in binary systems, where the partner star helps to spin the pulsar up to a frequency

detectable by LIGO. The Hulse-Taylor pulsar in system PSR1913+16 [17] was the first pulsar to be

found in a binary system.

While there are quite a few millisecond pulsars, there are many more that rotate at a slower

rate, with expected gravitational wave frequencies just below the LIGO band. Improving LIGO’s

sensitivity at low frequencies will allow us to detect a large quantity of gravitational waves from

pulsars. Since pulsars are an “always on” continuous source of gravitational waves, they can be

very useful for testing general relativity. If the measured gravitational wave (after correcting for

the amplitude modulation due to the detectors‘ antenna patter and the fact that the detectors are

moving through space) do not match the expected waveform, we can investigate the deviations as

potentially indicating modifications required to general relativity.

2.2.3 Intermediate mass black holes

Very few intermediate mass black holes (with masses in the range 50-106 solar masses) have been

observed, although there is evidence for one in Omega Centauri [18, 19]. Neutron stars have an

upper limit on their mass of about 3 M� [20], so if we detect an inspiralling system with masses

larger than this, they must be black holes. Stellar black holes are on the order of 5-50 M�, whereas

observed supermassive black holes are larger than about 106 M�, so black holes in between this

range are classified as intermediate mass black holes. Since supermassive black holes are thought

to come from mergers of intermediate-size objects, intermediate mass black holes are expected to

exist, despite the lack of observations.

Almost all intermediate mass black holes in a binary system will emit gravitational waves at

frequencies less than 10 Hz. However, since a gravitational wave detection with component masses

estimated to be on the order of an intermediate mass black hole would constitute a first observation

of a theoretically postulated astrophysical object, it is interesting to attempt to make the detectors

as sensitive as possible at these frequencies.
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2.2.4 Better background for unmodeled burst searches

While LIGO is certainly searching for binary inspirals and continuous wave sources, we are also

looking for unmodeled transient events. Such events could come from sources such as core-collapse

supernovae in our galaxy [21], soft gamma ray repeaters, neutron star collapse into a rotating

black hole [22], or others [23]. Glitches in the data stream from non-Gaussian events significantly

contaminate the background for these searches.

Below some frequency, which for Advanced LIGO will be around 10 Hz, it is not feasible to

improve the sensitivity enough to make detections at lower frequencies. However, it is useful to

suppress noise at frequencies lower than this limit in order to reduce the effect of upconverted

noise sources. Many non-linearities exist in physical systems, and they can be the cause of technical

glitches in the data. A common example of this from Initial and Enhanced LIGO is Barkhausen

noise in the ferromagnets used to actuate on LIGO’s mirrors [24]. Barkhausen noise occurs when

ferromagnets experience a change in the surrounding magnetic field [25]. Even though the external

magnetic field changes may be at low frequencies, the sudden flipping of magnetic domains causes

broad band high frequency changes in the amount of force between the magnet and a coil used

to induce the external field. If, in the absence of control, the mirrors’ displacement were reduced,

a smaller amount of control force will be required to hold the mirrors in position. This reduces

the required change in field surrounding the ferromagnets, which directly reduces the Barkhausen

effect.

Another up-conversion mechanism that is difficult to avoid is the spurious coupling of scattered

light back into the main interferometer beam. Because no surface is perfect, some amount of light is

scattered from each mirror surface. Some of this light can reflect off of vibrating surfaces nearby and

re-enter the readout path. The original mirror motion may have been at a low frequency, but it will

be bilinearly upconverted, which creates a broadband increase in the noise, up to a cutoff frequency

determined by the relative velocity between the mirror and the secondary surface. Reducing the

overall motion of the mirrors will reduce the amount of changing scattered light in the system, and

thus mitigate this broadband noise increase.

2.3 Motivations for mid-frequency sensitivity improvement

In the high-sensitivity region (which for Advanced LIGO will be roughly a few tens of Hz to a

few kHz), the interferometers are expected to be sensitive enough to detect gravitational waves,

however improving the sensitivity will enhance the confidence of any detection, and will also allow

more accurate estimates of the astrophysical parameters of the source.

For any typical binary system of compact objects, the highest frequency gravitational waves will

occur just before merger, when the objects are at their innermost stable circular orbit (ISCO). The
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frequency of this orbit is

fISCO =
c3

6
√

6πGM
, (2.15)

where M is the total mass of the system. For a pair of 1.4 M� neutron stars, fISCO ∼ 1.57 kHz.

However, for a pair of 10 M� black holes, fISCO ∼ 220 Hz.
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Chapter 3

LIGO interferometers

As discussed in Section 2.1, we can use laser interferometers as transducers to convert gravitational

wave displacement to phase information encoded in a laser beam. We then use various readout

techniques to extract this phase information. This chapter focuses on the Laser Interferometer

Gravitational wave Observatory (LIGO) methodology for these measurements, building up from

the core Michelson interferometer to the details of the design of Advanced LIGO. Chapter 4 describes

the LIGO 40 m Prototype Laboratory on the Caltech campus, which is used as a proof-of-principle

system for much of the work described later in this thesis.

3.1 Measuring gravitational waves

In principle, we could measure a gravitational wave’s effect on two test masses by monitoring the

change in distance between them. However, it is very difficult to manufacture such a system with

low enough noise as to actually measure gravitational waves. We use several techniques to reduce

the effect of technical noise sources.

3.1.1 Michelson interferometers

One of the first techniques that we use is a differential Michelson interferometer. The laser beam

(which will have a large amount of noise relative to the quantities that we want to measure) is

incident on a beam splitter (BS) that allows half of the light to transmit and reflects the other half.

The light travels in each direction some distance L[x,y], and is entirely reflected by a mirror called

an end test mass (ETM [X,Y]) back to the beam splitter. The notation of two variables in square

brackets indicates equivalent quantities for each of the two directions. The light is recombined at

the beam splitter and sent to the photodetector (PD). This setup is sketched in Figure 3.1. Note that

in practice, all of the optics will have losses and imperfections, so the beam splitter will not be a

perfect 50/50, and the end mirrors will not reflect 100 % of the light.
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Figure 3.1: Cartoon of Michelson interferometer.

The light sent down a single direction (or “arm”) will have to travel distance 2L[x,y], and will

accumulate some amount of phase φ[x,y] during the round trip from the beam splitter to the end

mirror and back. The original laser beam will also have some noise due to the laser itself and any

optical components before the beam splitter, which we can denote by φnoise. Thus, the total phase

from each arm just before recombination at the beam splitter will be

φ[x,y] total = φ[x,y] + φnoise. (3.1)

Gravitational waves are quadrupolar, so for a particular orientation relative to the interferometer

they will change the lengths of the arms differentially, stretching one arm while squeezing the other.

Half a cycle later the stretched and squeezed arms will be switched. At all but a few special

moments, the path lengths of the Michelson arms will be unequal,

Lx , Ly, (3.2)

which implies that the accumulated phase φ in the arms will also be unequal,

φx , φy. (3.3)

As derived in many introductory textbooks, such as [26], the power measurable at the antisymmetric
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photodiode (PD in Figure 3.1) will only be related to the difference in phase accumulation between

the arms

PPD
∝ sin2(∆φ). (3.4)

Since theφnoise is common to both arms, it is cancelled, leaving us only with the quantities of interest,

φ[x,y], which can be directly related to the change in optical path length of the arms. This elimination

of common mode noises is the prime reason for choosing to use a Michelson interferometer. Note

that while the gravitational waves can also make common mode length changes, we are sacrificing

our ability to measure this orientation to gain the significant benefit of common mode noise rejection.

In practice, we will use a control servo to force the differential length of the arms such that the

power detected at the photodiode is near zero. The force required to hold the mirrors in this state

is directly related to how much the mirrors would have moved in the absence of control.

3.1.2 Fabry-Pérot arm cavities

Since the gravitational wave signal is related to the strain δL
L of the distance L between the test

masses rather than just the absolute difference, we directly increase the sensitivity of the detectors

by increasing the length of the arms. However, it is cost prohibitive to make extremely long arms.

Instead, we increase the optical path length without increasing the physical distance between the

beam splitter and the end mirrors.

We do this by inserting an extra mirror in each arm between the beam splitter and the end mirror.

In Figure 3.2 we label the new optics input test masses (ITM [X,Y]). Here, the distance between the

new mirrors and the previous end mirrors is denoted L[x,y], while the shorter distance between the

beam splitter and the new mirrors is denoted l[x,y].

The addition of these extra mirrors creates Fabry-Pérot optical cavities in the arms of the Michel-

son. The Fabry-Pérot cavities increase the optical length of the arms by a factor

LFP

LMich
= 2F , (3.5)

where F is defined as the finesse of the Fabry-Pérot cavity,

F =
fFSR

2 fcav pole
≈
π
2

√
(rire)

1 − rire
. (3.6)

In Equation 3.6, fFSR is the frequency spacing between transmission peaks of the cavity, known as

the free spectral range, and fcav pole is the cavity pole frequency, which is defined as the half-width

of the transmission peak, at half of the maximum buildup. The free spectral range of the cavity
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Figure 3.2: Cartoon of Michelson interferometer with Fabry-Pérot arms.

depends on the geometry of the system,

fFSR =
c

2L
, (3.7)

where c is the speed of light and L is the distance between the cavity mirrors. The linewidth of the

cavity (which is twice the cavity pole) depends on the amplitude reflectivities (r[i,e]) of the input and

end mirrors used,

fcav pole =
c

4L
1 − rire

π
√

rire
. (3.8)

This shows that we can dramatically increase the effective length of the detector arms by making

the Fabry-Pérot cavity mirrors nearly perfectly reflective. Note that Equation 3.5 is based on the

increased storage time of photons in the Fabry-Pérot cavities, which is an average time. Some

photons may escape after only a few round trips, while others may remain in the cavity for much

longer. This means that the increased optical length of Equation 3.5 is an average over all photons

incident on the cavity.

As might be expected, there are some drawbacks to using this technique, so any interferometer

design must balance these against the benefit of the increased path length. One of the primary

requirements is that the arm cavities must be held on (or very close to) resonance. The light

reflected from the cavity back toward the beam splitter is only linearly related to the length of

the cavity when it is close to resonance. To hold the cavities on resonance, we use the canonical
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Pound-Drever-Hall technique, which requires the addition of phase modulated radio frequency

(RF) sidebands to the incident light [27]. See, for example, [28] or Appendix B, for a derivation of

this technique for a simple 2-mirror cavity.

Instead of individually controlling the 2 Fabry-Pérot arm cavities, we chose to make a basis

change and control the arms in differential and common modes. From Figure 3.2, we define the

differential arm length (DARM) as

L− =
Lx − Ly

2
(3.9)

and the common arm length (CARM) as

L+ =
Lx + Ly

2
. (3.10)

Similarly, the short Michelson has two similar degrees of freedom,

l− =
lx − ly

2
(3.11)

and

l+ =
lx + ly

2
, (3.12)

where l− is called the Michelson (MICH) degree of freedom, and l+ is uncontrolled.

We put a static offset in the MICH length l−, to take advantage of the Schnupp modulation

technique [29]. This allows some amount of light (particularly the RF sidebands) to always be

present at the antisymmetric port of the interferometer. If the arm cavity lengths change differen-

tially (for example, when a gravitational wave passes through the detector), the main carrier light

that is reflected from the arms will have a slightly different phase than if the cavities were perfectly

resonant. This phase modulation of the carrier light can be thought of as the addition of “signal

sidebands” on the light, analogous to the original RF sidebands.

The carrier field (including the signal sidebands) will exit the interferometer through the anti-

symmetric port, and beat against the static RF sideband fields. As with the more simple 2-mirror

cavity case, this beat creates amplitude modulations on the light, which are detected by the pho-

todiode. This signal is then demodulated at the original RF frequency, which results in a signal

with components only at the signal sideband frequencies [30]. In this way, we are able to hold the

mirrors stationary and infer what the length change due to a gravitational wave signal would have

been in the absence of control (assuming no noise sources). In contrast to the technique that will be

described in Section 3.2.4, this is a heterodyne technique.

Another drawback of the addition of Fabry-Pérot cavities to the interferometer is the decreased

detection bandwidth. The storage time of the cavities puts a high frequency limit on the signal
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sidebands that the detector is sensitive to. Derivations such as that shown in Chapter 2 of [31] give

the frequency response of an interferometer with Fabry-Pérot arms as

G(ω) =
2LΩ

c

sin( Lω
c )

Lω
c

  t2
i re

1 − rire

 ( e
−iLω

c

1 − riree
−i2Lω

c

)
, (3.13)

where Ω is the angular frequency of the laser.

When the interferometer includes Fabry-Pérot arm cavities, we typically use the difference in

cavity lengths as our gravitational readout signal.

Ideally, we would like to measure just the differential arm length L− at the photodiode (PD in

Figure 3.2), but any motion in the short Michelson’s l− will also show up at this photodiode. We can

calculate this coupling by determining what the electric field will be at the photodiode, and then

taking the derivative relative to either l− or L−. We compare these ratios to determine the relative

importance of a differential arm length change versus a differential Michelson length change.

Explicitly, we will use the calculation method described in [32]. Figure 3.3 is a copy of Figure 3.2,

but with the electric field at specific points in the interferometer labeled. Using the matrix formalism

for determining the fields everywhere in the matrix, we must write down the transfer matrix

M(from, to), where “from” and “to” are the indicies indicated in Figure 3.3. For each element in this

matrix, we need only write down how the electric field propagates from one point to another, in

the absence of all other fields. For simplicity, we assume that both input mirrors are identical, and

also that both end mirrors are identical.

We define the amplitude reflectivity r as

r =
√

R, (3.14)

where R is the fraction of power reflected from a mirror. Similarly, we define the amplitude

transmission t as

t =
√

T, (3.15)

where T is the fraction of power transmitted through the optic. Both r and t can be complex

numbers, and by convention we declare that the electric field will pick up a negative sign when

reflecting off of a highly reflective surface. In general, some amount of light is lost when a beam is

incident on a mirror; however, for simplicity here we assume lossless mirrors. To conserve the total

energy, we note that

R2 + T2 = 1. (3.16)



18

Ly

Lx

ly

lx

PD

Laser

ri, ti

re, te

rb, tb

E1

E2

E3

E4

E5

E6 E7 E8 E9

E10E11

E12

E13 re, teri, ti

Figure 3.3: Cartoon of Fabry-Pérot Michelson with notations for electric field at various points in
the interferometer, for use in calculating the coupling between length changes at different points in
the interferometer. E indicates the electric field at a given point, while r and t indicate the amplitude
reflectivity and transmissivity of the mirrors. Subscript b indicates the beam splitter, subscript i
indicates one of the (identical) input test masses and subscript e indicates one of the (identical) end
test masses.

We also note that light that travels a distance L will accumulate phase

φ = kL, (3.17)

where k is the wave number of the laser light,

k =
2π
λ
. (3.18)
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For the case shown in Figure 3.3, the transfer matrix will be

M =



0 −rbe−ikly 0 0 0 0 tbe−iklx 0 0 0 0 0 0

0 0 tie−ikLy 0 0 rie−ikly 0 0 0 0 0 0 0

0 0 0 te −ree−ikLy 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −rie−ikLy 0 0 tie−ikly 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 tb −rb

0 0 0 0 0 0 0 tie−ikLx 0 0 rie−iklx 0 0

0 0 0 0 0 0 0 0 te −ree−ikLx 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −rie−ikLx 0 0 tie−iklx 0 0

0 0 0 0 0 0 0 0 0 0 0 rb tb

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0



.

(3.19)

We assume that the only electric field input is from the laser at E1, so we construct a vector of initial

electric fields

Einput =



1

0

0

0

0

0

0

0

0

0

0

0

0



. (3.20)

The steady-state resulting electric field everywhere will be given by

Esteady−state =
(
1 −MT

)−1
· Einput, (3.21)

simplified by changing the basis from (x, y) to (+,−) by utilizing Equation 3.9 through Equation 3.12.

We are actually only interested in looking at the field at the detection port, which we have defined

as element number 12 in Figure 3.3. To determine the response of the field at E12 ≡ EPD
steady−state due
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to length changes, we will take the derivative with respect to L− and also with respect to l−. Taking

the ratio of these sensitivities gives us the coupling factor between MICH and DARM,

Coupling =
MICH Sensitivity
DARM sensitivity

=

∂
∂l−

EPD
steady state

∂
∂L−

EPD
steady state

=
(1 − rire) (ri − re)

re

(
1 − r2

i

) . (3.22)

For input test masses of transmission Ti = 1.4% and end test masses of transmission Te = 15 ppm,

this coupling ratio is approximately 3.5 × 10−3.

Note that the Michelson has a flat frequency response, but the DARM degree of freedom will

have a cavity pole ( fcav pole), so the frequency-independent coupling factor in Equation 3.22 is valid

from DC up to the cavity pole frequency.

As with the simple Michelson, we do not use the CARM degree of freedom to measure grav-

itational waves. However, since we assume that the long arm cavities provide a stable length

reference, we can use the CARM error signal to feedback to and stabilize the laser frequency.

3.1.3 Power recycling

To further improve the sensitivity of the interferometer to gravitational waves, LIGO also uses

“power recycling”. An extra mirror is placed between the laser and the beam splitter at the

symmetric port, as shown in Figure 3.4. We refer to this power recycling mirror as the PRM, and

define the length of this cavity as

lPRCL = lp + l+, (3.23)

where l+ is defined in Equation 3.12 and lp is the distance between the PRM and the beam splitter.

The idea behind power recycling is that any true differential-mode gravitational wave signal will

exit through the antisymmetric port to the photodetector, and all other light will be reflected back to

the laser at the symmetric port. Instead of dumping and losing this light, we recycle it by sending

it back into the interferometer. This has the effect of illuminating the beam splitter with more light,

and is roughly equivalent to increasing the laser power.

If, at high frequencies, the sensitivity of the interferometer is limited by photon counting shot

noise, power recycling will improve the signal-to-noise ratio. The increase in light power in the

detector implies that, for the same gravitational wave signal, more photons will arrive at the

photodetector. Averaging over more photons decreases the overall noise level due to shot noise.

Obviously we cannot change the interferometer’s topology without altering the effect of signals

at the various locations in the detector. However since power recycling affects the entire interfer-

ometer in the same way (i.e., it is a common-mode change), it will only reduce the bandwidth of the

symmetric mode, leaving the antisymmetric bandwidth unchanged, as can be seen in Figure 3.5.

As discussed in Section 3.1.1, we chose to only look at the gravitational wave signal at the antisym-
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Figure 3.4: Cartoon of power recycled Fabry-Pérot Michelson interferometer.

metric port, so this loss of common mode bandwidth does not affect the ability to detect signals

at higher frequencies. Overall, the addition of the power recycling mirror allows us to reduce

the sensitivity to laser and other common mode noises while maintaining the same sensitivity to

gravitational waves (and any differential mode noises).

Due to the non-zero difference in the path between the beam splitter and the two input test masses

(lx , ly and rITMX , rITMY), there will be some amount of signal that appears at the photodiode as

a result of PRM motion. The DARM degree of freedom will see this coupling as a noise, so

it is beneficial to understand the level of the noise. We can use the same method described in

Section 3.1.1; however, as the calculation becomes more complicated it becomes useful to utilize

programs such as Optickle [33] which will also include the frequency response of the system. For

the parameters that are listed in Table 4.3 and Table 4.4 for the Advanced LIGO design, the response

to either DARM motion or PRCL motion at the photodiode is shown in Figure 3.6.

3.1.4 Initial and Enhanced LIGO noise

Overall, these things made Initial LIGO meet design sensitivity, as proposed in 1989 [34]. Several

enhancements within the then-current infrastructure improved the sensitivity by a factor of about

2 at high frequencies. These upgrades included higher laser power, better thermal adaptive optics,

and an optical cavity to filter the output beam.

The laser power was increased in order to further improve the high frequency sensitivity of
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Figure 3.5: Comparison of the common mode (CARM) and differential mode (DARM) transfer
functions between ETM motion and the detection photodiode in the Fabry-Pérot Michelson (FPMI)
configuration versus the power recycled Fabry-Pérot Michelson (PRFPMI) configuration. The com-
mon mode bandwidth is reduced, while the differential mode bandwidth is unchanged, although
the overall sensitivity is increased for both. Note that these traces reflect 40 m Lab parameters,
although the relative change from FPMI to PRFPMI is similar for Advanced LIGO.

the interferometer, which is limited by the photon counting noise as described in Section 3.1.3.

Since our mirrors are not perfectly reflective, this increase in laser power (by about a factor of

3.5 in design, although only a factor of 2 in practice) required an improvement in the thermal

compensation system. The mirrors absorb some fraction of the energy in the laser beam, which

heats up the mirrors. This causes an alteration in the physical shape of the mirrors, as well other

optical properties of the mirrors [35], which changes the phase accumulated by the light as it

circulates in the arm cavities. These effects are mitigated with the Thermal Compensation System

(TCS) [36].

The final change between the Initial and Enhanced generations of the LIGO interferometers was

the move from RF sensing to DC sensing of the power at the antisymmetric port. This required the

addition of an optical cavity at the output port known as the Output Mode Cleaner (OMC), which

will be described in more detail in Section 3.2.4.

The overall sensitivity of the LIGO detectors, for both the Initial and Enhanced generations is

shown in Figure 3.7, as compared to the original design sensitivity. The Initial LIGO sensitivity

is represented by the curve from the 5th Science Run (S5), taken in 2006. The Enhanced LIGO

sensitivity is represented by the curve taken in 2010 from the 6th Science Run.
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Figure 3.6: Coupling of PRCL and MICH degrees of freedom to DARM, in the PRFPMI configura-
tion. Note that these traces reflect 40 m Lab parameters, although the overall shape is similar for
Advanced LIGO.

Figure 3.7: Measured sensitivity of Initial LIGO (“S5”) and Enhanced LIGO (“S6”). Data from [37].
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3.2 Increasing measurement sensitivity: Advanced LIGO

After LIGO’s sixth science run was completed in 2010, the interferometers were decommissioned

for the installation of new Advanced LIGO hardware. Advanced LIGO is comprised of a set of

improvements that are implemented in the original LIGO infrastructure, and are expected to provide

a broad-band sensitivity improvement of about a factor of 10 compared to Initial LIGO [38].

3.2.1 Signal recycling

One of the most dramatic changes between Initial / Enhanced LIGO and Advanced LIGO is the

addition of a so-called signal recycling mirror (SRM). This auxiliary mirror is placed at the detection

port of the interferometer, as shown in Figure 3.8. In the case where a signal recycling cavity

(SRC) is added to an interferometer that already includes power recycling, the interferometers are

referred to as “dual recycled” Fabry-Pérot Michelson interferometers. The length of this new cavity

is defined as

lSRCL = ls + l+, (3.24)

where ls is the distance between the SRM and the beam splitter, and l+ is as defined in Equation 3.12.
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BS
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Figure 3.8: Cartoon of dual (power and signal) recycled Fabry-Pérot Michelson interferometer.

This signal recycling cavity can be utilized in one of two ways, either for true signal recycling,

or for resonant sideband extraction. In the signal recycling case, the SRC is controlled such that the
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main carrier light is anti-resonant. This has the effect of amplifying the low frequency components

of the gravitational wave signal, but comes at the cost of reducing the detector bandwidth. LIGO

does not use this technique.

Rather, we utilize resonant sideband extraction (RSE), where the SRC is resonant for the carrier

light. This reduces slightly the low frequency detection gain, but increases the detector’s bandwidth.

Figure 3.9 shows the effect of adding a resonant signal recycling cavity to an already power recycled

interferometer. A key benefit of this technique is that this bandwidth improvement does not require

increased light power incident on the mirrors, which reduces the need for thermal compensation.

See [39] for a more thorough discussion of the RSE technique.

Figure 3.9: Comparison of the common mode (CARM) and differential mode (DARM) transfer
functions between ETM motion and the detection photodiode in the power recycled Fabry-Pérot
Michelson (PRFPMI) configuration versus the dual recycled Fabry-Pérot Michelson configuration
(DRFPMI). The common mode bandwidth is unchanged, although the differential mode bandwidth
is increased. Note that these traces reflect 40 m Lab parameters, although the relative change from
PRFPMI to DRFPMI is similar for Advanced LIGO.

Regardless of whether the SRC is resonant or anti-resonant for the carrier light, the addition of an

extra optical cavity requires that we add an extra set of radio frequency sidebands for control. Also,

this auxiliary length degree of freedom will couple to the gravitational wave detection channel,

much like Michelson and power recycling coupling described in Section 3.1.2 and Section 3.1.3.

Figure 3.10 shows the coupling factors between all of the short length degrees of freedom to the

differential arm, in the dual recycled RSE configuration. As in Figure 3.6, these are the ratios of

sensitivity at the detection port to change in the length of one of the short degrees of freedom to the
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differential arm length change.

Figure 3.10: Coupling of PRCL, SRCL and MICH degrees of freedom to DARM, in the DRFPMI
configuration. Note that these traces reflect 40 m Lab parameters, although the overall shape is
similar for Advanced LIGO.

3.2.2 Improved seismic isolation

One of the most significant infrastructure changes between Initial LIGO and Advanced LIGO is the

improvement in low frequency seismic isolation. The limiting noise at low frequency for ground

based gravitational wave detectors has always been ground motion, so improvement in the isolation

will be directly related to lowering the low frequency detection limit.

While the Initial LIGO mirrors were all suspended with single stage pendula, Advanced LIGO’s

test mass mirrors are all quadruple stage pendula, one of which is shown on the left in Figure 3.11.

Some auxiliary mirrors, such as the beam splitter, will only use triple stage pendula, since their

motion does not couple as strongly to the detection port. Since each pendulum stage increases

the isolation by a factor of 1
f 2 above the resonance frequency, the additional stages significantly

improves the sensitivity of the detector. The right side of Figure 3.11 illustrates this improvement

for a set of simplified multi-stage pendula. Note that at the resonant frequencies of the additional

stages some isolation is lost, although at 10 Hz the quadruple pendulum offers a factor of 106 more

isolation than the single pendulum. While it would be conceptually simpler to increase the length

of a single pendulum rather than adding extra stages, a single pendulum would need to be a factor

of 1012 longer to achieve the same isolation improvement, which is clearly impractical.
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3 
 

 
 
Figure 1. Drawing of quadruple pendulum with quadruple reaction pendulum hanging behind it. The 
coordinate system is also indicated. 
 
2. Mechanical design 
 
The overall mechanical design may be considered as having three elements: the 
suspended masses, the structure surrounding the chains, and the auxiliary components. 
Horizontal isolation is provided by the natural pendulum action; vertical isolation is 
provided in large part by soft blade springs which introduce significant vertical 
compliance. Figure 2 shows a drawing of the quadruple pendulum in its support structure 
with the reaction chain hanging behind it.  
 
2.1 General requirements 
 
Requirements for all of the suspension parts included vacuum compatibility which, given 
the target vacuum levels of approximately 10-9 Torr, meant that components had to be 
metal or ceramic in nearly all cases, and placed strict requirements on the design and 
manufacturing processes to avoid trapped volumes and ensure any contaminants could be 
cleaned off. Where the use of elastomers could not be avoided – in the earthquake stops 
and in the clamps used for electrical wiring - we used a custom fluoroelastomer.  

1
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Figure 3.11: Left: Diagram of Advanced LIGO quadruple pendulum and reaction chain (Figure 1
from [40]). Right: Comparison of frequency response of example single stage, double stage, triple
stage and quadruple stage pendula. The resonant frequencies for these example pendula have been
chosen to be the same. Note that each additional pendulum stage changes the slope of the response
at high frequencies (above 10 Hz) by an extra factor of 1

f 2 .

In addition to the passive seismic isolation provided by pendula, Advanced LIGO also incorpo-

rates active isolation. Initial LIGO in-vacuum optical tables were comprised of stacks of rubber and

metal, which provided passive isolation. However, Advanced LIGO optical tables are supported

by internal seismic isolation (ISI) tables that are loaded with sensors and actuators. These give

the tables the ability to provide local damping beyond what the passive tables could achieve. As

a prototype, one of these active tables was included in Enhanced LIGO for the output optics, but

for Advanced LIGO every table is now equipped with the suite of sensors and actuators (see, for

example, J. Kissel’s thesis [41]).

In addition, the out of vacuum supports for the optical tables have also been upgraded. Initially,

each table was supported by a set of piezo actuators; however, for Advanced LIGO these have been

changed to longer-range hydraulic actuators [42]. Note that the ground motion at the Livingston,

Louisiana site was large enough that these hydraulic external pre-isolators (HEPI) were installed

during Initial LIGO, however the Hanford, Washington site just installed them for Advanced LIGO.

This set of active seismic isolation equipment primarily isolates the optics between 0.1 – 10 Hz,

which adds significantly to the overall immunity to ground noise.
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3.2.3 Increased laser power

The fundamental quantum noises that most closely limit the LIGO sensitivity curve are both related

to the power of the main laser (more specifically, the power stored in the Fabry-Pérot arm cavities,

which is related to the main laser power). At higher frequencies, the quantum limit is dominated

by photon shot noise, which is a consequence of the discrete nature of photons. The gravitational

wave signal is directly proportional to Nphotons, but because the photons follow Poisson statistics,

the uncertainty will go as
√

Nphotons, so the overall signal to noise ratio at frequencies dominated

by shot noise will improve with
√

Nphotons.

A drawback to increasing the laser power is that the force due to radiation pressure exerted by

the photons bouncing off the mirrors scales directly with the laser power,

Frad press =
2P
c
, (3.25)

where P is the power of the laser incident on the mirror. The fluctuation of photon number (so,

power incident) with time creates a frequency-dependent noise spectrum. This is particularly

significant for angular control of the cavities, where the torque due to radiation pressure is

τrad press =
2Pd

c
, (3.26)

where d is the distance that the beam spot is mis-centered on the optic. This is counter-acted by the

natural pendulum torque,

τpend = αIω2
pend, (3.27)

where α is the angle of the pendulum with respect to its resting position, I here is the moment

of inertia of the mirror and ωpend is the angular resonance frequency of the angular mode of the

pendulum. Large ratios of
τrad press

τpend
can cause large changes in the resonant frequency ωpend, which

can make angular control of the interferometer more difficult [43].

Increasing the laser power also affects the radius of curvature and other optical properties of the

mirrors, due to the finite absorption of energy of the mirrors [35].

Figure 3.12 shows the trade-off between radiation pressure noise at low frequencies and shot

noise at higher frequencies as the laser power is increased (dashed traces). We must make a choice to

balance the positive and negative effects of increasing the laser power, and design all other elements

of the detector (where possible) to introduce less technical noise than the fundamental quantum

noise. Note that at low frequencies the overall detector sensitivity (solid traces) is not limited by the

radiation pressure noise. As we will see in Section 3.2.5, seismic and other noise sources dominate

the overall sensitivity below about 20 Hz.
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Figure 3.12: Advanced LIGO sensitivity as a function of input laser power, calculated using the
LIGO Collaboration’s Gravitational Wave Interferometer Noise Calculator, GWINC.

3.2.4 Output mode cleaner

Advanced LIGO also uses a significantly different method for reading out the gravitational wave

information from the interferometer than Initial LIGO. While Initial LIGO utilized a heterodyne

readout scheme (described in Section 3.1.2), Advanced LIGO will use a homodyne configuration.

Although originally planned for Advanced LIGO, this system was implemented in Enhanced LIGO

and proved to be very successful, as discussed in N. Smith [30] and T. Fricke’s [44] theses.

Rather than comparing the effect that the gravitational wave has on the arm cavities with the non-

resonant RF sidebands, we use the light reflected from the arm cavities as the reference. The DARM

degree of freedom is detuned very slightly to allow some carrier light to leak to the antisymmetric

port. When a gravitational wave passes through the detector, the amount of light reflected from

the arm cavities will be modified. We detect this change in light power at the antisymmetric port

directly, without having to demodulate the photodiode signal (which is required in the heterodyne

detection scheme).

In addition to simplifying the readout electronics, this method has several other advantages.

The carrier light is resonant in the arm cavities, and so is filtered by the CARM coupled cavity pole,

which eliminates high frequency noise. This filtered light is used as the reference for comparison

with the gravitational wave signal, so the detection will be lower noise by a factor of the cavity

transfer function. Also, in order to get the maximum amount of signal at the photodiode, the
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reference beam and the signal beam must be perfectly co-aligned. With the heterodyne readout,

the RF sidebands are not resonant in the arm cavities, and so can have slightly different alignment

than the main carrier light. However, in the homodyne scheme, since we are comparing the arm

cavity light with itself, the beams are inherently co-aligned.

While the advantages to the new readout scheme are significant, additional hardware is required

to realize the full benefit of the method. Since we are just detecting the power differences at the

photodiode, any light which is not the main carrier light directly causes extra noise. This can include

extra RF sideband light that does not contain information about the gravitational wave signal, but

does contribute to the shot noise level. It can also include higher order transverse mode light at the

main carrier frequency, which is not resonant in the arms, so it again contributes only to the shot

noise level.

To eliminate these noises, an extra filter cavity is added between the signal recycling mirror and

the photodiode. This output mode cleaner (OMC) is resonant only for the main carrier light, and so

removes the RF sidebands and any higher order transverse modes of the light. This additional cavity

requires another set of length and angular controls, but is critical to the success of the homodyne

readout scheme [30, 44].

3.2.5 Total Advanced LIGO noise

As part of making our design choices for all of the systems described in this chapter, we calculate

what effect we expect each component to have on the final detector sensitivity. Figure 3.13 shows

a plot of the result of these calculations made using the LIGO collaboration’s Gravitational Wave

Interferometer Noise Calculator (GWINC), for the dominant noise sources in the Advanced LIGO

design. The purple trace is the quantum noise, as discussed in Section 3.2.3. The brown curve is the

effect of direct seismic vibrations after passing through all of the stages of seismic isolation, including

the suspensions described in Section 3.2.2. The green trace is the estimated noise contribution from

Newtonian gravitational forces, which will be discussed in much more detail in Chapter 6. The blue

and red curves are the effects of thermal noise on the suspension wires supporting the mirrors, and

on the reflective optical coatings. Finally, the black trace is the total expected noise for Advanced

LIGO.
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Figure 3.13: Advanced LIGO noise budget calculated by GWINC.



32

Chapter 4

The 40 m Prototype Interferometer

The 40 m interferometer was first constructed on the Caltech campus in the early 1980’s. It was the

first fully operational large-scale gravitational wave interferometer, although it never successfully

detected gravitational waves. The 40 m underwent several upgrades throughout the years, often to

improve the ability to prototype new technologies for future gravitational wave detectors.

In the 2000’s, the 40 m added a signal recycling mirror, and became the first suspended interfer-

ometer to operate with dual recycling (signal and power recycling) in addition to Fabry-Pérot arms.

Tabletop work had been pioneered previously, as described in K. Strain, et al. [45]. See R. Ward’s

thesis [39] for details on the configuration of the 40 m’s detuned resonant sideband extraction

interferometer.

In 2010, the 40 m was upgraded once again with dichroic optics, to test a new controls scheme,

known as Auxiliary Length Stabilization for the arm cavities. With this configuration, we were able

to show that this “green locking” method was promising for Advanced LIGO [46, 47]. Other changes

made, to reflect the updated Advanced LIGO design, included the use of lower frequency RF

modulations, and operating with broadband resonant sideband extraction. The lower modulation

frequencies necessitated longer power and signal recycling cavities. Fitting these longer cavities

into the existing vacuum system required the use of folding mirrors. The consequences of adding

these folding mirrors will be discussed in Section 4.3.

Particularly after the challenges discovered with the addition of the signal recycling mirror,

the 40 m Interferometer has focused on prototyping controls schemes for Advanced LIGO-like

configurations. Our goal has been to commission and learn how to acquire full resonance and

control for a dual recycled Fabry-Pérot Michelson interferometer, and to use the facilities as test bed

for new controls techniques.

While the 40 m interferometer is designed to be Advanced LIGO-like in its controls and com-

plexity thereof, it is not a full noise sensitivity prototype, and does not have all of the features of a

full Advanced LIGO interferometer. Most obvious, the arm length of the 40 m is roughly 1 % that

of the 4 km LIGO sites’. However, that is not the only significant difference. The 40 m has single
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loop optic suspensions, which sit on passive seismic isolation tables. The single loop suspensions

are the same as several input and auxiliary optics in Initial LIGO [48]. The passive seismic isolation

stacks were discussed in J. Giaime’s thesis [49]. This combination of isolation implies that the 40 m

is not as well seismically-isolated as Advanced LIGO.

The configuration of the 40 m interferometer is illustrated in Figure 4.1. The beam from the

main laser (far left of diagram) is injected into the vacuum system (not depicted) and resonates

in the input mode cleaner, the triangular ring cavity comprised of mirrors MC1, MC2, and MC3.

Photodiodes MC REFL and WFS provide error signals, while MC TRANS provides information

on the power buildup in the cavity. Light transmitted through the mode cleaner passes through a

Faraday isolator, and then through mode matching and input steering optics (not shown) before

approaching the power recycling mirror (PRM). Light reflected from the interferometer will be

directed by the Faraday isolator to the reflection port of the interferometer where four resonant RF

photodiodes are located. These photodiodes are labeled “REFL” and differentiated by their resonant

frequency, f1 = 11 MHz, f2 = 55 MHz, 3f1 = 33 MHz, and 3f2 = 165 MHz. These photodiodes will

provide error signals for many of the length degrees of freedom for the interferometer.

After the mode matching and input steering optics, the main beam passes through the PRM,

reflects off of two folding mirrors (PR2 and PR3) and is incident on the main beam splitter (BS). Some

amount of light leaks through PR2 and goes to the pickoff port of the power recycling cavity (known

as “POP”). At the POP port we have several photodiodes as well as a DC quadrant photodiode. The

“POP 2f” photodiodes will provide information on the RF sideband buildup in the power recycling

cavity, independent of the resonant condition of the main laser frequency in any cavity.

The main beam is split at the beam splitter and half of the light is directed to each long Fabry-

Pérot arm cavity. For each arm cavity, the beam transmits through an input test mass (ITMX or

ITMY) and propagates toward the end test mass (ETMX or ETMY). Light reflected off of each ITM

goes to a pickoff photodiode (POX or POY), which can be used to generate a length error signal

for their respective individual Fabry-Pérot cavities. Light that leaks through the end test masses is

directed toward DC photodiodes to monitor the power buildup in the arm cavities.

Light returning from the arm cavities toward the beam splitter will either go to the REFL port or

to the anti-symmetric side of the BS. Light on this side of the BS reflects off of two folding mirrors in

the signal recycling cavity (SR2 and SR3) and then is incident on the signal recycling mirror (SRM).

Light transmitted through the SRM is incident on a set of photodiodes at the anti-symmetric (AS)

port. AS f2 = 55 MHz provides error signals for differential length degrees of freedom, while AS

2f2 = 110 MHz provides information on the RF sideband buildup in the signal recycling cavity.

At the ends of the interferometer, auxiliary laser beams are passed through second harmonic

generation (SHG) crystals which are used to generate light at half the original wavelength, creating

green 532 nm light from the infrared 1064 nm pump light. The green beams are locked to the arm
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cavities with error signals from the photodiodes REFL X and REFL Y for each arm. Note that the

green beam resonant in the cavity will be colinear with the infrared beam, although they are shown

slightly translated for clarity in the diagram. The main beam splitter is mostly transparent to the

green light, as are the folding mirrors PR3 and SR3. This allows green light transmitted from each

arm cavity to pass out of the vacuum system to a broadband photodiode (either BEAT X or BEAT Y).

A small amount of light is also picked off from the main laser and frequency-doubled to generate

green light, which is then used to create a beatnote with the light from either arm cavity.

Further details on the use of each group of components can be found in the text of Chapter 4.
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Figure 4.1: Schematic (not to scale) layout of the 40 m Lab’s optical components. Note that the
topology is similar to Advanced LIGO (and Figure 3.8), and has many of the same sensors and
actuators. To-scale configuration of the 40 m Lab, including all optical components, is shown in
Appendix C. Parameters for the 40 m interferometer are in Table 4.3 and Table 4.4.



35

4.1 Input optics

The light source for the 40m is a 2 W, 1064 nm Innolight Nd:YAG laser (nicknamed “Edwin”),

labelled “Laser” in Figure 4.1. The laser beam transmits through a pre-mode cleaner (PMC, not

shown), which rejects non-fundamental transverse modes of the beam. The PMC at the 40m is the

same as those used in Initial LIGO, with round trip length 42 cm, and cavity finesse 700 [50, 51].

Following the PMC but prior to entering the vacuum system, the beam passes through an electro-

optic modulator (EOM, not shown). An oscillatory voltage is applied across the crystal, which then

introduces phase modulation to the beam at the frequency of the voltage applied. At the 40m, we

apply modulations at 3 frequencies with this EOM, using a custom designed resonant circuit to

amplify the frequencies 29.5 MHz, 11 MHz and 55 MHz. The 11 MHz, and 55 MHz frequencies will

be used to acquire and maintain control of the interferometer, as discussed in Section 4.4.

The 29.5 MHz frequency is used to control the first in-vacuum cavity, the input mode cleaner

(MC). The MC is a triangular ring cavity consisting of 2 flat mirrors (MC1 and MC3 in Figure 4.1)

and one curved mirror (MC2). The round trip length of the MC cavity is approximately 27 m and it

has a finesse of 1460. The precise value of the 11 MHz sideband frequency is chosen to be maximally

transmitted through the MC to the rest of the interferometer.

The cavity length error signal is detected using the same type of PDH signal mentioned in

Section 3.1.2. The 29.5 MHz sideband frequency is anti-resonant and so completely reflected from

the cavity. Any carrier light that is reflected from the cavity is compared to this local oscillator,

and the phase difference between them is detected using the “MC Refl” photodiode, and contains

information about how far the cavity length is from resonance.

We also apply angular control to the mode cleaner cavity. We utilize two radio frequency

resonant wavefront sensors (WFS in Figure 4.1) as well as a DC quadrant photodiode in transmission

(MC Trans). These three diodes are used to feed back to all 3 mirrors, which holds the alignment of

the cavity stable, and thus the input beam to the interferometer is also stabilized.

In addition to further filtering the transverse mode of the laser beam (by only resonating and

transmitting the fundamental mode), the MC is also used for frequency stabilization of the laser.

The MC is in vacuum on passive seismic isolation stacks, and each mirror is suspended, so the

length of the cavity should be changing very little, particularly above a few Hz. Rather than

actuating on the cavity mirrors to maintain laser resonance, the frequency of the laser is changed.

At low frequencies we change the temperature of the laser crystal, which allows for long range slow

actuation. At higher frequencies we use a PZT to actuate on the length of the laser crystal. This is

capable of much faster actuation, but has a smaller range than the temperature actuation.

Following the mode cleaner, the laser beam passes through the Faraday isolator, which is used

to pick off the backwards travelling light returning from the interferometer. This picked-off light
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is sent to the “Refl” suite of photodiodes as shown in Figure 4.1, which will be discussed in more

detail in Section 4.4.

4.1.1 Input mode matching

The laser beam profile required for resonance in the input mode cleaner is much different from what

is required for the full interferometer. Here we describe the use of Monte Carlo simulations in the

design of a telescope to transform the beam exiting the input mode cleaner to one that will resonate

in the main interferometer. The Monte Carlo is used to determine which potential solution will

be most insensitive to errors in the placement of optics, or in the radii of curvature of the non-flat

optics. In a situation with poor matching between the actual beam and the ideal beam incident

on the interferometer, it would be much easier for a higher-order transverse mode of the beam to

become resonant in the cavities, which can cause significant distortions to the length error signals.

Thus, a mode matching solution that is robust against errors is highly desirable.

The profile of a beam can be described at any point z along its path by the complex beam

parameter

q(z) = z + iZR, (4.1)

where ZR is the Rayleigh range of the beam and z = 0 is the location of the waist of the beam. The

Rayleigh range is defined as

ZR =
πw2

0

λ
, (4.2)

where λ is the wavelength of the light, w(z) is the radius at which the amplitude of the electric field

of the beam is 1
e times the axial value, and w0 = w(0) is the minimum beam radius, known as the

“waist” of the beam. For the ideal profile that will resonate in a Fabry-Pérot cavity with only one

curved mirror we can find that

ZR = L

√
RoC

L
− 1, (4.3)

where L is the length of the cavity and RoC is the radius of curvature of the non-flat mirror. From

q(z) we can extract the radius w(z) of the beam and the radius of curvature of the phase front R(z)

at any point along the path,
1

q(z)
=

1
R(z)

−
iλ

π [w(z)]2 . (4.4)

A mode matching telescope was designed to match the qincident of the beam coming from the

mode cleaner with the ideal qcavity of the arm cavities. To do this the ray tracing “ABCD” matrices [52]

describing the optical path from the mode cleaner to the ITMs were expressed, with the distance

elements as variables. Where possible, realistic descriptions of the optical components were used,

e.g., the propagation through mirrors’ substrates, and changes in the effective radius of curvature
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of interfaces that have different indices of refraction. See Chapter 15 of Siegman [52] for details on

realistic ray tracing matrices. For a fixed choice of two curved mirrors to be placed in the path, the

distances between the optics were optimized (using Matlab’s standard fminsearch) to minimize the

difference between qincident and qcavity.

A goal of the new mode matching telescope (in contrast to the one which was used for the

previous detuned RSE experiment) was to utilize off-the-shelf spherical mirrors rather than specialty

off-axis parabolic mirrors. Since, for spherical mirrors, the effective radius of curvature of the mirror

is modified by the angle of incidence of the laser beam differently for the sagittal and tangential beam

axes, we would like to minimize the potential astigmatism by minimizing the angle of incidence

of the beam on these mirrors. This implies that the distance between adjacent mirrors should be

relatively long.

For every combination of a pair of off-the-shelf available mirrors, the distances between mirrors

was optimized. Cases where the distances required would not realistically fit within the 40m’s vac-

uum envelope were discarded. All non-excluded cases were put through a Monte Carlo simulation

to estimate the sensitivity of the mode matching to misplacement of the mirrors or imperfections in

the radius of curvature of any curved optic.

The variable parameters are each allowed to change in the Monte Carlo by some amount chosen

from a normally distributed random number. For the telescope curved mirrors’ radii of curvature,

one standard deviation is set to be ± 0.5 %, the specification given by the manufacturer. The radius

of curvature of the custom power recycling mirror (which the beam must pass through) is given

a standard deviation of ± 5 m. The ideal positions of each optic is also allowed to vary, with a

standard deviation of ± 4 mm.

For each set of perturbed radii and positions, the mode overlap integral between the beam

incident from the mode cleaner through the optical path and the ideal arm cavity mode is calculated.

The mode mismatch η resulting from this integral is given by

η = 4

√√√√√ ZR;x ZR;y Z2
R;a(

z2
w;x +

(
ZR;a + ZR;x

)2
) (

z2
w;y +

(
ZR;a + ZR;y

)2
) , (4.5)

where ZR is the Rayleigh range defined in Equation 4.2, for either the astigmatic beam (x and y

for the tangential and sagittal axes) or the ideal arm mode and zw is the difference in locations of

the waist position in the incident beam versus the ideal arm mode. We consider the two axes of

the incident beam separately in order to account for the astigmatism caused by the non-normal

angle of incidence on the curved telescope mirrors. See K. Arai’s document [53] for a derivation of

Equation 4.5.

The Monte Carlo simulation for each pair of curved telescope mirrors performs 30,000 iterations,
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and creates a histogram of the mode mismatch, (1− η) = δPower
Power . An example histogram is shown in

Figure 4.2.

Figure 4.2: Example mode mismatch histogram from Monte Carlo simulation. Narrower histograms
clustered toward the δP

P = 0 point indicate excellent mode matching despite errors in optic placement
or optic radius of curvature.

This Monte Carlo simulation method is similar to numerically determining the diagonal elements

of the Hessian matrix for η. Visually, we can create a hyper-ellipsoid where each axis represents η’s

sensitivity to a different parameter. In the end, we will choose the solution with the smallest volume

ellipsoid, indicating that it is robust against errors in optic placement or radius of curvature. We

note from this analysis that the most sensitive parameter for this situation is the distance between

the two curved mirrors, which indicates that special care should be taken to accurately place the

optics the correct distance apart. Conversely, the mode matching is very insensitive to the location

along the optical path that the telescope is placed, so we have more freedom in this dimension.

We conclude that we may misplace any optic by as much as 10mm, and still have a high

probability of having excellent mode matching. We expect that we should be able, by using

reasonable rulers, to place the optics within ∼2mm or so, so we should have no trouble getting very

good mode matching into the interferometer.

Figure 4.3 shows the beam radius profile expected from our chosen mode matching solution, for

which the value of η is calculated to be 99.9%. The vertical line indicates the ideal waist location for

the arm cavity profile. For this final configuration, the first curved mirror (MMT1) has a radius of

curvature of -5 m located 1.9282 m from the mode cleaner, while the second curved mirror (MMT2)
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has a radius of curvature of +8 m and is located 1.8760 m from MMT1.

Figure 4.3: Ideal beam profile plot for our final design choice. Here 0 m is defined as the location of
the mode cleaner waist.

Figure 4.4 shows the measured profile of the beam after the second curved mode matching

mirror, as compared to the ideal beam profile. Here, the ideal beam profile does not include

transmission through the power recycling mirror or other following optics, since the measurement

was performed before those optics in the path. With this measured beam profile, the estimated

mode matching to the interferometer is η = 99.3%.

Figure 4.4: Measured mode profile of beam after the mode matching telescope, before power
recycling mirror. Points at 27 m and 37 m are excluded from the fit, since they were clipping the
aperture of the beam scanner, and so the beam radius measurement was not reliable [54]. Estimated
mode matching to the interferometer is η = 99.3%. Here 0 m is defined as the location of the second
curved mirror in the mode matching telescope.

4.1.2 Input pointing tilt versus translation orthogonality

When determining how to lay out the optical path from the mode cleaner to the interferometer,

another consideration was the ability to steer the input beam. In order to take advantage of our

careful mode matching, we must match the laser beam’s axis to that of the long arm cavities.
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The axes each have four degrees of freedom: angle and translation, in both the tangential and

sagittal planes. Ideally, our input steering would be able to actuate on the angle and translation

of the input beam independently, however this is difficult to do in practice. To maximize the

separation between these two degrees of freedom, we want the matrix describing the sensitivity of

beam motion to angular actuation to be non-degenerate so that it can be inverted to create a control

matrix.

Intuitively, we know that the steering optics should be far apart in the optical chain. Since the

steering optics will be flat mirrors, we are free to place them where convenient within our vacuum

envelope. For promising candidate solutions from Section 4.1.1 and maximally separated steering

mirrors (within the constraints of the in-vacuum tables), we calculate the geometric ray-tracing

response vector (d, α) of the beam propagated through the optical chain’s ABCD matrix. For each

steering mirror, we determine the response to angular actuation, and normalize the components by

the beam waist, w(0), or beam divergence angle, γ = λ/ (π ∗ w0), as appropriate. We then define an

angle

βSMi = arctan

 d
w0

α
γ

 (4.6)

for the response of the beam motion to each of the steering mirrors. The difference between these

response angles for each of the mirrors

βorthog = |βSM1 − βSM2| (4.7)

is our “orthogonality angle”, which we want to be as close to 90◦ as possible.

To check that our convenience-chosen positions of the steering mirrors gave us the maximum

available angle versus translation orthogonality, surface plots were generated showing βorthog as a

function of steering mirror positions. It was determined that the solution which fit most conve-

niently in our vacuum envelope resulted in an orthogonality angle of roughly 17◦, and that moving

the steering mirrors by many centimeters would only increase this number by about 0.5◦. While

17◦ is not particularly orthogonal, it is sufficient to allow us to match the incident beam axis to the

interferometer axis, and marginal changes to this βorthog were not worth the effort of finding ways

to mount mirrors between existing in-vacuum tables.

To help seismically isolate the beam motion, the steering mirrors were mounted in suspensions

similar to those described in [55], which are used for steering in Advanced LIGO. These mirrors have

electromagnetic actuators, but no local position sensing. Figure 4.5 shows one of these suspensions

before placement in the vacuum system.
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Figure 4.5: Input steering mirror.

4.2 Suspended optics

The 40 m lab has used the Initial LIGO style “small optic suspensions” [56] for the beam splitter, the

recycling mirrors, and the input mode cleaner since the beginning of the detuned RSE experiment.

However, with the upgrades to match the newer Advanced LIGO design, we replaced most of the

mirrors, including making the arm cavity test mass mirrors smaller mass, so that all the core optics

in the 40 m lab are this form factor with single loop steel wire suspensions.

Each optic has six degrees of freedom (three translation, and three rotation), which are described

in Figure 4.7. Table 4.1 lists the resonant frequencies for each of the suspended optics.

Pitch Yaw Pos Side Bounce Roll
MC1 0.672 Hz 0.807 Hz 0.968 Hz 0.995 Hz 16.31 Hz 23.91 Hz
MC2 0.748 Hz 0.820 Hz 0.970 Hz 0.993 Hz 16.56 Hz 24.06 Hz
MC3 0.763 Hz 0.845 Hz 0.980 Hz 0.971 Hz 16.35 Hz 23.95 Hz
PRM 0.612 Hz 0.833 Hz 0.993 Hz 0.999 Hz 16.38 Hz 23.92 Hz
SRM 0.567 Hz 0.808 Hz 0.962 Hz 0.972 Hz 16.44 Hz 23.99 Hz
BS 0.747 Hz 0.792 Hz 0.957 Hz 0.995 Hz 16.05 Hz 23.51 Hz
ITMX 0.514 Hz 0.831 Hz 0.966 Hz 0.986 Hz 16.09 Hz 23.49 Hz
ITMY 0.601 Hz 0.855 Hz 0.988 Hz 1.003 Hz 16.09 Hz 23.49 Hz
ETMX 0.829 Hz 0.909 Hz 0.951 Hz 1.038 Hz 16.42 Hz 24.03 Hz
ETMY 0.860 Hz 0.894 Hz 0.982 Hz 1.016 Hz 16.39 Hz 23.99 Hz

Table 4.1: Measured suspension resonance frequencies for the 40 m Lab’s optics [57].
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Figure 4.6: Photo of small optic suspension.

Yaw

Side PositionPitch

Bounce

Roll

Figure 4.7: Suspended optic, viewed from the back (left figure) and side (right figure). Positions
of permanent magnets are shown, as well as the canonical basis of six degrees of freedom for
suspended optics.

Every optic has four permanent magnets glued to the back surface, and one on the side. The

positions of these magnets is shown in Figure 4.7. Each of these is matched with an optical shadow

sensor and electromagnetic actuator (“OSEM”), which are described in Section 4.1.8 of [58]. OSEMs

are only designed to measure and control translational motion of the optic at the magnet attachment

point. By combining the four sensors on the back face of the optic, we can make a change of basis

so that we sense the pitch, yaw, and positional motion of the optic. The side-to-side swinging is

sensed by the side OSEM, while the bounce and roll modes are (ideally) not sensed.

The naive matrix for the basis change between the individual sensors and the degrees of freedom
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shown in Figure 4.7 is

Pit Yaw Pos Null Side

UL

UR

LL

LR

SD



1 1 1 1 0

1 −1 1 −1 0

−1 −1 1 1 0

−1 1 1 −1 0

0 0 0 0 1


.

(4.8)

By looking at the peak heights at the resonant frequencies for each mode in each sensor, we can

create an “adjustment” matrix that will completely diagonalize the system. The condition number

for the adjustment matrix tells us how far it is from a unitary matrix such as the identity matrix. So

the condition number tells us how far our actual matrix is from the matrix in Equation 4.8.
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Figure 4.8: Diagonalization and basis rotation of suspension sensors. Top shows the sensors
transformed to pitch, yaw, position, nullstream (butterfly), and side using the matrix in Equation 4.8.
Bottom shows the sensors transformed using the naive matrix times the adjustment matrix. Notice
in the bottom plot that each resonance peak is dominated by a single trace, indicating a lack of
coupling. The condition number for the adjustment matrix used here was 4.2.

In order to know what effect a given amount of force will have on each optic, we must calibrate

each suspension actuator in the “pos” direction. We can first calibrate the input test masses and the
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beam splitter by looking at the effect that pushing on them has on the Michelson-only error signal.

Since the anti-symmetric port of the Michelson will change from maximally dark to maximally bright

every λ/2 meters, we can look at the peak-to-peak values of the free-swinging anti-symmetric port

photodiode to calibrate it from arbitrary sensor counts to meters. If we control the positions of

the mirrors (to keep them within the linear range of the sensors) only at low frequencies, and then

measure the actuation response only at high frequencies where the control loop gain is very small,

we can avoid the need for loop compensation, and can directly use our measurements. All other

optics can be calibrated in reference to the input test masses, so that we have an absolute calibration

for each mirror. Table 4.2 lists the measured actuator calibrations.

Optic Position calibration

MC2 (15 ± 1) × 10−9
(

Hz
f

)2 m
ct [59]

PRM (19.6 ± 0.3) × 10−9
(

Hz
f

)2 m
ct [60]

SRM (19.0 ± 0.7) × 10−9
(

Hz
f

)2 m
ct [61]

BS (20.7 ± 0.1) × 10−9
(

Hz
f

)2 m
ct [62]

ITMX (4.70 ± 0.02) × 10−9
(

Hz
f

)2 m
ct [62]

ITMY (4.66 ± 0.02) × 10−9
(

Hz
f

)2 m
ct [62]

ETMX (13.31 ± 0.21) × 10−9
(

Hz
f

)2 m
ct [59]

ETMY (13.59 ± 0.20) × 10−9
(

Hz
f

)2 m
ct [59]

Table 4.2: Measured actuator calibrations for 40 m Lab’s optics. These values are applicable above
the pendulum resonant frequency.

4.3 Recycling cavities

One of the most significant differences between the current 40 m lab configuration and the previous

one is the length of the recycling cavities. To simplify the radio frequency electronics, Advanced

LIGO modified the design modulation frequencies. To match this new Advanced LIGO design,

the 40 m is using lower frequencies than before. In order to resonate these frequencies, we require

much longer recycling cavities than during the detuned resonant sideband extraction experiment.

Previously, the 40 m power recycling length (lPRC) was approximately 2.3 meters. Now it is 6.753 m.

Fitting this inside our pre-existing vacuum system required “folding” the cavity with two additional

mirrors (PR2 and PR3 in Figure 4.1). Similarly the signal recycling cavity length (lSRC) increased

from about 2.2 m to 5.4 m. See Table 4.4 for details on the recycling cavity parameters.

The folding mirrors are suspended on purely passive short single loop suspensions, as seen in

Figure 4.9. They are similar in design to those described in [55] and shown in Figure 4.5, although

they do not have any active sensing or actuation. We utilize compliant eddy current dampers with
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damping rings suspended behind the suspended optic, so that they do not directly inject seismic

noise onto the optic. The lack of sensing and actuation on our folding mirrors has turned out to be

a poor design choice. The suspensions are shorter than our test masses, so the pendulum resonant

frequency is higher and they pass more seismic noise into the cavity than do the other optics.

Figure 4.9: Recycling cavity folding mirror (SR2). Suspension point is isolated in the vertical
direction at the top with “blade” springs. Mirror is held in an aluminum ring, which is suspended
from the blade springs. The corners of the ring hold magnets, which along with the steel blocks
separately suspended from the frame, induce eddy currents that are used to passively damp the
optic’s motion.

In particular, this has caused excess angular motion in our recycling cavities, which has proved

problematic for locking and control. As in Figure 4.10, we can infer how much horizontal ground

motion affects the angular motion of the individual optics in our cavity. This coupling estimate

takes into account the passive seismic isolation stack (which is the same for both types of optic),

and then calculates the position to pitch transfer function, following the derivation in [63]. The

estimated coupling for each type of suspension is then multiplied by measured seismic ground

motion. Recall that we have two folding mirrors per recycling cavity, and the beam reflects off of

each of those twice per round-trip, so the seismic motion due to the folding mirrors is roughly 2
√

2

times that of a single mirror. Also shown in Figure 4.10 is a measurement of the cavity axis pitch

motion (multiplied by an arbitrary calibration factor), as seen by the quadrant photodiode at the

POP port. Looking at the relative shapes of the angular motion spectra in Figure 4.10 makes it clear

that a majority of the cavity axis motion is due to the folding mirrors. Areas where the cavity axis

trace is much larger than either mirror contribution indicates that the quadrant photodiode signal

is measuring noise unrelated to true cavity axis motion (such as vibrations of the out-of-vacuum

table or mounting apparatus, air currents, etc.).
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Figure 4.10: Pitch motion of power recycling cavity mirrors due to seismic motion compared
to cavity axis motion. Measured horizontal seismic motion is propagated through the isolation
stack (same for all optics) and then through the SOS or folding mirror suspensions’ coupling from
longitudinal motion at the suspension point to angular motion. Red trace shows the angular
motion of the power recycling mirror due to seismic motion. Gold trace shows the estimate total
angular motion of the folding mirrors PR2 and PR3. The contribution from a single folding mirror
is calculated, and then multiplied by two (since the beam will reflect off of each folding mirror
twice per round trip), and then multiplied by

√
2 to estimate the incoherent addition of the motion

of each mirror. Blue trace shows the measured pitch motion of the power recycling cavity axis,
multiplied by an arbitrary factor such that the shape can be roughly compared with the mirror
motions. Dashed traces show RMS of each spectra.

This large amount of seismic motion is particularly problematic for the recycling cavities, since

they are nearly unstable. The stability criterion for a 2-mirror cavity is

0 ≤ g1g2 ≤ 1, (4.9)

where each g-factor is given by

g = 1 −
L

RoC
, (4.10)

with L the length of the cavity and RoC the radius of curvature of the mirror. The more general

form of the stability criterion for a multiple mirror cavity (such as our recycling cavities) has been

derived by K. Arai [64] as

0 ≤
A + D + 2

4
≤ 1, (4.11)

where A and D are elements from the ray transfer analysis matrix (“ABCD matrix”) of the round
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trip path through the cavity. Note that for a 2-mirror cavity, this simplifies to Equation 4.9.

With the mirror parameters listed in Table 4.3, the power recycling cavity is expected to have

a stability number of about 0.89. The values for the radii of curvature in Table ?? for the 40 m’s

recycling cavity folding mirrors are different than those for the original installation of the mirrors.

The polish for these mirrors was not well-specified, only stating that the mirrors should be “flat”.

After great difficulty trying to control the recycling cavities, we measured the radii of curvature of

the folding mirrors and found them all to be close to -600 m. Having two convex mirrors made the

stability number from Equation 4.11 for both recycling cavities very nearly unity.

Rather than order new mirrors (with a lead time greater than 6 months) that have the dichroic

coatings to maximally transmit green light while being highly reflective for infrared, the folding

mirrors have all been installed backward. For each optic, the main beam passes through the anti-

reflective (AR) coating and through the glass substrate before hitting the highly reflective surface.

The transmission through the AR coating and the substrate add to the loss of the mirrors and also

alters the effective radius of curvature of the optic. For our folding mirrors, the new effective radii

of curvature is approximately 400 m for each, as shown in Table 4.3. The cavity stability achieved

was deemed an acceptable trade-off to the increase in loss of the cavity.

One major issue with having marginally stable cavities is that the frequency spacing between

the fundamental TEM00 mode and higher-order spatial modes is quite small. The spacing between

the TEM00 mode and a higher order TEMnm mode is given by

∆ f(00),(nm) = (n + m)
arccos

(√
A+D+2

4

)
π

fFSR, (4.12)

where A and D are again the elements from the ray transfer matrix and fFSR is given in Equation 3.7.

The closer the stability number is to unity, the easier it will be for higher order modes to become co-

resonant in the cavity, which makes the cavity challenging to control. Angular motion, for example

seismically-induced and coupled through the folding mirrors, can make it even more likely that we

will see higher order mode resonances.

We have a quadrant photodiode located at the pickoff of the power recycling cavity (“POP” in

Figure 4.1), and in the absence of the arm cavities, we can use this to feedback to the PRM, and

suppress the angular motion of the cavity axis. However, when the full interferometer is locked,

both the RF sideband and the main carrier light will be resonant in the power recycling cavity.

The carrier light’s apparent angular motion will be dominated by the cavity axes of the long arm

cavities, so we would like to use only the angular information of the RF sideband. We do not have

photodiodes at the POP port that are only sensitive to the RF light, so we cannot use the POP QPD in

feedback when the full interferometer is locked. Section 5.5 will discuss an alternative, specifically

the use of seismic noise cancellation to make the cavity more stable.
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4.4 Locking: acquiring control

Once we have all the pieces of an interferometer, they must be made to work together. In par-

ticular, we need a system that will allow us to hold all of the mirrors such that the laser beam

resonates throughout the interferometer. All of the techniques described here were applied to the

power recycled Fabry-Pérot Michelson configuration of the 40 m Lab, with the signal recycling

mirror misaligned. Future work includes commissioning of the dual recycled configuration of the

interferometer.

For any given Fabry-Pérot cavity, we use Pound-Drever-Hall reflection locking, as described in

Appendix B, as well as [27, 28]. In order to do this, we use an electro-optic modulator (EOM) to

imprint phase modulations on the main laser light. An EOM has a birefringent crystal through which

the light will propagate. We apply a voltage along one of these axes to modulate the phase of the

light in that polarization component. Ideally, the light incident on the EOM crystal will be perfectly

S-polarized, and matched to the vertical axis of the EOM. If the light is slightly mis-polarized,

the component in the vertical direction will be modulated, but the component in the horizontal

direction will be unaffected. This results in a rotation of the polarization of the light exiting the

EOM. As soon as this passes through a polarized optical element (for example a polarizing beam

splitter that only transmits a single polarization), the rotation of the light’s polarization will cause

some amount of the light to be rejected, resulting in residual amplitude modulation (RAM) of the

RF sideband. This can cause offsets in our length degree of freedom error signals, and cause our

cavities to be detuned. See [65] for details on how RAM can affect interferometers.

For the situation of many coupled cavities (i.e. 2 or more Fabry-Pérot cavities with shared

mirrors), we must find a way to derive an error signal for each of the individual length degrees of

freedom. R. Ward [39] found that it was very challenging to do this with only a single laser and

2 RF sidebands. For Advanced LIGO, an auxiliary arm length stabilization (ALS) system will be

used. This system was first prototyped at the 40 m Lab [46, 47]. The ALS system (described in more

detail in Section 4.4.1) is designed to allow the long arm cavities to be controlled at a fixed length,

but not necessarily in the presence of a valid PDH signal from the main laser.

While the arms are held off resonance, we use the Arai 3f locking scheme [31] to acquire and

maintain control of the short corner degrees of freedom (MICH and PRCL for the power recycled

interferometer, MICH, PRCL, and SRCL for the dual recycled interferometer). The key feature of

the 3f error signals is that they are less sensitive than the usual first order error signals to the change

in effective reflectivity of an arm cavity when we eventually bring them to resonance.

The reflectivity of the compound mirror created by the arm cavities is given by

rcav = −ri +
t2
i ree−iφ

1 − riree−iφ , (4.13)
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where r and t are the amplitude reflectivity and transmission of the input and end cavity mirrors

as in Equation 3.14 and Equation 3.15, and φ is the phase of the light after travelling the length of

the cavity, as defined in Equation 3.17. When the arm cavity is fully resonant, φ = 2π, but if the

arm cavity is anti-resonant, φ = π. Since this changes the resonance condition of the carrier light

in the power recycling cavity (assuming we have the PRC anti-resonant for the carrier when the

arms are held off resonance), it will change all of the 1f PDH signals at the reflection port of the

interferometer, making it impossible to maintain control of any cavities using the 1f signals during

this transition.

The 3f signal is comprised of all components that beat and create a signal at a frequency 3 times

the modulation frequency. For example, as can be seen in Figure 4.11, ( f1) ∗ (−2 f1) and (3 f1) ∗ ( f0)

will both contribute at different levels. Since these are intermodulations of harmonics of the initial

RF modulations, the amplitude of these 3f signals will be small, and so the signal to noise ratio will

not be excellent. We will use these signals only until the arm cavities are brought to resonance, at

which point we can transition to the larger SNR 1f PDH signals.

f1�f1�2f1 2f1 3f1�3f1�4f1 4f1 f2�f2�2f2 2f2f0

Figure 4.11: Cartoon of RF sidebands for 3f signal generation. Red is the main carrier light. Dark
blue is the initial modulation at 1f (11 MHz), and lighter blues are harmonics of that modulation.
Dark green is the initial modulation at 2f (55 MHz), and light green is the second harmonic.

We have found that the 3f signal is sensitive to the relative phase and amplitude between the

RF modulations, because of potential cancellation between various products. For example, some

signal is created at the 4 f1 frequency on the input beam, as a result of the f2 signal being imprinted

on the light that already has the f1 signal and harmonics thereof. This spurious 44 MHz sideband

will create extra signal at 3 f1 by beating against the main f1 sideband. For simplicity, since we are

only working on the PRFPMI configuration, we only use the 3 f2 signals for locking at this time.

Investigations into this phenomenon will be continued at the 40 m Lab during commissioning of

the DRFPMI configuration.

Once the vertex degrees of freedom are controlled, we use the ALS system to bring the arms into

resonance for the main laser. The power recycling cavity, coupled with the arm cavities, makes the

effective linewidth of the CARM degree of freedom much smaller than the single-arm case. For the

40 m Lab, the linewidth is approximately 20 pm, while the RMS motion of the arm cavity is 23.5 pm
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in the very best case, from the noise of the ALS system [46].

It is important to note here that although the residual motion of the cavity is larger than the

linewidth, the PDH signal is still a useful error signal for the arm cavities. Eventually, of course, we

will require that the cavity remain in the linear region of the error signal, but during the transition

from ALS control to PDH control (or at any time while acquiring control of a cavity), we only need

the error signal to be of the correct sign. For example, if the PDH signal is positive when the cavity

is too long, at any time the error signal is positive the feedback loop will work to shorten the cavity,

and vice versa. This has the effect of helping to slow down the velocity of the mirrors, and force

them toward the desired zero-crossing point.

We utilize this fact by slowly blending the low frequency components of the PDH signal for the

CARM and DARM degrees of freedom in with the ALS error signal (described in more detail in

Section 4.4.2). Once the residual motion of the arm cavities has decreased to within a few cavity

linewidths, we discontinue use of the ALS error signals entirely. This method allows us to skip

several intermediate candidate error signals for the long arm cavities, but it does require that we

transition both CARM and DARM degrees of freedom roughly simultaneously.

After the arm cavities are held on-resonance by the low noise PDH signals, we transition the

vertex degrees of freedom to their final 1f reflection signals, which are far less noisy than the

temporary 3f error signals. For the PRCL degree of freedom, it is critical that the CARM residual

noise be very small, since the error signals will show up in the same phase at the reflection port.

We must fully suppress the CARM motion before we will be able to sense the PRCL error signal

adequately.

4.4.1 Auxiliary green locking

At the 40 m Lab, we utilize the arm length stabilization (ALS) “green locking” system to control the

long arm cavities independently of the main laser. We use information about the difference between

the main laser’s frequency and the frequency that would resonate in the cavities as an error signal

to control the cavity length. Here, the method of deriving that error signal is described.

As discussed in K. Izumi’s thesis [47], we use a delay line frequency discriminator to read out the

beat frequency between the main laser and the auxiliary laser. Since the auxiliary laser’s frequency

is locked to the arm cavity (following the motion of the cavity), this beatnote provides information

about the main laser’s frequency relative to the length of the arm cavities.

The delay line frequency discriminator (“beatbox”) electronics are described in D1102241 [66],

with some modifications [67, 68].

The output of the broadband photodiode [69] gives us a signal proportional to

sin(ωRFt), (4.14)
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where ωRF is the beat frequency between the two lasers. A portion of this signal is picked off and

sent through a 30 m delay line cable, such that at the end of the cable the signal is proportional to

sin
(
ωRFt +

2πl
v
ωRF

)
, (4.15)

where l is the length of the delay line and v is the speed of propagation in the cable, which is roughly
2
3 the speed of light. The rest of the signal is split in two, with one portion (the Q-phase) delayed

90◦ out of phase from the other (the I-phase).

The delay line signal is mixed with each of the RF signals, such that the beatbox has

I ∝ sin (ωRFt) × sin
(
ωRFt +

2πl
v
ωRF

)
Q ∝ sin

(
ωRFt +

π
2

)
× sin

(
ωRFt +

2πl
v
ωRF

)
.

(4.16)

After applying a lowpass, we are left with

I ∝ cos
(
−

2πl
v
ωRF

)
Q ∝ cos

(
π
2
−

2πl
v
ωRF

)
.

(4.17)

These are the signals that are sent to the digital system. Unfortunately, neither is linear inω over

a very large range. However, we can combine the I and Q phase signals to infer the frequency of

the beatnote over a wide range. We rotate the I and Q signals using a standard rotation matrix,

 I′

Q′

 =

 cos(φ) −sin(φ)

sin(φ) cos(φ)


 I

Q

 . (4.18)

This gives us

I′ ∝ sin
(
π
2
−

(
2πl
v
ωRF − φ

))
, (4.19)

and similar for Q′. If we chose φ at each moment in time such that I′ = 0 by applying a simple

feedback loop, then the argument of the sin is always zero. This means that

φ =
2πl
v
ωRF −

π
2

(4.20)

within the bandwidth of the loop (which we chose to be about 2 kHz). The closed loop response

of this feedback loop gives us some frequency dependence to the sensor in our ALS locking loop,

but the 2 kHz bandwidth is much higher than any of our other loops, so it provides a nearly-flat

response.
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This “phase tracking” technique allows us to precisely know the relative frequency between the

main laser and the auxiliary laser, even when the arm cavity is freely swinging over many MHz.

The value of φ is used as the error signal that can be fed back to the arm cavity mirrors to stabilize

the length of the cavity (since the main laser’s frequency is stable, stabilizing the arm so that the

relative frequency between the main and auxiliary lasers is stationary holds the arm length fixed).

4.4.2 Frequency dependent error signal blending

In order to transition the long arm cavities from ALS control to PDH control, we chose to blend the

error signals, as shown in Figure 4.12. Error signal blending is more convenient than control signal

blending, since the system’s stability is guaranteed, as long as the two error signals are calibrated

to have the same sensitivity and see the same plant.
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Figure 4.12: Block diagram of error point blending.

In our system, the ALS system sees a plant that includes a pole due to the optical response

of the green light in the cavity, at 79.3 kHz. The PDH error signal, because of the coupled cavity

phenomenon discussed in Section 4.4, will instead see a pole below 200 Hz. We account for the
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difference in the two plants by placing a zero at the coupled cavity pole frequency in the path of

the PDH error signal at BREFL just before the summing node. Figure 4.13 shows the two individual

loop gains, as well as the combined total loop gain, partway through the transition.

During lock acquisition, we control the power recycled Michelson vertex with the 3f2 (165MHz) IR PDH signals. 
Initially, the common (CARM) and differential (DARM) arm lengths are controlled by the common and differential 
green laser beatnote signals (ALS). (Due to problems with vertex sensing, we currently operate with the signal 
recycling cavity misaligned.)

The ALS length noise is two or three times larger than the CARM line-width, so it is not possible to keep the arm 
cavities on IR resonance. However, the velocity is small enough that it is possible to blend in the PDH CARM 
error signal at zero CARM offset, without breaking the lock. 

We initially blend the IR PDH signal with a crossover 
around 1Hz, pre-filtering it with an integrator at 
20Hz. The integrator provides improved DC stability, 
which keeps the arms on resonance. 

Both the common (CARM) and differential (DARM) 
arm lengths are blended in this way, before 
increasing the RF error signal crossover frequencies. 

This crossover is unconditionally stable as we 
increase the crossover frequency, to transition to full 
RF control.

This scheme does not require slow reduction 
of the CARM offset, or using DC transmission 
feedback signals, as the current aLIGO locking 
scheme does.

- Much Work Remains to be Done
So far, IR-only lock is maintained only for a few 
minutes at a time, but the door is open to rapid 
characterization and improvement. 

Immediate goals include:

• Engaging high bandwidth laser frequency 
control.

• Transitioning control of the vertex cavity 
lengths to first order demodulated RF signals. 

• Feedforward compensation to reduce cross 
coupling of the various feedback control 
loops. 

Error signal blending loop shapes for CARM. The PDH signal used is 
the f1 (11MHz) signal at the reflection port.

Initial displacement noise spectra of an early lock of the 40m 
prototype interferomenter, in the power recycled Fabry-Perot 

Michelson configuration (PRFPMI). 

How might we transition from ALS to PDH in cases of worse ALS noise, such as exists in the aLIGO 
interferometers? In this case, the PDH fringes may be too fast for the ALS control to handle. At the 40m, we have 
begun testing a scheme that may help in this situation.

Given knowledge of our system, we can predict the interferometer response to the IR control signal. 
Subtracting this prediction from the ALS error point “fools” the ALS loop into not seeing the effects of the IR loop. 

We trigger the feedforward path IR portion of the loop on two criteria: the resonating arm cavity power, and the 
value of the PDH error signal. This allows us to repeatedly attempt IR lock acquisition without 
compromising the ALS control. 

- Best of both worlds
Future Work ALS has a dynamic range of many IR free 

spectral ranges. Thus, if IR control is 
lost for any reason, the ALS loop 
maintains control of the system. 

In the plot to the right, we show the 
measured response of a single 40m 
Fabry-Perot arm cavity locked with this 
scheme to an impulsive event which 
unlocks the IR portion of the loop. 

Within 40ms, the cavity is returned 
to its fully resonant state. Perhaps 
schemes like this one could prove useful 
for improving the duty cycles of 
gravitational wave interferometers. 

As we move towards the point of having a robustly locked interferometer, many avenues of investigations are 
becoming available. 

• Commissioning of the full Dual Recycled Fabry-Perot Michelson configuration. 
• Adaptive feedforward techniques for the mitigation of environmental noises. 
• Dynamic error signal characterization and optimal recombination
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So far, we have demonstrated successful feedforward cancellation of the IR control signal in the ALS error signal 
of a single 40m Fabry-Perot arm cavity. 

Simulated effect of the phase of the f2 modulation relative to the f1 
modulation on the 3f1 demodulated photodiode. 

aLIGO relies on the reduced carrier sensitivity of 
the 3f1 and 3f2 signals to control the vertex cavity 
lengths while locking the arms whose signals 
dominate the first order signals. 

The 3f1 signal at the 40m exhibits unexpected 
features:
 • Changes in optical gain not proportional to 

modulation depth change.
 • Degeneracy between differential and common 

Michelson lengths in the RF demodulation I-Q 
plane

This can be explained by the effects of the 
relative demodulation phases of the f1 and 
f2 modulation signals, which influence the 
amplitudes and phases of various higher order 
modulation products. 

Dual recycled Michelson with Fabry-Perot arms 

Lock Acquisition Studies at the Caltech 40m Prototype
E. Quintero, J. Driggers, N. Smith, G. Vajente, M. Thirugnanasambandam, K. Arai, S. Vass, R. X Adhikari, LIGO Laboratory, California Institute of Technology

Optical configuration of the 40m prototype

The Caltech 40m laser interferometer is the control prototype of the Advanced LIGO (aLIGO) interferometers. The 
current missions of the 40m are to prototype the controls of aLIGO and to develop interferometer diagnostic 
techniques. This poster describes our lock acquisition investigations of an aLIGO style dual-recycled Fabry-Perot 
Michelson interferometer.
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• Longer power, signal recycling cavities (PRC, SRC)
    • PRC=6.8m, SRC=5.4m, folded by ANU Tip-Tilt 

suspensions [2]
• Smaller test masses with SOS suspensions
    • 3 inch dia. x 1 inch thick fused silica mirrors, 

same DC radiation pressure effect as in aLIGO

• Dichroic ITM/ETM for Arm Length Stabilization 
using 532nm beams

     • aLIGO finesse : 420 at 1064nm, 80 at 532nm
• Small Schnupp asymmetry: Δl = ~3cm 
    • Similar to the aLIGO's design of 5cm (or 

currently 8cm [1]), adjusted such that the 55MHz 
sidebands reach the dark port

Two modulations at harmonic frequencies
- 11MHz and 55MHz modulation sidebands

The 11MHz sidebands resonate in the PRC while the 55MHz resonate in the PRC 
and SRC. This allows us to separate the PRC, SRC, and Michelson lengths [3].

- Harmonic demodulation
In addition to the demodulation at the above modulation frequencies, demodulations 
at the 2nd (2f) and 3rd (3f) harmonic frequencies are used. The 3f signals are useful 
in the initial lock acquisition stages due to their inherent insensitivity to the arm 
motions[4]. The 2f signals are used as sideband power monitors in the PRC and SRC.

Interferometer path length sensing

Arm length stabilization with auxiliary beam injection [5][6]
- 532nm beams are generated and locked to the arm cavities

The beat note between the 532nm beams from the aux lasers and the PSL contains 
information about the arm cavity length fluctuations. This allows the feedback control
system to stabilize the arm cavity lengths with respect to the PSL frequency even 
before they are actually brought into resonance with it. A delay line frequency
discriminator and phase tracker servo enable a dynamic range of many IR FSRs.

SHG

PDH

ETMITM

SHG

beat 
signal

Freq. Discriminator

ALS
Servo

Aux.
Laser

PSL
Laser

Freq
Offset

Vacuum 
chamber

REFL11
REFL33
REFL55
REFL165 POP22

POP110

POX11

ETMX

AS5
5

Triple 
Resonant

EOM driver

Low noise
oscillators REFL11

REFL33
REFL55

REFL165
POX11

POY11
POP22

POP110

Demodulators

To DAQ

ITMX

ITMY ETMYBS

SR3

SR2

SRM

PR3

PR2

PRM
POY11

Faraday
IsolatorEOM

Anti-Symmetric
port (AS)

Reflection port (REFL)

Power-recycling
Pick off port (POP)

Arm Pick off port
(POX/POY)Laser

29.5 MHz
(for MC)

11 MHz

22MHz

33MHz

110MHz

165MHz
55 MHz

Frequency 
multipliers

Detection system layout 
of the 40m interferometer

x
2

x
3

x
2

x
3

x
5

OMC
DC 

Reado
ut

Modulation Phase Effects

Lock Acquisition Strategies
RF Signal Transition Directly from ALS - Error Point Blending
- Used to Realize Full RF Control of the 40m PRFPMI

The authors thank the National Science Foundation and the California Institute of Technology for the support of this work. 

Relative phase of f1 and f2 sidebands
- 3f1 signal sensitive to many field products

  

Feedforward compensation of PDH Actuation – “ALS Fool”
- Benefit from wide ALS dynamic range, low PDH sensing noise

In the simulation above, we can see that each indvidual field product exhibits the expected orthogonality 
between the common and differential Michelson length signals. 

However, due to their relative angles, and differing MICH/PRCL ratios, the overall RF signals become 
degenerate when summed together. 

Experimental investigations and comparison to simulation is ongoing. We will likely need to adjust our modulation 
depths and phases to reliably control the DRMI.

-Why are the MICH and PRCL signals so degenerate?

Simulated sensing matrix elements 
for the field products that contribute 
to the 3f1 PDH signals, at a relative 
f2 modulation phase of 110 degrees.

Solid lines indicate PRC length 
sensing, dotted lines indicated 

differential Michelson length sensing. 
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Figure 4.13: Individual loop gains, as well as the combined total loop gain, partway through the
transition.

To begin the transition between the two loops, once we have a valid PDH error signal we start

to blend in the low frequency component of the signal by placing a pure integrator (pole at 0 Hz)

in the PDH blend block. As the gain of the PDH loop is increased, the crossover point between the

two error signals increases in frequency. This crossover is unconditionally stable as we increase the

crossover frequency. Once the gain of the PDH loop is sufficient, we de-boost the low frequency

components of the ALS signal, and finally turn GALS to zero.

This scheme allows us to take advantage of the lowest noise components of each error signal

throughout the transition, while maintaining the benefits of error point blending.

Figure 4.14 shows an example of a smooth transition of the CARM and DARM error signals

using this technique. Each degree of freedom has a loop topology as shown in Figure 4.12. Notably,

the residual RMS of the blended error signal decreases, and the power transmitted through the

cavity becomes stable.

4.4.3 Feedforward decoupling of loops

An alternative scheme for transitioning from ALS control of the arm cavities to PDH control uses

a feedforward path to effectively decouple the 2 loops. This “fools” the ALS loop into thinking it
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Figure 4.14: Time series of transition from ALS to IR PDH control. The error signals are taken from
the “total error” point for each system, after the blend. The arm cavities begin with an offset of
approximately 3 nm, so there is no resonance of the infrared laser beam in the arm cavities (the
power recycling gain is representative of this value). At ∼10 s, the CARM offset is removed. At
∼60 s, the integrators for both CARM and DARM are engaged, and the CARM degree of freedom is
almost fully transitioned to the PDH error signal, although the transition is not yet completed. At
∼170 s the DARM degree of freedom is transitioned completely to its PDH signal and the CARM
transition is finished.

maintains full control, while allowing the PDH loop to engage.

Figure 4.15 shows a block diagram of the proposed control system. Green blocks represent the

ALS loop and red blocks represent the PDH loop, also referred to here as the “Refl” loop. Initially,

GREFL = 0, so we only have a simple single loop system. Once the arm cavities are close to resonance

and we have a valid PDH error signal, we begin increasing the gain of the secondary loop. Without

any decoupling, the two loops can act against one another, and push the system into instability.

The purple decoupler block feeds the control signal of the Refl loop through an appropriate

transfer function to the error point of the ALS loop. The transfer function of the decoupler is chosen

so that any signal that arrives at the ALS loop’s error point due to the Refl loop is entirely cancelled

out. If we calculate using the nodal matrix technique described in Appendix A the transfer function
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Figure 4.15: Block diagram of feedforward decoupling of loops.

of the system shown in Figure 4.15 from the output of GREFL to the input of GALS, we find

(
Gout

REFL → Gin
ALS

)
=

Dcpl + AREFLPALSSALS

1 − AALSGALSPALSSALS − AREFLGREFLPREFLSREFL −DcplAALSGALSGREFLPREFLSREFL
.

(4.21)

Setting this to zero implies that Dcpl should be set to

Dcpl = −AREFLPALSSALS. (4.22)

If we use this value of Dcpl to examine the stability of the full system’s transfer function, we find

that the closed loop is

CLG =
1

1 −HALS −HREFL + HALSHREFL
(4.23)

if

HALS = AALSGALSPALSSALS and HREFL = AREFLGREFLPREFLSREFL. (4.24)

The open loop gain of the full system is then

OLG = HALS −HREFL + HALSHREFL. (4.25)

For a single arm Fabry-Pérot cavity, the bode plot of the open loop gain in Equation 4.25 is shown

in Figure 4.16.
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Figure 4.16: Open loop gain of feedforward decoupled loops. Shown are the individual loops, as
well as the combined (“fool”) loop from Equation 4.25.

While this technique has not yet been implemented for the full PRFPMI at the 40 m Lab, we have

tested it on a single arm cavity. Figure 4.17 shows the measured transfer function between the PDH

control signal and the ALS error point. We see in the blue trace that the two paths to the summing

node (through AREFLPALSSALS or through Dcpl) are well matched since the magnitude of the ratio is

very close to 0 dB. The green trace shows that we get more than 30 dB isolation almost everywhere

below 100 Hz [70].

We find that it is possible to increase the gain of the Refl loop, and the system stays stable.

Conveniently, if one of the mirrors is given an impulse large enough that the PDH signal is no

longer valid, the ALS loop maintains control of the cavity. The cavity comes back to resonance and

is once again controlled by the PDH loop within about 40 ms, as seen in Figure 4.18 [71].
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Figure 4.17: Measured loop decoupling. We see in the blue trace that the 2 paths to the summing
node (through AREFLPALSSALS or through Dcpl) are well matched since the magnitude of the ratio is
very close to 0 dB. The green trace shows that we get more than 30 dB isolation almost everywhere
below 100 Hz.
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Figure 4.18: Impulse response of decoupled loop system, for single Fabry-Pérot cavity. ETMY
is given an impulse that would normally unlock the PDH-only system; however, the ALS loop
maintains control, and the cavity is relocked within about 40 ms [71].



59

4.5 Characterization of the 40m interferometer

Here we present various characterization measurements of the 40 m interferometer. Figure 4.19

shows a comparison of the measured open loop gain of the DARM loop, as compared to the

modeled expectation. Figure 4.20 shows a measurement of the CARM open loop gain, near the

∼15 kHz unity gain frequency. Figure 4.21 show calibrated error (“in”) and control (“out”) spectra

of these two loops. Table 4.3 and Table 4.4 compare the optical and interferometer cavity designs

for Advanced LIGO, and the 40 m interferometer.

Figure 4.19: Measured vs. modelled DARM loop for the 40 m’s PRFPMI configuration.
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Figure 4.20: Measured CARM loop, near unity gain frequency, for the 40 m’s PRFPMI configuration.

During lock acquisition, we control the power recycled Michelson vertex with the 3f2 (165MHz) IR PDH signals. 
Initially, the common (CARM) and differential (DARM) arm lengths are controlled by the common and differential 
green laser beatnote signals (ALS). (Due to problems with vertex sensing, we currently operate with the signal 
recycling cavity misaligned.)

The ALS length noise is two or three times larger than the CARM line-width, so it is not possible to keep the arm 
cavities on IR resonance. However, the velocity is small enough that it is possible to blend in the PDH CARM 
error signal at zero CARM offset, without breaking the lock. 

We initially blend the IR PDH signal with a crossover 
around 1Hz, pre-filtering it with an integrator at 
20Hz. The integrator provides improved DC stability, 
which keeps the arms on resonance. 

Both the common (CARM) and differential (DARM) 
arm lengths are blended in this way, before 
increasing the RF error signal crossover frequencies. 

This crossover is unconditionally stable as we 
increase the crossover frequency, to transition to full 
RF control.

This scheme does not require slow reduction 
of the CARM offset, or using DC transmission 
feedback signals, as the current aLIGO locking 
scheme does.

- Much Work Remains to be Done
So far, IR-only lock is maintained only for a few 
minutes at a time, but the door is open to rapid 
characterization and improvement. 

Immediate goals include:

• Engaging high bandwidth laser frequency 
control.

• Transitioning control of the vertex cavity 
lengths to first order demodulated RF signals. 

• Feedforward compensation to reduce cross 
coupling of the various feedback control 
loops. 

Error signal blending loop shapes for CARM. The PDH signal used is 
the f1 (11MHz) signal at the reflection port.

Initial displacement noise spectra of an early lock of the 40m 
prototype interferomenter, in the power recycled Fabry-Perot 

Michelson configuration (PRFPMI). 

How might we transition from ALS to PDH in cases of worse ALS noise, such as exists in the aLIGO 
interferometers? In this case, the PDH fringes may be too fast for the ALS control to handle. At the 40m, we have 
begun testing a scheme that may help in this situation.

Given knowledge of our system, we can predict the interferometer response to the IR control signal. 
Subtracting this prediction from the ALS error point “fools” the ALS loop into not seeing the effects of the IR loop. 

We trigger the feedforward path IR portion of the loop on two criteria: the resonating arm cavity power, and the 
value of the PDH error signal. This allows us to repeatedly attempt IR lock acquisition without 
compromising the ALS control. 

- Best of both worlds
Future Work ALS has a dynamic range of many IR free 

spectral ranges. Thus, if IR control is 
lost for any reason, the ALS loop 
maintains control of the system. 

In the plot to the right, we show the 
measured response of a single 40m 
Fabry-Perot arm cavity locked with this 
scheme to an impulsive event which 
unlocks the IR portion of the loop. 

Within 40ms, the cavity is returned 
to its fully resonant state. Perhaps 
schemes like this one could prove useful 
for improving the duty cycles of 
gravitational wave interferometers. 

As we move towards the point of having a robustly locked interferometer, many avenues of investigations are 
becoming available. 

• Commissioning of the full Dual Recycled Fabry-Perot Michelson configuration. 
• Adaptive feedforward techniques for the mitigation of environmental noises. 
• Dynamic error signal characterization and optimal recombination
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So far, we have demonstrated successful feedforward cancellation of the IR control signal in the ALS error signal 
of a single 40m Fabry-Perot arm cavity. 

Simulated effect of the phase of the f2 modulation relative to the f1 
modulation on the 3f1 demodulated photodiode. 

aLIGO relies on the reduced carrier sensitivity of 
the 3f1 and 3f2 signals to control the vertex cavity 
lengths while locking the arms whose signals 
dominate the first order signals. 

The 3f1 signal at the 40m exhibits unexpected 
features:
 • Changes in optical gain not proportional to 

modulation depth change.
 • Degeneracy between differential and common 

Michelson lengths in the RF demodulation I-Q 
plane

This can be explained by the effects of the 
relative demodulation phases of the f1 and 
f2 modulation signals, which influence the 
amplitudes and phases of various higher order 
modulation products. 

Dual recycled Michelson with Fabry-Perot arms 

Lock Acquisition Studies at the Caltech 40m Prototype
E. Quintero, J. Driggers, N. Smith, G. Vajente, M. Thirugnanasambandam, K. Arai, S. Vass, R. X Adhikari, LIGO Laboratory, California Institute of Technology

Optical configuration of the 40m prototype

The Caltech 40m laser interferometer is the control prototype of the Advanced LIGO (aLIGO) interferometers. The 
current missions of the 40m are to prototype the controls of aLIGO and to develop interferometer diagnostic 
techniques. This poster describes our lock acquisition investigations of an aLIGO style dual-recycled Fabry-Perot 
Michelson interferometer.
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• Longer power, signal recycling cavities (PRC, SRC)
    • PRC=6.8m, SRC=5.4m, folded by ANU Tip-Tilt 

suspensions [2]
• Smaller test masses with SOS suspensions
    • 3 inch dia. x 1 inch thick fused silica mirrors, 

same DC radiation pressure effect as in aLIGO

• Dichroic ITM/ETM for Arm Length Stabilization 
using 532nm beams

     • aLIGO finesse : 420 at 1064nm, 80 at 532nm
• Small Schnupp asymmetry: Δl = ~3cm 
    • Similar to the aLIGO's design of 5cm (or 

currently 8cm [1]), adjusted such that the 55MHz 
sidebands reach the dark port

Two modulations at harmonic frequencies
- 11MHz and 55MHz modulation sidebands

The 11MHz sidebands resonate in the PRC while the 55MHz resonate in the PRC 
and SRC. This allows us to separate the PRC, SRC, and Michelson lengths [3].

- Harmonic demodulation
In addition to the demodulation at the above modulation frequencies, demodulations 
at the 2nd (2f) and 3rd (3f) harmonic frequencies are used. The 3f signals are useful 
in the initial lock acquisition stages due to their inherent insensitivity to the arm 
motions[4]. The 2f signals are used as sideband power monitors in the PRC and SRC.

Interferometer path length sensing

Arm length stabilization with auxiliary beam injection [5][6]
- 532nm beams are generated and locked to the arm cavities

The beat note between the 532nm beams from the aux lasers and the PSL contains 
information about the arm cavity length fluctuations. This allows the feedback control
system to stabilize the arm cavity lengths with respect to the PSL frequency even 
before they are actually brought into resonance with it. A delay line frequency
discriminator and phase tracker servo enable a dynamic range of many IR FSRs.
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Relative phase of f1 and f2 sidebands
- 3f1 signal sensitive to many field products

  

Feedforward compensation of PDH Actuation – “ALS Fool”
- Benefit from wide ALS dynamic range, low PDH sensing noise

In the simulation above, we can see that each indvidual field product exhibits the expected orthogonality 
between the common and differential Michelson length signals. 

However, due to their relative angles, and differing MICH/PRCL ratios, the overall RF signals become 
degenerate when summed together. 

Experimental investigations and comparison to simulation is ongoing. We will likely need to adjust our modulation 
depths and phases to reliably control the DRMI.

-Why are the MICH and PRCL signals so degenerate?

Simulated sensing matrix elements 
for the field products that contribute 
to the 3f1 PDH signals, at a relative 
f2 modulation phase of 110 degrees.

Solid lines indicate PRC length 
sensing, dotted lines indicated 

differential Michelson length sensing. 

LIGO-G1500318 – March 2015 LVC Meeting – Pasadena, CA

Figure 4.21: CARM and DARM error and control spectra for the 40 m’s PRFPMI configuration,
without compensation for filters in use.
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aLIGO 40m 40m 40m
design design measured detuned RSE

BS
RoC > 300 km [72] flat, > ± 5,625 m [73] 10,320 m [74] 10,320 m [74]
HR T (1064 nm) 50 ± 0.5 % [75] 50 ± 1 % [76] 50 ± 1 % [76]
AR R (1064 nm) < 50 ppm [75] 600 ± 100 ppm [76] 600 ± 100 ppm [76]

ITM
RoC 1934, -5, +15 m [77] > 5,625 m [78] X = 83.1e3 m [79] >4000 m [39]

Y = -883.4e3 m [79]
HR T (1064 nm) 1.4 ± 0.007 % [80] 1.4 ± 0.05 % [81] 1.384 % [79] 0.5% [39]
AR R (1064 nm) < 50 ppm [80] 500 ± 100 ppm [81] 417 ppm [79] 600 ± 100 ppm [82]
HR T (532 nm) < 1 % [80] 1.0 - 2.5 % [81] 1.094 % [79] n/a
AR R (532 nm) not specified < 1000 ppm [81] 197 ppm [79] n/a

ETM
RoC 2245, -5, +15 m [83] 57.37 ± 0.6 m [84] X = 59.48 m [79] X = 56.3 m [39]

Y = 60.26 m [79] Y= 56.8 m [39]
HR T (1064 nm) 5 ± 1 ppm [85] 15 ± 10 ppm [86] 13.7 ppm [79] 10 ppm [39]
AR R (1064 nm) < 500 ppm [85] < 300 ppm [86] 93.3 ppm [79] < 300 ppm [87]
HR T (532 nm) 3 - 15 % [85] 5.0 ± 3 % [86] 4.579 % [79] n/a
AR R (532 nm) 0.1 - 2 % [85] < 1000 ppm [86] 950 ppm [79] n/a

PRM
RoC -11.00 ± 0.11 m [88] 115.5 ± 5 m [89] 122.1 m [79] 348 m [39]
HR T (1064 nm) 3.0 ± 0.1 % [90] 5.75 ± 0.25 % [91] 5.637 % [79] 7% [39]
AR R (1064 nm) < 50 ppm [90] < 300 ppm [91] 160 ppm [79] < 300 ppm [92]

PR2
RoC -4.56 ± 0.02 m [93] flat, not specified 413 m [94] n/a

PR3
RoC 36.00 ± 0.17 m [95] flat, not specified 409 m [94] n/a

SRM
RoC -5.69 ± 0.06 m [96] 142 ± 5 m [97] 148.1 m [79] 365 m [39]
HR T (1064 nm) 20 ± 1 % [98] 10.0 ± 0.5 % [99] 9.903 % [79] 7% [39]
AR R (1064 nm) < 50 ppm [98] < 300 ppm [99] 67.6 ppm [79] < 300 ppm [100]

SR2
RoC -6.43 ± 0.03 m [101] flat, not specified 413 m [94] n/a

SR3
RoC 36.00 ± 0.17 m [102] flat, not specified 391 m [94] n/a

Table 4.3: Parameters for 40m optics versus Advanced LIGO. “RoC” is radius of curvature of highly
reflective side of optic. “HR T” is power transmission of highly reflective side of optic. “AR R”
is power reflectivity of anti-reflection coating. The 40 m beam splitter (along with the input mode
cleaner optics) was not replaced during the dichroic upgrade, and so some measured values are
unavailable. PR2, PR3, SR2, and SR3 are all highly reflective for infrared light. PR2 and SR2 are
also transmissive for green. Note that the values for PR2, PR3, SR2, and SR3 radii of curvature for
the 40 m are all effective values, as seen by light transmitted through the substrate of the optic [103].
Some values in the “detuned RSE” column are design values, while others are measured. ETM
RoCs there are average measured values. They are reported for comparison of the dichroic 40m
with the former incarnation.
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aLIGO 40m 40m 40m
design design measured detuned RSE

RF modulation
Primary frequency 9.099474 MHz [104] 11 MHz 11.066 MHz 33.2 MHz [39]
Modulation depth 0.190 ± 0.003 [105]
Secondary frequency 45.497355 MHz [104] 55 MHz 5*primary 166.0 MHz [39]
Modulation depth 0.2564 ± 0.0003 [105]

Arm cavities
Length 3994.5 m [104] 37.795 m X = 37.79 ± 0.05 m [106] X = 38.4583 ± 0.0001 m [39]

Y = 37.81 ± 0.01 m [106] Y = 38.6462 ± 0.0003 m [39]
Free spectral range 37.52 kHz [104]
Finesse (1064 nm) 450 [104] 450 X = 1206 ± 10 [39]

Y = 1220 ± 3 [39]
Finesse (532 nm) 100 n/a
Cavity pole X = 1616 ± 14 Hz [39]
(single arm, 1064 nm) Y = 1590 ± 4 Hz [39]

g-factor 0.8303 [104] X = 0.317 [39]
Y = 0.322 [39]

Power recycling cavity
Length 57.656 m [104] 6.753 m [107] 6.759 m [107] 2.257 m [39]
Free spectral range 2.6 MHz [104]
Finesse 114 [104]
Cavity pole
g-factor 0.8214 [104] 0.89 [94]
Recycling gain 4

Signal recycling cavity
Length 56.008 m [104] 5.399 m [107] 5.399 m [108] 2.151 m [39]
Free spectral range 2.67 MHz [104]
Finesse
Cavity pole
g-factor 0.8699 [104] 0.92 [94]

Michelson
Schnupp asymmetry 5.04 cm [104] 3.9 ± 0.2 cm [109] 45.1 cm [39]

Table 4.4: Parameters for 40m interferometer versus Advanced LIGO. Note that some values, such
as the primary RF modulation frequency, change with time, and so approximate values are quoted.
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Chapter 5

Global seismic noise cancellation

The next generation of interferometers for gravitational-wave detection, including the Laser In-

terferometer Gravitational Wave Observatory (LIGO), will have unprecedented sensitivity to as-

trophysical events [5]. At low frequencies (∼10 Hz) it is likely that the displacement noise of the

suspended mirrors will be limited at the 10−22 m/
√

Hz level by fluctuations in the Newtonian

gravitational forces [110, 111, 112]. The sources of the fluctuations are density perturbations in

the environment (e.g., seismic and acoustic) and mechanical vibrations of the nearby experimental

apparatus. While care will be taken to mitigate the sources of all of these fluctuations, further

reductions of this Newtonian noise may be made by carefully measuring the source terms and

subtracting them from the data stream (offline) or in realtime on hardware by applying cancellation

forces to the mirror.

In addition, direct seismic vibrations cause significant non-stationarity of the LIGO detectors.

In particular, through nonlinear processes, seismic noise below 10 Hz has been shown to limit the

performance of gravitational-wave detectors. Of the external disturbances that the control systems

must overcome, one of the most problematic is the persistent and large 0.1 - 0.3 Hz double-frequency

’microseismic’ peak, generated by wave activity in the oceans [113]. At the microseismic peak the

amplitude of the ground motion is on the order of several µm/
√

Hz, but the level of seismicity

present at the observatories varies widely (by a factor of ∼10) [114]. The relative displacement of

the test masses in this band is of the same order as the horizontal displacements caused locally by

the microseism. These levels of seismic noise present a host of problems, including:

• Some amount of the translational ground motion is converted to angular motion of the mirrors

due to cross-coupling in the mirror suspensions. These misalignments create fluctuations in

the power circulating throughout the cavities, driving feedback loops towards instability or

modulating the couplings between length degrees of freedom (e.g., MICH to DARM coupling).

Several of the angular control loops have bandwidths of only a fraction of a Hz. Even in the

event of single arm locks the full interferometer may not hold resonance due to angular motion
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in the power recycling cavity.

• Large control forces at low frequency could, for Initial and Enhanced LIGO, generate excess

noise in the signal band through non-linearities in the mirror actuation. Examples of such non-

linearities are saturation of the actuator electronics and Barkhausen noise in the ferromagnets

used to actuate the mirrors. Non-Gaussian transients from these mechanisms pollute the

gravitational wave data stream as background events, which is why Advanced LIGO no

longer uses electromagnetic actuators on the final pendulum stage.

• Some amount of light is scattered from each mirror surface, and subsequently re-enters the

readout path after reflecting off of vibrating surfaces. When the relative motion of the mirror

and the other surfaces in the scattering path is larger than the laser wavelength (λ ∼ 1 µm),

the phase noise introduced by this scattered light is experienced not only at the frequency

of the motion but as broad-band noise up to a cutoff frequency determined by the relative

velocity [115].

In order to mitigate these couplings, we remove seismic noise in real-time by applying forces

to the active isolation tables that support the suspended optics. To determine how to transform

the seismic information from an external witness sensor into an appropriate cancellation force, we

utilize optimal Wiener filters [116]. Seismic isolation is regularly in use at the LIGO sites, but usually

only in a local sense – cancellation forces are calculated using only seismometer information from

a nearby sensor. Some work has been done in the past to use feedforward to reduce the overall

motion between sets of mirrors, although that work had a high frequency technical limit of about

0.3 Hz [113]. Here we strive to expand upon that work to a broader range of frequencies and apply

seismic noise cancellation to the interferometer in a global sense, since it is the distances between

the mirrors that we require to be undisturbed, rather than individual mirror positions.

To demonstrate the efficacy of this noise cancellation technique for future use, we demonstrate

below that offline subtraction of seismic noise can be done using static Wiener filtering [116] based

on an array of seismic sensors. We demonstrate feed-forward vibration isolation on a suspended

Fabry-Pérot interferometer using Wiener filtering and a variant of the common Least Mean Square

(LMS) adaptive filter algorithm. We compare the experimental results with theoretical estimates of

the cancellation efficiency. Using data from the LIGO 5th Science Run, we also estimate the impact

of this technique on full scale gravitational wave interferometers. In the future, we expect to use

this technique to also remove acoustic, magnetic, and Newtonian gravitational noise perturbations

from the LIGO interferometers. This noise cancellation technique is simple enough to implement in

standard laboratory environments and can be used to improve SNR for a variety of high precision

experiments.
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While the Wiener filtering occurs entirely in the time-domain, we examine plots in the frequency-

domain of the filtered and unfiltered signals to determine the level of subtraction achieved. In

Section 5.2 we describe the Wiener simulations on a cavity in our lab. In Section 5.3, we make

similar estimates for one of the 4 km LIGO interferometers. In Section 5.4 and Section 5.5 we

demonstrate the performance of real-time seismic noise cancellation systems on the Enhanced

LIGO interferometers, and at the 40 m Lab. Section 5.6 discusses the extension of these techniques

to adaptive noise cancellation systems.

5.1 Wiener filters

To find a linear filter that will improve a chosen signal, we must first define what it means to

‘improve’ the signal. We define an error signal

e(n) = d(n) − y(n), (5.1)

where n is the time index, d(n) is the noisy “target” signal and y(n) is the approximation of d from

the independent witness sensor. This is given by

~y = ~wT~x, (5.2)

where x is the measurement of the external disturbance from the witness sensor, and w is the finite

impulse response (FIR) filter that we will solve for. The figure of merit (ξ) that we use for calculating

the Wiener filter coefficients in this case is the expectation value of the square of the error signal,

ξ ≡ E[e2(n)] = E[d2(n)] − 2~wTp + ~wTR~w. (5.3)

Here, E[∗] indicates the expectation value of ∗, ~p is the cross-correlation vector between the

witness and target signals, and R is the autocorrelation matrix for the witness channels. When we

find the extrema of Equation 5.3 by setting

dξ
dwi

= 0, (5.4)

we find

R~woptimum = ~p. (5.5)

Equation 5.5 finds the time domain filter coefficients which minimize the RMS of the error ~e by

optimizing the estimate of the transfer function between the witness sensors and the target signal.

The error signal is now an estimate of the signal in d, without any noise. Since the matrix R is of the
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block Toeplitz form, we take advantage of the Levinson-Durbin [117] method of solving problems

of the form~b = M~a, where M is a Toeplitz matrix. The Levinson method is considered weakly stable,

as it is susceptible to numerical round-off errors when the matrix is close to degenerate (in our case,

if two or more witness sensors carry nearly identical information about the noise source). However,

for well conditioned matrices it is much faster than brute force inversion of the matrix [118].

5.2 Seismic noise cancellation applied to triangular ring cavity

At our 40 m prototype interferometer [39] lab at Caltech, both static Wiener filtering and adaptive

filtering algorithms have been applied to the feedback signal of a suspended Fabry-Pérot triangular

ring cavity (the mode cleaner described in Section 4.1). We have used two Güralp CMG-40T 3-axis

seismometers [119] and several Wilcoxon 731A single-axis accelerometers [120] as our independent

witness channels (~x in Section 5.1), and the low-frequency feedback signal for the cavity length as

the target channel (~d in Equation 5.3) to reduce.

Figure 5.1 shows the locations of the witness sensors relative to the cavity mirrors. The mirrors

of the cavity are suspended as pendulums with a resonance of ∼1 Hz to mechanically filter high

frequency noise, with the suspensions sitting on vibration isolation stacks to further isolate the

optics from ground motion. The ’stacks’ are a set of three legs supporting the optical table on which

the mirror sits, with each of the legs consisting of alternating layers of stainless steel masses and

elastomer springs [49, 121].

M2M1

M3

Accelerometer

Seismometer

From Laser

Output of Cavity

Figure 5.1: Locations of seismometers and accelerometers in relation to the cavity mirrors. Round
trip length of the triangular cavity is 27 m.

We used Matlab [122] to import the data for the length feedback signal for our cavity, and

to construct and apply the Wiener filters. Since the feedback control bandwidth is '50 Hz, the

feedback signal can be used as an accurate measure of the seismic disturbance at low frequencies.
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In Figure 5.2 we show results of a day-long simulation study. This study was done to determine

the length of time we can use a set of static filters before updating. We use 1 hour of data to train

and calculate a single Wiener filter, and then apply that filter to 10 minute segments of data for

one day, using a 31 second long, 2000 tap filter with a sample rate of 64 Hz. In Figure 5.2b, we

select a few typical traces to illustrate the capabilities of the filter, while in Figure 5.2a we show the

full results as a spectrogram, whitened by normalizing to the spectra during the time the filter was

being trained. We see large amounts of noise reduction both at the broad stack peak at ∼3 Hz and

around the 16 Hz vertical mode of the mirror pendula.

Figure 5.2: Result of offline seismic Wiener filtering on suspended triangular cavity. (a) Spectrogram
showing the efficacy of a Wiener filter applied offline over a several hour period. Noticeably different
traces between ∼28 hours and ∼34 hours are the result of non-stationary anthropogenic noise, not
a decay of the filter’s efficacy. (b) Amplitude spectral density of the control signal. Dotted red
is without subtraction, purple is initial residual, and progressively lighter blues are 10 hours, 20
hours, and 30 hours after filter was trained.
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Figure 5.3: Shown are the spectra of the individual seismometers (blue dashed and green dash-
dot), the manufacturer’s spec for the seismometers’ internal noise (purple solid-circle), and the
differential ground motion along the 13.5 m length of the cavity (red solid). We also show the
differential noise of the seismometers with the seismometers collocated in a stiff seismic vault (teal
dash-circle); in principle, this is a measurement of the actual seismometer noise floor. It is unknown
what uncorrelated noise is present in our sensors, making the teal trace so much larger than the
specification.

We also include the noise contributions of our seismometers in Figure 5.3 to demonstrate how

close we are able to get to the fundamental limit of Wiener filtering. Since the Wiener filter accepts,

as inputs, the signals from the witness sensors (which have true ground motion information plus

self-noise of the instruments and noise in the readout electronics), all of these noise contributions

are filtered and added back into our data stream, limiting our ability to suppress ground motion

below these levels. In Figure 5.3, we show that the differential ground motion over the length of

the cavity is not much larger than the instrument noise of the seismometers. In other words, the

ground noise over length of the cavity is strongly correlated below ∼ 1 Hz and so the differential

motion is much smaller than the motion of any individual sensor. Currently our measurement of

the differential ground motion is limited by the apparent instrument noise of the seismometers,

represented by the teal trace in Figure 5.3. The apparent instrument noise is significantly higher

than the specification, which indicates that there is some unknown noise which is uncorrelated

between two seismometers, even when they are placed very close together. We will use lower noise

sensors and readout electronics and better thermal/acoustic isolation of the seismometers in order

to get better performance on such short baselines.

The limit to the performance of the feed-forward subtraction seems to be a combination of
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low frequency noise in the seismometers and the feedthrough of noise from the auxiliary controls

systems of the cavity (e.g. angular controls, pendulum damping servos, etc.).

5.3 Estimated impact for Enhanced LIGO

One of the LIGO sites in Livingston, Louisiana has had a hydraulic external pre-isolator (HEPI)

actuation system installed since 2004 (the other LIGO site in Hanford, Washington received a HEPI

system as part of the Advanced LIGO upgrade) [123]. This HEPI system is designed to actuate

on the seismic isolation stacks that support the suspended LIGO optics to actively reduce seismic

noise. Initial implementation of the HEPI actuators only included local seismic isolation between

0.1-5 Hz to reduce anthropogenic noise, tidal effects, and the microseism [42].

To estimate how the global Wiener filtering technique should scale up to a full size interferometer,

we analyzed data from the 5th LIGO Science Run [5]. While this analysis was done as offline post-

processing, results from later tests executed on the LIGO interferometers using the HEPI actuators

during the 6th LIGO Science Run are discussed in Section 5.4.

Instead of a single cavity, in this case we explored the subtraction of seismic noise from the

differential arm length feedback signal (which is an accurate measure of the low frequency ground

noise). The sensors are placed close to the ends of the interferometer arms and at the beamsplitter

as shown in Figure 5.4.

Beam Splitter ITMX ETMX

ITMY

ETMY

PRM

Ly

Lx

 Feedback signal = (Ly - Lx)  

Laser

Accelerometer

Seismometer

Figure 5.4: Schematic layout of seismometers and accelerometers relative to interferometer mirrors.

Figure 5.5 shows the resulting subtraction efficacy for a static filter. The variation in the 0.1-0.3 Hz
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band comes from variation in the ambient level of the double frequency microseismic peak [124].

The structure in the 1-15 Hz band is the usual increase in anthropogenic noise during the workday.

Even though some excess noise is added in the dips around 3-5 Hz and 7 Hz, the filter reduces

the main contributors to the RMS of the control signal, and the reduction is remarkably stable over

the 30 day timespan. This static filter does inject an unacceptable amount of noise above 20 Hz,

which we will eliminate in the future by using more aggressive pre-weighting to disallow such

noise amplification before calculating the Wiener filter.

Figure 5.6 shows the subtraction if we use an acausal filter, retraining it every 10 minutes, for

the same 30 day data set. This filter performs much better than the static version. While we cannot

apply an acausal filter in real-time, we can utilize causal adaptive filters such as those discussed in

Section 5.6 to achieve nearly the same effect as long as the seismic environment does not change

appreciably on time scales less than 10 minutes.

Residuals for both Figure 5.5 and Figure 5.6 were calculated using 46 second long Wiener filters

of 3000 taps at a sample rate of 64 Hz.
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Figure 5.5: Result of offline simulated seismic Wiener filtering on the 4km LIGO Hanford inter-
ferometer. (a) Traces are amplitude spectra normalized to the unfiltered control signal (red trace
in b), which is at a time during the filter’s training. Filter was trained on 6 hours of data, then
applied in 10 minute segments. Vertical stripes indicate times when the interferometer was not
operational. Seismic subtraction is fairly constant on a one month time scale, although it is not
particularly effective for times when seismic noise is significantly different from the training time.
(b) Selected individual spectra from (a) above. Dotted red trace is before subtraction, purple trace
is initial residual, and progressively lighter blues are 10, 20, and 30 days after the filter was trained.
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Figure 5.6: Result of offline simulated seismic Wiener filtering on the 4km LIGO Hanford inter-
ferometer, using an acausal filter on the same 30 day data set. (a) Traces are amplitude spectra
normalized to the unfiltered control signal (red trace in b). A filter is trained on, and then applied
to 10 minute segments of data. Seismic noise is more effectively suppressed using this constantly
updated filter, implying that the transfer function is changing on a relatively short time scale, and
that it is advantageous to update the filter more often than once per month. (b) Selected individual
spectra from (a) above. Dotted red trace is before subtraction, purple trace is initial residual, and
progressively lighter blues are 10, 20, and 30 days after beginning.
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5.4 Static implementation for Enhanced LIGO

In the winter of 2009-2010, this static global seismic noise cancellation was implemented at the

LIGO sites during the 6th Science Run. The FIR Wiener filters were estimated in MATLAB [122]

using the Levinson-Durbin algorithm [117, 118], and then fit to a set of IIR coefficients to reduce

the computational time in the real-time control system. The conversion from FIR to IIR was done

with the Vectfit [125] software package. The intermediate FIR filters were composed of 1000’s of

taps and processed data with a sample rate of 64 Hz, allowing for subtraction down to a few 10’s of

mHz. Approximately 1 hour of data was used to train each filter. Each test mass is in the vicinity of

at least one seismometer (see Figure 5.7), which measures motion in three perpendicular directions,

X, Y, and Z, where Z is vertical and the two horizontal directions are roughly aligned to the arms

of the interferometer. The length control is coupled most strongly to motion along the axes of the

respective cavities, but cross-couplings to the other directions are non-negligible. Regardless of the

direction of the witness signal generating a feed-forward correction, the actuation is applied in the

direction in which the laser beam is propagating for that particular chamber.

BS

ETMY

ETMXRM

ITMY

ITMX

STS

STS

STS

Laser

Readout

4 km

4 kmMC2MC1

Building 
Boundary

Figure 5.7: Location of seismometers and vacuum chambers. ETMX/Y and ITMX/Y are the locations
of the end and input test masses, respectively. RM is the power recycling mirror, BS the beamsplitter,
MC1 and MC2 the mode cleaner chambers, and STS refers to a Streckeisen STS-2 3-axis seismome-
ter. At LHO the end stations were equipped with multiple single-axis Geotech GS-13 single-axis
seismometers instead of STS-2s.

Offloading control signals to actuators located in the external seismic isolation systems mitigates

several of the problems mentioned in the introduction to Chapter 5. In order to properly subtract

the filtered witness signals, the transfer function from our point of actuation to the cavity control

signal must be measured and divided out. A diagram showing the relevant pieces of the mechanical

structure can be seen in Figure 5.8. The number of mechanical components separating the mirrors

from the ground creates a complicated transfer function with many resonant features.

At LLO, the active seismic isolation system is HEPI (hydraulic external pre-isolator) [42, 126]. A
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Isolation Stack

Sensor & 

Actuator

Seismometer

Optic

Suspension

Figure 5.8: Cartoon of Initial / Enhanced LIGO seismic isolation system, with single-loop suspension
and passive table isolation stack. The interferometer optic is suspended from the isolation stack.
Signals from the ground seismometer are applied just below the stack via piezo (LHO) or hydraulic
(LLO) actuators as indicated in the figure. The circles on the optic represent the four electromagnetic
actuators on the back of the mirror. The dashed line represents the vacuum chamber.

similar system installed at LHO at the time of this work, PEPI, used piezoelectric actuation. HEPI is

an Advanced LIGO (aLIGO) system which is now in place at both LLO and LHO. Figure 5.9 shows

a schematic of the HEPI system [42]. The Wiener filter feed-forward path was added in parallel to

the existing sensor correction path, which contained hand-tuned filters designed to match HEPI’s

position sensors to local seismometers on the ground. Typically this sensor correction reduced the

differential motion sensed by the suspended cavities to 1
10 of the ground motion in the microseism

band. All results shown are improvements on top of this existing isolation. The HEPI actuators [127]

provide the ability to move its payload by ± 700 µm; the maximum range of PEPI was ± 90 µm.

We excited these actuators while the detector was locked and monitored the mirror motion to

measure the mechanical response. We again used Vectfit to fit these measurements. An example

of these transfer function measurements can be seen in Figure 5.10. An example Wiener filter can

be seen in Figure 5.11. Both the Wiener filter and mechanical response are only fit accurately up to

a few Hz. Low-pass filtering was applied to the feed-forward signal to prevent noise injection at

higher frequencies.

In the winter of 2009-2010, we began commissioning of feedforward paths for the other inter-

ferometric control signals, starting with the power recycling cavity control at LLO. This work was

performed during a time of particularly high microseismic activity, which impaired the Livingston

detector’s ability to remain in lock. As can be seen in Figure 5.12 (a), a significant reduction in

control signal was achieved, with the RMS being reduced by more than a factor of two. As a result

there was also a reduction in the power fluctuations in the recycling cavity, which tended to drive
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Figure 5.9: The external isolation systems measure the motions of their payloads using position
sensors and geophones, providing feedback via hydraulic or piezoelectric actuators. Ground
motion is also measured with a nearby seismometer, which is digitally processed and subtracted
from the position sensor signal, a process called sensor correction. For chambers containing test
mass optics this signal is then blended with the geophone signal into a so-called ‘super-sensor’
which has good combined sensitivity over a wider frequency band than either sensor individually.
These ‘super-sensor’ signals are fed to the actuators. The presence of conversion matrices indicate a
transformation between the different coordinate bases used by particular sensors/actuators. The use
of four horizontal and four vertical position sensors/geophones allows for the sensing and control
of eight degrees of freedom: three translational, three rotational, and two over-constrained. This
schematic is adapted from Figure 3.8 of Wen [42].

the interferometer control loops towards instability, and greatly improved the instrument’s duty

cycle. This cavity is nearly geometrically degenerate [128] (g-factor ∼1) and therefore is especially

sensitive to misalignments.

Sending feed-forward signals developed to minimize one cavity control signal may inject noise

into other length controls, since the cavities share mirrors. To avoid this problem, feed-forward

paths were implemented in a serial fashion, such that extra motion injected into other degrees of

freedom could be corrected by the Wiener filters constructed for subsequent feed-forward paths.

For example, Figure 5.12(b) shows the effect of filters designed to minimize the short Michelson

control signal, calculated on top of the existing power recycling feed-forward path. Above ∼0.2 Hz

the Michelson signal is reduced, with the improved isolation of the power recycling cavity mostly

preserved, albeit with some noise injection in the PRC control spectrum around 1 and 2 Hz, as well

as a sharp feature in between those frequencies (see the thick red trace in Figure 5.12(b)).

Global feed-forward for the differential arm length control was implemented at both obser-
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Figure 5.10: Example plant transfer function, fit using Vectfit. The average statistical error of points
shown was ∼ 2.5% in magnitude and ∼ 1.5◦ in phase.

vatories with similar results. Since the DARM degree of freedom is sensitive to the motions of

mirrors in both the end buildings, as well as the corner station, seismometers in all three locations

were incorporated into the calculation of the optimal feed-forward filter. Unlike the cavities in

the corner station, the arm cavity’s baseline is significant compared to the seismic wavelength at

these frequencies, which are around 7 km at the Livingston observatory for example[113]. As such

the cavity does not experience much common mode rejection of the seismic motion between the

two buildings where its mirrors are located, and may even experience differential motion greater

than either building’s local seismic noise. The sensor correction scheme successfully reduced the

differential cavity motion by using these seismometers as the low-frequency inertial reference, and

the Wiener filter feedforward scheme improved this isolation by incorporating the cavity feedback

signal’s information about low-frequency differential motion. Figure 5.13 and Figure 5.14 show

that the overall RMS of the control signal is reduced by a factor of ∼2.5 for each interferometer

by implementing the new scheme. For LLO this improvement in performance was balanced by
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Figure 5.11: Example Wiener filter, corrected for the mechanical plant response, also fit using Vectfit.

a slight noise increase above 1 Hz. Some noise was also injected by Wiener filter feed-forward at

LHO, below 0.1 Hz, and above 3 Hz.

The couplings of ground motion to the feedback signal can potentially be time dependent. Since

the approach used here is not adaptive, this could lead to a degradation of the filter’s subtraction

efficacy over time. Figure 5.15 shows the performance of DARM feed-forward at LLO when first

implemented and eight months later. While the overall reduction in RMS motion was originally a

factor of∼2.5 the same feedforward filters provided∼20% less isolation after eight months, reducing

the RMS motion by a factor of two. There is no obstacle to retraining new Wiener filters to potentially

recover subtraction performance; however, if there is a change in the mechanical plant remeasuring

the transfer function is a time consuming process, due to the high accuracy required.
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Figure 5.12: The upper plot shows the reduction in power recycling cavity control signal achieved
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100 of
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Figure 5.14: Reduction in differential arm length control from Wiener filter feedforwad signals at
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traces) and 8 months later (lower traces). The two sets of spectra are from times with significantly
different seismic input. The lower plot show the ratio of feed-forward off / on for the two time
periods.
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5.5 Cancellation of seismically-induced angular motion in power

recycling cavity

To help alleviate the problems of angular motion in the power recycling cavity discussed in Sec-

tion 4.3, feedforward was applied in real-time at the 40 m Lab. We measure the angular motion of

the cavity axis with a quadrant photodiode (QPD) located at the POP port (see Figure 4.1). Note that

this is done in the PRMI-only configuration (end mirrors misaligned) so that only the RF sideband

is resonant in the cavity, and the QPD signal is not contaminated with information about the long

arm cavity axis motion. We utilize a Trillium T-240 3-axis seismometer [129], mounted on a granite

block on the ground next to the power recycling cavity, as the witness sensor for the ground motion.

As with Section 5.4, we must pre-filter the witness sensor data by the actuator transfer function.

In this case, we measure this transfer function by actuating on the power recycling mirror and

reading the QPD signal. This transfer function and the fit to the transfer function are shown in

Figure 5.16. Since the accuracy of the measurement and the fit can both limit the feedforward

subtraction (see Section A.2 for details), the coherence for each data point in Figure 5.16 is above

0.95, and for most of the points is above 0.99.

Figure 5.16: PRMI pitch actuator transfer function, actuating on PRM and reading out at the POP
QPD. Red dots are measured data points with coherence of at least 0.95, the blue trace is the fit to the
transfer function, and the green trace indicates the residual mismatch between the measurement
and the fit.

We then calculate the Wiener filters for each seismometer axis. Figure 5.17 shows an example
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Wiener filter that was calculated, for the seismometer axis in the same direction as the cavity axis in

the power recycling cavity. The red dots show the ideal calculated filter, and blue trace shows the

fit to that filter that will be used in the real time system for the actual feedforward. The green trace

indicates the residual mismatch (multiplied by a factor of ten for clarity) between the calculated

filter and the fit. The coherence between the seismometer witness signal and the QPD target signal

was above 0.5 for the range 0.7 Hz< f < 4 Hz, and above 0.9 for the sub-range 1.2 Hz< f < 3.5 Hz.

The Wiener filter’s fit is weighted by the coherence, so that frequencies of high coherence are

exceptionally well fit, at the expense of frequencies of lower coherence (where the signal from this

witness channel is not important). In addition to these filters, each witness channel was filtered

with a 10 Hz elliptic lowpass to avoid injection of sensor noise into the system. It was found

that a 0.01 Hz highpass filter was also required, although that may be due to a lack of accurate

actuator measurements at lower frequencies. Future iterations of this feedforward will investigate

this feature.

Figure 5.17: Example Wiener filter for PRC angular feedforward [130]. The red dots show the ideal
calculated filter, and blue trace shows the fit to that filter that will be used in the real time system
for the actual feedforward. The green trace indicates the residual mismatch (multiplied by a factor
of ten for clarity) between the calculated filter and the fit.

Figure 5.18 shows the results for the pitch degree of freedom of this feedforward applied in

real-time. Both pitch and yaw feedforward were applied simultaneously. For the pitch degree

of freedom, only the two horizontal axes of the seismometer are used, but for the yaw degree of

freedom all three axes are used. Red traces are without the feedforward, black traces are with the
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feedforward on, where both sets of measurements were taken within a few minutes of each other.

RMS values are also shown.

Figure 5.18: Suppression of angular motion in PRMI [131]. Red traces are without the feedforward
and black traces are with the feedforward on. Both sets of data were taken within a few minutes of
each other. RMS values are also shown.

Figure 5.19 shows our measured subtraction factor (blue trace) compared to the predicted noise

suppression (orange trace). The predicted trace assumes noise-free actuators, as well as perfect

fitting of the calculated Wiener filters. Here, a number greater than one indicates noise suppression

while a number less than one indicates noise injection. We note that extra angular noise is injected

below approximately 0.05 Hz. This is likely related to the need for the 0.01 Hz highpass filter, and

will be investigated further in future measurements.

Interestingly, the residual intensity noise (RIN) of the cavity shown in Figure 5.20 decreases over

a much broader band than the direct angular motion. It is expected that the power in the cavity

should be more stable when the cavity axis motion is reduced. The fact that the RIN improvement

is over a broader band implies that there are non-linear couplings present, such as scattered light

effects.

While these results are shown in the PRMI-only configuration, they are most helpful when

locking the full PRFPMI interferometer. Since the 3f locking signals are so sensitive, it is very

challenging to maintain lock of the vertex degrees of freedom long enough to fully transition

CARM and DARM. However, with this angular noise suppression, we are able to maintain lock of

the vertex degrees of freedom quite easily for several minutes at a time, which enabled the CARM
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Figure 5.19: Actual versus predicted noise suppression for pitch degree of freedom. Measured trace
is the ratio of the traces from Figure 5.18. A number greater than one indicates noise suppression
while a number less than one indicates noise injection.

and DARM transitions and full lock of the 40 m interferometer.
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Figure 5.20: RIN suppression due to improved angular noise in PRC. Red (no feedforward) and
black (feedforward on) traces were measured at the same time as the traces in Figure 5.18. RMS
values are shown with dashed traces.

5.6 Least mean squared adaptive noise cancellation

In case the transfer functions between the sensors and the target are changing with time, it would

be useful to use a filter whose coefficients change with time. Such an adaptive filter could also

take into account changes in the ’actuator’. The most simple and common implementation of an

adaptive filter is the Least Mean Squares (LMS) algorithm [132, 133]. Figure 5.21 shows a block

diagram of an LMS adaptive filter.

Adaptive 
Filter

CouplingDisturbance

Noise-suppressed signal

x(n) y(n)

w

e(n)d(n)Perfect, noiseless signal s(n)

g(n)

Noisy signal

Adaptation 
Algorithm

Figure 5.21: Block diagram of adaptive LMS filter.

The LMS algorithm is a canonical gradient descent algorithm. Much like Section 5.1, we define
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our error signal as e(n) = d(n)− y(n), where d(n) is the signal of interest at each time n, contaminated

by some noise and y(n) = wx(n) is the output of our adaptive filter if x(n) is a witness to the noisy

disturbance and w represents our filter.

To derive the update law that will determine the filter coefficients at each step, we first find the

derivative of the expectation value of the square of our error function, E[e2(n)], with respect to the

filter coefficients. This gives us

∇wE[e2(n)] = ∇wE[e(n)e∗(n)]

= 2E[(∇we(n)) e∗(n)]
(5.6)

with

∇we(n) = ∇w (d(n) − wx(n))

= −x(n).
(5.7)

So,

∇wE[e2(n)] = −2E[x(n)e∗(n)]. (5.8)

We increment the filter coefficients w in the opposite direction of the gradient,

w(n + 1) = w(n) −
µ

2
∇wE[e2(n)]

= w(n) + µE[x(n)e∗(n)],
(5.9)

where µ is a step-size parameter chosen to determine how large the change to w will be at each

step. Since we want to follow potential changes in the system, we will not assume that we know

E[x(n)e∗(n)] a priori. We estimate this by

E[x(n)e∗(n)] '
1
N

N−1∑
i=0

x(n − i)e∗(n − i) (5.10)

using a time series of length N. Since this will be implemented in real-time with causal filters,

out time series for these estimates will be of length N = 1. For such instantaneous estimates of the

expectation value,

E[x(n)e∗(n)] ' x(n)e∗(n). (5.11)

With this estimate, Equation 5.9 becomes

w(n + 1) = w(n) + µx(n)e∗(n). (5.12)

In the long-time limit, Equation 5.12 converges to the optimal Wiener filter in the mean [134].
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Since we update the filter coefficients at each time step, the filter designed using Equation 5.12 will

oscillate around the true optimum.

To investigate the stability of the filters and extra noise due to the non-perfect convergence to

the ideal Wiener solution as a function of µ, we must look at the eigenvalues of the autocorrelation

matrix R, defined in Section 5.1. This can be done, for example, by looking at past data, which is

sufficient for this purpose. If λi is the ith eigenvalue of R, then it can be shown [135] that for stability,

we require

0 < µ ≤
1

3
∑

i λi
. (5.13)

Also, the mean square error will have excess noise of a factor of

E[e2]LMS '

µ∑
i

λi

 E[e2]Wiener, (5.14)

more than the ideal Wiener case.

The algorithm implemented at the 40 m Lab includes a set of modifications to the most simple

LMS case. We use a “leaky normalized filtered-x LMS algorithm” [136],

w(n + 1) = w(n)(1 − τ) + µ(n)x(n)e(n). (5.15)

We use the leaky modification of including a factor of (1−τ) to allow the response of the filter to decay

over time. This prevents transients in ~x from affecting the filter permanently. τmust be chosen to be

large enough to provide stability against transients, but small enough that it does not compromise

the filter’s ability to converge. This is often chosen empirically. We use the normalized modification

of the algorithm such that the size of µ relative to ~x does not change. While we examined the

approximate stability in Equation 5.13 by looking at past data (under the assumption that the past

data is representative of future data), we must actually satisfy the stability criterion for every point

in time. For this, we have made µ time dependent in Equation 5.15, where

µ(n) =
µ

~x(n)T~x(n)
(5.16)

and it is µ(n) that must satisfy the stability criterion.

While both the leaky and normalized modifications are quite common, we also include the

filtered-x variant of the algorithm. This variant acknowledges that there exist phase delays in the

path of the target signal which cannot be approximated by the LMS method alone [137]. To account

for these phase delays, we filter the incoming witness signals with filters approximating those in

the target signal path. Once we have matched the delays in the two different paths, we implement

the regular LMS optimization to find the coefficients we will use in our FIR filter.
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We apply this technique (which we call Online Adaptive Filtering - the “OAF” system) to the

same triangular cavity as in Section 5.2. Once again, we use the cavity length feedback signal as

our targeted signal to minimize, and a similar layout of independent witness sensors as shown in

Figure 5.1. Unlike Section 5.2 and Section 5.3 which were simulations using previously collected

data, here we are actuating on the cavity in realtime. Figure 5.22 shows results using 250 second

long, 4000 tap filters with µ = 0.2 for the mode cleaner and approximately µ = 0.04 for the arm

cavities, and τ = 0 at a 16 Hz sample rate. The on / off traces in the adaptive case are similar to

estimates made in the static Wiener filtering case (Figure 5.2).
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Figure 5.22: Online Adaptive Filter performance: the spectral density of the cavity length fluctua-
tions are shown with the feed-forward on (lower black trace) and off (upper red trace) [138]. OAF
was allowed to adapt simultaneously for all three cavities (two individually-locked arms and the
mode cleaner).
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Chapter 6

Newtonian gravitational noise
cancellation

Fluctuations in the local Newtonian gravitational field present a limit to high precision measure-

ments, including searches below a few tens of Hz for gravitational waves using laser interferometers.

Early estimates of Newtonian noise by Weiss [139], Saulson [140], Hughes and Thorne [141], and

Beccaria et al. [112] have made increasingly better estimates of the seismic environment and thereby,

the gravitational noise. In this work, we update the estimations of Newtonian noise from the two

LIGO sites. We also present a model of the perturbing gravitational field and evaluate schemes to

mitigate the effect by estimating and subtracting it from the interferometer data stream, expanding

on work pioneered by G. Cella [142]. Information about the Newtonian noise is obtained from

simulated seismic data. The method is tested on causal as well as acausal implementations of noise

subtraction. In both cases it is demonstrated that broadband mitigation factors close to ten can be

achieved removing Newtonian noise as a dominant noise contribution. The resulting improvement

in the detector sensitivity will substantially enhance the detection rate of gravitational radiation

from cosmological sources.

The multi-stage vibration isolation systems [126, 143] developed for gravitational wave detectors

should, in principle, be capable of reducing the direct influence of the ambient seismic noise to below

the quantum and thermodynamic limits of the interferometers. Unfortunately, there is no known

way to shield the detectors’ test masses from fluctuating gravitational forces. As shown in Figure 6.1,

our calculations estimate that the fluctuations in the local Newtonian gravitational field will be the

dominant source of the mirror’s positional fluctuations below 20 Hz. This noise source has been

referred to as gravity gradient noise or Newtonian noise in previous literature.
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Figure 6.1: Strain noise spectral density of Advanced LIGO (black). The sensitivity of the initial
LIGO (pink - dashed) is shown for comparison. The Newtonian gravity noise (green) is dominating
the Advanced LIGO noise below 20 Hz. Other traces shown are other, non-gravitational, limits
to the sensitivity: direct seismic vibrations (brown), quantum radiation pressure and shot noise
(purple), mirror thermal noise (red), and mirror suspension thermal noise (blue).

6.1 Estimating Newtonian gravitational impact on Advanced LIGO

In 2011, several measurements were carried out at the LIGO sites to define a Newtonian noise

budget [8]. Accelerometers were used to monitor vibrations on water pipes, near exhaust fans,

on top of the buildings and on the walls. Sound spectra were measured with microphones inside

and outside of the LIGO buildings. The resulting Newtonian noise estimates for each of these

sources are summarized in Figure 6.2. In addition, the plot contains a representative noise model

for potential upgrades to the advanced detectors such as Advanced LIGO and Advanced VIRGO,

which we refer to as 3rd generation ground-based detectors [144]. Future detectors built at new sites,

such as the proposed Einstein Telescope, we call 4th generation detectors [145]. More specifically,

the strain noise model (excluding Newtonian noise) that we use to simulate interferometer noise
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Figure 6.2: Seismic 90th percentile Newtonian noise estimates for the LIGO Livingston (LLO) and
Hanford (LHO) sites (green and red lines), third generation strain noise model (blue line), and
additional Newtonian noise estimates from vibrations of walls (cyan line), building tilts (magenta
line), exhaust fans (beige line), and sound waves inside buildings (black line). Seismic contributions
are the only Newtonian noise source significant for third generation detectors and earlier. Building
tilt will be important for detectors beyond the third generation, but is not a dominating noise source
at this time.

for a 3rd generation detector is:

√
Sh( f ) =

( 10−23

( f/10 Hz)14 +
10−23

( f/10 Hz)2 +
2 × 10−24

( f/40 Hz)1/50

) 1
√

Hz
. (6.1)

It is based on current best estimates of technology advance to mitigate instrumental noise such

as thermal noise, seismic noise, and quantum shot noise. The Newtonian noise is simulated as

test-mass displacement noise. To convert from the displacement noise of a single mass into strain

noise, we multiply by two to account for the incoherent sum of four masses and then divide by the

interferometer length, L = 4 km, to get strain.

All measured curves in Figure 6.2 are derived from 90th percentiles of spectral histograms similar

to the one shown in Figure 6.7 for the seismic measurement at the LIGO Livingston site. Note that

the seismic curves for both LIGO sites presented in Figure 6.2 are more recent, using a more accurate,

non-averaged, analysis of the seismic percentiles, as compared to earlier measurements [8].

According to these estimates, seismic Newtonian noise is the only significant Newtonian noise

contribution for 3rd generation and earlier detectors, so other contributions to Newtonian noise such

as building vibrations or air pressure fluctuations are not considered in Section 6.2 and beyond.

Figure 6.2 shows our estimate of the strain noise due to several candidate Newtonian noise



92

sources. We note that seismic Newtonian noise is likely to be the dominant source that we will see

in aLIGO, with the tilt of the end station buildings the next most important source. We expect that

other sources such as vibrations of the wall panels and the air handler fans will be less important.

In addition to the sources considered for this plot, estimates of Newtonian noise from the chambers

should be included as presented in LIGO-T070192 [146].

In the general case, if the displacement
(
~ξ(~r, t)

)
of a mass is weak, then the test mass acceleration

due to Newtonian noise can be estimate by the integral over the entire medium,

δ~aNN(~r0, t) = G
∫

dV
ρ0(r̃)
|r̃ − r̃0|

3

(
ξ̃(r̃, t) − 3(ẽr · ξ̃(r̃, t))ẽr

)
, (6.2)

where ρ0 is the density of the medium, G is the gravitational constant,~r0 is the position of the mirror,

~r points to locations in the medium, and ~er is the unit vector pointing from ~r0 to ~r [147].

The following subsections will describe the measurements that we have done to obtain more

information about each of these sources, as well as how we arrive at the estimate of the Newtonian

noise contribution for each.

6.1.1 Vibration of outer walls

The LIGO buildings are constructed such that they have double walls, the inner of which is a

structural wall, while the outer wall is made of thin sheet metal, with an approximately 1 meter gap

between the two walls. The outer wall panels are attached in small sections — about 2 m wide — to

a metal beam framework. To calculate the Newtonian noise, we assume that the vibrations of wall

panels can be described as an incoherent sum over contributions from individual panel sections

with coherence length equal to 2 m along both directions of the wall, each panel section vibrating

in normal direction to the wall like a drumhead.

We calculate the contribution for a single wall panel that is very near the beam axis, and assume

that if we include all of the sections on the front and back walls they will add to give some amount

of cancellation, in addition to not vibrating in the same direction as the beam axis, so they will add

to about the order of one single section. When considering both the front and back walls, we need

to multiply by
√

2 if they add incoherently.

We choose to keep the model of the panel Newtonian noise simple since, as shown in Figure 6.2,

the wall panel vibrations are not close to being a limiting source. We are confident that the estimated

strain noise shown in Figure 6.2 is an overestimate of the wall vibration Newtonian noise, since it

is calculated assuming that the entire wall panel vibrates with the maximum amplitude; however,

the edges of each panel are bolted to the wall structure, which has displacement that is weaker by

an order of magnitude than the maximum displacement of the center of a panel.

Since we have supposedly an overestimate of the noise, and this estimate is so far from being a
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limiting source, we will likely not look into more detailed measurements and simulations of wall

panel vibrations in near-future investigations.

To calculate the strain noise due to the wall panels, we start as usual with the dipole approxi-

mation of Newtonian noise test mass acceleration:

~aNN = G
∫

dVρ
1
r3

(
~ξ − 3

(
~er · ~ξ

)
~er

)
. (6.3)

We assume that, for the panels close to the beam axis,~er ‖ ~ξ, so
(
~er · ~ξ

)
~er ∼ ~ξ, and

(
~ξ−3

(
~er · ~ξ

)
~er

)
∼ −2~ξ.

We change from acceleration to displacement by dividing the Newtonian noise amplitude spectral

density by (2π f )2. We then multiply by
√

2/L to get strain assuming that the wall panels are much

closer to the test masses at the end stations, so we only include noise from the end stations. We also

approximate the integral over volume as giving us the mass of a single wall panel being uniformly

displaced. So we have

hNN = G (Mass of panel)
4ξ
D3

1
(2π f )2

1
L
, (6.4)

where D is the distance between the wall(s) and the test mass at the end stations along the direction

of the arm, ξ is the measured wall displacement, and L is the length of the LIGO arms.

We assume an individual wall panel has an area of 4m2, a thickness of 3 mm, and a density of

7000 kg/m3. These values are only estimates, but they are sufficiently accurate to allow us to rule

out the Newtonian noise from vibrating panels as being important. Figure 6.3 shows representative

spectra of the wall panel vibrations, measured with a Wilcoxon 731-207 accelerometer [148]. The

data from Figure 6.3, combined with Equation 6.4 results in the cyan curve of Figure 6.2.

6.1.2 Building tilt

From all possible types of motion of the end-station buildings, the tilt or rocking mode along the

direction of the arms would produce the strongest Newtonian noise since the walls move in phase

and Newtonian noise adds up from the two walls ”in front of” and ”behind” the test masses. So the

conservative Newtonian noise estimate will take the total mass of the two walls and assume coherent

displacement. Here, the Newtonian noise contribution of the tilt of the buildings is calculated in

much the same way as the wall panels.

The coherent motion yields a factor of 2 in Newtonian noise from back and front wall. We also

assume that the displacement of the walls increases linearly from 0 displacement at the ground to

maximum displacement at the roof. This is based on the accelerometer spectra measured at the

base and roof of the buildings, which show that displacement at the roof is much stronger. So to

obtain an effective uniform displacement of the walls, we divide the spectra measured at the roof

by 2. Finally, we make the additional assumption that this type of Newtonian noise is significantly
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Figure 6.3: Various measurements of wall displacement at Livingston Y end station. ’Wall, panel’
displacement is an accelerometer directly mounted to the outer wall sheet metal, near the ground.
’Wall, roof’ is an accelerometer mounted to the outer wall (not panel), a few inches below the roof
of the building. ’Wall, iron beam’ is an accelerometer mounted to the iron beam structure of the
outer wall to which the sheet metal panels are mounted.

weaker at the corner station since the buildings are larger and walls in the direction of the arms are

further away from the test masses.

Then strain due to tilt of the buildings is

hNN =
√

2G (Mass of wall)
2ξ
D3

1
(2π f )2

1
L
. (6.5)

Figure 6.3 shows spectra of accelerometer data, where the stronger motion measured by the roof

accelerometer indicates that tilt could indeed be the dominant mode of the building. This noise

spectrum, combined with Equation 6.5, results in the magenta curve of Figure 6.2. We use 25 tons

(2.5e4 kg) as the mass of a single wall of the end stations, and we use 5 meters as the distance

between the walls and the end test masses. This estimated total mass of each wall is a potentially

bad guess, and since Newtonian noise from buildings is sufficiently close to aLIGO sensitivity, a

more detailed calculation should be carried out based on a better estimate of the total mass of the

wall.

6.1.3 Air pressure fluctuations

Perhaps one of the previously most concerning Newtonian noise candidates is air pressure fluc-

tuations (since it is very difficult to subtract them if significant). According to our measurements,
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it appears that sound and air pressure fluctuations are not going to be a limiting noise source for

aLIGO.

We start with the same Newtonian noise acceleration as calculated for seismic compressional

body waves, since the physics is the same:

aNN =
8π
3

Gρξ. (6.6)

We then convert to strain amplitude using the same 1/(2π f )2 and 2/L terms considering incoherent

contributions from both ends of each arm. Since sound data are pressures and not displacements,

we need to convert:

δρ = −ρ0

(
~∇ · ~ξ

)
(6.7)

δρ = −ρ0

(
~k · ~ξ

)
(6.8)

δρ = −ρ0

(
kξ

)
. (6.9)

So

ξ =
δρ

ρ0

1
k

=
δρ

ρ0

c
2π f

, (6.10)

where the density change is linked to the measured pressure change via

δρ

ρ0
=

1
γ

δp
p0
, (6.11)

where γ = 1.4 is the adiabatic constant of air. We finally obtain the strain noise

hNN =
8π
3

Gρ0
δρ

ρ0

c
2π f

1
(2π f )2

2
L
. (6.12)

We use 100 kPa as the average air pressure p0, and air mass density ρ0 = 1.3 kg/m3. The speed of

sound is c = 330 m/s.

Since the sound inside and outside of the buildings have comparable spectral densities, we

will integrate Newtonian noise all the way to the chambers, in contrast to the calculation in Teviet

Creighton’s paper [149] where the noise is only integrated outside of the buildings, leading to larger

suppression (although suppression is not significant at 10 Hz). Integrating the Newtonian noise

from sound waves over large volumes is certainly simplistic since sound waves do not propagate

freely due to building walls, trees, chambers, etc., but this is okay since it leads to an overestimation

of the noise.

Figure 6.4 shows representative spectra from inside the X endstation building at the Hanford site.
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Note that the LIGO microphones (in this plot represented by ”Microphone, BSC9”) are sufficiently

sensitive down to ∼ 3 Hz; however, below 3-4 Hz, the response of the LIGO microphones decreases.

This data, combined with Equation 6.5, results in the black curve of Figure 6.2.

The strain curve shown in Figure 6.2 is calculated using microphone data, and so cannot be

trusted below 3-4 Hz. At very low frequencies we will need to utilize infrasound sensors; however,

these are unnecessary for the ∼10 Hz regime where the Newtonian noise contributions are likely to

limit future LIGO detectors.
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Figure 6.4: Sound spectra taken at the X end station at Hanford.

6.1.4 Air handler fans

The air handler fans are large fans used in the air conditioning of the experimental halls at the

sites. The fans are very large, and have strong vibrations, and could be a potential Newtonian

noise source. The main problem with the noise calculation for the fans is that in principle we

need to consider macroscopic motion of fan parts instead of microscopic vibrations. The proper

way to calculate this is to expand the Newtonian noise into contributions from the different mass

moments of the fan that oscillate at multiples of the rotation frequency Ω. The lowest oscillating

orders are the dipole and quadrupole moments. The dipole moment gives rise to Newtonian noise

that decreases with distance r between test mass and source as 1/r3. One can show that the noise

from the quadrupole moment falls as 1/r5, and so on for the higher moments. Now, the simple

model that we will use in the following is that ideally, all low order mass moments of the fan should
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vanish by design (assuming that there is a high symmetry of the rotating parts). Then the dominant

contribution to Newtonian noise would come from the residual oscillating mass dipole moment,

which certainly exists since the fan is vibrating. In fact, we will assume that the vibrations measured

at the fan are due to the residual mass dipole moment alone, which is a reasonable assumption since

a changing dipole moment requires that a second body attached to the fan (the ground) compensates

the associated oscillating momentum. So we will use the dipole formula (Equation 6.3) to calculate

Newtonian noise from fans using the vibration spectra. The link between residual dipole moment

and vibrations certainly needs to be investigated in more detail, but it shall serve as starting point

for a simplified model.

To calculate the fans’ Newtonian noise contribution we use

hNN = G (Mass of Fan)
ξ

D3

2
L

1
(2π f )2 . (6.13)

The distance D is 12 m between the fans at the end stations and the end test masses. The distance

between the corner station fans and the input test masses is about 27 m. We assume that the

vibrating mass is 1000 kg.

We show in Figure 6.5 spectra of an accelerometer epoxied near the base of one of the fans at

the Livingston site. The fan’s vibration is so strong that we were not able to directly measure it

on the fan. So if our noise model is correct, then the Newtonian noise from fans would be much

stronger than indicated by the gold trace in Figure 6.2. Further measurements need to be taken on

these fans. Note that in the vibration spectral histogram there is a ’quiet time’ and a ’loud time’.

Periodically, the Livingston fans increase their vibration significantly. The Hanford site does not

have this bimodal vibration, and more closely resembles the ’quiet’ times.

6.1.5 Seismic noise

We currently anticipate that surface seismic noise will be the dominant Newtonian noise source

in Advanced LIGO. We measured seismic noise both inside and outside of buildings at both sites

using Streckeisen STS-2 [150] and Güralp CMG-40T [119] seismometers.

To estimate the strain noise due to the seismic motion, we use the simple model of evanescent

waves propagating on the surface of a homogeneous medium. The Newtonian noise acceleration

of the test mass in horizontal direction can be written as

aNN( f ) = (Numerical Factor)2πiGρ0ξ2π f e−hk, (6.14)

where ξ is the vertical surface displacement at the test mass, k denotes the (horizontal) wavenumber

of the field at frequency f , G is Newton’s constant, ρ0 is the average or unperturbed density of the
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Figure 6.5: Spectral histogram showing displacement due to fan motion, measured near the base
of the fan. Measuring the fan directly was not possible, as the accelerometers were completely
saturated.

ground, and h is the height of the test mass above ground. The value of the numerical factor

depends on the mode content of the seismic field. Density changes due to vertical displacement

of the surface produced by Rayleigh waves is partially cancelled by density changes inside the

ground due to compressional components of the field. In this case, the numerical factor is about 0.8

depending on the Poisson ratio of the ground.

To convert to strain noise, we divide by (2π f )2 and multiply by 2/L where L = 4 km is the length

of the arms. The latter factor is based on the assumption that all four test masses feel incoherent

Newtonian noise with the same spectral density. The numerical estimate of the seismic Newtonian

noise uses ρ0 = 2500 kg/m3 and the 90th percentile of the two histograms shown in Figure 6.6. This

data, combined with Equation 6.14, results in the red and green traces in Figure 6.2.
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Figure 6.6: Histogram of spectra of vertical ground displacement measured inside the LVEAs at
Hanford (top plot) and Livingston (bottom plot).

6.2 Optimal seismic arrays

6.2.1 Simulation of seismic Newtonian noise

Since Newtonian noise cannot, at this time, be directly measured, we must base our estimates of

subtraction capabilities on simulated noise. We attempt to obtain a sufficiently accurate estimate of

the Newtonian noise based on information about its source, which in this case is the seismic field.

Other contributions to Newtonian noise such as building vibrations or air pressure fluctuations

are not considered here because, as discussed in Section 6.1, they are not expected to limit GW

interferometer sensitivities in the next ∼10 years.

In this Section, we give a description of the time-series generator for the seismic fields, the

associated Newtonian noise, and other instrumental noise of the interferometer and seismometers.
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We also discuss the suitability of our simulation as an estimate of Newtonian noise at the LIGO

sites. The problem is set up as a full time-domain simulation of seismic fields and instrumental

noise. Instrumental noise such as seismometer noise or test-mass displacement not generated

by Newtonian noise is treated as stationary. In contrast, we do not assume stationarity of the

seismic field. Here the attempt is to simulate a seismic field that is comparable to previously

measured seismic noise, and to make the content of the field as complex as possible in order to

test Newtonian noise subtraction schemes on challenging scenarios. Still, due to computational

limitations, simplifications are necessary. In the general case, if ground displacement ~ξ(~r, t) is weak,

then the test-mass acceleration due to Newtonian noise can be estimated by Equation 6.2. This

equation is valid for arbitrary seismic fields and represents the noise imprinted on the test mass

due to Newtonian noise. In our simulation, we only consider seismic fields composed of surface

waves (Love or Rayleigh waves, described in Figure 6.21). This simplification is enforced by

computational limitations since generating Newtonian noise time series from simulated 3D seismic

fields would require months-long simulation runs. We expect this assumption to be reasonable,

since surface waves are expected to have much larger amplitudes than body waves [141], and so

surface waves give the dominant contribution to Newtonian noise at the surface; however, seismic

array measurements currently in progress at the LIGO sites will confirm this and several other of

our assumptions for our particular sites.

Freely propagating surface waves like Rayleigh waves and their overtones produce Newtonian

noise in such a way that there is always an effective 2D representation of the problem (which is

not generally true for all supported wave fields, such as scattered waves). This implies that the

numerical simulation can be set up as a 2D simulation over the surface, which is why Equation 6.15

and Equation 6.16 only describe vertical displacement. This approach was chosen to reduce com-

putational costs, and does not over simplify the subtraction problem as long as scattering of seismic

waves is weak.

The simulated seismic field is composed of two wave types: wavelets and symmetric surface

waves. Wavelets represent seismic waves from far-field sources, while symmetric surface waves

represent disturbances due to local sources. The vertical displacement due to a wavelet is described

by

ξ(~r, t) = ξ0 exp(−τ2/(2∆T)2) cos(2π fτ + φ0) (6.15)

with τ = t −~k · (~r −~r0)/(2π f ). Twenty wavelets are injected for each second of time series randomly

distributed over the entire simulation time so that wavelet numbers can be different each simulated

second. Frequencies f are drawn from a uniform logarithmic distribution between 8 Hz and 30 Hz,

which includes the full range of frequencies for which Newtonian noise is expected to be dominant.

Wavelet durations ∆T are uniformly distributed between 10/ f to 20/ f , to represent that wavelets
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can vary in duration depending on the type and source of the disturbance. The distribution of

wave vectors ~k is isotropic, to represent far-field sources from all directions. The average speed of

sound for seismic waves in the ground is approximately 200 m/s [151] so we allow seismic speeds

in our simulation to vary uniformly from 195 m/s to 205 m/s. This variance in speed is a brute-force

method to simulate wave scattering, but it is very likely an overestimation of the effect. The initial

location~r0 of the wave maximum lies in the direction of the back-azimuth of the incident wave such

that the wave is guaranteed to reach the location of the test mass within the simulated duration of

the time series. The initial phase φ0 of any single seismic wave is not a critical parameter. rWhat is

important is that not all seismic fields in our simulation have the same phase, so φ0 is drawn from

a uniform distribution between 0 and 2π.

The second type of wave in the simulation is the symmetric surface wave, described by Bessel

functions, with vertical displacement

ξ(~r, t) = ξ0 J0(k0R) cos(2π f t + φ0) (6.16)

with R = |~r − ~r0|. Equation 6.16 represents fields from sources located at ~r0 with distance r0 drawn

uniformly between 10 m and 20 m. Sources more distant than 20 m appear at the test mass as distant

sources, represented by wavelets as in Equation 6.15. All other parameters are obtained in the same

way as for the wavelet, where as before the variation in seismic speed leads to a corresponding

variation of the wave number k0. We assume that local sources do not vary strongly over the

relevant time scales (defined by the subtraction procedure; see following Sections), so that the local

sources are considered stationary. A fixed number of 10 waves from local sources is used. Below

1 Hz, there are typically no more than 2 waves present at a time [152], so we expect that, while the

number of waves present can increase with the frequency of the seismic waves, twenty distant and

ten local sources is a conservative overestimate of the complexity of seismic fields we will see at the

LIGO sites.

The full simulation covers a surface area of 100 m × 100 m with the test mass at its center, which

is larger than the area from which interesting Newtonian noise contributions are expected [147].

The number of grid points along each dimension is N = 201 so that the grid-point spacing is 0.5 m.

We choose a 201 × 201 point grid as a compromise between overall grid area, grid spacing, and

computational time. The test-mass is suspended 1.5 m above ground, which is approximately the

height of the LIGO test masses. As the effective 2D representation is based on the surface term of

the gravity perturbations and not the full dipole form [147], we convert the integral in Equation 6.2

into a discrete sum over grid nodes. Using only the surface contribution to the integral, the test
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mass acceleration along the direction of the interferometer arm is

aarm
NN (t) = Gρ0dS

N×N∑
l=1

ξl(t)
r2

l

cos(φl), (6.17)

where dS is the area of the square enclosed by four neighboring grid points, ξl(t) is the vertical

displacement of grid point l at time t, rl is the distance between the grid point to the test mass, and

φl is the angle between the vector pointing from the test mass to the grid point and the direction of

the interferometer arm. The sum over grid points in Equation 6.17 is used to determine the time

series of the Newtonian noise at the test mass. Time series for each seismometer in Section 6.2.3

and Section 6.2.4 are calculated separately using Equation 6.15 and Equation 6.16, so seismometer

locations are not restricted to coinciding with grid points.

We utilize models of the instrumental noise of seismometers and the strain noise of an inter-

ferometer to more accurately determine the Newtonian noise subtraction efficacy, as described

in Section 6.2.3 and Section 6.2.4. The instrumental noise of all seismometers is simulated with

spectral densities that are white (frequency independent) in units of velocity and have a value of

10−10 m/
√

Hz at 10 Hz. This is a conservative estimate for commercial geophones.

The seismic spectrum itself plays a minor role for the purpose of this paper, but nevertheless

we defined distributions for ξ0 in Equation 6.15 and Equation 6.16 in such a way that the spectral

density approximates the median spectrum measured at the LIGO sites. The plot in Figure 6.7

shows the histogram of unaveraged 128 s spectra measured at the LIGO Livingston site over a time

of one year during the last science run, and the black curve represents the average spectrum of the

simulated seismic field. The average spectral density derived from the histogram is about a factor

of two to three larger at frequencies between 10 Hz and 30 Hz than the model used in [141] with

correspondingly larger Newtonian noise spectrum.

The strain noise model (excluding Newtonian noise) that we use to simulate interferometer noise

for a 3rd generation detector is the same as Equation 6.1. This is a representative noise model for

proposed upgrades to Advanced LIGO and Advanced VIRGO, which we refer to as 3rd generation

ground-based detectors [144]. Future detectors built at new sites, such as the proposed Einstein

Telescope, we call 4th generation detectors [145].

The sampling frequency for all time series is fs = 100 Hz and the observation time is T = 100 s.

We plan to test our subtraction techniques on longer duration simulated data in the future; however,

computational time restraints have kept us to this moderate duration for the time being. All time

series are high-passed with corner frequency 5 Hz directly after being generated to avoid numerical

problems. As can be seen in Figure 6.8, interferometer noise dominates Newtonian noise below

8 Hz and above ∼20 Hz, so that we can safely ignore frequencies outside this range when testing

subtraction methods.
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Figure 6.7: Histogram of one year of unaveraged 128 s seismic spectra measured during the 6th
LIGO science run inside the corner station of the Livingston detector. The black curve is the spectral
density of the simulated seismic field. The spectral histogram of the Hanford site is very similar for
the frequencies plotted here.

6.2.2 Sensor array optimization

Optimization of seismic arrays with respect to Newtonian noise subtraction was discussed in [153].

The authors calculated subtraction residuals analytically by evaluating explicitly the correlation

between seismometers and the test-mass as a function of seismometer locations. The average

subtraction residual can be written as

R = 1 −
~C T

SN · (CSS)−1
· ~CSN

CNN
. (6.18)

Here, ~CSN is the cross-correlation vector between seismometers and the Newtonian noise acceler-

ation of the test-mass, CSS is the cross-correlation matrix between seismometers, and CNN is the

Newtonian noise variance. These quantities can also be interpreted as (cross-)correlation spectral

densities. Given a fixed number of seismometers, the optimal array is found by changing seis-

mometer locations and minimizing
√

R. The equation is idealized, as it does not depend on any

details about the way subtraction is implemented, i.e., whether a finite impulse response (FIR) filter

is used, or some non-causal post-subtraction filter (see following two Sections for details). For this

reason it describes the performance of all subtraction methods that are based on linear filtering,

and the optimal array found by minimizing
√

R is universal for all linear noise filters. Since it is

very likely that different noise cancellation techniques will be combined in practice, it seems that
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Figure 6.8: Spectrum of simulated Newtonian noise (red line), reference third generation sensitivity
curve described in Equation 6.1 (blue line), and simulated interferometer noise based on this noise
model (green line). Since other noise sources such as mirror suspension thermal noise and direct
seismic vibrations will be the limiting noise sources for second and third generation detectors below
∼ 8 Hz, we do not need to consider Newtonian noise at these low frequencies. We therefore do not
include low frequency information in our Newtonian noise estimate, which creates a sharp cutoff
when the simulated data is viewed in the frequency domain

optimization based on Equation 6.18 is the best one can do.

Correlation patterns of surface waves observed in nature are often well approximated by Bessel

functions that characterize isotropic plane-wave surface fields [154, 155]. Adopting a more con-

venient normalization the corresponding seismic correlation CSS between two points ~ri, ~r j on the

surface is given by

CSS(~ri,~r j) = J0(2π|~ri − ~r j|/λ) +
1

SNR2 δi j, (6.19)

where λ is the length of the seismic wave, and SNR is the signal-to-noise ratio of the seismometers.

To find out how well this theoretical model approximates the seismic correlation in the simulation,

we calculated CSS between seismometers of increasing distance using our simulated seismic fields.

The result is shown in Figure 6.9, where we show that the correlation vs. distance of our simulated

seismic fields match the theoretical correlation of seismic fields fairly well, albeit not precisely.

Other terms in Equation 6.18, using the same normalization as for Equation 6.19, are the New-

tonian noise variance

CNN = 0.5 (6.20)

and the correlation between seismic displacement and Newtonian noise acceleration of the test
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Figure 6.9: Comparison between the theoretical model for seismic correlation of isotropic plane-
wave surface fields as described by Equation 6.19 (solid line), and the correlation calculated by the
simulation of a field composed of wavelets and locally generated waves (dotted line). Contributions
from local sources cause variations of the correlation curve at larger distances between simulation
runs (see Section 6.2.1 for details). Therefore, theoretical and simulated correlations match at
close distances and deviate strongly at larger distances. Since seismic fields in the context of
Newtonian noise subtraction only matter very near the test mass, the match between simulated
and theoretical correlations at small distances means that the optimal array determined analytically
by minimizing

√
R in Equation 6.18 should also perform well in simulation, and more importantly

that the simulation should be representative of our real subtraction ability.

mass located at the origin

CSN(~ri) = J1(2πri/λ)
xi

ri
, (6.21)

where ri = |~ri|, and xi is the projection of ~ri onto the direction of the interferometer arm. Since

Equation 6.18 is independent of seismic or Newtonian noise amplitudes, we can use any suitable

normalization of the seismic field or the Newtonian noise.

Finding the optimal array is not a trivial task. The result of a stepwise optimization by placing

one seismometer after another leads to array configurations very different from the optimum.

For the model described by Equation 6.19 to Equation 6.21, the step-wise optimization yields

a straight line of seismometers along the direction of the arm, approximately symmetric about

the test mass, independent of the number of seismometers. Therefore, configurations close

to the optimum can only be found by optimizing all seismometer locations simultaneously. A

systematic numerical search for the optimum for more than a few seismometers is prohibitively

computationally expensive, and approximate numerical optimization methods need to be applied.

The array configuration that we call optimal in the following sections is shown in Figure 6.10. It
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Figure 6.10: Locations of 10 sensors resulting from numerically minimizing the subtraction residual.
The optimal array should be symmetric about the test mass located at (0,0), but the optimization
routine was stopped once residuals were significantly better than will be required. The colors
indicate the normalized seismic correlation between seismometer 1 and all other seismometers.

was found numerically by running a particle-swarm minimization code [156, 157] to optimize the

location of 10 noiseless seismometers. It should be clear that the optimal array should have some

kind of symmetry, so we know that this configuration is sub-optimal. While this configuration does

not represent a global optimum, its subtraction performance should be sufficient for Advanced

LIGO and 3rd generation detectors. As many configurations yield similarly small subtraction

residuals, we added further components to the cost function
√

R to make sure that seismometers

are not placed too close to each other. The array shown in Figure 6.10 is the result of minimizing

this combined cost function.

As one can see from Equation 6.19 to Equation 6.21, the residual R is a function of seismic wave-

length, and therefore frequency, and broadband subtraction performance needs to be investigated.

The subtraction residual of the array in Figure 6.10 was minimized at 10 Hz for a seismic wave

speed of 200 m/s. In Figure 6.11 we show the subtraction residual as a function of frequency for

various array configurations. We compare the array from Figure 6.10 with three different spiral

configurations. A spiral seismic array can provide a compromise between high resolution (many

sensors densely packed) very close to the test mass, and some sensors far away to capture informa-

tion about longer wavelength seismic noise. One can see how the number of seismometers and

the array size affect subtraction residuals. It is clear that a very small array does not perform well at

low frequencies since it provides highly degenerate information at these frequencies whereas larger

arrays sample a larger part of the seismic wave. A smaller number of seismometers simply leads

to a broadband increase of subtraction residuals except for the smallest frequencies. We want to
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Figure 6.11: Subtraction residual as defined in Equation 6.18 vs. frequency for the array shown in
Figure 6.10, and three different spiral configurations.The ‘N=10, r=8 m’ array is shown in Figure 6.13,
and the ‘N=10, r=2 m’ array is the same, but with all seismometer coordinates scaled down by a
factor of four. The ‘N=5, r=8 m’ array has two sensors at the same positions as numbers 1 and 10 in
Figure 6.13, and three other sensors distributed along the two-turn spiral in between these two. It
is assumed that the seismometers measure ground motion with SNR = 100 at all frequencies. The
Rayleigh-wave speed is 200 m/s.

emphasize that these theoretical predictions only hold approximately for the numerical simulation

presented in the following sections, since it does not account for details of the subtraction method

as explained before.

Note that all arrays discussed here refer to sensors placed on the floor inside the LIGO buildings.

In-chamber vibrations are already suppressed to the level of the noise floor of the best available

sensors, so we are not able to measure any motion relevant to Newtonian noise inside the LIGO

vacuum envelope. Thus, we use ground-mounted sensors to measure Newtonian noise outside the

vacuum envelope.

6.2.3 Offline post-subtraction

For the purpose of this chapter, offline post-subtraction denotes the cancellation of noise in recorded

data. The noise cancellation filter can therefore be causal or acausal. In this section, we will present

a simple acausal implementation of the post-subtraction. The method chosen here is to cancel

Newtonian noise on short segments of recorded interferometer time series. The basic idea is to

optimally construct a vector of filter coefficients, one coefficient per seismometer axis, and then use

these coefficients to form a linear superposition of the seismometer channels as the Newtonian noise
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estimate. For a general introduction to digital filtering techniques, please see, for example, [158]. In

order to determine the effectiveness of this offline subtraction, we look at the residual interferometer

sensitivity after removing the Newtonian noise:

D(tm, tm+1) = I(tm, tm+1) −
〈Ic, ~Sc

〉m

〈~Sc, ~Sc〉m

· ~Sc(tm, tm+1). (6.22)

The residual D in Equation 6.22 corresponds to the interferometer data I minus the Newtonian

noise estimate from the seismometer data. The time series used to calculate the Newtonian noise

estimate are pre-conditioned with whitening and band-pass filters focusing on the 8 Hz to 30 Hz

Newtonian noise band before the correlations are evaluated. We also found it necessary to apply

an anti-aliasing window (we used the high-gain Nuttall window) for reasons that will be described

below. All quantities subject to the preconditioning are marked with a “c”. 〈Ic, ~Sc
〉m denotes the

vector of cross correlations between the interferometer data Ic and all seismometers ~Sc using data

of segment m acquired between tm and tm+1. Note that tm and tm+1 are start times of the mth and

(m + 1)th data segments, not time indices. Similarly, 〈~Sc, ~Sc
〉m is the cross-correlation matrix between

all seismometers. This means that the filter used here will have one filter coefficient per seismometer

for the entire time interval tm to tm+1.

We must determine a reasonable time duration for each segment. Segments are too short if

the spectral resolution is too small to disentangle seismic waves at different frequencies. Segments

may be too long if the number of seismic waves in that time frame becomes large. A Wiener filter

that sees many seismic waves may begin to average over the different waveforms and provide

non-optimal noise suppression. Choosing the goldilocks segment duration is somewhat arbitrary;

however, it is likely that the appropriate duration depends as much on the nature of the seismic field

as on the frequency band targeted by the filter. With our simulation we found the best subtraction

performance for 2 s long segments. This is an acausal technique, so testing can be done offline to

determine the duration for which we see maximal Newtonian noise suppression on the real data.

Since filter coefficients are re-evaluated for each segment m, a simple subtraction of Newtonian

noise estimates from consecutive segments can lead to discontinuities in the residual time series.

For this reason the Nuttall anti-aliasing window is applied so that noise subtraction is suppressed at

the beginning and end of a time segment. Consequently time segments are defined with overlap to

provide continuous subtraction of Newtonian noise. Using the Nuttall window, we found excellent

subtraction performance with 0.3 fractional segment overlap. Again, some investigation can be

done to optimize this number for real data in the future.

Optimal array design has already been discussed in Section 6.2.2. We will compare the subtrac-

tion performance of the optimal array presented there with a circular, a spiral, and a linear array.

All arrays contain ten seismometers, and are optimized in terms of the extent of the array relative
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to the location of the test mass. The linear array is simply a line of uniformly spaced seismometers

along the direction of the arm extending 8 m away from the test mass in both directions. This linear

array is slightly different from the result of the stepwise optimization discussed in Section 6.2.2,

but the subtraction residuals are similar. The circular array consists of one seismometer under the

test mass and nine seismometers in a circle of radius 5 m around the test mass. The configuration

of the spiral array is shown in Figure 6.13 of the following section. The residuals of the noise

subtraction (described in Equation 6.22) for each array are shown in Figure 6.12. The noise model

Figure 6.12: Offline Newtonian noise subtraction efficiency for third generation detectors. Spectrum
of simulated Newtonian noise (green line), proposed third generation sensitivity curve (blue line),
and Newtonian noise residuals of postsubtraction for a spiral array (red line), circular array (cyan
line), linear array (magenta), and the optimal array (beige line). Filters derived from all four arrays
reduce the simulated Newtonian noise to a level below other sources of interferometer noise as
represented by the noise model.

represents the sensitivity curve of a potential upgrade of the advanced detectors not including the

Newtonian noise, as described by Equation 6.1. Approximately, all arrays perform equally well

in post-subtraction. The goal to reduce the Newtonian noise residuals to a level below the noise

model is achieved over the entire Newtonian noise band except for the very smallest frequencies.

In Section 6.2.4, we will investigate the possibility of combining the post-subtraction with an online

feed-forward cancellation.

6.2.4 Online feedforward subtraction

Online feedforward subtraction can be implemented in two ways. It is possible to continuously

cancel Newtonian noise by exerting a cancellation force directly on the test masses. Alternatively,



110

the cancellation can be done on interferometer data. If we had ideal, noise-free actuators, the

residuals resulting from applying forces on the test masses and online feedforward cancellation

applied to the data would be the same. Applying hardware cancellation forces could also be used

to suppress the problem of any non-linear response of the detector to strong Newtonian forces, but

is very technically challenging to implement [6]. Since we do not believe that near-future detectors

will suffer from significant non-linear upconversion due to Newtonian noise, we only consider

feedforward cancellation applied to the data.

The main difference between online feedforward and post-subtraction is that online subtraction

can only be done with causal filters. Furthermore, the feedforward filter coefficients can only change

slowly in time following slow changes of average correlations between seismometers and the test

mass.

The feedforward subtraction scheme that we propose is based on a multi-input, single-output

(MISO) finite-impulse response (FIR) filter that is continuously applied to the interferometer output

to filter out the Newtonian noise as was already demonstrated successfully for seismic noise can-

cellation schemes [7]. The inputs consist of the seismometer channels, and the single filter output

is the Newtonian noise estimate.

Average correlation between seismometers and interferometer data has a predictable form since

average properties of the seismic field depend solely on the wave composition of the seismic field,

which is characteristic for each site. This correlation pattern was investigated in Section 6.2.2, where

we showed that the simplest theoretical model is a good representation even for the more complex

wave composition that is used in our numerical simulation.

As we will show in the following, sufficient feedforward subtraction down to the level of other

noise contributions can be achieved with a variety of array configurations including arrays that have

seismometers with negligible correlation with the test mass Newtonian noise. The more important

design factors are the number of seismometers and the size of the area covered by the array.

The only filter parameter that is predefined is the order of the FIR filter, i.e., the number of

filter coefficients. The filter order essentially determines the time span of the filter. Therefore,

similar to the post-subtraction scheme, we found that the order can be too high, in which case the

seismic array cannot provide sufficient information to disentangle Newtonian noise contributions

from individual seismic waves. The filter order is too low when an insufficient amount of data

is used to accurately estimate the Newtonian noise from individual, resolved waves. We will

later explain why the wave nature of the seismic field still matters in the context of feedforward

cancellation. The FIR filter that yielded sufficient subtraction in all simulation runs has order N = 50

corresponding to a time span of 0.5 s. The MISO FIR filter coefficients were calculated from the 100 s

long seismometer and test-mass time series generated as described in Section 6.2.1. All time series

are pre-conditioned with band-pass and whitening filters. An example of a Bode plot of the filter for
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a spiral array is shown in Figure 6.13. The fact that for example seismometers 3 or 5 have relatively

high filter magnitudes at some frequencies is interesting, since their correlation with the Newtonian

noise is very small (as calculated by Equation 6.21). This situation can be described as a trade-off

between gaining information about how Newtonian noise is generated close to each seismometer

(the simple local model), and gaining information about how Newtonian noise integrates over the

seismic field based on its wave nature.

The feedforward noise cancellation performance is shown in Figure 6.14. Since the FIR filter

coefficients are the same for the entire time series, we included two Newtonian noise residuals, one

for the Wiener filter that subtracts on the same time series used to calculate the filter coefficients,

and a second one where the same filter is applied to subtract Newtonian noise from another time

series. The two time series represent different sets of local sources and wavelets. The subtraction

performance is very similar for the two cases, and therefore we can conclude that subtraction

performance does not depend as much on the specific wave content of the seismic field as it

depends on the average correlations between sensors and the Newtonian noise. While the Wiener

filter applied to the data on which it was trained is an acausal use of the filter and could not be

applied online, it is useful to see that the subtraction efficacy does not degrade for times that are not

the training data for the filter. As with the post-subtraction, feedforward cancellation performed

similarly for the circular, linear, and spiral arrays.

Finally, we investigate the possibility of combining the online feedforward cancellation with

post-subtraction. Figure 6.15 shows the residual Newtonian noise spectra for the three subtraction

methods. Overall, there is no clear advantage or disadvantage to combining the two methods.

When both techniques are applied, Newtonian noise residuals are smaller at lower frequencies, but

residuals are larger at higher frequencies. In conclusion, it was demonstrated that the standard static

MISO FIR Wiener filter provides robust and sufficient subtraction results. Whereas a combination of

feedforward and post-subtraction does not give further improvement in simulation, it could prove

more effective in scenarios where strong occasional seismic disturbances leave significant residuals

after feedforward cancellation.

In our simulation the feedforward filter used was implemented as a static Wiener filter; however,

it is possible to let the filter coefficients adapt slowly to changes of the seismic field. This adaptive

filter technology has many applications and is well established [133]. Also, once the array design

has been chosen based on previous seismic measurements, cross-correlations observed with this

array can help to find better array configurations. In other words, it will be possible to adapt

to changing properties of the seismic field not only through adaptive filter technologies, but also

through changes in the hardware configuration.
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Figure 6.13: The upper plot shows the configuration of the spiral array. The colors correspond to
the normalized seismic correlation between all seismometers and seismometer 1. The numbering
of seismometers corresponds to the traces in the lower plot, which shows the magnitude of the FIR
filter for each sensor in units of test mass Newtonian noise displacement over seismic displacement.
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Figure 6.14: Spectrum of simulated Newtonian noise (green), proposed 3rd generation sensitivity
curve (blue), and Newtonian noise residuals of feedforward subtraction on the training set (red),
and on a second set of time series using the same filter (cyan) using the 10 sensor optimal array.

Figure 6.15: Feed forward Newtonian noise subtraction efficacy for 3rd generation LIGO detectors.
Simulated Newtonian noise before subtraction (green), expected strain sensitivity (blue), Newtonian
noise residuals after subtraction using post-processing (red), online feedforward (cyan), and both
methods combined (magenta). Note that the combination of methods is close to the same level as
either method individually. This indicates that we can safely apply feed forward subtraction in
realtime, and clean up any leftover noise in post-processing if needed.
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6.3 Comments on the possibility of suppressing the gravitational

wave signal through subtraction

A common concern is that true gravitational wave signals could be subtracted out along with

Newtonian noise or direct seismic feedforward. The primary reason this is not a concern is that

seismic sensors are not directly sensitive to gravitational waves. If they were, sophisticated systems

such as LIGO would be unnecessary. Here we briefly discuss several other smaller couplings

between Newtonian noise subtraction signals and the gravitational wave channel, and why they

are not a concern.

1) Spurious electromagnetic coupling between test mass actuators and seismic sensors: The LIGO

detectors are controlled such that the test mass mirrors do not move in response to a gravitational

wave. Rather, the feedback forces applied to the mirrors in the gravitational wave band contain the

gravitational wave information, and combinations of the individual mirror feedback forces comprise

the gravitational wave channel used for LIGO analysis. Spurious electromagnetic coupling between

the actuators applying these feedback forces and the environmental monitoring sensors used for

subtraction can lead to some of the gravitational wave signal being subtracted off unintentionally.

This effect is very small, and can be further suppressed by measuring this coupling and correcting

for it in the subtraction algorithm if necessary.

2) Ground recoil due to active seismic isolation, measured by seismic sensors: Feedback forces actuating

on the active seismic isolation structures supporting each test mass contain the gravitational wave

signal at a small level. The ground supporting the isolation system will recoil as a result of such a

large mass moving. Seismic sensors in the vicinity will measure this recoil as seismic motion, and

will attempt to subtract away the Newtonian noise due to this measured seismic motion. This is a

2nd order coupling effect, and the correction to the gravitational wave signal is very small, so further

calculations of this effect are outside the scope of this paper. As with the electromagnetic coupling,

if necessary, this coupling can be measured and corrected for in the subtraction algorithm.

3) Earth as a gravitational wave detector: The Earth responds to gravitational waves with displace-

ment amplitudes h β
ω , where h is the gravitational wave strain, β is the speed of a shear wave in the

ground, and ω is the frequency [159]. At all frequencies, this displacement is much smaller than is

measurable in a local area by the best seismic sensors available, so this coupling is negligible. In

order to extract gravitational wave information from the Earth, an array of seismometers covering

the entire globe is required [160, 161].

4) Very short training times for feed-forward filters allow random correlations between transient seismic

and gravitational wave events: A feedforward filter which has been trained on a very short data

set can potentially remove signals from the original data stream. This is because such a filter is

created using correlation information between seismic sensors and the gravitational wave channel.
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During a short data set, there may be random correlations between transient seismic events and

true transient gravitational wave events, which would create a filter capable of subtracting away

the gravitational wave event. However, we only allow filters to be trained on data sets which are

much longer than any burst or compact binary coalescence gravitational wave event that we expect,

thus averaging over any seismic transients that could cause a problem for transient gravitational

wave events in our data stream.

For all of these effects, it is possible that without correction, a very small amount of gravitational

wave signal could be subtracted away from the gravitational wave channel. Once Advanced LIGO

is constructed, tests can be done, such as injecting artificial signals into the detector, and measuring

the amount by which they are suppressed by Newtonian noise subtraction.

We have shown that a relatively small number of medium sensitivity geophones or accelerom-

eters can be used to estimate the Newtonian gravitational fluctuations with a reasonably high

accuracy. Under our simplifying assumptions for the seismic fields and the structure of the ground,

this allows us to use seismic data to subtract the gravitational noise due to seismic motion from

the interferometer data stream well enough that Advanced LIGO, as well as the 3rd generation

detectors, should not be limited by this terrestrial noise source.

We found that the array configuration has a minor impact on the subtraction residuals. The

more important design parameters are the number of seismometers, the area covered by the seismic

array, and proper preconditioning of the time series that are used for the Newtonian noise estimate.

Our numerical simulation needs to be developed further to test subtraction of other possible

contributions to the seismic field that have mostly been considered insignificant for the Newtonian

noise problem in advanced detectors in the past, as, for example, body waves and scattered waves.

Testing cancellation of Newtonian noise by factors of 10 or more requires a more accurate simulation

of seismic fields.

The offline, acausal subtraction scheme should naturally outperform the online, adaptive causal

feedforward technique, but for the simple implementation of the post-subtraction used in this paper,

the subtraction performances were comparable. To get latency for a cleaned-up data stream to be

less than∼1 minute, we will do initial subtraction online and then make the final subtraction offline.

These Newtonian noise subtraction techniques will have a modest improvement on second

generation detectors (Advanced LIGO, Advanced Virgo, KAGRA), but the true promise will come

towards the end of the decade. At that time these techniques will be necessary to achieve the next

order of magnitude improvement in astrophysical reach with third generation detectors.
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6.4 Study of ground vibration content at the LIGO Hanford site

In 2012, from April through November, we deployed an array of 44 Wilcoxon Research 731-207

accelerometers [148]. The goal of this project was to measure the seismic and ground vibration

composition in situ. Figure 6.16 shows the location of the accelerometers relative to the vacuum

system and some potential noise sources, at the LIGO Hanford Y-end station. Figure 6.17 shows

photos of some of the accelerometers in the array. Since these were scattered around the floor of

a building, protective cones were used to identify their locations. Accelerometers were adhered

directly to the concrete using double-sided tape. White cleanroom tape was used to secure the

cones and cables to the ground.
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Figure 6.16: To-scale map of accelerometer placement, overlaid with the building walls and vacuum
system. Top of diagram is north, and the chamber toward the middle of the room holds the
Advanced LIGO ETMY. Numbered green circles are the accelerometer locations, and orange objects
are large air handler fans for the HVAC system. Thick lines surrounding fans indicate acoustic
isolation walls. The main instrument floor (where accelerometers are located) is isolated from the
floor of other sections of the building, indicated by space between the walls.

To analyze the data from this array, we use Capon’s method [162] to create “frequency-

wavenumber” spectra. This will give us the wavevector of any seismic waves present, from

which we can infer the speed of the wave and its direction of travel. This method requires that

we analyze a single frequency at a time, so often, as in Figure 6.18, we plot several representative

frequencies from the same data set.

We assume that we have J sensors (where J = 44 in our case), each of which produces a discrete
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Figure 6.17: (Left) Accelerometer number 32, underneath protective cone, with other accelerom-
eters’ cones visible in the background. Small holes were cut in the ground covering such that
accelerometers could be in direct contact with the concrete floor. (Right) Central spiral of array:
sensors 1-6, 43, 44.

time series with sample rate fs. For each stretch of data (300 seconds long, for our analysis), we

apply a window and Fourier transform the data for each sensor. This gives us

a j =
1
fs

N∑
n=1

dn, j wn e−i2πtn f , (6.23)

where n is the index of each point in the time series, d j is the data from the jth sensor, fs is the data’s

sample rate, t is the time vector associated with the data, f is our chosen frequency, and w is the

Nuttall window.

We create a normalized cross-power spectral density matrix

c j,l =
a ja∗l√
|a j|

2|al|
2

(6.24)

between the jth and lth sensors.

We use this matrix, along with the known sensor positions, to create a map, P, in wavenumber

space. The map will show us, for our chosen frequency, what is the wavenumber of any seismic

waves present,

Pa,b =

∑
j

∑
l

(
c j,l

)−1
e−i(~xl−~x j)·~ka,b


−1

, (6.25)
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where ~x j is the position vector of the jth sensor and~ka,b is the wavenumber at point (a, b) on the map.

We assume that all of our sensors lie in a plane, so both ~x and~k are two dimensional vectors for our

analysis. Typically, the map is normalized so that the largest value is equal to 1.

Figure 6.18 is an example set of maps for 3 different frequencies (10 Hz, 25 Hz and 50 Hz). Note

that
~k =

2π f
~v
, (6.26)

where ~v is the apparent surface velocity of the wave. Since the frequency f is fixed for each plot, the

axes can also be interpreted as proportional to 1/|v|. With this in mind, the innermost white circle

represents wave speeds of 1,000 m/s. Other circles represent 500 m/s, 250 m/s with the outermost

circle 100 m/s. Color scale is the normalized likelihood of the dominant wavevector of the seismic

wave present. A vector drawn from the origin of each plot to the maxima of the likelihood is

the wavevector of that plane wave. The size of the peak on each map is due to the array’s finite

resolution.

Figure 6.18: Dominant seismic waves at various frequencies (10 Hz, 25 Hz, and 50 Hz), as measured
by the array. Innermost white circle represents wave speeds of 1,000 m/s. Other circles represent
500 m/s, 250 m/s, and 100 m/s. Color scale is the normalized likelihood of the dominant wavevector
of the seismic wave present. A vector drawn from the origin of each plot to the maxima of the
likelihood represents the wavevector of that plane wave.

Vectors pointing toward positive ky in Figure 6.18 correspond with waves travelling north in

Figure 6.16. We see in Figure 6.19 that the air handler fans (shown in orange in Figure 6.16) are

the dominant sources of seismic waves, particularly at 10 Hz. In the 50 Hz plot, we can clearly

distinguish two waves of nearly equal amplitude present. At times such as these, we’d like to

understand the source of each wave individually. Other features in the plots are due to aliasing,

and the finite resolution of the analysis method.

While the maps such as that in Figure 6.18 are snapshots in time, we can extract the dominant

wavevector from each map, and plot them as a function of time. Figure 6.19 shows the propagation

direction of the dominant wave, as a function of time. Figure 6.20 shows the speed of the dominant
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wave, as a function of time, for each frequency. Our surface array of sensors can only measure the

apparent horizontal wave speed of a seismic wave. If an incident wave is in fact a body wave, the

horizontal speed would appear to be much larger than the speed of sound in the medium (e.g.,

concrete). The relatively few times that the apparent wave speed in Figure 6.20 is very high we

infer that a body seismic wave was likely present. For most of the time however, the wave speeds

indicate true surface waves. From two plots, we can see that most of the time, the source of the

seismic waves are consistent over time, although there are regular transient events. Also, it is clear

that there more transient events during the daytime (10 am set of plots) versus the night (2 am plots).

10am2am

Figure 6.19: Seismic wave propagation direction vs. time.

While there is much more analysis that can be done with this data, and similar array measure-

ments should be completed at each test mass of each site, we can make several important conclusions

from the analysis that has been done. It appears that surface seismic waves are dominant, which

indicates that we will likely not require sensors buried in the ground around the test masses. Also,

scattering of seismic waves seems minimal, which greatly simplifies the analysis and later noise

cancellation. Since Newtonian noise will be most significant at frequencies above a few Hz, low

noise accelerometers such as the Wilcoxon 731-207s used here will be sufficient for measuring the

seismic noise. We also expect to only need approximately 10 sensors per test mass, all within a few

tens of meters of the suspensions. Together, this implies that sensor arrays for Newtonian noise

cancellation will be much less expensive to implement than was originally feared.
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10am2am

Figure 6.20: Apparent horizontal seismic wave speed vs. time.

6.5 Work remaining before Newtonian noise subtraction can be

implemented

While much work has been done to ensure that Newtonian noise will not be an immediate limiting

noise source for the current generation of gravitational wave detectors, much remains to be done.

Perhaps most important will be measurements of the noise generators (seismic in particular) local

to each site, so that our estimates can be made more accurate, and we will know at what level we

expect Newtonian noise to appear at each mirror at each site. Also important will be time-domain

simulations to ensure that we are able to subtract the noise to the level that will be required by future

generations of detectors. This section describes some of the most pressing issues, with proposals of

work that must be done.

6.5.1 Measurement and analysis of seismic field at each test mass

In the past, Newtonian noise estimates have been based on seismic measurements from only a few

sensors per detector site, with the assumption that the seismic noise is roughly uniform for the

whole site. However, ground-based gravitational wave detectors are very large, and there is no

guarantee that the ground motion will be the same at the end stations as at the vertex. Also, we

need to know what type of seismic waves are generating the motion at each test mass, which can
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only be determined by a full array measurement. So far, this has only been done at the Y-end station

at the LIGO Hanford site (see Section 6.4 for details).

A single seismometer measurement cannot determine the difference between Rayleigh waves

and Love waves; however, a carefully analyzed array measurement can, particularly if that array

includes 3-axis sensors. Rayleigh waves directly contribute Newtonian noise while Love waves do

not. As seen in Figure 6.21, Rayleigh waves move the surface of the ground up and down. The

volume above the ground is primarily air, so displacing air and replacing it with soil or concrete

significantly changes the density of that volume. Love waves do not alter the density in the area

around the test mass, but rather cause only “traditional” seismic noise. However, since Love

waves will couple to many sensors, if we naively use that information to feedforward to the test

masses in hopes of canceling Newtonian noise, we will in fact be injecting unnecessary noise. It is

inevitable that some Love waves are present in the vicinity of our test masses; however, their relative

contribution to the seismic field is important. How much contribution we can tolerate from Love

versus Rayleigh surface waves will depend on the level of Newtonian noise subtraction required

for each generation of gravitational wave detector. If we only want a factor of a few subtraction,

we can allow more contamination of the signals from Love waves. However, if we want a factor

of 30 or more (the number often used in upgrades to Advanced LIGO), we may be required to do

online separation of wavetypes before feeding the noise cancellation signal forward to the main

data channels.

Similarly, if seismic body waves are significant contributors to the ground motion in the vicinity

of the test masses, we may be confused between body shear and body pressure waves. Surface

waves are expected to have much larger amplitudes than body waves near 10 Hz at the LIGO

sites [141]. A borehole sensor buried a few meters underground can tell us if a wave is a body

wave, so that we can exclude it (or use it differently). Simulations will need to be done, taking these

wavetype confusions into account, to see how the confusion contamination factor affects the noise

subtraction limits.

Once we thoroughly understand the seismic fields at each test mass, for each site, we must

re-examine our optimal array designs. Do different array shapes offer better noise subtraction for

different seismic fields? The optimal arrays in Section 6.2 were calculated using simulated seismic

fields, and noise-free sensors. Calculating new optimal arrays can be started with the data from

the Hanford 2012 array described in Section 6.4, and then once data has been collected from other

locations the array calculations should be relatively easy — one can just plug new data into the

established software.
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Figure 6.21: Diagram of seismic body and surface waves, from USGS glossary [163]. Wave is
travelling in the direction of the grey arrows (upward for body waves, and to the right for the
surface waves).

6.5.2 Newtonian noise budget improvements

In order to ensure that we fully understand our sources of Newtonian gravitational noise, so that

we know what subtraction factor we will be able to achieve, we must improve upon the Newtonian

“noise budget”. By far the greatest challenge of Newtonian noise subtraction is to make sure that

all relevant sources of gravity perturbations are identified, and represented at the appropriate level.

If we compare our seismic spectra from inside the LIGO buildings, to data from the vault

seismometers buried in the ground elsewhere on the LIGO site, we have approximately a factor of

10 more seismic noise in the buildings than is typical for the areas surrounding our sites. We need

to understand where this excess seismic activity is coming from, such that we can consider ways

to prevent it from occurring or from reaching the area near our test masses. If it is coming from

the HVAC fans discussed in Section 6.4, is there more that can be done to isolate the fans from the

ground? If the ground motion is coming from the building tilts (for example, wind moving the

building walls, which are anchored to the ground), is it possible to buttress the walls to stiffen them,

or add “walls” of dense netting some distance from the buildings, to prevent the wind hitting the

buildings? Understanding the sources of our seismic noise, such that we can break things down
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in the noise budget, will allow us to make decisions about where it might be worth attempting to

shield our detectors from seismically sourced Newtonian noise, versus subtracting it after the fact.

The non-seismic traces in Figure 6.2, described more thoroughly in Section 6.1, may only be

accurate to within about a factor of two or three since the noise coupling models are somewhat

primitive. It is clear that these noise sources will not be significant problems for Advanced LIGO;

however, for future generations of detectors, the gravitational wave strain sensitivity will approach

our current estimates of these noises, and we need to know how close they will actually be.

We must build more accurate models of how things like air pressure fluctuations and building

tilts will create Newtonian noise at the test masses. In particular, the previously used models

assumed that the building walls remained planar, no matter how far they tilted. Understanding

how close the walls get to the test masses at varying heights will likely require numerical finite-

element modeling of the LIGO buildings.

Overall, a more detailed and accurate noise budget will help us to determine whether or not

we are limited by Newtonian gravitational noise in our gravitational wave data. If we can see this

comparison live, as we improve the strain sensitivity of our detectors, we can know with some

warning when we must actively prepare to begin Newtonian noise cancellation.

Even though we tried to be conservative and to pick models in Section 6.1 such that Newtonian

noise is overestimated rather than underestimated, this attempt may well have failed in some cases.

The conclusion from these measurements is that we need further simulations and experiments

targeting the sources that produce the strongest noise.

Given the results from Section 6.1, we identify the seismic Newtonian noise, the Newtonian noise

from the building tilt and the chamber vibrations as main candidates. As previously explained, the

Newtonian noise from fans could not be estimated well and may be stronger than shown in our

results. Future experiments and simulations should target these four sources to further improve

estimates. In order to improve the estimate of chamber Newtonian noise, we need a more accurate

simulation that also includes tilts. The building tilt contributions can be improved by using better

estimates of the mass of the walls, and by studying in detail how walls move to check if the simple

uniform tilt motion is a valid assumption. The following list of tasks summarizes what should be

done for the next phase of Newtonian noise investigations:

a) Improve numerical simulation of Newtonian noise from chambers (including near chamber

mechanical structures);

b) Calculate / simulate Newtonian noise from the suspension cage near the test masses;

c) Measure building motion at end stations (for this, four or more accelerometers should be

attached near roof height at all building walls, monitoring displacement normal to the wall);

d) Measure vibrations on large fans in mechanical rooms with strong motion sensor;
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e) Construct theoretical model of Newtonian noise from the fan’s rotating parts (in terms of mass

multipoles).

If these analyses show that Newtonian noise has been underestimated significantly, then it will be

easy to adapt the subtraction scheme for aLIGO to account for Newtonian noise from other sources.

6.5.3 Analysis of seismic shielding via excavations

An interesting idea that has come up over the years is whether or not it is possible to excavate a large

area around the test mass, so there is (almost) no ground material to be displaced, and so nothing

with which to create seismically generated Newtonian noise. Such an excavation might look like

Figure 6.22, so that the void is nearly a hemisphere, of order 5 m in radius and 4 m depth [164]. J.

Harms has shown that the excavations described in Figure 6.22 will provide approximately a factor

of 3 reduction in Newtonian noise.

FIG. 4: Schematic of a LIGO like interferometer with recesses. The distance between the beam-

splitter (BS) and inner-test mass (ITM) chambers is assumed to be 9.5 m, i. e. in the configuration

similar to an (unfolded) design for the second Hanford detector.

Hanford 1) inner test masses that would significantly reduce NN. However, as an illustrating

example, we investigate here the potential NN suppression one could achieve when building a

new interferometer with a configuration where the inner test-mass chambers have a distance

of 9.4 m to the beam splitter. As shown in Figure 4, in this case, one could imagine to

fit a recess of 4.8 m length and 11 m width in between the input test mass (ITM) and the

beam splitter (BS). The recess from the ITM towards the beam tube as well as the recesses

around the end test masses (ETM) could in principle be made of larger dimensions, but for

the analysis here we chose all four recesses to be of similar geometry, featuring a depth of

4 m.

The resulting NN spectrum is shown in Fig. 5 together with reference sensitivities of the

Advanced LIGO detectors, and for a possible next-generation configuration [17]. The recess

NN curve is obtained by applying the suppression factor from Fig. 3 to the standard NN

estimate from Rayleigh waves at the LIGO sites [8]. The NN curves represent the 90th

percentile of the spectral distribution. The test masses are assumed to be suspended 1.8 m

above ground, and the speed of Rayleigh waves to be 250 m/s and frequency independent.

This speed value is close to observed values at the Hanford site in the frequency range 10 Hz –

20 Hz [18]. With 200 m/s, Rayleigh-wave speeds are a bit smaller at the Livingston site [19].

As Figure 5 shows the introduction of recesses around the ITM and ETM of an Advanced

LIGO interferometer would potentially allow to suppress NN by a factor of about 2 – 4 in

the frequency range of interest.

8

Figure 6.22: Excavation to shield test masses from Newtonian noise. Figure 4 from [164].

We must check though whether we can support the weight of the vacuum chambers and other

equipment inside of the excavated area. One option (shown in Figure 6.22) is to leave a central wall

dividing the hemisphere. If it is perpendicular to the arm cavity, vertical vibrations that move the

surface will not to first order create Newtonian noise that will affect the cavity’s length. However,

the geometry of the structure may amplify some vibrational modes that cause direct ground motion

to be a limiting noise source. If instead the entire hemisphere were excavated, and we create a

support structure, we should consider whether it is possible to engineer something that will be

sufficiently vibration-free, as well as strong enough to support the weight of the vacuum chamber

and everything that goes inside and supports the chambers.

Based on the array data discussed in Section 6.4, we do not believe that scattering of seismic

waves is a significant issue, in the current configuration. However, if we create enormous vacancies

in the ground, it is possible that we could see coherent scattering. We must determine whether scat-

tering off of the surface of the excavation will change the seismic field content significantly enough

to undo any gains we might make. This could indeed pose a severe problem to Newtonian noise

subtraction even if scattering is identified and fully characterized. Scattering can in principle make
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it impossible to estimate Newtonian noise from seismic measurements at the surface since it can

lead to a more complex field structure that is not completely characterized by surface displacement.

Moreover, it is possible that scattered waves have higher wave numbers compared to the freely

propagating surface waves, so that the density of the seismic array would need to be increased to

a point where it becomes very challenging to monitor the entire field accurately. Some work has

been done to model the effect of seismic scattering at large length scales for choosing future detector

sites [165], but in order to determine how significant scattering may or may not be at length scales

relevant to existing detectors, we will likely require finite-element modelling to take into account

the realities of the situation.

A potential benefit of having created a large excavation could be that we can easily place many

sensors out of the plane of the ground surface, without significant extra effort and cost. We should

investigate how much extra benefit we would achieve by extending the array. If body waves are

shown to be a significant source of seismic noise near any of the test masses, this could be extremely

important.

6.5.4 Newtonian noise cancellation using mass actuators

Much of the discussion surrounding Newtonian noise focuses on subtraction at the point where it

affects detector sensitivity, and occasionally isolation. Rarely do we discuss noise cancellation at

the source. However, it may be worthwhile to take this idea seriously, since it may turn out to be

easier to implement than, say, the excavation isolation discussed in Section 6.5.3.

For this purpose, we posit that the primary source of Newtonian noise is Rayleigh surface

seismic waves. These waves displace air with more-dense concrete (the floor material at the LIGO

sites) in the vertical direction. See Figure 6.23 for a visualization. In the left panel, the test mass

is shown as a free body in the presence of a perfectly flat floor. The force vector ~Fair is shown for

the gravitational attraction between the test mass and a volume of air (purple dashed object). The

component of this force that is important for the gravitational wave detector is along the beam axis,

shown as ~F‖air. Since the purple hemisphere is the only area that will change density, we ignore all

other static gravitational forces. The right panel of Figure 6.23 shows a similar situation; however,

a portion of the floor has been displaced, into the area of the orange object. New force vectors are

shown in orange, with the previous purple vectors for reference. Note that the test mass now has

an extra force of magnitude equal to the difference between the horizontal components,

δ~F‖ = ~F‖ground −
~F‖air. (6.27)

The question to answer for mass actuators is whether it is possible to place a mass on the
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Figure 6.23: Problem setup for mass actuator noise cancellation. Left panel shows gravitational
force vector between test mass and volume of air (purple), as well as the horizontal component.
Right panel shows the new gravitational force vector if that volume is filled (orange).

opposite side of the test mass, and move it such that any extra horizontal component of the force

vector is exactly cancelled by an opposing force vector. Figure 6.24 shows this setup. In the left

panel, a block (grey) is located near the floor, and has a gravitational force vector ~Fmass1, as well as

a small horizontal component ~F‖mass1. In the right panel, when the volume of air is replaced by the

floor material, the mass actuator block is moved upwards. The difference between the old and new

horizontal components of the force due to the mass (~F‖mass2 −
~F‖mass1) should exactly cancel δ~F‖. We

do not care about motions of the test mass in the vertical direction at the level of this Newtonian

noise, so the vertical components of the force are not required to cancel.
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Figure 6.24: Mass actuator noise cancellation setup. Left panel now includes a block (grey) sitting
on the floor, and the force vector. Right panel shows the block moved vertically, to counteract the
effect of the change in density due to the air being replaced by floor material.

Such a mass actuator system would not be trivial to implement, however. Above, we have

assumed that there is only a single area of ground that can move and so we can a priori set the

location of the block. In reality, we would require a large array of mass actuators to cancel arbitrary

ground motion that has a component along the laser beam axis. Simulations will be required to

determine what kind of array of actuators would be required — are a few large actuators sufficient,

or would we need many, many small actuators?

This simplified picture also does not take into account the fact that the ground will recoil when
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the block is moved. The block must be moved in such a way that the sum of the block motion plus

the recoil exactly counteracts the original δ~F‖. The actuator must be able to move fast enough to

counter seismic waves up to a few tens of Hz, but must also be stable enough that it does not cause

extra ground vibrations above levels already present. Careful mechanical simulations of any mass

actuator system must be done to understand all of these effects.
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Chapter 7

Conclusion

We have introduced the design choices of LIGO interferometers, particularly in terms of low noise

operation and noise couplings. Several new control schemes have been described that help alleviate

challenges with commissioning such sophisticated gravitational wave detectors.

Optimal Wiener filters for feedforward noise cancellation have been introduced. Their efficacy

for direct seismic vibration isolation has been shown, both for the LIGO sites in Hanford, WA and

Livingston, LA, as well as special applications at the 40 m Lab.

Newtonian gravitational noise estimates, and their impact for future ground-based gravitational

wave detectors have been updated using in situ measurements at the LIGO sites. We show that the

subtraction of this noise will be critical for future detectors, but also that it will be simpler (requiring

fewer sensors) than previously expected. Importantly, future plans for applying Newtonian noise

cancellation are laid out in detail.

These techniques can be applied to Advanced LIGO and all other ground-based gravitational

wave detectors to improve their sensitivity, or any other high-precision experiment.
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Appendix A

Control theory

Broadly defined, controls are used to modify the behavior of a system. For example, an unstable

system such as an inverted pendulum can be actuated upon to keep the pendulum upright. Another

example is changing the behavior of already stable systems, such as damping a resonant mode in a

pendulum system to keep the pendulum bob still.

A basic control system consists of the thing that will be controlled, often referred to as the

“plant”, a sensor that reports the current behavior of the plant, an actuator that can act on the plant,

and a filter that will determine how to use the sensor signal to create an actuator signal. In the case

of either type of pendulum, the pendulum itself is the plant, and one can sense the current angle

of the pendulum relative to vertical, and actuate by moving the location of the support point in

a horizontal direction. The control filters are used to determine how much to move the support

point, and in which direction. Here I will briefly describe benefits and drawbacks of different kinds

of controls, but for a more thorough introduction see, for example, [166].

Controls are used widely throughout the LIGO detectors. One of the most fundamental uses is

to control the length of the laser cavities, to keep them within the linear range of the sensors, so that

we can detect gravitational waves. They are also used to control the frequency and intensity of the

main pre-stabilized laser, provide seismic isolation, control the angular motion of cavities, and in

many other applications.

A.1 Feedback controls

Feedback is arguably the most common form of control system. A sensor is used to determine the

current position (or velocity, or other variable) of the system, and is compared to a desired setpoint.

The difference between these is the error signal of the system. A control filter (in this thesis we only

consider linear control filters, although in general they can be non-linear) is used to transform the

error signal into a control signal. The control signal is fed to some kind of actuator that can affect the

system. The system responds to this actuation, and the new position is determined by the sensor.
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All of these components together make a “feedback loop”. Where the loop has high gain, the error

signal will be forced to zero. Note that this nulling of the error signal implies that the loop will

inject any noise from the sensor (e.g. electronics noise) into the loop.

Often, the sensor, actuator and plant are pre-determined and fixed, while the control filter must

be chosen by the user. The total dynamics of the system must be “stable”. If the plant, sensor

or actuator require a high-order set of equations to describe them, it can be challenging to create

a control filter that stabilizes the system. On the other hand, feedback systems do not require

exquisite knowledge of the fixed components of the system. A corollary to this is that feedback

systems can be designed such that they are robust against small variations in the plant. Obviously

this does not remain true if the plant changes drastically (such as a sign flip in the optical plant of

the interferometers, as described in Section 4.4).

For many systems, feedback control is appropriate, but since it requires that the disturbance

pass through the system before it is sensed and actuated upon, it may not be the best solution for

all systems. For example, if noise is non-linearly coupled into the system (like angular fluctuations

of a mirror causing scattered light, which will couple back into other areas of the interferometer in

potentially unknown ways), we prefer to eliminate the noise before the coupling can take place. In

cases such as this, feedforward (as described in Section A.2) may be a better choice.

A.1.1 Calculating effect of feedback

Figure A.1 shows a very simple feedback system. The plant, or system dynamics (eg. pendulum)

is labeled P in the green block. The sensor (eg. measurement of pendulum angle) is labeled S in the

blue block. The actuator (eg. to move the pendulum) is labeled A in the red block. The control filter,

G is represented by the yellow block, and is what will be used to decide how to create an actuation

signal from the sensor.

We will assume that we are only dealing with linear time-invariant systems, and that our analysis

will be entirely in the frequency domain, where we can find that the effect of two systems in series

is the same as the product of the two frequency responses.

If location a in Figure A.1 represents an input disturbance δx, location b will represent the

residual noise after stabilization δxs. Location b is referred to as the error point of the feedback loop,

and location c is the control point of the loop.

To determine the effect of the loop, we want to calculate δxs
δx . The traditional way of calculating

this quantity involves writing out the equation for each summing node, and solving. Here,

δxs = δx + δxs(GAPS). (A.1)
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Control Filter
G

Actuator
A

Sensor
S

System Dynamics
"Plant"

P

a b c

de

f

Figure A.1: Cartoon of how feedback control works. Sense disturbance after the plant, use a
controller (designed by the user) to decide how to actuate on the plant.

We isolate δxs,

δxs(1 − GAPS) = δx (A.2)

and then divide to find
δxs

δx
=

1
1 − GAPS

, (A.3)

which is the canonical form for the closed loop effect of a feedback loop. While it is possible to solve

more complicated systems (such as those shown in Figure 4.12 and Figure 4.15) with this technique,

it can become very burdensome.

Instead, we will recognize that we can equivalently write out a system of equations, where each

equation relates one numbered location in the loop diagram to each adjacent location.

b = a + f

c = Gb

d = Ac

e = Pd

f = Se

(A.4)

We can add a source term and write this system of equations in matrix form,

~vsteady state = MT~vsteady state + ~vin (A.5)
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where

~v =



a

b

c

d

e

f


(A.6)

and

MT =



0 0 0 0 0 0

1 0 0 0 0 1

0 G 0 0 0 0

0 0 A 0 0 0

0 0 0 P 0 0

0 0 0 0 S 0


. (A.7)

Note that other derivations may write MT as just M, but for consistency with Section 3.1.2, we will

call it MT (the transpose of M). Solving Equation A.5 for
~vsteady state

~vin
, we find

~vsteady state

~vin
=

(
1 −MT

)−1
. (A.8)

This “transfer matrix” tells us the transfer function from any point to any other point in the

loop (even if we do not have the ability to actually measure that particular transfer function). For

example, to compare to Equation A.3, we can extract the [2, 1] element from Equation A.8 which

will give us the transfer element from location a to location b. This is

~vsteady state

~vin
[2, 1] =

1
1 − GAPS

, (A.9)

which is the same result as the original method of calculating the closed loop transfer function.

While the system shown in Figure A.1 is simple to solve, this nodal matrix technique is easily

extended to much more complex systems, such as those shown in Figure 4.12 or Figure 4.15.

A.2 Feedforward controls

As discussed above, some systems may require a different type of control system to prevent dis-

turbances from propagating through the system. Figure A.2 shows a basic block diagram of a

feedforward system that can accomplish this. An external disturbance affect the plant through a

coupling transfer function, but if we are able to witness that disturbance independently from the
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plant, we can construct a filter to send through an actuator and cancel the disturbance’s effects

before it affects the plant. Note that for some noises (such as quantum shot noise or radiation

pressure noise) we do not have the ability to independently measure the noise, and so cannot apply

feedforward to suppress those noise contributions.

Feedforward Filter
W

Actuator
A

Sensor
S

System Dynamics
"Plant"

P
Disturbance

Coupling 
Transfer Function

T

Figure A.2: Cartoon of how feedforward control works. The disturbance directly affects the plant,
but it is also sensed by an external “witness” sensor. The output of the sensor is fed through a filter
to the actuator, and cancels the effect of the disturbance before it arrives at the plant. Dynamics
between the disturbance and the plant are the primary features that the feedforward filter must
account for.

A challenge with the feedforward control topology is that it requires very precise knowledge of

the system. In particular, one must very carefully measure the transfer function from the input of the

actuator to the input of the plant, so that can be removed from the calculation of the feedforward

filter. The ability to measure this transfer function can be a limiting factor in the ability of the

feedforward system to subtract the noise. The error goes as

σ =

√
1 − C
2NC

, (A.10)

where C is the coherence of the measurement, and N is the number of averages in that measurement.

So, if we only measure the actuator to 10 %, we will only be able to subtract approximately a factor of

10 of the noise. If we want to subtract a factor of 100, we must measure to better than 1 % (assuming

no other limitations, such as the noise of the witness sensor, become limiters).
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Appendix B

Review of Pound-Drever-Hall locking

This Appendix sketches out the method for deriving the canonical Pound-Drever-Hall (“PDH”)

error signal for reflection locking a Fabry-Pérot cavity. Here we only derive the error signal

assuming a single radio frequency modulation, although in general several may be applied in

series. To expand this derivation for a full interferometer rather than a simple Fabry-Pérot cavity,

one can follow a derivation such as that described in K. Arai’s thesis [31].

We will write the laser output as the electric field,

Elaser = E0eiωt (B.1)

where E0 is the amplitude of the electric field andω is the frequency of the laser. We phase modulate

the light at frequency Ω by passing through an electro-optic modulator (EOM), which gives us the

total electric field incident on the cavity,

Einc = E0eiωteiΓcosΩt, (B.2)

where Γ is called the “modulation depth”. We expand this using the Jacobi-Anger expansion to get

Einc = E0eiωt
∞∑

n=−∞

in(−1)n J|n|(Γ)einΩt (B.3)

where the functions Jn are Bessel functions of nth order. We approximate this by only keeping terms

up to |n| = 1,

Einc ' E0eiωt
1∑

n=−1

in(−1)n J|n|(Γ)einΩt

= E0eiωt
(
J0(Γ) − iJ1(Γ)eiΩt + iJ1(Γ)e−iΩt

)
= E0

(
J0(Γ)eiωt

− iJ1(Γ)ei(ω+Ω)t + iJ1(Γ)ei(ω−Ω)t
)
.

(B.4)
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The final form of this equation makes it clear that (to first order) we now have carrier light of

amplitude E0 J0(Γ) at the original carrier frequencyω as well as two sidebands at frequencies (ω+Ω)

and (ω −Ω), each of amplitude E0 J1(Γ).

The light that we will be present at the reflection port of the cavity will be given by

Erefl = Eincrcav (B.5)

where rcav is the amplitude reflectivity of the cavity, including both the prompt reflection and

leakage of the circulating power in the cavity. rcav is a function of the frequency ω of the light, and

is given by

rcav(ω) = −ri +
t2
i ree−i 2Lω

c

1 − riree−i 2Lω
c

. (B.6)

As defined in Chapter 3, ri is the amplitude reflectivity of the input mirror of the cavity, re is the

amplitude reflectivity of the end mirror, and ti is the amplitude transmission of the input mirror. L

is the length of the cavity and c is the speed of light. Equation B.5 expands to

Erefl = E0

(
J0(Γ)eiωtrcav(ω) − iJ1(Γ)ei(ω+Ω)trcav(ω + Ω) + iJ1(Γ)ei(ω−Ω)trcav(ω −Ω)

)
. (B.7)

Photodiodes are not capable of measuring the electric field directly. Rather, they detect the

power of the light. For example, at the reflected port,

Prefl = E∗reflErefl. (B.8)

where E∗ is the complex conjugate of E. Explicitly, this expands to

Prefl = E2
0

(
J0(Γ)e−iωtr∗cav(ω) + iJ1(Γ)e−i(ω+Ω)tr∗cav(ω + Ω) − iJ1(Γ)e−i(ω−Ω)tr∗cav(ω −Ω)

)
×

(
J0(Γ)eiωtrcav(ω) − iJ1(Γ)ei(ω+Ω)trcav(ω + Ω) + iJ1(Γ)ei(ω−Ω)trcav(ω −Ω)

)
.

(B.9)

Multiplying this out, and dropping the 2Ω terms (because, as described below, we will demodulate

at Ω and then low-pass the resulting signal) will leave us with

Prefl = E2
0 [J2

0(Γ)r∗cav(ω)rcav(ω)

+J2
1(Γ)(|rcav(ω + Ω)|2 + |rcav(ω −Ω)|2)

−iJ0(Γ)J1(Γ)eiΩtr∗cav(ω)rcav(ω + Ω) + iJ0(Γ)J1(Γ)e−iΩtr∗cav(ω)rcav(ω −Ω)

−iJ0(Γ)J1(Γ)eiΩtrcav(ω)r∗cav(ω −Ω) + iJ0(Γ)J1(Γ)e−iΩtrcav(ω)r∗cav(ω + Ω)]

(B.10)
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Rearranging, this is

Prefl = E2
0 [J2

0(Γ)r∗cav(ω)rcav(ω)

+J2
1(Γ)(|rcav(ω + Ω)|2 + |rcav(ω −Ω)|2)

+iJ0(Γ)J1(Γ)e−iΩt(r∗cav(ω)rcav(ω −Ω) + r∗cav(ω + Ω)rcav(ω))

−iJ0(Γ)J1(Γ)eiΩt(r∗cav(ω)rcav(ω + Ω) + r∗cav(ω −Ω)rcav(ω))]

(B.11)

We would like to simplify this equation into something proportional to either cos(Ωt) or sin(Ωt).

For this, we need only examine the cross terms on the last 2 lines of Equation B.11. For ease of

notation, we will let

A ≡ r∗cav(ω)rcav(ω −Ω) and B ≡ r∗cav(ω)rcav(ω + Ω). (B.12)

The cross terms of Equation B.11 are then

c.t. = iJ0(Γ)J1(Γ)e−iΩt (A + B∗) − iJ0(Γ)J1(Γ)eiΩt (B + A∗) (B.13)

which, moving around and expanding gives

c.t. = J0(Γ)J1(Γ)
(
−

1
i

Ae−iΩt
−

1
i

B∗e−iΩt +
1
i

BeiΩt +
1
i

A∗eiΩt
)
. (B.14)

Note that, since A and B are complex numbers,

A ≡ |A|eiα, A∗ ≡ |A|e−iα, B ≡ |B|eiβ, B∗ ≡ |B|e−iβ. (B.15)

Utilizing this,

c.t. = J0(Γ)J1(Γ)
(
|A|

1
i

(
ei(Ωt−α)

− e−i(Ωt−α)
)

+ |B|
1
i

(
ei(Ωt+β)

− e−i(Ωt+β)
))
. (B.16)

Recall that

sin(x) =
ex
− e−x

2i
(B.17)

to simplify the cross terms to

c.t. = J0(Γ)J1(Γ)
[
2|A|sin(Ωt − α) + 2|B|cos(Ωt + β)

]
. (B.18)

Using the fact that

sin(u ± v) = sin(u)cos(v) ± cos(u)sin(v) (B.19)
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we can expand the cross terms to

c.t. = J0(Γ)J1(Γ)
[
2|A| (sin(Ωt)cos(α) − cos(Ωt)sin(α)) + 2|B|

(
sin(Ωt)cos(β) + cos(Ωt)sin(β)

)]
(B.20)

which rearranges to

c.t. = J0(Γ)J1(Γ)
[
2sin(Ωt)

(
|A|cos(α) + |B|cos(β)

)
+ 2cos(Ωt)

(
|B|sin(β) − |A|sin(α)

)]
. (B.21)

Recalling that, for an arbitrary complex number z = |z|eiζ,

Re(z) = |z|cos(ζ) and Im(z) = |z|sin(ζ), (B.22)

we can simplify one final time to find

c.t. = 2J0(Γ)J1(Γ) [sin(Ωt)Re(A + B) + cos(Ωt)Im(−A + B)] . (B.23)

Putting this back together with Equation B.11, we have

Prefl = E2
0



J2
0(Γ)r∗cav(ω)rcav(ω)

+J2
1(Γ)(|rcav(ω + Ω)|2 + |rcav(ω −Ω)|2)

+2J0(Γ)J1(Γ)

 sin(Ωt)Re(r∗cav(ω)rcav(ω −Ω) + r∗cav(ω)rcav(ω + Ω))

+cos(Ωt)Im(r∗cav(ω)rcav(ω + Ω) − r∗cav(ω)rcav(ω −Ω))




(B.24)

Recall that for Equation B.4 we have restricted ourselves to |n| < 1. In general, and in particular for

the 3f analysis discussed in Section 4.4, we will need to keep several more terms in the series. In

that case, Equation B.24 must be expanded to include these terms.

Equation B.24 is the power incident on the photodiode. Some amount of photons will, via the

photoelectric effect create a “photocurrent”, which is just the current of electrons ejected by the

photons. The fraction of photons that will eject electrons is described by the quantum efficiency

of the photodiode, and the responsivity of the photodiode which has units of Amps/Watt. The

transimpedance of the electronics surrounding the diode will convert the current to a voltage.

The transimpedance need not be the same for all frequencies (and in general LIGO uses resonant

photodiodes to emphasize the 1Ω components, and de-emphasize other order harmonics), but for

the rest of this analysis we will ignore this frequency dependence. So, the output of the photodiode

and accompanying electronics will be

Vrefl ∝ Prefl. (B.25)

We are next interested in demodulating this voltage to a lower frequency, so that it is a more
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tractable error signal. We use the same frequency as the original RF modulation for to create a

“local oscillator” reference signal. To maintain generality, we must multiply by either a sine or

a cosine, to extract all of the information from Vrefl. To create both the sine and cosine we will

split the local oscillator signal, and phase shift one component by 90◦. We lowpass the resulting

signal to eliminate the high frequency terms, to get (assuming the constants are absorbed in the

proportionality factor of Equation B.25)

VI
refl ' J0(Γ)J1(Γ) Re(r∗cav(ω)rcav(ω + Ω) + r∗cav(ω)rcav(ω −Ω)) (B.26)

and

VQ
refl ' J0(Γ)J1(Γ) Im(r∗cav(ω)rcav(ω + Ω) − r∗cav(ω)rcav(ω −Ω)). (B.27)

The version of Vrefl that contains the real parts of rcav is referred to as “in-phase”, or the “I-phase”,

which has been denoted VI
refl. The other component which contains the imaginary parts of rcav is

referred to as the “quadrature phase”, or the “Q-phase”, which has been denoted VQ
refl. Note that

often, the component resulting from Vrefl being multiplied by a cosine will result in the I-phase

component of the error signal, and the component resulting from Vrefl being multiplied by a sine

will result in the Q-phase. This difference in notation is a result of the choice to use sine as the

modulation in Equation B.2 rather than cosine. If the phase of the local oscillator is set properly, the

Q-phase signal will vanish, and all of the information about the length of the cavity relative to the

laser frequency will be contained in the I-phase signal.
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Appendix C

Layout of the 40 m Interferometer

This appendix contains to-scale CAD drawings of the optical layout of the 40m Prototype, for

components within the vacuum system. Also included are photos of various optical tables, in order

to record the current configuration of the interferometer.
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Figure C.1: Overview of optical layout.



141

C.1 In-vacuum optical tables
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Figure C.2: Detail of output mode cleaner table. The output mode cleaner (and associated optical
path) is not utilized; however, this table holds one of the curved input mode matching telescope
mirrors, as well as steering to direct the main beam in and out of the vacuum envelope.
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Figure C.3: Detail of input mode cleaner table. MC1 and MC3 sit on this table, while the curved
mode cleaner mirror, MC2, sits 13.5 m away (not shown, to the right).
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Figure C.4: Input mode cleaner table, as seen from the beam splitter chamber.
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Figure C.5: Detail of beam splitter table. The beam splitter table is the most crowded in-vacuum
table at the 40m, holding input optics (steering and mode matching), the power recycling mirror,
a power recycling cavity folding mirror, a signal recycling cavity folding mirror, output steering
optics, auxiliary optics for optical lever, and main beam pointing monitoring, as well as the beam
splitter itself.
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Figure C.6: Photo of beam splitter table.
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Figure C.7: Detail of the ITMX table. In addition to the input test mass for the X-arm, this table holds
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Figure C.8: Photo of ITMX chamber.
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Figure C.9: Detail of the ITMY table. This table holds the signal recycling mirror and a signal
recycling cavity folding mirror, as well as output path steering optics and the input test mass for
the Y-arm.
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Figure C.10: Photo of ITMY chamber.
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Figure C.11: Detail of ETMX table. Not shown is a black glass baffle, located several inches in front
of the ETM to prevent stray scattered light from hitting the test mass.
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Figure C.12: Photo of ETMX chamber.
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Figure C.13: Detail of ETMY table. This table holds steering optics for the long lever arm input
beam pointing monitor. Not shown is a black glass baffle, located several inches in front of the ETM
to prevent stray scattered light from hitting the test mass.



153

Figure C.14: Photo of ETMY chamber.
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C.2 In-air optical tables

Figure C.15: Pre-stabilized laser table.
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Figure C.16: MC2 transmission table.

Figure C.17: BS-PRM optical lever table.
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Figure C.18: ITMX optical lever table. Also holds POP photodiodes.

Figure C.19: ITMY optical lever table which also holds SRM optical lever.
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Figure C.20: Transmission table for X-arm, which also holds injection optics for green laser. Table
enclosure is prototype of acoustic and air current isolation.

Figure C.21: Transmission table for Y-arm, which also holds injection optics for green laser.
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Figure C.22: Main detection table, containing input mode cleaner reflected port and main interfer-
ometer reflected port, as well as anti-symmetric port.
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