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Abstract

The LIGO gravitational wave detectors are on the brink of making the first direct detections of gravi-
tational waves. Noise cancellation techniques are described, in order to simplify the commissioning
of these detectors as well as significantly improve their sensitivity to astrophysical sources. Future
upgrades to the ground based detectors will require further cancellation of Newtonian gravitational
noise in order to make the transition from detectors striving to make the first direct detection of
gravitational waves, to observatories extracting physics from many, many detections. Techniques

for this noise cancellation are described, as well as the work remaining in this realm.
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Chapter 1

Introduction

Einstein predicted the existence of gravitational waves as a consequence of general relativity in
1916 [1]. Unfortunately, gravitational waves couple very weakly to matter, so direct measurements
require massive sources to create relatively large waves. The most promising sources are all
astrophysical and cosmological, and include compact inspiralling binary systems and pulsars.

In the nearly 100 years since general relativity was first described, no direct measurements
of gravitational waves have yet been made, although many projects have worked toward such
detections. Projects such as Weber bar detectors (starting in the 1960’s) [2] and Forward’s interfer-
ometer (starting in the 1970’s) [3] looked directly for gravitational waves in their output signals,
while projects such as pulsar timing [4] look for periodic changes in the travel time of pulses from
millisecond pulsars. LIGO, the Laser Interferometer Gravitational wave Observatory, built a 4 km
long baseline interferometer and began collecting data in the 2000’s, although no detections were
made. Despite a lack of detections, each experiment provides useful technological experience for
all subsequent projects, as well as sets upper limits on how strong gravitational waves from differ-
ent sources could be. Utilizing this knowledge, Advanced LIGO, a follow-on of the Initial LIGO
project, has constructed a world-class interferometer, and intends to make a first direct detection of
gravitational waves within the next few years [5]. One of the ways that Advanced LIGO will meet
its goals is the use of noise cancellation techniques developed and described in this thesis.

This thesis briefly introduces gravitational waves and the astrophysical motivations for mea-
suring them in Chapter 2. Since the work in this thesis primarily improves the low-frequency
sensitivity of the LIGO detectors, low-frequency gravitational wave sources are highlighted.

LIGO interferometers are the primary application of these techniques, and so they are discussed
in Chapter 3. Also, the 40 m Prototype Laboratory on the Caltech campus is described in Chapter 4,
as this is where much of the development of the techniques occurred.

One of the main results of this thesis is the global seismic noise cancellation that was developed
and then deployed during the 2009-2010 5th LIGO Science Run. This work is discussed in Chap-

ter 5, and draws from work published in [6] and [7]. In addition, adaptive variants of this noise
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cancellation are under development and testing at the 40 m Lab, and are described.

Another significant result presented in this thesis is the analysis of Newtonian gravitational
noise, including measurements and simulations that show Newtonian noise will not be a significant
issue for Advanced LIGO, but will be important for future generations of gravitational wave
detectors. In preparation for the noise cancellation that will be required in the future, simulations
were performed to determine the requirements for sensing Newtonian noise in order to suppress
it below quantum noise levels. Chapter 6 discusses this work, and draws from work in a LIGO
Technical Report [8], as well as work published in [9]. The final section of this chapter describes
in detail future work that must be done before Newtonian noise cancellation can be applied to our
interferometers.

Conclusions and future work are discussed in Chapter 7, an overview of basic control theory is
given in Appendix A, a review of Pound-Drever-Hall locking is given in Appendix B and photos

of the 40 m Lab’s optical layout are included in Appendix C.



Chapter 2

Gravitational waves and astrophysical
motivations

Various wavelengths of electromagnetic radiation have been used over the years to study many
astrophysical events and phenomena. With the advent of new technology and telescopes that are
able to observe in different wavelengths, humans have progressively been able to get an ever-
clearer picture of the universe. One of the major restrictions of observations with electromagnetic
radiation is the fact that light interacts strongly with matter; it will not pass unchanged through
dense materials.

Gravitational waves interact very weakly with matter, and so are able to propagate through many
materials, such as intergalactic dust, without significant distortion. Also, they are uniquely able to
propagate unimpeded from the moment of the big bang to now, in contrast with electromagnetic
waves that only propagate freely since the era of recombination, about 380,000 years after the
big bang. Measuring gravitational waves and using them as another spectrum for observing the
universe provides a whole host of new information. Gravitational wave astronomy will add a new
dimension to our understanding of extreme conditions, including the core of neutron stars, black
holes, and the moments immediately following the formation of the universe.

LIGO is a ground-based observatory, and so suffers from limitations at low frequencies, mostly
due to seismic noise and thermal noise in the fibers required to suspend the test masses. Advanced
LIGO expects to be sensitive to gravitational waves in the band between 10 Hz to a few kHz;
inspiralling binary systems of neutron stars or solar mass black holes are some of the most promising
sources in this frequency range.

LIGO aims to unveil the new era of gravitational wave astronomy with a first detection in
the next few years [10]. Following that first detection, LIGO and companion gravitational wave
observatories including VIRGO [11] and KAGRA [12] hope to measure many gravitational wave
events with enough precision to determine parameters that describe the astrophysical event itself.

With a network of detectors, we can infer the sky location of a source, allowing us to follow up
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a detection with electromagnetic telescopes, and garner even more information. Parameters such
as distance to the source, mass ratio of the inspiralling objects, and spin of the objects, all depend
on the makeup of the system creating the gravitational waves, and so extracting these parameters
from the measured waveforms will provide invaluable information about the system.

While there are some uncertainties in the expected rates of detection of gravitational waves, due
to uncertainty in population densities of various astrophysical systems, Advanced LIGO is expected
to have many measurable signals per year. A summary of the best estimates for detection rates
and the assumptions that are taken into account for binary systems is provided in [13]. As shown
in Table 2.1, which shows pessimistic (Niow), realistic (Nre), optimistic (Nhignh) and maximal (Nmax)
rates of detections per year, Advanced LIGO expects to detect several tens of “standard” binary
coalescences involving neutron stars (NS) and black holes (BH) per year. More unusual binary
systems, such as an intermediate mass ratio inspiral merging into an intermediate mass black hole
(IMRI into IMBH) or a pair of inspiralling intermediate mass black holes (IMBH-IMBH) have much

lower expected rates.

Interferometer Source Niow Nre Nhigh  Nmax
generation yrt yr o oyrt o yrt
NS-NS 2x107%  0.02 0.2 0.6
NS-BH 7 %107  0.004 0.1
Initial BH-BH 2 x10™%  0.007 0.5
IMRI into IMBH <0.001 0.01
IMBH-IMBH 1074 1073
NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300
Advanced BH-BH 0.4 20 1000
IMRI into IMBH 10 300
IMBH-IMBH 0.1 1

Table 2.1: Table V from [13] comparing Initial LIGO’s range of expected detection rates with
Advanced LIGO. Pessimistic (Njow), realistic (Ni.), optimistic (Npigh), and maximal (Nmax) rates
of detections per year are shown for various types of compact binary inspirals. The source type
indicates what the elements of the binary system are comprised of: a neutron star (NS), a black
hole (BH), or an intermediate mass black hole (IMBH). IMRI into IMBH indicates a pair of compact
objects with an intermediate mass ratio (between 1072 and 1073) coalescing into an intermediate
mass black hole.

The detection and measurement of gravitational waveforms will open a new window on the
universe. The work described in this thesis will facilitate the commissioning of the latest generation
of gravitational wave detectors, and thus help bring this new era of gravitational wave astronomy

into being.



2.1 Gravitational waves

Gravitational waves are perturbations of the spacetime metric. We assume that the dominant term
in the metric of the universe is a flat Minkowski metric, . With a perturbation term k(t) to describe

the gravitational waves, we have a total metric of the form

g(t) = 1+ h(). 2.1)

This follows from general relativity, which assumes that moving massive objects change the curva-
ture of spacetime. Any accelerating mass quadrupole moment (mass moving with a lack of perfect
spherical symmetry) will create time-dependent changes in spacetime, which we refer to as gravi-
tational waves. Because of conservation of mass and momentum, the lowest order multipole term
describing h(t) will be the quadrupole moment of the expansion of the post-Newtonian solutions
to Einstein’s equations.

One of the quintessential examples of an astrophysical source that should be seen by Advanced
LIGO is the inspiral of two compact objects, such as black holes or neutron stars. In the simple case
of a pair of compact objects before the merger time, with the system optimally pointing toward

Earth, the perturbation term in Equation 2.1 will look like

-1/4
2D 5GM/C3) cos (20 + 26(t)). (2.2)

G to—1t
hinspiral(t) = _( M )( 0

Here, G is Newton’s gravitational constant, c is the speed of light in a vacuum, and ¢ is the time of

coalescence as measured at the detector. M is the chirp mass,
M= MptP, (2.3)

where M = m; + m, is the total mass of the system and p is the symmetric mass ratio,

e (2.4)

p=——"
(1m1 + ma)?
Dt is the effective distance to the binary system. Since we cannot (with a single detector) disentangle
the true distance from the orientation of the system, they are both included in this variable. 0y is
related to the phase of the wave at the time of coalescence, and O(t) is the orbital phase of the

binary [14]. 6(t), up to the second post-Newtonian order, is given by Equation 7 of [15] as

20(t) = 1 [@5/8 N (3715 55 )@3/8 _3n o4 4 ( 9275495 284875 1855 ,

_ - 1/8 2
b 8064 * 96" 1 14450688 © 258048 " 2048 )® ] @3)



where
cAp

© = 5em

(to — t). (2.6)

Figure 2.1 shows an example of the inspiral phase of a waveform for a pair of 1.4 solar mass (1.4 M)
neutron stars 1 Mpc from Earth. The inspiral phase is followed by a merger lasting a fraction of a

second, which is followed by a ringdown of the final compact object.
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Figure 2.1: An example waveform described by Equation 2.2 for a pair of 1.4 Mg neutron stars,
optimally oriented, 1 Mpc from Earth.

Since gravitational waves are changing spacetime, we should be able to detect these perturba-
tions by observing distance changes between freely falling test masses. While much more detail on
the theory behind gravitational waves and the way they perturb spacetime can be found in books
such as Gravitation [16], here I sketch a derivation of how light can be used to measure gravitational
waves. This motivates the use of interferometric measurement devices that can precisely measure
the phase of light as a function of time for this purpose.

Let ¢ be the phase of an electromagnetic wave of frequency wy. Assuming that the light begins
with a phase of 0 and travels at the speed of light ¢, after it has gone a distance L it will have a phase

0¢. We can express this as a distance integral over the spacetime metric,

L
W=%Lgm (2.7)

where g is defined by Equation 2.1. Plugging Equation 2.1 into Equation 2.7 gives



[y L
6(t) = — fo (n + h(t)) dx. (2.8)

Since the Minkowski metric 1 is time-independent and we are only interested in the time-

dependent perturbations, we can drop the first term, which leaves us with

L
S(t) = % fo h(t) dx. 2.9)

We would now like to evaluate the integral to determine how the phase of the light changes
with the spacetime perturbation. We declare that the perturbation of spacetime has a frequency
fsw, and that for the purposes of this derivation we are dealing in the long wavelength limit where

the light travel time is much smaller than the timescale of variations in the metric,

L 1
- —. (2.10)
c fow
Under these assumptions, we have
S(t) = a)TOLh(t). 2.11)

This tells us that if we allow some light of frequency wy travel a distance L, in the presence of a
gravitational wave that is described by h(t), we will see the phase of the light change by 0¢ as given
in Equation 2.11. To maintain the condition defined in Equation 2.10, we require that the length
of time an average photon is in the detector be smaller than the period of a gravitational wave. A
gravitational wave with f,,, of 5kHz will have a period of 200 us. A photon travelling 4 km to an
end mirror in a simple Michelson interferometer and reflecting back will take about 13 us. If the
condition in Equation 2.10 is not met, then the analysis problem of inferring h(t) from ¢(t) is slightly

more complicated, since the integral in Equation 2.9 must be evaluated at all points.

2.2 Motivations for low frequency sensitivity improvement

Advanced LIGO’s low frequency sensitivity limit will be approximately 10 Hz; why is it useful to
suppress noise at lower frequencies? Several reasons exist. Section 2.2.1 through Section 2.2.3 will
describe astrophysical events that will be easier to detect with improved low frequency sensitivity.
Section 2.2.4 will discuss why reducing noise at frequencies below the LIGO low frequency limit
can prevent nonlinear up-conversion of noise that significantly contaminates data for transient

gravitational wave searches.
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2.2.1 Early part of neutron star / neutron star inspiral

One of the primary methods of extracting gravitational waveforms from the interferometer’s data
stream is known as matched filtering. The idea is to compare a numerical version of Equation 2.2
with measured data. If the template filter matches the data well, then the parameters chosen for
that template are correct for the astrophysical system. The complication is that a template must be
created for every set of parameter values to be checked, and we must be able to differentiate which
template matches the data with the highest fidelity.

To determine if a template matches the data, we evaluate

oo 5(f) h*
2(t) = 4 fo Smsf:—r(n;l;kmeﬁm df, 2.12)
where S,(f) is the one-sided strain noise power spectral density of the interferometer, fz:emplate( f)is
the Fourier transform of a waveform template, and 5(f) is the calibrated output of the detector [14].
This implies that improving the detector sensitivity will increase the SNR of a candidate signal.
In particular, if the sensitivity at low frequencies is improved, template waveforms can be much
longer, which helps to constrain the astrophysical parameters that describe the signal in the data.
Another way to look at the improvement to be gained by lowering the low-frequency detection
limit is to determine how long a gravitational wave will be measurable in our detectors. If we define
a time to coalescence, 7, as the time it will take for a binary system orbiting currently at a frequency

f1. to inspiral to the point of merger, we can write T up to second post-Newtonian order [14] as

_ 5 G_M(v_s (@ 11 )0_6_32_710_5 (3058673+5429 , 617 2)0_4) 013)
~256p & \ b T\am T3P T 5 T\s08032 T m0a P 72 P ) ) '
where s
GM
v = (C_gfL) . (2.14)

If f; is the lowest frequency that can be confidently detected, 7 is the amount of time the signal
will be measurable (assuming that the merger happens within the bandwidth of the interferometer
— see Section 2.3). For the Advanced LIGO detection limit of f; ~ 10Hz, the inspiral of a pair of
1.4 Mg neutron stars will be present in the detector band for the next 258 seconds. In contrast, Initial
LIGO with a low frequency detection limit of f; ~ 40 Hz would only see the same inspiral for the
final 6.6 seconds before merger.

This increase in the time to coalescence is particularly useful in cases where we would like to
perform an electromagnetic counterpart follow-up. The sooner we can be confident of a detection
candidate, the sooner we can ask electromagnetic observatories to look at a localized point in the

sky. Low latency electromagnetic followup is especially useful for sources such as gamma ray



bursts, supernova, etc.

2.2.2 Pulsars

Another interesting source for Advanced LIGO is pulsars. Pulsars emit beamed radiation, and as
they spin the beam is periodically pointed at Earth. The gravitational wave from a pulsar will be
a simple sine wave, although the signal detected will be modulated by the motion of the earth. At
this time, millisecond pulsars are the primary class of pulsars to which LIGO is sensitive. They are
often found in binary systems, where the partner star helps to spin the pulsar up to a frequency
detectable by LIGO. The Hulse-Taylor pulsar in system PSR1913+16 [17] was the first pulsar to be
found in a binary system.

While there are quite a few millisecond pulsars, there are many more that rotate at a slower
rate, with expected gravitational wave frequencies just below the LIGO band. Improving LIGO’s
sensitivity at low frequencies will allow us to detect a large quantity of gravitational waves from
pulsars. Since pulsars are an “always on” continuous source of gravitational waves, they can be
very useful for testing general relativity. If the measured gravitational wave (after correcting for
the amplitude modulation due to the detectors’ antenna patter and the fact that the detectors are
moving through space) do not match the expected waveform, we can investigate the deviations as

potentially indicating modifications required to general relativity.

2.2.3 Intermediate mass black holes

Very few intermediate mass black holes (with masses in the range 50-10° solar masses) have been
observed, although there is evidence for one in Omega Centauri [18, 19]. Neutron stars have an
upper limit on their mass of about 3 Mg [20], so if we detect an inspiralling system with masses
larger than this, they must be black holes. Stellar black holes are on the order of 5-50 M, whereas
observed supermassive black holes are larger than about 10° M, so black holes in between this
range are classified as intermediate mass black holes. Since supermassive black holes are thought
to come from mergers of intermediate-size objects, intermediate mass black holes are expected to
exist, despite the lack of observations.

Almost all intermediate mass black holes in a binary system will emit gravitational waves at
frequencies less than 10 Hz. However, since a gravitational wave detection with component masses
estimated to be on the order of an intermediate mass black hole would constitute a first observation
of a theoretically postulated astrophysical object, it is interesting to attempt to make the detectors

as sensitive as possible at these frequencies.
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2.2.4 Better background for unmodeled burst searches

While LIGO is certainly searching for binary inspirals and continuous wave sources, we are also
looking for unmodeled transient events. Such events could come from sources such as core-collapse
supernovae in our galaxy [21], soft gamma ray repeaters, neutron star collapse into a rotating
black hole [22], or others [23]. Glitches in the data stream from non-Gaussian events significantly
contaminate the background for these searches.

Below some frequency, which for Advanced LIGO will be around 10Hz, it is not feasible to
improve the sensitivity enough to make detections at lower frequencies. However, it is useful to
suppress noise at frequencies lower than this limit in order to reduce the effect of upconverted
noise sources. Many non-linearities exist in physical systems, and they can be the cause of technical
glitches in the data. A common example of this from Initial and Enhanced LIGO is Barkhausen
noise in the ferromagnets used to actuate on LIGO’s mirrors [24]. Barkhausen noise occurs when
ferromagnets experience a change in the surrounding magnetic field [25]. Even though the external
magnetic field changes may be at low frequencies, the sudden flipping of magnetic domains causes
broad band high frequency changes in the amount of force between the magnet and a coil used
to induce the external field. If, in the absence of control, the mirrors” displacement were reduced,
a smaller amount of control force will be required to hold the mirrors in position. This reduces
the required change in field surrounding the ferromagnets, which directly reduces the Barkhausen
effect.

Another up-conversion mechanism that is difficult to avoid is the spurious coupling of scattered
light back into the main interferometer beam. Because no surface is perfect, some amount of light is
scattered from each mirror surface. Some of this light can reflect off of vibrating surfaces nearby and
re-enter the readout path. The original mirror motion may have been at a low frequency, but it will
be bilinearly upconverted, which creates a broadband increase in the noise, up to a cutoff frequency
determined by the relative velocity between the mirror and the secondary surface. Reducing the
overall motion of the mirrors will reduce the amount of changing scattered light in the system, and

thus mitigate this broadband noise increase.

2.3 Motivations for mid-frequency sensitivity improvement

In the high-sensitivity region (which for Advanced LIGO will be roughly a few tens of Hz to a
few kHz), the interferometers are expected to be sensitive enough to detect gravitational waves,
however improving the sensitivity will enhance the confidence of any detection, and will also allow
more accurate estimates of the astrophysical parameters of the source.

For any typical binary system of compact objects, the highest frequency gravitational waves will

occur just before merger, when the objects are at their innermost stable circular orbit (ISCO). The
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frequency of this orbit is

3

_— (2.15)
6 V6riGM

fisco =

where M is the total mass of the system. For a pair of 1.4 My neutron stars, fisco ~ 1.57 kHz.

However, for a pair of 10 Mg black holes, fisco ~ 220 Hz.
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Chapter 3

LIGO interferometers

As discussed in Section 2.1, we can use laser interferometers as transducers to convert gravitational
wave displacement to phase information encoded in a laser beam. We then use various readout
techniques to extract this phase information. This chapter focuses on the Laser Interferometer
Gravitational wave Observatory (LIGO) methodology for these measurements, building up from
the core Michelson interferometer to the details of the design of Advanced LIGO. Chapter 4 describes
the LIGO 40 m Prototype Laboratory on the Caltech campus, which is used as a proof-of-principle

system for much of the work described later in this thesis.

3.1 Measuring gravitational waves

In principle, we could measure a gravitational wave’s effect on two test masses by monitoring the
change in distance between them. However, it is very difficult to manufacture such a system with
low enough noise as to actually measure gravitational waves. We use several techniques to reduce

the effect of technical noise sources.

3.1.1 Michelson interferometers

One of the first techniques that we use is a differential Michelson interferometer. The laser beam
(which will have a large amount of noise relative to the quantities that we want to measure) is
incident on a beam splitter (BS) that allows half of the light to transmit and reflects the other half.
The light travels in each direction some distance L[}, and is entirely reflected by a mirror called
an end test mass (ETM [X,Y]) back to the beam splitter. The notation of two variables in square
brackets indicates equivalent quantities for each of the two directions. The light is recombined at
the beam splitter and sent to the photodetector (PD). This setup is sketched in Figure 3.1. Note that
in practice, all of the optics will have losses and imperfections, so the beam splitter will not be a

perfect 50/50, and the end mirrors will not reflect 100 % of the light.
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Figure 3.1: Cartoon of Michelson interferometer.

The light sent down a single direction (or “arm”) will have to travel distance 2L}, and will
accumulate some amount of phase ¢y, during the round trip from the beam splitter to the end
mirror and back. The original laser beam will also have some noise due to the laser itself and any
optical components before the beam splitter, which we can denote by ¢noise. Thus, the total phase

from each arm just before recombination at the beam splitter will be

qb[x,y] total = ¢[x,y] + qbnoise- (31)

Gravitational waves are quadrupolar, so for a particular orientation relative to the interferometer
they will change the lengths of the arms differentially, stretching one arm while squeezing the other.
Half a cycle later the stretched and squeezed arms will be switched. At all but a few special

moments, the path lengths of the Michelson arms will be unequal,

Ly # Ly, (3.2)
which implies that the accumulated phase ¢ in the arms will also be unequal,

Or # Oy (3.3)

As derived in many introductory textbooks, such as [26], the power measurable at the antisymmetric
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photodiode (PD in Figure 3.1) will only be related to the difference in phase accumulation between
the arms

PP o sin*(Ag). (3.4)

Since the @noise is common to both arms, it is cancelled, leaving us only with the quantities of interest,
®[x,y1, which can be directly related to the change in optical path length of the arms. This elimination
of common mode noises is the prime reason for choosing to use a Michelson interferometer. Note
that while the gravitational waves can also make common mode length changes, we are sacrificing
our ability to measure this orientation to gain the significant benefit of common mode noise rejection.

In practice, we will use a control servo to force the differential length of the arms such that the
power detected at the photodiode is near zero. The force required to hold the mirrors in this state

is directly related to how much the mirrors would have moved in the absence of control.

3.1.2 Fabry-Pérot arm cavities

Since the gravitational wave signal is related to the strain 2 of the distance L between the test
masses rather than just the absolute difference, we directly increase the sensitivity of the detectors
by increasing the length of the arms. However, it is cost prohibitive to make extremely long arms.
Instead, we increase the optical path length without increasing the physical distance between the
beam splitter and the end mirrors.

We do this by inserting an extra mirror in each arm between the beam splitter and the end mirror.
In Figure 3.2 we label the new optics input test masses (ITM [X,Y]). Here, the distance between the
new mirrors and the previous end mirrors is denoted Ly, ), while the shorter distance between the
beam splitter and the new mirrors is denoted /| .

The addition of these extra mirrors creates Fabry-Pérot optical cavities in the arms of the Michel-

son. The Fabry-Pérot cavities increase the optical length of the arms by a factor

Lie _op (3.5)
Lich

where ¥ is defined as the finesse of the Fabry-Pérot cavity,

F = frsr (rire)

Tt
2fcav pole 2 1=rie

(3.6)

In Equation 3.6, frsr is the frequency spacing between transmission peaks of the cavity, known as
the free spectral range, and f.y pole is the cavity pole frequency, which is defined as the half-width

of the transmission peak, at half of the maximum buildup. The free spectral range of the cavity
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Figure 3.2: Cartoon of Michelson interferometer with Fabry-Pérot arms.

depends on the geometry of the system,

c
fesk = 5, (37)

where c is the speed of light and L is the distance between the cavity mirrors. The linewidth of the
cavity (which is twice the cavity pole) depends on the amplitude reflectivities (r[;.) of the input and

end mirrors used,
c1l-rr.

fcav pole = H nm-

(3.8)

This shows that we can dramatically increase the effective length of the detector arms by making
the Fabry-Pérot cavity mirrors nearly perfectly reflective. Note that Equation 3.5 is based on the
increased storage time of photons in the Fabry-Pérot cavities, which is an average time. Some
photons may escape after only a few round trips, while others may remain in the cavity for much
longer. This means that the increased optical length of Equation 3.5 is an average over all photons
incident on the cavity.

As might be expected, there are some drawbacks to using this technique, so any interferometer
design must balance these against the benefit of the increased path length. One of the primary
requirements is that the arm cavities must be held on (or very close to) resonance. The light
reflected from the cavity back toward the beam splitter is only linearly related to the length of

the cavity when it is close to resonance. To hold the cavities on resonance, we use the canonical
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Pound-Drever-Hall technique, which requires the addition of phase modulated radio frequency
(RF) sidebands to the incident light [27]. See, for example, [28] or Appendix B, for a derivation of
this technique for a simple 2-mirror cavity.

Instead of individually controlling the 2 Fabry-Pérot arm cavities, we chose to make a basis
change and control the arms in differential and common modes. From Figure 3.2, we define the

differential arm length (DARM) as

g by 3.9
-=— (3.9)
and the common arm length (CARM) as
Ly+Ly
L, = . (3.10)
2
Similarly, the short Michelson has two similar degrees of freedom,
L =1,
_= 11
! 5 (3.11)
and
I +1
L= X 5 y , (3.12)

where [_ is called the Michelson (MICH) degree of freedom, and [, is uncontrolled.

We put a static offset in the MICH length I_, to take advantage of the Schnupp modulation
technique [29]. This allows some amount of light (particularly the RF sidebands) to always be
present at the antisymmetric port of the interferometer. If the arm cavity lengths change differen-
tially (for example, when a gravitational wave passes through the detector), the main carrier light
that is reflected from the arms will have a slightly different phase than if the cavities were perfectly
resonant. This phase modulation of the carrier light can be thought of as the addition of “signal
sidebands” on the light, analogous to the original RF sidebands.

The carrier field (including the signal sidebands) will exit the interferometer through the anti-
symmetric port, and beat against the static RF sideband fields. As with the more simple 2-mirror
cavity case, this beat creates amplitude modulations on the light, which are detected by the pho-
todiode. This signal is then demodulated at the original RF frequency, which results in a signal
with components only at the signal sideband frequencies [30]. In this way, we are able to hold the
mirrors stationary and infer what the length change due to a gravitational wave signal would have
been in the absence of control (assuming no noise sources). In contrast to the technique that will be
described in Section 3.2.4, this is a heterodyne technique.

Another drawback of the addition of Fabry-Pérot cavities to the interferometer is the decreased

detection bandwidth. The storage time of the cavities puts a high frequency limit on the signal
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sidebands that the detector is sensitive to. Derivations such as that shown in Chapter 2 of [31] give

the frequency response of an interferometer with Fabry-Pérot arms as

2LQ (sin(*22)\( £r. ool

1=rr. — Tite€ ¢

where Q is the angular frequency of the laser.

When the interferometer includes Fabry-Pérot arm cavities, we typically use the difference in
cavity lengths as our gravitational readout signal.

Ideally, we would like to measure just the differential arm length L_ at the photodiode (PD in
Figure 3.2), but any motion in the short Michelson’s I_ will also show up at this photodiode. We can
calculate this coupling by determining what the electric field will be at the photodiode, and then
taking the derivative relative to either I_ or L_. We compare these ratios to determine the relative
importance of a differential arm length change versus a differential Michelson length change.

Explicitly, we will use the calculation method described in [32]. Figure 3.3 is a copy of Figure 3.2,
but with the electric field at specific points in the interferometer labeled. Using the matrix formalism
for determining the fields everywhere in the matrix, we must write down the transfer matrix
M trom, t0), Where “from” and “to” are the indicies indicated in Figure 3.3. For each element in this
matrix, we need only write down how the electric field propagates from one point to another, in
the absence of all other fields. For simplicity, we assume that both input mirrors are identical, and
also that both end mirrors are identical.

We define the amplitude reflectivity r as
r= VR, (3.14)

where R is the fraction of power reflected from a mirror. Similarly, we define the amplitude
transmission ¢ as

t= T, (3.15)

where T is the fraction of power transmitted through the optic. Both r and t can be complex
numbers, and by convention we declare that the electric field will pick up a negative sign when
reflecting off of a highly reflective surface. In general, some amount of light is lost when a beam is
incident on a mirror; however, for simplicity here we assume lossless mirrors. To conserve the total
energy, we note that

RZ+T?=1. (3.16)
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Figure 3.3: Cartoon of Fabry-Pérot Michelson with notations for electric field at various points in
the interferometer, for use in calculating the coupling between length changes at different points in
the interferometer. E indicates the electric field at a given point, while r and t indicate the amplitude
reflectivity and transmissivity of the mirrors. Subscript b indicates the beam splitter, subscript i
indicates one of the (identical) input test masses and subscript e indicates one of the (identical) end
test masses.

We also note that light that travels a distance L will accumulate phase

¢ =kL, (3.17)

where k is the wave number of the laser light,

k==—. (3.18)
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For the case shown in Figure 3.3, the transfer matrix will be

0 —ne ity 0 0 0 0 e 0 0 0 0 0 0
0 0 temkly 0 0 redy 0 0 0 0 0 0 0
0 0 0 te —refly 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 —riey 0 ey 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 & -
M=| o0 0 0 0 0 0 0 temiks Q) 0 re 0 0
0 0 0 0 0 0 0 0 te —res 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 —re®s 0 0 te®s 00
0 0 0 0 0 0 0 0 0 0 0 n
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
(3.19)

We assume that the only electric field input is from the laser at E;, so we construct a vector of initial

electric fields

1

0

0

0

0

0
Einput =| 0 (3.20)

0

0

0

0

0

0

The steady-state resulting electric field everywhere will be given by

Esteady-state = (]l - MT)_l * Einput, (3.21)

simplified by changing the basis from (x, y) to (+, —) by utilizing Equation 3.9 through Equation 3.12.

We are actually only interested in looking at the field at the detection port, which we have defined

EPD

steady—state due

as element number 12 in Figure 3.3. To determine the response of the field at Eq, =
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to length changes, we will take the derivative with respect to L_ and also with respect to [_. Taking

the ratio of these sensitivities gives us the coupling factor between MICH and DARM,

e Jd_rPD
Coupling _ MICH Sen51t1V1ty _ iEsteady state A =rire) (ri = 1) (3.22)
- e . - g - .
DARM sensitivity = El’tlgady sate 7 (1 _ 1,12)

For input test masses of transmission T; = 1.4% and end test masses of transmission T, = 15 ppm,
this coupling ratio is approximately 3.5 x 107>.

Note that the Michelson has a flat frequency response, but the DARM degree of freedom will
have a cavity pole (fcav pole), S0 the frequency-independent coupling factor in Equation 3.22 is valid
from DC up to the cavity pole frequency.

As with the simple Michelson, we do not use the CARM degree of freedom to measure grav-
itational waves. However, since we assume that the long arm cavities provide a stable length

reference, we can use the CARM error signal to feedback to and stabilize the laser frequency.

3.1.3 Power recycling

To further improve the sensitivity of the interferometer to gravitational waves, LIGO also uses
“power recycling”. An extra mirror is placed between the laser and the beam splitter at the
symmetric port, as shown in Figure 3.4. We refer to this power recycling mirror as the PRM, and
define the length of this cavity as

IpreL = I + 14, (3.23)

where [, is defined in Equation 3.12 and lp is the distance between the PRM and the beam splitter.
The idea behind power recycling is that any true differential-mode gravitational wave signal will
exit through the antisymmetric port to the photodetector, and all other light will be reflected back to
the laser at the symmetric port. Instead of dumping and losing this light, we recycle it by sending
it back into the interferometer. This has the effect of illuminating the beam splitter with more light,
and is roughly equivalent to increasing the laser power.

If, at high frequencies, the sensitivity of the interferometer is limited by photon counting shot
noise, power recycling will improve the signal-to-noise ratio. The increase in light power in the
detector implies that, for the same gravitational wave signal, more photons will arrive at the
photodetector. Averaging over more photons decreases the overall noise level due to shot noise.

Obviously we cannot change the interferometer’s topology without altering the effect of signals
at the various locations in the detector. However since power recycling affects the entire interfer-
ometer in the same way (i.e., it is a common-mode change), it will only reduce the bandwidth of the
symmetric mode, leaving the antisymmetric bandwidth unchanged, as can be seen in Figure 3.5.

As discussed in Section 3.1.1, we chose to only look at the gravitational wave signal at the antisym-
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Figure 3.4: Cartoon of power recycled Fabry-Pérot Michelson interferometer.

metric port, so this loss of common mode bandwidth does not affect the ability to detect signals
at higher frequencies. Overall, the addition of the power recycling mirror allows us to reduce
the sensitivity to laser and other common mode noises while maintaining the same sensitivity to
gravitational waves (and any differential mode noises).

Due to the non-zero difference in the path between the beam splitter and the two input test masses
(Ix # 1, and rirvx # TiTMy), there will be some amount of signal that appears at the photodiode as
a result of PRM motion. The DARM degree of freedom will see this coupling as a noise, so
it is beneficial to understand the level of the noise. We can use the same method described in
Section 3.1.1; however, as the calculation becomes more complicated it becomes useful to utilize
programs such as Optickle [33] which will also include the frequency response of the system. For
the parameters that are listed in Table 4.3 and Table 4.4 for the Advanced LIGO design, the response
to either DARM motion or PRCL motion at the photodiode is shown in Figure 3.6.

3.1.4 Initial and Enhanced LIGO noise

Overall, these things made Initial LIGO meet design sensitivity, as proposed in 1989 [34]. Several
enhancements within the then-current infrastructure improved the sensitivity by a factor of about
2 at high frequencies. These upgrades included higher laser power, better thermal adaptive optics,
and an optical cavity to filter the output beam.

The laser power was increased in order to further improve the high frequency sensitivity of
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Figure 3.5: Comparison of the common mode (CARM) and differential mode (DARM) transfer
functions between ETM motion and the detection photodiode in the Fabry-Pérot Michelson (FPMI)
configuration versus the power recycled Fabry-Pérot Michelson (PRFPMI) configuration. The com-
mon mode bandwidth is reduced, while the differential mode bandwidth is unchanged, although
the overall sensitivity is increased for both. Note that these traces reflect 40 m Lab parameters,
although the relative change from FPMI to PRFPMI is similar for Advanced LIGO.

the interferometer, which is limited by the photon counting noise as described in Section 3.1.3.
Since our mirrors are not perfectly reflective, this increase in laser power (by about a factor of
3.5 in design, although only a factor of 2 in practice) required an improvement in the thermal
compensation system. The mirrors absorb some fraction of the energy in the laser beam, which
heats up the mirrors. This causes an alteration in the physical shape of the mirrors, as well other
optical properties of the mirrors [35], which changes the phase accumulated by the light as it
circulates in the arm cavities. These effects are mitigated with the Thermal Compensation System
(TCS) [36].

The final change between the Initial and Enhanced generations of the LIGO interferometers was
the move from RF sensing to DC sensing of the power at the antisymmetric port. This required the
addition of an optical cavity at the output port known as the Output Mode Cleaner (OMC), which
will be described in more detail in Section 3.2.4.

The overall sensitivity of the LIGO detectors, for both the Initial and Enhanced generations is
shown in Figure 3.7, as compared to the original design sensitivity. The Initial LIGO sensitivity
is represented by the curve from the 5th Science Run (55), taken in 2006. The Enhanced LIGO

sensitivity is represented by the curve taken in 2010 from the 6th Science Run.
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Figure 3.6: Coupling of PRCL and MICH degrees of freedom to DARM, in the PRFPMI configura-
tion. Note that these traces reflect 40 m Lab parameters, although the overall shape is similar for
Advanced LIGO.
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Figure 3.7: Measured sensitivity of Initial LIGO (“S5”) and Enhanced LIGO (“S6”). Data from [37].
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3.2 Increasing measurement sensitivity: Advanced LIGO

After LIGO’s sixth science run was completed in 2010, the interferometers were decommissioned
for the installation of new Advanced LIGO hardware. Advanced LIGO is comprised of a set of
improvements that are implemented in the original LIGO infrastructure, and are expected to provide

a broad-band sensitivity improvement of about a factor of 10 compared to Initial LIGO [38].

3.2.1 Signal recycling

One of the most dramatic changes between Initial / Enhanced LIGO and Advanced LIGO is the
addition of a so-called signal recycling mirror (SRM). This auxiliary mirror is placed at the detection
port of the interferometer, as shown in Figure 3.8. In the case where a signal recycling cavity
(SRC) is added to an interferometer that already includes power recycling, the interferometers are
referred to as “dual recycled” Fabry-Pérot Michelson interferometers. The length of this new cavity
is defined as

Isrer, = I + 1, (3.24)

where I; is the distance between the SRM and the beam splitter, and I, is as defined in Equation 3.12.
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Figure 3.8: Cartoon of dual (power and signal) recycled Fabry-Pérot Michelson interferometer.

This signal recycling cavity can be utilized in one of two ways, either for true signal recycling,

or for resonant sideband extraction. In the signal recycling case, the SRC is controlled such that the
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main carrier light is anti-resonant. This has the effect of amplifying the low frequency components
of the gravitational wave signal, but comes at the cost of reducing the detector bandwidth. LIGO
does not use this technique.

Rather, we utilize resonant sideband extraction (RSE), where the SRC is resonant for the carrier
light. This reduces slightly the low frequency detection gain, but increases the detector’s bandwidth.
Figure 3.9 shows the effect of adding a resonant signal recycling cavity to an already power recycled
interferometer. A key benefit of this technique is that this bandwidth improvement does not require
increased light power incident on the mirrors, which reduces the need for thermal compensation.

See [39] for a more thorough discussion of the RSE technique.
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Figure 3.9: Comparison of the common mode (CARM) and differential mode (DARM) transfer
functions between ETM motion and the detection photodiode in the power recycled Fabry-Pérot
Michelson (PRFPMI) configuration versus the dual recycled Fabry-Pérot Michelson configuration
(DRFPMI). The common mode bandwidth is unchanged, although the differential mode bandwidth
is increased. Note that these traces reflect 40 m Lab parameters, although the relative change from
PRFPMI to DRFPMI is similar for Advanced LIGO.

Regardless of whether the SRC is resonant or anti-resonant for the carrier light, the addition of an
extra optical cavity requires that we add an extra set of radio frequency sidebands for control. Also,
this auxiliary length degree of freedom will couple to the gravitational wave detection channel,
much like Michelson and power recycling coupling described in Section 3.1.2 and Section 3.1.3.
Figure 3.10 shows the coupling factors between all of the short length degrees of freedom to the
differential arm, in the dual recycled RSE configuration. As in Figure 3.6, these are the ratios of

sensitivity at the detection port to change in the length of one of the short degrees of freedom to the
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differential arm length change.
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Figure 3.10: Coupling of PRCL, SRCL and MICH degrees of freedom to DARM, in the DRFPMI
configuration. Note that these traces reflect 40m Lab parameters, although the overall shape is
similar for Advanced LIGO.

3.2.2 Improved seismic isolation

One of the most significant infrastructure changes between Initial LIGO and Advanced LIGO is the
improvement in low frequency seismic isolation. The limiting noise at low frequency for ground
based gravitational wave detectors has always been ground motion, so improvement in the isolation
will be directly related to lowering the low frequency detection limit.

While the Initial LIGO mirrors were all suspended with single stage pendula, Advanced LIGO’s
test mass mirrors are all quadruple stage pendula, one of which is shown on the left in Figure 3.11.
Some auxiliary mirrors, such as the beam splitter, will only use triple stage pendula, since their
motion does not couple as strongly to the detection port. Since each pendulum stage increases
the isolation by a factor of % above the resonance frequency, the additional stages significantly
improves the sensitivity of the detector. The right side of Figure 3.11 illustrates this improvement
for a set of simplified multi-stage pendula. Note that at the resonant frequencies of the additional
stages some isolation is lost, although at 10 Hz the quadruple pendulum offers a factor of 10° more
isolation than the single pendulum. While it would be conceptually simpler to increase the length
of a single pendulum rather than adding extra stages, a single pendulum would need to be a factor

of 10'? longer to achieve the same isolation improvement, which is clearly impractical.
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Figure 3.11: Left: Diagram of Advanced LIGO quadruple pendulum and reaction chain (Figure 1
from [40]). Right: Comparison of frequency response of example single stage, double stage, triple
stage and quadruple stage pendula. The resonant frequencies for these example pendula have been
chosen to be the same. Note that each additional pendulum stage changes the slope of the response
at high frequencies (above 10 Hz) by an extra factor of flz

In addition to the passive seismic isolation provided by pendula, Advanced LIGO also incorpo-
rates active isolation. Initial LIGO in-vacuum optical tables were comprised of stacks of rubber and
metal, which provid