NUMERICAL SHOCK PROPAGATION USING
GEOMETRICAL SHOCK DYNAMICS

Thesis by

Donald William Schwendeman

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1986

(Submitted April 30, 1986)



T

Acknowledgments

I would like to thank my advisor, Professor G. B. Whitham, for his helpful
advice and for many useful discussions concerning the work presented in this thesis.
As a result, the work has been enjoyable and I have learned a great deal. I
would also like to thank the faculty, fellow students and secretaries of the Applied
Mathematics Department. Their friendship has made my stay at Caltech both
interesting and enjoyable. A special note of thanks is due to Professor H. B.
Keller for his original support and to Bill Henshaw and Noel Smyth for their
contributions to this work.

Financial support for my graduate study has been generously provided by Cal-
tech through teaching assistantships and institute fellowships. Additional support
has been given by the Department of Energy under contract DE-AMO03-76SR00767
and by the Office of Naval Research under contract N00014-75-C-0702 through re-
search assistantships. The calculations in this thesis were performed on the Caltech
Applied Mathematics IBM 4341 computer. This thesis was typeset in TgX on the
IBM 4341 and printed on the HP TgX system.

My deepest thanks go to my loving wife, Claudia, for her caring support over
the years. I would also like to thank my family and especially my parents, who

have always encouraged me to seek the best in myself.



- 1ii —

Abstract

Various numerical schemes are developed to calculate the motion of shock
waves in gases based on Whitham’s theory of geometrical shock dynamics. The
basic numerical scheme is used to study the propagation of two-dimensional shock
waves along walls and in channels, and the self-focusing of initially curved shock-
fronts. This scheme is extended to treat shock wave motion in non-uniform media.
The extended scheme is used to examine shock wave refraction at both planar and
curved interfaces separating gases with different properties. Precursor-irregular
refraction patterns are obtained using geometrical shock dynamics. A general
numerical scheme designed to propagate a shock surface in three dimensions is
presented. Three-dimensional shock focusing and shock propagation in a curved
pipe are considered primarily to demonstrate the use of the three-dimensional nu-
merical scheme. The reflection of planar shock waves from curved walls is studied.
The motion of the shock is determined using the combined theories of regular
reflection and geometrical shock dynamics. A numerical scheme based on the
combined theories is discussed. The numerical scheme is used to calculate the re-
flection and subsequent focusing of weak planar shock waves. Some of the present
results are compared with other solutions to the equations of geometrical shock
dynamics obtained using different methods. Recent experimental investigations
are discussed and compared with our results calculated using geometrical shock

dynamics.
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CHAPTER 1

Overview

The numerical solution of hyperbolic differential equations and the associ-
ated problem of numerical shock fitting has received much attention in the recent
literature. The main numerical difficulties in their solution lie in the method of
fitting the shock and in the fact that the exact determination of the motion of the
shock requires the calculation of the whole flow field behind the shock. In many
problems, one is most interested in the motion of the shock and not the details
of the flow field. Also, most of the numerical work has dealt with smooth shocks,
leaving open the more difficult problem of situations in which the shock becomes
non-smooth, as in Mach reflection.

In the preseﬁt work, we are interested in the numerical propagation of shock
waves in gases. Rather than solve the gas dynamic equations directly, we de-
termine the motion of the shock, using the approximate theory of geometrical
shock dynamics, as developed by Whitham [1957, 1958, 1959]. By the use of this
approximate theory, the motion of the shock can be determined without explic-
itly calculating the flow field behind. The coupling with the flow field behind
the shock is incorporated in the analytic formulation of the shock propagation
equations, which are then solved numerically. Furthermore, the equations of ge-
ometrical shock dynamics are nonlinear and hyberbolic; thus, discontinuities in
the shockfront appear naturally as shock-shocks. The presence of shock-shocks is
significant in that they signal the formation of a Mach stem and reflected shock

for the actual shock, the shock-shock being the position of the triple-point.
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We begin with a brief review of the theory of geometrical shock dynamics
in the first part of Chapter 2. Next, we discuss the basic numerical scheme de-
veloped to calculate the motion of shock waves in two space dimensions. In the
last part of Chapter 2, we present numerical results for three fundamental shock
propagation problems. These problems are (a) shock wave diffraction, (b) shock
wave propagation in channels and (c¢) shock wave focusing. For all problems pre-
sented in Chapter 2, it is assumed that the gas ahead of the shock is uniform.
The three problems are motivated primarily by theoretical and experimental re-
sults obtained by other investigators for the same problems. By comparing our
numerical results found using geometrical shock dynamics with the experimental
results, we are able to assess the accuracy of the approximate theory. In general,
we find that geometrical shock dynamics predicts the motion of the actual shock
with good accuracy in each case.

We acknowledge the earlier work of W. D. Henshaw and N. F. Smyth. The
former developed the first numerical scheme and both considered some of the
applications discussed in Chapter 2. These results were all improved and the
numerical scheme was refined in various ways by the present author. Then, the
further applications to the full range of problems in Chapter 2 were made. These
combined results will appear in Henshaw et al. [1986]. The work reported in Chap-
ters 3, 4 and 5 concerns completely new developments for shock wave propagation.
The problems considered in these chapters are shock wave motion in non-uniform
media and in three dimensions and shock wave reflection from a curved wall.

Shock wave propagation in non-uniform media is discussed in Chapter 3. Nu-
merically, the extension to non-uniform media affects only the calculation of the
local shock velocity. For a uniform medium, the local velocity (or Mach number) is

related to the local expansion or compression along the shockfront by the so-called
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A-M relation. The generalized A-M relation for non-uniform media contains ad-
ditional terms representing the fluid non-uniformities ahead of the moving shock.
The numerical treatment of these additional terms in the A-M relation is incor-
porated into the basic numerical scheme introduced in Chapter 2. We illustrate
the effect of a non-uniform medium ahead of the moving shock by considering two
shock refraction problems in the last part of Chapter 3.

The general problem of the shock wave propagation in three space dimen-
sions is examined in Chapter 4. In this case, we are interested in the motion of
the shockfront surface as opposed to the shockfront curve. A numerical scheme
designed to propagate the shock surface is described in the first part of Chapter 4.
This scheme is analogous to the basic numerical scheme presented in Chapter 2.
However, the details of its implementation are new and in general more compli-
cated than the basic numerical scheme. In particular, the mesh refinement on the
shock surface is more difficult. In order to demonstrate the use of the general
numerical scheme, we calculate the shockfront surfaces for two specific problems.
We consider shock wave focusing in three dimensions and shock wave propagation
around a 90° bend in a pipe with a circular cross section. These two problems
provide a good test of the numerical scheme and show interesting shock wave
propagation processes not seen in the two-dimensional problems.

In Chapter 5, we consider planar shock wave reflection by a curved wall. This
problem requires an additional method for treating the reflection process at the
reflector. We use the theory of regular reflection to obtain boundary conditions
at the reflector surface. A modified A-M relation is introduced in order to in-
corporate the boundary conditions at the reflector surface into the approximate
theory of geometrical shock dynamics. The combined theory is described is the
first part of Chapter 5. Next, we discuss the modifications in the two-dimensional

numerical scheme required to calculate the motion of the shock for this problem.
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The specific problem of planar shock wave reflection from a parabolic reflector is
examined in the end of Chapter 5. We calculate the reflected shock and subse-
quent focusing for weak shocks primarily. These results may be compared with
extensive experimental results for the same problem. The comparison for weak
shocks is particularly interesting since there was some earlier indication that shock
dynamics may not be at its best for weak shocks. The focusing mechanisms for
weak shocks are particularly complicated. Consequently, this case is an extreme
test for any simple approximate theory. Accordingly, any deficiencies found in
the application to weak shock problems would not necessarily be true the stronger
range. In fact, we find that geometrical shock dynamics approximates the focusing
of weak shocks with surprising overall accuracy.

An important simplification in geometrical shock dynamics is that the shock-
front can be calculated directly without explicit knowledge of the flow field behind
the shock. Numerically, this implies that only O(N) operations (e.g., multiplica-
tions) are required at each time step to propagate a shockfront in two dimensions,
where 1/N is average point spacing along the shockfront. A numerical scheme
which determines the shocks from a calculation of the entire two-dimensional flow
field would require at least O(N?) operations per time step to gain the same shock-
front resolution. These two-dimensional flow calculations are possible but time-
consuming given the current state of computing machines. For three-dimensional
shock propagation, we require O(N?) operations per time step. These calculations
are also time-consuming but possible, whereas the corresponding calculations for
the entire three-dimensional flow field are not possible (again given the present
available computers).

Another computational difficulty for entire flow calculations involves the de-
termination of the shocks. One method proposed by Glimm et al. [1981] and

Chern et al. [1986] tracks the shocks as an independent computational element
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separate from the computation of the flow field away from the shocks. The smooth
solution in the region away from the shocks can be calculated on a coarse grid.
We point out this particular method since it provides an interesting comparison
with the present numerical method for geometrical shock dynamics. Both meth-
ods track the shockfront. However, the motion of the shockfront is determined
differently. The dynamics of the shockfront for front tracking is determined with
the aid of the flow solution calculated on the coarse grid, whereas the dynamics of
the shockfront for geometrical shock dynamics is specified by the A-M relation.
Of course, it should be stressed that Glimm’s front tracking method calculates ex-
act solutions to the equations of gas dynamics (apart from numerical errors) and
geometrical shock dynamics is a method for obtaining the shocks approximately
with the possibility of handling much more complicated cases.

Finally, we note that the method of geometrical shock dynamics is not limited
to shock waves and can be used for the propagation of any wavefront for which
there is a known relation between the local speed of propagation and the local
amplitude. For example, Miles [1977] applied geometrical shock dynamics to the
propagation of a soliton around corners. The numerical method presented here

can also be used for these problems.



CHAPTER 2

Two-dimensional Shock Propagation

2.1 Introduction

We first study shock wave propagation in two space dimensions. The mo-
tion of the shock will be determined using the approximate theory of geometrical
shock dynamics as originally presented in Whitham [1957]. This theory provides
a method of calculating the motion of the shock without explicit knowledge of the
flow behind the shock. We discuss briefly the main elements of the approximate
theory of geometrical shock dynamics in section 2.2. This serves as a useful in-
troduction to the theory and gives the basis for the numerical scheme developed
later.

Geometrical shock dynamics propagates a shock along rays normal to the
shockfront with the local speed of propagation depending on the local Mach num-
ber. This local Mach number, in turn, depends on the local area of the ray tube.
Numerically, this procedure is performed by representing the shockfront by a dis-
crete set of points and propagating each point along approximate normals with a
speed determined by the discrete area-Mach number relation. In expansive regions
of the shockfront, points are automatically inserted to maintain a good shockfront
resolution. Shock-shocks are fitted in compressive regions of the shockfront by
deleting points. A smoothing scheme is added to dampen high frequency numer-

ical fluctuations in the shockfront. The overall procedure is performed rapidly
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with good accuracy for a wide variety of problems. The details of this numerical
scheme are presented in section 2.3.

All the calculations in the present work use the area-Mach number relation
that was developed for the case of an ideal gas with constant specific heats. How-
ever, other equations of state could be incorporated by changing to an appropriate
area-Mach number relation. For these cases, the main numerical scheme would
remain the same.

In section 2.4, we compare results obtained using our numerical scheme with
exact and numerical solutions and experimental data. We consider the follow-
ing three fundamental shock propagation problems: (a) shock wave diffraction,
(b) shock wave propagation in channels and (c) shock wave focusing.

Exact solutions using geometrical shock dynamics were found by Whitham
for some shock wave diffraction problems. Results calculated numerically are
compared with these exact solutions. Bryson & Gross [1961] obtained numeri-
cal and experimental results for shock wave diffraction by cones, cylinders and
spheres. Their numerical results used the method of characteristics in contrast to
the numerical scheme developed in section 2.3. Shockfronts calculated using our
numerical scheme are compared with these results as well.

Edwards, Fearnley & Nettleton [1983] experimentally studied the propagation
of initially plane shock waves in channels with a 90° circular bend. Results were
obtained for the Mach number on the convex and concave walls and a description
of the shock geometry was discussed. We compare our numerical calculations with
their results.

Sturtevant & Kulkarny [1976] experimentally determined the behavior of fo-
cusing weak shock waves by reflecting plane shock waves from a concave wall.

Depending on the initial Mach number and curvature of the wall, the shock either
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focused to form a crossed and folded front similar to that which occurs for geomet-
rical acoustics or the shock remained uncrossed. We find the approximate theory
of geometrical shock dynamics is able to predict this observation with reasonable
accuracy. We also compare the Mach number (and thus the pressure jump) of the

focusing shockfronts with the experimental data.

2.2 Geometrical Shock Dynamics

Whitham [1957, 1958, 1959] developed an approximate theory for shock prop-
agation analagous to geometrical acoustics. In this theory, called geometrical shock
dynamics, the shock propagates on rays normal to the shockfront, with the speed
of propagation depending on the local compression or expansion along the shock.

This theory is summarized in Whitham [1974].

(a) The A-M relation
For shock propagation in a uniform medium, Whitham shows that the local

Mach number and ray tube area are related by

A _ f(M)
o ) (2.2.1)

where M, and A are the initial Mach number and ray tube area, respectively. In
the case of an ideal gas with constant specific heats, the function f(M) is taken
to be

f(M) = exp <—— %-;\—(:Ailll dM) , (2.2.2)

where

21— p? 1

2 (Y —1)M? +2
2YM? — (v~ 1)’

“
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~ being the ratio of specific heats (= 1.4 for air). We refer to equation (2.2.1) as
the A-M relation. The integral in expression (2.2.2) may be evaluated explicitly.
However, a numerical evaluation is more convenient. Approximations to (2.2.2)

may also be obtained in the limits of weak and strong shocks. For weak shocks

f(M)=(M-1)"? as M — 1, (2.2.3)
and for strong shocks

f(M)y=M™T" as M — oo, (2.2.4)

where n = 1 + % + ;’2:’7 = 5.0743 for v = 1.4.

Whitham’s characteristic rule applied to the one-dimensional formulation for
flow in a channel with slowly varying cross-sectional area A(z) provides the sim-
plest derivation of the A-M relation. It is assumed that a shock is traveling down

the channel with a Mach number M(x). The exact nonlinear differential relation

that holds on the C4 characteristic is given by

dp+ du N patu 1 dA 0 (2.2.5)
—_— u—-—- — i T . .
dz "4z T utaeAddr

where p, p, v and a (= \/:y—p_/;) are the pressure, density, velocity and local
sound speed, respectively. At the moving shock, the quantities p, p, v and a are
eliminated from (2.2.5) in favor of M using the normal shock conditions. This
procedure results in a differential relation between A and M at the shock, which
is given by

MA(M) dM 1 dA

— e b e = (), 2.2.6
M?2 -1 dx+Ad1: ( )

We may then integrate (2.2.6) to obtain the A-M relation (2.2.1).
The A-M relation given by (2.2.1) holds for a uniform medium ahead of the
propagating shock. It is also possible to obtain a more general A-M relation for

non-uniform media. In this case, we assume that the shock is propagating into a
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prescribed equilibrium distribution of po(z), po(z), ao(z) and ~(z). A body force
is required to maintain an equilibrium variation in pressure. This requirement
gives

1 dpy
;C; _CE =7, (2.2.7)

where 7 is an acceleration due to some body force (gravity, for example). With

the added body force, the differential relation that holds on the C. becomes

dp du  pa’u 1 dA pa
e e — — = 7. 2.2.8
dm+pudx+u+aAd:c u+a ( )

We can eliminate 7 using (2.2.7), which gives

dp du  pa’u 1 dA a p dpo
-t pu—— + - = —
dx dr u+a A dz u+a py dz

(2.2.9)

Substituting the normal shock conditions into (2.2.9) results in a differential rela-

tion of the form
MAM,z) dM N 1 ié
M? -1 dz A dzx

= S(M, z), (2.2.10)
where S(M,z) is a source term which contains the gradients of the fluid non-

uniformities. Specifically, we have

1 dag 1 dpo d~

S(M,z) = —g(M,z) ——> ~h(M,z) = — k(M. z) (2.2.11)
where
Vi) 1y 2 )
g(M,z) = ('7—1)M2+2’
H04,9) = gy (2047 1)+ = 1) = RS ).
_sM,z)
k(M,z) = m(# 7).

The differential form of the A-M relation given by (2.2.10) for non-uniform
media is the same relation as that reported by Catherasoo & Sturtevant [1983]. A

relation of the same form was also obtained by Collins & Chen [1971], but there
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is some difference in the coefficients. In Chapter 3, we use a discrete version of
(2.2.10) as part of a numerical scheme to calculate the motion of shock waves in

non-uniform media.

(b) Two-dimensional formulation

We shall first deal with two-dimensional motion, primarily. Three-dimensional
problems are examined in Chapter 4. The two-dimensional formulation may be
extended to axisymmetric motion without much change and we treat some of these

cases also.

Ficure 2.1. Coordinate system (a,3). Shock positions given by
a = constant (solid lines) and rays given by 8 = constant (dashed
lines).

In two dimensions, it is convenient to introduce an orthogonal curvilinear
coordinate system (a, 3) where successive shock positions are described by curves
a = constant and rays by § = constant (figure 2.1). The shockfront is described

by its local Mach number M (a, #) and its ray inclination angle 6(«, 8) referenced
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to a fixed direction, the z-axis, say. It follows from a geometrical argument that

the system of equations describing the propagation of the shockfront is

o0 wonon
ap M O« ’
0 1 oM
da | A(M) 05

(2.2.12)

where a uniform medium is assumed so that A = A(M) is given by (2.2.1). The

characteristic form of (2.2.12) is

E] B
<£ te 55) (0 £w(M)) =0, (2.2.13)
where
M 1 [M?% -1
2 — _
“M) =3 A2( ) >
MaM (M am) Y
= - = dM
w(M) /1 Ac /1 <M2—~1>
Therefore,

d
§ + w(M) = constant on characteristics C'y. : :iﬁ = =*e. (2.2.14)
a

The characteristics defined by Cx in (2.2.14) are curves on which information (4
and M) propagates along the shock. These curves are not to be confused with the

characteristic curve C used in the derivation of the A-M relation.

(¢c) Shock-shocks

The system (2.2.12) is hyperbolic and represents a wave motion for distur-
bances propagating on the shock. Since this system of equations is hyperbolic and
nonlinear, the shockfronts can develop discontinuities in slope and Mach number,
these being called shock-shocks. Shock-shocks correspond physically to the for-

mation of Mach stems, the shock-shock discontinuity being the position of the
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FiGURE 2.2. (a) Mach reflection : incident shock I, Mach stem M, reflected
shock R and vortex sheet V. (b) Shock-shock geometry.

triple-point. In Mach reflection there is also a reflected shock R and a vortex
sheet 'V as shown in figure 2.2a, but they do not appear explicitly in geometrical
shock dynamics. Only the leading fronts appear as in figure 2.2b. The change in
direction and Mach number at the shock-shock implies their existence.

In the case where a shock-shock develops, it is possible to treat the shock-shock
as a discontinuity in M and 8. Given the shock-shock geometry in figure 2.2b, the

following two geometric relations must hold:

(M3 — M2)"? (42 - a3)"?

tan(fy — 01) = A, My T AL M : (2.2.15)
A (ME-M\YE
tan (x = 8:) = o7 (ﬂ) , i=1lor2 (2.2.16)

Equations (2.2.15) and (2.2.16) relate the Mach number, ray tube area and ray
inclination angle ahead of the shock-shock (state 1) with the the conditions behind

(state 2) in terms of x, the angle of the shock-shock line with the z-axis.
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It is convenient to assume that the A-M relation still holds even for the abrupt
change in Mach number and ray tube area at the shock-shock. This assumption is
reasonable for moderate shock-shocks where the change in Mach number and ray
tube area is not too large. For strong shock-shocks, the dependence of A, on M,
in (2.2.15) and (2.2.16) may not be accurately given by the A-M relation, since the
relation was derived assuming a gradual change in ray tube area. It is possible to
obtain an alternate relationship between A and M across the shock-shock based
on a three-shock geometry, where we now include the reflected shock R (as in
figure 2.2a). However, this is an added complication which does not appear to be
worthwhile in view of the overall approximate theory.

The characteristic solution (2.2.14) along with jump conditions (2.2.15) and
(2.2.16) may be used to construct solutions in some simple cases. Solutions found
in this manner are completely analagous to solutions found in one-dimensional
gas dynamics or shallow water waves, for cxample. Later, the accuracy of the
approximate solution obtained numerically will be checked with some of these

exact solutions.

2.3 Basic Numerical Scheme

In this section, we present the basic numerical scheme developed to calculate
successive shockfronts using the theory of geometrical shock dynamics. The scheme
is advantageous in its simplicity and its application to a wide variety of problems.
The simplicity of the scheme will become clear shortly. Later, we will apply the
numerical procedure to calculate shocks for many cases.

The numerical procedure is basically a leap-frog time marching scheme. A
sketch of the time marching scheme is provided in figure 2.3. The shockfront is
given by a discrete set of points. Each point is advanced along its normal with a

speed specified by the discrete version of the A-M relation. In expansive regions
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of the shockfront, we insert points in order to maintain an approximately uniform
point distribution. In compressive regions, we fit shock-shocks into the front by
deleting points. A smoothing procedure is employed to dampen high frequency

numerical errors in the shockfront position.

t+ At

Ficure 2.3. Basic time marching scheme. Shockfront positions at ¢
and t + At (solid lines) and approximate rays (dashed lines).

The numerical scheme is based on an approximate integration along rays. On

a ray
dz Jdy

%0 = M cos @ and P Msin 6. (2.3.1)

We write (2.3.1) in vector form and eliminate « in favor of time t using a = act

where ag is some undisturbed sound speed. Then (2.3.1) become

a
EEX(ﬂ,t) = ag M(:Bat)n(ﬂ’t)’ (232)

where x = (z,y) is the shockfront position and n = (cos 8,sin 8) is the normal to

the shockfront.
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We approximate the shockfront position by a discrete set of points x;(t),
J=1,...,N. Let M;(t) and n,(t) approximate the Mach number and shockfront

normal at x;(t), respectively. Then (2.3.2) becomes

d
E{Xi(t) :Mi(t)n,-(t), 1=1,...,N, (2.3.3)
where we set ap = 1 in all the calculations for this chapter. System (2.3.3) is a

nonlinear system of O.D.E.’s and may be numerically integrated in a number of

ways. We choose to use a two-step leap-frog scheme
x;(t + At) = x;(t — At) + 248 M, (t) n,(2), t=1,...,N, (2.3.4)

where t = nAt, n = 0,...,T/At. Scheme (2.3.4) is explicit and second-order
accurate in time. Furthermore, leap-frog adds no numerical dissipation which is a
desirable property since system (2.3.2) is hyperbolic.

The Mach number M;(t) in (2.3.4) is found by solving the approximate A-M

relation
Ai(r) _ S (Mi(t)) -
1,0) f(Mi(O)) fort=1,...,N. (2.3.5)
Inverting the function f(M) gives
M;(t) = f! <f(M1(O)) i’(((t)))) + fori=1,...,N. (2.3.6)

The inverse function f~! may be found explicity in the limit of weak shocks (2.2.3)
or strong shocks (2.2.4); however, we solve (2.3.6) numerically in general. The
approximate area A;(t) in equation (2.3.6) is given by a centered scheme about

the point x;(t) in the interior and a one-sided scheme at the endpoints

Si+1(t) —*S,;(t), if 1 = 1;
A,;(t) = -2— Si.{_l(t) - Si_l(t), ifit=2,...,N —1; (2.3.7)
Si(t)—s,;__l(t), ifi:N,



- 17 -

where s;(t) is the discrete arclength given by

0, if 1 = 1;
si(t) = {si_l(t) + |xi(t) = xi—1(t)], fe=2,...,N. (2.3.8)

For the case of axisymmetric flow, we need only change the definition of A;(t) in

the numerical scheme. The approximate area in this case is

(Yir1 +yi)(si41 —85), fi=15
Aq(t) = 295 (Si41 — 8i-1), if z =2,...,N —1; (2.3.9)
(yi+yi—1)(3i*si«1), ift = N.

oS

The normal to the shockfront n;(t), which is required in (2.3.4), is deter-
mined by differentiating two cubic splines fitted to the data (s;(t),z;(¢)) and
(s;(t),y;(t)), 7 =1,...,N. Let &(s) and §(s) denote these two cubic spline inter-
polants, respectively. The smooth curve (i(s),g](s)) is an approximation to the

shockfront at time ¢. Therefore, n;(t) is given by

n;(t) = 75 1= LN, (2.3.10)

. 2 . 2
(@) + #(:0)’]
where the primes denote differentiation with respect to s.

The shockfront position x;(0) and the Mach number M;(0) are determined

by the initial data given at ¢t = 0. The parameters N and At are chosen by the

general rules:

1 sn(0)
N
A-Savg = ]—V— ZZ ASt(O) = N - K] < 1, (Rl)
e
At At At
= ; = < Kg = O(l), (RZ)
ASmin zrsr}lan Asi(t) dASsgyg
0<t<T

where As;(t) = si(t) — s;-1(t) and d is a minimum tolerance on As;(t) which
we discuss in detail later. Usually we take constants K; and K, equal to 0.01
and 0.2, respectively. Rule (R1) provides-an adequate resolution of the shockfront.

Rule (R2) is the Courant-Friedrichs-Lewy condition and gives stability for all cases
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run. The shockfront at ¢ = At is determined using a second order one-step explicit
scheme which provides the necessary initial information to begin the two-step leap-
frog scheme.

The numerical scheme as described previously may be used in the absence of
wall boundaries. These pure initial value problems occur in the case of self-focusing
shock waves, for example.

In the presence of wall boundaries, the appropriate boundary conditions must
be applied. Walls coincide with rays in the theory of geometrical shock dynamics;
therefore, at wall boundaries the shock must be normal to the walls. Figure 2.4
illustrates how this boundary condition is implemented numerically. Points inte-
rior to the boundaries are calculated using the leap-frog scheme. The point at
the boundary is then determined such that the line segment between the endpoint
and its neighboring internal point is normal to the wall. Examples of these initial

boundary value problems are shock wave diffraction and shock waves in channels.

—rrr,llllllm
P

FiGUure 2.4. Numerical boundary conditions at a wall. Line seg-
ment PQ is normal to the wall at point P.
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The numerical scheme provides for the insertion and deletion of points, as
points tend to spread out in expansive regions or cluster in compressive regions of
the shockfront. The point spacing As;(t) is checked periodically and we require

d< Asi(t)
T Asgug

=0,(t) <D foralli=2,...,N, (C1)

where d = 1/2 and D = 3/2 usually. If 0;(t) < d, point x,(t) is removed and if
oi(t) > D, point x;_1/2(t) is added using the cubic spline interpolant evaluated at
1(si(t) + si—1(t)). We preserve the area ratio A;(¢)/A;(0) in (2.3.6) by removing
or adding the points at ¢ = 0 as well. In either case if condition (C1) fails, the
leap-frog scheme is restarted as previously described for ¢ = 0.

We find it desirable to insert points in order to maintain the initially pre-
scribed shockfront resolution (rule (R1)). Deleting points insures numerical stabil-
ity at each time step (rule (R2)). Furthermore, rays tend to cross as shock-shocks
form in compressive regions of the shockfront. By deleting points, shock-shocks
are effectively fitted into the shockfront.

A simple two-step smoothing procedure is added to the numerical scheme in
order to dampen the high frequency errors in x,(t). After every n, time steps

(usually 10 to 50) we let

(Xig1(t) +xi1(t)) — xi(t), (2.3.11)

D |

where we scan ¢ even, then 7 odd, for 1 < 7« < N. The numerical scheme is then
restarted using the smoothed shockfront as initial conditions. The smoothing

scheme (2.3.11) is one Jacobi iteration applied to the discrete system of equations

Dx,(t) = xi-1(t) — 2%:(t) + Xis1(t) =0,  1<i<N. (2.3.12)
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This iteration is effective in damping high frequency fluctuations in x;(¢). The
overall shockfront given by the lower frequencies is essentially unchanged by this

procedure.

2.4 Three Fundamental Shock Propagation Problems

Succesive shockfront positions are calculated numerically for the cases of shock
wave diffraction, shock waves in channels and focusing shock waves. We establish
the accuracy of our numerical scheme by comparing solutions obtained numeri-
cally with exact solutions found by Whitham and with numerical solutions found
by Bryson & Gross [1961] using the method of characteristics for shock wave
diffraction. We then compare the numerical calculations with experimental data
for all three cases. Many important features of the flows presented in the ex-
periments, namely, shockfront positions, triple-point positions (i.e., shock-shocks)
and wall Mach numbers, are well represented in the numerical calculations. This

demonstrates the usefulness of the geometrical shock dynamics approximation.

(a) Shock wave diffraction

A simple solution may be constructed using characteristics (2.2.14) for shock

wave diffraction by a convex wall (Whitham [1974]). On a C_ characteristic
0 —w(M) = constant. (2.4.1)

Since all C_ characteristics originate from the undisturbed region, § = 0 and

M = My, we have

0 —w(M) = —w(My) = constant everywhere. (2.4.2)
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In particular, the wall Mach number M,,, perhaps the most important quantity
for this problem, may be found given the wall inclination angle 8,,. Using (2.4.2)

at the wall gives

w(My) = 0, + w(Mo). (2.4.3)

For the purpose of testing our numerical scheme we use the strong shock approx-

imation (2.2.4) which gives M,, explicitly
M, = Mye®®, (2.4.4)

where b = n™ /% = 0.44393 for v = 1.4. Whitham goes on to complete the
solution for this problem; however, we stop here since we are primarily interested
in comparing M,,.

We plot the value of M,, /My versus —0,, using relation (2.4.4) in figure 2.5a.
The expanding shockfronts around a 45° convex wall are calculated numerically
and shown in figure 2.5b. From our calculations, we determine M,, /My at evenly
spaced intervals of time and plot these values versus —#8,, as well. We see that the
agreement betwe(;n the exact curve and the numerical values is good.

For shock wave diffraction by a wedge it is also possible to obtain an exact
solution. Here we use the jump conditions (2.2.15) and (2.2.16) with M; = Moy,
6, =0and My =M, 8, =40,

(M2 — M2)"?(A2(My) — A2(M,,))"?

tan @, = AM,] My + A(My) M, , (2.4.5)
A(M, M2 — M2 1/2
tan(x — 0,) = 5\4w ) <A2(MO) - AZO(Mw)> , (2.4.6)

where x is the angle of the shock-shock line and A = A(M) is the A-M relation

(2.2.1). Again we use the strong shock approximation which gives

(m“2 _ 1)1/2(1 _ m2n)1/2
mrn—14+1

tanf, = , (2.4.7)
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Ficure 2.5. Shock wave diffraction by a convex wall: (a) M, /Mo versus
—0,; (b) expanding shockfronts around a 45° circular convex wall.
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1 — 2 1/2
tan(y — 8y) = m” <i,:%;> , (2.4.8)

where m = My/M,,. Equation (2.4.7) gives m implicitly in terms of 8,,. Equation
(2.4.8) then gives x = x(0w).

We plot x(8,,) — 8., versus 8, in figure 2.6a. Successive shockfronts are calcu-
lated for 0,, = 10°, 20°, ..., 70°, and x is determined for each from their graphs.
Again we note the good agreement with the exact solution for all values of 6,,. A
representitive calculation for 8,, = 30° is displayed in figure 2.6b. The position of
the shock-shock is easily seen for §,, = 30° which was the case for all values of 4,,
run.

Another interesting case is shock wave diffraction by a smooth concave wall.
In figure 2.7, we show the calculation for a 30° circular bend. The shock-shock
in this case forms gradually as the shockfront is compressed by the wall. Farther
downstream where the wall is straight, the shock-shock moves linearly away from
the wall similarly to the wedge case. In fact, far downstream the angle between
the shock-shock line and the wall is the same as for the 30° wedge.

Bryson & Gross [1961] obtained both numerical and experimental results for
the diffraction of shock waves by cones, cylinders and spheres. Their numerical
solutions also employed the theory of geometrical shock dynamics, but their nu-
merical solutions used the method of characteristics based on (2.2.14) together
with the jump conditions (2.2.15) and (2.2.16) in contrast to the more flexible
numerical scheme presented here. They found their solutions predicted shockfront
and triple-point positions quite well for all their experiments.

As a further test of our numerical scheme, we calculated shockfronts for all the
examples presented by Bryson & Gross. We display our results only for cylinders

and spheres, as the comparison for cones was essentially the same as for wedges.
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Ficure 2.6. Shock wave diffraction by a wedge: (a) x(0y) — 6 versus 8.,;
(b) shockfronts diffracted by a 30° wedge.
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Ficure 2.7. Shock wave diffraction by a 30° circular concave wall.

We calculate shock wave diffraction by a cylinder for My = 2.81. The results
of this calculation are shown in figure 2.8. In this case, we use the true A-M
relation (2.3.5) (without assuming an approximate weak or strong shock limit)
and invert f(M) numerically. This will be done from now on unless specifically
stated otherwise. The most interesting feature of this problem is the two loci of
shock-shock positions that originate from the front and back of the cylinder and
continue downstream. The shock-shock positions are determined numerically by
searching for the maximum change in Mach number in the two regions of the
shockfront where we know the shock-shock exists. The two loci of shock-shock
positions are displayed in figure 2.8 by the two dashed lines.

In figure 2.9, we compare the loci of shock-shock positions obtained numeri-

cally with experimental data found by Bryson & Gross. We show only representive
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0.0 1.0 2.8

F1GURE 2.8. Shock wave diffraction by a cylinder for My = 2.81. Shockfronts
given by solid lines and loci of shock-shock positions given by dashed lines.
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data points from the clusters of points given by Bryson & Gross. A sufficient num-
ber of points are displayed in order to indicate a trend in the data. The shock-shock
positions calculated numerically are in good agreement with the experimental data
for both loci of shock-shock positions. Bryson & Gross also obtain good agreement
using their numerical solution found by the method of characteristics. However,
there is some small systematic discrepancy between the present numerical results
and those of Bryson & Gross. We suspect this discrepancy is a result of various
approximations used by Bryson & Gross in order to construct their solution.

Finally, successive shockfronts are calculated for diffraction by a sphere at
Mo = 2.85 and are shown in figure 2.10. For this axisymmetric calculation, the
alternate definition of A;(t) given by (2.3.9) is used in the numerical scheme. The
shockfront pattern is much the same as for the cylinder case and we calculate the
loci of shock-shock positions for the sphere as well.

The experimental shock-shock positions are shown along with the calculated
positions in figure 2.11. For the sphere, the numerical results predict the ex-
perimental data very well for both the front and back loci of shock-shock po-
sitions. Bryson & Gross noted this fact also for the front locus of shock-shock
positions. However, they were unable to obtain a solution using characteristics for
the back locus of shock-shock positions. The experimental shock-shock positions
for Mo = 4.41 are also shown in figure 2.11. These data points are also in good
agreement with the calculations. This indicates the relative insensitivity of the

shock-shock positions for high Mach numbers (i.e., strong shocks).
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Ficureg 2.10. Shock wave diffraction by a sphere for My = 2.85. Shockfronts
given by solid lines and loci of shock-shock positions given by dashed lines.
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Ficure 2.11. Shock wave diffraction by a sphere. Numerical loci of shock-
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(b) Shock wave propagation in channels

A natural extension of the case of shock wave diffraction is the case of shock
waves in channels. We have seen, in the case of shock wave diffraction, that
many solutions were availible to compare with our numerical solutions. To our
knowledge, there are no solutions availible for the case of shock waves in channels.
The added constraint of an additional wall boundary makes solutions obtained
using the method of characteristics more difficult. This second wall boundary
presents no additional problems in our numerical scheme since two boundaries are
treated as easily as one boundary.

Edwards, Fearnley & Nettleton [1983] experimentally determined the behavior
of shock waves propagating around 90° circular bends in channels with nearly
rectangular cross section. Two bends were used, one having an inner radius of
48.9 mm. and an outer radius of 101.1 mm. and the other having an inner radius
of 123.9 mm. and an outer radius of 176.1 mm. Let us refer to the channel with
the smaller radius as channel 1 and the channel with the larger radius as channel 2.
The experiments were performed for initial Mach numbers M between 1.2 and 2.9.
The experimental results consisted of a description of the shock wave pattern in
the channels and measurements of wall Mach numbers M,, on the inner and outer
walls.

In figure 2.12, we display a typical calculation for channel 1 (sharp bend). The
shockfront expands around the inner wall in a similar fashion to the convex wall
diffraction in part (a). At the outer wall, the shockfront compresses and forms a
shock-shock. These two features are essentially independent until the expanding
shockfront reaches the shock-shock. The shock-shock is then weakened and turned
towards the inner wall. For channel 1, the shock-shock reaches the inner wall in
the straight region of the channel after the bend for all Mach numbers considered.

The shock-shock reflects off the inner wall and proceeds towards the outer wall.
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This shock-shock reflection from wall to wall continues for some distance down the

channel although it is not displayed in figure 2.12.
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FicurEg 2.12. Shock wave propagation in channel 1 for My = 2.1.

A typical calculation for channel 2 (shallow bend) is shown in figure 2.13.
Many of the features are the same as for channel 1 except that the shock-shock
may reach the inner wall before or after the bend, depending on the initial Mach
number. For the particular value of My shown, the shock-shock is seen to reach
the inner wall at the end of the bend. The clear shock-shock reflection observed
for channel 1 is not seen here since the angle between the incident shock-shock
and the wall is small and the strength of the shock-shock is weaker. For My = 1.2,
the shock-shock reaches the inner wall after the bend; however, its strength is so

weak that a clear reflection is still not observed.
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Fi1GUrE 2.13. Shock wave propagation in channel 2 for My = 1.9.

Edwards, Fearnley & Nettleton observed that the shock wave did not recover
to a planar front within the bend for channel 1, which is in agreement with our
calculations. Conversely, for channel 2, they found that recovery to the planar front
did occur within the bend. Our calculations tend to support this observation. The
shockfront recovers to a nearly planar front in all our calculations for channel 2.

Measurements of M, versus distance along the wall are given by Edwards,
Fearnley & Nettleton for the cases of My = 1.7, 2.1, and 2.7 for channel 1 and
My = 1.2, 1.9, and 2.9 for channel 2. These cases are calculated numerically and
we also determine the values of M,,. We compare the experimental data with the
numerical values in figures 2.14 and 2.15. There are two sets of data in each figure
corresponding to M, from each wall. The set with M,,/My > 1 comes from the

outer wall and the set with M,,/My < 1 comes from the inner wall. For each set,
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the distance is measured from the beginning of the bend along the corresponding
wall with the same scale used in figures 2.12 and 2.13.

The comparison for channel 1 is shown in figure 2.14. The Mach number
on the inner wall in found experimentally to decrease to 0.6 My. We see that
the calculations support these measurements. Both numerical and experimental
results show the decrease in M,, around the bend and a constant M, in the
straight portion after the bend. On the outer wall, the experimental data show an
increase in M, to 1.3 My. Geometrical shock dynamics predicts a slightly larger
increase to 1.4 M. Edwards, Fearnley & Nettleton predict a larger increase as well
using a rough approximation to Whitham’s theory which ignores the presence of
the inner wall. This is an adequate approximation until the expanding shockfront
from the inner wall reaches the shock-shock. In agreement with experimental
measurements, we find the Mach number on the outer wall decreases as a result
of this interaction. When the shock-shock reaches the inner wall, a large jump in
M, is observed in our calculations. Unfortunately, no experimental measurements
were given to compare with this result.

Figure 2.15 shows the results for channel 2. For the shallow bend, M,, de-
creases to 0.7 My on the inner wall in both experiments and our calculations. M,
increases to 1.15 Mj on the outer wall in the experiments, whereas our calculations
predict a slightly higher value. For My = 1.2, the Mach number on the inner wall
attains a constant value in the straight portion as in channel 1. For My = 1.9 and
My = 2.9, a constant value is not reached since the shock-shock meets the inner
wall before the end of the bend. The experimental evidence tends to support these

observations as well.
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Ficure 2.14. M,,/M, versus distance along the wall for channel 1.
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FiGURE 2.14. (cont.). M, /M, versus distance along the wall for channel
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FiGURE 2.15. M,,/M, versus distance along the wall for channel 2.
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FiGURE 2.15. (cont.). M,,/M, versus distance along the wall for channel 2.
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(¢) Shock wave focusing

We are interested in examining the focusing process as determined by ge-
ometrical shock dynamics. We numerically experiment with a variety of initial
shapes and initial Mach numbers to study how these influences affect the focus-
ing shock wave patterns calculated. Most of our calculations are motivated by
experiments; however, we point out other interpretations as well. Overall, we find
reasonable agreement with experimental observations. The results discussed here
give a good first look at the focusing process. A more extensive study may be
found in Chapter 5.

Sturtevant & Kulkarny [1976] experimentally studied the behavior of focusing
weak shock waves. Initially, plane shock waves with M, between 1.005 (sound
pulse) and 1.5 (comparatively strong shock) were propagated in a shock tube and
brought to a focus by reflecting off various concave reflectors at one end of the
shock tube. Depending on the initial Mach number of the incident shock wave and
minimum radius of curvature of the reflected front, the shock either focused down
upon itself and became crossed and folded, as in geometrical acoustics, or the shock
did not focus down to a point. In the latter case, a pair of shock-shocks formed
with a Mach stem-like section between the shock-shocks. They found the crossed
pattern was preferred for lower initial Mach numbers or for reflected shockfronts
with a smaller minimum radius of curvature.

To compare this experimentally determined behavior with that predicted by
geometrical shock dynamics, two families of initially curved shockfronts were prop-

agated numerically. The first family of initial shockfronts are given by

_ 1y
T=5 <y2+2)’ (2.4.9)

where R is the minimum radius of curvature. For R positive, the curve given

by (2.4.9) obtains a minimum of z = 0 on the axis of symmetry (y = 0) and
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asymptotes to a maximum of z = 1/R for y — Zoo. Successive shockfronts
calculated using the one-parameter family in (2.4.9) as initial conditions give a
general picture of the focusing process determined by geometrical shock dynamics.
These results also show good qualitative agreement with experiment. We refer
to all curves given by equation (2.4.9) as profile 1. The second family of initial
shockfront shapes labeled profile 2 is displayed in figure 2.16. The choice of profile 2
was motivated primarily to compare more closely with experimental data. (See
later.) However, the results for profile 2 may also be viewed in the more general
context as an example of a planar front with an inward bulge. The time evolution

of these fronts illustrates the stability process for a planar shock wave as given by

geometrical shock dynamics.

1.88 NN, T Y T v T T
§Parabolic
L reflector T
\ Circle with radius r
.75 4
\ = - .
| Ellipse with
¢.5e ! semimajor axis a and 1
\‘ semiminor axis b
t
()
8. 25 \‘ i
\
, a o>
! 1
p \
A
c
.00 — L N 1 V . 1 2 | N t .
.00 2. 25 .50 .75 1.00 1.25 1.50

FiGUuRrE 2.16. Profile 2 for b/a = 1.22 and . = 80° given by the solid curve.



~ 38 —

We first discuss the results obtained using profile 1. These calculations are
performed in the absence of wall boundaries with the free ends of the shockfront
initially at y = &4. This domain is large enough so that the free ends do not affect
the focusing process near the axis of symmetry. In the subsequent plots of the
shockfronts calculated using profile 1, we display only the portion of the shock-
fronts near the axis of symmetry, since the focusing process is of main interest.

In geometrical acoustics, folded wavefronts occur and Sturtevant & Kulkarny’s
experiments show that this can continue for weak shocks. Geometrical shock
dynamics, and the numerical version described here, show only the leading parts
of the fronts. In particular, the numerical point removal procedure eliminates the
overlap. This is done since the removed points would not describe the overlap
correctly and would interfere with the continuation of the subsequent numerical
steps. To show this and partially test whether this removal results in any error in
the calculation of the motion of the shock, we compare the results of the numerical
geometrical shock dynamics scheme for initial Mach number 1 (a sound wave) with
the exact results given by geometrical acoustics.

Figure 2.17 shows the results for the propagation of a sound wave using
geometrical acoustics and shock dynamics. The geometrical acoustics plot (fig-
ure 2.17a) was obtained directly by drawing the curves (including folds) at various
distances out along the normals to the initial curve. The shock dynamics plot
(figure 2.17b) was obtained by the numerical scheme using the weak shock A-M
relation with My = 1. It can be seen that these curves for the leading fronts are
identical. The folds and the caustic do not appear explicitly in the geometrical
shock dynamics plot. This gives verification that the elimination of the crossed
and folded portion of the shockfront does not result in significant error in the
remaining portion of the shockfront. The resulting discontinuity in the shockfront

corresponds to the regular reflection of the expansion waves propagated along
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Ficure 2.17. Shock wave focusing for profile 1 with R = 0.5.



— 40 -

the shock when these waves meet. We note that the theory of geometrical shock
dynamics does not allow for regular reflection explicitly and only permits Mach
reflection. However, in cases where the Mach stem is very small (e.g., figure 2.17b),
we treat these cases as regular reflection.

Successive shockfronts calculated using profile 1 with various values of R
and M, are shown in figures 2.18 and 2.19. It can be seen from these plots that
geometrical shock dynamics gives the same qualitative behavior as that observed
by Sturtevant & Kulkarny. Expansion waves form on the shockfront and these
move along the front and towards each other. For initial Mach numbers near 1,
these expansion waves interact to give regular reflection initially, with Mach re-
flection occurring and a Mach stem forming at larger times. This change from
regular to Mach reflection occurs when the angle between the interacting waves is
large enough so that regular reflection can no longer occur. For larger initial Mach
numbers, no regular reflection occurs and a Mach stem is formed from the start
of the interaction. Furthermore, as the minimum radius of curvature of the initial
shockfront increases, the transition point to total Mach reflection occurs at lower
Mach numbers. It is interesting to note that for Mach numbers as low as 1.3, the
behavior of the shock wave is qualitatively similar to that for strong shocks.

A more detailed comparison with the experimental data is obtained using
profile 2 (figure 2.16). In the experiments performed by Sturtevant & Kulkarny,
curved shockfronts were produced by reflecting plane shock waves by a curved
reflector. The reflected wave then propagated into the uniform flow entrained by
the incident shock. To compare more closely with these results, we require some
initial shockfront shape that approximates the actual curved front as it leaves

the reflector surface. The initial shockfront is then propagated numerically into a
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(b) Mo = 1.06

Ficure 2.18. Shock wave focusing for profile 1 with R = 0.5.
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(c) My, = 1.30

F1GURE 2.18. (cont.). Shock wave focusing for profile 1 with R = 0.5.

2. T T Y T

(a) R =0.25

FI1GURE 2.19. Shock wave focusing for profile 1 with My = 1.06.
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(b) R = 0.75

FIGURE 2.19. (cont.). Shock wave focusing for profile 1 with M, = 1.06.

uniform flow with Mach number M, given by

2 MZ-1
v+1 Mo

1=

(2.4.10)

The reflected shockfront shape as given by geometrical acoustics is a reasonable
first approximation to the actual reflected wave for weak incident shocks. For the
case of a parabolic reflector, profile 2 with 6/a = 1 is this approximate reflected
curve. We note, however, the actual reflected shock wave has a variable shock
strength. The diffracted waves from the corners of the reflector are weaker than
the incident shoék wave; thus, they travel more slowly than the incident shock.
Also, the outer portions of the incident shock wave reflect first and travel back into
the flow entrained by the incident shock. These effects combine to give a flatter

reflected shock wave than the reflected wave given by geometrical acoustics. The
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aspect ratio b/a of the ellipse in figure 2.16 is used to model the flattening of the
actual reflected shock wave.

The quantity b/a was found to have a large effect on the peak Mach number
near the focus. We plot the Mach number versus distance on the axis of symmetry
for different values of b/a in figure 2.20. For each curve the distance is normalized
with respect to the radius of the inner circle (b/a = 1) for §, = 80°. As expected,
the peak Mach number decreases as b/a increases. Sturtevant & Kulkarny meas-
ured a peak relative shock strength of o0 = 4.9 for My = 1.1 and 4. = 80°. The

relative shock strength is related to the Mach number by

z(M)
o= R 2.4.11
where z(M) is the pressure ratio p;/p; of the shock given by
— 2y 2
2(M) =1+ ——(M*-1). (2.4.12)

~v+1

We find that the initial curve for b/a = 1.25 gives the best agreement with exper-
iment.

We also studied the effect of a nonconstant initial Mach number distribution
on the peak Mach number. We experimented with different smooth Mach number
distributions. In each case, the initial Mach number on the axis of symmetry was
set equal to My and decayed off the axis to a Mach number greater than or equal
to 1. For weak shocks, our experiments showed a relatively small change in the
peak Mach number for a variety of initial distributions.

Some typicz;l views of the focusing shockfront patterns calculated using pro-
file 2 are shown in figure 2.21. We found the general shockfront pictures did not
depend significantly on the quantity 5/a or the initial Mach number distribution.

For simplicity, we take b/a = 1 and My = constant. Similar features seen in



— 45 —

2.50

2.00 |

8,09 8.5@ 1.88 1.58 2.09 2.58 3. 00 3.58
x/Rﬂc:SO"

Ficure 2.20. Mach number versus distance on the axis of symmetry for
profile 2 with 6. = 80°, My = 1.1 and M; = .16: x for b/a = 1.0, + for
b/a=1.10, s for b/a = 1.22 and o for b/a = 1.34.

figures 2.18 and 2.19 are observed in figure 2.21. For My = 1.1, a single shock-
shock forms near the focus before a transition to a pair of shock-shocks occurs
farther downstream. A slightly larger My shows a small Mach stem which forms
initially just before the focus (figure 2.21b). The stem decreases in size as it passes
the focus, then increases rapidly. An enlargement of the shockfronts near the fo-
cus is shown in figure 2.21c. This view clearly shows the narrowing Mach stem
for Mg = 1.3. Sturtevant & Kulkarny observed a similar narrowing Mach stem
phenomenon, although their narrowing occurred for a slightly lower M.

It is also interesting to show the focusing shockfronts for My > 1 (fig-
ure 2.21d). In this case, we consider the shockfront traveling into a gas at rest
(M = 0). This result is shown for completeness and is not meant to be compared

with the experimental data obtained for weak shocks. Here, a Mach stem forms
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Ficurg 2.21. Shock wave focusing for profile 2 with 6/a = 1 and 8, = 80°.
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initially and increases in size (without narrowing) as the shockfront propagates
downstream.

In all the cases shown in figure 2.21, the curved shockfront far downstream is
approaching a planar front. We see in these examples the stability mechanism for
a planar front as determined by geometrical shock dynamics.

A further study of the Mach number versus distance gives added insight into
the focusing process for profile 2. In figure 2.22, we see the effect of varying Mg

and 0. on these curves. For b/a = 1, the radius of inner circle is related to 6. by

1 (cosf, + 1
E_‘?i_j__) . (2.4.13)

R(6.) = 2 ( sin 8,

Linear theory (geometrical acoustics) gives a perfect point focus at a distance equal
to R(6.) on the axis of symmetry for profile 2. The focus position determined by
the peak Mach number always occurs after the focus for the nonlinear theory
(geometrical shock dynamics). We also observe the formation of a shoulder before
the peak in the family of curves for increasing Mg, in particular for My = 1.3
(figure 2.22a). This shoulder corresponds to the initial formation of a Mach stem.
For My = 1.3, the stem decreases in length as it passes the linear focus point
before it eventually increases in length. The peak in Mach number following the
shoulder is a result of the narrowing stem.

The shoulder formation is a useful feature of the Mach number versus distance
curves since it signals the transition from the basic single shock-shock pattern near
the focus to the Mach stem pattern. The three curves in figure 2.22b are chosen
to show this transition. The curve for 8, = 80° is a typical curve corresponding
to the single shock-shock pattern which we interpret as the actual shock wave
being crossed at the focus. The presence of a shoulder followed by a peak in Mach
number indicates that the focused pattern for §. = 70° is a transition case. For

0. = 60°, the peak has disappeared and only the shoulder remains. The Mach
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(b) My = 1.1: x for 6, = 80°, + for §. = 70° and = for 8, = 60°.

Ficure 2.22. Mach number versus distance on the axis of symmetry for
profile 2 with b/a = 1.
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stem forms initially and propagates downstream without narrowing in this last

case.
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CHAPTER 3

Shock Propagation in Non-uniform Media

3.1 Introduction

We now wish to consider shock wave propagation in non-uniform media. In
this case, the shock bends and distorts as it adjusts to the fluid non-uniformities
as well as being affected by the curvature of the shock and the presence of walls.
The latter two effects were the only ones present in the previous chapter for shock
propagation in a uniform medium. In this chapter, we will stress the effects of the
fluid non-uniformities on the propagating shock. The motion of the shockfront will
be determined using the approximate theory of the geometrical shock dynamics.
This theory is generalized to treat the case of shock propagation in non-uniform
media by including the differential A-M relation (2.2.10) derived in part (a) of
section 2.2.

A numerical scheme is developed to calculate the successive shockfronts. This
scheme is an extension of the basic numerical scheme described in section 2.3 for
the propagation of shocks in a uniform medium. The only added feature for non-
uniform media is the numerical treatment of the differential A-M relation. As
before, we approximate the shockfront by a discrete set of points. Each point
is propagated along its normal to the shockfront with a speed specified by the
generalized A-M relation. We determine the propagation speed for each point by
a simple numerical integration of the A-M relation along rays. We describe the

appropriate changes to the basic numerical scheme in section 3.2.
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The special case of shock wave refraction at a planar interface separating
two gases with different constant sound speeds was considered by Catherasoo
& Sturtevant [1983]. On either side of the interface, where the fluid properties
are uniform, they determine the shockfronts using the characteristic formulation
of the equations of geometrical shock dynamics and the jump conditions at a
shock-shock. At the contact discontinuity, Catherasoo & Sturtevant derive jump
conditions based on the generalized equations of geometrical shock dynamics for
non-uniform media. These conditions relate the Mach number and ray inclination
angle on either side of the interface given the jump in sound speed across the
interface. For the special case of shock refraction at a planar interface, the solutions
are self-similar and are composed of centered expansion fans and jumps in M
and 0 along the refracted shock. The ‘expansion fans’ here refer to expansions
in M and 6 along the shock and should not be confused with the usual expansion
fans discussed in gas dynamics. These similarity solutions may be constructed
using characteristics along with the jump conditions at shock-shocks and at the
interface. This is the method used by Catherasoo & Sturtevant. Catherasoo &
Sturtevant compare their results with experimental data obtained by Jahn [1956],
Abd-el-Fattah, Henderson & Lozzi [1976] and Abd-el-Fattah & Henderson {1978].
They find good agreement in all cases considered. We compare results obtained
using the general numerical method of section 3.2 with Catherasoo & Sturtevant’s
solutions in section 3.3.

The presence of precursor waves has been observed experimentally for planar
shock wave refraction at an inclined planar interface. For example, if the sound
speed across the interface is greater than the sound speed in front, the shock-
front bends forward as it crosses the interface. Depending on the incident shock
strength and interface inclination angle, the shock wave across the interface may

‘detach’ from the incident shock. A precursor wave is then generated to connect
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the shock across the interface to the incident shock. (See figures 3.6d-e.) Pho-
tographs and a discussion of these precursor waves may be found in Abd-el-Fattah
& Henderson [1978], for example. We find the same precursor-shock wave patterns
using geometrical shock dynamics, and these were not obtained from the theory
previously.

Other interesting results were found experimentally by Haas & Sturtevant
[1986] for shock wave refraction at cylindrical and spherical interfaces separat-
ing two different gases. Depending on the gas properties, the shock converged
or diverged in the cylindrical or spherical region. Shockfronts determined using
geometrical shock dynamics have not been found previously for this problem. We
find that the shockfronts calculated using our numerical scheme compare well with

the experimental results in both of these cases.

3.2 Numerical Scheme

In this section, we shall generalize the basic numerical scheme presented in
section 2.3 to account for possible non-uniformities in the fluid properties ahead
of the shockfront. The overall time marching procedure is basically unaltered
by this generalization. We describe the shockfront by a discrete set of points.
The normal direction to the shockfront is calculated at every point. We then
propagate the shockfront along its normal with local velocity U = aoM, where
the Mach number M is determined by numerically integrating the A-M relation
(2.2.10) along rays. The integration of (2.2.10) is the only added feature to the
numerical scheme. Recall that for a uniform medium, (2.2.1) gives M in terms
of My and A/A, independent of the ray path. The method of point removal and
insertion and the smoothing scheme described in section 2.3 are also used. A

helpful sketch of the basic numerical scheme is shown in figure 2.3.
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The derivation of the time marching scheme follows the prescription given in
section 2.3. Points x on the shockfront move along rays with velocity U = aoM.

Therefore,
0
b—tx(ﬁ,t) = ao(f,t) M(5,t)n(8,t), (3.2.1)

where n = (cos#,sin 6) is the normal to the shockfront and 3 refers to the partic-
ular ray.

Discretization of (3.2.1) in space yields a system of N ordinary differential
equations for the discete shockfront positions x;(t), 7 = 1,...,N. We then inte-

grate the system of O.D.E.’s in time using the two-step leap-frog scheme
xi{t + At) = x;(t — At) + 2At ap;(t) M;(t) n,(¢), t=1,...,N, (3.2.2)

where t = nAt for n = 0,...,T/At and aq;(t), M;(t) and n,(t) are the discrete
sound speed, Mach number and shockfront normal at x;(t), respectively.

The Mach number M;(t) in (3.2.2) is determined by numerically integrating
the A-M relation (2.2.10) along rays. The independent variable z in (2.2.10) gives
the position of the shock in the channel. It is convenient to replace this variable
with t, the time at which a point on the shock has traveled a distance z along its

ray. We then obtain M;(t) from the integral

t
MX OM 108A ¢ dag h Ipo o
—_—t -t ————F ——— 4+ k—dt =0 2.
/O{Mz—l 8t+A8t+ao at  po a::"L ot ' (3:2:3)
evaluated along the ray x = x,(t) for ¢+ = 1,...,N. For simplicity, we take

po, 7 = constant. Equation (3.2.3) then becomes

(Mi(t))
f(M;(0))

— log +log dt =0 fori=1,...,N, (3.2.4)

Ai(t) [P g(M()) Bao
~ +/O ao(t) ot

A;(0)
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where f(M) is given by (2.2.2) and g = g(M) is given by (2.2.11). We appproxi-
mate the remaining integral in (3.2.4) using the simple scheme

t kAt
g(M Bag )) dag
/0 ao(t) Z/ ao(t) Ot B

k-1)At
kAt

1 Jdag
~ kZ:lg(Mi((k - 1)At)> /(k e ao®) B0 —dt,
B n ‘ (J,Ql'(kAt)
- k:lg(M’((k - 1)80) log B
= log I;(t,0), (3.2.5)
fori=1,...,N. We then use (3.2.5) in (3.2.4) to find
M;(t) = f! <f(Mi(O)) I;(t,0) Zéf)))) fori=1,...,N. (3.2.6)

The approximate area A;(t) is given by (2.3.7) and (2.3.8) for two-dimensional
flow and by (2.3.9) for axisymmetric flow.

The integral in (3.2.4) may be approximated in a number of ways. The ap-
proximation given by (3.2.5) is convenient since the same numerical procedure
used to invert (2.3.6) may be used to invert (3.2.6). This is possible since M;(t)
does not appear in the definition of I;(¢,0). The approximation in (3.2.5) is that
we take g(M) = constant on each interval from (k—1)At to kA¢. Other more com-
plicated schemes may be used. However, since g(M) varies ‘slowly’ for M € [1, c0),
the approximate evaluation (3.2.5) gives sufficient accuracy provided the change
in ag; between time steps is not too large. This will be a consideration for prob-
lems involving a-sharp change in ag used to approximate a contact discontinuity.
(See later.)

Equation (3.2.6) holds under the assumption that pp, v = constant. If po
is not constant, another approximate integral similar to I;(¢,0) is simply added

o (3.2.6). However, if we generalize further and let ~ vary, then all but the
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second term in (3.2.3) must be treated approximately. We point out that this
generalization is not particularly difficult to handle. However, we will use (3.2.6)
for simplicity in the present work.

We refer to section 2.3 for the remaining details of the numerical scheme.
The shockfront normal n;(t) in (3.2.2) is calculated by differentiating cubic splines
fitted to the data (s;(t),z;(t)) and (s;(t),y;(t)), where s;(t) is given by (2.3.8)
and then n;(t) is given by (2.3.10). If wall boundaries are present, we require the
shockfront to be normal to the wall in the numerical scheme. In expansive regions
of the shockfront, points tend to spread out, and in compressive regions, the points
tend to cluster. We check the point spacing and insert or delete points according
to the scheme described in section 2.3. High frequency numerical fluctuations in
the shockfront position x,(t) accumulate in time. We use the smoothing scheme

(2.3.11) to control these numerical errors.

3.3 Shock Wave Refraction

The numerical scheme described in section 3.2 is used to calculate shock
waves propagating in non-uniform media. We first examine the case of shock
wave refraction at a planar interface separating two gases with different constant
sound speeds. This case was also considered by Catherasoo & Sturtevant [1983].
We compare results found using the present numerical scheme with the results of
Catherasoo & Sturtevant. Their solutions were constructed using characteristics as
discussed in section 3.1. We find good agreement between the two sets of results.
This gives independent confirmation of the accuracy of shockfronts calculated
using the numerical scheme of section 3.2. Furthermore, the case of shock wave
refraction at a planar interface is interesting in its own right and we compare the
results obtained using geometrical shock dynamics with the actual propagating

shock waves observed experimentally.
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In the second half of this section, we discuss the shockfronts calculated for
the case of shock wave refraction by cylinders and spheres. We know of no other
theoretical results for this problem. The shockfronts obtained numerically are
compared with experimental observations reported by Haas & Sturtevant [1986].
Many of the flow features observed experimentally are also seen in the shock

dynamics calculations. We find good agreement with these flow features.

(a) Shock Wave Refraction at a Planar Interface

The geometry of the first problem considered is shown in figure 3.1. The
interface I is composed of two planar parts. The lower part is vertical, and the
upper part is inclined at an angle ;. The incident planar shockfront S travels
towards the interface with constant Mach number M;. The sound speed in this
region is ag;. After contact with the interface, the shockfront S’ bends to adjust
to the different sound speed ago on the opposite side of the interface. The curved
central portion of S’ originates from the refraction at the interface corner. At a
sufficient distance away from the central portion, S’ remains planar traveling with
constant Mach number M; in the upper part and M in the lower part. The case
shown in figure 3.1 is for agz > ao;.

The portion of the interface behind the leading shockfront is deflected as a
result of the moving gas behind. This deflection is not shown in the plots. We
show only the position of interface at the point the shockfront meets it, since we
are interested primarily in the motion of the shockfront, not in the motion of the
gas behind. -

Solutions obtained by Catherasoo & Sturtevant assume a discontinuous jump
in sound speed at the interface. They obtain jump conditions that relate M and ¢
on either side of the interface in terms of interface inclination angle 6;. The jump

conditions involve a differential equation which determines M across the interface,
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Ficure 3.1. Interface geometry.

given the conditions in front and apy. The geometric constraint that the shockfront
remains continuous determines # across the interface. Shockfronts calculated using
our numerical scheme do not assume a discontinuous jump in sound speed. Instead,
we model the contact discontinuity by a continuous distribution of sound speed
with a sharp change from ag; to agy at the interface. The width of our interface is
such that a minimum of approximately 10 time steps are required for the shockfront
to traverse the interface. This minimum restriction is needed for an accurate
integration of the A-M relation (3.2.5). We note that the numerical integration
of the A-M relation for each point as it crosses the interface is equivalent to
a numerical integration used by Catherasoo & Sturtevant to obtain their jump
conditions.

In figure 3.2, we display the shockfronts calculated using the present numerical
scheme. The five different values of the interface inclination angle shown, é6; = 60°,
45°, 30°, 0° and —45°, are chosen to correspond to five of the many cases obtained

by Catherasoo & Sturtevant. For all five plots, My = 5.0 and ao2/ao; = 2.0. For
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67 = 60°, the incident planar shock wave meets the inclined interface and bends
sharply forward to adjust to the larger sound speed on the other side. The refracted
shockfront across the interface is composed of three regions of constant M and ¢
separated by two centered expansion fans in M and 6 along the shockfront. We
indicate the two expansion fans in figure 3.2a by the dotted lines. (These lines are
determined by the change in 8 along the shock and are not explicitly calculated in
the present numerical scheme.) The two expansion fans are of different type, one
belonging to C'. and the other to C_ in equation (2.2.14). Two expansion fans
are required in this case as waves travel in both directions on the shockfront away
from the interface corner. The sharp bend in the shockfront seen at the inclined
interface calculated using geomectrical shock dynamics is interpreted as regular
refraction of the actual shock wave. As é6; decreases, the C', expansion fan meets
the interface. A further decrease in é; results in the formation of a shock-shock
in front of the inclined interface. The locus of shock-shock positions is denoted
by the dashed lines in each figure. The presence of shock-shocks are seen for
67 = 45° and 30° ‘(ﬁgures 3.2b and 3.2¢). We interpret this shockfront pattern as
irregular refraction for the actual shock wave. Finally, figures 3.2d and 3.2e show
a second shock-shock above the interface for §; = 0° and —45°. This occurs after
the C_ expansion fan meets the interface.

We point out one important difference between the present calculations for
this problem and the calculations of Catherasoo & Sturtevant. The constant
Mach number M; in figure 3.1 is determined by the accumulation of I;(¢,0) (equa-
tion (3.2.5)) in the numerical scheme for the present calculations. This method
gives M, = 3.56 for M; = 5.0. Catherasoo & Sturtevant use the exact value of
M2 = 3.43 as given by one-dimensional gas dynamics. Using this added piece of
exact information imposes an additional constraint on the shockfront across the

interface not present in geometrical shock dynamics. The different treatment of
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Ficure 3.2. Shock wave refraction at a planar interface for M; = 5 and
ap?2 = 2.
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Ficure 3.2. (cont.). Shock wave refraction at a planar interface for M; = 5
and agy = 2.
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F1GURE 3.2. (cont.). Shock wave refraction at a planar interface for M; = 5
and agy = 2.

the shockfront across the boundary makes no difference in the qualitative picture
of the shockfronts and little difference in any quantitative data. The only differ-
ence occurs for 6y near the transition between regular and irregular refraction. In
this region, Catherasoo & Sturtevant were unable to obtain a solution over a small
range of 6;. We note that for more complicated shock propagation problems, this
extra information is not availible in general.

The position of the shock-shocks for a given interface inclination angle is
perhaps the most interesting feature for this problem. These shock-shock positions
are shown in figures 3.2b—e. We compare the angle between the shock-shock line
and the z-axis with the results of Catherasoo & Sturtevant in table 3.3. The shock-
shock angles x; and x, refer to the angles extracted from figures 3.2b—e, while X

and x% are the shock-shock angles given by Catherasoo & Sturtevant. The two
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sets of data show reasonable agreement. We do not obtain exact agreement as a

result of the different values of M5 used across the interface.

61 X1 X1 X2 X5
45° 48.7° | 48.0° — —
30° 30.9° | 38.9° — —
0° 20.9° | 28.8° 6.9° 6.1°
—45° | 25.0° | 25.3° | —12.9° | —14.1°

TaBLE 3.3. Comparison of shock-shock angles.

The transition from regular to irregular refraction arises naturally in the the-
ory of geometrical shock dynamics for non-uniform media. This transition is seen
in figures 3.2a and 3.2b as é; is decreased from 60° to 45°. The criterion for transi-
tion from regular to irregular refraction for this problem was given by Catherasoo
& Sturtevant. Let the angle between the C, characteristic in the region just be-
hind the inclined interface and the z-axis be denoted by 6. Regular refraction
occurs for é; > 6. In this case, disturbances on the shockfront originating from
the interface corner cannot propagate ahead of the C' | expansion fan to the in-
clined interface. Thus, we have regions of constant M and @ on each side of the
inclined interface separated by a sharp bend in the shockfront at the interface,
implying the existence of regular refraction. For é; = 6, the edge of the C; ex-
pansion fan meets the inclined interface. Irregular refraction occurs for 6; < 6.
as a shock-shock forms ahead of the inclined interface.

In figure 3.2, we display only the refracted shockfronts for agy > ag;. We
do not discuss the case of agy < ag; for this simple problem, since the shockfront
patterns for the two cases are similar and no new information is gained.

The geometry of the second problem we wish to study is shown in figure 3.4.

This problem is similar to the previous problem except for the addition of a single
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wall boundary. Thus, the effect of shock wave refraction by a planar interface on
the propagating shockfront is now coupled with the effect of shock wave diffrac-
tion by a wedge previously considered in part (a) of section 2.4. The planar shock
wave S travels along the wall with constant Mach number M;. The planar inter-
face I is inclined with an angle §;. The wedge angle is given by 6,,, and the Mach
number along the inclined wall is denoted by M,,. The sound speed on either side

of the interface is constant and given by a¢; and ag, as before.
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Ficure 3.4. Interface-wall geometry.

Three typical examples of the shockfronts calculated for the second problem
are given in figure 3.5. In all three cases, apz > ag;. For §; = 60° and 6, = 45°,
we see a sharp bend in the shockfront at the interface characteristic of regular
refraction at the interface. The shockfront just behind the interface is planar
with M = 3.7 and § = 18.0°. A shock-shock is present between the interface
and the wall inclined at an angle x = 56.6°. These values agree with the values
reported by Catherasoo & Sturtevant. It is also possible to compare these values
with the curve given in figure 2.6 for strong shock diffraction by a wedge. The

numerical results show that the refracted shockfront ‘sees’ a reduced wall angle



— 65 —

given by 45° — 18° = 27°. This reduced value then gives x = 57° from figure 2.6,
which agrees with the calculated x. The regular refraction seen in figure 3.5a
is a local structure on the shockfront. If 6, is decreased to 0° while holding é;
fixed (figure 3.5b), we still have M = 3.7 and 6 = 18° arcoss the interface. The
shockfront adjustment to the wall, however, is not the same. We now find an
expansion fan between the wall and the interface, instead of the shock-shock seen
in figure 3.5a. In figure 3.5¢, we observe irregular refraction similar to that which

is seen in figure 3.2¢, as 67 is decreased to 30° and 6,, is increased to 15°.

-a.58

(a) 6 =60° and 8, = 45°

Ficure 3.5. Shock wave refraction at a planar interface for M; = 5 and
apg = 2.
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(b) 6 = 60° and 8, = 0°
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(c) 6; = 30° and 0, = 15°

Ficure 3.5. (cont.). Shock wave refraction at a planar interface for M; =5
and agpy = 2.
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In all cases considered so far, we have examined the behavior of the shock-
fronts for fixed initial shock strength and varying interface-wall geometry. It is also
interesting to study the effect of decreasing the initial shock strength while hold-
ing the interface-wall geometry fixed. We display the effect of decreasing M; in
figure 3.6. The particular interface-wall geometry chosen is §; = 30° and 4, = 0°.
In figures 3.6a—c, a single shock-shock forms ahead of the interface. The shock-
front behind the interface is composed of a centered expansion fan just behind the
interface and planar shockfront at the wall. As M, is decreased, the expansion fan
grows until it meets the wall for M; = 1.75. The wall Mach number also decreases
from M,, = 2.8 for M; = 5.0 to M, ~ 1 for M; = 1.75. A further decrease in
the incident shock strength (figures 3.6d-e) results in the formation of a second
shock-shock and a precursor wave just in front of the interface. The precursor
wave connects the very weak shock (essentially a sonic circle) behind the interface
with the incident shock wave ahead through a series of two shock-shocks.

The precursor shockfront pattern (figures 3.6d-e) calculated using the present
numerical scheme was not found by Catherasoo & Sturtevant. They calculated
shockfronts using the interface-wall geometry of figure 3.6 for M; between 5.0
and 1.77 in agreement with our results. For M; < 1.77, they were unable to
construct a solution to the equations of geometrical shock dynamics. The method
of constructing solutions used by Catherasoo & Sturtevant requires some initial
‘quess’ for the desired solution. An iteration procedure is then applied until all the
equations (jump conditions and characteristic equations) are satisfied simultane-
ously. The present numerical scheme requires no prior knowledge of the solution.
This exemplifies one advantage of using the general numerical scheme presented
in section 3.2.

Overall, the refracted shockfronts found using geometrical shock dynamics

are in good agreement with experimental results. A detailed comparison with
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-0.50

(b) M, = 2.0

F1Gure 3.6. Shock wave refraction at a planar interface for 6; = 30°, 6,, = 0°

and Qoo = 2.
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-8.56

-8.5@

Fi1GURE 3.6. (cont.). Shock wave refraction at a planar interface for ; = 30°,
0, =0° and agy = 2.
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(e) M1 = 1.25

FiGURE 3.6. (cont.). Shock wave refraction at a planar interface for 6; = 30°,

#, = 0° and agy = 2.
the experimental data of Jahn [1956], Abd-el-Fattah, Henderson & Lozzi [1976]
and Abd-el-Fattah & Henderson [1978] may be found in Catherasoo & Sturtevant
[1983]. Generally, Catherasoo & Sturtevant show that geometrical shock dynamics
is able to predict the transition from regular to irregular refraction accurately
as well as giving accurate triple-point (shock-shock) positions. Abd-el-Fattah &
Henderson [1978] also report the same precursor-irregular refraction patterns as
those shown in figures 3.6d—e.

Before moving on to the next problem, we display a representative picture

of the refracted shockfronts for apy < ag; (figure 3.7). For the example shown,
0r = 30°, 8, = 0° and aoy/ao; = 0.5. The shockfront bends sharply backwards at

the interface as the shockfront enters the région of ‘slower’ gas. The adjustment to
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FicuRrE 3.7. Shock wave refraction at a planar interface for My = 5, ; = 30°,
#., = 0° and agy = 0.5.
the boundary condition at the wall is made through a shock-shock. This pattern

1s characteristic of all the cases considered for agy < ag;.

(b) Shock Wave Refraction by Cylinders and Spheres

In this subsection, we study the case of shock wave refraction at a gaseous
interface of cylindrical or spherical geometry. These problems contain at least one
length scale, namely, the radius of the cylinder or sphere, as opposed to the two
self-similar problems previously considered. This fact presents no added difficulty
for the numerical scheme of section 3.2. The method of constructing solutions
using characteristics, however, is much more difficult, since there exist regions
of nontrivial shock geometries and strengths. For this problem, we compare the
results found using the present numerical scheme with experimental observations

only. We know of no other theoretical solutions to this problem.
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Haas & Sturtevant [1986] experimentally investigated the problem of shock
wave refraction by cylinders and spheres. Cylindrical membranes or spherical
bubbles were filled with helium or freon-22 and suspended in a shock tube. Weak
planar shock waves (incident Mach number < 1.25) were propagated down the
shock tube. The shock wave refraction patterns and interface deflections were
observed. For the present work, we are mainly interested in the shockfront patterns
observed experimentally by Haas & Sturtevant. In the case of a helium-filled
cylinder or sphere, the incident shockfront bulged foward as it crosed the interface,
since the sound speed of helium (ap.) is greater than that of air (a,,,). Regular
refraction at the interface was observed during the first stages of the interaction.
Later, transition to irregular refraction was seen as a triple-point (shock-shock)
formed near the interface in the surrounding air. For the freon-filled cylinder or
sphere, the refracted shockfront lagged behind the incident front, since afreon <
aqir. Regular refraction was always present at the interface. Inside the cylinder
or sphere, strong internally diffracted shockfronts were observed. These waves
focused and crossed as they neared the back of the cylinder or sphere.

We first treat the case of shock wave refraction by a cylindrical interface. We

use the following distribution of sound speed for the present calculations:

1 if r— R > Ry,
ao(r) = {%[(l—f—aoz)+(1—a02)sin(%rI;IR)] if |r — R| < Ry; (3.3.1)
ag? lfT—RS —R[,

where r is the radial distance from the center of the cylinder, R is the radius of
the cylinder and R; measures the width of the cylindrical interface. The sound
speed inside the cylinder is agg, and the sound speed outside is normalized to
one. For the first set of results, we take R; = .01 to compare with experimental

observations where the cylindrical interface is thin. Later, we study shock wave

refraction for varying R;.
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In figure 3.8, we show our results for the helium-filled cylinder. For helium,
the normalized sound speed ag; in (3.3.1) is 2.9. The incident Mach number is 1.22,
which was also used experimentally. Near the cylindrical interface, the behavior of
the refracted shockfront is similar to those seen for the planar interface. Regular
refraction is observed when the shockfront first meets the interface, since the
interface inclination angle is large. As this angle decreases, transition to irregular
refraction is observed. These flow features were also found experimentally by
Haas & Sturtevant. The shockfront emerges from the cyfinder convex forward.

The helium-filled cylinder acts as a divergent lens for planar incident shock waves.

-1.00

-1.00 -9.50 2. 00 2.50 1.00

Ficure 3.8. Shock wave refraction at a cylindrical interface for ag; = 2.9
(helium-filled cylinder) with My = 1.22 and R; = .01.

We display the calculations for the freon-filled cylinder in figure 3.9. For freon-
22, agy = 0.53, and we use My = 1.22 as before. The freon-filled cylinder acts as

a convergent lens in gas dynamics. The central portion of the incident shockfront
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refracts at the cylindrical interface. The refracted shockfront is concave forward.
The edges of the refracted front are turned more rapidly than the central portion
by the faster traveling shockfront outside of the cylinder. As a result, two focusing
shockfront systems (similar to the focusing shockfronts of section 2.4, part (c)) are
seen inside the cylinder. If ag, is small enough, as is the case here, the shockfronts
on the interface cross before the refracted shockfront reaches the back of the cylin-
der. All of these features are observed experimentally by Haas & Sturtevant. In
particular, they note the strong internally diffracted waves predicted by geomet-
rical acoustics (the ‘dark’ shocks in figure 3.11b). These waves are also given by
geometrical shock dynamics. They are the rapidly turning edges of the refracted

shockfront seen in figure 3.9.

1. 00 T
.50 4
e.00 ]
-e.50 |
-1.00 N " 1 1 N S 1
-1. 20 -8.50 °.00 .50 1. 080
Ficure 3.9. Shock wave refraction at a cylindrical interface for agy = .53

(freon-filled cylinder) with My = 1.22 and Ry = .01.
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Shadowgraphs of the two cylinder cases considered are shown in figures 3.10
and 3.11. These pictures were obtained experimentally by Haas & Sturtevant
[1986]. The shadowgraphs show the shock system and interface deflection at a
particular instant in time, whereas our plots show the shockfronts at several in-
stances in time. The helium-filled cylinder is displayed in figure 3.10 and the
freon-filled cylinder is shown in figure 3.11. In general, we note the good agree-
ment with shockfronts calculated using geometrical shock dynamics. It is also
interesting to note the extremely complicated flow behind the shockfront.

A further study of the refraction process is obtained by varying the interface
thickness R; in equation (3.3.1). This study has not been performed experimen-
tally. In figure 3.12, we vary R; from R; = .1 to Ry = R = .5. The incident
Mach number is My = 1.22 and the sound speed inside the cylinder is apz = 0.53.
The case of a sharp jump in sound speed at the cylindrical interface (R; = .01)
is shown in figure 3.9. In all three pictures, we plot a circle of radius R for ref-
erence. For Ry = .01 (figure 3.9), we noted the strong internally diffracted waves
inside the cylinder. These waves crossed near the back of the cylinder. As R;
is increased, these waves are less pronounced, resulting in a weaker focus for the
refracted shockfront near the back of the cylinder. The three different values of R;
shown in figure 3.12 give the three different types of focusing. For E; = .1, the
refracted shockfronts cross near the back of the cylinder. The refracted shock-
fronts for Ry = .25 emerge from the cylinder uncrossed and later focus to form a
single shock-shock on the axis of symmetry. This focusing mechanism is similar
to that discussed in section 2.4, part (c). The weakest focusing is observed for
R; = R = .5 (figure 3.12c) as the refracted front forms a Mach stem behind the

cylinder.
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RS.

R.S.

Ficure 3.10. Shadowgraphs of shock wave refraction by a helium-filled cylin-
der, My = 1.22: (a) time = t,; (b) time = t;, > ¢,. Notation: L., interface;
D.1., deflected interface; I.S., incident shock; R.S., reflected shock; T.S., trans-
mitted shock; T.P., triple-point. (Haas & Sturtevant, 1986).



Ficure 3.11. Shadowgraphs of shock wave refraction by a freon-filled cylin-
der, Mo = 1.22: (a) time = t4; (b) time = t; > t,. Same notation as figure
3.10 adding 1.D., internally diffracted waves. (Haas & Sturtevant, 1986).
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(b) Ry = .25

Ficure 3.12. Shock wave refraction at a cylindrical interface for My = 1.22
and agy = .53.
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(C) R[ =.5

Ficure 3.12. (cont.). Shock wave refraction at a cylindrical interface for
M() = 1.22 and apo — .53.

For completeness, we show the shock wave refraction patterns given at spher-
ical interface. The variation in sound speed given by (3.3.1) for the cylinder case
is also used here. The diverging case (agy = 2.9) is displayed in figure 3.13a, and
the converging case {ag; = 0.53) is given in figure 3.13b. We take M, = 1.25 for
both plots. These cases were also considered experimentally by Haas & Sturte-
vant. The refraction process for the sphere is found to be very similar to that of

the cylinder (figures 3.8 and 3.9). Photographs of the refraction process for the

actual shock waves show this similarity as well.
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(a) ag2 = 2.9 (helium-filled sphere)
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(b) agz = .53 (freon-filled sphere)

Ficurg 3.13. Shock wave refraction at a spherical interface for My = 1.25
and R[ = .01.
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CHAPTER 4

Three-dimensional Shock Propagation

4.1 Introduction

In this chapter, we turn our attention to the general problem of shock wave
propagation in three space dimensions. As before, we use the approximate the-
ory of geometrical shock dynamics to determine the motion of the shock. The
ideas behind this approximate theory and the corresponding numerical scheme for
shock propagation in two dimensions have been discussed in detail in the previous
chapters. For three dimensions, the same ideas apply; only the numerical scheme
becomes more complicated. The two-dimensional numerical scheme may be viewed
as an approximate method for propagating small elements of the entire shock ac-
cording to the rules of geometrical shock dynamics. The same view is taken in
the development of the three-dimensional scheme, but now we approximate small
pieces of the shockfront surface by triangular surface elements. The local triangu-
lar element construction is particularly convenient in that we can handle a variety
of overall shockfront geometries. Also, the refinement on the shockfront surface
(i.e., merging or splitting triangular elements), needed especially as shock-shocks
develop, may be-handled using the triangular element construction.

We present the numerical scheme used to calculate successive shockfronts for
the general three-dimensional problem in section 4.2. The shockfront surface is
approximated by a discrete set of points, where each point belongs to an adaptive

mesh composed of triangular elements. The numerical scheme propagates each
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point along its surface normal with a speed given by the discrete version of the
A-M relation. A mesh refinement scheme is employed to maintain a relatively
even point spacing on the triangulated shock surface. This refinement scheme
automatically inserts points (splits triangles) in expansive regions of the shockfront
and deletes points (merges triangles) in compressive regions of the shockfront.
Shock-shocks are fitted in compressive regions of the shockfront by deleting points.
The shockfront surface is smoothed periodically in order to dampen high frequency
numerical fluctuations.

Two fundamental shock propagation problems are considered in section 4.3
primarily to demonstrate the use of the numerical scheme in three dimensions.
The first problem we examine is shock wave focusing. We perform a numerical
test of the accuracy of the numerical scheme presented in section 4.2 by first
considering an axisymmetric focusing problem. We compare the results obtained
using the new three-dimensional scheme with the assumed solution calculated
using the axisymmetric version of the two-dimensional numerical scheme. We then
move on to general three-dimensional focusing cases and discuss the results. The
second problem we study is shock wave propagation around a 90° bend in a pipe
with circular cross section. This problem is an extension of the two-dimensional
channel problems considered in section 2.4, part (b). The pipe problem requires the
numerical treatment of walls, which is an added feature of the numerical scheme
not tested in the previous focusing problem. We find interesting shock diffraction
effects in the pipe not seen in the two-dimensional channel.

As in two dimensions, the shockfronts may develop shock-shocks; i.e., discon-
tinuities in Mach number and normal direction. In three dimensions, the shock-
shock are curves on the shock surface. As before, they signal the formation of a

Mach stem and reflected shock for the actual shock.
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We assume that the gas ahead of the moving shock is uniform and at rest for
all the problems considered in this chapter. The extension to problems of non-
uniform media discussed in Chapter 3 could be included in the three-dimensional
numerical scheme. Clearly, the extension affects only the Mach number calculation
and is independent of the number of dimensions. In order to demonstrate the use
of the new numerical scheme for three-dimensional shock propagation problems,

we need consider only uniform media.

4.2 Numerical Scheme

We now discuss in detail the numerical scheme developed to calculate suc-
cessive shockfronts in three dimensions. Overall, the scheme is analogous to the
numerical scheme developed for shock wave propagation in two space dimensions
(section 2.3). The components of the three-dimensional scheme are new, however,
and we will need to describe each in detail.

An illustration of the numerical time marching procedure used to calculate
the shockfront surfaces is shown in figure 4.1. The shockfront at time ¢ is described
by a discrete set of points. Each point on the mesh is advanced along its surface
normal with a speed specified by the discrete version of the A-M relation. In order
to monitor the point spacing and calculate the Mach number and surface normal
at x,(t), it is convenient to introduce an adaptive mesh composed of triangular
elements. (See later.) Points are inserted or deleted on the shockfront surface in
order to maintain a relatively even point spacing. Also, as shock-shocks form in
compressive regions of the shockfront, points are deleted in order to fit the shock-
shocks into the front. A smoothing procedure is applied periodically to dampen
high frequency numerical errors in the shockfront position.

We approximate the shockfront surface by a discrete set of points x;(t),7 =

1,...,N. The assumption in the theory of geometrical shock dynamics that each
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FIGURE 4.1. Three-dimensional time marching scheme. Shock sur-
faces at ¢t and t + At and approximate rays (dashed lines).

point on the shockfront propagates along rays normal to the shockfront surface

gives immediately

d
C—izxi(t) = ap M;(t) n,(¢), 1=1,...,N, (4.2.1)
where M;(t) and n;(t) approximate the Mach number and unit surface normal

at x;(t), respectively. We choose to integrate the system of O.D.E.’s in (4.2.1)

numerically using the leap-frog scheme
xi(t + At) = x;(t — At) + 2At My(t)ni(t)  i=1,...,N, (4.2.2)

where t = nAt, n =0,...,T/At and we normalize ag to one. The time marching
scheme in (4.2.2) is the same scheme used to propagate the shockfronts in two

dimensions and the advantages for using (4.2.2), discussed in section 2.3, apply

here as well.
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It is convenient to introduce an adaptive mesh on the shockfront surface
composed of triangular elements. A sketch of the triangulated mesh in the vicinity
of the point x;(t) is provided in figure 4.2. The triangular mesh construction allows
for a relatively simple calculation of M;(t) and n,(t). These quantities are required
in the time marching scheme (4.2.2). The point x;(t) lies at the vertex of m;(t)
triangles. The number m,(t) is allowed to change in time as the mesh adapts
to the expanding or compressing surface of the shockfront. The necessary mesh
refinement, discussed in detail later, is also possible for this particular mesh. A
further advantage in using the triangulated mesh is its ability to handle general
initial shockfront shapes. This point is demonstrated in the shock propagation

problems considered in section 4.3.

FicuRre 4.2. Triangulated mesh on the shock surface.

The triangulated mesh is defined via two integer functions which locally con-
nect points with their bordering triangles and vice versa. Each point is numbered
from: =1,... ,N and each triangle is numbered from j = 1,...,J. Overall, we
have J ~ 2N. Let u(k,7), k = 1,...,m;(t) give the number of the k*® triangle
with one vertex at the point x;(t). Conversely, we let v(l,7), { = 1,2,3 give the

number of the three points at the vertices of the j*" triangle. Clearly, the two
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functions are not independent and only one is necessary to define the mesh. In
practice, however, we find it useful to work with both x and v. This gains speed
in the numerical scheme (fewer index searches are required) at the expense of
increased integer storage requirements.

The Mach number M;(t) in (4.2.2) is determined by solving the discrete ver-

sion of the A-M relation

= : forte=1,...,N. (4.2.3)

Equation (4.2.3) specifies M;(t) implicitly in terms of M;(0) and the area ratio
A;(t)/A;(0). In the limit of weak shocks or strong shocks, we find M;(t) explicity
using (2.2.3) and (2.2.4), respectively. For weak shocks

A;(0)
Ai(t)

1/2
Mi(t) = 1+ (M;(0) — 1) ( ) fori=1,...,N,  (4.2.4)

and for strong shocks

' 1/n
M;(t) = M;(0) (A"(O)) fori=1,...,N, (4.2.5)

where n = 5.0743 for air (v = 1.4). The approximate ray tube area A;(¢) is
determined by averaging the areas of the m;(t) triangles bordering the point x,(t).

We find
m; (t)

1
Spu(k,i)(t), (4.2.6)
1

77Zi(t)

A(t) =
k=
where the area of each triangle is given by

Si(t) = 2 [ (%@ () = %o (1) (1) X Koz () = X0, ()] (4.2.7)

B | =

The surface normal n;(t) at the point x;(t) may be found by calculating an
appropriately weighted average of the bordering triangle normals. The union of
the triangular surface elements about the point x;(t) approximately maps out a

narrow ray tube in time. We therefore wish to obtain an expression for the normal
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about the center of the ray tube. Let v,(¢) be the normal of the 7! triangle

weighted by its area. It then follows that

1
VJ'(t) = i(xu(m]‘)(t) _Xu(l,j)(t)) X <xu(3,j)(t) - Xu(l,j)(t))‘ (4'2'8)
By averaging the vectors v;(t) belonging to the triangles bordering x;(t), we may
calculate a second-order accurate normal about the center of the ray tube. We
find n,(t) using

m;(t)
n;(t) = SO where  u;(t) = ,; Ve (1) (4.2.9)

The initial conditions are given by prescribing the shockfront position x,(0)
and Mach number M;(0) at time ¢ = 0. The average point spacing Asgyg and time
step increment At are chosen following the general rules discussed in section 2.3.
However, we are now approximating a shock surface as opposed to a shock curve,
which implies N ~ 1/As§vg. This gives an increased number of points for a given
Asavg. In general, we take Asqyy < .025. In order to begin the two-step leap-frog
scheme, we must calculate the shockfront at ¢t = At. This is done by the use of a
one-step explicit scheme.

Appropriate boundary conditions must be imposed in the numerical scheme
for problems with wall boundaries. Geometrical shock dynamics assumes that rays
coincide with particle paths. This implies that the shock must be normal to the
wall surface. A portion of the triangulated shock surface near a wall boundary is
shown in figure 413' The leap-frog scheme is used to propagate the interior points.
The point at the boundary is determined such that the line segment between the
interpolated point @ and its associated wall point P is normal to the wall at P.

The point Q is given by a linear interpolation between the points x; (t) and x, ().



- 88 —

Shock
surface

- —— - —
LY ™
—
—
—

o
-

Ficure 4.3. Numerical boundary conditions at a wall surface. Line
segment PQ is normal to the wall surface at point P.
This numerical boundary condition is an extension of the boundary condition
imposed in the two-dimensional scheme.

A mesh refinement scheme is performed periodically. The scheme is composed
of three fundamental actions on triangle pairs. These actions are displayed in
figure 4.4. We describe briefly each action before we explain the tests performed
to decide which action, if any, is appropriate. If the distance between points x; (t)
and x;(t) becomes too small, the two points may be merged into one point x%(¢).

The new point is given by the linear interpolation

xi(t) = = (xi(t) + %, (t)). (4.2.10)

SR

This action (shown in figure 4.4a) is performed frequently in the vicinity of shock-
shocks. The second action shown in figure 4.4b adds a point x,(t) between the

neighboring four points. The point x,(t) is found by the bilinear interpolation

Xn(t) = i—(xi(t) + %5 (t) + xk(t) +x(t)). (4.2.11)
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The third action (shown in figure 4.4c) guards against a triangle becoming too

elongated. In this case, the point connections are exchanged.
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FIGURE 4.4. Mesh refinement. Three basic actions on triangle pairs: (a) merge
points x;(t) and x;(t); (b) add point x,(t); (c) exchange point connections.

The refinements displayed in figure 4.4 are performed only on interior triangles
in general. Similar actions are performed on triangle pairs as well as on individual
triangles near the boundary. Special care, however, must be taken for mesh refine-
ment near the boundary in order to preserve the special mesh construction at the
boundary (see figure 4.3). For example, if the distance between the points x;(t)
and x;(t) becomes too small, the two points may be merged into one point. This

action is shown in figure 4.5 where the points x;(t) and x,(t) are adjacent to the
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boundary. As a result of the merging, the boundary point x,(t) associated with

the points x;(t) and x;(t) is removed in order to preserve the prescribed mesh

construction near the boundary.

Xk Xk
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X

TrI T YT TrYTTTTy

FiGURE 4.5. An example of mesh refinement near the boundary.

It remains to be decided when to perform a specific action and in what order
to examine the triangle pairs. These are important aspects of the mesh refinement
scheme. Unfortunately, we know of no theory that answers these questions. Thus,
we rely on a combination of intuition and experience. For each triangle pair, we

calculate the following relative distances:

Aoy () = 0 =%, (0)

S v (4.2.12)
Aspm(t) = }X’“(ti; Xm(t)i, (4.2.13)
Asim(t) = XU =Xm (@) (4.2.14)

ANCI
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where X, (t) = 3(xi(t) + x;(t)). These distances are tested against a minimum

allowable distance d and a maximum allowable distance D. Usually, we take
d = 1/2 and D = 3/2. The following basic tests are performed on each triangle
pair :

As;; <d = merge points x,(t) and x;(t), (T1)
Asi; > D and Asgm >d and Asp, >d = add point x,(¢), (T2)
Asgm <d or Asp, <d = exchange point connections. (T3)

If none of these tests are violated, then no action is taken. One important re-
striction during the mesh refinement is that we impose a minimum and maximum

tolerance on the number of triangles bordering the point x,;(¢). That is, we require
Mmin < Mi(t) < Moy forall¢=1,...,N and ¢, (C1)

where we take mm;, = 4 and mpyq, = 14, usually. Condition (C1) is easily
satisfied provided the triangles remain fairly regular.

It is also important to specify the order in which actions on triangle pairs
are performed. The action on a triangle pair may affect whether or not an action
is taken on a neighboring pair. It is possible to examine each triangle pair, then
operate on the pairs according to some measure of ‘badness.” For simplicity, we
operate on each triangle pair immediately after it is tested, and the order in which
the pairs are tested is arbitrary.

It should be noted that the basic tests (T1), (T2) and (T3) are usually, but
not always, enough to insure an approximately uniform mesh. Further tests are
required, in general. For example, if points x;(t) and X;(t) are merged, then
all of the triangles bordering the new point x!(t) are changed. After merging,
it is possible that one or more of these triangles becomes degenerate or nearly

degenerate (i.e., the three points at its vertices become colinear). It is also possible
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that a triangle normal switches direction. These, and similar problems, are tested
for before an action may be performed.

Eventually, enough of the triangles on the shock surface become irregular to
the point that the numerical scheme breaks down. In all of the problems considered
in section 4.3, the important features of the problems are obtained before this event
occurs. This was the case for the two-dimensional scheme as well. However, in two
dimensions, it was possible to propagate the shock numerically for a longer time.
This fact is not surprising. A more complicated mesh refinement scheme could
be developed which would allow for longer calculations. Another possibility is to
retriangulate the shock surface occasionally. For the shock propagation problems
considered, these improvements are not necessary.

The final element of the numerical scheme is a smoothing procedure, which
is applied periodically to dampen high frequency numerical errors in the shock

position. We scan the interior points on the mesh and set

)

my (t
Xi(t) L Xi(t) + { 1 Z
k=1

m; (t)

(xk,i(t) — xi(t)) 'ni(t)} n;(t), (4.2.15)

where n;(t) is given by (4.2.9) and the points x ;(¢) are the m;(t) points imme-
diately connected to the point x;(t). We arrive at (4.2.15) by considering a local
coordinate system (&, 7, ¢) about the point x,(t), where ¢ is in the direction of n;(t)
and (&,7) lie in the plane whose normal is n;(t). The points x;(t) and x4 ,(t) are

given the heights ¢; and ¢x ; in the local system. The quantity

m,‘(t)

1
{mi(t) ;; (i (8) = xi(8)) ni(t)} (4.2.16)

in (4.2.15) is the average of heights ¢x ;. We replace the height ¢; by the averaged

height in order to calculate the smoothed point x;(¢). This procedure is similar to
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the one Jacobi iteration used to smooth the shock position in the two-dimensional

numerical scheme.

4.3 Some Examples

We demonstrate the use of the numerical scheme presented in section 4.2 by
considering two general shock wave propagation problems in three dimensions.
We first study a class of shock focusing problems similar to the two-dimensional
focusing problems considered in section 2.4, part (c). In the second half of this
section, we examine shock waves traveling around a bend in a circular pipe. This
problem is an extension of the two-dimensional channel problems considered in
section 2.4, part (b). Another motivation for studying these problems is to show

some three-dimensional shock propagation effects and we discuss these as well.

(a) Shock wave focusing in three dimensions
The first problem we wish to consider is shock wave focusing in three dimen-
sions. In each case, we calculate the focusing shockfronts using a general class of

initially curved shockfront surfaces as initial conditions. At ¢t = 0, we let

P T @ T WA (4.8.1)

where x = (z,y,2) and «a, § and ¢ are constants. The Mach number is taken to be
constant initially. For o negative, the surface given by (4.3.1) obtains a minimum
of z = o at the origin and asymptotes to a maximum of z = 0 as |z| + |y| — oo.
We also have the principal radii of curvature for the initial shock surface at the
origin given by

R = - 5

= — and R, = e (4.3.2)
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In the special case when a = 3, the surface given by (4.3.1) is axisymmetric

about the line z = y = 0. We then write (4.3.1) as

z = 50 /a) (4.3.3)

where r2

= z2+y2. In this case, we have the following two independent numerical
schemes availible to calculate the successive shockfronts: scheme 1, the axisym-
metric version of the numerical scheme presented in section 2.3 and scheme 2, the
three-dimensional numerical scheme developed in section 4.2. Scheme 1 assumes
axisymmetry and calculates a slice of the shockfront surfaces along a radial line.
Scheme 2 is more general and does not assume any symmetry; however, the numer-
ical scheme should produce an axisymmetric solution given axisymmetric initial
conditions and boundary conditions. We assume that scheme 1 gives accurate
results based on the numerical evidence accumulated over the numerous examples
considered in previous sections (in particular, section 2.4). We may then perform
two tests on the shockfronts calculated using scheme 2. By comparing slices of
the shockfront surfaces along various radial lines, we can check that the shock-
fronts calculated using scheme 2 are axisymmetric. A second test is performed by
comparing a slice of the shockfronts calculated using scheme 2 with the solution
obtained using scheme 1.

The successive shockfronts calculated using scheme 2 (the three-dimensional
numerical scheme) are shown in figure 4.6. The initial conditions for this axisym-
metric case are given by (4.3.3) with 0 = —.2 and @ = .2 for z and y on the
interval between —1/2 and +1/2. We assume that the initial shock is strong and
we use the approximate discrete A-M relation given by (4.2.5) in the numerical
scheme. There are no wall boundaries present in this calculation (or any other fo-
cusing problem in this section). The shockfront surfaces at the five time intervals

shown are plotted on a rectangular mesh. This is done so that existing surface
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plotting software may be used. The shock surfaces on the rectangular mesh are
obtained from the shock surfaces on the triangulated mesh using a linear inter-
polation scheme. We stress that the actual shockfronts are calculated using the

triangulated mesh described in section 4.2.

i
)
0
)
f
|
!
(
|
i

)

(
0/
)
(]
’ (
‘.'f
{
5
:
\

)
i
!
(J
@»
0
|
h
W
\
!.‘
o
!
|
)
\

\

:
j
)
\
!
\

i
i
b
1
bl
i
i
\
\

,':
r"
]
]
|

)
)
l,l

)
§
00
%
G\
)
)
%
!
\
\
\
\
\
\

h

%

T =.32

)
)
i
ﬂ%ﬁi
N
i
%%%
i
:.”"
N
(i
NN
W\
\
|

)

!

A S
R 2

)
)
)
v
i
)
T
il
e
Dl
l'i"“'
N
N
W
N
W
N,
)
\
\

)

T

U
y
8
0'1 /
"
I
f ..
\
| \\
'cl:\ \

\

3

i

o

:t/Mo:O

i
(o)
i
M)
O
0
%
X
..,
|
gl‘:,‘ ,
N
N
\

)
'f
/
j

)
|
j
)
/
%

%

i

/
]
/
?
y
%

%
%
)
i gl

ot

N

Ficure 4.6. Focusing shock surfaces for My > 1, 0 = —.2 and
a=0=.2.

The accuracy and symmetry of the shock surfaces calculated using scheme 2
(figure 4.6) is demonstrated in figure 4.7. Two radial slices of the shockfront
surfaces, one for £ > 0 and y = 0 and the other for z = 0 and y > 0, are compared
with the solution determined using scheme 1 (the axisymmetric numerical scheme).
All three sets of curves are plotted in figure 4.7, whereas only one set is visible. The
agreement between two radial slices of the shock surfaces illustrates the symmetry

of the shockfronts. The further agreement between the two radial slices and the
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solution provides numerical evidence that the three-dimensional scheme presented
in section 4.2 calculates accurate solutions to the equations of geometrical shock

dynamics.

9.09

-9.20 -0.19 . . 8. 20 8. 30

Ficure 4.7. Two radial slices for z > 0, y = 0 and z = 0, y > 0 from
scheme 2 and the solution given by scheme 1.

We found that the minimum radius of curvature of the initial shockfront and
the initial Mach number determined the different focusing mechanisms observed in
our previous study of shock wave focusing in two dimensions (section 2.4, part (c)).
For a smaller minimum radius curvature or a weaker initial shock, a single shock-
shock formed as the shockfront focused. The actual shock wave, in this case,
focused to form a crossed and folded front as in geometrical acoustics. We in-
terpreted the single shock-shock for geometrical shock dynamics as the crossing
point of the actual shock. For a larger minimum radius of curvature or stronger
initial shocks, two shock-shocks formed as the shock focused with a Mach stem-like

shock between the shock-shocks. The latter focusing process is seen in figures 4.6
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and 4.7 for the strong axisymmetric shock. These two focusing systems were stud-
ied experimentally for weak shocks by Sturtevant & Kulkarny [1976]. In part (c)
of section 2.4, we found that the shockfronts calculated using geometrical shock
dynamics showed good agreement with the experimental results.

In three dimensions, we have an additional basic parameter that affects the
focusing process. This additional parameter is the ratio of principal radii of curva-
ture R,/ R,, where we let R, denote the minimum radius of curvature of the initial
shock surface. For our particular shock surface given by (4.3.1), R,/R, = (a/8)*.
We have already considered the two limiting cases. As R;/R, — 0o, we recover
the two-dimensional case and for R, /R, = 1, we have the axisymmetric case. We
now wish to investigate the focusing process for R;/R, between the two limits.

We use the initial shock surface given by (4.3.1) with a # (8 to gain some
feeling for how the focusing process is affected by R;/R, between 1 and oco. Fig-
ure 4.8 shows a surface plot of the focusing shockfronts for 0 = —.25, « = .30 and
f = .15. This choice of constants gives R,/R, = 4. We also show slices of the
shockfront surfaces in the orthogonal planes £ = 0 and y = 0 in figure 4.9. For this
particular case, we assume that the initial shock is strong (Mp > 1). In the plane
x = 0 (figure 4.9a), we see that two shock-shocks form as the shockfronts focus.
The Mach stem between the shock-shocks grows and becomes convex forward as
the shockfront travels downstream. This focusing process is commonly observed
for strong shock focusing in two dimensions (see, for example, figure 2.21d in sec-
tion 2.4). In fact, the focusing appears to be two-dimensional in the plane z = 0,
where the initial shock curve attains the minimum radius of curvature. In the
orthogonal plane y = 0 (figure 4.9b), the shockfront bulges forward at an earlier
time than it would for two-dimensional focusing. This focusing process is easily

explained. As the initial shockfront propagates, the center portion of the surface
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compresses. Since the radius of curvature in the £ = 0 plane is smaller, the com-
pression is strongest in this plane. This produces focusing in the z = 0 plane

first. As a result of the focusing in the z = 0 plane, the compression on the shock

surface in the y = 0 plane is reduced, and thus the focusing in the y = 0 plane is

reduced.

T = .64
T = .48
- — -y, ‘.m T =.32
S e T Y, e
e S oeaepe
e T =.16
-, r=0
SR e’ L7 A S
SN 7=
N — T
Ay
A =
Ficure 4.8. Focusing shock surfaces for My > 1,0 = —.25, o = .3

and 8 = .15.
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Ficure 4.9. Planar slices from surfaces given in figure 4.8.
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We also studied the focusing of weak shocks in three dimensions. A typical
example from this study is shown in figure 4.10. Again, we plot slices of the
shockfront surfaces in the planes x = 0 and y = 0. For this case, My = 1.03
and we use the approximate A-M relation for weak shocks given by (4.2.4). In
the plane z = 0, a single shock-shock forms, indicating the actual shock wave has
formed a crossed and folded pattern. This is a typical focusing pattern observed
for weak shock focusing in two dimensions. As before, we do not see any focusing

in the y = 0 plane as a result of the focusing process in the £ = 0 plane.
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FiGure 4.10. Planar slices for weak shock focusing, M, = 1.03.
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(b) Shock wave propagation in a curved pipe

The second problem we wish to consider is shock wave propagation around
a 90° bend in a pipe with circular cross section. The geometry of the problem
is shown in figure 4.11. We denote the radius of the circular bend by R. The
radius of circular cross section of the pipe is r. For the particular pipe used in this
study, we have R/r = 3. The initial shock is planar and we take My > 1. Our
primary reason for studying this problem is to illustrate the numerical treatment
of the walls, which is an added feature of the numerical scheme not used in the
focusing problem. We are also motivated in studying this problem as an extension
of the two-dimensional channel problem discussed in section 2.4, part (b). The
diffraction of the shockfronts in the three-dimensional pipe is more complicated
and shows features not present in the channel problem. However, we find the
channel results useful in interpreting the results obtained for the three-dimensional
pipe. In particular, the analogous channel geometry is given by channel 1, where
R/r ~ 3.

Slices of the shockfront surfaces in three different parallel planes are dis-
played in figure 4.12. We see that the successive shockfronts in the plane z = 0
(figure 4.12a) are qualitatively similar to the shockfronts produced in channel 1
(figure 2.12, section 2.4). The shockfront expands around the inner wall. The
shockfront compresses and forms a shock-shock near the outer wall. When the
expansion from the inner wall meets the shock-shock near the outer wall, the
shock-shock is weakened and turned towards the inner wall. The shock-shock con-
tinues until it meets the inner wall at t/My = 7 = 3.2. (The initial Mach number
enters the problem only as a scaling of time for strong shocks.) We show slices of
the shockfronts away from the centerplane of the pipe in figures 4.12b and 4.12c.
These two plots give an indication of the extent of the shock-shock curve in the

z-direction. In the plane z = r/2, a clear shock-shock does not form until the
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Fi1GURE 4.11. Curved pipe geometry, E = 1.5 and r = .5

shockfront is nearly around the bend. The shock-shock in the plane z = 3r/4 is
not seen until the shockfront is in the straight portion of the pipe after the bend.

Further information on the diffracting shockfronts is gained via the sequence
of surface plots provided in figure 4.13. The shock surfaces for 7 = 1.2, 1.8, 2.4 and
3.0 are shown in figure 4.13a. Enlargements of these shock surfaces are shown in
figures 4.13b—c. Each plot shows one-half of the shock surface and the inside of the
pipe for £ < 0. We plot the shock surface using a polar mesh as opposed to using
the actual triangulated mesh for ease in plotting (as discussed before). The view
is looking down at the surfaces from a point located at Xy, =~ (25,0,10). The
curved boundarj;f of each shockfront surface is on the inside wall of the pipe and
the straight boundary is in the centerplane z = 0. In order to visualize these plots,
we found the shockfronts in the plane = = 0 (figure 4.12a) helpful as a reference.

The surface plots clearly show the diffraction of the shockfronts by the curved
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Ficure 4.12. (cont.). Shock wave diffraction in a curved pipe for My > 1.

pipe. We see the formation of a shock-shock curve at 7 = 1.2 (figure 4.13b). As
the shockfront propagates, the shock-shock curve appears to be diffracted as well
by the curved pipe wall. This diffraction occurs as the shock-shock moves along
the curved pipe wall on the shock surface. The shock-shock near the wall is weak
at first. By 7 = 3.0 (figure 4.13c), the shock-shock near the wall is much stronger
(i.e., the ‘kink’ in the shock surface is more severe). The strengthening of the
shock-shock curve by the wall is analogous to the strengthening of the shockfront
by a single concave wall in two dimensions discussed in section 2.4, part (a). The
motion of the shock-shock curve is an interesting feature of shock diffraction in
three dimensions, which is not observed in the two-dimensional channel problems.

We also calculate the Mach number at various postions along the wall. We

display these results in figure 4.14. The three plots of M,, /M, versus distance along
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FiGURE 4.13. Shock wave diffraction in a curved pipe for My > 1. View
position is Xy =~ (25,0, 10).
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: (b)

FiGURE 4.13. (cont.). Shock wave diffraction in a curved pipe for My > 1.
View position is Xyiew ~ (25,0, 10).
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(c)
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Ficure 4.13. (cont.). Shock wave diffraction in a curved pipe for My > 1.

View position is Xyiew = (25,0, 10).
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the wall in figures 4.14a~c correspond to the shockfront plots in figures 4.12a-c for
the planes £ = 0, £ = r/2 and z = 3r/4, respectively. In each wall Mach number
plot, there are two curves. The curve for which M,,/My > 1 is given by the Mach
numbers on the outer wall and the the other curve is given by the Mach numbers
on the inner wall. The Mach number along the outer wall increases initially before
decreasing eventually in each plot. On the centerplane, M,, increases to 1.45 M,
before decreasing. This is a slightly larger value than 1.40 My given for channel 1
(see figure 2.14 in section 2.4). For the planes £ = r/2 and z = 3r/4, M,, increases
to 1.35 Mo and 1.2 My, respectively. The Mach number on the inner wall decreases
initially, then increases sharply at the position where the shock-shock meets the
inner wall. The same qualitative results were obtained for the channel. For the
pipe, however, the Mach number on the inner wall decreases to nearly 0.4 My,
which is significantly lower than 0.6 M, found for channel 1. This lower value for
the pipe implies that the shock-shock reflection at the inner wall is more severe
than that observed for channel 1.

An important advantage of the triangulated mesh used for the three-dimen-
sional calculations is its ability to handle a variety of shock geometries. The
focusing problems are calculated in a rectangular domain. For the pipe problem,
we require a mesh on a circular domain. The triangulated mesh is easily used in
both of these cases. These two examples indicate the generality of the triangulated

mesh.
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FicuRre 4.14. M,,/M; versus distance along the pipe wall.
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FIGURE 4.14. (cont.). M, /M, versus distance along the pipe wall.
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CHAPTER 5

Reflection of a Planar Shock Wave

5.1 Introduction

In Chapter 2, we considered some preliminary results for the two-dimensional
focusing of shock waves as determined by geometrical shock dynamics. By com-
paring with the actual focusing shock waves found experimentally for weak shocks,
we established that geometrical shock dynamics gives a good qualitative descrip-
tion of the focusing process. On the other hand, a comparison of quantitative
measurements of the Mach number (and thus the pressure jump) of the focusing
shockfront on the axis of symmetry showed some discrepancy with the experi-
mental results of Sturtevant & Kulkarny [1976]. In our previous work on shock
focusing (section 2.4, part (c)), it was not clear whether the chief source of error
was the approximate theory (geometrcial shock dynamics) or the approximate ini-
tial conditions used in the calculations. If we can improve the initial conditions
required for the calculations, we can better assess the accuracy of the approximate
theory for the focusing of weak shocks.

In the experiments of Sturtevant & Kulkarny, curved shockfronts, which later
focus, are produced by reflecting planar incident shocks from some curved wall.
In order to calculate the subsequent motion of the reflected shock wave using geo-
metrical shock dynamics, we require some initial approximation for the shockfront
after it reflects from the curved wall. The accuracy of this initial approximation is

important since our numerical experiments show that quantitative measurements
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near the focus (for example, the Mach number on the axis of symmetry) are sensi-
tive to the initial shockfront used in the calculations. Thus, to gain a better feeling
for how well geometrical shock dynamics predicts the focusing of weak shocks, it
would be useful to develop a method of determining the reflected shockfront for a
given reflector geometry and incident shock strength.

The accuracy of geometrical shock dynamics for the motion of weak shock
waves is useful to document since there was some indication that the approxima-
tion is not at its best for M < 2. The focusing mechanisms for weak shocks are
particularly complicated and consequently a challenge for any simple approximate
theory. Accordingly, any deficiencies found in this application would not neces-
sarily be the case for stronger shocks. In fact, we find that geometrical shock
dynamics performs surprisingly well for weak shocks.

In this chapter, we describe how the initial reflection at the reflector surface
can be incorporated into the theory of geometrical shock dynamics to improve
the focusing calculations of section 2.4. It is necessary for the method developed
here to assume that the shock wave approaching the reflector is planar. Thus, the
motion of the gas behind the incident shock is known to travel with a constant ve-
locity given by the normal shock relations. The reflected shock wave is determined
using geometrical shock dynamics in a reference frame moving with the gas behind
the incident shock. This is a convenient frame of reference since the gas ahead of
the reflected shock is at rest. The boundary conditions for the reflected shockfront
at the reflector surface are given by the usual theory of regular reflection, which
specifies the Mach number and ray inclination angle of the reflected shock in terms
of the Mach number of the incident shock and the slope of the wall. These re-
flection conditions are embedded in the theory of geometrical shock dynamics by

considering a modified A-M relation similar to that discussed for shock-shocks in
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section 2.2. We supply the necessary results from regular reflection and discuss
the details of its application in section 5.2.

Only minor modifications in the basic numerical scheme of section 2.3 are
required to calculate the motion of the shockfront. These changes and additions
to the scheme are discussed is section 5.3. In general, we propagate the points
belonging to the incident shock and points belonging to the reflected shock inde-
pendently using the basic leap-frog time marching scheme. The discrete version
of the modified A-M relation is used to determine the speed of the shockfront.
As points on the incident shock meet the wall, the points are transferred to the
reflected shock using reflection conditions given by regular reflection.

It is interesting to compare the previous approximate reflected shockfront
used as initial conditions for shock wave focusing (section 2.4) with the reflected
shockfront calculated using the method of section 5.3. For weak incident shock
waves, the reflected shockfront shape given by geometrical acoustics is an obvious
first approximation to the actual reflected shockfront. This was the basic shape
used in section 2.4, part (c) to study the focusing of shock waves reflected by a
parabolic reflector. The reflected shock wave is known to have a variable shock
strength. However, a constant shock strength was used in the previous calculations
for simplicity. The reflected shockfront calculated using the improved method
of section 5.3 shows significant deviation in both the shockfront geometry and
strength from the approximations of section 2.4. We discuss these differences in
detail in section 5.4.

Finally, we calculate successive shockfronts for the case of a planar incident
shock wave reflected by a parabolic reflector and again compare with experimental
data. The improved method described in section 5.2 is found to give more accurate

qualitative and quantitative results.
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5.2 Combined Theory

We consider the problem of a planar incident shock reflected by a curved re-
flector. The conditions given by regular reflection at a planar wall may be used
locally at the curved reflector surface to determine boundary conditions for the
reflected shockfront. The motion of the shock away from the reflection point is
basically given by the approximate theory of geometrical shock dynamics as orig-
inally described by Whitham [1957] and presented in section 2.2. We refer to the
diagram in figure 5.1 for the components of the problem considered. The incident
shock Sy travels with constant Mach number M7 in the lab frame of reference.
The gas behind S; is uniform and moves with constant Mach number M, given

by the normal shock relation

2 M?-1

1= — 7

’7+1 M]

(5.2.1)

The incident shock is reflected by the curved reflector at the point P. The reflected
shock Sg propagates with a Mach number My back into the uniform gas entrained
by the incident shock. The position of the reflector surface is known and given by
the equation, z = z,,(y).

The shock system in the vicinity of the reflection point is shown in figure 5.2.
We approximate the curved reflector locally by the planar wall W with slope given

by dz,,/dy. The angle w; is then given by

dz,,
wy = tan~! (-x——) (5.2.2)

In figure 5.2a, the point P moves down the wall with Mach number Mjcotw;j.
The equivalent shock system for which P is at rest is shown in figure 5.2b. The
normal shock relations are applied across the incident and reflected shocks. The

kinematic condition that the normal component of the velocity (or Mach number)
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FiGuRre 5.1. Reflector geometry.

in region 3 must vanish provides a functional relationship between My, w; and wg

of the form

F(M],WI,WR) = 0. (5.2.3)

The function F in (5.2.3) is known and determines the reflection angle wg implic-
itly in terms of the incident Mach number and the wall slope. The solution wg to
(5.2.3) for various M and wy is well established (see Emmons [1958], for example).
For MI near one (a weak incident shock), a solution to (5.2.3) always exists for
the range of w; used in the calculations (roughly w; between 0° and 40°). The

condition that the incident and reflected shock remain attached at the point P

gives

Mg = M;—=, (5.2.4)
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FiGURE 5.2. Regular reflection: (a) lab frame; (b) point P is at rest.

where Mp is the Mach number of the reflected shock.

We now describe how the conditions at the reflector surface given by regular
reflection may be incorporated into the approximate theory of geometrical shock
dynamics. Let us consider a small portion of the shockfront moving towards the
the reflector surfa;ce in a reference frame moving with gas behind the incident shock
as shown in figure 5.3. The area of the incident shock is A; and it travels with

constant Mach number M; — M. The wall is moving towards the incident shock

with constant Mach number M. The ray tube area after reflection is given by Ap
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and the Mach number of the reflected shock is Mp. We assume that wp and Mg
are given in terms of w; and M by the regular reflection conditions (5.2.3) and

(5.2.4).

FiGure 5.3. Area adjustment given by regular reflection.

The A-M relation presented in section 2.2 is modified to account for the

reflection conditions at the reflector surface. The new relation is

A f(M)
A k(ﬂ)f(MO)’

where Mo = My — M; and f(M) is given by (2.2.2). The modified A-M relation

(5.2.5)

(5.2.5) varies along the shockfront through the function k(3), where k(8) = 1 for

the motion of S; and

(5.2.6)
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for the motion of Sg. The coordinate 3 refers to the particular ray. The area

ratio in (5.2.6) is found from the geometry in figure 5.3 and is given by

Ar (Mg — Mj coswrsecwpr)cotwp (5.2.7)
AI N M[COtu)[ ' o

The new A-M relation in (5.2.5) is the only modification to the theory of
geometrical shock dynamics needed to describe the motion of the shockfront. The
propagation of the shockfront prior to reflection is known trivially. The point of
reflection and the value of k() for all points on the shockfront may also be found
prior to reflection. These facts are simplifications that rely on the assumption
that the incident shock is planar and travels with constant Mach number. After
reflection, we use the new A-M relation along with the kinematic relations (2.2.12)

to propagate the shock.

5.3 Numerical Scheme

We calculate the successive shockfronts using a numerical scheme which is a
modification of the basic numerical scheme presented in section 2.3. Away from
the reflector surface, we numerically propagate the shock as before except that
the discrete version of the modified A-M relation (5.2.5) is used to determine the
local Mach number of the shockfront. Near the reflector, we apply the conditions
given by regular reflection numerically to determine the shock position. In this
section, we will describe only the new aspects of the numerical scheme; a detailed
description of the basic numerical scheme may be found in section 2.3.

We approximate the shockfront by a discrete set of points x,(t), s = 1,..., N,

where x = (z,y). Let J;(t) be the set of all points belonging to the incident

shock Sy(t) at time t. Similarily, we let Jg(t) be the set of all points belonging to
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the reflected shock Sg(t). Each point is propagated using the two-step leap-frog

time marching scheme
x;(t + At) = x;(t — At) + 2A¢ M;(t) n,(t), t=1,...,N, (5.3.1)

where t = nAt, n = 0,...,T/At. The shockfront normal n;(t) in (5.3.1) is
known trivially for all points in J;(t). For the points in Jg(t), we find n,(t) by
differentiating two cubic splines fitted to the data (sj(t),xj(t)) and (s]-(t),y]‘(t)),
J € Jr(t). We determine the Mach number in (5.3.1) by solving the discrete A-M

relation
Ay _, F(M(8)
A:(0) 7 F(Mo)

where k; is the exact value of k(8) for each point on the shockfront determined

fori=1,...,N, (5.3.2)

using (5.2.6). The approximate ray tube area A;(t) is given by (2.3.7).

As each point on S; meets the wall, a numerical procedure is needed to
transfer the points to Sp. The numerical procedure developed to perform this
transfer is shown in figure 5.4. In general, the point x; meets the wall at a time ¢
between time steps t and t + At as shown in figure 5.4a. The time ¢ is known
initially and is given by

z;(0) — Zy (yi(O))

£ = v . (5.3.3)

The angle between n; and the tangent to the wall is also known initially using

w; = tan 1 (f_ifg)
dy

The incident Mach number is constant along S;. The Mach number and ray incli-

(5.2.2). For x;, we have

(5.3.4)

y=y:(0)

nation angle after reflection may be found using the regular reflection conditions
(5.2.3) and (5.2.4). The point x}(t + At) is moved a distance (t + At — t;)Mpg

from the reflection point along its reflected ray as shown in figure 5.4b. This
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procedure transfers the point to Sg. A fictitious point x/(t) is positioned a dis-
tance (t; —t)Mg behind the wall, which provides the second point required by the

two-step leap-frog time marching scheme.

xi(t + At)

St + At)
S;(t + At)

FiGurE 5.4. Numerical reflection: (a) point x;(t + At) passes the reflector;
(b) point x}(t + At) is tranferred to Sg and a fictitious point x/(t) is added.

We note that for a planar wall, the numerical scheme calculates the planar
reflected shock predicted by regular reflection exactly. This fact is useful in testing

for errors in the computer code before moving on to the desired calculations for

curved walls.
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5.4 Shock Reflection from a Parabolic Reflector

We consider the specific problem of a planar shock wave reflected from a
parabolic reflector. The motion of the incident and reflected shocks are calculated
using the numerical scheme presented in section 5.3. We are primarily interested
in determining how well the focusing shockfronts calculated using the approximate
theory predict the actual shocks. This determination will be made by comparing
our results with experimental data obtained by Sturtevant & Kulkarny [1976] for
similar initial shock strengths and reflector geometries.

The particular reflector geometry used for all the calculations in this section
is given by

2 .
1 {y ’ for ‘yi < 1’ (5'4-1)

w(V) = 17 1, for ly| > 1,
where £ = R is the focus point predicted by geometrical acoustics. For R = .596,
the reflector geometry in (5.4.1) corresponds to reflector number 1 with flat end
baffles used by Sturtevant & Kulkarny. We display this reflector geometry in
each shockfront plot for reference. The slope of the reflector given by (5.4.1)
is discontinuous at y = £1. In order to calculate the reflection conditions in
the numerical scheme, we require a unique value of dz,,/dy at each point on the
reflector surface. This problem is resolved by inserting an small circular arc (with
a radius ~ .01) into the reflector surface at each corner.
In figure 5.5a, we illustrate the reflection process for an incident shock with
M; = 1.1. The incident shockfront is planar and is located at z = .5 initially.
As the incident shock moves to the left, it meets the reflector surface and reflects
according to the conditions given by regular reflection. The reflected shockfront
is curved and travels to the right. In the last time frame, the shock has completed

its interaction with the reflector and the subsequent motion of the reflected shock
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can be determined entirely by geometrical shock dynamics. The views shown in
figure 5.5a are typical of the reflection process for weak incident shocks.

A plot of the reflected shockfront as it just leaves the reflector surface is
provided in figure 5.5b (solid curve). This shockfront is the same front shown in the
last time frame in figure 5.5a. It is interesting to compare the reflected shockfront
with the initial shockfront given by profile 2 (see figure 2.16 in section 2.4). The
dashed curve in figure 5.5b is profile 2 with 6. = 80° and b/a = 1. Profile 2 (with
b/a = 1) is the reflected shockfront given by geometrical acoustics, which is a
good first approximation to the actual reflected shock for weak incident shocks.
In section 2.4, we argued that the actual reflected shockfront is flatter than the
front given by geometrical acoustics. This is primarily due to the fact that points
along the incident shock reflect off the reflector at different times and then travel
back into the moving gas behind the incident shock. The additional parameter b/a
for profile 2 was introduced to model the flattening of the actual reflected front.

Both shapes shown in figure 5.5b are approximations to the actual reflected
shock wave. The shockfront calculated using the numerical scheme of section 5.3
(solid curve) is the better approximation for the following reasons. Normal shock
reflection is produced by the top flat portion of the reflector and is given exactly
by the solid curve. The middle section of the solid curve is the reflected front from
the corner of the reflector. It has a larger radius of curvature than profile 2, which
is more realistic since it is expanding and thus it is traveling more slowly than its
neighboring sections. We see that both curves give a similar approximation for
the portion of the shockfront near the axis of symmetry.

The reflected shock has a variable shock strength. We plot the Mach number
of the reflected shock versus the distance in the y-direction away from the axis of
symmetry in figure 5.6. The Mach number is measured relative to the moving gas

behind the incident shock. The dashed line at M = 1.13 is the Mach number given
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Ficurge 5.5. Shock wave reflection from a parabolic reflector, My = 1.1

and R = .596: (a) Successive shockfronts; (b) Comparison with profile 2 for
b/a = 1 (dashed curve).

by normal reflection. In this plot, we can easily identify three principal sections of
the reflected front. The top section of the shockfront for which M = constant =
1.13 is given by normal reflection from the flat portion of the reflector. The
decreased Mach number along the reflected front for y roughly between 0.5 and 1.1
is a result of the reflection from the corner of the reflector. The section of the
shockfront where M > 1.13 is given by the reflection from the parabolic portion
of the reflector. At y = 0, dz,,/dy = 0, and we recover M = 1.13 as expected.
As y increases away from the axis of symmetry, dz,,/dy also increases. This effect
gives an increased reflected Mach number as predicted by regular reflection.

One of most interesting quantitative results obtained from the focusing cal-

culations is the Mach number of the shockfront on the axis of symmetry. This
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Ficure 5.6. Local Mach number along the shockfront versus distance in the
y-direction measured away from the axis of symmetry for My = 1.1. For
normal reflection, M = 1.13 (dashed line).
information yields the pressure jump across the shock and, in particular, the max-
imum pressure jump (or peak Mach number) at the focus. We find the relative

pressure jump ¢ using

o

Il

(M) —ae 2
>(Mz)’ where 2(M) =1+ o (M= —1) (5.4.2)

and Mg is the Mach number of the reflected shock for normal reflection. The
reflected Mach number is found using the normal shock relations and is given by
+1 +1y2 2] 1/2

= (12 s (2]

4 ap
2(v~1)
v+1

(5.4.3)

~ M+ (M[—l),

where a;/ag is the ratio of the sound speeds on either side of the incident shock.
The approximation in (5.4.3) is valid for weak incident shocks. The relative pres-

sure jump defined in (5.4.2) is the same as that used by Sturtevant & Kulkarny
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except for possibly a factor of a;/ao. Since a;/ag = 1 for weak shocks, this factor
is negligible.

In figure 5.7, we plot the Mach number ratio M/Mpg versus the distance
along the axis symmetry measured away from the reflector surface. This distance
is normalized by R, so that z/R = 1 gives the focus point for geometrical acoustics.
The curve for M; = 1.03 is typical for the single shock-shock focus. This type of
focus produces a large maximum pressure jump, which we measure to be ¢ = 5.6
for M; = 1.03. Sturtevant & Kulkarny report a maximum pressure jump of
o = 4.9 found experimentally for the same type of focus. However, their value of
o = 4.9 was obtained for an incident shock with Mach number equal to 1.1. Lower
maximum pressure jumps are observed both numerically and experimentally for
increased Mj;. For M; = 1.07, the peak given by the single shock-shock focus is
decreased to a value of ¢ = 3.3, and we see the beginning of a second peak for
z/R < 1. For M; = 1.1 and M; = 1.2, the peak for z/R < 1 is the only peak
present and is produced by the formation of a Mach stem near the focus. The
transition from the single shock-shock focus to the Mach stem focus can be easily
detected in this plot of Mach number versus distance along the axis of symmetry.

The motion of the shockfront after reflection is shown in figures 5.8a-d for
the four cases considered in the Mach number plot. These pictures are qualita-
tively similar to the ones displayed for our previous focusing study (section 2.4).
However, a closer study of the shockfronts calculated using the improved scheme
shows some important features not present in the previous results. The most no-
table difference is seen in the shockfront curvature in the vicinity of the focus. For
M = 1.1, we observe a flatter profile (larger radius of curvature) for the portion
of the shockfront near the axis of symmetry just before the focus. This is the case
for the other shockfront plots in figure 5.8 as well. Similar shockfront profiles in

the vicinity of the focus are seen experimentally. In the shadowgraphs provided
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Fiaure 5.7. M /Mg versus distance along the axis of symmetry for R = .596:
x for MO = 1.03, + for MQ = 1.07, o for Mo = 1.1 and = for Mo = 1.2.

by Sturtevant & Kulkarny, we note that this portion of the shockfront is bordered
by two expansion waves present just behind the shockfront. The expansion waves
are generated by the corners of the reflector and move towards one another as the
reflected shockfront approaches the focus. These expansion waves are not present
in the shock dynamics plots, although their presence is implied by the flattened

reflected shockfront near the focus.
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(b) Mo = 1.07

FicurEe 5.8. Shock wave focusing after reflection for R = .596.
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(d) Mo = 1.2

FIGURE 5.8. (cont.). Shock wave focusing after reflection for R = .596.
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