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Abstract

This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at

moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging

from 3 ≤ Re ≤ 1.6 × 103 and 0.4 ≤ St ≤ 195. The experiments use a specifically designed

Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid

to transporting a dense suspension of particles. Measurements of the shear stress are presented

for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density

ratio (ρp/ρ) between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on

the solid fraction for all density ratios tested. For ρp/ρ = 1 the effective viscosity increases with

Stokes number (St) for volume fractions (φ) lower than 40% and becomes constant for higher φ.

When the particles are denser than the liquid, the effective viscosity shows a stronger dependance

on St. An analysis of the particle resuspension for the case with ρp/ρ = 1.05 is presented and used

to predict the local volume fraction where the shear stress measurements take place. When the

local volume fraction is considered, the effective viscosity for settling and no settling particles is

consistent, indicating that the effective viscosity is independent of differences in density between the

solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using

the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers

above 4000, indicating the presence of hydrodynamic instabilities associated with the rotation of the

outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures

with φ ≤ 30% appears to be affected by such hydrodynamic instabilities. The effective viscosity for

the current experiments is considerably higher than the one reported in non-inertial suspensions.
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Experiment - where theory comes to die

-Sidney R. Nagel
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Chapter 1

Introduction

Granular materials and their suspension in liquids are prevalent in a wide range of natural and

man-made processes. These include the industrial handling of seeds and slurries, clogging of drilling

wells, and geological phenomena such as landslides and debris flows. Because of the complexity of

having more than one phase (the solid and the fluid one), most of the understanding of how these

materials flow is based on empirical observations, hampering, for example, the design of efficient

transport of a suspension of solids in a fluid medium. Therefore the goal of this research is to

help develop constitutive models that predict how liquid-solid mixtures behave when sheared as

a function of various physical parameters, using carefully controlled experiments to validate and

refine such models. The work presented in this thesis focuses on liquid-solid mixtures, and unlike

the mechanics of dry granular material flows which are dominated by collisions and friction, the

mechanics for these mixtures involve the interaction between the solid particles, the inertial effects

from both liquid and solid phase, and viscous effects of the liquid. In particular, the effects of particle

concentration and the density ratio between the two phases are studied under shear conditions where

particle collisions might become important. A review of previous rheological experiments and the

key parameters that govern the behavior of liquid-solid mixtures is presented.

1.1 Rheology of non-inertial suspensions

There is an extensive work done in the rheology of suspensions; however, most of these studies cover

mixtures with low Reynolds number (Re) (from 10−6 to 10−3), where Re is defined as Re = ργ̇d2/µ,

ρ and µ are the density and dynamic viscosity of the suspending liquid, γ̇ , is the shear rate and d

is the particle diameter. Rutgers (1962) and Barnes (1989) did a summary of earlier studies where

emphasis was made on the relationship between the particle concentration and the effective relative

viscosity (µ′). The latter is defined as the proportionally function between the shear stress (τ) and
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shear rate of the mixture assuming that the mixture is Newtonian,

τ = µ′γ̇

Rutgers (1962) examined the dependence of the relative viscosity on concentration for rigid spheres of

more or less monodisperse character. He observed that with good dispersion, no structure-formation,

no adsorption or solvation, and no electrical disturbance, the relation between the relative viscosity

and the volume fraction may be independent of sphere size, in the size range of 0.264µm to 177µm.

Three regimes were recognized: (i) a dilute regime for volume fractions (φ ) less than 0.02, where

the relative viscosity (µ′/µ) depends almost linearly on φ and the dilute suspension exhibits a

Newtonian behavior; (ii) a semi-dilute regime for φ ≤ 0.25, where µ′/µ exhibits a higher dependance

on the particle concentration but the suspension behavior is still approximately Newtonian; (iii) a

concentrated regime for φ ≥ 0.25, where µ′/µ increases rapidly with volume fraction and exhibits

a shear thinning behavior. These studies cover a range of vanishingly small Re numbers only

(1.2× 10−6 ≤ Re ≤ 2× 10−5).

Effective viscosity models

The first person to address theoretically the suspension behavior in the dilute limit was Einstein

(1906). Based on the hydrodynamics around a single sphere, Einstein derived the relative viscosity

of such dilute suspension:
µ′

µ
(φ) = 1 +Bφ

where B is often referred as Einstein coefficient or ’intrinsic viscosity’ and its value has not been

validated (Mueller et al., 2010). Numerous expressions have been proposed to extend the range of

validity of Einsteins expression to higher concentrations (Cheng and Law, 2003). They are either

theoretical expansions or empirical expressions. The theoretical expansions are usually expressed in

the form of power series:
µ′

µ
(φ) = 1 + k1φ+ k2φ

2 + k3φ
3 + ....

This relation does not hold for volume fractions higher than 0.25 and even for φ < 0.25, the poly-

nomial relationship describe experimental data poorly (Rutgers, 1962; Thomas, 1965; Barnes, 1989;

Mueller et al., 2010; Abedian and Kachanov, 2010). One reason for this is that the polynomial rela-

tion predicts a finite value of the relative viscosity for solid fractions close to one, which is physically

impossible given that the maximum volume fraction for spherical particles of the same diameter is

φm ≈ 0.74 (hexagonally close-packed arrangement). At this high solid fraction the relative viscosity

must be infinite. For particles that are randomly distributed, the densest packing (random close

packing) obtained is lower. Experimentally, the value of the random close packing ranges between
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0.627 and 0.64 (Scott, 1960; Haughey and Beveridge, 1966; Scott and Kilgour, 1969); numerically,

φm has been reported to be between 0.61 and 0.648 (Finney, 1970; Bennett, 1972; LeFevre, 1973;

Torquato et al., 2000; O’Hern et al., 2002). Physically, φm represents the limiting fraction above

which flow is no longer possible. However, higher packing is observed for particles that had been

sheared (Rutgers, 1962; Tsai and Gollub, 2004). This suggests that shearing imposes additional

structure to the particles distribution, and for high shear rates the particles are at volume fractions

higher than the φm found for zero and moderate shear rates (der Werff and de Kruif, 1989). The

model that best fits the experimental data for non-Brownian suspensions at higher solid fractions

includes φm as a parameter. Considering a suspension with uniformly distributed particles, Krieger

and Dougherty (1959) expanded Einstein’s equation to higher concentration. Their equation relates

the relative viscosity with φm as follows:

µ′

µ
(φ) =

(
1− φ

φm

)−Cφm

.

This equation tends to Einstein’s equation when φ tends to zero and it has been used widely to fit

experimental data (Jeffrey and Acrivos, 1976; Pabst, 2004; Pabst et al., 2006; Mueller et al., 2010),

where C and φm are used as fitting parameters. Different theoretical and empirical correlations for

the relative viscosity have been proposed with the same functional form as the Krieger-Dougherty

equation (Maron and Pierce, 1956; Jeffrey and Acrivos, 1976; Quemada, 1977; Leighton and Acrivos,

1987a,b) .

Zarraga et al. (1999) studied the total stress of concentrated non-Brownian suspensions of spheres

(43 µm glass beads) in Newtonian fluids. Using three different geometries (rotating rod, parallel

plate, and cone and plate measurements), they measured the relative viscosity and proposed an

empirical model in the form of Krieger-Dougherty equation:

µ′

µ
(φ) = exp(−2.34φ)(

1− φ
φm

)3 ,

where φm = 62% for the particles used in their experiments. Their empirical model is in good

agreement with other non-Brownian suspensions (Acrivos et al., 1993; Ovarlez et al., 2006; Bonnoit

et al., 2010) for a Reynolds number range of 1× 10−6 to 3× 10−2. Similarly, exponential formulas

for computing the relative viscosity of the form

µ′

µ
(φ) = exp

( Dφ

1− φ/φm

)
have been developed both theoretically and empirically, where D and φm are used as fitting param-

eters(Vand, 1948; Mooney, 1951; Cheng and Law, 2003).
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All of these formulations are done under the assumption that the effective viscosity of the sus-

pension is only a function of particle concentration. Other approaches on how to deal with the

shear viscosity on concentrated suspensions include energy dissipation in the space between parti-

cles (Frankel and Acrivos, 1967; Hoffmnn and Kevelam, 1999), and the re-organization of particles

in plane sheets that move one on top of another (Hoffmann, 1972).

Non-Newtonian behavior for concentrated non-inertial suspensions

Non-Newtonian behaviors had been observed in semi-dilute and concentrated suspensions at low

Reynolds number. The shear thickening behavior was well reviewed by Barnes (1989) and it was

found that there is a wide variety of suspensions that show a shear thickening behavior. Barnes’

observations suggest that given the right circumstances, all suspensions of solid particles will show

the phenomenon. Nevertheless, Barnes’ review only covered particle size smaller than 100µm, where

the Brownian motion is present (Stickel and Powell, 2005). Evidence of the presence of a yield stress

and shear-thinning behavior has also been extensively reported (Rutgers, 1962; Acrivos et al., 1994).

Acrivos et al. (1994) studied the quasi-static regime of a suspension of rigid, non-colloidal particles

immersed in a Newtonian fluid. They found a shear thinning behavior even for values of the solid

fraction as low as 0.20. They explained such observations by means of particle distributions, which

occurred due to a slight mismatch in the densities of the two phases.

Heymann et al. (2002) found the presence of a yield stress that was not single value for high

volume fractions. This suggested that at high concentrations there is an elasto-viscous region where

the particles form a network that deforms elastically at low shear rates and breaks up when the yield

stress is reached.

Another factor that can influence the behavior of the suspension is Brownian motion: irregu-

lar motion of particles suspending in a fluid due to their colliding, thermally excited atoms and

molecules. At room temperature and when particles are smaller than 100 µm, Brownian motion is

present. The presence of Brownian motion is dictated by the Péclet number (Pe), which relates the

rate of advection of a flow to its thermal diffusion and is defined as:

Pe = 6πµd3γ̇

kT
,

where k is the Boltzmann constant and T is the absolute temperature. Suspensions with Pe >

103 are considered non-Brownian (Stickel and Powell, 2005). The present work deals with liquid-

solid mixtures with Péclet numbers higher than 1010 where the effects from Brownian motion are

negligible.



5

1.2 Rheology of inertial suspensions

The studies described in Section 1.1 were done in the limit of zero Reynolds number. Most of the work

done on suspensions are often done in this limit (Brady and Bossis, 1988; Ladd, 1994; Zarraga et al.,

1999; Brady, 2001; Sierou and Brady, 2002; Brady et al., 2006). Non-inertial suspensions represent

one extreme of the studies of particulate flows. On the other extreme are studies of granular flows,

which, unlike non-inertial suspensions where the particle inertia is negligible and the mechanics of the

flow are dominated by hydrodynamic forces, the momentum transfer in granular flows is governed by

particle collisions, and the interstitial fluid interaction with the particles is generally assumed to be

negligible. Studies of granular flows have also been done extensively (Forterre and Pouliquen (2008)

presents a review on such studies). However, there are fewer studies between these two extremes

where both the inertia of one or both phases and the viscous effects of the fluid are important.

Stickel and Powell (2005) summarized the different types of non-Newtonian behavior observed in

suspensions in terms of the effects of Brownian motion and the effects of inertia. Stickel and Powell

(2005) considered that at steady state, the viscosity of a suspension is a function of 5 dimensionless

numbers:
µ′

µ
= f(φ, Pe,Re, St, Ar),

where St is the Stokes number defined as:

St = 1
9
ρp
ρf
Re,

and Ar is the Archimedes number which describes the ratio of gravitational forces to viscous forces

and it is defined as:

Ar = gd3ρ|ρp − ρ|
µ2 .

Based on dimensionless analysis, Stickel and Powell (2005) constructed a “phase diagram”, where

the suspension may be expected to behave as a Newtonian fluid for large ranges of Pe and vanish-

ingly small Re number, shear thickening for large Pe and Re, and shear thinning for both Pe and

Re vanishingly small, as depicted in Figure 1.1. For non-Brownian systems (Pe→ ∞) the Peclet

number can be neglected; therefore, the relative viscosity is a function of only the volume fraction,

Archimedes, Stokes and Reynolds number (µ′/µ = f(φ,Re, St, Ar)). For systems where the density

of the two phases match, and considering a steady-state, the density ratio can be neglected and con-

sequently so can the Stokes and Archimedes number. In the regime of Re � 10−3 and Pe � 103,

the dependance on the Reynolds and Peclet number can be neglected (Chang and Powell, 2002;

Probstein et al., 1994; Shapiro and Probstein, 1992). The limits for this regime are determined by

the Schmidt number, Sc = Pe
Re . As shown in Figure 1.1, the suspension is expected to be Newtonian
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Figure 1.1: Flow pattern for suspension rheology, based solely on a dimensional analysis. Diagram
from Stickel and Powell (2005).

for a certain range of shear rates and diminishing Schmidt number (Stickel and Powell, 2005). Under

these conditions the relative viscosity of the suspension depends solely on the volume fraction,

µ′

µf
= f(φ).

Therefore, at a constant particle concentration, the suspension is expected to exhibit a constant

relative viscosity and hence a Newtonian behavior. However, the effective viscosity of the suspen-

sion cannot be a function of the volume fraction alone. From the mixture theory viewpoint, the

effective properties of the suspension depends on all the details of the microstructure and the parti-

cle concentration is not the only microstructure measure. Parameters like particle size distribution,

temperature, porosity, etc. would determine the effective viscosity (Pabst, 2004). The extent of

inertial effects is dictated by the Reynolds number. Stickel and Powell (2005) suggests that the

shear thickening behavior observed in the review of Barnes (1989) and Hoffmann (1972) is due to

such effects and considers that for Re > 10−3, the inertial effects become important. The reason

why shear thickening is linked to inertial effects is because when inertial effects are present, the

interactions between particles increase and this changes the mechanism in which the momentum

is transferred. The change in momentum due to collisions and the frequency of those collisions is

proportional to the relative velocity of the particles, giving rise to stresses that depend on the square

of the shear rate. However, the regime where this occurs is still not well established because it is

difficult, as shown in the next section, to make direct comparisons between experiments.
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In the following section, a description of the previous studies concerning suspensions with non-

Brownian particles and Reynolds number higher than 1 × 10−3 is presented. The range of experi-

mental parameters for the current study and those earlier studies are summarized in table 1.1.

Previous experiments 1

As summarized by Koos et al. (2012), one of the earliest and most extensive experiments dealing

with flows with Reynolds number greater than one was performed by Bagnold (1954). He used a

small Couette flow rheometer with the inner cylinder fixed and the outer cylinder rotating. The

top and bottom end caps were also rotating. Using this device he measured the shear and normal

stresses for suspensions with a density ratio between the liquid and solid phase equal to one, over a

range of shear rates and particle concentrations. He identified two flow regimes: (i) macro-viscous,

where the suspension behaves like a Newtonian fluid and is considered non-collisional; and (ii) grain-

inertia, where the interstitial fluid plays a minor role and the main contributions to the stresses are

attributed to inter-particle friction and collisions.

The macro-viscous regime was found at low shear rates and the tangential stresses were linearly

proportional to the dynamic viscosity of the liquid, the shear rate, and a function of solid fraction:

τ ≈ µγ̇f1(φ).

The grain-inertia regime occurred at larger shear rates, similar to the results found for highly con-

centrated non-inertial suspensions, the stresses were independent of fluid viscosity and depended on

the square of the shear rate, the square of the particle diameter, the particle density, and displayed

a stronger dependence on the solid fraction:

τ ≈ ρp2d2γ̇2f2(φ).

Bagnold distinguished the two regimes by defining a parameter, N , from the ratio of the scaling of

the stresses,

N = ρpd
2γ̇2f1(φ)

(µγ̇f2(φ)) = ρpd
2γ̇g(φ)/µ,

where g(φ) is a function that increases with solid fraction. The parameter, N , has been referred

to as the Bagnold number, and according to Bagnold N ≈ 450 marked the transition from the

viscous regime to the inertial regime. Zeininger and Brennen (1985) found a similar transitional

Bagnold number for their hopper flows experiments. However, it is important to note that Bagnold’s

experiments involved neutrally buoyant particles so that the fluid and solid densities matched, ρf =
1Some of the material that is summarized in this section is taken from a paper by Koos, Linares-Guerrero, Hunt,

and Brennen (2012)
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ρp. In addition, Bagnold used only 1mm deformable wax beads. Hence, in these experiments only

the shear rate and the fluid viscosities were varied; the density and the particle size were fixed.

Savage and McKeown (1983) tried to replicate Bagnold’s experiments using a concentric cylinder

rheometer. Their experimental setup differed from the one used by Bagnold. The flow was sheared

by the rotation of the inner cylinder instead of the outer cylinder. Using a neutrally-buoyant liquid-

solid suspension, they varied the particle size from 1 to 2 mm diameter and the roughness of the

driving surfaces. They found higher shear stresses than Bagnold and although they found that shear

stress varied with the square of the shear rate, they did not find a dependence on the square of

the particle diameter. They concluded that the shear cells as well as the particles were sufficiently

different from those used by Bagnold that direct comparisons cannot be made, even though the

apparatus was just 3 cm higher and had a shear gap 6 millimeters wider than the one used by

Bagnold. As it is discussed later in Section 1.3, rotating the inner cylinder is known to destabilize

secondary flows (Mullin and Benjamin, 1980; Andereck et al., 1986; Conway et al., 2004). Hence,

the work of Savage and McKeon suggested that the flow was governed not only by the length scale

of the particles but also by the scale of the experimental apparatus.

One of the challenges that is encountered with inertial suspensions is that the experimental design

may influence the measurements of the stresses. For example, in a flow with rotation, the radial

inertia can induce a radial velocity within the flow (Taylor, 1936a,b). At low Reynolds number, the

viscosity can suppress this radial motion, but as the Reynolds number increases, secondary flows,

often referred to as Taylor vortices, may change the character of the flow field from a simple shear

flow; this change in flow character can affect the measurement of the stresses. Hunt et al. (2002)

made a detailed analysis of Bagnold’s work and demonstrated that his experimental results were

marred by the presence of secondary flows that developed at the boundaries of the rheometric device.

By accounting for the contribution of the vortices to the shear stress, Hunt et al. demonstrated

that Bagnold’s linear to quadratic transition could be explained by assuming a laminar Newtonian

flow with an effective viscosity that depended on the solid concentration. The presence of shear

thickening can often be attributed to the improper design of the experiment, that is, machine

artifacts mistaken for shear thickening. These phenomena could explain the results which otherwise

show no relationship to other data in the literature, and does not dismiss the shear thickening

behavior of concentrated suspensions.

Other experiments involving particles that are unaffected by Brownian motion have been done

later are the ones done by Hanes and Inman (1985). They used glass spheres and water as the

interstitial fluid in their rheological measurements (ρp/ρ = 2.48). They used an annular configuration

where the sides and bottom rotated. The top did not rotate and was allowed to displace upwards in

response to the normal stress generated by the mixture. They examined a narrow range of volume

fractions between 0.49 and 0.58. The experiments used glass beads of two sizes in both water and air.
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The particles used were denser than the surrounding fluid. The shearing surfaces were roughened by

cementing one to two grain layers of the particles. According to the authors, the rotational speeds

and applied normal stresses used in these experiments were selected to ensure that the centrifugal

stress was always much less than the normal stress. The secondary flows were small compared with

the primary flow and did not affect the stress measurements (Hanes and Inman, 1985). The shear

stress was measured on the top wall. Their flow curves show slopes between 1 and 2, suggesting that

the flow studied was in a transition regime. They observed the formation of a layer of static particles

above which the granular material deformed rapidly. The presence of this layer suggests that the

nature of the boundaries can have a significant effect upon the dynamics of the entire flow. In all of

their experiments, the stresses were found to be weakly dependent on the volume concentration up

to approximately 0.5, and strongly dependent above this concentration.

Similar to the work done by Acrivos et al. (1994), but with much larger particles (d = 3.175 mm

vs d = 0.14 mm used by Acrivos et al.), Prasad and Kytömaa (1995) studied the transition between

the quasi-static and the viscous regimes of dense particle suspension. They measured the effective

viscosity of acrylic particles in an aqueous glycerine mixture (ρp/ρf = 1.12). In this study, only high

solid fractions (0.493 ≤ φ ≤ 0.561) were considered. They used an annular gap where the bottom

was allowed to rotate and the top and sides remained fix. The stress measurements were made on

the top surface. The upper and bottom walls were rough with a roughness scale of the order of the

particle diameter. Their results show no evidence of secondary flows present (9.3 ≤ Reb ≤ 328).

Their device allowed them to conduct two kinds of experiments: constant normal stress and constant

volume fraction. The first kind revealed that the maximum packing fraction (φm), defined as that

solid fraction at which the mixture cannot be sheared, is not constant and increases with the normal

stress, reaching a maximum with the shear rate. This observation was also done by Rutgers (1962)

and later by Tsai and Gollub (2004). For the constant volume fraction experiments they found a

shear thinning behavior for volume fractions above 0.543, and a Newtonian behavior for the set of

runs below that value. Finally, they studied the influence of fluid viscosity by conducting experiments

with a fluid viscosity one order of magnitude lower than that used in the earliest experiments. They

did not find differences in their results, which is somewhat counterintuitive since the overall viscosity

of the suspension is almost a direct function of the continuous phase viscosity.

In the recent years, a number of studies have attempted to unify the rheology of suspensions with

the rheology of dry granular flows. However, such efforts have been limited to dense suspensions,

where the volume fraction is higher than 50 %. Therefore, the link found between the two rheologies

deals with the transition from friction dominated flow at low shear rates to viscous dominated at

higher shear rates, rather than the transition from viscous dominated to inertia dominated flows. A

summary of the studies regarding dense non-Brownian suspensions with moderate Reynolds number

is presented below.
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In a suspension with perfectly matched densities and volume fractions close to the random close

packing, a presence of yield stress is expected to occur provided that normal stress is applied (Coussot

and Ancey, 1999; Prasad and Kytömaa, 1995; Huang et al., 2005). However, the presence of yield

stress has been observed in volume fractions looser than the random close packing. Fall et al. (2009)

showed that the presence of yield stress in volume fractions lower than the random close packing

is due to a density mismatch between the fluid and the solid particles. By carefully matching the

two phase densities, rheological measurements on non-Brownian suspensions were performed using

40 µm in diameter polystyrene particles suspended in a NaI solution. They studied the effect of a

slight density difference (∆ρ = 0.15g/cm3) and found that when the particles are perfectly buoyant,

there is no presence of yield stress until volume fractions of 62%. Using magnetic resonance imaging

in a wide-gap Couette geometry, they observed no presence of shear banding in suspensions with

matched density, but for ∆ρ = 0.15g/cm3, the flow is not homogeneous at low shear rates. As the

shear rate increases the suspension becomes more homogeneous and the presence of shear bands

disappear. This study suggests that the reason for the presence of yield stresses observed in the

previous works at lower volume fractions is due to a slight density mismatch. Sedimentation or

creaming may lead to the formation of more concentrated zones in which the particles are packed

enough that a yield stress emerges. The presence of shear banding has also the same origin, where

the normal stresses generated by the flow at low shear rates can no longer balance the gravity force.

At higher shear rates, the shear induced resuspension of the particles prevent shear banding from

occurring, making the flow to be homogeneous. In the current work, the effect of density mismatch is

also studied where the presence of yield stress is observed, indicating that there is a slight difference

in density for the matched density experiments.

Dijksmann et al. (2010) studied the rheology of non-Brownian suspensions with settling particles

using a “split-bottom” geometry. Their experimental setup consisted on a square box with a rotating

disk at the bottom. The radius of the disk is 4.5 cm and the width of the box is 15 cm. The suspension

has a free surface the top and the height of the suspension is varied. They used acrylic particles

with a diameter of 4.6 mm in an aqueous mixture of Triton X-100 and ZnCl2. The density ratio

is ρp/ρ = 1.1. Based on the hypothesis that for vanishingly flow speeds, hydrodynamics effects are

expected to be negligible and the behavior of the suspensions becomes similar to the behavior of

dry granular materials. Dijksmann et al. (2010) derived a constitutive equation for their suspension

using the modified inertial number approach proposed by Cassar et al. (2005),

τ = AoP +A1
µγ̇

α
,

where P and α are pressure and porosity; and Ao and A1 are empirical friction functions. Their

constitutive model is reminiscent of the rheology of a Bingham fluid. Their results for suspensions
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sheared at low rotational speeds (driving rotating disk rates goes from 8.3× 10−5 ≤ γ̇ ≤ 8.2× 10−2

rps) compare favorably with the predicted flow field for slow dry flows, suggesting that the effect of

interstitial fluid is negligible and that the mechanism of the suspension flow is dictated by friction.

At higher shear rates, the flow behavior of the suspension is Newtonian and it compared favorably

with the predicted flow field determined by a finite element software package. The stresses become

rate dependent for driving rates of approximately 0.01 rps, and increase linearly with increasing

shear rates. The torques measured for the suspensions in the Newtonian regime were compared

with the torque for just the suspending liquid, and it was found that the effective viscosity of their

suspension is only three to five times higher than the viscosity of the suspending liquid. Such values

are far below what Krueger-Dougherty formula would predict. However, due to the non-confinement

of their flow, the effective volume fraction of their suspension is not fixed, which complicates the

analysis. The effect of interstitial fluid viscosity was also studied by using a different suspension with

2 mm glass beads and glycerol as the suspending liquid. The suspending liquid viscosity was varied

by more than a decade by increasing the temperature from 4 to 37 ◦C. Their results show that

once the measured torque is scaled with the change in viscosity, the data collapses into one single

curve, where the flow exhibits a Bingham fluid-like behavior for low shear rates and a Newtonian

behavior for higher shear rates. Decreasing the viscosity would also decrease the Reynolds number,

and considering the highest driving rates tested, the range of Reynolds number goes from 1.26 to 26

for this set of experiments.

Boyer et al. (2011) made an analysis similar to Dijksmann et al. (2010) where the modified

inertial number is used to unify the rheology of dense suspensions and dry granular flows. Using a

pressure-imposed shear cell, measurements of the shear and normal stress were performed. The top

boundary of their apparatus was free to displace in the vertical direction; thus the volume fraction

tested varied accordingly to the normal pressure applied. At an initial stage, the volume fraction was

chosen to be 56.5 % for most of their experiments. Two types of particles were used: (i) polymethyl

methacrylate (PMMA) (d=1.1±0.05 mm) in triton X-100/water/zinc solution, and (ii) polystyrene

(d=0.58 ±0.01 mm) in polyethylene glycol-ran-propylene glycol moonlitylether. The density ratio

for both set of experiments was equal to one and settling effects were neglected together with the

presence of particle migration. Using the modified inertial number (Iv) proposed by Cassar et al.

(2005),

Iv = η(Iv)γ̇
P p

,

where P p is the particle pressure, Boyer et al. (2011) proposed a constitutive model for the suspen-

sions where the shear stress is proportional to the particle pressure. The coefficient of proportionality

is given by the effective friction (η) that depends solely on the modified inertial number and can be

inferred by the ratio of shear and normal stresses (η = τ/P p). For the two particles tested, the co-
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efficient of friction for different particle pressures, liquid viscosity, and shear rates collapses into one

single curve when plotted against Iv. The volume fraction can be calculated from the displacement

of the top plate and it was found to be a decreasing function of Iv. Boyer et al. (2011) showed that

this apparent frictional behavior of dense suspensions can be reconciled with the classical view that

considers an effective viscosity if the suspensions is sheared at constant volume fraction, in which

case, the shear and normal stresses depend on the viscosity of the fluid and the shear rate,

τ = µs(φ)µγ̇ and P p = µn(φ)µγ̇,

where µs(φ) and µn(φ) are the dimensionless effective shear and normal viscosities. Equating the

proposed constitutive equation with the classical view leads to the following relation:

µs(φ) = η[Iv(φ)]
Iv(φ) and µn(φ) = 1

Iv(φ) ,

and therefore the rheology of the suspension is dictated by an effective viscosity that depends solely

on the volume fraction and the effective friction. Their experimental results agrees with the corre-

lation of Krieger and Dougherty for the limited range of volume fractions tested.

Trulsson et al. (2012) studied the transition from viscous to inertial regime in dense suspensions

via numerical simulations, where it was found that the transition from Newtonian to shear thickening

behavior is dictated by the ratio of the inertial number I defined as

I =
√
ργ̇2d2

P p
,

and the modified inertial number Iv used by Boyer et al. (2011). In their simulations the lubrication

interactions between the particles are considered and it was found that the transition from viscous

to inertial regime is unaffected by it. The shear stress was found to be a sum of viscous forces and

the forces due to particle interactions that depend quadratically with the shear rate, as proposed by

Bagnold (1954),

τ = f(φ)(µγ̇ + kρd2γ̇2)

where k is a constant of order 1 that encodes the details of dissipative mechanisms. While the work

of Boyer et al. (2011) focused on the quasi-static viscous regime, the simulations of Trulsson et al.

(2012) considered higher shear rates where the inertia becomes important. Trulsson et al. (2012)

explained that the reason why the data of Boyer et al. (2011) collapses with just the modified inertial

number is because they studied a regime with vanishingly shear rates.The quadratic dependance

on the shear rate found by the numerical simulations of Trulsson et al. (2012) is limited to high

volume fractions that are close to the jamming transition. In such case, the effective viscosity of the
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suspension diverges leading to vanishingly Reynolds numbers. Therefore, the transition from the

viscous to the inertial regime at high volume fractions is of a different nature that the transition

formulated by Bagnold (1954), where particle collisions control the regime.

Kulkarni and Morris (2008), Yeo and Maxey (2013), and Picano et al. (2013) studied the rheology

of inertial suspensions for a wider range of volume fractions by means of numerical simulations. In

these three studies the Reynolds number was larger than 10−3 and both the inertia of the particles

and the fluid are considered. The simulations considered a density ratio equal to one. The common

result between these simulations is the increase of effective relative viscosity with Reynolds number.

Figure 1.2 shows the results from these numerical works.
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Figure 1.2: Predicted effective relative viscosity for inertial suspensions from numerical studies.
Symbols denote the Reynolds numbers according to figure legend. Red symbols are from Kulkarni
and Morris (2008), blue symbols are from Yeo and Maxey (2013), and black symbols are from Picano
et al. (2013).

The previous work of Koos et al. (2012) showed a different result. In the range of Reynolds

number tested (20 to 800), the effective viscosity of the suspensions with neutrally buoyant particles

showed no dependance on the Reynolds number. The reason for this difference in results is still not

clear but it is believed that the transition from macro viscous to inertial regime is dictated by the

Stokes number and that for the range of Stokes numbers tested the particle interactions are damped

by viscous dissipation of the interstitial fluid. A detailed description of this study is presented in

Chapter 3.

The present work is a continuation of the work done by Koos et al. (2012). Koos performed
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rheological measurements of liquid solid mixtures with relatively large particles (ranging from 3.34

to 6.36 mm) with a density ratio of one. The range of Reynolds and Stokes numbers tested were

between 20 ≤ Re ≤ 800 and 3 ≤ St ≤ 90 respectively. The effective viscosity for all the mixtures

tested showed no dependance with the Reynolds and equivalently with Stokes numbers. A further

detail of the work of Koos is presented in Chapter 3.

Table 1.1 shows the regimes for this kind of suspensions and the flow behavior observed in previous

experiments. Based on the phase diagram proposed by Stickel and Powell (2005), all the mixtures

were expected to exhibit a shear thickening behavior. This suggests that this phase diagram needs

to be re-scaled. Based on Table 1.1, a suspension may be expected to exhibit a Newtonian behavior

for greater ranges of shear rates as particle size and fluid viscosity increase.

The diagram shown in Figure 1.3 summarizes the Reynolds and volume fractions regions studied

in the previous experimental studies along with the range covered in the current work.
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Figure 1.3: Diagram of previous and current experimental work done in inertial suspensions in terms
of Re. The properties of the previous experiments can be found in table 1.1
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Particle interactions

The Stokes number is a dimensionless number that gives a measure of the ratio of available mo-

mentum in the solid phase that sustains the particle motion through the liquid to the liquid viscous

forces (Yang and Hunt, 2006). In several studies (MacLaughlin, 1968; Davis et al., 1986; Joseph

et al., 2001; Joseph and Hunt, 2004; Yang and Hunt, 2006), the Stokes number has been used to

characterize the collision of particles immersed in a viscous fluid. The energy loss during the collision

is described by the effective coefficient of restitution (e). It has been found that with diminishing

Stokes number, a monotonic decrease in e is observed (Joseph et al., 2001; Joseph and Hunt, 2004;

Yang and Hunt, 2006). This dependence is the same for normal and oblique collisions between pairs

of identical and dissimilar spheres, as well as for sphere-wall collisions. For St>2000, the effect of

the fluid becomes negligible, resulting in a nearly unity restitution coefficient that approximates a

dry impact. However, with increasing liquid viscosity or decreasing particle inertia, the sphere can

no longer sustain its motion through the liquid and a critical particle Stokes number, St ≈ 10, exists

below which no rebound occurred. These findings suggest that for dense suspensions there will be a

critical Stokes number below which the collisions of the particles will be damped by the liquid, and

above it there will be a decrease of energy lost during the particle collisions.

The Stokes number tested in the current experiments vary from 2.5 to 195 and it is expected

that the particle collisions in these regime become important.

The diagram shown in Figure 1.4 summarizes the Stokes and volume fractions regions studied in

the previous and in the present experimental work.

Particle settling

When the particles are denser than the suspending liquid, the particles can settle depending on

the shearing conditions and the density ratio. The mechanical properties of liquid-solid flows can

be strongly affected in the presence of settling since the mixture is no longer homogeneous. When

sheared, the particles can re-suspend. The resuspension of particles at vanishingly Reynolds number

was first observed by Gadala-Maria and Acrivos (1980). This phenomena called viscous resuspension

has been modeled by balancing gravitational and shear induced particle migration by Leighton and

Acrivos (1986) and it was successfully employed by Acrivos et al. (1993). In the model of Leighton

and Acrivos (1986), the particle terminal velocity (vter) was given by Stokes flow:

vter = 2
9
a2g(ρp − ρ)

µ

where a is the particle radius and g is the gravitational acceleration.

The particles can be fluidized with increasing shear rate. King (2001) categorizes the liquid-solid
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flows based on variation of Archimedes number and Reynolds number, where the suspension would

be homogenous for low Ar and moderate Re, and become heterogeneous with increasing Ar. As the

ρp/ρ increases, the required Reynolds number to fluidize the particles also increases (Bi and Fan,

1992; King, 2001). The effective viscosity of the suspension depends strongly on the volume fraction

which can vary when the particles are denser than the liquid. To account for such variations, in the

present experiments visualizations of the flow are made allowing to infer the local volume fraction

and correlate it to the measured effective viscosity.

1.3 Secondary flows

In a rotating flow, instabilities due to the deviation from the azimuthal direction of the flow occur.

This deviation is primarily due to centripetal forces generated in a rotating fluid. Taylor (1936a)

observed that in a coaxial cylindrical Coquette flow, counter rotating laminar tori develop. When

the flow was driven by the rotation of the inner cylinder, the development of highly ordered patterns

formed after the inner cylinder rotation rate exceeded a critical value. When the flow was driven by

the rotation of the outer cylinder and the inner cylinder remained fixed, such transitions occurred

more gradually. Under this configuration, the formation of a recirculating flow at the top and bottom

boundaries occurred. Taylor (1936a,b) observed that under the rotation of the outer cylinder the

circulatory motion is stable to infinitesimal disturbances and also that there is an intermediate range

of Reynolds number in which the flow is in transition and stable. Instabilities of the flow occur at

much lower Reynolds numbers when the inner cylinder drives the flow due to centrifugal forces.

Conway et al. (2004) observed the formation of Taylor like vortices in a dry granular flow at slightly

lower Reynolds number, proving that such instabilities are also likely to occur in granular materials.

The presence of these flows increases the shear stress on the cylinder walls. Coles (1965) showed

that the measured torque under the presence of secondary flows can increase in a nonlinear manner.

Therefore, care should be taken to avoid the effect of the presence of these secondary flows when

acquiring rheological data. In the current work, the rheometer used was specifically designed to delay

the presence of such effects. However, how the presence of particles influence the strengthening

or weakening of these flows is difficult to estimate. Matas et al. (2003) summarized the effects

of the presence of particles in a horizontal pipe flow. The transition from laminar to turbulent

depends on the ratio between the particle and pipe diameter. When this ratio increases, the critical

Reynolds number decreases for volume fractions less than 10, and it increases as the volume fraction

increases and the ratio of particle and pipe diameter increases. Gore and Crowe (1991) observed

that turbulence was strengthened by small particles and attenuated by large ones.
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Effect of rough boundaries

To avoid slip at the wall (a condition where the solid phase of the mixture can roll and slide at

the wall or move away from it), the current experiments were performed using rough walls. The

presence of rough boundaries can impact the stability of the fluid. Cadot et al. (1997) performed

experiments on Couette-Taylor flow with smooth and rough walls. In these experiments the flow

was driven by either counter-rotating the cylinders or by the rotation of the inner one. The presence

of roughness at the wall did not change the transition but it did increase the measured torques after

the threshold was reached. Similar to what was found by Cadot et al. (1997), van den Berg et al.

(2003) and Lee et al. (2009) examined the differences in transition for walls with different roughness

and found that the critical Reynolds number is the same regardless of the presence or absence of

roughness.

All these studies considered the rotation of the inner cylinder, where the transition occurs

abruptly and the flow is more unstable. It is possible that under the rotation of the outer cylinder

the range of Reynolds number at which the flow is in transition but stable can be affected by the

presence of roughness.

1.4 Thesis outline

The primary objective of this thesis is to investigate the inertial effects in liquid-solid flows. The

current work is a continuation of the work done by Koos (2009), and emphasis has been focused on

extending the Stokes and equivalently the Reynolds number regime studied previously via experi-

ments. Rheological measurements using a concentric cylinder apparatus equipped with rough walls

were performed for particles with the same or higher density than the suspending liquid.

The description of the rheometer and the methods for measuring the rheological properties of the

liquid-solid flow is presented in Chapter 2. Measurements of the torque for pure fluid (no particles)

is also presented where the presence of hydrodynamics instabilities is discussed and analyzed. The

results from the previous experimental work done by Koos et al. (2012) is reported in Chapter 3. In

Chapter 4 the torque measurements for particulate flows with density ratio (ρp/ρ) equal to 1 and

1.05 are described. Chapter 5 presents the results for flows with ρp/ρ = 1.05 over a porous medium.

For the experiments with settling particles, a characterization of the particle resuspension is

performed and presented in Chapter 6. The measurements of the settling particles’ expansion are

used to predict the effective volume fraction for the experiments with ρp/ρ = 1.05. Chapter 7

presents a discussion and analysis of the obtained results. A comparison between the results with

different density ratio is presented and the effect of hydrodynamics instabilities is analyzed.

Chapter 8 summarizes the results obtained from this investigation. Topics for future work are
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discussed as well.
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Chapter 2

Experimental setup

The current experiments are designed to examine the effect of volume fraction and Stokes number

(and equivalently the Reynolds number) at shear rates sufficiently high enough so that particle

interactions are expected to become important. Neutrally buoyant and settling particles are used

(ρp/ρ from 1 to 1.4). In this chapter the rheometer and the method used for making the torque

measurements are described (Section 2.1). Subsequently, the particles and the interstitial liquids

that were employed to create the liquid-solid mixtures are reported in Section 2.2. Finally, the

modification of the experimental apparatus for making visualizations of the flow and its procedure

is specified in Section 2.6.

2.1 Rheometer

In Figure 2.1 a schematic of the concentric-cylinder rheometer is shown. The rheometer is designed

to measure the shear stress of liquid-solid mixtures that feature relatively large particles (the order

of mm size) and are sheared at considerably shear rates. One of the difficulties that arises with high

shear rates flows is the presence of secondary flows. As shown by the review of Hunt et al. (2002),

an improper design of an experiment can result in observations that do not reflect the behavior

of the particulate flow itself. For this reason, the rheometer is designed to delay the presence of

secondary flows (Taylor vortices). This is the same experimental apparatus used by Koos (2009).

It consists of a rotational outer cylinder and an inner cylinder that consists of three parts: the top

and bottom static cylinders (fixed guard cylinders), and the middle cylinder (test cylinder) which is

instrumented to make measurements of the torque. The concentric and rotating outer cylinders are

all made of stainless steel.

The liquid-solid mixture is sheared by the rotation of the outer drum and the torque measure-

ments take place at the test cylinder. This cylinder is supported by a central shaft, which, in turn,

has ball bearings mounted to allow the free deflection of this cylinder. A set of ball bearings is also

located between the rotating outer cylinder and the fixed guard cylinders to reduce friction. The
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Figure 2.1: Rheometer, Couette flow device. The liquid-solid mixture is sheared by the rotation
of the outer cylinder. The top and bottom cylinders are fixed. The inner middle cylinder (test
cylinder) is free to rotate slightly so as to measure the torques created by the flow.
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Property Smooth walls Rough walls
Annulus height (hT ) 36.98 cm 36.98 cm

Test cylinder 11.22 cm 11.22 cmheight
Fixed guards 12.7 cm 12.7 cmheight
Annulus inner 15.89 cm 16.22 cmradius (ri)
Annulus outer 19.05 cm 18.72 cmradius (ro)

Annulus gap (b) 3.16 cm 2.49 cm
Ratio of height 11.7 14.84to gap (hT /b)
Ratio of gap to 0.166 0.133outer radius (b/ro)

Maximum rotational 14.9 rad s−1 14.9 rad s−1
speed (ω)
Re critical 1.6× 104 1.1× 104

Table 2.1: Rheometer properties and dimensions

fixed guards and the central shaft are equipped with seals that prevent the fluid from entering the

bearings. The fixed guard cylinders are separated from the test cylinder by a knife edge gap (0.7

mm) to prevent the particles from exiting the annulus gap but allowing the test cylinder to rotate

freely. The height of the test cylinder, H, is 11.22 cm, the inner radius of the annulus, ri, is 15.89

cm, the outer radius of the annulus, ro, is 19.05 cm, and the width of the annulus between the

cylinders when the walls are smooth, b, is 3.16 cm. The outer cylinder is driven by a belt connected

to a motor; the maximum rotational speed is ω = 14.8 rad s−1. Hence, the maximum shear rate,

γ̇ = 2ωr2
o/(r2

o − r2
i ), is 123 s−1. The experiment dimensions and its range of speeds are listed in

Table 2.1. Mechanical drawings of the rheometer parts can be found in the thesis of Koos (2009).

To avoid slip at the wall, the inner and outer cylinder walls are roughened by coating them with

polystyrene particles. The particles are glued to thin waterproof vinyl sticker sheets (commonly used

as aquarium backgrounds), which covered both surfaces. The glued particles are oriented randomly

and have a surface area fraction of 0.70. The decrease in gap thickness due to the rough walls is

considered when calculating the shear rate and the change in dimensions is reported in table 2.1.

Shearing the mixture by rotating the outer cylinder is preferred over shearing it by rotating

the inner one because Taylor vortices develop at lower rotational speeds in the latter case due to

centripetal forces (Taylor, 1936a,b; Wendt, 1933). Besides delaying the presence of secondary flows

by rotating the outer cylinder, the rheological measurements are made away from the top and bottom

boundary where the secondary flows develop. The contribution to the measured torque by end effects

is attenuated by increasing the ratio of height and shearing gap width, (H/b = 11.7). Further delay
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is achieved through the increase in the ratio of gap width to outer radius (b/ro). By using a modified

gap Reynolds number (Re∗b = ρroωb/µ, where ω is the angular velocity of the outer cylinder), it is

possible to determine the critical Re∗b at which these secondary flows occur (Taylor, 1936a,b). Using

the data of Taylor, a critical modified gap Reynolds number of 1.6× 104 is found for this apparatus

when the walls are smooth and 1.1×104 when the reduction in gap width due to added roughness is

considered. The modified gap Reynolds number range for a pure fluid (no particles) in the current

experiments is 1.0× 103 ≤ Re∗b ≤ 7.2× 104, and thus some of the experiments are above the critical

Reynolds number; however, the presence of solid particles increases the effective viscosity of the flow

and hence decreases the Reynolds number.

2.2 Torque measurements

Unlike Bagnold (1954), in which the torque was not measured directly, the torque measurements in

this work are directly taken in the test section located in the middle of the inner cylinder (see Figure

2.1) without removing any possible contribution to friction or fluid. The test cylinder is allowed to

deflect rotationally due to the torque applied by the flow. The rotation of the test cylinder is opposed

by a linear spring that is connected to a static reference. The spring connects to the test cylinder

through a torque arm. The torque is measured by measuring the elongation of the spring. Different

springs with different stiffness are used depending on the torque applied by the flow. To overcome

the spring initial tension every spring is preloaded. A pulley is used to direct the preload and

reduce friction. An optical probe and a fotonic sensor (MTI 0623H and MTI KD-300, respectively)

is mounted on a static reference to measure the spring displacement. The arm that connects the

test cylinder to the spring is equipped with a mirror that is used as the moving target for the optic

probe. A sketch of the torque measurement setup is shown in Figure 2.2. The calibrations of the

optical probe and the springs are discussed in Subsection 2.2 and 2.2, respectively, followed by the

methodology for measuring the rheometer angular speed.

Optical probe calibration

The optical probe contains a set of light transmitting and light receiving fibers that are aligned

in a hemispherical configuration. Light is fed to the transmit fibers, where it exits the probe tip

and hits the target. Light that is reflected from the target is captured by the receive fibers and

transmitted to the fotonic sensor that converts the light intensity to voltage. The output voltage

is proportional to the distance between the probe tip and the target being monitored. Figure 2.3

shows a diagram of the fotonic sensor output as a function of target displacement. When the target

is in contact with the optic probe, no light is received by the fibers, giving an output signal of zero.

The voltage increases with increasing distance reaching a maximum. Past the optical peak, there is
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Figure 2.2: Torque measurement system. The outer rotating cylinder is left out of the drawing
for clarity. (a) Front view of inner cylinder. The mirror attached to the torque arm is the target
monitored by the optical probe. (b) Side view of the inner cylinder. The optical probe and the
spring are attached to a stationary frame. The spring is connected to the test cylinder through the
torque arm. The signal from the fotonic sensor is read out and stored in the computer.
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a sensitive linear output response (Range 2). The optical probe is positioned far enough from the

moving target to make sure that the sensor output is in this range. The optical probe sensitivity

post the optical peak is 30 µm/mV . The optical probe is calibrated using a dial gage. A typical

calibration curve is shown in Figure 2.4. The curve that best fits the data is a rational polynomial

and its coefficients depend on the initial target position. The optical probe is calibrated prior to

every set of experiments and when a spring is changed. This calibration is repeated at least 10 times

and the final calibration curve is the average of these calibration curves. The fotonic sensor records

the optical probe signal for 10 seconds with a frequency sample of 10,000 Hz. The sensor output is

then averaged and coverted it to displacement using the calibration curve.

Target displacement

V
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u
t
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A Linear output

Figure 2.3: Diagram of an MTI KD-300 fotonic sensor output as a function of target displacement.

Springs calibration

The springs used to measure the torque were manufactured by Century springs. The calibration

of the spring is carried out by loading the spring with known masses. The masses are weighted

prior to each calibration using a scale with a resolution of 0.05 grams. The masses are attached to

the torque arm through a fishing line that runs through a pulley (see Figure 2.2). The torque arm

is connected to the spring and hence the spring can be loaded and its displacement measured for

different masses. Springs with different stiffness are used to allow a range of torques (M) between

1.3 × 10−3 ≤ M ≤ 2.7 Nm to be measured. The calibration curves for all of the springs used

are shown in Figure 2.5. The spring calibration is performed while the rheometer is filled with
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Figure 2.4: An example of a fotonic sensor calibration curve. All the calibration curves are best
fitted by a rational polynomial. The order of the polynomial numerator and denominator is 3 and
4, respectively.

water and running at different speeds. Each point represents the mean of at least 15 individually

recorded measurements; the error bars represent the standard deviation in these measurements. The

R-squared average for all the linear fits is 0.999. The lowest R-squared corresponds to the spring

with the highest slopes (and equivalently with the highest sensitivity). An initial torque is required

to start the displacement of the spring; this torque is given by the x-intercept of the calibration

curve. All the experiments are preloaded with the corresponding spring initial torque to guarantee

maximum sensitivity. The calibration curve for the spring with the highest resolution and sensitivity

is shown in Figure 2.6. The initial torque has been subtracted to show the maximum resolution of

this spring. A maximum deviation from the linear fit of 17% occurs at the lowest torques applied.The

R-squared value of this fit is 0.9988.

During the torque measurements, the displacement of the spring is also recorded with a digital

camera to account for any possible mis-calibration of the optical probe. The photos taken of the

spring are used to measure its displacement and double check the sensor output.

Angular speed measurements

The rotation of the outer cylinder is measured using a magnetic sensor and a laser tachometer.

The two devices are used to account for uncertainties in the speed measurements. For the lowest
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rotational speeds, a chronometer is also used to account for the reduction of accuracy of the laser

tachometer. The magnetic sensor does not work for rotational speeds below 2.87 rad s−1. To

increase the accuracy of the laser tachometer at low speeds, 8 reflective marks were evenly spaced

and placed on the outer cylinder. Due to the high reflectiveness of stainless steel, the laser is pointed

to a black stripe painted on the outer cylinder where the reflective marks are located. Figure 2.7

shows a sketch of the rotational speed measurement system. In the previous work of Koos (2009),

 Magnetic 
sensor 

 Magnet 

 Laser 
tachometer 

 
Reflective 

target 

 Rotating 
outer 

cylinder 

Figure 2.7: Sketch of the rotational speed measurement system. The rotational speed is measured
with a laser tachometer and a magnetic sensor.

the angular speed was measured by counting the outer cylinder revolutions and measuring the time

with a chronometer. Measurements of the angular speed using this method were performed while

measuring the angular speed with the laser and magnet sensor to measure the uncertainty on the

previous speed measurements. The outer cylinder is driven by a belt connected to a motor; the motor

speeds are controlled via a Bardac drive that allows the gradual increase of the speed. To test that

the rheometer runs at a constant speed, rotational speed measurements for the laser, magnet sensor,

and chronometer were recorded for a period of 1.5 hours for 9 different speeds. Figure 2.8 shows

the rotational speed measurements for each instrument. The measurements are in good agreement;

the highest deviation is found at the highest rotational speeds for the measurements that used the

chronometer. The outer cylinder angular speed is shown to maintain a constant speed for all the

different speeds tested. Figure 2.9 shows the measured angular speed for each control speed tested.

Each point represents the mean of all the measurements taken from the 3 instruments. Even when

the chronometer method exhibits the biggest deviation, this deviation is no larger than 6% of the

average speed measured using the laser tachometer. Hence, the maximum uncertainty in the speed

measurements from the previous work of Koos (2009) is less than 6%.
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2.3 Error analysis

The uncertainty contributions considered for the torque measurements are:

• Uncertainty in spring constant measurement

• Uncertainty in distance measurement

• Uncertainty in optical probe calibration curve

A set of several repeated readings has been taken for each contribution. The mean and standard

deviation are calculated for each set. The estimated standard uncertainty for each contribution is

calculated as follows:

u = σ√
n
, (2.1)

where u is the standard uncertainty of the measurement, σ is the standard deviation, and n is the

number of measurements. Each individual standard uncertainty is then combined in terms of relative

uncertainty . The combined uncertainty is given in root mean squared (RMS) of each individual

uncertainty terms,

uT =
√(u(K)

K

)2
+
(u(D)

D

)2
+
(u(V )

V

)2
(2.2)

where u(K), u(D), and u(V ) are the standard uncertainty of the spring constant, distance, and

optical probe calibration, respectively. As mentioned in Subsection 2.2, the calibration curve of

the optical probe used for each experiment is the mean of at least 10 curves obtained prior to

each experiment. The distance uncertainty corresponds to the spring elongation measurements

performed to measure the torque of the flow. At least five torque measurements are taken for

each speed tested. To estimate the spring constant uncertainty, at least ten measurements of the

calibration curves are considered for each spring. The uncertainty of the rotational speed is estimated

as the standard deviation in the speed measurements. Both the laser tachometer and the magnet

sensor are used to record the outer cylinder speed for each torque measurement. The change in

suspending liquid temperature is recorded thoughout the duration of the experiments. The variation

in temperature and consequently the variation in suspending liquid density and viscosity, contributes

to the uncertainty in Stokes and Reynolds number (uSt, uRe). For these dimensionless numbers the

combined uncertainty is given by

uSt = uRe =

√(u(ω)
ω

)2
+
(u(µ)

µ

)2
+
(u(ρ)

ρ

)2
, (2.3)

where u(ω), u(µ), and u(ρ) are the standard uncertainty of the rotational speed, viscosity, and

density of the liquid, respectively.
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2.4 Pure fluid torque measurements

To test the experimental method, torque measurements are performed for an aqueous-glycerine

mixture with no particles and plain water. These measurements are taken with rough walls. The

temperature of the fluid and density are monitored and considered when calculating the fluid prop-

erties. The range of gap Reynolds number tested is 3.6 × 102 ≤ Reb ≤ 8.3 × 104. The torque

measurements are compared with the theoretical results for Couette flow. Considering an infinitely

long cylindrical Couette device with the outer cylinder rotating and the inner cylinder being held

stationary, the torque applied by a laminar flow to the inner cylinder considering smooth walls is

(Schlichting, 1951)

Mi = −Mo = 4πµH ω̇r2
i r

2
o

r2
o − r2

i

= Mlaminar, (2.4)

where H is the height of the test cylinder, µ and ρ are the viscosity and density of the fluid,

respectively, and ri and ro are the inner and outer cylinder radius. The decrease in gap thickness

due to the rough walls have been taken into account for the values of ri and ro. The effect of rough

walls is discussed later in this section. Figure 2.10 shows the torque as a function of the shear rate

for a 77% and 21% in volume aqueous-glycerine mixture and for plain water. Each point represents

the mean of 10 individually recorded measurements; the vertical error bars represent the combined

torque uncertainty. The uncertainty of the shear rate is represented by the horizontal error bars. The

theoretical results for Couette flow are also shown in Figure 2.10. For an aqueous glycerine mixture of

77%, the torque measurements are in good agreement with the theoretical laminar Couette solution.

The maximum deviation from the laminar solution is 14%. For the lower glycerine percentage of 21%

and plain water, the measured torques do not compare favorably with the torques corresponding

to laminar flow theory. For both liquids the measured torques are considerably higher than the

one predicted for laminar flow. The measured torques for water are very close in value to the ones

measured for the 21% aqueous-glycerine mixture, even though the aqueous glycerine mixture is 1.8

times more viscous than water.

Figure 2.11 shows the measured torques normalized by the theoretical torque as a function of

the gap Reynolds number defined as

Reb = ργ̇b2

µ
(2.5)

The reduction in shear gap width due to the rough walls has been considered when calculating the

gap Reynolds number. For the case with the highest percentage of glycerine (and thus the lower gap

Re range), the normalized torque is close to one. The maximum uncertainty for this case occurs at

the lowest gap Reynolds number. For the case of 21% of glycerine, the normalized torque is between

4 and 15 times higher than the theoretical torque, while the normalized torque for water is between

9 and 29 times higher.
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Figure 2.10: Measured torque as a function of the shear rate for an aqueous-glycerine mixture
with no particles. The percentage in volume of glycerine is 77% and 21% for the aqueous-glycerine
mixtures. The lines correspond to the theoretical Couette solution for a laminar flow with a viscosity
corresponding to the liquid at the recorded temperatures. Continuous and dash lines correspond to
77% and 21% aqueous glycerine. Dotted line is the theoretical torque for plain water.
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Figure 2.11: Normalized torque as a function of the gap Reynolds number for an aqueous-glycerine
mixture of 77% and 21% and plain water with no particles.

To compare the current results with the work of Taylor (1936a), Figure 2.12 shows the normalized

torques as a function of the modified gap Reynolds number used by Taylor, defined as

Re∗b = ρωrob

µ
. (2.6)

Based on the work of Taylor (1936a,b) and considering the reduction in gap due to the rough walls,

the critical gap Reynolds number at which the flow becomes unstable for the current apparatus

geometry is 1.1× 104 (for rough walls). The range of gap Reynolds number corresponding to plain

water and 21% aqueous glycerine is between 4.6 × 103 ≤ Re ≤ 8.31 × 104. Therefore, most of

these experiments are above the critical Reynolds number. Figure 2.12 also shows the normalized

torques from Koos (2009) performed with smooth walls. Comparing the smooth and rough walls

measurements, the ratio of torques for the latter deviates from the laminar behavior at modified gap

Reynolds where the smooth walls show laminar behavior. This suggests that the presence of rough

walls can lower the critical Reynolds number.

Figure 2.13 shows a comparison between the current measurements and the data of Bagnold

(1954); Taylor (1936a) and Wendt (1933) for pure fluid torque measurements normalized with the

torque predicted from laminar theory. The normalized torques are presented as a function of the

modified gap Reynolds number (Re∗b) used by Taylor (1936a) and defined as equation 2.6. All of
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Figure 2.12: Closed symbols: normalized torques as a function of the modified gap Reynolds number
for pure fluids measured with rough walls. Open symbols: normalized torques for pure fluid measured
with smooth walls from Koos (2009). Vertical dashed line represents the critical modified Re based
on the work of Taylor (1936a) and considers the gap width for rough walls.
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these studies were performed with smooth walls. The shear gap width to outer radius ratio for the

current experiments is smaller (b/ro = .133) than the corresponding ratio for the data of Taylor

(b/ro = .15 and b/ro = .21), Wendt (b/ro = .15), and Bagnold (b/ro=.19). A smaller ratio leads to

lower critical gap Reynolds number. The normalized torques for the lower range of gap Re compares

favorably with the current results; however, a deviation from laminar theory occurs at a lower

Reynolds number than the one predicted using the data of Taylor (1936a). Cadot et al. (1997); Lee

et al. (2009) and van den Berg et al. (2003) studied the effect of rough boundaries on Taylor-Couette

flow, where the liquid was sheared by the rotation of the inner cylinder. These studies show that the

presence of rough walls does not affect the laminar transition. A lower critical Re might be due to a

smaller ratio in the annulus height to shear gap width. For the experiments of Taylor, this ratio was

hT /b = 99 and hT /b = 141, and for the experiments of Wendt, hT /b = 28, which is considerably

higher than the ratio for the current experiments (hT /b = 14.9). Moreover, when the flow is driven

by the rotation of the outer cylinder, Taylor (1936a) observed that the transition occurred at a

range of Reynolds number rather than at an specific one. Experiments on Taylor-Couette flow with

rough walls and inner cylinder rotating indicate that the presence of rough walls does not affect the

instability of Taylor vortex flow for low Reynolds numbers, but it does intensify the turbulent Taylor

vortex flow at Reynolds numbers above the critical one (Lee et al., 2009). This rough walls effect

leads to higher measured torques. The measured torque for pure fluid for the current experiments

is consistent with these findings.

To verify the Newtonian behavior of the liquids used for these experiments, viscosity measure-

ments were performed using a strain-controlled rheometer (TA instruments, ARES-RFS, Rheomet-

rics fluid Spectrometer). The results obtained using the rheometric fluid spectrometer indicate that

the liquids used are indeed Newtonian.

2.5 Particles

Two type of particles are used in these experiments: polystyrene elliptical cylinders and polyester

scalene ellipsoids. The properties of these particles are summarized in table 2.2. The diameter

reported in table 2.2 is the equivalent spherical particle diameter. These particles are the same

particles used by Koos et al. (2012). The particles vary in size, shape, and density. These

variations lead to different values for the random loose and random-close packing. The values used

for these packings were obtained from the measurements done by Koos (2009).

Polystyrene: density ratio = 1 and 1.05

Figure 2.14 shows the polystyrene particles used in the current experiments, which are elliptical

cylinders. The specific gravity for these particles is 1.05 and they are neutrally buoyant in an aqueous
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Figure 2.13: Pure fluid torque measurements normalized with laminar Couette flow as a function
of modified gap Reynolds number. Comparison between pure fluid data of Bagnold (1954); Taylor
(1936a) and Wendt (1933).

Property Polystyrene Polyester

diameter, d (mm) 3.34 2.93
gap width smooth walls

diameter , bs/d 9.46 10.79

gap width rough walls
diameter , b/d 7.46 8.5

particle density, ρp (kg/m3) 1050 1400

liquid density, ρ (kg/m3) 1000-1050 1000-1160.5
shape elliptical cylinders ellipsoids

sphericity, ψ 0.7571 0.9910
RLP, φRLP 0.553 0.593
RCP, φRCP 0.663 0.65

Young’s modulus, E (MPa) 3000 2800

Yield Strength, Y (MPA) 40 55
Poisson’s ratio ν 0.34 0.39

Table 2.2: Particles properties
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glycerine mixture of 21% glycerine. Koos (2009) measured the particle diameter and lengths of 50

particles. The sample had an average small diameter dsmall = 2.08 mm, large diameter dlarge = 2.92,

and length l = 3.99 mm. The particle length was found to be bimodal, whereas the diameters were

found to be unimodal. By measuring the displaced volume of 1000 particles and considering that

the volume of each particle is

Vp = π

4 dsmalldlargel.

Koos (2009) found an equivalent sphere diameter of d = 3.35 mm. By weighing the same sample

and considering a particle density of ρp = 1050 kg/m3, an equivalent sphere diameter of d = 3.34

was found. Both measurements were in agreement and the particles are taken to have an equivalent

spherical diameter of d = 3.34 ± 0.02 mm. Polystyrene particles are the ones used to roughen the

Figure 2.14: Polystyrene particles. Specific gravity of 1.05 and have an equivalent spherical particle
diameter of 3.34± 0.02 mm. Reference shown in cm.

rheometer walls. Figure 2.15 shows a picture of the surface roughness of the walls using polystyrene

particles.

Polyester: density ratio=1.2 and 1.4

The polyester particles used in the current experiments are shown in Figure 2.16. These particles

have a specific gravity of 1.4 and a shape of scalene ellipsoids. Koos (2009) found an equivalent
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Figure 2.15: Rheometer walls surface roughness formed by polystyrene particles. The reference is in
inches.

spherical diameter of d = 2.93± 0.02 mm. The rough walls used in these experiments are the same

Figure 2.16: Polyester particles. Specific gravity of 1.4 and have an equivalent spherical particle
diameter of 2.93± 0.02 mm. Reference shown in cm.

as the ones used for the polystyrene particles.
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2.6 Visualizations

Visualizations of the flow are performed by replacing the top fixed guard and test cylinder with a

transparent acrylic cylinder. This cylinder has the same radius as the inner cylinder: r = 15.89 cm

and it is 30 cm in length. The surface of the visualization cylinder is roughened using polystyrene

particles. A window of the same length of the cylinder height and 3.8 cm in width is left smooth

and used for visualization purposes. Figure 2.17 shows a sketch of the visualization setup. A digital

camera is located inside the visualization cylinder to record the flow. The flow is illuminated with

halogen lights located on top. An acrylic ring with a width slightly smaller than the gap shear

width is put on the rim of the visualization cylinder to work as an end cap. For the visualization of
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Figure 2.17: Visualization cylinder setup. The walls of the inner transparent cylinder are roughened
with polystyrene particles except from the visualization window (3.8× 30 cm)

the flow of polystyrene particles, 20% percent of these particles were painted on one side to better

track the flow. The painted particles did not exhibit difference in density. Figure 2.18 shows a

sample of painted and not painted polystyrene particles immersed in water. The mixture seems to

be evenly mixed. Because of the replacement of the test cylinder with the fixed acrylic cylinder, the

visualizations of the flow cannot be performed simultaneously with the torque measurements.
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Figure 2.18: Sample of polystyrene particles used for visualization purposes. The particles are
immersed in water. The mix of painted particles are evenly mixed with the non-painted ones, and
thus the paint does not seem to have a considerable influence on particles density.
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Chapter 3

Previous experiments on smooth
and rough walls

The present work is a continuation of the work done by Koos (2009). A detailed analysis and revision

was made to this study and the revised work was published in Koos, Linares-Guerrero, Hunt, and

Brennen (2012). Further experimental work has been done since then to extend the range of Stokes

and Reynolds number previously studied. This is accomplished by studying liquid-solid mixtures

with particles denser than the suspending liquid. Emphasis on the effects of settling and the process

of particle resuspension is explored in the current work using the same experimental setup used by

Koos with minor modifications to allow the visualization of the flow as described in Chapter 2.

This chapter presents the previous experimental work done on smooth and rough walls presented

in Koos et al. (2012). Differences in the calibration method between the current and previous work

is explained in Section 3.1. Note that parts of this chapter are taken from the paper by Koos et al.

(2012).

Most of the work done by Koos et al. (2012) involved experiments where the walls of the rheometer

were left smooth and the density ratio was close to one. The range of Reynolds number tested is

between 20 to 800 and Stokes numbers from 3 to 90. A set of experiments with rough walls was also

presented which made it possible to quantify the effect of slip at the wall by measuring the near-wall

particle velocities. The depletion layer thickness, a region next to the walls where the solid fraction

decreases, was calculated based on these measurements. A relation between the relative viscosity

measured with rough walls and the apparent relative viscosity measured with smooth walls was

given in terms of the thickness of the depletion layer. This relation has been appropriately modified

and amended from the original work of Koos (2009) and it is presented in the paper of Koos et al.

(2012).
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3.1 Calibration

Koos (2009) measurements involved a different calibration method than the one carried out in the

current experiments. The springs were calibrated in the same way as described in Section 2.2 but

only during the pure fluid calibration. The subsequent torque measurements were performed without

calibrating the springs nor the optic probes, since it was thought that constraining the torque

measurements through the origin would overcome any uncertainty in the torque measurements.

Koos considered the liquid-solid mixture flow to be Newtonian and by using the slope between

points for each experiment, the intercept of the linear fit was subtracted to the corresponding data.

Constraining the torque measurements through the origin will affect the recorded torque values, but

will not influence the slope of the linear fit. This slope was used by Koos (2009) to find the effective

viscosity of the mixture. Therefore, any error in the y-intercept in the flow curve (shear stress versus

shear rate) can affect the recorded shear stress values, but does not influence the measurement of the

effective relative viscosity. Constraining the torque measurements through the origin is only valid if

the torque measurements are strictly linear.

A shift in the initial optic probe target can change the voltage vs displacement curve, leading to

higher measurements of the torque. For the current experiments, the spring and optic probe used

for each set of experiments was calibrated before and after to account for any uncertainty in the

measurement of the torque and for any non-linear behavior of the flow. Moreover, the springs were

pre-loaded for each experiment to account for their initial tautness and ensure their linear response.

3.2 Previous smooth walls measurements

The smooth walls experiments performed by Koos et al. (2012) involved neutrally and slightly non-

neutrally buoyant particles (ρp/ρ goes from 1.000 to 1.009). Most of the experiments used the same

polystyrene particles used in this work. Nylon and Styrene Acrylonitrile (SAN) particles were also

tested by Koos. The properties of these particles are listed in table 3.1.

These particles differed in size, shape, and density, and were suspended in an aqueous glycerine

solution that had a density within 0.9% of the particle density. The nylon particles were nearly

spherical and about twice the size of the polystyrene ones. The styrene acrylonitrile particles were

ellipsoids with a diameter close to the polystyrene particles. The random loose packing φRLP and

the random close packing φRCP of each type of particle were measured in a rectangular container

with a width equal to the gap in the concentric cylinder rheometer.

Figure 3.1 shows the torque measurements results of Koos (2009) for polystyrene particles for

volume fractions, from 0.077 to 0.64 with a ρp/ρ = 1 and ρp/ρ = 0.991. Each point represents

the mean of at least five individually recorded measurements; the error bars represent the standard
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Nylon Polystyrene Styrene Acrylonitrile

diameter (mm) 6.36 3.34 3.22
diameter/ gap width 0.2013 0.1057 0.1019
density (kg/m3) 1150 1050 1070

shape spheres elliptical ellipsoidscylinders
sphericity, ψ 0.9999 0.7571 0.9798
(min./max. width)
RLP, φRLP 0.568 0.553 0.611
RCP, φRCP 0.627 0.663 0.657

Table 3.1: Properties of the particles used in the smooth wall experiments performed by Koos (2009).
The random loose and close packing (RLP and RCP) volume fractions were measured by Koos for
each type of particle.

deviation in these measurements. Linear fits for each volume fraction are also shown. The torque

increases rapidly with the volume fraction, varying by several orders of magnitude between the

smallest and largest volume fraction. The dependence on the volume fraction appears to be some-

what more pronounced as the volume fraction increases. The nearly linear increase in the torque

with the Stokes number (and equivalently the Reynolds number for the neutrally buoyant particles,

St = 1
9Re) implies that the flow in these previous experiments is close to Newtonian.

The measured torque was normalized by the corresponding torque predicted from theoretical

laminar flow, Mlaminar. Under the assumption that the velocity distribution of the interstitial fluid

is unchanged by the presence of the particles, and that the only contribution to the torque is the

result of stresses from the fluid and solid phases, the ratio of the torques, M/Mf , iFrom Koos

et al. (2012).s equal to the relative apparent viscosity µapp/µ. Figure 3.2 presents this ratio, which

is a strong function of the volume fraction and relatively independent of the Stokes number (and

equivalently the Re number), except at the two lowest volume fractions (φ = 0.077 and φ = 0.154)

where the ratio of the torques exhibits an increase at the highest Stokes number. In Koos et al.

(2012), it was shown that this increase in the deviation from the mean was likely to be due to

secondary flow effects. The relative apparent viscosity for the non-neutrally buoyant experiments

is lower than the neutrally buoyant experiments with the same volume fraction (φ = 0.30 and

φ = 0.40). For the non-neutrally buoyant experiments, the particles tended to float away from the

test cylinder where the measurements are taken. Therefore, the actual volume fraction in the test

zone may be less than the measured one. A decrease in the volume fraction would lead to a decrease

in the apparent relative viscosity, which explains why the non-neutrally buoyant experiments exhibit

a lower relative apparent viscosity.

Figure 3.3 shows the apparent relative viscosity results of Koos (2009) for nylon and styrene

acrylonitrile particles in aqueous glycerine mixtures that matched the density of the particles.
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Figure 3.1: Previous torque measurements results with smooth walls. The mean measured torque
(< M >) for suspensions of polystyrene particles in aqueous glycerine as a function of Stokes number.
Closed symbols correspond to slightly non-neutrally buoyant particles. From Koos et al. (2012).
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Figure 3.2: Previous normalized torques results with smooth walls. The ratio of measured to pure
fluid torque (µapp/µ ) for suspensions of polystyrene particles in aqueous glycerine. Closed symbols
correspond to non-neutrally buoyant particles. From Koos et al. (2012).
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Figure 3.3: Previous results for nylon and SAN particles apparent relative viscosity (Koos et al.,
2012).
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The relative apparent viscosity for these experiments is also a function of the volume fraction

and independent of the Stokes number except at the highest solid fraction. To compare the three

experiments, the volume fraction was normalized by the random loose packing φRLP of each type

of particles. By fitting horizontal lines to the data in Figure 3.2 and Figure 3.3 the dependence of

?=?RLP
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Figure 3.4: Previous results of the apparent relative viscosity for different non-settling particles in
aqueous glycerine. Closed symbols correspond to non-neutrally buoyant polystyrene particles. The
line is an exponential fit to the data in the region, φ/φRLP < 1. From Koos et al. (2012).

µapp/µ on the volume fraction was obtained, as shown in Figure 3.4. The data in Figure 3.4 are

plotted against the normalized volume fraction, φ/φRLP . Despite differences in the particle sizes

and shapes, the data for all the particles tested by Koos fall along a single curve, which correlates

with the volume fraction ratio.

The differences in apparent relative viscosity between φ > φRLP and φ < φRLP were attributed

to the possible jamming of the particles. When φ is higher than φRLP the particles are not able

to move past each other without deforming, which further increases the apparent viscosity. The

previous smooth wall experiments show that when normalized by the size and shape dependent

random loose packing fraction, φRLP , the relative apparent viscosity shows no dependence on the

particle size or shape. Comparing the nylon to SAN particles, both have a high sphericity (ψ = 1.00

and 0.98), but the nylon particles are nearly twice the size of the SAN particles. Comparing the

rod-shaped polystyrene particles to the nearly spherical SAN particles, there is also no difference

in the measured effective viscosity. This result is different from what has been reported for low
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Reynolds number suspensions, where the influence of the particles shape on the bulk viscosity has

been studied (Clarke, 1967; Ward and Whitmore, 1950; Moreland, 1963). These studies showed that

the more the shape of the particle deviated from that of a sphere, the greater was the bulk viscosity.

Moreover, aspherical particles demonstrate increased ordering near the walls (an effect that is more

pronounced for the smooth walls) (Chrzanowska et al., 2001; Börzsönyi et al., 2008).

Figure 3.4 shows the comparison between the previous smooth walls results of Koos (2009)

and the previous experiments of Bagnold (1954). Only the Bagnold experiments that were free

of secondary flows (Reb < 6, 000) are considered. The macro-viscous data from Bagnold (1954)

compares favorably with the experiments of Koos (2009) and shows a similar transition at φRLP .

3.3 Previous rough walls experiments

Among the factors that influence the results described above is the particular structure of the

liquid/solid flow at the walls of the apparatus, namely the reduction in the volume fraction near the

wall and the apparent particle slip associated with that less concentrated layer. This slip is most

apparent with smooth walls (Yilmazer and Kalyon, 1989; Gulmus and Yilmazer, 2007); it may lead

to an erroneous mixture viscosity if a correction is not applied Barnes (2000). Experiments have

shown that the slip is significantly reduced when the surface roughness is the same size as or larger

than the diameter of the particles Barnes (2000). To further investigate the influence of slip on

the mixture viscosity measurements, Koos performed additional experiments with rough walls using

polystyrene particles. The inner and outer cylinder walls were roughened by coating them with the

same polystyrene particles. The particles were glued to thin rubber sheets, which were then attached

to both surfaces. The glued particles were oriented randomly and had a surface area fraction of 0.70.

The decrease in gap thickness due to the rough walls was considered when calculating the shear rate

for these experiments.

Figure 3.5 shows the normalized torque done by Koos (2009) with rough walls. The volume

fractions tested ranged from 0.10 to 0.60. For each volume fraction, the measured torques were

nearly a linear function of the Stokes number as in the case of the smooth wall data. The effective

viscosity ratio increases by almost four orders of magnitude between the lowest volume fraction and

the highest volume fraction. This large increase is similar to that in the smooth wall experiments.

The mean effective viscosity ratios corresponding to the horizontal lines in Figure 3.5 are plot-

ted against the volume fraction in Figure 3.6 and compared with the smooth wall data. The large

increases in the relative apparent viscosity above φRLP that were present in the smooth wall exper-

iments (see Figure3.4) are not present in the rough wall data and therefore appear to be an artifact

of the wall slip and depletion layers, as described in the next section. The rough wall data correlate
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Figure 3.5: Ratio of measured torques from previous rough walls experiments. The horizontal lines
are fits to the data and represent the value of the ratio of effective viscosity to pure fluid viscosity
µ′/µ. From Koos et al. (2012).
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Figure 3.6: Effective viscosity ratio for neutrally buoyant polystyrene particles in aqueous glycerine
solutions with rough cylinder walls. The black line is an exponential fit for the points below φRLP .
From Koos et al. (2012).

with the volume fraction ratio and, for φ < φRLP , conform to

µ′/µ = exp
(

8.73 φ

φRLP

)
, φ < φRLP . (3.1)

In Figure 3.4 comparison is made with the data of Hanes and Inman (1985), Prasad and Kytömaa

(1995), and the empirical formula of Zarraga et al. (1999). The effective viscosities from Hanes et

al. and Prasad et al. were obtained for the ratio of measured torque reported in their work and the

theoretical interstitial fluid torque; their data exhibit a smaller relative effective viscosity than the

current rough walls experiments. However, their experiments used settling particles; in addition,

the torque was measured on the top surface of their annular gap. Hence, the torque measurements

may have been affected by the migration and settling of the particles away from the top surface of

the experiments. Nevertheless, the relative effective viscosities from Hanes & Inman are close to

the previous data of Koos (2009). The shear rates used in their experiments were higher than those

used by Prasad & Kytomaa, which may have caused a better fluidization of the suspension.

The model of Zarraga et al. does not fit the data of Koos. The particles used in their experiments

are much smaller ( of the order of microns) and therefore correspond to much lower Reynolds number

(1× 10−6 ≤ Re ≤ 3× 10−2 (Acrivos et al., 1994; Zarraga et al., 1999; Ovarlez et al., 2006; Bonnoit
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et al., 2010). The apparent difference in relative effective viscosities may be due to a difference in

the flow regime for this lower range of Reynolds numbers. Since particle interactions increase with

Reynolds number and such interactions may cause mixing in the fluid, this could lead to an increase

in the viscosity.

Depletion layer thickness

An analysis of the slip occurred with smooth walls was presented by Koos (2009). Though the

interstitial fluid does not violate the no-slip condition at a solid wall, the solid particles may roll

and slide, creating an effective slip (Acrivos, 1992). Slip is composed of two components. In the

first component, “true slip”, solid particles are able to slide over stationary walls with a non-zero

velocity, creating a particle slip velocity, which is often present in granular flows (Barnes, 1995) and

more marked in densely packed flows (φ > φRLP ). The second component of slip, “apparent slip”,

is caused by the lower concentration of particles close to the walls, resulting in a lower effective local

viscosity and a higher velocity gradient. Koos modeled the decrease in volume fraction near the

wall by incorporating a thin depletion layer of thickness δ next to the wall in which particles are

not present. This model assumes that the viscosity is uniform in both the depletion layer and the

bulk core region. Amends to the model presented by Koos (2009) were done to account for algebraic

mistakes. A corrected version of the model is presented in Koos et al. (2012). The model proceeds

as follows. The shear stress at the inner cylinder is given by

τi = µapp2ω
r2
o

(r2
o − r2

i )
, (3.2)

where µapp is the apparent viscosity of the mixture (calculated from the measured torques with

smooth walls ). Assuming a thin inner depletion layer devoid of particles in which the shear rate is

γ̇i it also follows that τi = µγ̇i. Consequently, the apparent viscosity can be related to the viscosity

of the two phase mixture, µ′ (which is assumed to be equal to the effective viscosity measured with

rough walls),

µapp = µ′

2a
(
µ′

µ − 1
)

+ 1
, (3.3)

where a is a function of the depletion layer thicknesses, δi and δo, on the inner and outer walls,

respectively (see Koos et al. (2012) for derivation):

a =
(
δi

b r
3
o + δo

b r
3
i

)
rori (ro + ri)

. (3.4)

Previous investigations have shown that the depletion layer thickness is generally smaller than

one particle diameter; its thickness increases linearly with particle diameter and, at the same volume
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fraction, increases linearly with the shear stress (Soltani and Yilmazer, 1998). While these depletion

layers may be smaller than a particle diameter, they can significantly change the apparent viscosity

(Barnes, 2000). In addition, the radial force in a cylindrical geometry due to differences in fluid

and particle densities may accentuate the depletion layer on the inner or outer cylinder surfaces. At

large volume fractions, Buscall et al. (1993) and Barnes (1995) have found that the slip on the outer

cylinder wall is negligible and that roughening the inner cylinder is sufficient to reduce the slip at

the inner wall. Direct measurements of either the slip layer thickness or measurements of both the

actual and apparent viscosities are needed to quantify this error.

Using the values of the smooth (apparent) and the rough (effective) viscosity data of Figure 3.6,

the function a and the depletion layer thickness can be calculated for each volume fraction. Figure

3.7 shows the depletion layer thicknesses calculated using the smooth walls data from Koos (2009)

and assuming that slip occurs either on the inner cylinder alone or that the depletion thicknesses

are the same on both the inner and outer cylinders. Typical depletion layer thicknesses derived
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Buscall et al 1993
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Figure 3.7: Depletion layer thicknesses (divided by the particle diameter) calculated from previous
apparent and effective viscosity measurements of Koos (2009), using equation 3.3 (closed symbols) as
a function of the volume fraction ratio φ/φRCP , where φRCP is the random close packing. The error
bars account for the standard deviation in the torque measurements. Also shown are typical depletion
layer thicknesses on the inner cylinder of concentric cylinder devices from references (Buscall et al.
(1993); Savage and McKeown (1983); Yilmazer and Kalyon (1989); Buscall et al. (1993); Partridge
(1985); Buscall et al. (1990); Egger and McGrath (2006) (open symbols).

from previously reported data are also shown in figure 3.7. The random close packing was used to
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normalized the volume fraction. The Savage and McKeown shear stress measurements data with

smooth and rough wall were used to calculate the depletion layer thickness by using equation 3.3 and

assuming slip on the inner cylinder only. Savage and McKeown (1983) used polystyrene beads d ≈ 1

mm particles that are approximately the same size as the ones used in the rough wall experiments

of Koos. Egger and McGrath data for a d ≈ 0.5 µm emulsion were obtained by considering slip on

both cylinders and following a different approach described by the authors and discussed later in

this section. The rest of the data in figure 3.7 were calculated from shear stress measurements for

d ≈ 1 µm polystyrene beads as reported in Buscall et al. (1993) and considered slip only on the inner

cylinder. The calculated depletion layer thickness from the data of Koos is close to, though slightly

less than, previously recorded data. This may due to the fact that Egger and McGrath (2006) and

Buscall et al. (1993) considered a more idealized scenario. Egger and McGrath followed the approach

made by Russel and Gran (2000) where they assumed that the applied shear stress at a given radius

is uniform over the whole sample. Egger and McGrath validated this assumption by the closeness

in the mapping of their rough wall data and the slip corrected data. Buscall et al. (1993) assumed

that the actual viscosity (which they called true viscosity) is large enough so its inverse value can

be neglected. With the data of Koos, there is little difference between the predicted values using

slip on the inner wall or on both walls, though the assumption of slip in the inner wall alone results

in a better match to previously recorded data.

Slip velocity measurements

The depletion layer on the inner cylinder can also be estimated from particle velocities measurements.

Koos (2009) evaluated the velocities of the particles next to the inner cylinder by using a pair of

MTI fiber-optic proximity probes that were installed flush with the surface of the inner cylinder at

an observation port 2.86 cm below the test cylinder. These were used to both count the particles

passing the probe and, by cross-correlation, to measure the velocity of those particles. The cross

correlation was done over a full ten seconds to find the mean particle velocity and the measurement

of individual particle velocities.

Using the velocities measurements performed by Koos, and assuming that there are no particles

in the depletion layer and that the particles viewed by the optical probes are those at the depletion

layer-core region interface, the interfacial velocity, u, at r = ri + δi is given by

u

ωro
= 2δiro
r2
o − r2

i

µapp
µ

, (3.5)

(see Koos et al. (2012) for derivation) and this can be used along with the measured particle velocities,

u, to obtain estimates of the depletion layer thickness, δi. Figure 3.8 shows the calculated thicknesses

as a function of Stokes number and volume fraction. Note that the thickness is relatively independent
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of Stokes number but varies substantially with the volume fraction. The same data is included in

Figure 3.9, where it is seen to be consistent with the values derived from the present rheological

measurements. Note that the estimates for the depletion layer thickness fall slightly below previously

published data for volume fractions below φRLP . This deviation can be explained by the ordering of

particles next to the walls. Specifically, the surface area oriented towards the optic probes fluctuates

as a function of the distance from the wall Chen and Louge (2008). These fluctuations can give rise

to errors in the measurements of the particle velocity. In the previous experiments of Koos (2009),

the orientation of the particles should result in the depletion layer thickness being underestimated.
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Figure 3.8: Depletion layer thicknesses (δ) calculated from Koos (2009) particle velocity measure-
ments as a function of Stokes number for several volume fractions. From Koos et al. (2012).

3.4 Summary

The previous work covered a range of moderate Stokes number (from 3 to 90). For the smooth walls

three different types of particles were tested. Despite differences in the particle materials, sizes, and

shapes, the data for all tested particles correlate with the volume fraction ratio for φ < φRLP . A

slight mismatch in the fluid and particle density (within 1%) does not change the dependency of the

apparent viscosity on the volume fraction ratio φ/φRLP .

In the “rough wall” experiments only one type of particles was tested. These particles were

glued to both the inner and outer cylinder walls. This configuration appears to result in appropriate
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Figure 3.9: Depletion layer thicknesses calculated from previous measurements of the apparent
and effective viscosity using equation 3.3 and depletion thicknesses calculated from the velocity
measurements using equation 3.5. Also shown are the previously reported experimental values from
figure 3.7. From Koos et al. (2012).
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effective mixture viscosities that increase exponentially with the volume fraction up to the loose

packed volume fraction. On the other hand, the measurements with smooth wall cylinders clearly

demonstrate that wall slip substantially affects the apparent viscosity. The slip was modeled by

assuming thin depletion layers on the smooth walls. The thickness of the depletion layers was

estimated by measuring the particle velocities near the walls. In addition the values for the rough

and smooth wall viscosities were used to evaluate the thickness of the depletion layer over the full

range of volume fractions. From these two methods the resulting depletion layer thicknesses are

shown to be in agreement with previous investigations. For volume fractions less than the loose

packed volume fraction, φRLP , the slip is caused by thin depletion layers that decrease in thickness

as the volume fraction is increased. For φ > φRLP , slip caused by particles sliding over the cylinder

walls appears to dominate and contributes significantly to the differences between the smooth and

rough wall measurements.

The previous torque measurements for rough and smooth walls scale linearly with the shear rate

and only the experiments with volume fractions lower than 20% exhibited a deviation from the

linear behavior at high Stokes numbers. Such deviation is likely to be due to inertial effects of the

suspending liquid. In this previous study, evidence of particle interaction’s effect on the scaling of

the shear stress with the shear rate was not observed. However, the measured relative viscosities are

higher than the previous experiments, which may result from the induced mixing of the fluid due to

particle interactions.
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Chapter 4

Rheological measurements with
rough walls

4.1 Motivation

The previous experimental work of Koos et al. (2012) provided evidence of the presence of slip at the

walls. Such slip can lead to marred conclusions if the rheological measurements are not corrected.

The presence of slip can lead to measurements of lower effective relative viscosities, as was shown

by Koos et al. (2012). In the case of particles denser than the liquid, the centripetal force due to

the rotation of the outer cylinder would tend to push the particles away from the inner cylinder,

increasing the depletion layer thickness and thus reducing the measured torques. The slip at the

wall can be reduced by roughening the walls of the experiment (Barnes, 1995; Buscall et al., 1993).

For this reason, all the experiments presented in this work were conducted with rough walls.

Aside from reducing the slip, rough walls are expected to enhance particle interactions. One of

the aims of this work is to study the effect of such interactions on the bulk rheology of the flow.

4.2 Polystyrene particles with matched fluid density

The direct torque measurements for a volume fraction (φ) of 10, 20, and 30% as a function of the

shear rate (γ̇) are shown in Figure 4.1. Each point represents the mean of at least five individually

recorded measurements; the uncertainties in measuring the torque are combined in root mean square

sense (see Section 2.3) and are represented by the error bars. As mentioned in Chapter 2, the torque

measurements presented here are directly measured and no correction due to contributions of friction

or fluid turbulence is made. The plots also include a linear curve fit for each set of data (R2 = 0.993

for 10%, R2 = 0.982 for 20% and R2 = 0.984). A linear relation between the torque and shear rate

would correspond to a Newtonian behavior. However, the linear fit for these measurements does

not intercept the origin; instead the linear fit has a negative intercept. As shown in Figure 4.1, the
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Figure 4.1: Measured torque as a function of shear rate for φ = 10, 20, and 30%. ρp/ρ = 1. Solid
and dashed lines are the linear and power curves fit for the present data. The error bars correspond
to the combined uncertainty in the torque measurements.

trend for this set of data is not strictly linear and can also be fitted to a power law, as shown by the

dashed lines. The power fit has higher R2 values than the linear fit (R2 = 0.997 for 10%, R2 = 0.999

for 20% and R2 = 0.998). The exponent of the power fit is around 1.4 for the three volume fractions

shown.

Figure 4.2 shows the torque measurements for higher volume fractions of 40% and 50%. Unlike

the lower volume fractions, these data are best fitted by a linear fit (R2 = 0.997 for both volume

fractions). For these higher volume fractions the intercept of the linear fit is no longer negative. A

positive intercept could be a sign of the presence of a yield stress.

The torque measurements were normalized by the theoretical Couette laminar flow torque for

the interstitial liquid. Figure 4.3 presents this ratio for the solid fraction of 10, 20, and 30% as a

function of Stokes number. If the mixture were strictly Newtonian, this ratio would be equivalent to

the relative effective viscosity, and would be independent of the Stokes number (constant viscosity).

But as it can be seen in Figure 4.3, the relative viscosity increases with Stokes number. For higher

volume fractions the ratio of torques does not appear to vary dramatically with the Stokes number,

as shown in Figure 4.4. Only at low Stokes numbers the ratio of M/Mlaminar for these higher volume

fractions exhibits a weak dependance on St, where M/Mlaminar is greater than that found at higher

St.
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Figure 4.2: Measured torque as a function of shear rate for φ = 40, and 50%. ρp/ρ = 1. Solid line
is the linear curve fit for the present data. The error bars correspond to the combined uncertainty
in the torque measurements.
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Figure 4.3: Measured torques normalized by the torque predicted from laminar theory as a function
of Stokes number for φ = 10, 20, and 30% with ρp/ρ = 1. The error bars correspond to the combined
uncertainty in the torque measurements normalized by the corresponding Mlaminar

The torques ratio exhibits a strong dependance on the volume fraction, varying approximately

two orders of magnitude between the lowest and highest volume fraction, as can be observed in

Figure 4.5.

In the previous work of Koos (2009) and Koos et al. (2012) it is assumed that the liquid-solid

flow is Newtonian, and therefore the ratio of torques, M/Mlaminar, is equal to the relative effective

viscosity (µ′/µ). Figure 4.6 shows this ratio µ′/µ for all the Stokes number tested as a function of

the volume fraction. The size of the symbols represents the magnitude of the corresponding Stokes

number. Note that for volume fractions of 10, 20, and 30%, the ratio of toques exhibits a dependance

on Stokes number (equivalently on Reynolds number), where µ′/µ increases with St. The numerical

simulations of Yeo and Maxey (2013), Kulkarni and Morris (2008), and Picano et al. (2013) showed

also an increase on µ′/µ with Re.

In the previous work of Koos et al. (2012), the relative viscosity for particles with ρp/ρ = 1

was shown to be an exponential function of the volume fraction normalized with the corresponding

particles random loose packing (φl):

µ′

µ
= exp

(
8.73 φ

φl

)
.

Figure 4.7 shows the relative viscosity as a function of the volume fraction for the present and
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Figure 4.4: Measured torques normalized by the torque predicted from laminar theory as a function
of Stokes number for φ = 40 and 50% with ρp/ρ = 1. Solid lines represent the constant fit for the
present data. The error bars correspond to the combined uncertainty in the torque measurements
normalized by the corresponding Mlaminar .
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Figure 4.5: Measured torques normalized by the torque predicted from laminar theory as a function
of Stokes number for all φ tested with ρp/ρ = 1. The error bars correspond to the combined
uncertainty in the torque measurements normalized by the corresponding Mlaminar.
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Figure 4.6: Effective relative viscosity as a function of φ for experiments with ρp/ρ = 1. The
symbol’s size denote the magnitude of the corresponding Stokes number.
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previous experiments (Koos, 2009; Koos et al., 2012).
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Figure 4.7: Effective relative viscosity as a function of φ for the current and previous experiments
from Koos et al. (2012) with ρp/ρ = 1. The symbol’s size denote the magnitude of the corresponding
Stokes number.

The current and the previous experiments seem to agree in regards to low Stokes numbers. The

Stokes numbers tested by Koos et al. (2012) are between 3 and 90, while the current experiments

are slightly higher (from 2 to 116). The dependance on Stokes is higher for the current experiments

for volume fractions lower than 30%.

4.3 Polystyrene particles with ρp/ρ = 1.05

To increase the Stokes number tested, experiments with polystyrene particles in water were per-

formed. These particles are denser than water (ρp/ρ = 1.05) and settle when not sheared. Because

the torque measurements are made in the middle section of the rheometer, the effective volume frac-

tion for these experiments may differ from the overall volume fraction. That is, the particles may not

be evenly distributed along the rheometer annulus height due to the liquid-solid density mismatch.

For instance, at a low volume fraction of 10%, the particles settle at the bottom of the rheometer

under static conditions and do not reach the middle section where the torque measurements are

taken. Under shearing conditions, the particles fluidize with increasing shear rate, which leads to a

presence of a gradient in the particle concentration that depends on the shear rate (an analysis of
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the particle fluidization is presented in Chapter 6). For such reason the term loading fraction (φ̄)

is used instead of volume fraction. This term denotes the ratio of volume of particles to the total

rheometer annulus volume.
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Figure 4.8: Measured torques as a function of shear rate for φ̄ = 10 and 20% with ρp/ρ = 1.05. The
dashed lines correspond to the power curve fit for the present data. The error bars correspond to
the combined uncertainty in the torque measurements.

Figure 4.8 shows the torque measurements for loading fractions of 10 and 20%. The torque is

best fitted by a power law. The fit exponent increases with loading fraction (1.6 for 10% and 1.7 for

20%). This dependance does not hold for higher loading fractions as it can be observed in Figure 4.9

for φ̄ = 30%. In this case the torque is best fitted by a polynomial of order 2. As the loading fraction

increases the torque dependance on shear rate varies from a polynomial of order 2 to a polynomial

of order 3, as shown in Figure 4.10 and 4.11 for φ̄ = 40% and φ̄ = 50%.

For a loading fraction of 60% the torque is best fitted by a power law with an exponent smaller

than one.

Figure 4.13 shows the results for all the loading fractions tested together with their corresponding

curve fit.

Figure 4.14 shows the normalized torque results for loading fractions of 10% and 20% where the

increase of M/Mlaminar with Stokes number can be observed. As the loading fraction increases,

the ratio of torques exhibits an opposite behavior: instead of increasing the normalized torques

decrease with St as shown in Figure 4.15. The maximum normalized torque for each loading fraction



65

Shear rate s!1
0 20 40 60 80 100 120 140

<
M

>
(N

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7? = 30%
Polynomial -t, order 2

Figure 4.9: Measured torques as a function of shear rate for φ̄ = 30% with ρp/ρ = 1.05. The
dashed lines correspond to the polynomial curve fit of order 2 for the present data. The error bars
correspond to the combined uncertainty in the torque measurements.
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Figure 4.10: Measured torques as a function of shear rate for φ̄ = 40% with ρp/ρ = 1.05. The
dashed lines correspond to the polynomial curve fit of order 3 for the present data. The error bars
correspond to the combined uncertainty in the torque measurements.
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Figure 4.11: Measured torques as a function of shear rate for φ̄ = 50% with ρp/ρ = 1.05. The
dashed lines correspond to the polynomial curve fit of order 3 for the present data. The error bars
correspond to the combined uncertainty in the torque measurements.
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Figure 4.12: Measured torques as a function of shear rate for φ̄ = 60% with ρp/ρ = 1.05. The
dashed lines correspond to the power curve fit for the present data. The error bars correspond to
the combined uncertainty in the torque measurements.
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Figure 4.13: Measured torques as a function of shear rate for all φ̄ tested with ρp/ρ = 1.05. The
different lines correspond to the curve fits for the present data. The error bars correspond to the
combined uncertainty in the torque measurements.

corresponds to the lowest Stokes number for φ̄ > 20%. For Stokes number above 80, the normalized

torques become considerably more independent of the Stokes number. These results are similar to

the results found by Acrivos et al. (1994), where the relative effective viscosity of the suspension

decreased with increasing shear rate. The apparent shear thinning behavior observed in their work

was explained in terms of particle migration due to a slight mismatch on the particle and liquid

density. This particle migration led to lower effective volume fractions. A similar mechanism occurs

in the present experiments with settling particles. At low shear rates the particles are not fluidized,

leading to higher effective volume fractions. A further description of the particle resuspension is

given in Chapter 6 and a discussion based on the settling effect is presented in Chapter 7.

As shown in Chapter 6, the measured torques are affected by the fluidization of the particles and

the change in effective volume fraction at the test section. A possible explanation for the apparent

shear thinning behavior for these loading fraction is the change in effective volume fraction due to

the particles resuspension.

Figure 4.16 presents the normalized torques for all the loading fractions tested.

Figure 4.17 shows the relative viscosity as a function of the loading fraction. The size of the

symbols denote the magnitude of the Stokes number. For loading fractions of 10 and 20%, the ratio

of µ′/µ increases with Stokes numbers. At volume fractions equal to 30% this dependance switches,
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Figure 4.14: Measured torques normalized by the torque predicted from laminar theory as a function
of Stokes number for φ̄ = 10 and 20% with ρp/ρ = 1.05. The error bars correspond to the combined
uncertainty in the torque measurements normalized by the corresponding Mlaminar .

where the highest ratio of µ′/µ correspond to the lowest Stokes numbers. The change in dependance

is discussed in Chapter 7 and it is attributed to the change in effective volume fraction at the test

cylinder due to the settling and fluidization of the particles.

4.4 Summary

The results from direct measurements of the torque for ρp/ρ = 1 and ρp/ρ = 1.05 are presented.

For the case with matched densities, the measured torques exhibit a non-linear dependance on the

shear rate for volume fractions below 40%. For φ = 40 and 50%, the dependance of the measured

torque on the γ̇ is linear. The ratio of M/Mlaminar increases with St for volume fractions of 10,

20, and 30% and become approximately constant for φ = 40 and 50%. At low Stokes number, the

M/Mlaminar for these high volume fractions show some deviation from the constant fit. Comparisons

between the current experiments and the previous work of Koos et al. (2012) show that the effective

relative viscosity for low Stokes numbers coincides with the previous results (this is assuming that

the ratio M/Mlaminar is equal to µ′/µ). The current results exhibit a higher dependance on the

Stokes numbers than the one found by Koos et al. (2012) and for volume fractions higher than 30%,

the ratio of µ′/µ is lower than the results of Koos et al. (2012).
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Figure 4.15: Measured torques normalized by the torque predicted from laminar theory as a function
of Stokes number for φ̄ = 10 and 20% with ρp/ρ = 1.05. Solid lines correspond to the constant fits for
the present data.The error bars correspond to the combined uncertainty in the torque measurements
normalized by the corresponding Mlaminar .
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Figure 4.16: Measured torques normalized by the torque predicted from laminar theory as a function
of Stokes number for all φ̄ tested with ρp/ρ = 1.05. The error bars correspond to the combined
uncertainty in the torque measurements normalized by the corresponding Mlaminar .
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Figure 4.17: Effective relative viscosity as a function of φ̄ for experiments with ρp/ρ = 1.05. The
symbols size denote the magnitude of the corresponding Stokes number.
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For the case with settling particles, the measured torques did not show a linear dependance on

the shear rate for any of the volume fractions tested. Similarly to the case with matched density,

the ratio of torques for loading fractions of 10 and 20% increases with γ̇ but for higher φ̄, the

normalized torques decreases with shear rates. For the particular case of φ̄ = 30%, the ratio of

torques decreases with St, and above Stokes number of 80 it starts increasing. For higher volume

fractions the normalized torques reaches a plateau above St=80. When plotting the normalized

torques as a function of volume fraction a change in Stokes dependance is observed, where for

φ̄ < 30% the ratio of M/Mlaminar increases with St and for φ̄ < 30% the dependance is reversed.

Findings from different numerical simulations that considered Reynolds numbers equal or higher

than one predict a dependance of the effective relative viscosity with Re (Yeo and Maxey, 2013;

Kulkarni and Morris, 2008; Picano et al., 2013). The normalized torques for the case with matched

densities and volume fractions lower than 40 exhibit the same trend. However, the Stokes and

Reynolds numbers tested in this work are considerably larger than the ones considered in these

simulations.

For the case with settling particles the decrease on effective relative viscosity with Stokes numbers

for φ̄ > 20% is similar to the one observed by Acrivos et al. (1994) where particle migration due to

a mismatch in densities decreased the effective volume fraction. The same mechanism is presented

in this work and it is further analyzed in Chapter 6 and 7.
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Chapter 5

Rheological measurements with
rough walls over a porous medium

5.1 Motivation

As mentioned in Chapter 2, the rheometer was designed to reduce the effect of secondary flows. This

was achieved by increasing the ratio between height and shearing gap, rotating the outer cylinder,

fixing the top and bottom boundaries, and also by making the torque measurements in the middle

section (away from the top and bottom boundaries, where the secondary flows are present). While

this design might help to reduce the effect of secondary flows, it limits the study of settling particles

with low loading fraction. When the loading fraction is less than 20% and the particles are denser

than the suspending liquid, the height of the settled particles’s column is less than the height of

the test cylinder. Therefore the particles may not reach the measurement zone until the shear rate

is high enough to fluidize them (see Chapter 6 for particle resuspension analysis). To study the

rheology of low loading fractions, the experimental setup was modified by adding a layer of glass

beads at the bottom of the rheometer. These glass beads form a porous medium at the lower part

of the rheometer, approximately 2 cm below the test cylinder. The polystyrene particles are placed

over the glass beads, guaranteeing the presence of particles in the middle section for all the loading

fractions tested. This enables the study of loading fractions of 10 and 20% at low shear rates. The

presence of a porous medium also adds roughness to the lower boundary , which can affect the

behavior of the suspending liquid.

5.2 Modification of the experiment and porous medium con-

figuration

The porous medium was formed using spherical glass beads with a density of 2520 (kg/m3) and 4

(mm) in diameter size. Glass beads (2.36 l) were poured into the rheometer and filled the bottom
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region. Once the glass beads were poured and evenly distributed along the rheometer annulus, they

were sheared at different speeds to account for any change of particle packing. To avoid excessive

shearing of the porous medium, the walls at the bottom of the rheometer were left smooth. The

height of the glass beads layer was then measured with the help of a vernier to determine the packing

of the porous medium. These measurements were made dry and it is assumed that the effect of water

on the packing of glass beads is negligible due to the high density of the glass beads. The glass beads

packing was calculated as 0.63. Koos (2009) measured the random close packing (RCP) of spherical

glass beads of 3 mm diameter with the same density and found that RCP=0.626. Using the fit

found by Zou and Yu (1996) and considering the model of O’Hern et al. (2002) to calculate the

random close packing of 4 mm glass beads, a value of 0.637 is obtained, which is very close to the

one calculated based on the glass beads height measurements.

The volume of glass beads ensures that the maximum height reached by the porous medium

after being sheared is no higher than the bottom cylinder height. Based on the glass beads height

measurements, the porous medium is 1.9 cm below the test cylinder. After shearing the glass beads

a change in the shape of the top surface is observed. The glass beads move slightly towards the

inner cylinder, forming an angle where the porous height is slightly shorter next to the outer wall.

After this re-arrangement of the glass beads, the porous medium is still approximately 1.9 cm in

average below the test section. Because this re-accommodation of the beads did not seem to change

the average height of the porous medium, the packing of the glass beads is considered to remain the

same. If further dilatancy were to occur during the run of an experiment, and the porous medium

packing went from close to loose, the maximum height reached by the particles would be 1.3 cm

below the test cylinder (this is based on the random loose packing measured by Koos (2009)). Thus

the glass beads do not reach the middle section. A scheme of the modified experimental setup is

shown in Figure 5.1.

Once the porous medium was prepared, polystyrene particles were poured on top. For these

experiments the total volume considered when calculating the loading fraction does not include the

volume occupied by the glass beads. With this configuration the volume of particles needed to

obtain a loading fraction of 10% is lower than for the case without a porous medium.

5.3 Torque measurements of polystyrene particles over a porous

medium with ρp/ρ = 1.05

Figure 5.2 shows the torque measurements as a function of shear rate for φ̄ = 10%. For shear rates

lower than 60 s−1, the torque shows a linear dependance on the shear rate. There appears to be

a change in the torque dependance for shear rates higher than 60 s−1. The torque increases more

rapidly and its dependance on shear rate is no longer linear. The torques for these higher shear rates
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Figure 5.1: Scheme of the apparatus configuration for the experiments with flow over a porous
medium.
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are best fitted by a power law.
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Figure 5.2: Measured torques as a function of the shear rate for flow over a porous medium for
φ̄ = 10% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements.

Figure 5.3 presents the torque measurements for a loading fraction of 20%. Unlike the results for

φ̄ = 10%, the torque measurements for shear rates lower than 60 s−1 do not seem to depend linearly

on the shear rate. For shear rates higher than 60 s−1, a sudden drop in the torque is observed.

The torque decreases almost by half between γ̇ = 36 s−1 and γ̇ = 68 s−1. Such decrease in the

torque is not observed for φ̄ = 10%, nor it is observed for the previous experiments with no glass

beads at the bottom. After the torque drops, it starts increasing with the shear rate and it exhibits

a linear dependance. Different from what is observed for the experiments with no glass beads, the

minimum torque measured for this loading fraction does not correspond to the lowest shear rates.

The variation in the torque with the shear rate can be attributed to the presence of the porous

medium and depends on the expansion of the polystyrene particles with shear rate. The drop in

torque might be caused by the complete fluidization of the settling particles. An analysis of the

resuspension of particles is presented in the following chapter.

Figure 5.4 shows the torque measurements for a φ̄ = 30%. For γ̇ < 40 s−1, the torque increases

with the shear rate and for shear rates between 40 and 50 s−1, the torque remains constant. For

shear rates higher than 50 s−1, the torque starts decreasing until it increases again for shear rates

higher than 90 s−1. There is no sudden drop on the torque measurements for this loading fraction.
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Figure 5.3: Measured torques as a function of the shear rate for flow over a porous medium for
φ̄ = 20% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements.

However, the torque does decrease and similarly to what is found for a loading fraction of 20 %, the

lowest torque measured does not correspond to the lowest shear rate.

A similar behavior is observed for higher loading fractions of 40 and 50 %, as shown in Figure

5.5. For low shear rates, the torque increases in a linear way. For shear rates higher than 60 s−1,

the torque dependance starts shifting. The torque starts to decrease for shear rates higher than

70 s−1. For a loading fraction of 40 % and for shear rates higher than 100, the torque starts to

increase again, while for φ̄ = 50% the increase on torque starts at a lower shear rate of 91 s−1.

The decrease in the torque measured for a loading fraction of 50% is less pronounced than for lower

loading fractions. For this loading fraction in particular, the minimum torque measured corresponds

to the second lowest shear rates, while for the case of φ̄ = 40%, the lowest torque measured does

not correspond to the lowest shear rate. As pointed out previously, this behavior is observed for

the other loading fractions. If the decrease in torque is governed by the expansion of the particles,

then for a high loading fraction this drop in the torque is less pronounced, since there is less space

available for the particles to expand. Further discussion on the expansion of particles is presented

in Chapter 6
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Figure 5.4: Measured torques as a function of the shear rate for flow over a porous medium for
φ̄ = 30% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements.
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Figure 5.5: Measured torques as a function of the shear rate for flow over a porous medium for
φ̄ = 40 and 50% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the
torque measurements.
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Hysteresis

To study if there is a dependance on the shearing history of the mixture, torque measurements were

made from high to low shear rates. These measurements were made right after the measurements

from low to high shear rates were taken. Figure 5.6 shows the torque as a function of the shear

rate for φ̄ = 10%, for both cases: from low to high and from high to low shear rates. For shear

rates higher than 60 s−1, the torque for both cases coincides. For lower shear rates, the torques

corresponding to decreasing shear rates are higher.
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Figure 5.6: Measured torques for ↑ γ̇ and ↓ γ̇ for flow of settling particles over a porous medium with
φ̄ = 10% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements.

For a loading fraction of 20%, the presence of hysteresis seems to be less pronounced, as shown

in Figure 5.7. However, for low shear rates the torque measurements for the case with decreasing

shear rate are slightly higher than the torque measurements with increasing shear rate.

Similarly, the hysteresis present for a loading fraction of 30% occurs for shear rates lower than

60 s−1. But unlike φ̄ = 10 and φ̄ = 20, the torques measured for decreasing shear rates are lower

than the ones measured for increasing shear rates, as shown in Figure 5.8. In the following section,

it is shown that the apparent hysteresis found for φ̄ = 30% is due to a change in the suspending

liquid temperature.

As shown in Figure 5.9 for higher loading fractions of 40 and 50% the torque measurements for

increasing and decreasing shear rate seem to match for all the shear rates tested.
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Figure 5.7: Measured torques for ↑ γ̇ and ↓ γ̇ for flow of settling particles over a porous medium with
φ̄ = 20% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements.
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Figure 5.8: Measured torques for ↑ γ̇ and ↓ γ̇ for flow of settling particles over a porous medium with
φ̄ = 30% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements.
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Figure 5.9: Measured torques for ↑ γ̇ and ↓ γ̇ for flow of settling particles over a porous medium
with φ̄ = 40 and 50% and ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in
the torque measurements.

5.4 Normalized torque for polystyrene particles over a porous

medium with ρp/ρ = 1.05

Figure 5.10 shows the normalized torques for a loading fraction of 10%. Considering the case where

the torque measurements were taken for increasing shear rates, the normalized torques are fairly

constant for Stokes number between 25 and 80. The ratio of torques then increases with the Stokes

number. A similar behavior is observed for the normalized torques measured with decreasing shear

rates. For Stokes number lower than 100, the normalized torques seem to have a dependance on the

shearing history of the mixture. The range of Stokes number at which the ratio of torques drops

and remains constant also depends on the shearing history of the mixture.

Figure 5.11 presents the normalized torques for a loading fraction of 20%. The ratio of torques

decreases with Stokes number for both increasing and decreasing shear rates. For the case with

decreasing shear rate, the normalized torques are slightly higher. For Stokes number higher than

100, the normalized torques exhibit a fairly constant behavior and no hysteresis is observed in the

torque measurements.

For a loading fraction of 30%, the normalized torques become constant for Stokes number higher

than 120, as shown in Figure 5.12. For all the Stokes number tested, the ratio of torques seems to
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Figure 5.10: Normalized torques as a function of Stokes number for flows over a porous medium and
φ = 10% with ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements normalized by the corresponding Mlaminar.
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Figure 5.11: Normalized torques as a function of Stokes number for flows over a porous medium and
φ = 20% with ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements normalized by the corresponding Mlaminar.
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show no hysteresis. This is different from what was observed in the previous section in Figure 5.4,

where the measured torques show hysteresis. Hysteresis is not observed in Figure 5.12 because by

normalizing the torque, the difference in the liquid viscosity due to an increase in temperature is

considered.
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Figure 5.12: Normalized torques as a function of Stokes number for flows over a porous medium and
φ = 30% with ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements normalized by the corresponding Mlaminar.

Figure 5.13 shows the normalized torques for a loading fraction of 40 %. The ratio of torques

corresponding to decreasing shear rates is slightly higher than for the case with increasing shear

rates for Stokes numbers lower than 100. For Stokes number higher than 150, the normalized

torques appear to be constant.

Figure 5.14 shows the normalized torques for the highest loading fraction tested for this type of

experiments φ̄ = 50%. There seems to be no hysteresis for the whole range of Stokes numbers tested.

The normalized torques decrease with Stokes number but unlike the lower loading fractions it did

not become constant. This is better observed in a semi-log plot. Figure 5.15 shows the normalized

torques for all the loading fractions tested. For φ̄ = 50%, the ratio of torques at the highest Stokes

numbers suggests that M/Mlaminar may reach a constant.

As shown in Figure 5.15, for Stokes number lower than 100, the normalized torques decrease

with Stokes number for all the loading fraction tested. For loading fractions higher than 10%, the

normalized torques continue to decrease until they become constant, with the exception of φ̄ = 50%,



83

Stokes number
0 20 40 60 80 100 120 140 160 180 200

M
=M

la
m

in
a
r

0

500

1000

1500

2000

2500

3000
7? = 40%, _. "
7? = 40%, _. #
Constant -t

Figure 5.13: Normalized torques as a function of Stokes number for flows over a porous medium and
φ = 40% with ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements normalized by the corresponding Mlaminar.
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Figure 5.14: Normalized torques as a function of Stokes number for flows over a porous medium and
φ = 50% with ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements normalized by the corresponding Mlaminar.
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where the normalized torque does not reach a plateau. For φ̄ = 10%, the normalized torques start

increasing for St > 80. For this particular loading fraction, the maximum value for the normalized

torque occurs at the lowest and the highest Stokes number.
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Figure 5.15: Normalized torques as a function of Stokes number for flows over a porous medium for
all φ̄ tested with ρp/ρ = 1.05. The error bars correspond to the combined uncertainty in the torque
measurements normalized by the corresponding Mlaminar.

5.5 Summary

Results from experiments where the liquid-solid mixtures are sheared over a porous medium were

presented. The torque measurements corresponding to shear rates lower than 60 s−1 increase with

shear rate. For higher shear rates there is a change in the torque trend. For φ̄ = 10%, the torque

dependance on shear rate became different: from linear to non linear (power law fit). For the rest

of the loading fractions, the torque exhibits a drop where the torque decreases and then increases

again with the shear rate. These marked changes in the dependance of the torque on shear rate are

not observed in the experiments with no porous medium. The presence of hysteresis is studied and

it is found that with the exception of φ̄ = 10%, once the torque is normalized there is no significant

presence of hysteresis for all the loading fraction tested. In general, for Stokes number lower than

100, the normalized torques decrease with St. For a loading fraction of 10%, the normalized torques

start to increase for St > 80. This increase is only observed for this particular loading fraction. For



85

the other loading fractions, the normalized torques decrease and for φ̄ < 50% it becomes constant.

The Stokes number at which the normalized torques reach a plateau increases with the loading

fraction. For φ̄ = 10%, µ′/µ starts increasing for St > 80. For φ̄ = 20, φ̄ = 30, and φ̄ = 40, µ′/µ

becomes constant at St > 120, St > 125, and St > 155, respectively.
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Chapter 6

Particle resuspension

6.1 Motivation

In previous chapters, the relative effective viscosity of a flow with particles denser than the interstitial

liquid was discussed. Such results show that these flows exhibit a shear thickening behavior when

the amount of particles loaded is less than 30% in volume, while for flows with particle loading

higher than 30% the behavior exhibited was shear thinning. In this chapter, the results of the

visualization of such flows are presented to understand the mechanism behind such behaviors and

to further explore the resuspension of flows consisting of settling polystyrene particles.

6.2 Particle settling

The visualizations are made by using the visualization setup described in Chapter 2, where the test

cylinder and top fixed guard are replaced by a transparent acrylic cylinder. As described in Chapter

2, the acrylic cylinder wall is roughened in the same manner as for the torque measurements, leaving

only a portion of the wall smooth and which serves as a visualization window. A percentage of

approximately 20% in volume of particles is painted on one face to make the visualization process

easier. The interstitial liquid for all the cases describe in this chapter is water and the particles

are all polystyrene; thus the density ratio between the particles and the liquid is ρp/ρ = 1.05. For

each set of experiments, a known volume of particles is loaded into the annulus. The volume of

the particles is obtained by carefully adding the particles to a known volume of water until they

all sink, and then measuring the volume of water displaced. The loading volume fraction (φ̄) is

the ratio between the volume of particles loaded and the total annulus volume. Each experiment is

prepared by running the rheometer for 30 minutes at a shear rate of, γ̇ = 50 s−1, with the objective

to remove air bubbles from the mixture and guarantee a homogeneous distribution of the particles.

Once the mixture has been sheared for 30 minutes, the rheometer is brought to a complete stopped

and the particles are allowed to come to rest in a loose, random orientation. Observations through
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the visualization window show that the particles settled and stop moving in less than a minute.

However, pictures of the apparent settle column of particles taken several minutes later show that

the minimum settling height of the column is not reached once the particles stop moving but some

time after that. An image sequence of the particles settling is shown in Figure 6.1.

Figure 6.1: Settling process after the rheometer is brought to a complete stop for a loading volume
fraction of 25%. Polystyrene particles, ρp/ρ = 1.05. Pictures taken from inside the inner cylinder.
Each window has a width of approximately 3.8 (cm) and the bottom of each picture corresponds to
the top of the lower fixed guard.

The height of the settled particles is measured by drawing a line that follows the top contour of

the particles. The vertical coordinates along the contour are considered and averaged to obtain the

particle’s mean height. An example of the contour used to measure the settled particle’s height is

shown in Figure 6.2

The minimum loading volume fraction that could be studied is 20%. For lower loading volume

fractions the particles are below the visualization window. In Figure 6.3 the ratio of the height of

the settled particles (hs) and the total annulus height (ht) of the rheometer for a loading volume

fraction of 25% is shown. The particle’s packing decreases approximately 2.54 cm and reach a
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Figure 6.2: Settled particles and their contour marked by the yellow line. The case shown corresponds
to a loading volume fraction of 30%. The ruler shown is in inches. The ratio between particles and
fluid density is ρp/ρ = 1.05.

minimum constant height in 20 minutes. The height of the settled particles decreases by a total of

10.6% of its initial length.

To compare the settling process between different loading volume fractions, the minimum height

was subtracted from the measured heights for each loading volume fraction and normalized by the

total annulus height. Figure 6.4 shows how much the settled particles compact with time. An

average of 15 minutes is the time it takes for the particles to reach a minimum height. From Figure

6.4 it can be seen that the height difference (h− hmin) increases with the loading volume fraction;

that is, the higher the amount of particles there is, the more the particles compact.

Figure 6.5 shows the height of the settled particles normalized with the annulus total height as

a function of the loading volume fraction. The normalized height exhibits a linear relation with the

loading volume fraction. The linear fit does not intercept the origin and therefore cannot be used

to predict the height for lower loading volume fractions. For very low loading volume fractions the

particle’s height may show a different dependance with the loading volume fraction. This could be

better seen by considering a very low loading volume fraction where the number of particles is not

enough to completely cover the base of the annulus. For such a case the presence of a few extra

particles strongly influences the measured height; meanwhile, for higher loading volume fractions

the mean measured height is not be affected by the presence of a few extra particles. Note that
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Figure 6.3: Settled particles height (hs) normalized with the total annulus height (ht) as a function
of time for a loading fraction of 25%. The ratio between particles and fluid density is ρp/ρ = 1.05.
The vertical error bars correspond to the standard deviation of the height measurements, while the
horizontal error bars represent the uncertainty in the time at which the corresponding picture was
taken.
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Figure 6.4: Difference of settled particles height and its minimum (hmin) normalized with total
annulus height (ht) as a function of time for different loading volume fractions for polystyrene
particles. The ratio between particles and fluid density is ρp/ρ = 1.05. The vertical error bars
correspond to the standard deviation of the height measurements, while the horizontal error bars
represent the uncertainty in the time at which each picture was taken.
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if the linear fit in Figure 6.5 is extrapolated to hs/ht = 1, the loading fraction is 55.8, which is

approximately equal to the random loose packing measured by Koos (2009).
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Figure 6.5: Settled particle’s height (hs) normalized with the total height of the rheometer annulus
(ht) as a function of the loading volume fraction. Dashed lines correspond to the relative position
of the low and top fixed guards. The ratio between particles and fluid density is ρp/ρ = 1.05. Error
bars correspond to the height measurements standard deviation.

Particle settling over a porous medium

Visualizations are also made for the case of a flow over a porous medium where the rheometer is filled

with spherical glass beads (diameter of 4 (mm) and density of 2520 (kg/m3)) up to approximately

6/7 of the bottom fixed guard. Polystyrene particles are placed on top of this layer of glass beads,

as described in Chapter 5. The density ratio between the polystyrene particles and the interstitial

liquid (water) for the experiments described in this section is ρp/ρ = 1.05. The volume of the annulus

considered for these experiments does not take into account the volume occupied by the glass beads.

Therefore, the volume of polystyrene particles needed to obtain a loading volume fraction of 10%

is less than for the case with no glass beads on the bottom (approximately 33% less in particles

volume). To account for the volume occupied by the porous medium, measurements of its height are

conducted, and from this the packing of the porous medium is calculated. As described in Chapter

2, the porous medium is prepared by first measuring the volume of the glass beads. This is done by

pouring them into a known volume of water and measuring the volume of liquid displaced. Then,
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the known volume of glass beads is poured into the bottom part of the annulus and it is evenly

distributed along the perimeter of the rheometer. Once the entire volume of glass beads is poured

and evenly distributed, the porous medium is sheared to account for any change in packing due

to shearing (to prevent excessive shearing on the porous medium, the walls of the bottom part of

the rheometer are not roughened). The height between the top of the lower fixed guard and the

porous medium is measured with the help of a vernier. These measurements are made dry and it is

considered that the effect of water on the packing of glass beads is negligible due to the high density

of the glass beads. A packing of 0.62 is found, which is what Koos (2009) measured for the random

loose packing of spherical glass beads of 3 mm in diameter and with the same density.
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Figure 6.6: Settled particles height (hs) normalized with the total height of the annulus modified for
the presence of porous medium (htm). The ratio between particles and fluid density is ρp/ρ = 1.05.
Error bars correspond to the height measurements standard deviation.

Figure 6.6 shows the settled particles height normalized by the height between the top of the glass

beads’ bottom layer and the top of the rheometer annulus (htm). As with the previous measurements

for the height of settled particles, the relation between the loading volume fraction and hs is linear

and the fit does not intercept at the origin. Figure 6.7 shows the settling height normalized by the

annulus total height (ht) for the experiments with and without porous medium. The difference in

normalized height for the same loading fraction between experiments is due to the presence of the

porous medium. With a porous medium, even for a low loading fraction of 10%, the particles’ height

is always above the bottom fixed guard. Figure 6.8 shows the settling heights for the experiments
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with porous medium normalized by the modified annulus height (without considering the layer of

glass beads) and the non-porous medium heights normalized by the total annulus height. For the

experiments with porous medium, the particles height is slightly lower than for the case with no

porous medium. The little difference between the normalized heights has a more pronounced effect

when the random loose packing is measured, as discussed in the next section.
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Figure 6.7: Settled particles height (hs) normalized with the total height of the annulus (ht) for
experiments with and without porous medium. The ratio between particles and fluid density is
ρp/ρ = 1.05. Error bars correspond to the height measurements standard deviation.

6.3 Random loose packing

The random loose packing, φRLP , can be calculated from these height measurements by considering

that the total volume occupied by the particles is equal to the measured settled height times the

area of the base of the rheometer annulus. The height measured through the visualization window

is considered to be the same along the perimeter and in the radial direction of the rheometer. The

reduction in the annulus base area due to the rough surface is considered when calculating this area.

The random loose packing is then be given by

φRLP = Volume of particles
Volume occupied by particles = Volume of particles

Annulus base area× hs
, (6.1)

where hs is the minimum settling height reached by the settled particles after 15 minutes or
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Figure 6.8: Settled particles height (hs) normalized with the total height of the annulus (ht). For
the experiments with porous medium, the settling height is normalized by the modified total height
annulus (htm). The ratio between particles and fluid density is ρp/ρ = 1.05. Error bars correspond
to the height measurements standard deviation.
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more have passed. Figure 6.9 shows the random loose packing as a function of the loading volume

fraction. As seen in Figure 6.4, the higher the loading volume fraction, the more the particles are

compacted, which leads to a higher random loose packing. One of the sources of uncertainty for

the random loose packing calculation is the area considered for the annulus base. To verify that

the annulus base area is constant along the vertical axis, measurements of the height of a known

volume column of water are performed. These measurements show that the column water height

increases linearly with the water volume. Hence, the annulus base area seems to be constant along

the annulus height. The annulus base area can be measured from these measurements; however, the

area occupied by the water is larger than the area that can be occupied by the particles, since the

water can enter cavities in the rough surface that the particles can not. For this reason, the annulus

base area is considered to be equal to π × ((ro − d)2 − (ri + d)2), where ro and ri are the outer and

inner cylinder radius with smooth walls and d is the particle diameter.
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Figure 6.9: Measured random loose packing from the settling height measurements as a function of
the loading volume fraction. The ratio between particles and fluid density is ρp/ρ = 1.05. Error
bars correspond to the uncertainty involved in these measurements.

The reason why the random loose packing is not constant is still not completely understood, but

one explanation could be the effect that the extra weight due to the increase in particles has on

further compacting the column of particles. Moreover, it is likely that some particles have a lighter

density, leading to higher measurements of the particle column height and thus a decrease in the

random loose packing calculated. The ratio between the random loose packing for the highest and
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lowest loading volume fraction is 1.16; thus the random loose packing varies up to 16% for different

loading volume fractions.

Random loose packing of polystyrene particles over a porous medium

The random loose packing is calculated for the loading volume fractions of 10, 20 and 30 percent.

Higher loading volume fractions are not measured because the view window only covered the height

of the test cylinder, which is lower than the height of the particles. As mentioned before, the volume

of the annulus considered when there is a porous medium on the bottom of the rheometer depends

on the packing of such medium.

The polystyrene particles’ column height is measured in the same way as for the previous cases,

where the mixture is sheared for several minutes to ensure a homogeneous distribution of the particles

and then brought to rest. Figure 6.10 shows the random loose packing calculated for the settled

particles over a porous medium. As with the previous random loose packing measurements, the
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Figure 6.10: Measured random loose packing from the settling height measurements of polystyrene
particles over a porous medium as a function of the loading volume fraction. The ratio between
particles and fluid density is ρp/ρ = 1.05. Error bars correspond to the uncertainty involved in these
measurements.

φRLP increases with loading volume fraction. The random loose packing for polystyrene particles

over a porous medium can be compared to the one measured without porous medium on the bottom.

Figure 6.11 shows this comparison. For all the loading volume fractions, the random loose packing
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Figure 6.11: Comparison between measured random loose packing of polystyrene particles with and
without a porous medium on the bottom as a function of the loading volume fraction. The ratio
between particles and fluid density is ρp/ρ = 1.05. Error bars correspond to the uncertainty involved
in these measurements.
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for the cases with glass beads on the bottom is higher than for the case without glass beads. However,

the random loose packing for the case without porous medium is within the lower error bar for the

φRLP with a porous base. Besides the porous medium, these two cases differ in the amount of

particles necessary to reach the same loading volume fraction. There are less particles for the case

with porous medium, which makes the topology of the particles’ top surface a source of greater

uncertainty.

6.4 Particle resuspension for ρp/ρ = 1.05

The characteristics of settled polystyrene particles immersed in water are discussed in the previous

section. For all the cases presented in the previous section the Stokes and Reynolds numbers were

equal to zero. In this section, the resuspension of the particles due to an increase in the shear rate

and consequently an increase on the Stokes and Reynolds numbers is studied. The case without

porous medium on the bottom is analyzed first. For all the experiments studied in this section the

interstitial liquid of the flow is water and the density ratio between the particles and the liquid is

ρp/ρ = 1.05.

Figure 6.12 shows an image sequence of the resuspension for a loading volume fraction of 25 %.

Each picture is taken after several minutes of shearing the liquid-solid mixture at the shear rate

corresponding for each Stokes number. As Stokes number increases, the particles start fluidizing

until they reach a steady state where the level reached by the particles remains constant with time.

The level reached by the particles for each Stokes number is measured in the same way as the height

of the column of settled particles (described in the previous section). A minimum of 9 pictures for

each Stokes number is taken and used to measure the resuspension height. Figure 6.13 shows the

resuspension height normalized by the total height of the rheometer annulus.

The change in height occurs abruptly as the Stokes number is increased from zero, as shown in

Figure 6.12 and 6.13 . The height normalized by the annulus height, as shown in both figures, for

St = 0 corresponds to the settled particles’ height after the particles have been at rest for more than

15 minutes. The further packing of the particles while at rest described in Section 6.1 contributes

for this sudden change in height. A similar profile is observed for different loading volume fractions,

as shown in Figure 6.14.

The normalized resuspension heights increase with loading volume fraction but exhibit a similar

dependance on Stokes number. This suggest that the data could be collapsed into one curve, and

such a parameter can be the particles packing. For St=0, the random loose packing is measured and

described in detail in Section 6.3. A volume fraction for non-zero Stokes numbers is given by:

φ = Volume of particles
h×Annulus base area = φRLP

hs
h
, (6.2)
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Figure 6.12: Particles resuspension for a loading volume fraction of 25% for different Stokes numbers.
Pictures taken from inside the inner cylinder. Each window has a width of approximately 3.8 (cm)
and a height equal to the total rheometer annulus height minus the lower fixed guard height. The
bottom of each picture corresponds to the bottom of the test cylinder.
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Figure 6.13: Resuspension height (h) normalized by the total rheometer annulus height (ht) as a
function of Stokes numbers for a loading volume fraction of 25%. Error bars correspond to the
standard deviation in the resuspension height measurements.
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Figure 6.14: Resuspension height (h) normalized by the total rheometer annulus height (ht) as a
function of Stokes numbers. Error bars correspond to the standard deviation in the resuspension
height measurements.

where hs is the settled particles’ height and h is the resuspension height. Figure 6.15 shows the

particles packing’s strong dependance on Stokes number. There is some dependance on the loading

volume fraction but this can be further minimized if the particles packing is normalized by the

measured random loose packing for each loading volume fraction as shown in Figure 6.16. Predictions

of how much the particles would expand given a certain Stokes number can be done using this

relation. Such predictions are used in the next chapter to predict the effective volume fraction of

the torque measurements.

Particle resuspension over a porous medium (ρp/ρ = 1.05).

The analysis of the resuspension of settling particles over a layer of glass beads (porous medium)

is done in a similar way as discussed in the previous section. Only the total rheometer annulus

height is reduced to take into account the bottom layer of glass beads. The height for this type

of experiments is measured from the top surface of the porous medium. Figure 6.17 shows the

resuspension height normalized by the modified total annulus height (htm). As with the previous

experiments, the normalized height increases with the Stokes number and with the loading volume

fraction. To study the effect of the bottom glass beads layer on the resuspension, the heights are

normalized by the modified total height and compared with the normalized measured heights for the
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Figure 6.15: Particle packing for different loading volume fractions as a function of Stokes numbers.
The uncertainties in measuring the particles packing are combined in root mean square sense and
are represented by the error bars.
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Figure 6.16: Particle packing for different loading volume fractions normalized by the random loose
packing as a function of Stokes numbers. The uncertainties in measuring the particle packing are
combined in root mean square sense and are represented by the error bars.



103

Stokes number
0 20 40 60 80 100 120

h
=h

tm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fixed guard

Fixed guard

7? = 10%
7? = 20%
7? = 30%

Figure 6.17: Resuspension height normalized by the modified annulus height (htm) as a function
of Stokes numbers. The height of the particles column is measured from the surface of the porous
medium. The error bars correspond to the standard deviation of the height measurements.

experiments without a porous medium. Figure 6.18 shows this comparison. The normalized heights

for the experiments with porous medium do not seem to follow the same expansion exhibited for

the experiments with the same loading fraction but without porous medium . For the case with flow

with no porous medium, the expansion at low loading fractions occurs in a more pronounced way

than the expansion for the same loading fraction but with porous medium at the bottom. Figure

6.19 shows the heights for the experiments with porous medium measured from the bottom of the

annulus normalized by the total annulus height (ht). These normalized heights are plotted together

with the normalized heights for the case without a porous medium on the bottom. In this way, the

portion of the test cylinder that is covered by the particles can be observed as a function of the

Stokes numbers. The differences in the expansion of a column with the same height but a different

amount of particles can be also analyzed with Figure 6.19. The expansion of the column of particles

for the case with porous medium on the bottom and φ̄ = 10% coincides with the expansion measured

for a φ̄ = 20% and no porous medium. Similarly, the expansion of φ̄ = 20 and 30% for flow over

porous medium compares favorably with the expansion of φ̄ = 25 and 30% without porous medium,

respectively. This suggests that the expansion of the particles is determined by the distance from the

surface of the column of particles to the top boundary rather than the loading fraction. If the same

loading volume fraction is considered, the normalized heights for the case with a porous medium
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Figure 6.18: Resuspension height normalized by the total modified annulus height (htm and ht)
for the case with and without porous medium as a function of Stokes numbers. Open symbols
correspond to the case with no porous medium on the bottom and close symbols correspond to the
case with a porous medium. The heights for the latter case are measured from the top of the porous
medium. The error bars correspond to the standard deviation of the height measurements.
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Figure 6.19: Resuspension height normalized by the total annulus height (ht) as a function of Stokes
numbers. Open symbols correspond to the case with no porous medium on the bottom and close
symbols correspond to the case with a porous medium on the bottom . For the latter case, the
heights shown considered the height of the glass beads layer. The error bars correspond to the
standard deviation of the height measurements.
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on the bottom coincide with the experiments without the porous medium. Figure 6.20 shows the

dependance of the particles packing on the Stokes number for the case of particles fluidized over a

porous medium. The dependance on the loading volume fraction is relatively weak compared to the

dependance on Stokes number observed for the experiments with no porous medium. The particles’

packing data collapses when normalized by the measured random loose packing, as shown in Figure

6.21. The normalized particle packing seems to collapse better than for the case with no porous

medium; however, the resuspension of the particles could only be measured for Stokes numbers lower

than 100 because of limits on the viewing window.
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Figure 6.20: Particles packing for different loading volume fractions as a function of Stokes numbers
for the case of flow over a porous medium. The uncertainties in measuring the particle packing are
combined in root mean square sense and are represented by the error bars.

The packing for porous medium is compared against the packing without a porous medium in

Figure 6.22. The normalized particle packing and its dependance on Stokes number for the case of

porous and no porous medium on the bottom are shown in Figure 6.23. The particles over a porous

medium fluidized less readily as compare with experiments without porous medium on the bottom.

However, these differences are not big and both cases seem to follow a similar dependance on the

Stokes number.
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Figure 6.21: Particles packing for different loading volume fractions normalized with the measured
random loose packing as a function of Stokes numbers for the case of flow over a porous medium.
The uncertainties in measuring the particle packing are combined in root mean square sense and are
represented by the error bars.
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Figure 6.22: Particles packing for different loading volume fractions as a function of Stokes numbers
for the case with and without porous medium. Close symbols corresponds to the flow over a porous
medium. The uncertainties in measuring the particle packing are combined in root mean square
sense and are represented by the error bars.
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Figure 6.23: Particles packing for different loading volume fractions normalized with the measured
random loose packing as a function of Stokes numbers for the case of flow over a porous and no
porous medium. The uncertainties in measuring the particle packing are combined in root mean
square sense and are represented by the error bars.



110

6.5 Summary

The particle settling process for non neutrally buoyant particles with a density ratio of ρp/ρ = 1.05

is presented in the first section of this chapter for the case of no porous medium on the bottom. A

gradual compaction of the settled particles is found, where the initial height of the settled particles

decreases over a period of 15 minutes once the rheometer is brought to a complete stop. The reason

for this further packing of the particles is not completely understood but one explanation could be

the gradual release of trapped air in the mixture.

Using the measurements of the particles settled height, the random loose packing is calculated

and found to depend on the loading volume fraction for the experiments without a porous medium.

The reason why the random loose packing is not constant might have to do with the presence of

slightly buoyant particles. Lighter particles would cause the column of particles to further expand,

leading to a decrease in the random loose packing.

Finally, the resuspension of the particles due to shearing is presented. When the measured

heights for the experiments with a flow over a porous medium is normalized with the modified total

annulus height, it does not strictly coincide with the experiments without porous medium with the

same loading fraction. However, when the height of the column of particles over a porous medium is

measured from the bottom of the annulus and normalized with the total annulus height, it coincides

with the normalized measured height for the experiments without porous medium but higher loading

fractions. This suggests that the fluidization of the column of particles depend on the position of

the particle column or equivalently on the length of the column of liquid on top of that column.

The particles resuspension is characterized by measuring the packing of the particles for different

Stokes numbers. The particles’ packing decreases with the Stokes number for both cases of porous

and non-porous medium on the bottom, and if normalized with the measured random loose packing,

the resuspension data collapses and follows a single trend where the largest scatter occurs for the

highest Stokes number.
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Chapter 7

Discussion

This chapter is a discussion of inertial and particle concentration effects for the experiments with a

matched density, followed by direct comparisons of the torque measurements with different density

ratios. In the previous chapter the effective volume fraction was measured with the help of the flow

visualization. Such measurements are used to predict the effective volume fraction of mixtures with

a density ratio of ρp/ρ = 1.05. It is hypothesized that the effective relative viscosity for flows with

a mismatch density is equal to the effective relative viscosity for flows with a match density as long

as both cases have the same effective volume fraction. This hypothesis is based on the results for

mixtures with a matched density, where for φ > 30 the effective relative viscosity does not appear

to vary dramatically with the Stokes number but it strongly depends on the volume fraction.

7.1 Inertial and particle concentration effects on mixtures

with ρp/ρ = 1

In Section 4.2 it was shown that the effective relative viscosity for experiments with a liquid with

matched density and volume fractions of 10, 20, and 30% exhibit a dependance on Stokes number,

(see Figure 4.3). To study if this dependance can be attributed to the presence of particles or to

the hydrodynamic inertial effects, a comparison between the normalized torques for the mixture and

for the suspending liquid is made as a function of the gap Reynolds number as defined in equation

2.5. Figure 7.1 shows the measured torques normalized by the theoretical laminar torque for volume

fractions of 10, 20, and 30%, and for pure fluid. Both normalized torques increase with the gap

Reynolds number. The normalized torque for the mixture is higher than the normalized torque

for pure liquid. If the dependance of the normalized torque with Reynolds number is due to the

suspending liquid inertial effects, the effect of the presence of particles would be to only increase the

viscosity of the mixture. To account for the increase in flow viscosity due to the presence of particles,

an effective gap Reynolds number (Reb, eff ) is considered. In this modified Reynolds number, the
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Figure 7.1: Normalized measured torques as a function of gap Reynolds numbers defined in equation
2.5 for pure fluid and mixtures with φ = 10, 20 and 30% and ρp/ρ = 1.

effective viscosity of the mixture is used instead of the suspending liquid viscosity,

Reb, eff = ρωrob

µ′
.

The next step is to determine the effective viscosity of the mixture. Under no hydrodynamic effects,

this effective viscosity would be independent of the Reynolds number and be only a function of

volume fraction. Figure 7.2 shows the normalized torques for the experiments with ρp/ρ = 1 as

a function of the loading fraction from the rough walls experiments of Koos et al. (2012) and the

current experiments. For volume fractions lower than 40%, the data for the lowest Stokes numbers

tested appear to coincide with the data from Koos (2012). As mentioned in Chapter 3, the range of

Stokes numbers tested by Koos is slightly lower than the present experiments with ρp/ρ = 1 (Stokes

number from 3 ≤ St ≤ 90). Therefore, it is likely that hydrodynamics effects on the lowest Stokes

numbers are negligible and the effective viscosity of the mixture can be inferred from these low St

measurements. Figure 7.3 shows the effective relative viscosity of the mixture for the lowest Stokes

numbers (µ′min/µ) as a function of volume fraction compared with the effective relative viscosity

from Koos et al. (2012). This effective viscosity is used to define the effective gap Reynolds number

and it is considered to be only a function of volume fraction. To study the contribution from the

hydrodynamic effects on the measured torques, it is instructive to normalize them by an “effective
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laminar torque”, which is defined as a the corresponding torque for a Newtonian liquid with a

viscosity equal to µ′min(φ),

Meff, laminar = 2πr2
iHγ̇µ

′
min(φ).

If the effect of the presence of particles is to only increase the effective viscosity of the flow, the

ratio between the measured torques and Meff, laminar would be independent of the effective gap

Reynolds number when Reb, eff is below a critical value or regime, where the hydrodynamic effects

are negligible.

Figure 7.4 shows the ratio between the measured torques and the effective laminar torque for

all the volume fractions tested as a function of the effective gap Reynolds number based on µ′min.

The range of effective gap Reynolds number goes from 1 ≤ Reb, eff ≤ 10 × 104. If the results

of Taylor (1936a) can be applied to the liquid-solid mixture, the critical Reynolds number for the

onset of Taylor-Couette vortices is expected to occur about Reb, eff ≈ 1.1 × 104 for the current

geometry of the apparatus. From Figure 7.4 it can be seen that the normalized torque increases

for effective Reynolds numbers in a lower range. However, pure fluid torque measurements showed

that the measured torques deviate from the laminar theory at a similar gap Reynolds number range

(see Figure 2.13). Figure 7.5 shows the pure fluid and mixture measurements as a function of
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Figure 7.4: Measure toques normalized by effective laminar torque as a function of effective Reynolds
number defined by the minimum value of µ′/µ for each volume fraction.

gap and effective gap Reynolds number. The deviation from laminar theory occurs at an effective
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Reynolds number range where the pure fluid measurements exhibit a non-laminar behavior. The

mixture normalized torques start deviating from the laminar theory at lower effective Reynolds

number range. In the Couette-Taylor flow studies from Taylor (1936a), it was shown that when the

flow is sheared by the rotation of the outer cylinder, the flow transition did not occur at a specific

critical gap Reynolds number but within a range. Based on this, it is likely that the hydrodynamic

effects are present in a range of Reynolds number rather than above a critical value. Therefore, the

deviation from the laminar behavior of the mixture at effective gap Reynolds number is more likely

to be due to hydrodynamics effects rather than an effect of particle interactions.
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Figure 7.5: Measure toques normalized by Meff, laminar as a function of Reb, eff compared with
normalized pure fluid torque measurements. For pure fluid, the normalized torques are plotted
against Re∗b .

In an ideal scenario where secondary flow effects are not present, the transition from “viscous” to

“inertial” regime in liquid-solid flows would be governed by particle interactions. These interactions

are controlled by the Stokes number, which is based on the particle size and the fluid viscosity rather

than the effective viscosity of the mixture. Therefore, it is not possible to determine what the Stokes

number regime at which the transition occurs due to merely particle inertia is.

For larger volume fractions the relative effective viscosity exhibited a weaker dependance on the

Stokes number (see Figure 4.4), suggesting that for these experiments the inertial effects from the

fluid and particles are not present. From Figure 7.5 it can be seen that for φ = 40 and 50%, the

corresponding Reb, eff is lower and possibly below the critical Reynolds number.
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7.2 Direct comparisons between ρp/ρ = 1 and ρp/ρ = 1.05

Figure 7.6 shows the ratio of torques as a function of the Stokes number for the lowest loading

fraction (10%) for the case with settling and non settling particles. Above Stokes number higher

than 60, the normalized torques for both cases seem to match . Visualizations of the flow (a detailed

analysis of this is presented in Chapter 6) for the case of settling particles at φ̄ = 10% show that for

Stokes numbers lower than 60, the height of the column of particles is lower than the bottom fixed

guard height. Therefore, for St < 60 the particles do not reach the test cylinder. For this reason

the torque measurements for these shear rates are not considered.
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Figure 7.6: Normalized torques for 10% loading fractions as a function of St for ρp/ρ = 1 and 1.05.

Figure 7.7 shows the comparison between the normalized torques for a loading fraction of 10%

with settling particles and the normalized torque measurements for just the liquid (plain water with

no particles). These torques were normalized with the torque corresponding to a laminar flow. The

normalized torques for a loading fraction of 10 % match the values for the torque measurements for

just the fluid when the gap Reynolds number is lower than 5 × 104. For higher Reb, the mixture

exhibit higher normalized torques than the pure fluid. Above Re = 3× 104, the visualization of the

flow starts showing the presence of particles in the middle test section.

The reason why the normalized torques for non-settling particles matches the normalized torques

for the settling ones at St < 135 might be coincidental. In the case with settling particles, below
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Figure 7.7: Comparison between normalized torques as a function of gap Reynolds number for pure
fluid and φ̄ = 10% with ρp/ρ = 1.05.

St = 80, the solid phase contribution to the torque at low shear rates is null, while for the case with

neutrally buoyant particles the solid phase is always present (see Figure 7.8 for a comparison on

the flow visualization between these two cases). Therefore at about St = 80, the measured torque

includes a contribution from the pure fluid and a contribution from the particles.

For a higher loading fraction of 20%, the normalized torques for ρp/ρ = 1 are higher than for

the case with ρp/ρ = 1.05 for St > 60, as seen in Figure 7.9. For the particular case of these low

loading fractions, it is possible that the torque contribution from the suspending liquid is higher than

the torque predicted from laminar theory. As presented in Section 2.4, the measured torques for

plain water and 21% aqueous glycerine mixture are 4 to 28 times higher than the torques predicted

by laminar theory. For the case of ρp/ρ = 1.05 and φ̄ = 10%, the visualization of the flow shows

that the test cylinder is fully covered by the particles only for St > 135 (see Figure 6.14 or table

7.1). This means that for lower Stokes numbers, the measured torque does not correspond solely to

the liquid-solid mixture and thus it is not representative of the suspension. A comparison of these

loading fractions is given later in Section 7.6.

Figure 7.10 shows the normalized torques for a loading fraction of 30% for the case with settling

and non-settling particles. For the case with settling particles, only the normalized torques corre-

sponding to Stokes numbers where the particles are closed to be completely fluidized are considered

(based on the settling particles heights and visualizations) so the settling effect on the measured
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Figure 7.8: (a) Image sequence of the flow for φ̄ = 10% and ρp/ρ = 1.05 for different Stokes numbers.
(b) Same as (a) but for ρp/ρ = 1. The height of the visualization window is slightly higher than the
test section.

No porous medium Porous medium
φ̄ St fully covered St fluidized St fully covered St fluidized
10 135 NA 80 80
20 80 NA 65 100
30 NA 80 NA 120
40 NA 95 NA 140
50 NA 100 NA 180
60 NA 100 NA NA

Table 7.1: Critical Stokes numbers for fluidization. St fully covered denotes the Stokes number above
which the test cylinder is fully covered by particles based on Figure 6.19. St fluidized denotes the
Stokes number above which the ratio of torques exhibits a change in slope based on Figures 4.16
and 5.15.
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Figure 7.9: Comparison between normalized torques as a function of Stokes numbers for ρp/ρ = 1
and ρp/ρ = 1.05 with φ̄ = 20%.

torques is weaker. For both cases, the normalized torques increase with Stokes number and exhibit

a linear dependance with similar slopes. The normalized torques for the settling particles at the two

similar Stokes numbers are higher than for the non settling ones. A possible explanation for these

differences is that the effective volume fraction for the settling particles is slightly higher. The Stokes

number at which the particles reach the top of the rheometer (see table 7.1) is around 113, but even

when the particles have reached the top, it does not imply an homogeneous distribution of the parti-

cles. A gradient on the volume fraction may exist, leading to effective volume fractions higher than

the loading fractions and therefore higher normalized torques. An analysis of the effective volume

fraction is presented in Section 7.3.

Based on the particles height measurements, the test cylinder is fully covered at most Stokes

numbers for a loading fraction higher than 30% (see Figure 6.14 or table 7.1). The torque contribu-

tion from the suspending liquid might be less than in the more dilute cases since the concentration

of particles is high enough to decrease the effective Reynolds number of the flow, making the sus-

pending liquid contributions closer to the torque predicted from laminar theory. Figure 7.11 shows

the normalized torques for the higher loading fractions and for ρp/ρ = 1 and ρp/ρ = 1.05 . Only the

Stokes numbers at which the particles reached the top are considered. Predictions of the effective

volume fraction based on the flow visualizations are presented later in Section 7.3. For the case with

matched densities, there is a slight decrease in the effective relative viscosity for φ = 40 and 50%
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Figure 7.10: Comparison between normalized torques for ρp/ρ = 1 and ρp/ρ = 1.05 as a function of
Stokes numbers with φ̄ = 30%. For the case of ρp/ρ = 1.05, only the data without settling is shown.

at the lowest Stokes number, and this decrease might be due to slight settling of the particles, but

it is considerably less dramatic than the one observed for settling particles at low Stokes numbers

(see Figure 4.15). The normalized torques for φ = 50% for ρp/ρ = 1 are almost the same as for

ρp/ρ = 1.05. At this high loading fraction the effective volume fraction after fluidization matches

the effective volume fraction for ρp/ρ = 1. For φ = 40% and ρp/ρ = 1 the normalized torques have

lower values than for ρp/ρ = 1.05, and it is possible that there exists differences in effective volume

fraction due to settling.

For all the cases shown in Figure 7.11, the normalized torques exhibit a weak dependance on

the Stokes number. In the absent of strong hydrodynamics effects, the normalized torques would

depend on the concentration and possible interaction of particles. If the latter is not present or

if it is weak, the normalized torques would be independent of Stokes number and would exhibit a

strong dependance on volume fraction. Therefore, for these loading fractions, the effects of fluid and

particle inertia are not strong. An analysis of the inertial effects for the case with ρp/ρ = 1.05 is

presented in Section 7.4.

The normalized torques for Stokes numbers where the particles are completely fluidized and for

loading fractions higher than 20% seem to coincide with the normalized torques for the case with

ρp/ρ = 1 as can be observed in Figure 7.12.

Assuming that the normalized torques are equal to the effective relative viscosity, Figure 7.13
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Figure 7.11: Normalized torques as a function of Stokes numbers with φ̄ = 40, 50, and 60% for
ρp/ρ = 1 and ρp/ρ = 1.05. For the case of ρp/ρ = 1.05, only the data without settling is shown.
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Figure 7.12: Normalized torques as a function of Stokes number for ρp/ρ = 1 and ρp/ρ = 1.05. For
the case with settling particles, only the normalized torques corresponding to Stokes number where
the particles are fully fluidized are shown.
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shows the effective relative viscosity for all the volume fraction tested and for ρp/ρ = 1 and ρp/ρ =

1.05. For the case with settling particles, the data corresponding to Stokes numbers below the

fluidization threshold are not included. The Stokes number magnitude is denoted by the size of the

symbol. The effect of Stokes number is the same for both density ratios. For loading fractions lower

than 40%, the effective relative viscosity increases with St. At higher loading fractions the effect of

Stokes is not very noticeable for the both density ratios studied as long as the data with settling

effects are not considered. Figure 7.14 shows the ratio of µ′/µ for all the Stokes number tested,

including the data where the particles are settling. It can be seen from Figure 7.14 that for loading

fractions higher than 20%, the ratio of µ′/µ decreases with St for ρp/ρ = 1.05. This is linked to the

settling effects and it is similar to what was observed by Acrivos et al. (1994). It is expected that

these two curves would collapse when the effective volume fraction is used instead of the loading

fraction. The prediction of the effective volume fraction is studied in the next section.
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Figure 7.13: Relative effective viscosity as a function of φ and φ̄ for ρp/ρ = 1 and ρp/ρ = 1.05. For
the case of ρp/ρ = 1.05, only the data without settling is shown.

A comparison between the two sets of data for the current experiments and the rough walls

experiments from Koos et al. (2012) is presented in Figure 7.15.

The effect of Stokes number is considerably less for the previous experiments of Koos (2009) at

lower volume fractions.
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Figure 7.14: Relative effective viscosity as a function of φ and φ̄ for ρp/ρ = 1 and ρp/ρ = 1.05. All
the Stokes number tested are shown, including the ones with settling effects.
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Figure 7.15: Relative effective viscosity as a function of φ and φ̄ for ρp/ρ = 1 and ρp/ρ = 1.05
compared with the effective relative viscosity from Koos et al. (2012). For the case of ρp/ρ = 1.05,
only the data without settling is shown.
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7.3 Prediction of the effective volume fraction

As mentioned before in Section 7.2, for settling particles at low loading fractions and below a certain

Stokes number, the particles do not entirely cover the test cylinder. To compare these low loading

fractions and the low loading fractions with ρp/ρ = 1, only the measurements where the test cylinder

is fully covered are considered.

Figure 7.16 shows the effective relative viscosity as a function of the Stokes numbers for φ = 10

and 20%, and for ρp/ρ = 1 and ρp/ρ = 1.05. For the lowest volume fraction the effective relative

viscosity for the settling particles appears to coincide with the trend observed for ρp/ρ = 1. However,

the St numbers at which the particles fully covered the test cylinder are higher than the tested St

for ρp/ρ = 1 but they seem to follow the same trend. This suggests that the difference in density is

less important when the particles are completely fluidized for this dilute case.
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Figure 7.16: Relative effective viscosity as a function of Stokes numbers with φ̄ = 10 and 20% for
ρp/ρ = 1 and ρp/ρ = 1.05. For the case of ρp/ρ = 1.05, only the data without settling is shown.

For the higher loading fraction of 20%, the effective relative viscosity for the settling particles is

slightly lower than for the density matched experiments with same loading fraction. This difference

is an indication of the particles’ effect since the suspending liquid for the case with settling particles

has a lower viscosity than for the case with ρp/ρ = 1. Thus, an increase in the effective relative

viscosity must be due to an increase in the particle concentration. In Figure 7.17, visualization of

the flow is shown for a loading fraction of 20%, where it can be seen in the difference in particle
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Figure 7.17: (a) Image sequence of the flow for φ̄ = 20% and ρp/ρ = 1.05 for different Stokes
numbers. (b) Same as (a) but for ρp/ρ = 1. The height of the visualization window is slightly higher
than the test cylinder.

To account for the effect of solid concentration, the effective volume fraction for the settling

particles is inferred from the particle resuspension measurements. Using a linear interpolation, the

effective volume fraction at specific query Stokes number can be inferred from the volume fraction

calculated using the particles height measurements presented in Chapter 6. Figure 7.18 shows the

effective relative viscosity as a function of the effective volume fraction for different Stokes numbers

tested for ρp/ρ = 1.05. Here only the cases where the test cylinder is fully covered are considered.

The magnitude of the Stokes numbers is represented with different size symbols (the larger the

Stokes number, the larger the symbol). As the Stokes number increases, the effective volume fraction

decreases. The highest relative viscosity corresponds to the highest volume fraction and the lowest
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Figure 7.18: Effective relative viscosity as a function of the predicted volume fraction. The size of
the symbols denotes the magnitude of the Stokes numbers, where the largest symbols correspond to
the largest Stokes numbers. Only the cases where the mixture cover the test cylinder are presented.

Stokes number. For loading fractions higher than 30%, the data seem to collapse. For the cases

with lower φ̄, the data seem to scatter more.

To study the effect on differences in density, the effective relative viscosity and volume fraction

are compared with the case with ρp/ρ = 1. . Figure 7.19 shows this comparison.

The effective relative viscosity for the two sets of data seems to coincide and follow the same

trend. This suggests that there are no strong effects on different density ratios. Figure 7.20 shows

the comparison between the current experiments and the previous experiments from Koos (2009).

The data seem to coincide for most volume fractions. The loading fractions that deviate more

are the loading fraction of 10 and 40% from Koos (2009).

7.4 Inertial and particle concentration effects on mixtures

with ρp/ρ = 1

The predicted effective volume fraction is used to estimate the effective viscosity of the mixture.

Based on Figure 7.3, the effective viscosity of the mixture for a ρp/ρ = 1.5 is assumed to be

independent of the density ratio. This assumption is validated with the results presented in the

previous section, where the effect of differences in density was weak (it should be noted that the
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Figure 7.19: Effective relative viscosity as a function of the loading and predicted volume fraction
for ρp/ρ = 1 and ρp/ρ = 1.05.The size of the symbols denotes the magnitude of the Stokes numbers,
where the largest symbols correspond to the largest Stokes numbers. Only the cases where the
mixture cover the test cylinder are presented.
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Figure 7.20: Effective relative viscosity as a function of the loading and predicted volume fraction
for ρp/ρ = 1 and ρp/ρ = 1.05, compared with the data from rough walls of Koos (2012). The size of
the symbols denotes the magnitude of the Stokes numbers, where the largest symbols correspond to
the largest Stokes numbers. Only the cases where the mixture cover the test cylinder are presented.
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differences in density is only 5%). It follows then that the normalized torque corresponding to the

same volume fraction would be the same as long as no hydrodynamics effects are present. Based on

this, the effective relative viscosity between two mixtures with different suspending liquid but same

volume fraction is
µ′min, 21% glycerine

µ21% glycerine
=
µ′min, H2O

µH2O
.

Using this relation the effective viscosity is found for the experiments with settling particles. The

effective Reynolds number is calculated in the same way as before. Figure 7.21 shows the measured

torques normalized with the corresponding laminar torque for a effective mixture viscosity. Only

the data with fluidized particles is considered to isolate the effect of settling.
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Figure 7.21: Measured torques normalized with effective laminar torque as a function of Reb, eff for
ρp/ρ = 1.05. The effective viscosity of the mixture is inferred from the effective volume fraction and
Figure 7.3.

The settling particles show a wider scatter than the data with density ratio equal to one. This

is due to the uncertainties introduced when estimating the effective viscosity of the mixture (µ′min).

The accumulative uncertainty would involve the uncertainty on predicting the effective volume frac-

tion and the uncertainty involved inferring µ′min from the data with ρp/ρ = 1. If the mixture

effective viscosity is considered to be equal to the effective viscosity for the lowest values of Stokes

number found for ρp/ρ = 1.05, then the source of uncertainties reduces. In such case the modified
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effective Reynolds number is defined as

Re∗b, eff = ρωb

µ′∗min
,

where µ′∗min corresponds to the minimum value of µ′/µ found for each loading fraction. For the

case with ρp/ρ = 1.05, this corresponds to the highest Stokes numbers where the particles are

fully fluidized. Figure 7.22 shows the measured torques normalized by the effective laminar torque

considering µ′∗min (M∗eff, laminar). The scattered in this plot is considerably less.
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Figure 7.22: Measured torques normalized with effective laminar torque as a function of Re∗b, eff for
ρp/ρ = 1.05. The effective viscosity of the mixture used for Re∗b, eff corresponds to the minimum
µ′/µ for each loading fraction.

In both figures the range of effective Reynolds number at which the normalized torques deviate

from a laminar behavior coincides with the region found for the case with ρp/ρ = 1. Based on these

results, any dependance of the Stokes or Reynolds number is due to hydrodynamics effects.

7.5 Flow over a porous medium ρp/ρ = 1.05

In an attempt to study low loading fractions, experiments of the mixture flow over a porous medium

were performed. For all the loading fractions, the normalized torques decrease with Stokes numbers,

with the exemption of φ̄ = 10%. One of the main differences found between these experiments and
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the ones without a porous bed is that the measured torque decreases at a certain Stokes number.

This is observed at all loading fractions and it was independent of the shearing history of the flow

(no hysteresis). This drop on the measured torque is likely to be linked to a settling (or equivalently

to a resuspension effect). This drop in torque is observed as a change in slope on the normalized

torques. A comparison between the visualization of the flow and the relative viscosity is presented

in the next section.

Effect of resuspension on flow over a porous medium

Figure 7.23 (a) shows the flow visualization for a 10% loading fraction at different Stokes numbers.

Each image was taken after several minutes of shearing the flow at a constant shear rate for each St.

As mentioned in the previous chapter, the height of the visualization window for these experiments is

approximately one inch higher than the test cylinder. Therefore, only the flow in this region, which

is the same region where the torque measurements take place, is visualized. The corresponding St

for each image increases from left to right, starting at the upper left corner with a St = 0. The

height reached by the particles increases considerably when the St goes from 0 to 18 and it remains

almost constant between St from 18 to 55 (see Figure 6.17 to see the actual height measurements).

There is a bigger increase in height when the St goes from 67 to 81, and when St = 109 the particles

appeared to be completely resuspended and covered the whole test cylinder. These observations

can be compared with the effective relative viscosity measurements. In Figure 7.23 (b) it can be

observed that µ′/µ corresponding to the measurements that were taken from low to high shear rates

(closed symbols), decreases abruptly when St increases from 10 to 34. This abrupt change in µ′/µ

coincides with the abrupt increase in the height reached by the particles between 0 ≤ St ≤ 18. This

means that the mixture requires higher shear stress in order to initiate the flow of settled particles,

and as soon as the particles became re-suspended the needed shear stress decreased. For St larger

than 20, µ′/µ remains almost constant. When the St is higher than 80, µ′/µ starts increasing.

As pointed out previously in Chapter 5, this increase was only observed for this particular loading

fraction. It is possible that this behavior is due to settling effects. By simply comparing the top and

bottom row of the image sequence in Figure 7.23 (a), the big difference between the area covered by

particles for St lower than 91 (top row) and the area covered for St higher than 100 can be noticed.

The ratio between the highest and the lowest normalized height for this loading fraction (see Figure

6.17) is 2.06, while the ratio for a loading fraction of 20% is 1.51. Even when the particles are more

packed at low Stokes numbers, they don’t cover a significant region of the area where the torque

measurements are taken. When the particles fluidized, they are more diluted but they cover a bigger

region of the test area. In the following section, an analysis about the possible hydrodynamics effects

present in this set of experiments is presented. Because of the limitation of the short visualization

window used for these experiments, measurements of the total height reached by the particles when



132

fluidized are not available. The ratio µ′/µ keeps increasing for St higher than 120. It is possible

that this increase on µ′/µ is due to inertial effects.

When the experiments are performed from high to low shear rates (Figure 7.23 open symbols),

and for St higher than 80; the effective relative viscosity exhibited the same behavior as for the case

where the shear rate went from low to high. For St lower than 80, the µ′/µ for high to low shear

rate experiments is higher. These differences were only observed for this loading fraction and the

reason why is not completely clear. The glass beads that formed the porous media and the settling

polystyrene particles re-arranged themselves after being sheared at high shear rates, which increased

the settling height of the particles and the effective volume fraction.

Figure 7.24 shows the visualization for flow over a porous media with a loading fraction of

20%. Similar to what is observed in Figure 7.23 (a), the height reached by the particles for Stokes

numbers lower than 80 increases gradually but not abruptly. For St = 82 there is an abrupt increase

in height and the particles covered the whole visualization window. As St increases, the images for

the visualization look very similar to each other. In Figure 7.24 (b) the µ′/µ as a function of St is

presented. Unlike the case for a loading fraction of 10%, the effective relative viscosity decreased

considerably for St lower than 82 (the ratio between the µ′/µ for the lowest St and the minimum

µ′/µ for a loading fraction of 20% is 13, meanwhile for a 10% loading fraction that ratio is 2.9). For

St higher than 82, µ′/µ remains fairly constant. Since there was not a significant variation between

the images corresponding to such St, the reason why µ′/µ appears to be independent of the St could

be that the effective volume fraction remained constant.

For the case with a 30% loading fraction presented in Figure 7.25 (a), the particles covered almost

the entire visualization window. It can be seen that the particles start rising gradually for St lower

than 74. Due to the visualization window size it is not possible to see if there was an abrupt change

in the height reached by the particles. However, the µ′/µ measurements (Figure 7.25 (b)) show a

change in slope for St higher than 120. It is possible that the particles’ full resuspension occurs at

a higher St than for the lower loading fraction cases.

For larger loading fractions, the area where the torque measurements take place was completely

covered by the particles, as shown in Figure 7.26. Based on these images it is not possible to identify

when the particles are fully fluidized because of the size of the visualization window. However,

as described in Chapter 5, the effective relative viscosity does exhibit a change in slope at Stokes

numbers between 120 and 130 (see Figure 7.27). These findings suggest that the effective volume

fraction became constant for St higher than 130.

Direct comparisons between flow with and without a porous medium base

Figure 7.28 shows the normalized torques for loading fractions of 20% for the case with different

density ratios for φ̄ = 10% over a porous medium. For the case with settling particles, only the
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Figure 7.27: Effective relative viscosity for flow over porous media. Closed symbols correspond to
measurements taken with increasing shear rate. Open symbols correspond to measurements taken
from high to low shear rates. ρp/ρ = 1.05.
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Stokes number corresponding to the cases where the particles cover the test cylinder completely are

considered. The normalized torques for the flow over a porous media are higher than for the cases

without a porous medium base. Figure 7.29 shows the normalized torques for the 3 cases studied:

Stokes number
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7? =10%, Porous medium, ;p=; = 1:05
7? =20%, No porous medium, ;p=; = 1:05
7? =20%, No porous medium, ;p=; = 1

Figure 7.28: Flow over porous medium normalized torques as a function of St for φ̄ = 10 compared
with no porous medium with φ̄ = 20% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data with no
settling effects are considered.

ρp/ρ = 1.05, with and without bottom porous medium, and ρp/ρ = 1. The loading fraction for

the flow over porous medium is 20% while the loading fraction for no porous medium is 30%. Only

the case where the settling particles have reached the top of the annulus are considered. For the

case with porous medium, this is considered to be at Stokes numbers where the normalized torques

change in slope (see Figure 7.24). The cases without porous medium show a stronger dependance

on the Stokes numbers than the case for the flow over a porous medium. However, the trend for

these 3 cases is very similar. Figure 7.30 shows the normalized torques for a loading fraction of 30%

with a porous medium and for a loading fraction of 40% for the case without it. The normalized

torques for the flow over porous medium lie between the normalized torques for a φ̄ = 40% with

ρp/ρ = 1.05 and ρp/ρ = 1. The change in normalized torques dependance on Stokes number for the

case with settling particles is considered to be linked to the fluidization of the particles. In the absent

of hydrodynamics and particle interactions effects, a constant behavior of the normalized torques

with the Stokes number would indicate a constant volume fraction. The results shown in Figure

7.30 suggest that the effective volume fraction for the case with a porous medium and φ̄ = 30% is
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Figure 7.29: Flow over porous medium normalized torques as a function of St for φ̄ = 20 compared
with no porous medium with φ̄ = 30% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data with no
settling effects are considered.

higher than 40% (considering that the loading fraction for the case with matched densities is equal

to the effective volume fraction), and that is less than the effective volume fraction for the case with

settling particles and a loading fraction of 40%. In the next section a study of the effective volume

fraction is presented to correct for the differences in loading and effective volume fraction. Lastly,

Figure 7.31 shows the normalized torques for the three cases considered above with the normalized

torques for a loading fraction of 40 and 50% for the flow over porous media, and 50% for the flow

without it. As mentioned before, the normalized torques for the loading fraction of 50% decreases

with Stokes number and did not become constant. However, by inspecting the measured torques,

(see Figure 5.5), a drop occurs at shear rates around 60 s−1, which corresponds to Stokes numbers

around 100. In Figure 7.31 it is observed that the normalized torques for flow without the porous

medium are more or less independent of the Stokes numbers. For the case with porous medium,

the normalized torques continue to decrease with Stokes number. This indicates that the effects

of settling (decreasing of the normalized torques with Stokes number) are more pronounced than

for the case with porous medium. Therefore, even when the top particles have resuspended and

touch the top section of the rheometer, the middle section of the column of particles have not been

effectively fluidized. This suggests that the presence of the porous medium enhances the effects of a

volume fraction gradient in the vertical direction. It is possible that in the absent of porous media,



140

Stokes number
0 20 40 60 80 100 120 140 160 180 200

M
=M

la
m

in
a
r

0

50

100

150

200

250

300

350

400

7? =30%, Porous medium, ;p=; = 1:05
7? =40%, No porous medium, ;p=; = 1:05
7? =40%, No porous medium, ;p=; = 1

Figure 7.30: Flow over porous medium normalized torques as a function of St for φ̄ = 30 compared
with no porous medium with φ̄ = 40% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data with no
settling effects are considered.
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Figure 7.31: Flow over porous medium normalized torques as a function of St for φ̄ = 40 and 50%
compared with no porous medium with φ̄ = 50% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data
with no settling effects are considered.
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the formation of secondary flows at the bottom helps fluidized the settling particles; meanwhile, the

presence of porous media might weaker this effect.

Effective volume fraction prediction for flow over a porous medium with

ρp/ρ = 1.05

The effective volume fraction for the settling particles is inferred from the particle resuspension

measurements that are described in Chapter 6. Using the same method described in Section 7.3, the

effective volume fraction is estimated from the expansion results. However, due to the limited view

of the visualization window used for these experiments, measurements of the height at high Stokes

number are not possible. By comparing the measure heights normalized with the total height for the

cases with and without a porous medium, similarities between certain loading fractions are found.

Figure 7.32 shows the normalized measure heights for the case without porous medium and loading

fractions of 20, 25, and 30 % compared with the normalized measure heights for flow over porous

medium with loading fractions of 10, 20, and 30%. The normalized measure heights for the case

Stokes number
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Figure 7.32: Particles normalized heights for flow with and without porous medium. The height is
measured from the bottom of the annulus and normalized by the annulus total height.

with glass beads at the bottom seem to coincide with the heights corresponding to a higher loading

fraction when no porous medium is placed. The effective volume fraction can then be inferred for

a wider range of Stokes numbers by using the expansion for which the measured normal heights
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seem to coincide. To test this method, the effective volume fraction is also predicted using linear

extrapolation from the height measured for the limited Stokes numbers. Both methods lead to

similar effective volume fractions. Figure 7.33 shows the effective relative viscosity as a function of

the effective volume fraction for different Stokes numbers tested for ρp/ρ = 1.05. In here only the

cases where the test cylinder is fully covered are considered. The magnitude of the Stokes numbers

is represented with different sized symbols (the larger the Stokes number, the larger the symbol).

The effective relative viscosity increases with volume fraction and for a loading fraction of 10% an
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Figure 7.33: Effective relative viscosity for flow over porous media as a function of the effective
volume fraction. Only the data where the test cylinder is fully covered are considered.

effect on the Stokes number is observed. For this particular case, the larger the St, the higher the

effective relative viscosity and the lower the effective volume fraction is.

Comparisons between the case with settling particles but no porous medium are shown in Figure

7.34. The effective relative viscosity is higher for the case with a porous medium for volume fractions

lower than 30%. For higher volume fractions the effective relative viscosity appears to coincide for

both cases presented. Figure 7.35 shows the comparison between the three cases studied. With

the exemption of the low volume fractions with a porous medium, the effective relative viscosity for

all the other scenarios considered seem to coincide and follow the same trend. The differences in

effective relative viscosity for low volume fractions seem to indicate the presence of a gradient in the

volume fraction in the vertical direction. This gradient is more evident for the case with flow over

a porous medium.
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Figure 7.34: Effective relative viscosity as a function of the effective volume fraction for flow with
and without porous medium. Only the data where the test cylinder is fully covered are considered.
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Figure 7.35: Effective relative viscosity as a function of the effective volume fraction for flow with
and without porous medium with different density ratios. Only the data where the test cylinder is
fully covered are considered.
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Inertial and particle concentration effects on flow over a porous medium

with ρp/ρ = 1.05

Similar to the analysis done in Section 7.4 and 7.1, the effective viscosity of the mixture (µ′min) is

inferred using the predicted effective volume fraction and Figure 7.3. The values of µ′min are used

to calculate the effective laminar torque (Meffe, laminar) and the effective gap Reynolds number

(Reb, effe). The measured torques normalized with the effective laminar torque as a function of the

effective gap Reynolds number are presented in Figure 7.36 and compared with the different density

ratio cases without porous medium. As considered for the cases without porous medium, only the

data for Stokes number without settling effects are considered.
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Figure 7.36: Measured toques normalized by the effective laminar torques as a function of the
effective Reynolds numbers for ρp/ρ = 1 and ρp/ρ = 1.05 with and without porous medium. The
effective viscosity of the suspension is inferred from the predicted effective volume fraction and
Figure 7.3.

The normalized torques using the predicted effective viscosity are higher for the flow over a

porous medium. As mentioned before, using Figure 7.3 to infer the value of the effective viscosity

µ′min introduces the uncertainties involved in estimating the effective volume fraction. If µ′min is

instead considered to be equal to the minimum value of µ′/µ found for each loading fraction, then

the scatter found in Figure 7.36 is reduced, as shown in Figure 7.37. For all the cases shown, the

deviation from the laminar behavior occurs at the range of effective Reynolds number where the
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pure fluid torque measurements are higher than the ones predicted from laminar theory.
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Figure 7.37: Measured toques normalized by the effective laminar torques as a function of Re∗b, eff
for ρp/ρ = 1 and ρp/ρ = 1.05 with and without porous medium. The effective viscosity of the
suspension is considered to be the minimum of the ratio µ′/µ for each loading fraction.

7.6 Corrected torque for partial filling

As mentioned before in Section 7.2, for settling particles at low loading fractions and below a certain

Stokes number, the particles do not cover entirely the test cylinder. To compare between these low

loading fractions and the low loading fractions with ρpρ = 1, a correction of the measured torques is

needed. Such correction should take into account just the area covered by the liquid-solid mixture.

This can be achieved by formulating that the measured torque is the sum of the contribution of the

mixture and the contribution of the fluid, which leads to the following relation:

M = τ2πr2
i hf + τmix2πr2

i h,

where M is the measured torque, τ is the fluid shear stress , τmix is considered to be the shear stress

applied by the liquid-solid mixture, and hf and h are the height from the test cylinder covered by

just the fluid and the mixture, respectively. The torque corresponding for just the mixture can be
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obtained from equation 7.39 by considering that the fluid shear stress is equal to

τ = Mf

2πr2
i htest

,

where Mf is the measured torque for just the fluid and htest is the height of the test cylinder. Since

Mf was measured for a limited range of gap Reynolds number, a curve fit from these measurements

is used to infer the corresponding values of Mf for higher Reynolds numbers. Figure 7.38 shows in

a log log scale the pure fluid measured torque together with the curve fit used to infer the values of

Mf for plain water and the aqueous glycerine mixture of 21% used for the case with matched liquid

density.
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Figure 7.38: Measured torque for pure fluid as a function of gap Reynolds number and its curve fit
presented in a log-log scale.

By substituting equation 7.6 into 7.39, the corrected torque for the mixture is

Mmix = M −Mf
hf
htest

, (7.1)

where hf is equal to htest−h. Figure 7.39 shows the corrected measured torque for volume fractions

of 10 and 20% with ρp/ρ = 1.05. The correction applies only to the shear rates for which the liquid-

solid mixture is only partially covering the test cylinder. For shear rates where the height predicted

using the particles height measurements (discussed in Chapter 6) is above the test cylinder height,
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Mmix is considered to be equal to the measured torque (M). The torques for the shear rates where

the test cylinder is partially covered, (γ̇ < 80 s−1 for φ̄ = 10 and γ̇ < 60 s−1) does not show a strictly

linear dependance with the shear rate, although there are not a significant number of measurements

to determine the trend (for φ̄=10%, only 3 points were measured and for φ̄ = 20% only 4). There

is a jump between the corrected torques and the corresponding measured torque for the case where

the particles fully cover the test cylinder. This might suggest that the contribution from the fluid

to the measured torque is over-estimated during the correction or that the full resuspension of the

particles increases the torque abruptly.
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Figure 7.39: Corrected torque as a function of shear rate for partially covered test cylinder.

As mentioned before, it is possible that for these diluted mixtures, the contribution of the liquid

might be stronger than for higher solid fractions. The presence of particles might not be strong

enough to reduce the effective Reynolds number of the suspension. In such case, the contribution

to the torque from the suspending liquid might be closer to the value measured for just the fluid.

Figure 7.40 shows the corrected torque normalized by the theoretical laminar torque as a function

of the Stokes number. The normalized torques for the Stokes for which the particles are partially

covered are more scattered. When the test cylinder is fully covered, the normalized torques fluctuate

less. For a loading volume fraction of 10% and 20% , the normalized torques increase with Stokes

numbers when the test cylinder is fully covered.

Figure 7.41 shows a comparison between the normalized torques for ρp/ρ = 1.0 and ρp/ρ = 1.05.

For the case with settling particles, the torques have been corrected to account when the test cylinder
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Figure 7.40: Corrected torque normalized by Mlaminar as a function of Stokes numbers.

is partially covered (Mmix/Mlaminar).
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Figure 7.41: Corrected torque normalized by Mlaminar as a function of Stokes numbers compared
with the data for ρp/ρ = 1.
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For the case with ρp/ρ = 1.05, the normalized corrected torques for a loading fraction of 20%

decrease with Stokes number, and once the particles fully covered the cylinder the corrected nor-

malized torque increases. A similar behavior is found for a loading fraction of 10%. For this loading

fraction only the data corresponding to the Stokes number where particles were present in the test

section are considered. The correction of the torque when the test cylinder is partially covered does

not seem to coincide with the measured torques for fully covered. This suggests that either the

predicted height or the predicted pure fluid torque considered is not completely adequate.

7.7 Comparison between current and previous experimental

and numerical results

The effective relative viscosity for the current and previous experiments of inertial suspensions is

shown in Figure 7.42. For the current experiments with settling particles, the relative effective

viscosity is plotted against the predicted volume fraction normalized by the particles random loose

packing measured by Koos et al. (2012) (φRLP = 55.3%). Only the previous experiments with

rough walls and Stokes numbers higher than 10−1 are compared. The empirical model used by

Zarraga et al. (1999) is also shown in Figure 7.42 to compare the non-inertial results. The current

experiments exhibit higher effective relative viscosities than the previous experimental work. Most of

the experimental work of Prasad and Kytömaa (1995) correspond to Stokes numbers lower than the

present study (3.2×10−2 ≤ St ≤ 3.2) and their measurements involved settling particles with higher

density ratio (1.12 ≤ ρp/ρ ≤ 2.09). Their torque measurements were made on the top of their annular

shell and the suspension was sheared at the bottom at low shear rates. Such conditions could lead to

lower effective volume fractions since the suspension is not sheared fast enough for the particles to

fluidize. Similarly to Prasad and Kytömaa (1995), the density ratios for the experiments of Hanes

and Inman (1985) are higher than for the present study (2.48 ≤ ρp/ρ ≤ 2.78) and the torques

were also measured on the top surface. Unlike the work of Prasad and Kytömaa (1995), Hanes and

Inman (1985) considered high shear rates. However, even when these experiments consider high

shear rates, the complete fluidization of the particles may have not be achieved due to the higher

density ratio which could lead to lower effective volume fraction than the one reported, and therefore

lower effective relative viscosities.

As shown in Section 7.2, the effective relative viscosity for volume fractions higher than 30%

showed no dependance on Stokes numbers as long as the particles are completely fluidized. Moreover,

at these higher volume fractions, the hydrodynamic inertial effects were not present according to the

analysis done in Sections 7.1 and 7.4. It is not clear then why the relative effective viscosity for these

experiments is approximately one order of magnitude higher than the effective relative viscosity for

the non-inertial suspensions. One possible explanation could be that at higher Reynolds numbers
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Figure 7.42: Effective relative viscosity as a function of volume fraction normalized by random
loose packing for the present and previous experimental work. Only the previous experimental
work with rough walls and Stokes numbers higher than one are presented. Dashed line corresponds
to the empirical model proposed by Zarraga et al. (1999) to represent the results for non inertial
suspensions. For the current results the size of the symbol represents the Stokes number magnitude.
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the particle interactions increase and thus the velocity fluctuation of the flow. Velocity fluctuations

lead to the presence of Reynolds stresses that are not present at low Reynolds number regimes.

However, these Reynolds stresses increase with Reynolds number, leading to an increasing effective

relative viscosity; however, the effective relative viscosity for these experiments show no dependance

on Reynolds number. If Reynolds stresses are present for these experiments, then there must be

a competing mechanism that balances the effect of increasing velocity fluctuations. It is not clear

which mechanism could that be.

Figure 7.43 shows a comparison between the present study and the numerical results for sus-

pensions with moderate Reynolds number. Only the current experiments with the lowest Reynolds

numbers for each volume fraction is presented. The relative effective viscosity is plotted against

the volume fraction normalized by the random loose packing. Since all the simulations considered

spherical particles, the random loose packing used to normalized the volume fraction is calculated

for monodisperse spherical particles using the fit of Zou and Yu (1996). Similarly to the compar-

ison with previous experimental work, the present results show higher effective relative viscosities.

For volume fractions lower than 30% the Reynolds number for the current experiments is approxi-

mately an order of magnitude higher than the Reynolds number considered in the simulations. The

simulations of Kulkarni and Morris (2008) consider a Reynolds number range of 0.05 ≤ Re ≤ 16,

while the simulations of Picano et al. (2013) range the Reynolds number from 4 ≤ Re ≤ 40 and

the simulations of Yeo and Maxey (2013) consider lower Reynolds range of 0.02 ≤ Re ≤ 8. The

latest show the lowest relative effective viscosity even for the cases with the same volume fraction

and Reynolds number. This discrepancy might be due to differences in their assumptions. Aside

from using a different numerical method, Yeo and Maxey (2013) considered the Reynolds stress to

be negligible. The later work of Haddadi and Morris (2014) showed that the contribution of the

Reynolds stress to the bulk and particle-phase stresses is significant, therefore neglecting it would

lead to lower effective relative viscosities which is consistent with the results showed in Figure 7.43.

Figure 7.44 shows the comparison between the effective relative viscosity as a function of Reynolds

number for the present and numerical work of Picano et al. (2013) and Kulkarni and Morris (2008).

Good agreement between the numerical simulations is shown. However, the present experimental

work shows higher effective relative viscosities. A possible reason for this is the presence of slip

at the wall observed in the work of Picano et al. (2013), where the ratio of particle velocity next

to the wall and the wall velocity in their simulations is approximately 0.6. Similar velocity ratio

was found in the smooth walls experiments of Koos (2009) for Reynolds numbers smaller than 100

and volume fractions below 40%. Such velocity ratio indicates the presence of slip and as shown

by Barnes (2000) and Koos et al. (2012) it leads to lower effective viscosities. The relative effective

viscosity for the current experiments for the lowest Reynolds number tested (O(100)) are between 3

to 5 times higher than the numerical results of Picano et al. (2013) for Reynolds number equal to 40.
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Figure 7.43: Effective relative viscosity as a function of volume fraction normalized by random loose
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153

Reynolds number
10 -1 100 101 102 103

7
0 =
7

100

101

102

? = 10
? = 20
? = 30
? = 11 from Picano et al. (2013)
? = 21 from Picano et al. (2013)
? = 26 from Picano et al. (2013)
? = 32 from Picano et al. (2013)
? = 5 from Kulkarni et al. (2008)
? = 10 from Kulkarni et al. (2008)
? = 20 from Kulkarni et al. (2008)
? = 30 from Kulkarni et al. (2008)

Figure 7.44: Effective relative viscosity as a function of Reynolds number for the present and previous
numerical work. Black symbols correspond to the present data. Closed symbols correspond to Picano
et al. (2013), red symbols correspond to Kulkarni and Morris (2008).

Based on the results of Koos et al. (2012), the effective viscosity can be up to 4 times higher than

the apparent viscosity corresponding to experiments affected by slip at the wall for volume fractions

lower than 40%.

A different mechanism occurs in the numerical work of Kulkarni and Morris (2008) where the

particles tend to concentrate at the walls. The opposite behavior is observed experimentally, where

the particles tend to move away from the wall. Kulkarni and Morris (2008) calculated the bulk

stress and the stress at the wall, with the latest higher than the former. Because the particles are

concentrating at the walls, there are less particles at the bulk, which would decrease the amount of

particle interactions leading to lower effective relative viscosities.

7.8 Summary

Comparison between the cases of matched density and settling particles with and without a porous

medium are presented.

Based on Figures 7.5, 7.22, and 7.37, the hydrodynamic inertial effects from the liquid seem

only to be present for the dilute and moderately dilute liquid-solid mixtures. In the transition

from laminar to turbulent flow in liquids, an increase in the liquid viscosity leads to a delay in
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the transition regime because of the decrease in Reynolds number. It is unlikely that liquid-solid

flows with low and moderate volume fractions would be an exception to this rule. As the volume

fraction increases, the effective relative viscosity of the suspension increases considerably, leading to

a decrease in effective Reynolds number of the mixture. For the three cases studied, the deviation

from the laminar behavior occurs at an effective Reynolds number range that coincides with the

region where the pure fluid measurements show a deviation from the laminar theory. This analysis

is done by considering the data where the particles have been fluidized and where the effects of

settling are weaker.

The effective volume fraction for the experiments with settling particles is predicted based on

the results from the particle resuspension analysis (Chapter 6). When the effective volume fraction

is considered, the relative effective viscosity for the case with ρp/ρ = 1 and ρp/ρ = 1.05 seems

to coincide. This indicates that the effective relative viscosity is independent of the differences in

density as long as the effective volume fraction is considered to correct for the presence of settling.

The experiments with a porous medium show higher relative viscosity at similar effective volume

fraction. This suggests the presence of gradient in the volume fraction in the vertical direction. The

presence of a lower base of heavier glass beads seems to affect the relative effective viscosity. The

mechanism for this is still not clear.

Corrections to the measured torques for low loading fraction cases where the particles do not

fully cover the test cylinder are presented considering that the contribution from the mixture and the

suspending fluid can be obtained by inferring the height covered by the particles. The corrections

do not seem to recover the shape of the normalized torques once the test cylinder is fully covered.

Comparison between the present and previous experimental and numerical work show that the

effective relative viscosity for the current experiments are higher even for the cases where the inertial

hydrodynamic effects are not present. The reason for this is not completely clear but possible reasons

include a change in the effective volume fraction considered by the previous experimental work and

presence of slip in the numerical simulations.
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Chapter 8

Conclusions

This thesis presents rheological measurements of liquid-solid flows at Stokes and Reynolds numbers

where inertial effects are important. The results for the case with ρp/ρ = 1 are summarized in

the following section followed by a summary of the hydrodynamic instability effects. The effect

of particle settling is summarized in section 8.2 . A discussion about the differences between the

current work and the experimental results found for inertial and non-inertial suspensions is presented

in Section 7.7. Comparisons with numerical results for inertial suspensions are discussed as well and

emphasis has been focused on the possible reasons for the discrepancies observed. Finally, topics of

possible future interest are discussed in Section 8.4.

8.1 Particles with matched density

Experiments with ρp/ρ = 1 were performed for a volume fraction range of 10% ≤ φ ≤ 50% using

polystyrene particles immersed in an aqueous glycerin solution. The range of Stokes numbers tested

for this case is 2.5 ≤ St ≤ 116.3 (equivalently, the Reynolds number range is 22.6 ≤ Re ≤ 1.04×103).

For φ ≥ 40%, the measured torque exhibits a linear dependance on the shear rate. When normalizing

the measured torque by the fluid torque predicted by laminar theory, the dependance on Stokes

number is negligible. This indicates that for φ ≥ 40% the flow exhibits a Newtonian behavior

where the effective relative viscosity is given by the normalized torques and it increases with volume

fraction but remains constant with the Stokes number and equivalently with the Reynolds number:

M

Mlaminar
= f(φ) for φ ≥ 40% and ρp/ρ = 1.

For φ ≤ 30% the measured torques exhibit a non-linear dependance on the shear rate. The nor-

malized torques for these lower volume fractions increase not only with φ but also with Stokes and
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equivalently Reynolds number:

M

Mlaminar
= g(φ, St) for φ ≤ 30% and ρp/ρ = 1.

To study if this dependance is a result of an increase in the particle interactions or the pres-

ence of hydrodynamics instabilities, an analysis of fluid and particle inertia was done. The torque

measurements for pure fluid indicate the presence of hydrodynamic instabilities for modified gap

Reynolds higher than 3× 103. If the liquid-solid mixture is considered to be a Newtonian fluid and

its effective viscosity is used to define the modified gap Reynolds number, it is possible to determine

if the range of Reynolds number tested lie within the range of Reynolds number where hydrodynamic

instabilities are present.

In this hypothetical scenario the viscosity of the liquid-solid mixture is considered to be inde-

pendent of the shear rate and it only depends on the particle volume fraction. The effective relative

viscosity of the mixture is then considered to be equal to the normalized torques corresponding to

the lowest Stokes number:
µ′min
µ

(φ) = M

Mlaminar
(Stmin)

where Stmin is the lowest Stokes number tested for the corresponding loading fraction and µ′min/µ

is the hypothesized effective relative viscosity. This is based under the assumption that at the lowest

Stokes number, the measurements are not affected by hydrodynamics instabilities. The measured

torques are then normalized by a laminar torque that considers the effective viscosity of the mixture

instead of the fluid viscosity. Similarly, an effective Reynolds number is defined where the effective

viscosity of the mixture is considered instead of the fluid viscosity.

The measured torques normalized with the effective laminar torque for φ ≥ 40% are close to one

and the corresponding effective Reynolds number range for these experiments are within the modified

gap Reynolds number region where the pure fluid exhibits a laminar behavior. For φ ≤ 30%, the

normalized torques deviates from unity and their corresponding effective Reynolds number is within

the region where hydrodynamic instabilities were observed.

Based on this analysis the inertial effects are present for effective Reynolds numbers (Re∗b, eff )

higher than 400:

M

Mlaminar
= g(φ, St) for Re∗b, eff > 400⇒ hydrodynamic instabilities effects

and for effective Reynolds numbers lower than 400, the effects of hydrodynamics instabilities are

negligible:
M

Mlaminar
= f(φ) for Re∗b, eff < 400
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8.2 Effect of particle settling

Experiments with particles denser than the suspending liquid were performed where ρp/ρ = 1.05.

The range of Stokes number tested for this case is 2.6 ≤ St ≤ 195 and the range of Reynolds number

is 22 ≤ Re ≤ 1.7 × 103. In this set of experiments, the particles used were the same polystyrene

particles, but water was used as the suspending liquid. For this case the particle distribution is no

longer homogeneous and depending on the shear condition the particles settle (γ̇ = 0) or re-suspend.

Therefore, the volume fraction at the test section is no longer equal to the loading fraction (φ̄)

φ̄ = Volume of particles
Volume of annulus 6= φ for ρp/ρ = 1.05.

To determine the effective volume fraction for these experiments, visualizations of the flow were

performed. The particle resuspension was characterized by measuring the height reached by the

particles for different loading fractions and at different Stokes numbers. Based on these measure-

ments the volume fraction could be inferred. When the inferred volume fraction is plotted as a

function of Stokes number, it collapses into one curve for all the loading fractions tested. This

indicates that the resuspension process is independent of the loading fraction.

The results from the flow visualization were used to analyze the torque measurements for the

experiments with ρp/ρ = 1.05. The range of loading fraction tested is 10% ≤ φ̄ ≤ 60%. For

φ̄ ≥ 30%, the normalized torques decrease with Stokes number and for φ ≥ 40%, the normalized

torques reach a plateau for Stokes numbers above a critical value. The value for this critical Stokes

number increases with the loading fraction. The visualization of the flow for these experiments

show that this dependance is a settling effect. At low Stokes numbers the particles settle, which

leads to an increase in the effective volume fraction. As the Stokes numbers increase, the particles

start fluidizing and thus decreasing the effective volume fraction. A decrease in the effective volume

fraction leads to a decrease in the normalized torques. The normalized torques for φ̄ = 30% stop

decreasing at the Stokes number where the complete fluidization of the particles occurs and start

increasing with Stokes numbers above the fluidization threshold. A different dependance is observed

for φ̄ ≤ 20%, where the normalized torques increase with the Stokes number instead of decreasing.

At these low loading fractions the particles settle at the bottom of the rheometer and do not reach

the test section. As the Stokes number increases, the particles fluidize and start covering the test

cylinder, which leads to an increase in the effective volume fraction and thus an increase in the

normalized torques. Comparisons between the normalized torques for pure fluid and φ̄ = 10%

show that for gap Reynolds numbers lower than 5× 104, the normalized torques for pure fluid and

φ̄ = 10% are the same. This indicates that there is no presence of particles in the test section for

these gap Reynolds numbers. The visualization of the flow confirms this hypothesis. Measurements
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of the height reached by the particles allow to determine the Stokes numbers at which the particles

are partially covering the test section. Corrections to the measured torque for the case where the

particles are partially covering the test section were done. Such corrections do not seem to coincide

with the measured torques for the case where the test section is fully covered. This suggests that

the contribution from the fluid considered in the correction might be over-estimated.

The effective volume fraction of the torque experiments is predicted using the particle resuspen-

sion analysis. When the effective volume fraction is considered, the normalized torques for both

cases with different density ratio coincide indicating that the normalized torques are independent of

the density ratio.

When only the cases where the particles are completely fluidized are considered, a similar behavior

to the case with ρp/ρ = 1 is observed. The normalized torques for φ ≤ 30% exhibit a dependance

on the Stokes number. The effective Reynolds number for these experiments is higher than 400,

indicating that such dependance is due to the presence of hydrodynamic instabilities.

Flow over a porous medium

As mentioned earlier in this section, when the loading fraction is lower than 30%, the particles settle

and do not reach the test section. To further study these low loading fractions, experiments with

settling particles over a porous medium were performed. The lower section of the rheometer was

filled with glass beads up to a height of approximately 11 cm (≈ 2 cm below the test cylinder) and

the polystyrene particles were placed on top. In this way, the polystyrene particles are brought up

and their presence in the test section is guaranteed even for a loading fraction of 10%. The measured

torque for these experiments increases with the shear rate and exhibits a drop for shear rates above

a critical value. This drop is not observed for the case without porous medium. The torque was

measured with increasing and decreasing shear rates to study the dependance on the shear rate

history. The torques measured with increasing shear rates coincide with the torques measured with

decreasing shear rates. This indicates that these flows exhibit no hysteresis.

In the same way as for the case without porous medium, visualizations of the flow over a porous

medium were performed and used to analyze the torque measurements for this set of experiments.

The drop in the measured torque observed for the case with porous medium occurs at the same

Stokes number where the particles are fully fluidized. The normalized torques decrease with Stokes

number and reach a plateau when the particles are fully fluidized. This behavior was observed for all

the loading fractions tested with the exception of φ̄ = 10%. For this particular loading fraction and

when the particles are fully fluidized, the normalized torques increase instead of becoming constant.

The effect of settling for these experiments is more marked than for the case without porous

medium. The reason for this might be the presence of a vertical gradient in the particle concentration,

where the particles located at the bottom are more packed than at the top. By having a porous
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medium, the particles bottom layer is brought in closer proximity to the test section making the

change in effective volume fraction more pronounced.

When the effective volume fraction is considered, the normalized torques for the case with a

porous medium are slightly higher than for the case without porous medium. The reason for these

differences might be due to the presence of a vertical gradient in the volume fraction. It is also

possible that the presence of the porous medium affects the normalized torque but the reason for

this effect is not clear.

8.3 Comparison with previous results

The effective viscosity for the current experiments is higher than the effective viscosity found in

previous experimental work for inertial suspensions (Hanes and Inman, 1985; Prasad and Kytömaa,

1995). A possible reason for these differences is that the effective volume fraction in their mea-

surements might be lower than the one reported due to settling. For both experimental studies,

the torque was measured on the top of the annular shell and the particles were denser than the

suspending liquid. Additionally, the work of Prasad and Kytömaa (1995) considers a lower Stokes

regime which would increase the effect of settling in their measurements.

The effective viscosity for non-inertial suspensions is lower than the one found in the present

work even for the cases where the normalized torques show no dependance on Stokes and Reynolds

number. The reason for this is still not clear.

The numerical simulations for inertial suspensions show a dependance on Reynolds for volume

fractions equal or higher than 10% (Kulkarni and Morris, 2008; Yeo and Maxey, 2013; Picano et al.,

2013). This result agrees with the current experimental work; however, the effective viscosity found

in these simulations is lower than the one found in the present experiments. Depending on the

numerical work, a possible reason was proposed that include the neglecting of Reynolds stresses in

the work of Yeo and Maxey (2013) and the presence of slip at the wall in the work of Picano et al.

(2013).

8.4 General comments and future work

The main objective of the work presented in this thesis is to expand the Stokes and Reynolds

number regime studied experimentally in liquid-solid flows where the inertia of both: the solid and

liquid phase is important. A characterization of the particle settling and resuspension was presented

through visualizations of the flow which allow to infer the effective volume fraction. Two density

ratios: ρp/ρ = 1 and ρp/ρ = 1.05 were studied and when the effective volume fraction is considered,

the difference in density ratio does not seem to affect the effective relative viscosity of the mixture;
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however, this thesis considered only a 5% variation in density.

The characterization of the particle resuspension can have important implications in the modeling

of systems involving settling and resuspension particles. Such systems are frequently found in many

industrial processes (drilling muds, mixing of nuclear waste, handling of oil sands, mining processes,

etc) and natural phenomena (debris-flows, lava flows, rock transport by rivers, etc). In the presence

of settling, the materials are no longer homogeneous which can strongly affect their mechanical

properties as shown by the results of the present work. Viscous resuspension has been previously

examined by Leighton and Acrivos (1986). However, in most industrial processes involving sediments

the inertia of the flow is significant and viscous resuspension is negligible (Wallner and Schaflinger,

1998). A model to predict the particle resuspension in inertial liquid-solid flows remains to be

developed. This could be achieved by modifying the particle terminal velocity (vter) in the model

develop by Leighton and Acrivos (1986) . For higher Reynolds numbers, the terminal velocity can

be found from a balance of drag, gravitational and buoyancy forces. Additional modification to the

diffusion coefficient might be also necessary to obtain more accurate results.

The presence of hydrodynamic instabilities seem to affect the current torque measurements for

φ ≤ 30%. The presence and effect of particle interactions that are not a result of secondary flows

is still not resolved. An experimental setup with longer test apparatus might allow the study of

liquid-solid flows that are not affected by hydrodynamics instabilities. Alternatively, experiments in

a gravity free field would allow the study of moderate Stokes and Reynolds numbers regime for a

wide range of volume fractions without having the effects of settling.

A more accurate measurement of the effective volume fraction can be achieved by analyzing the

particle concentration gradient. Measurements of the particle velocity can confirm the existence of

secondary flows in the test cylinder region and evidence the presence or absence of shear bands for

the case with settling particles. Measurements of the particle collisions and its frequency can provide

information of the effect of particle agitation in the bulk behavior of the mixture. Experiments with

fluidized beds performed by Aguilar-Corona (2008) show that the frequency of collisions reaches

a maximum for a volume fraction of approximately 30%. It is of interest to determine if similar

results are found for the current experiments. Such findings can help to develop theoretical models

or computer simulations.

Zenit et al. (1997) measured the collisional particle pressure for a vertical gravity-driven and

fluidized bed, and similar to the findings of Aguilar-Corona (2008), the maximum particle pressure

occurs at solid fractions of 30%. Measurements of the particle pressure in the current experiments

can be made if pressure transducers are placed at the rheometer walls. Such measurements can

shed a light into the relation between the normal and shear stress for liquid-solid flows with inertial

effects.

In Appendix A, the results for experiments with polyester particles with ρp/ρ = 1.2 and ρp/ρ =
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1.4 are presented. The visualization for these flows exhibit a particle concentration gradient in the

radial direction. The particle resuspension analysis for these experiments is limited due to this radial

migration of the particles. Experiments with particles of different size, shape and material where the

centrifugal effects do not affect the radial migration of particles remain to be performed. It would be

of interest to know if higher density ratios affect the effective viscosity of the mixture. Visualization

of the flow for such experiments would allow to study the effects of particle shape and size in the

particle resuspension process.
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Appendix A

Inferred torque for zero shear rate

Depending on the loading fraction and density ratio, the best curve fit for the measured torques as

a function of shear rate does not always go through the origin. Figure A.1 shows the inferred value

of the liquid-solid flow’s torque at γ̇ = 0 for density ratio of 1 and 1.05. The value was inferred

considering the best fit for the lowest Stokes numbers measurements. For the case of ρp/ρ = 1, the

curve fit considers all the points and for φ ≤ 30%, the intercept torque is zero since the data is best

fitted by a power law. For the case of ρp/ρ = 1.05, a linear fit is considered for the first three points.

The intercept torque increases with loading fraction for the case with settling particles, indicating a

presence of a yield stress for these flows. For the case with density ratio equal to one the intercept

torque is equal or close to zero for all the loading fractions tested.
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Figure A.1: inferred torque at the origin for ρp/ρ = 1 and ρp/ρ = 1.05.
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For the experiments with flow over a porous medium, a linear fit for the first three points was

considered. Figure A.2 shows the intercept torques for this case. There is more than one intercept

torque for each loading fraction and it corresponds to the experiments with increasing and decreasing

shear rates. The intercept torques exhibits a linear behavior with respect of the loading fraction,

which is different from the behavior observed for the case without porous medium.
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Figure A.2: inferred torque at the origin for flow over porous medium as a function of the loading
fraction.ρp/ρ = 1.05.

Comparison between the intercept torques corresponding to flow with and without porous medium

is presented in Figure A.3 as a function of the loading fraction. The intercept torque increases with

loading fraction for the cases with settling particles. However, the intercept torque dependance on

loading fraction is different for the case with a porous medium. The effective volume fraction for the

two cases is significantly different than the loading fraction and these differences lead to differences

in the intercept torque, which seems to depend on the particles’ column height. For this reason the

intercept torques are plotted against the normalized particles’ column height in Figure A.4. The

intercept torques for the experiments without a porous medium are closer to the intercept torques

with a porous medium; however it does not exactly coincide for normalized heights. The reason for

this discrepancy might be due to the topology of the particles’ top surface. For the case with hs/ht
between 0.5 and 0.8, the intercept torques show the largest differences. This seems to indicate that

the presence of a porous medium increases the yield stress of the flow. The reason for this is not

clear.
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Figure A.3: inferred torque at the origin for flow with and without porous medium and ρp/ρ = 1.05,
and ρp/ρ = 1.05 as a function of φ̄.
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Figure A.4: inferred torque at the origin for flow with and without porous medium as a function of
normalized settling height. ρp/ρ = 1.05.
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Appendix B

Particles projected area as a way to
infer the effective volume fraction

One of the limitations of measuring the volume fraction with the height reached by the particles

is the lack of information about the concentration gradient. For this reason measurements of the

particles projected area are made. In this way, differences in concentration along the vertical axes

are taken into account. The problem with this method is that it gives no information regarding

the volume fraction. One way to infer the volume fraction from the projected area is to use the

projected area fraction of a known volume fraction to calibrate the measurements. Considering that

the particles are homogeneously distributed for the experiments with a density ratio equal to 1, their

projected area can be used to calibrate the measurements for settling particles. The methodology

for measuring the projected area is described next.

The images from the visualization of the flow are first filtered by a FFT bandpass filter to

correct for differences in lighting, then by an unsharp mask to filter the blur parts of the image. It is

considered that only the sharp parts of the picture correspond to the particles next to the test section

wall. The weight of the mask is chosen manually, and therefore this is a source of uncertainty. Once

the image is processed, sixteen different automatic thresholds are applied. Each method segments

the image into black and white and measures the area fraction. Then the method that best segments

the image is considered. Note that this is another source of uncertainty since the method is chosen

based on a subjective observation. Figure B.1 shows an example of the process of preparing the

image and measuring the projected area fraction.

To infer the volume fraction from the projected area fraction, it is necessary to have a known

volume fraction as a reference; however the assumption of the particles being homogeneously dis-

tributed for density ratios equal to one is not strictly true. The projected area fractions for φ = 10,

20, and 30% and ρp/ρ = 1 show some dependance on Stokes numbers, where the projected area

fraction seems to increase with St. For this reason an image that corresponds to a Stokes num-

ber around 40 and density ratio equal to one is selected and used to calibrate the projected area
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(a) 

(b) (c) (d) 

Figure B.1: Image processing example. (a) the image is filtered to correct for uneven lighting with
a FFT bandpass filter, (b) the image is filer to correct for blurriness, (c) the image is convert to
grayscale, and finally the image is segmented using 16 automatic thresholds methods and the method
that best fit the data is chosen.
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measurements. The volume fraction is not only inferred for the experiments with settling particles

but also for the case with matched density. Figure B.2 shows the effective relative viscosity as a

function of inferred volume fraction using the projected area for ρp/ρ = 1. The threshold method

used to segment the images varied between loading fractions because a change in the light source

position occurred every time the experiment was loaded with higher volume fractions. For most

of the images corresponding to the same loading fraction the same threshold method was used to

reduce bias in the results. For φ̄ = 10%, the inferred volume fraction shows the highest variability

for ρp/ρ = 1. Notice that the inferred volume fraction can be higher than the loading fraction for

high Stokes numbers; this can occur if there are differences in the particles density where some of the

particles would sink while others would float, increasing in this way the particle concentration at the

test section. Tests with polystyrene particles immersed in a matched density liquid were performed

to study the neutrally buoyant condition. It was found that under no shear, approximately half of

the particles would sink while the rest would float, and under slight shear of the flow the particles

would distribute in an approximately homogeneous way. For higher loading fractions the change in

volume fraction is negligible.
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Figure B.2: µ′/µ as a function of the inferred volume fraction from projected area fraction for
ρp/ρ = 1. The size of the symbols correspond to Stokes numbers magnitude.

Figure B.3 shows the inferred volume fraction from projected area fraction for ρp/ρ = 1.05.

The change in volume fraction is larger than for the case with matched density. Similar to what

was observed in the volume fraction predicted from the height reached by the particles, the volume
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fraction increases with Stokes numbers for loading fractions lower than 30% and decreases with St

for loading fractions higher or equal than 30%.
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Figure B.3: Effective relative viscosity as a function of the inferred volume fraction from projected
area fraction for ρp/ρ = 1.05. The size of the symbols correspond to Stokes numbers magnitude.

Figure B.4 shows the comparison between the effective relative viscosity for the two density

ratios studied as a function of the inferred volume fraction. The effective relative viscosity coincides

better for the volume fraction obtain from the projected area fraction than from the particles’

height measurements. This might be due to an improve accuracy in the predicted volume fraction

by considering a particles concentration gradient.

Figure B.5 shows the effective relative viscosity as a function of the inferred volume fraction.

The change in volume fraction is similar to the one observed for the case without porous medium

but same density ratio.

Finally, the effective relative viscosity results for the case with and without porous medium and

difference density ratios are shown in Figure B.6. Unlike the results found using the particles height,

the effective relative viscosity for the flow over porous medium coincides with the cases without

porous medium and density ratios of 1.2 and 1.4.

These results suggest that better fits are obtained by using the projected area fraction.
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Figure B.4: Comparison between the effective relative viscosity as a function of the inferred volume
fraction from projected area fraction for ρp/ρ = 1 and ρp/ρ = 1.05. The size of the symbols
correspond to Stokes numbers magnitude.
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Figure B.5: Effective relative viscosity as a function of the inferred volume fraction from projected
area fraction for flow over a porous medium and ρp/ρ = 1.05. The size of the symbols correspond
to Stokes numbers magnitude.
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Figure B.6: Comparison between the effective relative viscosity as a function of the inferred volume
fraction from projected area fraction for flow with and without a porous medium and ρp/ρ = 1.05
and ρp/ρ = 1. The size of the symbols correspond to Stokes numbers magnitude.
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Appendix C

Rheological measurements with
polyester particles

C.1 Motivation

To study the effect of higher density ratio as well as particles’ size and shape effect, torque measure-

ments using polyester particles were made. As described in Section 2.2 polyester particles are 1.33

times denser than the polystyrene particles used in the experiments described in Chapter 4 and 5.

If the suspending liquid is water, the density ratio is 1.4. For these experiments the rough walls are

the same as the ones used for the experiments with polystyrene (polystyrene particles glued to the

walls). A description of experiments with polyester particles and three different suspending liquids

is presented in the next section.

C.2 Polyester particles with ρp/ρ = 1.4

Figure C.1 shows the measured torque for loading fractions of 10 and 20% for polyester particles

immersed in water (ρp/ρ = 1.4). The corresponding measured torques for pure water are also shown

in Figure C.1. At low shear rates, the measured torques for the liquid-solid flow coincide with the

measured torques for pure liquid. Approximately at γ̇ = 60 s−1, the measured torques start deviating

from the pure liquid ones. Polyester particles are smaller than the polystyrene particles (d = 2.93

mm) and have a higher random loose packing (φRLP = 0.593). When settled, the polyester particles

do not reach the test section for loading fractions of 10 and 20%. For this reason the measured

torques at low shear rates coincide with the pure fluid measurements. The torques increase in a

non-linear way with shear rate.

Figure C.2 presents the measured torques for higher loading fractions of 30, 40 , and 50%. Unlike

the results for polystyrene particles (see Figure 4.13), the torques not always increase with shear

rate. For the highest loading fractions tested (40 and 50%), the measured torques show a drop for
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Figure C.1: Measured torques for polyester particles with ρp/ρ = 1.4 and for pure water. Error bars
represents the combined uncertainty of the measurements.

shear rates higher than 30 s−1. For φ̄ = 50% the torques continue to decrease with shear rates. For

φ̄ = 40% the torques appear to reach a plateau for shear rates higher than 100 s−1. For φ̄ = 30%,

the torques show a slight drop at shear rates around 20 s−1 and they start increasing at shear rates

around 60 s−1. Visualizations of the flow show that these behaviors are a result of centripetal forces.

For these higher density ratios, the centripetal forces due to the rotation of the outer cylinder are

higher than the forces presented for lower density ratios. Under such forces, the particles are pushed

away from the inner cylinder. Results of the visualization of the flow for polyester particles are

presented later in Section C.5.

Figure C.3 shows the measured torques normalized with the corresponding laminar torques pre-

dicted from laminar theory. For the lowest loading fractions of 10 and 20, only the normalized

torques corresponding to the Stokes number where particles reach the test section are shown. The

normalized torques show a similar behavior as the case with settling polystyrene particles where

M/Mlaminar increases for loading fractions lower than 30% and decreases for higher loading frac-

tions. For φ̄ = 30%, the ratio of torques increases for Stokes numbers above 60. For φ̄ = 40%, the

normalized torques appear to reach a plateau at Stokes numbers above 100. The only difference in

behavior is that for φ̄ = 50%, the ratio of torques does not seem to reach a plateau and continues

to decrease with the shear rate.
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Figure C.2: Measured torques for polyester particles with ρp/ρ = 1.4 and for pure water. The
loading fractions shown are 30, 40, and 50%. Error bars represents the combined uncertainty of the
measurements.
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Figure C.3: Normalized torques for polyester particles with ρp/ρ = 1.4 and φ̄ = 10, 20, 30, 40, and
50%. Only the results for the case where the particles reach the test section are shown. Error bars
represents the combined uncertainty of the measurements.
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Figure C.4: Measured torques for polyester particles with ρp/ρ = 1.2 and φ̄ = 10 and 20%. Suspend-
ing liquid is aqueous glycerine. Error bars represents the combined uncertainty of the measurements.

C.3 Polyester particles with ρp/ρ = 1.2

Experiments with polyester particles and a density ratio of 1.2 were performed using two different

type of suspending liquids: aqueous glycerine and salt water. Both liquids have the same density but

differ in viscosity, the former is approximately 7.7 times more viscous than the latter. This allows

to study such density ratio at a wider range of Stokes numbers. The salt water density is measured

directly with an hydrometer, while the viscosity is inferred from the work of Dessauges et al. (1980);

Mao and Duan (2008) and Mao and Duan (2009) and considering a molality of 5.309 mol/Kg.

Figures C.4 and C.5 show the measured torques for loading fractions of 10 and 20% with aqueous

glycerine and salt water as the suspending liquid, respectively. Visualization of the flows indicates

that for the case with aqueous glycerine as the suspending liquid, the particles never reach the test

section for φ̄ = 10% and for φ̄ = 20% the particles seem to reach the test section for shear rates

higher than 50 s−1.

For the case with salt water, the particles reach the test section at shear rates higher than 80

s−1 for φ̄ = 10% and 35 s−1 for φ̄ = 20%. The measured torques don’t increase linearly with the

shear rate.

Figure C.6 show the measured torques as a function of shear rate for higher loading fractions of

30, 40, and 50%, and aqueous glycerine as the suspending liquid. The torques show a drop for shear
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Figure C.5: Measured torques for polyester particles with ρp/ρ = 1.2 and φ̄ = 10 and 20%. Sus-
pending liquid is salt water. Error bars represents the combined uncertainty of the measurements.

rates higher than 40 s−1. For loading fractions of 40 the torques reach a plateau for shear rates

higher than 80 s−1, and for the case with φ̄ = 30% the torques start increasing again for shear rates

higher than 80 s−1, mean while for 50% the torques only continue to decrease with the shear rate.

Figure C.7 show the measured torques as a function of shear rate for higher loading fractions of

30, 40, and 50%, and salt water as the suspending liquid. Similarly to the measured torques using

aqueous glycerine as the suspending liquid, the torques using salt water show a drop for shear rates

higher than 40 s−1. For φ̄ = 50% the torques continue to decrease, while for φ̄ = 40 and 30% the

torques start increasing again for shear rates higher than 80 s−1

Figure C.8 shows the normalized torques for all the loading fractions tested with the exception

of φ̄ = 10% because for such low loading fractions, visualization of the flow shows no presence of

particles in the test section. For loading fraction of 20% the normalized torques decrease with Stokes

number rather than increase. For the rest of the loading fractions the ratio of torques behave in the

same way as for the case with ρp/ρ = 1.4 and water as the suspending liquid.

Figure C.9 presents the normalized torques for polyester particles immersed in salt water with

a density ratio of 1.2 for all the loading fractions tested. Only the cases where the particles reach

the test section are shown. Unlike the case with same density ratio but with aqueous glycerine

as the suspending liquid, the ratio of torques for φ̄ < 30% increases with shear rate. For the rest

loading fractions (30, 40, and 50%) the normalized torques exhibit the same behavior as for the case
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Figure C.6: Measured torques for polyester particles with ρp/ρ = 1.2 and φ̄ = 30, 40, and 50%.
Suspending liquid is aqueous glycerine. Error bars represents the combined uncertainty of the
measurements.
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Figure C.7: Measured torques for polyester particles with ρp/ρ = 1.2 and φ̄ = 30, 40, and 50%.
Suspending liquid is salt water. Error bars represents the combined uncertainty of the measurements.
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Figure C.8: Normalized torques for polyester particles with ρp/ρ = 1.2 and φ̄ = 20, 30, 40, and 50%.
The suspending liquid is aqueous glycerine. Only the results for the case where the particles reach
the test section are shown. Error bars represents the combined uncertainty of the measurements.

with same density ratio but aqueous glycerine as the suspending liquid, and as for the case with

ρp/ρ = 1.4 and water as the suspending liquid.

C.4 Direct comparison between same particles but different

density ratios

Figure C.10 presents the normalized torques for φ̄ = 10 and 20%, and for ρp/ρ = 1.2, and ρp/ρ = 1.4.

The normalized torques for the case with aqueous glycerine as the suspending liquid is one order of

magnitude lower than for the case with salt water as the suspending liquid, even though the density

ratios are the same. The reason for this big difference is due to the presence of hydrodynamic

effects. Figure C.11 shows the measured torques normalized by the corresponding laminar torques

as a function of the modified gap Reynolds number which is defined in Section 2.4 for pure fluid

and for loading fractions of 10% and 20% with water, salt water, and aqueous glycerine. For these

low loading fractions, the visualizations show no presence of particles at the test section for the

case with aqueous glycerine as the suspending liquid and φ̄ = 10%, and no presence of particles for

water and salt water for shear rates lower than 65 and 85 s−1 and φ̄ = 20%, respectively. Therefore,

the measured torques for these cases correspond to just the liquid. Deviation from the laminar
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Figure C.9: Normalized torques for polyester particles with ρp/ρ = 1.2 and φ̄ = 20, 30, 40, and 50%.
The suspending liquid is salt water. Only the results for the case where the particles reach the test
section are shown. Error bars represents the combined uncertainty of the measurements.

behavior is observed for the case with water and salt water, meanwhile for aqueous glycerine the

normalized torques are closer to the laminar behavior; however the normalized torques for lower

modified gap Reynolds numbers exhibit larger scatter. This is due to an increase in the uncertainty

in the measurements of such low torques but as the torques increase with shear rate, the scatter

decreases and a clear laminar behavior is observed. Figure C.12 shows the normalized torques as a

function of Re∗b for the present and previous pure fluid measurements from Koos (2009). Notice how

the scatter observed for the torque measurements of φ̄ = 10 and 20% in aqueous glycerine lies within

the scatter observed in the previous measurements of Koos (2009). Therefore the experiments with

water and salt water are likely to be affected by the presence of hydrodynamic instabilities.

Figure C.13 shows the normalized torques for loading fraction of 30% for ρp/ρ = 1.4 and ρp/ρ =

1.2. For the latter case, results using aqueous glycerine and salt water are shown. The behavior

is the same for the three cases shown but the magnitudes do not coincide. For the experiments

with ρp/ρ = 1.2 and aqueous glycerine as the suspending liquid, the ratio of torques is lower than

for the case with the same density but higher Stokes number (salt water as the suspending liquid).

Aside from the possible presence of hydrodynamics effects for the cases with higher Stokes numbers,

the reason for these differences also include the effects of centripetal forces. Visualizations of the

flow show that for the experiments with aqueous glycerine and water as the suspending liquid,
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Figure C.10: Comparison between the M/Mlaminar for ρp/ρ = 1.4 and ρp/ρ = 1.2 and φ̄ = 10 and
20%. Only the cases with particles present in the test section are shown.

the polyester particles move away from the inner wall. For the experiments with salt water, some

particles stay close to the inner wall. This would lead to higher normalized torques but as seen in

Figure C.13, the ratio of torques for the case with salt water is lower than the normalized torques for

the case with water, where no particles are touching the inner cylinder for high Stokes numbers. The

reason for this discrepancy is not clear, one possible explanation is that the hydrodynamic inertial

effects present for the case with water as the suspending liquid are more pronounced than in the

case with salt water. Further details on the flow visualizations is presented in the next section.

Figure C.14 shows the normalized torques for loading fraction of 40% and density ratios of 1.2

and 1.4. Similar to the case of φ̄ = 30%, the behavior for the three cases is the same and the ratio

of torques only differ in magnitude, where the case with aqueous glycerine shows lower normalized

torques than the experiments with water and salt water. The same behavior is found for φ̄ = 50%,

as shown in Figure C.15.

C.5 Flow visualization for polyester particles

Visualization of the flow using water, salt water, and aqueous glycerine as the suspending liquid and

polyester particles are presented in this section. The density ratio for the case with water is 1.4, and

for aqueous glycerine and salt water the density ratio is 1.2.
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Figure C.11: Normalized torques for pure fluid and for low loading fractions of 10 and 20% where
particles are not present in the test section. Vertical dashed line corresponds to the critical modified
gap Reynolds number based on the work of Taylor (1936a) and considers the gap width for rough
walls.
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Figure C.12: Previous and present normalized torques for pure fluid and for low loading fractions of
10 and 20% where particles are not present in the test section. The previous torque measurements
were done by Koos (2009) and used smooth walls. Vertical dashed line corresponds to the critical
modified gap Reynolds number based on the work of Taylor (1936a) and considers the gap width
for rough walls.
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Figure C.13: Normalized torques for polyester particles and ρp/ρ = 1.4 and, ρp/ρ = 1.2 as a function
of Stokes numbers for φ̄ = 30%. The suspending liquids are water, salt water, and aqueous glycerine.
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Figure C.14: Normalized torques for polyester particles and ρp/ρ = 1.4 and, ρp/ρ = 1.2 as a function
of Stokes numbers for φ̄ = 40%. The suspending liquids are water, salt water, and aqueous glycerine.
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Figure C.15: Normalized torques for polyester particles and ρp/ρ = 1.4 and, ρp/ρ = 1.2 as a function
of Stokes numbers for φ̄ = 50%. The suspending liquids are water, salt water, and aqueous glycerine.

Visualizations for ρp/ρ = 1.4

Figure C.16 shows the image sequence corresponding to a loading fraction of 10%, and for a density

ratio of 1.4 at different Stokes numbers. The particles reach the test section height above certain

Stokes numbers, but unlike the visualizations for polystyrene particles (ρp/ρ = 1.05) the polyester

particles exhibit a radial migration and move towards the outer cylinder. The particles observed in

Figure C.16 are not next to the inner cylinder but next to the outer one. Movies at different Stokes

number show that the particles are touching the outer cylinder and as Stokes numbers increase, the

polyester particles climb the outer wall and exhibit little interaction between each other. Therefore,

the torque measurements for these loading fractions correspond to pure fluid measurements with a

narrower annular gap in which the width decreases as more particles climb the outer wall.

For a loading fraction of 30%, the polyester particles are next to the inner wall at low Stokes

numbers, and move away from the inner wall as Stokes increases. At the highest Stokes numbers

there are no particles touching the test cylinder, and all the particles are pushed against the outer

wall.

Similar results are found for volume fraction of 40 and 50%, as shown in Figures C.18 and C.19.

At the highest Stokes numbers some of the polyester particles are touching the lower part of the

test cylinder for φ̄ = 40%, and for φ̄ = 50% the polyester particles are touching the test cylinder
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but their packing seem to have diminished.

Visualizations for ρp/ρ = 1.2

Figure C.20 shows the flow visualization for φ̄ = 10%, and a density ratio of 1.2 but different

suspending liquids. The aqueous glycerine is 7.7 times more viscous than the salt water, leading

to lower Stokes numbers. Only the images corresponding to the highest Stokes numbers tested for

this loading fraction is shown. For the case with aqueous glycerine the particles never reach the test

section, and for the case with salt water some particles climb the outer wall but do not touch the

inner test section. The images for this visualization are blurry due to the opacity of the interstitial

liquid, and the particles distance from the inner wall.

Figure C.21 shows the flow visualization for φ̄ = 20% and a density ratio of 1.2 with different

suspending liquids. For both cases the particles never touch the test section. When the suspending

liquid is salt water, the presence of particles on the outer wall are indicated by the blurry white

background on the pictures. When the polyester particles are touching the test section their image

is sharp.

Figure C.22 shows the flow visualization for φ̄ = 30% and ρp/ρ = 1.2 with salt water as the

suspending liquid. At low Stokes numbers the particles do not exhibit strong radial migration but

as Stokes numbers increases the particles begin to move away from the inner test section. However,

not all the particles move away. This can be observed by the sharpness of the particles’ images.

Figure C.23 shows the flow visualization for φ̄ = 30% and ρp/ρ = 1.2 with aqueous glycerine as

the suspending liquid. Similar to the case with salt water as the suspending liquid, the particles

remain in contact with the test section wall at low Stokes numbers and migrate radially towards

the outer cylinder. Unlike the case with salt water, the particles for this case stop touching the test

cylinder wall at higher Stokes numbers. This results in a significant decrease of particle interactions

because the particles are mainly pushed against the outer cylinder and follow the outer cylinder

velocity.

Figure C.24 shows the flow visualization for φ̄ = 40% and ρp/ρ = 1.2 with salt water as the

suspending liquid. The radial migration of the particles makes the height reach by the particles next

to the test section look constant. The way the particles migrate is similar to the one observed for

the same parameters but φ̄ = 30%.

The radial migration for the same density ratio but more viscous fluid is significantly larger, as

can be observed in Figure C.25. The majority of the particles are pushed against the outer cylinder

and fewer particles remained touching the test section at the highest Stokes number.

Figure C.26 and C.27 show the flow visualization for φ̄ = 50% and ρp/ρ = 1.2 with salt water

and aqueous glycerine as the suspending liquid, respectively. Similar to the results found for this

high loading fraction and ρp/ρ = 1.4, the particles packing seem to decrease with increasing Stokes
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Figure C.18: Image sequence at different Stokes numbers for φ̄ = 40%. The density ratio is 1.4.
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Figure C.19: Image sequence at different Stokes numbers for φ̄ = 50%. The density ratio is 1.4.
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Figure C.20: Image sequence at different Stokes numbers for φ̄ = 10%. The density ratio is 1.2. (a)
suspending liquid is salt water and (b) suspending liquid is aqueous glycerine.
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Figure C.21: Image sequence at different Stokes numbers for φ̄ = 20%. The density ratio is 1.2. (a)
suspending liquid is salt water and (b) suspending liquid is aqueous glycerine.
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numbers and the particles are touching the test section.

C.6 Discussion

Because of the constraint on the visualization window height and the presence of radial migration,

it is not possible to determine the effective volume fraction for these liquid-solid flows. What is

possible to determine is the lack of particles next to the inner wall for loading fractions of 10 and

20% for the three cases studied. Through the flow visualization is possible to propose some reasons

for the measured torque behavior. For the experiments with aqueous glycerine as the suspending

liquid, the normalized torques are considerably lower than the normalized torques found for the same

density ratio but with a less viscous liquid (salt water). Aside from having lower Stokes numbers

and thus lower Reynolds stress, the flow visualization for this case show that the particles radial

migration is considerably larger than for the case with salt water. This leads to measurements of

pure fluid rather than measurements of the mixture for most of the Stokes numbers tested. This

explains in part the lower normalized torques measured for the same density ratio and lower Stokes

numbers. There is also the possibility that the experiments with higher Stokes numbers but same

density ratio, are affected by hydrodynamic instabilities that increase the measured torques.

For the case with larger density ratio (ρp/ρ = 1.4) the particles also show a very similar significant

radial migration than the one observed for the experiments with aqueous glycerine. The reason for

this is not completely clear but one possible reason could be that even when the experiments with

lower density ratio would experience lower centripetal forces, the viscosity of the fluid is higher

(approximately 13.6 times higher than water) and therefore, the drag force too. Higher drag forces

would push the particles towards the outer cylinder if the liquid itself is being pushed towards that

direction. The reason why the experiments with salt water do not exhibit a strong radial migration

might be because the particles in these experiments experience lower centripetal forces than for the

case with ρp/ρ = 1.4 and the drag force would be less than for the case with the same density ratio

but more viscous fluid.

The visualizations for the highest loading fraction of 50% does not show a strong difference in

particle concentration and behavior among the three cases studied. However, the normalized torques

does not have the same values. The reason for these differences is not clear, although the differences

are less pronounced than the differences found for the lower volume fractions. It is possible that

the salt water viscosity that was inferred from the work of Dessauges et al. (1980); Mao and Duan

(2008) and Mao and Duan (2008) might not be completely accurate.

From the movies of the flow, the particle agitation next to the test section wall for the case with

salt water seems to be higher than the one observed for the other two cases (ρp/rho = 1.4 and

water as the suspending liquid, and ρp/ρ = 1.2 with aqueous glycerine as the suspending liquid).
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This would lead to higher normalized torques not only because of the particle interactions but also

because the effective volume fraction is higher. However, the normalized torques for salt water are

lower than for the case with ρp/ρ = 1.4. The reason for this is not clear and it might be an error in

the calculation of the salt water viscosity.
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