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Chapter 7

Discussion

This chapter is a discussion of inertial and particle concentration effects for the experiments with a

matched density, followed by direct comparisons of the torque measurements with different density

ratios. In the previous chapter the effective volume fraction was measured with the help of the flow

visualization. Such measurements are used to predict the effective volume fraction of mixtures with

a density ratio of ρp/ρ = 1.05. It is hypothesized that the effective relative viscosity for flows with

a mismatch density is equal to the effective relative viscosity for flows with a match density as long

as both cases have the same effective volume fraction. This hypothesis is based on the results for

mixtures with a matched density, where for φ > 30 the effective relative viscosity does not appear

to vary dramatically with the Stokes number but it strongly depends on the volume fraction.

7.1 Inertial and particle concentration effects on mixtures

with ρp/ρ = 1

In Section 4.2 it was shown that the effective relative viscosity for experiments with a liquid with

matched density and volume fractions of 10, 20, and 30% exhibit a dependance on Stokes number,

(see Figure 4.3). To study if this dependance can be attributed to the presence of particles or to

the hydrodynamic inertial effects, a comparison between the normalized torques for the mixture and

for the suspending liquid is made as a function of the gap Reynolds number as defined in equation

2.5. Figure 7.1 shows the measured torques normalized by the theoretical laminar torque for volume

fractions of 10, 20, and 30%, and for pure fluid. Both normalized torques increase with the gap

Reynolds number. The normalized torque for the mixture is higher than the normalized torque

for pure liquid. If the dependance of the normalized torque with Reynolds number is due to the

suspending liquid inertial effects, the effect of the presence of particles would be to only increase the

viscosity of the mixture. To account for the increase in flow viscosity due to the presence of particles,

an effective gap Reynolds number (Reb, eff ) is considered. In this modified Reynolds number, the
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Figure 7.1: Normalized measured torques as a function of gap Reynolds numbers defined in equation
2.5 for pure fluid and mixtures with φ = 10, 20 and 30% and ρp/ρ = 1.

effective viscosity of the mixture is used instead of the suspending liquid viscosity,

Reb, eff = ρωrob

µ′
.

The next step is to determine the effective viscosity of the mixture. Under no hydrodynamic effects,

this effective viscosity would be independent of the Reynolds number and be only a function of

volume fraction. Figure 7.2 shows the normalized torques for the experiments with ρp/ρ = 1 as

a function of the loading fraction from the rough walls experiments of Koos et al. (2012) and the

current experiments. For volume fractions lower than 40%, the data for the lowest Stokes numbers

tested appear to coincide with the data from Koos (2012). As mentioned in Chapter 3, the range of

Stokes numbers tested by Koos is slightly lower than the present experiments with ρp/ρ = 1 (Stokes

number from 3 ≤ St ≤ 90). Therefore, it is likely that hydrodynamics effects on the lowest Stokes

numbers are negligible and the effective viscosity of the mixture can be inferred from these low St

measurements. Figure 7.3 shows the effective relative viscosity of the mixture for the lowest Stokes

numbers (µ′min/µ) as a function of volume fraction compared with the effective relative viscosity

from Koos et al. (2012). This effective viscosity is used to define the effective gap Reynolds number

and it is considered to be only a function of volume fraction. To study the contribution from the

hydrodynamic effects on the measured torques, it is instructive to normalize them by an “effective
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Figure 7.2: Effective relative viscosity as function of φ for current and previous work of Koos et al.
(2012) with ρp/ρ = 1.
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Figure 7.3: Minimum effective relative viscosity as function of φ for current experiments (µ′min/µ)
compared with the effective relative viscosity from Koos et al. (2012) with ρp/ρ = 1.
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laminar torque”, which is defined as a the corresponding torque for a Newtonian liquid with a

viscosity equal to µ′min(φ),

Meff, laminar = 2πr2
iHγ̇µ

′
min(φ).

If the effect of the presence of particles is to only increase the effective viscosity of the flow, the

ratio between the measured torques and Meff, laminar would be independent of the effective gap

Reynolds number when Reb, eff is below a critical value or regime, where the hydrodynamic effects

are negligible.

Figure 7.4 shows the ratio between the measured torques and the effective laminar torque for

all the volume fractions tested as a function of the effective gap Reynolds number based on µ′min.

The range of effective gap Reynolds number goes from 1 ≤ Reb, eff ≤ 10 × 104. If the results

of Taylor (1936a) can be applied to the liquid-solid mixture, the critical Reynolds number for the

onset of Taylor-Couette vortices is expected to occur about Reb, eff ≈ 1.1 × 104 for the current

geometry of the apparatus. From Figure 7.4 it can be seen that the normalized torque increases

for effective Reynolds numbers in a lower range. However, pure fluid torque measurements showed

that the measured torques deviate from the laminar theory at a similar gap Reynolds number range

(see Figure 2.13). Figure 7.5 shows the pure fluid and mixture measurements as a function of
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Figure 7.4: Measure toques normalized by effective laminar torque as a function of effective Reynolds
number defined by the minimum value of µ′/µ for each volume fraction.

gap and effective gap Reynolds number. The deviation from laminar theory occurs at an effective
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Reynolds number range where the pure fluid measurements exhibit a non-laminar behavior. The

mixture normalized torques start deviating from the laminar theory at lower effective Reynolds

number range. In the Couette-Taylor flow studies from Taylor (1936a), it was shown that when the

flow is sheared by the rotation of the outer cylinder, the flow transition did not occur at a specific

critical gap Reynolds number but within a range. Based on this, it is likely that the hydrodynamic

effects are present in a range of Reynolds number rather than above a critical value. Therefore, the

deviation from the laminar behavior of the mixture at effective gap Reynolds number is more likely

to be due to hydrodynamics effects rather than an effect of particle interactions.
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Figure 7.5: Measure toques normalized by Meff, laminar as a function of Reb, eff compared with
normalized pure fluid torque measurements. For pure fluid, the normalized torques are plotted
against Re∗b .

In an ideal scenario where secondary flow effects are not present, the transition from “viscous” to

“inertial” regime in liquid-solid flows would be governed by particle interactions. These interactions

are controlled by the Stokes number, which is based on the particle size and the fluid viscosity rather

than the effective viscosity of the mixture. Therefore, it is not possible to determine what the Stokes

number regime at which the transition occurs due to merely particle inertia is.

For larger volume fractions the relative effective viscosity exhibited a weaker dependance on the

Stokes number (see Figure 4.4), suggesting that for these experiments the inertial effects from the

fluid and particles are not present. From Figure 7.5 it can be seen that for φ = 40 and 50%, the

corresponding Reb, eff is lower and possibly below the critical Reynolds number.
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7.2 Direct comparisons between ρp/ρ = 1 and ρp/ρ = 1.05

Figure 7.6 shows the ratio of torques as a function of the Stokes number for the lowest loading

fraction (10%) for the case with settling and non settling particles. Above Stokes number higher

than 60, the normalized torques for both cases seem to match . Visualizations of the flow (a detailed

analysis of this is presented in Chapter 6) for the case of settling particles at φ̄ = 10% show that for

Stokes numbers lower than 60, the height of the column of particles is lower than the bottom fixed

guard height. Therefore, for St < 60 the particles do not reach the test cylinder. For this reason

the torque measurements for these shear rates are not considered.
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Figure 7.6: Normalized torques for 10% loading fractions as a function of St for ρp/ρ = 1 and 1.05.

Figure 7.7 shows the comparison between the normalized torques for a loading fraction of 10%

with settling particles and the normalized torque measurements for just the liquid (plain water with

no particles). These torques were normalized with the torque corresponding to a laminar flow. The

normalized torques for a loading fraction of 10 % match the values for the torque measurements for

just the fluid when the gap Reynolds number is lower than 5 × 104. For higher Reb, the mixture

exhibit higher normalized torques than the pure fluid. Above Re = 3× 104, the visualization of the

flow starts showing the presence of particles in the middle test section.

The reason why the normalized torques for non-settling particles matches the normalized torques

for the settling ones at St < 135 might be coincidental. In the case with settling particles, below
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Figure 7.7: Comparison between normalized torques as a function of gap Reynolds number for pure
fluid and φ̄ = 10% with ρp/ρ = 1.05.

St = 80, the solid phase contribution to the torque at low shear rates is null, while for the case with

neutrally buoyant particles the solid phase is always present (see Figure 7.8 for a comparison on

the flow visualization between these two cases). Therefore at about St = 80, the measured torque

includes a contribution from the pure fluid and a contribution from the particles.

For a higher loading fraction of 20%, the normalized torques for ρp/ρ = 1 are higher than for

the case with ρp/ρ = 1.05 for St > 60, as seen in Figure 7.9. For the particular case of these low

loading fractions, it is possible that the torque contribution from the suspending liquid is higher than

the torque predicted from laminar theory. As presented in Section 2.4, the measured torques for

plain water and 21% aqueous glycerine mixture are 4 to 28 times higher than the torques predicted

by laminar theory. For the case of ρp/ρ = 1.05 and φ̄ = 10%, the visualization of the flow shows

that the test cylinder is fully covered by the particles only for St > 135 (see Figure 6.14 or table

7.1). This means that for lower Stokes numbers, the measured torque does not correspond solely to

the liquid-solid mixture and thus it is not representative of the suspension. A comparison of these

loading fractions is given later in Section 7.6.

Figure 7.10 shows the normalized torques for a loading fraction of 30% for the case with settling

and non-settling particles. For the case with settling particles, only the normalized torques corre-

sponding to Stokes numbers where the particles are closed to be completely fluidized are considered

(based on the settling particles heights and visualizations) so the settling effect on the measured
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Figure 7.8: (a) Image sequence of the flow for φ̄ = 10% and ρp/ρ = 1.05 for different Stokes numbers.
(b) Same as (a) but for ρp/ρ = 1. The height of the visualization window is slightly higher than the
test section.

No porous medium Porous medium
φ̄ St fully covered St fluidized St fully covered St fluidized
10 135 NA 80 80
20 80 NA 65 100
30 NA 80 NA 120
40 NA 95 NA 140
50 NA 100 NA 180
60 NA 100 NA NA

Table 7.1: Critical Stokes numbers for fluidization. St fully covered denotes the Stokes number above
which the test cylinder is fully covered by particles based on Figure 6.19. St fluidized denotes the
Stokes number above which the ratio of torques exhibits a change in slope based on Figures 4.16
and 5.15.
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Figure 7.9: Comparison between normalized torques as a function of Stokes numbers for ρp/ρ = 1
and ρp/ρ = 1.05 with φ̄ = 20%.

torques is weaker. For both cases, the normalized torques increase with Stokes number and exhibit

a linear dependance with similar slopes. The normalized torques for the settling particles at the two

similar Stokes numbers are higher than for the non settling ones. A possible explanation for these

differences is that the effective volume fraction for the settling particles is slightly higher. The Stokes

number at which the particles reach the top of the rheometer (see table 7.1) is around 113, but even

when the particles have reached the top, it does not imply an homogeneous distribution of the parti-

cles. A gradient on the volume fraction may exist, leading to effective volume fractions higher than

the loading fractions and therefore higher normalized torques. An analysis of the effective volume

fraction is presented in Section 7.3.

Based on the particles height measurements, the test cylinder is fully covered at most Stokes

numbers for a loading fraction higher than 30% (see Figure 6.14 or table 7.1). The torque contribu-

tion from the suspending liquid might be less than in the more dilute cases since the concentration

of particles is high enough to decrease the effective Reynolds number of the flow, making the sus-

pending liquid contributions closer to the torque predicted from laminar theory. Figure 7.11 shows

the normalized torques for the higher loading fractions and for ρp/ρ = 1 and ρp/ρ = 1.05 . Only the

Stokes numbers at which the particles reached the top are considered. Predictions of the effective

volume fraction based on the flow visualizations are presented later in Section 7.3. For the case with

matched densities, there is a slight decrease in the effective relative viscosity for φ = 40 and 50%
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Figure 7.10: Comparison between normalized torques for ρp/ρ = 1 and ρp/ρ = 1.05 as a function of
Stokes numbers with φ̄ = 30%. For the case of ρp/ρ = 1.05, only the data without settling is shown.

at the lowest Stokes number, and this decrease might be due to slight settling of the particles, but

it is considerably less dramatic than the one observed for settling particles at low Stokes numbers

(see Figure 4.15). The normalized torques for φ = 50% for ρp/ρ = 1 are almost the same as for

ρp/ρ = 1.05. At this high loading fraction the effective volume fraction after fluidization matches

the effective volume fraction for ρp/ρ = 1. For φ = 40% and ρp/ρ = 1 the normalized torques have

lower values than for ρp/ρ = 1.05, and it is possible that there exists differences in effective volume

fraction due to settling.

For all the cases shown in Figure 7.11, the normalized torques exhibit a weak dependance on

the Stokes number. In the absent of strong hydrodynamics effects, the normalized torques would

depend on the concentration and possible interaction of particles. If the latter is not present or

if it is weak, the normalized torques would be independent of Stokes number and would exhibit a

strong dependance on volume fraction. Therefore, for these loading fractions, the effects of fluid and

particle inertia are not strong. An analysis of the inertial effects for the case with ρp/ρ = 1.05 is

presented in Section 7.4.

The normalized torques for Stokes numbers where the particles are completely fluidized and for

loading fractions higher than 20% seem to coincide with the normalized torques for the case with

ρp/ρ = 1 as can be observed in Figure 7.12.

Assuming that the normalized torques are equal to the effective relative viscosity, Figure 7.13
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Figure 7.11: Normalized torques as a function of Stokes numbers with φ̄ = 40, 50, and 60% for
ρp/ρ = 1 and ρp/ρ = 1.05. For the case of ρp/ρ = 1.05, only the data without settling is shown.
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Figure 7.12: Normalized torques as a function of Stokes number for ρp/ρ = 1 and ρp/ρ = 1.05. For
the case with settling particles, only the normalized torques corresponding to Stokes number where
the particles are fully fluidized are shown.
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shows the effective relative viscosity for all the volume fraction tested and for ρp/ρ = 1 and ρp/ρ =

1.05. For the case with settling particles, the data corresponding to Stokes numbers below the

fluidization threshold are not included. The Stokes number magnitude is denoted by the size of the

symbol. The effect of Stokes number is the same for both density ratios. For loading fractions lower

than 40%, the effective relative viscosity increases with St. At higher loading fractions the effect of

Stokes is not very noticeable for the both density ratios studied as long as the data with settling

effects are not considered. Figure 7.14 shows the ratio of µ′/µ for all the Stokes number tested,

including the data where the particles are settling. It can be seen from Figure 7.14 that for loading

fractions higher than 20%, the ratio of µ′/µ decreases with St for ρp/ρ = 1.05. This is linked to the

settling effects and it is similar to what was observed by Acrivos et al. (1994). It is expected that

these two curves would collapse when the effective volume fraction is used instead of the loading

fraction. The prediction of the effective volume fraction is studied in the next section.
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Figure 7.13: Relative effective viscosity as a function of φ and φ̄ for ρp/ρ = 1 and ρp/ρ = 1.05. For
the case of ρp/ρ = 1.05, only the data without settling is shown.

A comparison between the two sets of data for the current experiments and the rough walls

experiments from Koos et al. (2012) is presented in Figure 7.15.

The effect of Stokes number is considerably less for the previous experiments of Koos (2009) at

lower volume fractions.
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Figure 7.14: Relative effective viscosity as a function of φ and φ̄ for ρp/ρ = 1 and ρp/ρ = 1.05. All
the Stokes number tested are shown, including the ones with settling effects.
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Figure 7.15: Relative effective viscosity as a function of φ and φ̄ for ρp/ρ = 1 and ρp/ρ = 1.05
compared with the effective relative viscosity from Koos et al. (2012). For the case of ρp/ρ = 1.05,
only the data without settling is shown.
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7.3 Prediction of the effective volume fraction

As mentioned before in Section 7.2, for settling particles at low loading fractions and below a certain

Stokes number, the particles do not entirely cover the test cylinder. To compare these low loading

fractions and the low loading fractions with ρp/ρ = 1, only the measurements where the test cylinder

is fully covered are considered.

Figure 7.16 shows the effective relative viscosity as a function of the Stokes numbers for φ = 10

and 20%, and for ρp/ρ = 1 and ρp/ρ = 1.05. For the lowest volume fraction the effective relative

viscosity for the settling particles appears to coincide with the trend observed for ρp/ρ = 1. However,

the St numbers at which the particles fully covered the test cylinder are higher than the tested St

for ρp/ρ = 1 but they seem to follow the same trend. This suggests that the difference in density is

less important when the particles are completely fluidized for this dilute case.
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Figure 7.16: Relative effective viscosity as a function of Stokes numbers with φ̄ = 10 and 20% for
ρp/ρ = 1 and ρp/ρ = 1.05. For the case of ρp/ρ = 1.05, only the data without settling is shown.

For the higher loading fraction of 20%, the effective relative viscosity for the settling particles is

slightly lower than for the density matched experiments with same loading fraction. This difference

is an indication of the particles’ effect since the suspending liquid for the case with settling particles

has a lower viscosity than for the case with ρp/ρ = 1. Thus, an increase in the effective relative

viscosity must be due to an increase in the particle concentration. In Figure 7.17, visualization of

the flow is shown for a loading fraction of 20%, where it can be seen in the difference in particle
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Figure 7.17: (a) Image sequence of the flow for φ̄ = 20% and ρp/ρ = 1.05 for different Stokes
numbers. (b) Same as (a) but for ρp/ρ = 1. The height of the visualization window is slightly higher
than the test cylinder.

To account for the effect of solid concentration, the effective volume fraction for the settling

particles is inferred from the particle resuspension measurements. Using a linear interpolation, the

effective volume fraction at specific query Stokes number can be inferred from the volume fraction

calculated using the particles height measurements presented in Chapter 6. Figure 7.18 shows the

effective relative viscosity as a function of the effective volume fraction for different Stokes numbers

tested for ρp/ρ = 1.05. Here only the cases where the test cylinder is fully covered are considered.

The magnitude of the Stokes numbers is represented with different size symbols (the larger the

Stokes number, the larger the symbol). As the Stokes number increases, the effective volume fraction

decreases. The highest relative viscosity corresponds to the highest volume fraction and the lowest
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Figure 7.18: Effective relative viscosity as a function of the predicted volume fraction. The size of
the symbols denotes the magnitude of the Stokes numbers, where the largest symbols correspond to
the largest Stokes numbers. Only the cases where the mixture cover the test cylinder are presented.

Stokes number. For loading fractions higher than 30%, the data seem to collapse. For the cases

with lower φ̄, the data seem to scatter more.

To study the effect on differences in density, the effective relative viscosity and volume fraction

are compared with the case with ρp/ρ = 1. . Figure 7.19 shows this comparison.

The effective relative viscosity for the two sets of data seems to coincide and follow the same

trend. This suggests that there are no strong effects on different density ratios. Figure 7.20 shows

the comparison between the current experiments and the previous experiments from Koos (2009).

The data seem to coincide for most volume fractions. The loading fractions that deviate more

are the loading fraction of 10 and 40% from Koos (2009).

7.4 Inertial and particle concentration effects on mixtures

with ρp/ρ = 1

The predicted effective volume fraction is used to estimate the effective viscosity of the mixture.

Based on Figure 7.3, the effective viscosity of the mixture for a ρp/ρ = 1.5 is assumed to be

independent of the density ratio. This assumption is validated with the results presented in the

previous section, where the effect of differences in density was weak (it should be noted that the
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Figure 7.19: Effective relative viscosity as a function of the loading and predicted volume fraction
for ρp/ρ = 1 and ρp/ρ = 1.05.The size of the symbols denotes the magnitude of the Stokes numbers,
where the largest symbols correspond to the largest Stokes numbers. Only the cases where the
mixture cover the test cylinder are presented.
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Figure 7.20: Effective relative viscosity as a function of the loading and predicted volume fraction
for ρp/ρ = 1 and ρp/ρ = 1.05, compared with the data from rough walls of Koos (2012). The size of
the symbols denotes the magnitude of the Stokes numbers, where the largest symbols correspond to
the largest Stokes numbers. Only the cases where the mixture cover the test cylinder are presented.
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differences in density is only 5%). It follows then that the normalized torque corresponding to the

same volume fraction would be the same as long as no hydrodynamics effects are present. Based on

this, the effective relative viscosity between two mixtures with different suspending liquid but same

volume fraction is
µ′min, 21% glycerine

µ21% glycerine
=
µ′min, H2O

µH2O
.

Using this relation the effective viscosity is found for the experiments with settling particles. The

effective Reynolds number is calculated in the same way as before. Figure 7.21 shows the measured

torques normalized with the corresponding laminar torque for a effective mixture viscosity. Only

the data with fluidized particles is considered to isolate the effect of settling.
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Figure 7.21: Measured torques normalized with effective laminar torque as a function of Reb, eff for
ρp/ρ = 1.05. The effective viscosity of the mixture is inferred from the effective volume fraction and
Figure 7.3.

The settling particles show a wider scatter than the data with density ratio equal to one. This

is due to the uncertainties introduced when estimating the effective viscosity of the mixture (µ′min).

The accumulative uncertainty would involve the uncertainty on predicting the effective volume frac-

tion and the uncertainty involved inferring µ′min from the data with ρp/ρ = 1. If the mixture

effective viscosity is considered to be equal to the effective viscosity for the lowest values of Stokes

number found for ρp/ρ = 1.05, then the source of uncertainties reduces. In such case the modified
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effective Reynolds number is defined as

Re∗b, eff = ρωb

µ′∗min
,

where µ′∗min corresponds to the minimum value of µ′/µ found for each loading fraction. For the

case with ρp/ρ = 1.05, this corresponds to the highest Stokes numbers where the particles are

fully fluidized. Figure 7.22 shows the measured torques normalized by the effective laminar torque

considering µ′∗min (M∗eff, laminar). The scattered in this plot is considerably less.
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Figure 7.22: Measured torques normalized with effective laminar torque as a function of Re∗b, eff for
ρp/ρ = 1.05. The effective viscosity of the mixture used for Re∗b, eff corresponds to the minimum
µ′/µ for each loading fraction.

In both figures the range of effective Reynolds number at which the normalized torques deviate

from a laminar behavior coincides with the region found for the case with ρp/ρ = 1. Based on these

results, any dependance of the Stokes or Reynolds number is due to hydrodynamics effects.

7.5 Flow over a porous medium ρp/ρ = 1.05

In an attempt to study low loading fractions, experiments of the mixture flow over a porous medium

were performed. For all the loading fractions, the normalized torques decrease with Stokes numbers,

with the exemption of φ̄ = 10%. One of the main differences found between these experiments and
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the ones without a porous bed is that the measured torque decreases at a certain Stokes number.

This is observed at all loading fractions and it was independent of the shearing history of the flow

(no hysteresis). This drop on the measured torque is likely to be linked to a settling (or equivalently

to a resuspension effect). This drop in torque is observed as a change in slope on the normalized

torques. A comparison between the visualization of the flow and the relative viscosity is presented

in the next section.

Effect of resuspension on flow over a porous medium

Figure 7.23 (a) shows the flow visualization for a 10% loading fraction at different Stokes numbers.

Each image was taken after several minutes of shearing the flow at a constant shear rate for each St.

As mentioned in the previous chapter, the height of the visualization window for these experiments is

approximately one inch higher than the test cylinder. Therefore, only the flow in this region, which

is the same region where the torque measurements take place, is visualized. The corresponding St

for each image increases from left to right, starting at the upper left corner with a St = 0. The

height reached by the particles increases considerably when the St goes from 0 to 18 and it remains

almost constant between St from 18 to 55 (see Figure 6.17 to see the actual height measurements).

There is a bigger increase in height when the St goes from 67 to 81, and when St = 109 the particles

appeared to be completely resuspended and covered the whole test cylinder. These observations

can be compared with the effective relative viscosity measurements. In Figure 7.23 (b) it can be

observed that µ′/µ corresponding to the measurements that were taken from low to high shear rates

(closed symbols), decreases abruptly when St increases from 10 to 34. This abrupt change in µ′/µ

coincides with the abrupt increase in the height reached by the particles between 0 ≤ St ≤ 18. This

means that the mixture requires higher shear stress in order to initiate the flow of settled particles,

and as soon as the particles became re-suspended the needed shear stress decreased. For St larger

than 20, µ′/µ remains almost constant. When the St is higher than 80, µ′/µ starts increasing.

As pointed out previously in Chapter 5, this increase was only observed for this particular loading

fraction. It is possible that this behavior is due to settling effects. By simply comparing the top and

bottom row of the image sequence in Figure 7.23 (a), the big difference between the area covered by

particles for St lower than 91 (top row) and the area covered for St higher than 100 can be noticed.

The ratio between the highest and the lowest normalized height for this loading fraction (see Figure

6.17) is 2.06, while the ratio for a loading fraction of 20% is 1.51. Even when the particles are more

packed at low Stokes numbers, they don’t cover a significant region of the area where the torque

measurements are taken. When the particles fluidized, they are more diluted but they cover a bigger

region of the test area. In the following section, an analysis about the possible hydrodynamics effects

present in this set of experiments is presented. Because of the limitation of the short visualization

window used for these experiments, measurements of the total height reached by the particles when
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fluidized are not available. The ratio µ′/µ keeps increasing for St higher than 120. It is possible

that this increase on µ′/µ is due to inertial effects.

When the experiments are performed from high to low shear rates (Figure 7.23 open symbols),

and for St higher than 80; the effective relative viscosity exhibited the same behavior as for the case

where the shear rate went from low to high. For St lower than 80, the µ′/µ for high to low shear

rate experiments is higher. These differences were only observed for this loading fraction and the

reason why is not completely clear. The glass beads that formed the porous media and the settling

polystyrene particles re-arranged themselves after being sheared at high shear rates, which increased

the settling height of the particles and the effective volume fraction.

Figure 7.24 shows the visualization for flow over a porous media with a loading fraction of

20%. Similar to what is observed in Figure 7.23 (a), the height reached by the particles for Stokes

numbers lower than 80 increases gradually but not abruptly. For St = 82 there is an abrupt increase

in height and the particles covered the whole visualization window. As St increases, the images for

the visualization look very similar to each other. In Figure 7.24 (b) the µ′/µ as a function of St is

presented. Unlike the case for a loading fraction of 10%, the effective relative viscosity decreased

considerably for St lower than 82 (the ratio between the µ′/µ for the lowest St and the minimum

µ′/µ for a loading fraction of 20% is 13, meanwhile for a 10% loading fraction that ratio is 2.9). For

St higher than 82, µ′/µ remains fairly constant. Since there was not a significant variation between

the images corresponding to such St, the reason why µ′/µ appears to be independent of the St could

be that the effective volume fraction remained constant.

For the case with a 30% loading fraction presented in Figure 7.25 (a), the particles covered almost

the entire visualization window. It can be seen that the particles start rising gradually for St lower

than 74. Due to the visualization window size it is not possible to see if there was an abrupt change

in the height reached by the particles. However, the µ′/µ measurements (Figure 7.25 (b)) show a

change in slope for St higher than 120. It is possible that the particles’ full resuspension occurs at

a higher St than for the lower loading fraction cases.

For larger loading fractions, the area where the torque measurements take place was completely

covered by the particles, as shown in Figure 7.26. Based on these images it is not possible to identify

when the particles are fully fluidized because of the size of the visualization window. However,

as described in Chapter 5, the effective relative viscosity does exhibit a change in slope at Stokes

numbers between 120 and 130 (see Figure 7.27). These findings suggest that the effective volume

fraction became constant for St higher than 130.

Direct comparisons between flow with and without a porous medium base

Figure 7.28 shows the normalized torques for loading fractions of 20% for the case with different

density ratios for φ̄ = 10% over a porous medium. For the case with settling particles, only the
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Figure 7.27: Effective relative viscosity for flow over porous media. Closed symbols correspond to
measurements taken with increasing shear rate. Open symbols correspond to measurements taken
from high to low shear rates. ρp/ρ = 1.05.
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Stokes number corresponding to the cases where the particles cover the test cylinder completely are

considered. The normalized torques for the flow over a porous media are higher than for the cases

without a porous medium base. Figure 7.29 shows the normalized torques for the 3 cases studied:
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7? =20%, No porous medium, ;p=; = 1:05
7? =20%, No porous medium, ;p=; = 1

Figure 7.28: Flow over porous medium normalized torques as a function of St for φ̄ = 10 compared
with no porous medium with φ̄ = 20% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data with no
settling effects are considered.

ρp/ρ = 1.05, with and without bottom porous medium, and ρp/ρ = 1. The loading fraction for

the flow over porous medium is 20% while the loading fraction for no porous medium is 30%. Only

the case where the settling particles have reached the top of the annulus are considered. For the

case with porous medium, this is considered to be at Stokes numbers where the normalized torques

change in slope (see Figure 7.24). The cases without porous medium show a stronger dependance

on the Stokes numbers than the case for the flow over a porous medium. However, the trend for

these 3 cases is very similar. Figure 7.30 shows the normalized torques for a loading fraction of 30%

with a porous medium and for a loading fraction of 40% for the case without it. The normalized

torques for the flow over porous medium lie between the normalized torques for a φ̄ = 40% with

ρp/ρ = 1.05 and ρp/ρ = 1. The change in normalized torques dependance on Stokes number for the

case with settling particles is considered to be linked to the fluidization of the particles. In the absent

of hydrodynamics and particle interactions effects, a constant behavior of the normalized torques

with the Stokes number would indicate a constant volume fraction. The results shown in Figure

7.30 suggest that the effective volume fraction for the case with a porous medium and φ̄ = 30% is
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Figure 7.29: Flow over porous medium normalized torques as a function of St for φ̄ = 20 compared
with no porous medium with φ̄ = 30% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data with no
settling effects are considered.

higher than 40% (considering that the loading fraction for the case with matched densities is equal

to the effective volume fraction), and that is less than the effective volume fraction for the case with

settling particles and a loading fraction of 40%. In the next section a study of the effective volume

fraction is presented to correct for the differences in loading and effective volume fraction. Lastly,

Figure 7.31 shows the normalized torques for the three cases considered above with the normalized

torques for a loading fraction of 40 and 50% for the flow over porous media, and 50% for the flow

without it. As mentioned before, the normalized torques for the loading fraction of 50% decreases

with Stokes number and did not become constant. However, by inspecting the measured torques,

(see Figure 5.5), a drop occurs at shear rates around 60 s−1, which corresponds to Stokes numbers

around 100. In Figure 7.31 it is observed that the normalized torques for flow without the porous

medium are more or less independent of the Stokes numbers. For the case with porous medium,

the normalized torques continue to decrease with Stokes number. This indicates that the effects

of settling (decreasing of the normalized torques with Stokes number) are more pronounced than

for the case with porous medium. Therefore, even when the top particles have resuspended and

touch the top section of the rheometer, the middle section of the column of particles have not been

effectively fluidized. This suggests that the presence of the porous medium enhances the effects of a

volume fraction gradient in the vertical direction. It is possible that in the absent of porous media,
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Figure 7.30: Flow over porous medium normalized torques as a function of St for φ̄ = 30 compared
with no porous medium with φ̄ = 40% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data with no
settling effects are considered.
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Figure 7.31: Flow over porous medium normalized torques as a function of St for φ̄ = 40 and 50%
compared with no porous medium with φ̄ = 50% and ρp/ρ = 1.05 and ρp/ρ = 1. Only the data
with no settling effects are considered.
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the formation of secondary flows at the bottom helps fluidized the settling particles; meanwhile, the

presence of porous media might weaker this effect.

Effective volume fraction prediction for flow over a porous medium with

ρp/ρ = 1.05

The effective volume fraction for the settling particles is inferred from the particle resuspension

measurements that are described in Chapter 6. Using the same method described in Section 7.3, the

effective volume fraction is estimated from the expansion results. However, due to the limited view

of the visualization window used for these experiments, measurements of the height at high Stokes

number are not possible. By comparing the measure heights normalized with the total height for the

cases with and without a porous medium, similarities between certain loading fractions are found.

Figure 7.32 shows the normalized measure heights for the case without porous medium and loading

fractions of 20, 25, and 30 % compared with the normalized measure heights for flow over porous

medium with loading fractions of 10, 20, and 30%. The normalized measure heights for the case
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Figure 7.32: Particles normalized heights for flow with and without porous medium. The height is
measured from the bottom of the annulus and normalized by the annulus total height.

with glass beads at the bottom seem to coincide with the heights corresponding to a higher loading

fraction when no porous medium is placed. The effective volume fraction can then be inferred for

a wider range of Stokes numbers by using the expansion for which the measured normal heights
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seem to coincide. To test this method, the effective volume fraction is also predicted using linear

extrapolation from the height measured for the limited Stokes numbers. Both methods lead to

similar effective volume fractions. Figure 7.33 shows the effective relative viscosity as a function of

the effective volume fraction for different Stokes numbers tested for ρp/ρ = 1.05. In here only the

cases where the test cylinder is fully covered are considered. The magnitude of the Stokes numbers

is represented with different sized symbols (the larger the Stokes number, the larger the symbol).

The effective relative viscosity increases with volume fraction and for a loading fraction of 10% an
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Figure 7.33: Effective relative viscosity for flow over porous media as a function of the effective
volume fraction. Only the data where the test cylinder is fully covered are considered.

effect on the Stokes number is observed. For this particular case, the larger the St, the higher the

effective relative viscosity and the lower the effective volume fraction is.

Comparisons between the case with settling particles but no porous medium are shown in Figure

7.34. The effective relative viscosity is higher for the case with a porous medium for volume fractions

lower than 30%. For higher volume fractions the effective relative viscosity appears to coincide for

both cases presented. Figure 7.35 shows the comparison between the three cases studied. With

the exemption of the low volume fractions with a porous medium, the effective relative viscosity for

all the other scenarios considered seem to coincide and follow the same trend. The differences in

effective relative viscosity for low volume fractions seem to indicate the presence of a gradient in the

volume fraction in the vertical direction. This gradient is more evident for the case with flow over

a porous medium.
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Figure 7.34: Effective relative viscosity as a function of the effective volume fraction for flow with
and without porous medium. Only the data where the test cylinder is fully covered are considered.
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Figure 7.35: Effective relative viscosity as a function of the effective volume fraction for flow with
and without porous medium with different density ratios. Only the data where the test cylinder is
fully covered are considered.
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Inertial and particle concentration effects on flow over a porous medium

with ρp/ρ = 1.05

Similar to the analysis done in Section 7.4 and 7.1, the effective viscosity of the mixture (µ′min) is

inferred using the predicted effective volume fraction and Figure 7.3. The values of µ′min are used

to calculate the effective laminar torque (Meffe, laminar) and the effective gap Reynolds number

(Reb, effe). The measured torques normalized with the effective laminar torque as a function of the

effective gap Reynolds number are presented in Figure 7.36 and compared with the different density

ratio cases without porous medium. As considered for the cases without porous medium, only the

data for Stokes number without settling effects are considered.
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Figure 7.36: Measured toques normalized by the effective laminar torques as a function of the
effective Reynolds numbers for ρp/ρ = 1 and ρp/ρ = 1.05 with and without porous medium. The
effective viscosity of the suspension is inferred from the predicted effective volume fraction and
Figure 7.3.

The normalized torques using the predicted effective viscosity are higher for the flow over a

porous medium. As mentioned before, using Figure 7.3 to infer the value of the effective viscosity

µ′min introduces the uncertainties involved in estimating the effective volume fraction. If µ′min is

instead considered to be equal to the minimum value of µ′/µ found for each loading fraction, then

the scatter found in Figure 7.36 is reduced, as shown in Figure 7.37. For all the cases shown, the

deviation from the laminar behavior occurs at the range of effective Reynolds number where the
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pure fluid torque measurements are higher than the ones predicted from laminar theory.
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Figure 7.37: Measured toques normalized by the effective laminar torques as a function of Re∗b, eff
for ρp/ρ = 1 and ρp/ρ = 1.05 with and without porous medium. The effective viscosity of the
suspension is considered to be the minimum of the ratio µ′/µ for each loading fraction.

7.6 Corrected torque for partial filling

As mentioned before in Section 7.2, for settling particles at low loading fractions and below a certain

Stokes number, the particles do not cover entirely the test cylinder. To compare between these low

loading fractions and the low loading fractions with ρpρ = 1, a correction of the measured torques is

needed. Such correction should take into account just the area covered by the liquid-solid mixture.

This can be achieved by formulating that the measured torque is the sum of the contribution of the

mixture and the contribution of the fluid, which leads to the following relation:

M = τ2πr2
i hf + τmix2πr2

i h,

where M is the measured torque, τ is the fluid shear stress , τmix is considered to be the shear stress

applied by the liquid-solid mixture, and hf and h are the height from the test cylinder covered by

just the fluid and the mixture, respectively. The torque corresponding for just the mixture can be
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obtained from equation 7.39 by considering that the fluid shear stress is equal to

τ = Mf

2πr2
i htest

,

where Mf is the measured torque for just the fluid and htest is the height of the test cylinder. Since

Mf was measured for a limited range of gap Reynolds number, a curve fit from these measurements

is used to infer the corresponding values of Mf for higher Reynolds numbers. Figure 7.38 shows in

a log log scale the pure fluid measured torque together with the curve fit used to infer the values of

Mf for plain water and the aqueous glycerine mixture of 21% used for the case with matched liquid

density.
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Figure 7.38: Measured torque for pure fluid as a function of gap Reynolds number and its curve fit
presented in a log-log scale.

By substituting equation 7.6 into 7.39, the corrected torque for the mixture is

Mmix = M −Mf
hf
htest

, (7.1)

where hf is equal to htest−h. Figure 7.39 shows the corrected measured torque for volume fractions

of 10 and 20% with ρp/ρ = 1.05. The correction applies only to the shear rates for which the liquid-

solid mixture is only partially covering the test cylinder. For shear rates where the height predicted

using the particles height measurements (discussed in Chapter 6) is above the test cylinder height,
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Mmix is considered to be equal to the measured torque (M). The torques for the shear rates where

the test cylinder is partially covered, (γ̇ < 80 s−1 for φ̄ = 10 and γ̇ < 60 s−1) does not show a strictly

linear dependance with the shear rate, although there are not a significant number of measurements

to determine the trend (for φ̄=10%, only 3 points were measured and for φ̄ = 20% only 4). There

is a jump between the corrected torques and the corresponding measured torque for the case where

the particles fully cover the test cylinder. This might suggest that the contribution from the fluid

to the measured torque is over-estimated during the correction or that the full resuspension of the

particles increases the torque abruptly.
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Figure 7.39: Corrected torque as a function of shear rate for partially covered test cylinder.

As mentioned before, it is possible that for these diluted mixtures, the contribution of the liquid

might be stronger than for higher solid fractions. The presence of particles might not be strong

enough to reduce the effective Reynolds number of the suspension. In such case, the contribution

to the torque from the suspending liquid might be closer to the value measured for just the fluid.

Figure 7.40 shows the corrected torque normalized by the theoretical laminar torque as a function

of the Stokes number. The normalized torques for the Stokes for which the particles are partially

covered are more scattered. When the test cylinder is fully covered, the normalized torques fluctuate

less. For a loading volume fraction of 10% and 20% , the normalized torques increase with Stokes

numbers when the test cylinder is fully covered.

Figure 7.41 shows a comparison between the normalized torques for ρp/ρ = 1.0 and ρp/ρ = 1.05.

For the case with settling particles, the torques have been corrected to account when the test cylinder
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Figure 7.40: Corrected torque normalized by Mlaminar as a function of Stokes numbers.

is partially covered (Mmix/Mlaminar).
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Figure 7.41: Corrected torque normalized by Mlaminar as a function of Stokes numbers compared
with the data for ρp/ρ = 1.
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For the case with ρp/ρ = 1.05, the normalized corrected torques for a loading fraction of 20%

decrease with Stokes number, and once the particles fully covered the cylinder the corrected nor-

malized torque increases. A similar behavior is found for a loading fraction of 10%. For this loading

fraction only the data corresponding to the Stokes number where particles were present in the test

section are considered. The correction of the torque when the test cylinder is partially covered does

not seem to coincide with the measured torques for fully covered. This suggests that either the

predicted height or the predicted pure fluid torque considered is not completely adequate.

7.7 Comparison between current and previous experimental

and numerical results

The effective relative viscosity for the current and previous experiments of inertial suspensions is

shown in Figure 7.42. For the current experiments with settling particles, the relative effective

viscosity is plotted against the predicted volume fraction normalized by the particles random loose

packing measured by Koos et al. (2012) (φRLP = 55.3%). Only the previous experiments with

rough walls and Stokes numbers higher than 10−1 are compared. The empirical model used by

Zarraga et al. (1999) is also shown in Figure 7.42 to compare the non-inertial results. The current

experiments exhibit higher effective relative viscosities than the previous experimental work. Most of

the experimental work of Prasad and Kytömaa (1995) correspond to Stokes numbers lower than the

present study (3.2×10−2 ≤ St ≤ 3.2) and their measurements involved settling particles with higher

density ratio (1.12 ≤ ρp/ρ ≤ 2.09). Their torque measurements were made on the top of their annular

shell and the suspension was sheared at the bottom at low shear rates. Such conditions could lead to

lower effective volume fractions since the suspension is not sheared fast enough for the particles to

fluidize. Similarly to Prasad and Kytömaa (1995), the density ratios for the experiments of Hanes

and Inman (1985) are higher than for the present study (2.48 ≤ ρp/ρ ≤ 2.78) and the torques

were also measured on the top surface. Unlike the work of Prasad and Kytömaa (1995), Hanes and

Inman (1985) considered high shear rates. However, even when these experiments consider high

shear rates, the complete fluidization of the particles may have not be achieved due to the higher

density ratio which could lead to lower effective volume fraction than the one reported, and therefore

lower effective relative viscosities.

As shown in Section 7.2, the effective relative viscosity for volume fractions higher than 30%

showed no dependance on Stokes numbers as long as the particles are completely fluidized. Moreover,

at these higher volume fractions, the hydrodynamic inertial effects were not present according to the

analysis done in Sections 7.1 and 7.4. It is not clear then why the relative effective viscosity for these

experiments is approximately one order of magnitude higher than the effective relative viscosity for

the non-inertial suspensions. One possible explanation could be that at higher Reynolds numbers
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Figure 7.42: Effective relative viscosity as a function of volume fraction normalized by random
loose packing for the present and previous experimental work. Only the previous experimental
work with rough walls and Stokes numbers higher than one are presented. Dashed line corresponds
to the empirical model proposed by Zarraga et al. (1999) to represent the results for non inertial
suspensions. For the current results the size of the symbol represents the Stokes number magnitude.
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the particle interactions increase and thus the velocity fluctuation of the flow. Velocity fluctuations

lead to the presence of Reynolds stresses that are not present at low Reynolds number regimes.

However, these Reynolds stresses increase with Reynolds number, leading to an increasing effective

relative viscosity; however, the effective relative viscosity for these experiments show no dependance

on Reynolds number. If Reynolds stresses are present for these experiments, then there must be

a competing mechanism that balances the effect of increasing velocity fluctuations. It is not clear

which mechanism could that be.

Figure 7.43 shows a comparison between the present study and the numerical results for sus-

pensions with moderate Reynolds number. Only the current experiments with the lowest Reynolds

numbers for each volume fraction is presented. The relative effective viscosity is plotted against

the volume fraction normalized by the random loose packing. Since all the simulations considered

spherical particles, the random loose packing used to normalized the volume fraction is calculated

for monodisperse spherical particles using the fit of Zou and Yu (1996). Similarly to the compar-

ison with previous experimental work, the present results show higher effective relative viscosities.

For volume fractions lower than 30% the Reynolds number for the current experiments is approxi-

mately an order of magnitude higher than the Reynolds number considered in the simulations. The

simulations of Kulkarni and Morris (2008) consider a Reynolds number range of 0.05 ≤ Re ≤ 16,

while the simulations of Picano et al. (2013) range the Reynolds number from 4 ≤ Re ≤ 40 and

the simulations of Yeo and Maxey (2013) consider lower Reynolds range of 0.02 ≤ Re ≤ 8. The

latest show the lowest relative effective viscosity even for the cases with the same volume fraction

and Reynolds number. This discrepancy might be due to differences in their assumptions. Aside

from using a different numerical method, Yeo and Maxey (2013) considered the Reynolds stress to

be negligible. The later work of Haddadi and Morris (2014) showed that the contribution of the

Reynolds stress to the bulk and particle-phase stresses is significant, therefore neglecting it would

lead to lower effective relative viscosities which is consistent with the results showed in Figure 7.43.

Figure 7.44 shows the comparison between the effective relative viscosity as a function of Reynolds

number for the present and numerical work of Picano et al. (2013) and Kulkarni and Morris (2008).

Good agreement between the numerical simulations is shown. However, the present experimental

work shows higher effective relative viscosities. A possible reason for this is the presence of slip

at the wall observed in the work of Picano et al. (2013), where the ratio of particle velocity next

to the wall and the wall velocity in their simulations is approximately 0.6. Similar velocity ratio

was found in the smooth walls experiments of Koos (2009) for Reynolds numbers smaller than 100

and volume fractions below 40%. Such velocity ratio indicates the presence of slip and as shown

by Barnes (2000) and Koos et al. (2012) it leads to lower effective viscosities. The relative effective

viscosity for the current experiments for the lowest Reynolds number tested (O(100)) are between 3

to 5 times higher than the numerical results of Picano et al. (2013) for Reynolds number equal to 40.
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Figure 7.43: Effective relative viscosity as a function of volume fraction normalized by random loose
packing for the present and previous numerical work. Solid symbols correspond to the present data.
Blue symbols correspond to Yeo and Maxey (2013), red symbols correspond to Kulkarni and Morris
(2008) and black symbols correspond to Picano et al. (2013).



153

Reynolds number
10 -1 100 101 102 103

7
0 =
7

100

101

102

? = 10
? = 20
? = 30
? = 11 from Picano et al. (2013)
? = 21 from Picano et al. (2013)
? = 26 from Picano et al. (2013)
? = 32 from Picano et al. (2013)
? = 5 from Kulkarni et al. (2008)
? = 10 from Kulkarni et al. (2008)
? = 20 from Kulkarni et al. (2008)
? = 30 from Kulkarni et al. (2008)

Figure 7.44: Effective relative viscosity as a function of Reynolds number for the present and previous
numerical work. Black symbols correspond to the present data. Closed symbols correspond to Picano
et al. (2013), red symbols correspond to Kulkarni and Morris (2008).

Based on the results of Koos et al. (2012), the effective viscosity can be up to 4 times higher than

the apparent viscosity corresponding to experiments affected by slip at the wall for volume fractions

lower than 40%.

A different mechanism occurs in the numerical work of Kulkarni and Morris (2008) where the

particles tend to concentrate at the walls. The opposite behavior is observed experimentally, where

the particles tend to move away from the wall. Kulkarni and Morris (2008) calculated the bulk

stress and the stress at the wall, with the latest higher than the former. Because the particles are

concentrating at the walls, there are less particles at the bulk, which would decrease the amount of

particle interactions leading to lower effective relative viscosities.

7.8 Summary

Comparison between the cases of matched density and settling particles with and without a porous

medium are presented.

Based on Figures 7.5, 7.22, and 7.37, the hydrodynamic inertial effects from the liquid seem

only to be present for the dilute and moderately dilute liquid-solid mixtures. In the transition

from laminar to turbulent flow in liquids, an increase in the liquid viscosity leads to a delay in
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the transition regime because of the decrease in Reynolds number. It is unlikely that liquid-solid

flows with low and moderate volume fractions would be an exception to this rule. As the volume

fraction increases, the effective relative viscosity of the suspension increases considerably, leading to

a decrease in effective Reynolds number of the mixture. For the three cases studied, the deviation

from the laminar behavior occurs at an effective Reynolds number range that coincides with the

region where the pure fluid measurements show a deviation from the laminar theory. This analysis

is done by considering the data where the particles have been fluidized and where the effects of

settling are weaker.

The effective volume fraction for the experiments with settling particles is predicted based on

the results from the particle resuspension analysis (Chapter 6). When the effective volume fraction

is considered, the relative effective viscosity for the case with ρp/ρ = 1 and ρp/ρ = 1.05 seems

to coincide. This indicates that the effective relative viscosity is independent of the differences in

density as long as the effective volume fraction is considered to correct for the presence of settling.

The experiments with a porous medium show higher relative viscosity at similar effective volume

fraction. This suggests the presence of gradient in the volume fraction in the vertical direction. The

presence of a lower base of heavier glass beads seems to affect the relative effective viscosity. The

mechanism for this is still not clear.

Corrections to the measured torques for low loading fraction cases where the particles do not

fully cover the test cylinder are presented considering that the contribution from the mixture and the

suspending fluid can be obtained by inferring the height covered by the particles. The corrections

do not seem to recover the shape of the normalized torques once the test cylinder is fully covered.

Comparison between the present and previous experimental and numerical work show that the

effective relative viscosity for the current experiments are higher even for the cases where the inertial

hydrodynamic effects are not present. The reason for this is not completely clear but possible reasons

include a change in the effective volume fraction considered by the previous experimental work and

presence of slip in the numerical simulations.


