Abstract

This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging from $3 \leq Re \leq 1.6 \times 10^3$ and $0.4 \leq St \leq 195$. The experiments use a specifically designed Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid to transporting a dense suspension of particles. Measurements of the shear stress are presented for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density ratio (ρ_p/ρ) between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on the solid fraction for all density ratios tested. For $\rho_p/\rho = 1$ the effective viscosity increases with Stokes number (St) for volume fractions (ϕ) lower than 40% and becomes constant for higher ϕ . When the particles are denser than the liquid, the effective viscosity shows a stronger dependance on St. An analysis of the particle resuspension for the case with $\rho_p/\rho = 1.05$ is presented and used to predict the local volume fraction where the shear stress measurements take place. When the local volume fraction is considered, the effective viscosity for settling and no settling particles is consistent, indicating that the effective viscosity is independent of differences in density between the solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers above 4000, indicating the presence of hydrodynamic instabilities associated with the rotation of the outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures with $\phi \leq 30\%$ appears to be affected by such hydrodynamic instabilities. The effective viscosity for the current experiments is considerably higher than the one reported in non-inertial suspensions.

Experiment - where theory comes to die

-Sidney R. Nagel

Contents

A	Acknowledgments i		
A	bstra	ıct	vi
1	Intr	roduction	1
	1.1	Rheology of non-inertial suspensions	1
		Effective viscosity models	2
		Non-Newtonian behavior for concentrated non-inertial suspensions	4
	1.2	Rheology of inertial suspensions	5
		Previous experiments ¹	7
		Particle interactions	16
		Particle settling	16
	1.3	Secondary flows	18
		Effect of rough boundaries	19
	1.4	Thesis outline	19
2	Exp	perimental setup	21
	2.1	Rheometer	21
	2.2	Torque measurements	24
		Optical probe calibration	24
		Springs calibration	26
		Angular speed measurements	27
	2.3	Error analysis	31
	2.4	Pure fluid torque measurements	32
	2.5	Particles	36
		Polystyrene: density ratio = 1 and 1.05	36
		Polyester: density ratio=1.2 and 1.4	38
	2.6	Visualizations	40

 1 Some of the material that is summarized in this section is taken from a paper by Koos, Linares-Guerrero, Hunt, and Brennen (2012)

3	Pre	vious experiments on smooth and rough walls	42
	3.1	Calibration	43
	3.2	Previous smooth walls measurements	43
	3.3	Previous rough walls experiments	48
		Depletion layer thickness	51
		Slip velocity measurements	53
	3.4	Summary	54
4	Rhe	eological measurements with rough walls	57
	4.1	Motivation	57
	4.2	Polystyrene particles with matched fluid density	57
	4.3	Polystyrene particles with $\rho_p/\rho = 1.05$	63
	4.4	Summary	68
5	Rhe	eological measurements with rough walls over a porous medium	72
	5.1	Motivation	72
	5.2	Modification of the experiment and porous medium configuration	72
	5.3	Torque measurements of polystyrene particles over a porous medium with $\rho_p/\rho=1.05$	73
		Hysteresis	78
	5.4	Normalized torque for polystyrene particles over a porous medium with $\rho_p/\rho=1.05$	80
	5.5	Summary	84
6	Par	ticle resuspension	86
	6.1	Motivation	86
	6.2	Particle settling	86
		Particle settling over a porous medium	91
	6.3	Random loose packing	93
		Random loose packing of polystyrene particles over a porous medium	96
	6.4	Particle resuspension for $\rho_p/\rho = 1.05$	98
		Particle resuspension over a porous medium $(\rho_p/\rho = 1.05)$	101
	6.5	Summary	110
7	Dis	cussion	111
	7.1	Inertial and particle concentration effects on mixtures with $\rho_p/\rho=1~\ldots~\ldots~\ldots$.	111
	7.2	Direct comparisons between $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$	116
	7.3	Prediction of the effective volume fraction	124
	7.4	Inertial and particle concentration effects on mixtures with $ ho_p/ ho=1$	126
	7.5	Flow over a porous medium $\rho_p/\rho = 1.05$	130

		Effect of resuspension on flow over a porous medium $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	131
		Direct comparisons between flow with and without a porous medium base \ldots .	132
		Effective volume fraction prediction for flow over a porous medium with $\rho_p/\rho=1.05$	141
		Inertial and particle concentration effects on flow over a porous medium with $\rho_p/\rho = 1.0$	5144
	7.6	Corrected torque for partial filling	145
	7.7	Comparison between current and previous experimental and numerical results	149
	7.8	Summary	153
8	Cor	nclusions	155
	8.1	Particles with matched density	155
	8.2	Effect of particle settling	157
		Flow over a porous medium	158
	8.3	Comparison with previous results	159
	8.4	General comments and future work	159
A	Infe	erred torque for zero shear rate	162
в	Par	ticles projected area as a way to infer the effective volume fraction	165
С	Rhe	eological measurements with polyester particles	171
	C.1	Motivation	171
	C.2	Polyester particles with $\rho_p/\rho = 1.4$	171
	C.3	Polyester particles with $\rho_p/\rho = 1.2$	174
	C.4	Direct comparison between same particles but different density ratios	177
	C.5	Flow visualization for polyester particles	179
		Visualizations for $\rho_p/\rho = 1.4$	183
		Visualizations for $\rho_p/\rho = 1.2$	186
	C.6	Discussion	194

List of Tables

1.1	Previous experiments properties	13
2.1	Rheometer properties and dimensions	23
2.2	Particles properties	37
3.1	Properties of the particles used in the smooth wall experiments performed by Koos (2009)	44
7.1	Critical Stokes numbers for fluidization	118

List of Figures

1.1	Flow pattern for suspension rheology	6
1.2	Predicted effective relative viscosity for inertial suspensions from numerical studies	14
1.3	Diagram of previous and current experimental work done in inertial suspensions in	
	terms of Re	15
1.4	Diagram of previous and current experimental work done in inertial suspensions in	
	terms of St	17
2.1	Schematic of the concentric-cylinder rheometer	22
2.2	Torque measurement system schematic	25
2.3	Diagram of an MTI KD-300 fotonic sensor output as a function of target displacement.	26
2.4	Fotonic sensor calibration curve	27
2.5	Springs calibration curves	28
2.6	Highest sensitivity spring calibration curve	28
2.7	Sketch of the rotational speed measurement system	29
2.8	Rotational speed as a function of time	30
2.9	Rotational speed measurements from 3 different devices	30
2.10	Pure fluid torque measurements	33
2.11	Ratio of torques for pure fluid as a unction of Re_b	34
2.12	Ratio of torques for pure fluid as a unction of Re_b^*	35
2.13	Pure fluid torque measurements normalized with laminar Couette flow as a function of	
	Re_b^*	37
2.14	Polystyrene particles	38
2.15	Rheometer rough walls	39
2.16	Polyester particles	39
2.17	Visualization cylinder setup	40
2.18	Sample of polystyrene particles used for visualization purposes	41
3.1	Previous torque measurements results with smooth walls	45
3.2	Previous normalized torques results with smooth walls	46

3.3	Previous results for nylon and SAN particles apparent relative viscosity $\ . \ . \ . \ .$	46
3.4	Previous results of the apparent relative viscosity for different non-settling particles in	
	aqueous glycerine	47
3.5	Ratio of measured torques from previous rough walls experiments	49
3.6	Previous results of effective relative viscosity as a function of ϕ	50
3.7	Depletion layer thicknesses calculated from previous results of Koos (2009)	52
3.8	Depletion layer thicknesses (δ) calculated from Koos (2009) particle velocity measure-	
	ments	54
3.9	Depletion layer thicknesses calculated from previous measurements of the apparent and	
	effective viscosity	55
4.1	Measured torque as a function of shear rate for $\phi = 10, 20,$ and 30%. $\rho_p/\rho = 1$	58
4.2	Measured torque as a function of shear rate for $\phi = 40$, and 50%. $\rho_p/\rho = 1$	59
4.3	Normalized torques as a function of Stokes number for $\phi = 10, 20$ and 30%. $\rho_p/\rho = 1$	60
4.4	Normalized torques as a function of Stokes number for $\phi=40$ and 50%. $\rho_p/\rho=1$ $~$	61
4.5	Normalized torques as a function of Stokes number for all ϕ tested. $\rho_p/\rho=1~$	62
4.6	Effective relative viscosity as a function of ϕ . $\rho_p/\rho = 1$	62
4.7	Effective relative viscosity as a function of ϕ for current and previous experiments.	
	$ \rho_p/\rho = 1. \dots $	63
4.8	Measured torques as a function of shear rate for $\bar{\phi}=10$ and 20%. $\rho_p/\rho=1.05$	64
4.9	Measured torques as a function of shear rate for $\bar{\phi} = 30\%$ with $\rho_p/\rho = 1.05$	65
4.10	Measured torques as a function of shear rate for $\bar{\phi} = 40\%$ with $\rho_p/\rho = 1.05$	65
4.11	Measured torques as a function of shear rate for $\bar{\phi} = 50\%$ with $\rho_p/\rho = 1.05$	66
4.12	Measured torques as a function of shear rate for $\bar{\phi} = 60\%$ with $\rho_p/\rho = 1.05$	66
4.13	Measured torques as a function of shear rate for all $\bar{\phi}$ tested with $ ho_p/ ho = 1.05$	67
4.14	Normalized torques as a function of Stokes number for $\bar{\phi}=10$ and 20%. $\rho_p/\rho=1.05$.	68
4.15	Normalized torques as a function of Stokes number for $10 \leq \bar{\phi} \leq 60\%$. $\rho_p/\rho = 1.05$ $$.	69
4.16	Normalized torques as a function of Stokes number for all $\bar{\phi}$ tested with $\rho_p/\rho=1.05~$.	70
4.17	Effective relative viscosity as a function of $\bar{\phi}$. $\rho_p/\rho = 1.05$	70
5.1	Scheme of the apparatus configuration for the experiments with flow over a porous	
	medium	74
5.2	Measured torques as a function of the shear rate for flow over a porous medium for	
	$\bar{\phi} = 10\%$	75
5.3	Measured torques as a function of the shear rate for flow over a porous medium for	
	$\bar{\phi} = 20\%$	76

5.4	Measured torques as a function of the shear rate for flow over a porous medium for	
	$ar{\phi}=30\%$	77
5.5	Measured torques as a function of the shear rate for flow over a porous medium for	
	$\bar{\phi} = 40$ and 50%	77
5.6	Measured torques for $\uparrow\dot{\gamma}$ and $\downarrow\dot{\gamma}$ for flow over a porous medium with $\bar{\phi}=10\%$	78
5.7	Measured torques for $\uparrow\dot\gamma$ and $\downarrow\dot\gamma$ for flow over a porous medium with $\bar\phi=20\%$	79
5.8	Measured torques for $\uparrow\dot\gamma$ and $\downarrow\dot\gamma$ for flow over a porous medium with $\bar\phi=30\%$	79
5.9	Measured torques for $\uparrow \dot{\gamma}$ and $\downarrow \dot{\gamma}$ for flow over a porous medium with $\bar{\phi} = 40$ and 50%	80
5.10	Normalized torques as a function of Stokes number for flows over a porous medium	
	with $\phi = 10\%$	81
5.11	Normalized torques as a function of Stokes number for flows over a porous medium	
	with $\phi = 20\%$	81
5.12	Normalized torques as a function of Stokes number for flows over a porous medium	
	with $\phi = 30\%$	82
5.13	Normalized torques as a function of Stokes number for flows over a porous medium	
	with $\phi = 40\%$	83
5.14	Normalized torques as a function of Stokes number for flows over a porous medium	
	with $\phi = 50\%$	83
5.15	Normalized torques as a function of Stokes number for flows over a porous medium for	
	all $\bar{\phi}$ tested	84
6.1	Time dependent settling process	87
6.2	Settled particles marked surface contour	88
6.3	Settled particles height (h_s) normalized with the total annulus height (h_t) as a function	
	of time for $\phi = 25\%$	89
6.4	Settling rate for different loading fractions	90
6.5	Settled particles height as a function of $\overline{\phi}$	91
6.6	Normalized height as a function of $\bar{\phi}$ for flow over a porous medium $\ldots \ldots \ldots$	92
6.7	Normalized settled particles height with modified total height for flow with and without	
	porous medium	93
6.8	Normalized settled particles height with total height for flow with and without porous	
	medium	94
6.9	Measured random loose packing	95
6.10	Measured random loose packing for flow over porous medium \hdots	96
6.11	Comparison between measured random loose packing for flow with and without a	
	porous medium	97

6.12	Particles resuspension as a function of St for $\bar{\phi} = 25\%$	99
6.13	Normalized resuspension height as a function of St for $\bar{\phi} = 25\%$	100
6.14	Normalized resuspension height as a function of St	101
6.15	Particle packing as a function of St	102
6.16	Particle packing normalized with ϕ_{RLP}	102
6.17	Resuspension height normalized by the modified annulus height (h_{tm}) as a function of S	t103
6.18	Resuspension height normalized by the total modified annulus height $(h_{tm} \text{ and } h_t)$.	104
6.19	Resuspension height normalized by the total annulus height (h_t) as a function of St $$.	105
6.20	Particles packing for different $\bar{\phi}$ as a function of St for the case of flow over a porous	
	medium	106
6.21	Normalized particles packing by measured random loose packing for different $\bar{\phi}$	107
6.22	Particles packing for different $p\bar{h}i$ as a function of St	108
6.23	Particles packing normalized with measured random loose packing for different $p\bar{h}i$ as	
	a function of St	109
7.1	Normalized torques as a function of Re_b for pure fluid and mixtures with $\phi = 10, 20,$	
	and 30% and $\rho_p/\rho = 1$	112
7.2	Effective relative viscosity as function of ϕ for current and previous work of Koos et al.	
	$(2012) \ldots \ldots$	113
7.3	Minimum effective relative viscosity as function of ϕ for current experiments compared	
	with μ'/μ from previous work of Koos et al. (2012)	113
7.4	Measure toques normalized by effective laminar torque as a function of effective Reynolds	
	number	114
7.5	Measure toques normalized by $M_{eff, \ laminar}$ as a function of $Re_{b, \ eff}$ compared with	
	normalized pure fluid torque measurements $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	115
7.6	Normalized torques for 10% loading fractions as a function of St for $\rho_p/\rho=1$ and 1.05	116
7.7	Comparison between normalized torques for pure fluid and $\bar{\phi}=10\%$ with $\rho_p/\rho=1.05$	117
7.8	Image sequence of the flow for $\bar{\phi} = 10\%$	118
7.9	Comparison between normalized torques for different density ratio with $\bar{\phi}=20\%$	119
7.10	Comparison between normalized torques for different density ratios with $\bar{\phi}=30\%$ $$.	120
7.11	Normalized torques with $\bar{\phi} = 40, 50$ and 60% for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$	121
7.12	Comparison between normalized torques for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$	121
7.13	Relative effective viscosity as a function of ϕ and $\bar{\phi}$ for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$	
	without settling effects	122
7.14	Relative effective viscosity as a function of ϕ and $\bar{\phi}$ for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$ for	
	all St tested	123

7.15	Relative effective viscosity as a function of ϕ and $\bar{\phi}$ for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$	
	without settling effects compared with Koos et al. (2012). $\ldots \ldots \ldots \ldots \ldots$	123
7.16	Relative effective viscosity as a function St with $\bar{\phi} = 10$ and 20% for $\rho_p/\rho = 1$ and	
	$\rho_p/\rho = 1.05$ without settling effects	124
7.17	Image sequence of the flow for $\bar{\phi} = 20\%$	125
7.18	Ratio of μ'/μ as a function of predicted effective volume fraction for $\rho_p/\rho=1.05.~$	126
7.19	Ratio of μ'/μ as a function of ϕ and predicted effective volume fraction for $\rho_p/\rho = 1$	
	and $\rho_p/\rho = 1.05$.	127
7.20	Ratio of μ'/μ as a function of ϕ and predicted effective volume fraction for $\rho_p/\rho = 1$	
	and $\rho_p/\rho = 1.05$ compared with Koos et al. (2012)	128
7.21	Measured torques normalized with effective laminar torque as a function of $Re_{b, eff}$ for	
	$ \rho_p/\rho = 1.05 \dots \dots$	129
7.22	Measured torques normalized with effective laminar torque as a function of $Re^*_{b, \ eff}$ for	
	$\rho_p/\rho=1.05$ using minimum value of μ'/μ	130
7.23	Particle resuspension visualization of flow over porous medium for $\bar{\phi}=10\%$ compared	
	with ratio of μ'/μ vs St \ldots	133
7.24	Particle resuspension visualization of flow over porous medium for $\bar{\phi}=20\%$ compared	
	with ratio of μ'/μ vs St \ldots	134
7.25	Particle resuspension visualization of flow over porous medium for $\bar{\phi}=30\%$ compared	
	with ratio of μ'/μ vs St \ldots	135
7.26	Particle resuspension visualization of flow over porous medium for $\bar{\phi}=40\%$ and 50% .	136
7.27	Effective relative viscosity for flow over porous media for $\bar{\phi} = 40\%$ and 50%	137
7.28	Flow over porous medium normalized torques as a function of St for $\bar{\phi}=10$ compared	
	with no porous medium with $\bar{\phi} = 20\%$	138
7.29	Flow over porous medium normalized torques as a function of St for $\bar{\phi}=20$ compared	
	with no porous medium with $\bar{\phi} = 30\%$	139
7.30	Flow over porous medium normalized torques as a function of St for $\bar{\phi}=30$ compared	
	with no porous medium with $\bar{\phi} = 40\%$	140
7.31	Flow over porous medium normalized torques as a function of St for $\bar{\phi}=40$ and 50%	
	compared with no porous medium with $\bar{\phi} = 50\%$	140
7.32	Particles normalized heights for flow with and without porous medium	141
7.33	Effective relative viscosity for flow over porous media as a function of the effective	
	volume fraction	142
7.34	Effective relative viscosity as a function of the effective volume fraction for flow with	
	and without porous medium $\hdots\dots$	143

7.35	Effective relative viscosity as a function of the effective volume fraction for flow with	
	and without porous medium and $\rho_p/\rho = 1.05$ and $\rho_p/\rho = 1$	143
7.36	Measured toques normalized by the effective laminar torque as a function of the effective	
	Reynolds number for flow with and without porous medium. \ldots \ldots \ldots \ldots \ldots	144
7.37	Measured to ques normalized by the effective laminar torque as a function of the $Re^{\ast}_{b,\;eff}$	
	for flow with and without porous medium.	145
7.38	Measured torque for pure fluid and its curve fit	146
7.39	Corrected torque as a function of shear rate for the cases with partially covered test	
	cylinder	147
7.40	Normalized corrected torque as a function of St	148
7.41	Normalized corrected torque as a function of St	148
7.42	Comparison between present and previous experimental results	150
7.43	Comparison between present and previous numerical results	152
7.44	Comparison between μ'/μ as a function of Re for the present and previous numerical	
	work	153
A.1	inferred torque at the origin for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$	162
A.2	inferred torque at the origin for flow over porous medium and $\rho_p/\rho = 1.05.$	163
A.3	inferred torque at the origin for flow with and without porous medium and $\rho_p/\rho = 1.05$,	
	and $\rho_p/\rho = 1$ as a function of $\overline{\phi}$.	164
A.4	inferred torque at the origin for flow with and without porous medium and $\rho_p/\rho=1.05$	
	as a function of h_s/h_t	164
B.1	Image processing example.	166
B.2	μ'/μ as a function of the inferred volume fraction from projected area fraction for	
	$\rho_p/\rho = 1.$	167
B.3	μ'/μ as a function of the inferred volume fraction from projected area fraction for	
	$\rho_p/\rho = 1.05.$	168
B.4	Inferred volume fraction from projected area fraction for $\rho_p/\rho = 1$ and $\rho_p/\rho = 1.05$.	169
B.5	Inferred volume fraction from projected area fraction for flow over porous medium and	
	$\rho_p/\rho = 1.05.$	169
B.6	Inferred volume fraction from projected area fraction for flow with and without porous	
	medium and $\rho_p/\rho = 1$ and 1.05	170
C.1	Measured torques for polyester particles with $\rho_p/\rho = 1.4.$	172
C.2	Measured torques for polyester particles with $\rho_p/\rho=1.4$ and $\bar{\phi}=30,40,{\rm and}~50\%.$	173

C.3	Normalized torques for polyester particles with $\rho_p/\rho = 1.4$ and all loading fractions	
	tested	173
C.4	Measured torques for polyester particles with $\rho_p/\rho = 1.2$ and $\bar{\phi} = 10$ and 20%. Sus-	
	pending liquid is aqueous glycerine.	174
C.5	Measured torques for polyester particles with $\rho_p/\rho = 1.2$ and $\bar{\phi} = 10$ and 20%. Sus-	
	pending liquid is salt water	175
C.6	Measured torques for polyester particles with $\rho_p/\rho = 1.2$ and $\bar{\phi} = 30, 40, \text{ and } 50\%$.	
	Suspending liquid is aqueous glycerine.	176
C.7	Measured torques for polyester particles with $\rho_p/\rho = 1.2$ and $\bar{\phi} = 30, 40, \text{ and } 50\%$.	
	Suspending liquid is salt water	176
C.8	Normalized torques for polyester particles with ρ_p/ρ = 1.2 and all loading fractions	
	tested. The suspending liquid is aqueous glycerine.	177
C.9	Normalized torques for polyester particles with ρ_p/ρ = 1.2 and all loading fractions	
	tested. The suspending liquid is salt water	178
C.10	Comparison between the $M/M_{laminar}$ for $\rho_p/\rho = 1.4$ and $\rho_p/\rho = 1.2$ and $\bar{\phi} = 10$ and	
	20%	179
C.11	Pure fluid normalized torques compared with low loading fractions normalized torques	
	where polyester particles are not present in the test section. \ldots \ldots \ldots \ldots \ldots	180
C.12	Previous and present pure fluid normalized torques compared with low loading fractions	
	normalized torques where polyester particles are not present in the test section. $\ . \ .$	181
C.13	Comparison among different density ratios for $\bar{\phi}=30\%$ using polyester particles	182
C.14	Comparison among different density ratios for $\bar{\phi}=40\%$ using polyester particles	182
C.15	Comparison among different density ratios for $\bar{\phi}=50\%$ using polyester particles	183
C.16	Flow visualization for $\bar{\phi} = 10\%$ and 20%, and $\rho_p/\rho = 1.4$	184
C.17	Flow visualization for $\bar{\phi} = 30\%$, and $\rho_p/\rho = 1.4$	185
C.18	Flow visualization for $\bar{\phi} = 40\%$, and $\rho_p/\rho = 1.4$	187
C.19	Flow visualization for $\bar{\phi} = 50\%$, and $\rho_p/\rho = 1.4$	188
C.20	Flow visualization for $\bar{\phi} = 10\%$, and $\rho_p/\rho = 1.2$	189
C.21	Flow visualization for $\bar{\phi} = 20\%$, and $\rho_p/\rho = 1.2$	189
C.22	Flow visualization for $\bar{\phi}=30\%,$ and $\rho_p/\rho=1.2.$ The suspending liquid is salt water	190
C.23	Flow visualization for $\bar{\phi} = 30\%$, and $\rho_p/\rho = 1.2$. The suspending liquid is aqueous	
	glycerine.	191
C.24	Flow visualization for $\bar{\phi} = 40\%$, and $\rho_p/\rho = 1.2$. The suspending liquid is salt water	192
C.25	Flow visualization for $\bar{\phi} = 40\%$, and $\rho_p/\rho = 1.2$. The suspending liquid is aqueous	
	glycerine.	193
C.26	Flow visualization for $\bar{\phi} = 50\%$, and $\rho_p/\rho = 1.2$. The suspending liquid is salt water	195

xviii

xix

List of Symbols

$ar{\phi}$	Loading volume fraction
δ	Depletion layer thickness
$\dot{\gamma}$	Shear rate
μ_{app}	Apparent suspension viscosity from smooth wall measurements
μ	Suspending liquid viscosity
μ'	Suspension effective viscosity
$\mu_{min}^{\prime *}$	Lowest effective viscosity for each volume fraction $\rho_p/\rho=1.05$
μ'_{min}	Lowest effective viscosity for each volume fraction and $\rho_p/\rho=1$
ω	Rotational speed
ϕ	Volume fraction
ϕ_m	Maximum volume fraction
ϕ_{RCP}	Random close packing
ϕ_{RLP}	Random loose packing
ψ	Sphericity
ρ	Suspending liquid density
$ ho_p$	Particle density
τ	Shear stress
b	Shear gap width
d	Particle diameter
Н	Height of test cylinder

h	Height reached by particles
h_s	Height of settled particles
h_T	Total annulus height
h_{tm}	Height measured from porous medium surface to annulus top
M	Measured torque
$M_{eff, \ lamino}$	ar Effective laminar torque based on effective viscosity, $M_{eff, \ laminar} = 2\pi r_i^2 H \dot{\gamma} \mu'_{min}$
$M_{laminar}$	Torque from laminar theory, $M_{laminar} = 4\pi\mu H\omega r_i^2 r_o^2/(r_o^2 - r_i^2)$
Pe	Péclet number, $Pe = 6\pi\mu d^3\dot{\gamma}/kT$
r_i	Inner cylinder radius
r_o	Outer cylinder radius
Re	Reynolds number based on shear rate and particle diameter, $Re=\rho\dot{\gamma}d^2/\mu$
$Re_{b, \ eff}^{*}$	Modified effective Reynolds, $Re^*_{b,\;eff}=\rho\omega b/\mu_{min}^{\prime*}$
Re_b^*	Modified gap Reynolds number based on rotational speed, $Re_b^* = \rho r_o \omega b/\mu$
Re_b	Gap Reynolds number based on shear rate, $Re_b = \rho \dot{\gamma} b^2 / \mu$
$Re_{b, eff}$	Effective Reynolds number, $Re_{b, eff} = \rho \omega r_o b / \mu'$
Sc	Schmidt number, $Sc = Pe/Re$
St	Stokes number, $St = \rho_p Re/9\rho$
V_p	Volume of particles

xxi