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Abstract

This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at
moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging
from 3 < Re < 1.6 x 10% and 0.4 < St < 195. The experiments use a specifically designed
Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid
to transporting a dense suspension of particles. Measurements of the shear stress are presented
for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density
ratio (p,/p) between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on
the solid fraction for all density ratios tested. For p,/p = 1 the effective viscosity increases with
Stokes number (St) for volume fractions (¢) lower than 40% and becomes constant for higher ¢.
When the particles are denser than the liquid, the effective viscosity shows a stronger dependance
on St. An analysis of the particle resuspension for the case with p,/p = 1.05 is presented and used
to predict the local volume fraction where the shear stress measurements take place. When the
local volume fraction is considered, the effective viscosity for settling and no settling particles is
consistent, indicating that the effective viscosity is independent of differences in density between the
solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using
the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers
above 4000, indicating the presence of hydrodynamic instabilities associated with the rotation of the
outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures
with ¢ < 30% appears to be affected by such hydrodynamic instabilities. The effective viscosity for

the current experiments is considerably higher than the one reported in non-inertial suspensions.
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Ezxperiment - where theory comes to die

-Sidney R. Nagel
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List of Symbols

0] Loading volume fraction

1) Depletion layer thickness

0 Shear rate

Happ Apparent suspension viscosity from smooth wall measurements
o Suspending liquid viscosity

w Suspension effective viscosity

TP Lowest effective viscosity for each volume fraction p,/p = 1.05
T Lowest effective viscosity for each volume fraction and p,/p =1
w Rotational speed

1) Volume fraction

Om Maximum volume fraction

PrCP Random close packing

PRLP Random loose packing

0 Sphericity

P Suspending liquid density

Pp Particle density

T Shear stress

b Shear gap width

d Particle diameter

H Height of test cylinder



h
hs
hr
htm

M

poel

Height reached by particles

Height of settled particles

Total annulus height

Height measured from porous medium surface to annulus top

Measured torque

Metf 1aminar Effective laminar torque based on effective viscosity, Mef¢, iaminar = 2mr2 HAypl o,

Mlaminar

Pe

Ty

To

Re

Rep ¢
Rej
Rey,
Rey, epy
Sc

St

Torque from laminar theory, Mjaminar = drpHwr?r?/(r2 —r?)

Péclet number, Pe = 6mud>y/kT

Inner cylinder radius

Outer cylinder radius

Reynolds number based on shear rate and particle diameter, Re = pid?/u
Modified effective Reynolds, Rej ;r = pwb/p,,

Modified gap Reynolds number based on rotational speed, Re; = prowb/pu
Gap Reynolds number based on shear rate, Re, = pyb?/u

Effective Reynolds number, Rey, ¢ = pwrob/p/

Schmidt number, S¢c = Pe/Re

Stokes number, St = p,Re/9p

Volume of particles



