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Abstract

In this work two calculations are presented. In the first, we compute the vector

analyzing power (VAP) for the elastic scattering of transversely polarized electrons

from protons at low energies, using an effective theory of electrons, protons, and

photons. We study all contributions through second order in E/M , where E and

M are the electron energy and nucleon mass, respectively. The leading order VAP

arises from the imaginary part of the interference of one- and two-photon exchange

amplitudes. Sub-leading contributions are generated by the nucleon magnetic mo-

ment and charge radius, as well as recoil corrections to the leading-order amplitude.

Working to O(E/M)2, we obtain a prediction for An that is free of unknown pa-

rameters and that agrees with the recent measurement of the VAP in backward

angle ep scattering.

In the second part of this thesis the longitudinal asymmetry due to Z0 exchange

is calculated in quasi-elastic electron-deuteron scattering at momentum transfers

|Q2| � 0.1 GeV2 relevant for the SAMPLE experiment. The deuteron and pn

scattering-state wave functions are obtained from solutions of a Schrödinger equa-

tion with the Argonne v18 potential. Electromagnetic and weak neutral one- and

two-nucleon currents are included in the calculation. The two-nucleon currents of

pion range are shown to be identical to those derived in Effective Field Theory.

The results indicate that two-body contributions to the asymmetry are small (�
0.2%) around the quasi-elastic peak, but become relatively more significant (�
3%) in the high-energy wing of the quasi-elastic peak.
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Chapter 1

Introduction

Over the years considerable effort has been put into the understanding of nuclear

structure. In the Standard Model, the fundamental theory that governs the strong

interaction is Quantum Chromodynamics (QCD), a renormalizable gauge theory.

QCD is a theory with asymptotic freedom, where the coupling constant is

small in the high-energy regime and large at low energies. As a consequence,

perturbative treatments break down in the low-energy region, where the nuclei

reside. To circumvent this problem, special methods for working within the theory

at low energy must be employed. The direct approach is to numerically solve the

functional integrals on a lattice of space-time points. The second method is to

base the field theory description on the physically observed degrees of freedom in

a way that reflects the symmetries of the underlying fundamental theory. Such an

approach is referred to as an effective field theory (EFT) (see [1], [2], [3]), and it

is the subject of this work.

Two different computations that make use of EFT are presented in this work.

In the first computation, the vector analyzing power (VAP) in electron proton

scattering is computed. This work was published in Physical Review C70, 2004,

054003 (nucl-th/0405044). For this computation, an EFT with the pionic degrees

of freedom integrated out is used. To leading order, the VAP arises from the in-

terference of one- and two-photon exchange amplitudes. The calculation done to

second order in p/M (where p is a small external momenta and M is the nucleon
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mass) is free of unknown parameters and was compared against existing measure-

ments. The calculation is found to be in agreement with the VAP measurement

performed by the SAMPLE collaboration [4] and resolves a discrepancy with the

potential scattering computation of [5]. At the higher energies used in VAP mea-

surements performed at Mainz [6], the calculation was no longer able to match the

experimental results. This is not unexpected since at those higher energies one

expects the low energy expansion obtained from the EFT to break down. This

points to the need to include more degrees of freedom (e.g., π’s) in the EFT for

the larger energy regime.

In the second computation, the two-body contribution to the parity violat-

ing (PV) asymmetry in electron deuteron scattering is computed. This work was

published in Physical Review C63, 2001, 044007 (nucl-th/0011034). An effective

theory with nucleons and pions as degrees of freedom is required in order to ob-

tain the one- and two-body current operators. These operators are then used

in conjunction with a successful phenomenological model in order to numerically

compute the PV asymmetry. The calculation is performed at Q2 = 0.1GeV 2,

which is relevant to the SAMPLE experiment [7] where the meson exchange cur-

rent contribution to the PV asymmetry was a theoretical unknown. At the time

this calculation was performed, a discrepancy between the SAMPLE measurement

and the existing theoretical models existed. This work was undertaken in order to

investigate if the meson exchange currents can account for this discrepancy. The

results show that the two-body contributions to the PV asymmetry are small (�
0.2%) around the quasi-elastic peak, but become relatively more significant (� 3%)

in the high-energy wing of the quasi-elastic peak. This is too small a contribution

to account for the discrepancy in question. This discrepancy was later resolved by

a re-evaluation of the experimental data [8].
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1.1 Effective Field Theory

To illustrate how one obtains the effective field theory from the underlying funda-

mental theory, a brief description of how to construct the pion-nucleon Lagrangian

is outlined. An effective field theory has two main features: it maintains the sym-

metry properties of the underlying fundamental theory, and it has an expansion

parameter, typically a small momentum or small mass scale, which permits cal-

culation to a given order in the theory to be performed in a systematic way. In

EFT, the small expansion parameter arises from the separation of scales between

the small momenta and masses involved and the characteristic scale of the EFT.

In the case of QCD the characteristic mass for chiral symmetry is Λχ � 1GeV , and

we immediately note that mπ << Λχ. Thus, if the external momenta (p) involved

in the process are small, both ratios mπ/Λχ and p/Λχ are small, and provide the

small expansion parameter that an EFT requires.

We begin the discussion by first looking at chiral symmetry. Consider a free,

massless spin 1/2 Dirac field:

L = iΨ̄γµ∂
µΨ (1.1)

We can define the projectors:

PR,L =
1± γ5

2
(1.2)

and the projected fields:

ΨR,L = PR,LΨ (1.3)

Substituting these back into the Lagrangian of equation 1.1 we get:

L = i(Ψ̄Rγµ∂
µΨR + Ψ̄Lγµ∂

µΨL) (1.4)

Since the left-handed and right-handed fermions do not communicate, they both
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have a global U(1) symmetry as can be seen by applying U(1) transformations

separately on the fields:

ΨR → eiεRΨR

ΨL → eiεLΨL (1.5)

The conserved currents for the Lagrangian of 1.1 are:

jiµ = Ψ̄iγµΨi

Vµ = Ψ̄γµΨ

Aµ = Ψ̄γµγ
5Ψ (1.6)

where i = R,L. Looking at the effect of the U(1)L×U(1)R transformation on the

original field Ψ,

Ψ = ΨR + ΨL → eiεRΨR + eiεLΨL = ei(
εR+εL

2
+

εR−εL
2

γ5)Ψ = ei(εV +εAγ5)ΨL (1.7)

where:

εV =
1
2
(εR + εL)

εA =
1
2
(εR − εL) (1.8)

Invariance of the Lagrangian under Eq. 1.7 is called chiral symmetry.

Let us now look at the effect of a mass term in the Lagrangian of Eq. 1.1 on

chiral symmetry. We have:

Ψ̄MΨ = Ψ̄LMΨR + Ψ̄RMΨL (1.9)

which clearly breaks the symmetry.
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We can now proceed and investigate chiral symmetry for the QCD Lagangian.

LQCD = − 1
g2
Ga

µνG
µν,a + iq̄γµ(∂µ − iGµ)q − q̄Mq (1.10)

where Gµ is the gluon field, Ga
µν is the gluon field strength tensor and M =

diag(mu,md,ms, . . .) contains the quark masses. In the calculations presented in

this work, we will only consider nucleons and pions as the degrees of freedom.

As such, we will restrict the discussion here to u and d quarks. From our brief

look at chiral symmetry we know that the mass term will break the symmetry.

Furthermore, since the u and d masses are quite small, we will ignore the mass

term and rewrite Eq. 1.10 as:

L = i(q̄Rγµ∂
µqR + q̄Lγµ∂

µqL) (1.11)

This Lagrangian has SU(2)R × SU(2)L × U(1)R × U(1)L symmetry. We have

briefly discussed the U(1) symmetry, which is of no interest from now on. The

field transformation for the SU(2)R × SU(2)L are:

qR → eiε
a
RT a

qR

qL → eiε
a
LT a

qL (1.12)

where we have defined:

T a =
τa

2
(1.13)

with τa being the generators for the SU(2) group.

The conserved currents for the SU(2)R × SU(2)L are given by:

V a
µ = q̄γµT

aq

Aa
µ = q̄γµγ

5T aq (1.14)

From the above, we expect chiral symmetry to be manifest in the particle spectrum
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of QCD as degenerate hadron doublets of opposite parity. This is not the case (e.g.

there are no neutral meson doublets of opposite parity), but there is approximate

flavor SU(2)V symmetry in the hadron spectrum. The chiral symmetry must

therefore be spontaneously broken to its vectorial subgroup. The three Goldstone

bosons that appear in the process are the pions.

The goal now is to construct effective low energy Lagrangians that contain

only pion and nucleon degrees of freedom that reflect the spontaneously broken

chiral symmetry. We must thus construct the most general Lagrangian with chiral

symmetry broken down to the SUV (2) subgroup.

One starts with constructing the pion field matrix:

U = e
iπaτa

f (1.15)

where f is a constant with dimension of mass. The pion field matrix transforms

linearly under chiral transformations:

U ′ = RUL+ (1.16)

with the R and L given by:

L = e−iαa
LT a

R = e−iαa
RT a

(1.17)

To obtain the transformation for the unbroken SU(2)V group we must set αL =

αR, whereas the broken axial SU(2)A transformations are obtained by αL = −αR.

Since in the construction of the Lagrangian we need kinetic terms, a covariant

derivative on the chiral pion field is also required. The covariant derivative must

transform linearly under chiral SU(2)R × SU(2)L.

DµU → LDµUR
+

DµU+ → RDµUL+ (1.18)
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and it includes the external vector and axial fields:

DµU =
iτ · ∂µπ

f
+ iU(vµ − aµ)− i(vµ + aµ)U + . . . (1.19)

Since we have constructed a pion field matrix and a covariant derivative, we

can write the desired Lagrangian for massless pion fields:

L =
f2

4
Tr[DµU+DµU ] + . . . (1.20)

where the . . . represent higher order terms. We see that by direct substitution of

the covariant derivative into Eq. 1.20 we obtain the expected kinetic term for the

pions : ∂µπ∂
µπ+. From the first term in the Lagrangian of Eq. 1.20 we can also

work out the Feynman rule for the pion axial-source interaction to be fδabε ·k, and

from this we can identify the parameter f as the pion decay constant fπ = 93MeV .

We can now turn our attention to the pion-nucleon system. We first collect

the proton and neutron in the field:

N =

⎛
⎜⎝ p

n

⎞
⎟⎠ (1.21)

Further, we define the field u and its transformation as follows:

u2 = U

u′2 = U ′ = RUL+ (1.22)

Requiring the field u to transform as:

Ru = u′K (1.23)
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or

u′ → LuK+ = KuR+ (1.24)

sets K as a highly nonlinear function:

K =
√
LU+R+R

√
U (1.25)

Next we make the nucleon transform as an SU(2) field:

N ′ → KN (1.26)

where all the chiral nature of the transformation is contained in the function K.

As before, a covariant derivative must also be constructed:

DµN = ∂µN + ΓµN

Γµ =
1
2
[u+, ∂µu] (1.27)

The above covariant derivative transforms homogeneously under chiral transfor-

mations:

D′
µ = KDµK

+ (1.28)

At this point, the most general Lagrangian up to one derivative can be written

down:

L = iN̄Dµγ
µN + gAN̄Aµγ

µγ5N −mN̄N + . . . (1.29)

where Aµ is an axial vector field built from the u’s:

Aµ =
i

2
{u+,Dµu} =

∂µπ

fπ
+ . . . (1.30)
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and gA is the bare axial coupling.

At this point we notice that the large mass associated with the nucleon is going

to present a problem when performing the systematic expansion since it is of the

same order as the characteristic mass of the EFT. To circumvent this issue, one

may write Eq. 1.29 in the extreme non-relativistic limit and integrate out the

heavy degrees of freedom. To accomplish this goal, the heavy degrees of freedom

must first be factored out by making use of the velocity four-vector v as described

in [2]. The velocity four-vector allows one to write the four-momenta of heavy

particle of mass M as:

pµ = Mvµ + lµ (1.31)

with l being a small residual momentum and v2 = 1. We can now write the velocity

projection operator and construct its eigenstates:

Pv± =
1± γµv

µ

2
N = e−imv·x(H + h)

H = eimv·xPv+N

h = eimv·xPv−N (1.32)

Substituting back into Eq. 1.29, we obtain:

L = iH̄AH + h̄BH + H̄γ0B
+γ0h− h̄Ch+ . . . (1.33)

Where the operators A, B, and C are:

A = i(v ·D) + gA(u · S) + . . .

B = i/DT − 1
2
gA(v · u)γ5 + . . .

C = i(v ·D) + 2m+ gA(u · S) + . . . (1.34)

with /DT = γµ(gµν − vµvν)Dν and the . . . representing higher order terms. Inte-
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grating out the heavy degrees of freedom the Lagrangian becomes:

L = iH̄(A+ γ0B
+γ0B)H (1.35)

Next, we make use of the simplifications of the Dirac algebra in the heavy mass

formulation (again, see [2]) and change notation from H to N , in order to write

the leading order pion-nucleon Lagrangian:

L = H̄iD · vH + gAH̄(A · S)H

A = i(v ·D) (1.36)

All the effective Lagrangians that also include higher-order terms used in this work

are obtained in a similar fashion. Their derivations will not be presented here, but

references will be given to the relevant papers at the appropriate places throughout

the thesis.

1.2 Vector Analyzing Power in Electron-Proton Scat-

tering

The first computation presented deals with the vector analyzing power (VAP),

An, in polarized electron-proton scattering. The scattering of transversely polar-

ized electrons from protons has recently become a topic of considerable interest

in nuclear physics. The VAP is a time-reversal (T) odd, parity (P) even correla-

tion between the electron spin and the independent momenta associated with the

scattering process:

An ∼ εµναβPµSνKαK
′
β (1.37)

where S, P , and K (K ′) denote the electron spin, initial proton momentum, and

incident (scattered) electron momentum, respectively. A non-zero VAP cannot

arise at leading order in quantum electrodynamics (QED), but could be generated

by new T-odd, P-even interactions involving electrons and quarks. Searches for
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such interactions have been carried out in neutron and nuclear β-decay as well

as nuclear γ-decays [9, 10, 11]. Indirect constraints may also be obtained from

limits on the permanent electric dipole moments of neutral atoms under various

assumptions regarding the pattern of symmetry-breaking [12, 13, 14, 15, 16]. The

sensitivity of direct searches for T-odd, P-even interactions is generally limited by

the presence of QED “final state interactions” (FSIs) that break the T-symmetry

between initial and final states and give rise to non-vanishing T-odd, P-even ob-

servables. Uncertainties in theoretical calculations of these final state interactions

would cloud the interpretation of a sufficiently precise T-odd, P-even measure-

ment in terms of new interactions. Observations of T-odd, P-even correlations in

nuclear γ-decays are consistent with theoretical calculations of QED final state in-

teractions [17], while T-odd, P-even searches in neutron β-decay have yet to reach

the sensitivity needed to discern these effects.

Recently, the SAMPLE collaboration has reported a non-zero measurement

of the VAP in polarized, elastic electron-proton scattering [4], making it the first

non-zero result for any T-odd, P-even observable in any electron scattering process.

The result has received widespread attention, as it differs substantially from the

simplest theoretical estimate of QED final state contributions that neglects proton

recoil and internal structure [5]. While one might speculate that this difference

reflects the presence of new physics, a more likely explanation lies in elements of

nucleon structure omitted from the simplest treatments of QED FSIs.

If so, then the SAMPLE result, as well as other VAP measurements that have

been completed or are under consideration, could have important implications for

the interpretation of other precision observables involving hadrons that require

computation of exchange QED corrections to the leading order amplitude.

The most interesting such observable is the ratio of proton electromagnetic

form factors obtained via Rosenbluth separation in elastic ep scattering [18]. The

reason for this is that, currently, there is a discrepancy between the GEp/GMp ob-

tained through the Rosenbluth separation technique versus the one obtained using

Generalized Parton Distributions. A two-photon exchange contribution might be
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able to resolve this discrepancy. Another set of observables where such a contri-

bution could be of interest are higher-order “box graph” contributions to weak

interaction observables [19]. Here, γZ and W+W− “box diagrams” are, in several

cases, the leading unknown contributors. Finally, QED final state interactions

must be accurately computed in direct searches for T-odd, P-even effects. In

each of these instances, a calculation of QED corrections requires a realistic and

sufficiently precise treatment of hadronic intermediate states, particularly those

arising in two-photon exchange amplitudes,Mγγ , or the analogous amplitudes in-

volving the exchange of one heavy gauge boson and one photon. Since the leading

QED contribution to An arises from Im Mγγ , experimental measurements of the

VAP provide an important test of theoretical calculations of Mγγ needed for the

interpretation of other measurements.

At the same time, the VAP provides a new window on nucleon structure, as

Mγγ probes the doubly virtual Compton scattering (VVCS) amplitude. In recent

years, virtual Compton scattering (VCS) on the proton has become an important

tool in probing the internal structure of the proton. VCS involves the coupling

of one virtual and one real photon to a hadronic system. In the case of the

proton, the VCS cross section is sensitive to the generalized polarizabilities of the

proton, and its measurement should provide insight in the proton structure [20].

In practice, however, this cross section includes Bethe-Heitler (BH) amplitudes

associated with radiation of a real photon from the electrons. Proper treatment of

the cross section must therefore be taken in order to obtain a correct interpretation

of the measurement. In contrast, the process involving the coupling of two virtual

photons to the hadronic system is immune to background BH amplitudes and,

thus, offers an alternative to VCS in probing the proton structure.

With the aforementioned motivation in mind, we study the VAP in the frame-

work of an effective theory of low-energy ep scattering. Since the SAMPLE mea-

surement corresponds to kinematics close to the pion electroproduction threshold,

we consider only the electron, photon, and nucleon as dynamical degrees of free-

dom. In this respect, our analysis corresponds to the use of heavy baryon chiral
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perturbation theory with the pions integrated out. To make the treatment system-

atic, we expand An in powers of p/M , where p is either the incident electron energy

(E) or mass (m) and M is the nucleon mass. Working to second order in p/M ,

we obtain all contributions to An that arise uniquely from one-loop, two-photon

exchange amplitudes and obtain a prediction that is free from any unknown pa-

rameters. We also write down the leading, non-renormalizable T-odd, P-even eepp

operators whose interference withMγ can generate a non-zero VAP and show that

they contribute at O(p/M)4.

We find that inclusion of all one-loop effects through O(p/M)2 inMγγ as well

as all terms in Mγ through this order is sufficient to resolve the disagreement

between the SAMPLE result and the simplest potential scattering predictions.

This resolution follows from several effects that occur beyond leading order in

p/M : recoil corrections to the pure charge scattering result obtained in Ref. [5],

the nucleon isovector magnetic moment, and the proton charge radius. In the

absence of dynamical pions, contributions from the nucleon polarizability arise at

higher order than we consider here and appear unnecessary to account for the

experimental result. Given that the incident electron energy E is of the same

order as mπ, we have no a priori reason to expect agreement of our computation

with experiment. What it suggests, however, is that for this kinematic regime,

pions play a less important role in the VVCS amplitude than one might naively

expect. Future, low-energy An measurements, taken over a broader range in q2

and scattering angle than the SAMPLE measurement, would provide additional,

useful tests of this conclusion.

We also consider An at forward scattering angles and energies somewhat higher

than those of the SAMPLE experiment. Results for this kinematic domain have

been reported by the A4 Collaboration at the MAMI facility in Mainz [6]. Al-

though we would not expect our framework to be reliable in this kinematic regime,

where the electron energy E is much closer to M , it is nonetheless instructive to

compare with the Mainz results as a way of pointing to the physics that may be

operative in this domain. Indeed, we find substantial disagreement (5σ for the
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Q2 = 0.106GeV 2 point and 3σ for the Q2 = 0.230GeV 2 point) with the Mainz

data [6]. The culprit could be that going to the Mainz kinematics exceeds the limit

of validity of our effective theory, and that we must include additional dynami-

cal degrees of freedom such as the π or ∆(1230) resonance, or both. Inclusion of

such degrees of freedom will result in the need of computing Feynaman diagrams

containing multiple loops. In such a case, one would be required to compute both

real and imaginary contributions from the loop integrals. As such, future studies

using alternative methods such as dispersion relations may be needed to explore

this kinematic domain.

Finally, we also consider An for polarized Møller scattering. The VAP for

this process has been measured by the E158 Collaboration at SLAC [21], and

theoretical computations given in Refs. [22, 23, 24]. Our computation agrees with

these earlier An(ee) calculations, providing a useful cross-check on our study of

the VAP for ep scattering.

1.3 Parity-Violating Electron-Deuteron Scattering

The purpose of the second computation is to compute a theoretical value for

the electron-deuteron scattering parity-violating asymmetry including two-nucleon

currents. This theoretical value is of interest for the interpretation of the SAMPLE

experiment. The SAMPLE Collaboration measured the longitudinal asymmetry

in polarized elastic electron scattering on the proton [7] and polarized quasi-elastic

electron scattering on the deuteron [25]. In the experiment, elastically scattered

electrons are detected in the backward direction (130o ≤ θ ≤ 1700) by a large

solid-angle air Cerenkov detector consisting of ten mirrors which image the target

onto ten 8-inch photomultiplier tubes.

The asymmetries measured by the experiment are sensitive to the nucleon’s

form factors:

A =
[−GFQ

2

4
√

2α

]
εGγ

EG
Z
E + τGγ

MG
Z
M − (1− 4 sin2 θW )ε′Gγ

MGe
A

ε(Gγ
E)2 + τ(Gγ

M )2
(1.38)
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where ε,τ and ε′ are kinematic quantities. One then gets the strange form factors

from the flavor structure of the electroweak coupling and isospin symmetry of the

nucleon:

Gs
E,M = (1− 4 sin2 θW )Gγ,p

E,M −Gγ,n
E,M −GZ,p

E,M (1.39)

Thus, if one performs the PV measurement for both electron-proton and electron-

neutron scattering and if other effects are under control, the two measurements can

be used to determine the values of the strange form factors. Neglecting two-nucleon

current effects, preliminary results at the time this calculation was performed were

in disagreement with theoretical predictions, in particular for the axial contribu-

tion [26]. This discrepancy has later disappeared through a re-analysis of the

data [8]. This calculation was, thus, undertaken in order to better understand the

size of the two-body effects in the quasi-elastic electron deuteron scattering. The

computation uses EFT to obtain the two-body leading order long-range current

operators, which are then combined with a phenomenological model of the initial

and final state.

Neutral charge and current one-nucleon operators are well-known (see, for ex-

ample, Ref. [27]). The contribution of such operators to the asymmetry was

computed at various momentum transfers in Ref. [28]. Several theoretical issues

were studied in detail. For the kinematical region relevant to SAMPLE, final-state

interactions were found to be important. It was also found that (except for very

low momentum transfers) the asymmetry in the vicinity of the quasi-elastic peak

is fairly independent of the choice of two-nucleon (NN) potential.

Two-nucleon charge and current operators have also been studied to some

extent. Electromagnetic heavy-meson exchange contributions were considered in

Ref. [29]. They were shown to be unimportant in a calculation of the asymmetry

that neglected final-state interactions. In Ref. [30], an impulse approximation

modified to incorporate gauge invariance was employed. The effects of parity-

violating NN interactions on the deuteron wave function were found to be small.
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Pion-exchange currents were included in the computation of the asymmetry, but

only in the electromagnetic sector.

In the present work these earlier calculations are extended. The leading one-

body and two-boy currents are calculated using EFT [3, 31]. For the two-body

currents we consider pion-exchange diagrams for both the electromagnetic and

weak contributions. These currents are then incorporated in a successful phe-

nomenological model [32]. The phenomenological model is used for two purposes.

First, it allowed for the generation of the result in a timely fashion and second, it

allowed for the inclusion of some higher order terms. If contributions from these

higher order terms turns out to be significant one would then need to go back

to the EFT and systematically compute higher order terms (see Section 3.3.2 for

further discussion).

Within the model, the one-nucleon currents considered here include phenomeno-

logical form factors and have the same form as those in Ref. [27]. In addition,

the model used can include effects from heavier mesons evaluated using the Riska

prescription [33]. Such contributions are beyond the leading-order contributions

obtained from EFT. As such, to make the connection between these effects and

EFT, higher-order terms in the diagrams considered and new diagrams must be

included in the EFT computation. Since including these contributions has no

significant impact on the final result, the relevant EFT diagrams will not be com-

puted. Finally, the asymmetry is calculated with deuteron and final-state wave

functions obtained from a realistic potential, the Argonne v18 model [34].

Since this calculation was performed, more work has been done on the subject.

A new operator that was not considered in this work is presented in Ref. [35].

Calculations that consider parity violation arising from hadronic PV were shown

to be small and are reported in Ref. [36] and Ref. [37].

The results for the kinematical region of interest to SAMPLE are presented.

(The calculation can be repeated at other momentum transfers, such as those of

the lower energy SAMPLE experiment [38] [8] and JLab’s G0 experiment [39].)

The effects of two-body currents on the asymmetry, both near the quasi-elastic



17

peak where one-body processes should dominate and away from the quasi-elastic

peak where these two-body currents could be important, have been studied. The

results show that most of the two-nucleon contributions to the asymmetry are

due to currents of pion range and, therefore, dominated by the leading operators.

Near the quasi-elastic peak, two-body currents give a small contribution to the

asymmetry. Away from the peak, they become more important and can increase

the magnitude of the asymmetry by as much as 3%. The contribution to the

asymmetry associated with the electromagnetic-axial current interference response

function is about 20%. The overall effect of two-nucleon currents on the data of the

SAMPLE experiment is indeed small, but not negligible, and has been incorporated

in the data analysis [26].
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Chapter 2

The Vector Analyzing Power in Elastic

Electron-Proton Scattering

2.1 Introduction

An introduction to this study of the vector analyzing power in elastic electron

proton scattering was presented in Section 1.2 and is discussed in detail in this

chapter. The work presented here was published in Physical Review C70, 2004,

054003 (nucl-th/0405044).

The chapter is organized as follows: in Section 2.2, we discuss general features of

the VAP and our approach to the computation. Section 2.3 provides details of the

calculation. In Section 2.4, we give numerical results and discuss their significance,

while Section 2.5 presents our conclusions. Technical details are provided in the

Appendices.

2.2 General Considerations

We are interested in computing the VAP in elastic ep scattering:

An =
dσ↑ − dσ↓
dσ↑ + dσ↓

=
2Im M∗

γγMγ

|Mγ |2 (2.1)

where dσ↑(↓) is the differential cross section for scattering of electrons with incident

spin parallel (anti-parallel) to �K × �K ′. In a phase convention where the single
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Figure 2.1: Two photon exchange diagrams. The wavy lines indicate virtual pho-

tons, while k (k′) and p (p′) denote the initial (final) electron and proton momenta,

respectively.

γ-exchange amplitude Mγ is purely real, An requires a non-vanishing imaginary

part ofMγγ
1. To compute the latter, one must consider both the box and crossed-

box diagrams of Figure 2.1. Simple power-counting arguments indicate that the

contribution toMγγ arising from the leading-order γp couplings is ultraviolet finite

but infrared divergent. Thus, in general, one must also compute the contributions

to An arising from the bremsstrahlung diagrams of Figure 2.2. As we show by

explicit calculation in Appendix A, however, the bremsstrahlung contribution to

An vanishes identically, while ImMγγ is infrared finite. The resulting, leading-

order contribution to An is O(p/M)0.

Additional contributions toMγγ arise from higher-order operators that couple

one or more virtual photons to the proton and electron. We neglect the latter

since they are suppressed by additional powers of the fine structure constant2. In

contrast, the γp operators are induced by strong interactions and have couplings of
1By ImMγγ , we mean the coefficients of the various products of fermion bilinears, ēΓeN̄Γ′N ,

etc. that appear in the amplitude.
2For high energy scattering, these higher-order QED contributions may receive logarithmic

enhancements [24].
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Figure 2.2: Bremsstrahlung contributions.

order e. In order to treat their contributions systematically, we adopt an effective

theory framework since we cannot compute the operator coefficients from first

principles in Quantum Chromodynamics. The natural framework for doing so is

heavy baryon chiral perturbation theory (HBχPT), which provides a systematic

expansion in powers of p/Λχ and p/M , where Λχ = 4πFπ is the scale of chiral

symmetry-breaking and p is an external momentum or mass with magnitude much

less than M and Λχ. In the present case, where we integrate out the pions, we take

p = E or m (where E and m are the energy and mass of the incoming electron)

and use M as the heavy scale. For the kinematics of the SAMPLE experiment,

E >> m. Since there are no hard collinear infrared singularities in Im Mγγ , we

may drop all power corrections involving the electron mass and obtain our result

as an expansion in E/M .

The leading terms in heavy baryon Lagrangian for nucleons and photons rele-

vant to our computation are:

LNγ = B̄viv ·DBv +
1

2M
B̄v

[
(v ·D)2 −D2

]
Bv



21

+
eµ

2M
εµναβF

µνvαB̄vS
βBv − eCr

M2
B̄vvµBv∂λF

µλ + · · · (2.2)

where Bv is the field for a heavy proton of velocity vµ, where Dµ = ∂µ − ieAµ,

and where we have shown explicitly all γp interactions through O(p2). The latter

arise from the subleading kinetic term in Eq. 2.2 as well as from the operators

containing the field strength, Fµν . The coefficient µ = 2.793 is the proton magnetic

moment, while Cr determines the proton Sachs, or electric, radius:

Cr =
M2

6
〈r2〉E = M2dG

p
E(t)
dt

|t=0 (2.3)

where t = q2. The experimental value for 〈r2〉E = 0.743 fm2 [40, 41] implies

Cr = 2.81. When included in the loop diagrams of Figure 2.1, these interactions

generate contributions to the ep amplitude Mγ and Mγγ through order (p/M)2

relative to the leading term. To this order, operators associated with the nucleon

polarizability (see Figure 2.4) do not contribute, as they are given by

α

M3
FµνFµνB̄vBv (2.4)

and thus occur at O(p3) in LNγ when the pion is treated as heavy. Furthermore, as

can be seen from Figure 2.4, there is no way to cut this diagram and end up with

on-shell intermediate states. As such, we conclude that there is no absorptive con-

tribution from the loop integral, thus, even if we were to include the polarizability

it would not contribute to the VAP.

Higher-order contributions to An can also arise from effective T-odd, P-even

eeNN interactions. The origin of such operators could be either physics that we

have integrated out, such as contributions to Mγγ from πN or ∆ intermediate

states, or explicit T-odd, P-even interactions arising from new physics. As shown

in Appendix B, there exist no Hermitian, four-fermion operators at dimension six

that contribute to An. The lowest dimension T-odd, P-even four-fermion operators

have dimension seven and would nominally contribute to An at O(p/M)3. We

show, however, that contributions from these operators vanish to this order and
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Figure 2.3: Contributions to the VVCS amplitude appearing in Figure 2.1. Open

circles indicate the leading order γN couplings, solid circles indicate the contri-

butions from O(p/M) corrections to the leading couplings, such as the magnetic

moment and recoil corrections. The O(p/M)2 corrections arising from the charge

radius are denoted by a solid circle inside an open circle.

first arise at O(p/M)4. Since we truncate our analysis at two orders lower, we

may neglect these operators and obtain a parameter-free prediction for the VAP.

Nevertheless, we discuss these operators briefly in Section 2.4 when considering

the possible size of neglected, higher-order contributions.

As we show in detail in Section 2.3, the leading one-loop contributions to An–

generated by two O(p) γp insertions in the VVCS amplitude (Figure 2.3a)–are

finite, non-analytic in p, and occur at O(p/M)0, whereas those generated by the

dimension seven T-odd, P-even operators arise at O(p/M)4. Thus, the leading

contributions are uniquely determined from the one-loop calculation. Similarly,

contributions to Mγγ involving one O(p) and one O(p2) γp interaction (Figure

2.3b, c) contribute to An at O(p/M), are also finite and non-analytic in p, and
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p p’

Figure 2.4: Polarizabilty diagrams. This appears at O(p/M)3 and is not included

in the computation.

are unique to the loop calculation. The O(p/M)2 loop contributions arise either

from two O(p2) γp operators (e.g., two insertions of the nucleon magnetic moment

operator, Figure 2.3d) or one O(p) and one O(p3) term (viz, the proton charge

radius). We find, however, that the O(p/M)2 components of Mγγ arise only

from the γp magnetic moment interaction as well as from recoil order terms in

LNγ . Contributions toMγγ from the proton charge radius vanish, though it does

contribute to An as a higher-order term in Mγ .

2.3 Two-Photon Exchange

The evaluation of four-point functions for general kinematics does not readily lend

itself to evaluation using standard Feynman parameterization in the loop integrals.

Alternate methods for evaluating these integrals that do not rely explicitly on

Feynman parameters have been worked out in Refs. [42, 43] and have become

standard. In the present case, where we are interested in backward angle scattering

at nonzero q2, we would ideally like to use this formalism. However, the form of
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the heavy-baryon propagator does not permit one to adopt the t’Hooft-Passarino-

Veltmann formulation directly.

We circumvent these difficulties by carrying out the computation with rela-

tivistic baryon propagators and by expanding our result in powers of p/M . Doing

so allows us to evaluate the loop integrals using the standard formulation of Refs.

[42, 43]. It has been shown in other contexts [44] that doing so allows one to

recover the heavy-baryon result so long as the external momenta are sufficiently

small. Moreover, our loop results are entirely non-analytic in p and, thus, must

match the corresponding non-analytic results obtained with heavy-baryon prop-

agators. To the order of our analysis, there exist no four-fermion operators that

could account for differences between relativistic and non-relativistic treatments

of An.

The one-loop Mγγ is nominally infrared singular and must, therefore, be reg-

ulated with an IR regulator such as a photon mass. On general grounds, the

regulator dependence should be cancelled by a corresponding dependence of the

bremsstrahlung contribution to the spin-dependent cross section. As is well-known,

such a cancellation occurs for unpolarized scattering cross section. In Appendix B,

we work out the corresponding bremsstrahlung contribution to An and show that

it vanishes identically. Consequently, ImMγγ must be IR regulator-independent.

In general, the amplitudeMγγ depends on each of the eleven integrals obtained

in Ref. [43]. The imaginary part, however, depends on only four:

D0 =
2π
−t ln(

−t
λ2

)
1√
Λ

Θ(s− (m+M)2)

C0(1, 2, 3) =
π√
Λ

ln(
Λ
sλ2

)Θ(s− (m+M)2)

C0(1, 3, 4) = C0(1, 2, 3) = C0

B0(1, 3) = π

√
Λ
s

Θ(s− (m+M)2) (2.5)

where the three labels associated with the B0 and C0 functions indicate which

propagators are used for the two-point and three-point integral as discussed in
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Appendix C, λ is the photon mass, and:

Λ = s2 − 2s(M2 +m2) + (M2 −m2)2 (2.6)

These integrals have been previously computed in Refs. [43, 45] (In [45] they

are obtained by the use of dispersion techniques). The D0 and C0 loop integrals

diverge as λ→ 0, but the combination:

2C0 +D0t =
2π√
Λ

ln(
Λ
−st)Θ(s − (m+M)2) (2.7)

is finite in this limit and is the only combination of D0 and C0 integrals that is so.

As such, the two-photon contribution to An must only contain terms proportional

to this combination or to the B0 integral.

In evaluating the loop contributions to An, it is most efficient to identify the

terms in Mγγ that generate the correlation of Eq. 1.37 by carrying out the Dirac

algebra in the interference term ImMγγ M∗
γ before evaluating the momentum

integrals.3 After carrying out the momentum integration, the contribution from

the box diagram of Figure 2.1a is:

2ImMbox
γγ M∗

γ = −(4πα)2

4π4t

16mπ2(4πα)
(Λ + st)

εµναβPµSνKαK
′
β{ [

4(M2 −m2 − 3s)M2R+ κ[(6R + 2)Λ− ((m2 −M2 − s)R+ 2s)t]

+ κ2R
1

8M2(Λ + st)
[2(3m3 + 16M2)Λ2

+ Λ(11m4 − 2(13M2 + 8s)m2 + 15M4 + 11s2 + 14M2s)t

+ 4s(2m4 − (5M2 + 4s)M2 + 3M4 + 2s2 − 3M2s)t2]
]
(2C0 +D0t)

− 4
Λ + ts

Λ
(κ2 + 4κ+ 2)B0

}
(2.8)

s, t, and u are the Mandelstaam variables, κ = µ − 1 is the nucleon anomalous
3This procedure introduces no ambiguities because Im Mγγ is finite to the order of our analysis.
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magnetic moment and:

R− 1 = t

[
κ

4M2
− Cr

M2

]
(2.9)

To obtain the result consistent with our power counting, we expand Eq. 2.8 in

powers of p/M up to second order relative to the leading term:

ImMbox
γγ M∗

γ = −(4πα)2

t

32π2αmMεµναβPµSνKαK
′
β√

E2 −m2[(E2 −m2 + t/4) + Et
2M + m2t

4M2 ]

×
{[

ln

[
4(E2 −m2)
−t

]
− 2E/M + (2E2 −m2)/M2

]
[

R+
3E
M

+
2m2

M2
+

κ2

M2

32(E2 −m2)2 + t2/2 + 10(E2 −m2)t
4(E2 −m2) + t

+
4κ
M2

(m2 − E2)
]
− κ2 + 4κ+ 2

M2

[
(E2 −m2) +

t

4

]}

Θ (s− (m+M)2) (2.10)

where the Θ-function arises from the integrals 2C0 + 2D0t and B0. Note that we

have retained the m-dependence purely for illustrative purposes, as m << E for

the experiments of interest here. The corresponding contribution from the crossed-

box diagram can be obtained by crossing symmetry with the replacement s → u.

In this case, the Θ-function vanishes, so only ImMbox
γγ M∗

γ contributes.

In the expression 2.10, the terms that go as powers of E/M or m/M but do not

contain factors of κ or Cr arise purely from recoil effects. The proton charge radius

contributes solely via Mγ . Although it also contributes to the absorptive part of

Mγγ , the resulting terms do not contribute to the spin-dependent correlation of

Eq. 1.37. Including the magnetic moment, charge radius, and recoil-order terms in

Mγ along with the loop contributions in Eq. 2.10 leads to the following expression

for the VAP:

An = − 2αtm√
E2 −m2[(E2 −m2 + t/4) + Et

2M + m2t
4M2 ]

�S · �K × �K ′

×
{[

ln

[
4(E2 −m2)
−t

]
− 2E/M + (2E2 −m2)/M2

]
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[
R+

3E
M

+
2m2

M2
+

κ2

M2

32(E2 −m2)2 + t2/2 + 10(E2 −m2)t
4(E2 −m2) + t

+
4κ
M2

(m2 − E2)
]
− κ2 + 4κ+ 2

M2

[
(E2 −m2) +

t

4

]}

×
[
(8E2 + 4t)R2 +

4Et
M

+ t
t+ 2m2 + 2κ(t+ 2m2) + κ2[t+ 4(m2 − E2)]/2

M2

]−1

(2.11)

Dropping all terms that go as powers of E/M , m/M , or t/M2 yields the result

obtained in Ref. [5] that was obtained for scattering from an infinitely heavy,

point-like proton.

2.4 Results and Discussion

The expression for An given in Eq. (2.11) provides a parameter-free prediction

for low-energy electron scattering. In Figure 2.5 and Figure 2.6, we plot An as a

function of energy for fixed laboratory frame scattering angles θ = 146.1◦ (Figure

2.5) and θ = 30◦ (Figure 2.6), while in Figure 2.7 we show the VAP for fixed energy

E = 192 MeV while varying θ. In all cases, the leading-order calculation is shown

for comparison. In Figure 2.7, the relative importance of the recoil, magnetic

moment, and charge radius contributions are also indicated.

The result obtained in the SAMPLE measurement is also shown. While the

leading-order calculation overestimates the magnitude of An by a factor of roughly

four, inclusion of the higher-order terms considered here produces agreement with

the experimental value. Interestingly, there appears to be scant evidence that

dynamical pions or the ∆ play a significant role in An for this kinematic region

(E = 192 MeV), despite one’s expectation that they might.

At higher energies, our result for An cannot be considered reliable, since the

convergence of the effective theory expansion breaks down for E ∼ M . The A4

collaboration at Mainz has measured An at E = 570.3 MeV and E = 854.3 MeV

and 25◦ ≤ θ ≤ 35◦. Results for the higher-energy VAP have been reported in Ref.

[6]. A comparison with our computation indicates that the experimental values for
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Figure 2.5: VAP vs. energy for fixed scattering angle, θ = 146.1◦. The dashed blue

line is the leading-order result, and the solid red line shows the full calculation.

The SAMPLE result [4] is also shown at E = 192 MeV.
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Figure 2.6: VAP vs. energy for fixed scattering angle, θ = 30◦. The dashed blue

line is the leading-order result, and the solid red line shows the full calculation.

forward-angle scattering and higher energies are substantially larger in magnitude

than we are able to obtain via the low-energy expansion to O(E/M)2. Presum-

ably, a resummation of higher-order contributions in E/M using non-perturbative

techniques, such as dispersion relations, would be required to compute reliably An

in this domain [18, 46, 47, 48, 49]. We would also expect that inclusion of nucleon

resonances and pions as explicit degrees of freedom would be needed to account

for the experimental results.

One indication of the possible strength of these higher-order contributions may

be given by considering the T-odd, P-even dimension seven operators. As shown

in Appendix B, there exist two d = 7 operators that could, in principle, contribute.

From an explicit calculation, we find that only one of the two–O7a
eN–leads to a non-

vanishing An. Here, it is useful to consider the form of this operator for relativistic

proton fields, N :

O7a
eN =

α2C7a

M3
ēσµνγ5(

−→
D +←−D)νe N̄γ5γµN (2.12)
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Figure 2.7: VAP vs. scattering angle for the SAMPLE kinematics (E = 192 MeV).

The dotted black line gives the leading-order result, the blue dashed line adds the

recoil corrections, the green dash-dotted line adds the magnetic corrections, and

the solid red line shows the full calculation through O(p/M)2.
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Figure 2.8: Possible contribution from the dimension seven, T-odd, P-even opera-

tor O7a
eN to the backward angle VAP (θ = 146.1◦).

Re-writing this operator in terms of the heavy fields Bv leads to:

Õ7a
eN = −2

α2C7a

M2
ēσµνγ5(

←−
D +−→D)νe B̄vS

v
µBv (2.13)

where Sv
µ is the nucleon spin. The contribution from Õ7a

eN to the interference

amplitude Im M̃7a
eN M∗

γ goes as εµναβSµvνvαK
′
β and, thus, vanishes. On the other

hand, using the relativistic form of the operator, O7a
eN , leads to the correlation

εµναβSµPνP
′
αK

′
β that is non-vanishing for P 
= P ′. The resulting contribution to

the VAP is:

A(7)
n =

αC7a

4π
t2| �K|| �K ′| sin θ

M2[8M2E2 + 2(2E +M)tM + t2]
(2.14)

a result that is O(p/M)4. In short, the only heavy baryon operators that can

contribute involve either fields with two different velocities (viz, Bv and Bv′) whose

contribution requires non-zero proton recoil, or dimension eight operators involving

the Bv fields only and carrying an additional p/M recoil suppression.
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The SAMPLE result for An allows for a non-vanishing, but small, coefficient for

the leading, higher-order T-odd, P-even operator. Using the relativistic operator

O7a
eN for illustration and including the loop contributions through O(p/M)2 leads

to C7a = 3.07±6.64. Naive dimensional analysis would have suggested a magnitude

for C7a or order unity, so the SAMPLE results do not appear to imply the presence

of any unnatural hadronic scale physics. We may now use this range for C7a to

estimate the possible size of higher-order effects at other kinematics. The resulting

band is shown in Figure 2.8 for backward angles (θ = 146.1◦) and in Figure 2.9

for forward angles (θ = 30◦). For the Mainz measurement at E = 570 MeV and

θ = 30◦, we find −2.0 ≤ A
(7)
n ≤ 0.7 ppm, while Aloop

n = −0.64 ppm. Thus,

one might expect the impact of the physics we have integrated out to grow in

importance relative to the loop effects considered here as the energy of the beam

is increased, and it appears reasonable to expect a magnitude of a few ppm at the

Mainz kinematics. We caution, however, that the precise value obtained in our

calculation is unlikely to be correct in this energy regime, where the convergence

of the E/M expansion is slow at best.

As a final comparison, we also consider An in fixed target, polarized Møller

scattering. The VAP for this process has been measured at SLAC by the E158

collaboration [21], and one expects results to be forthcoming in the near future.

Calculations of this quantity have been performed by several authors [22, 23, 24].

As a cross-check on our VAP for ep scattering, we carry out the analogous cal-

culation here. It can be performed completely relativistically without performing

an expansion in electron energy. However, since we are now dealing with identi-

cal particles in the final state, we need to compute the interference between tree

diagrams in Figure 2.10b and the box diagrams of Figure 2.10a. For the SLAC

measurement, one has E = 46 GeV. Performing the calculation in the center of

mass frame we obtain:
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Figure 2.9: Possible contribution from O7a
eN to the VAP at θ = 30◦, given con-

straints on the operator coefficient C7a implied by the SAMPLE result.

dσ↑

dΩ
− dσ↓

dΩ
= −α

3

8
m√
s

sin θ

√
1− 4m2

s[
3(s − 4m2)

(
t(u− s+ 2m2) ln (

−t
s− 4m2

) (2.15)

−u(t− s+ 2m2) ln (
−u

s− 4m2
)
)
− 2(t− u)tu

]
dσ↑

dΩ
+
dσ↓

dΩ
=

α2

2st2u2

[
(t2 + tu+ u2)2 + 4m2(m2 − t− u)(t2 − tu+ u2)

]

Our results are in agreement with those of Refs. [22, 23, 24].4 The resulting

asymmetry is plotted in Figure 2.11 and agrees with the corresponding figure in

Ref. [24] (note that in Ref. [24], the VAP is plotted vs. cos θ rather than vs. θ as
4In Ref. [24], O(α2) contributions arising from initial and final state radiation effects were

also computed. The corresponding contributions for the ep VAP are smaller than the hadronic

uncertainties arising at O(α), so we do not consider them.
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Figure 2.10: Diagrams contributing to the VAP for Møller scattering.

we do here).

2.5 Conclusions

In this study, we have computed the low-energy, backward-angle VAP using an

effective theory involving electrons, photons, and protons and have obtained a

parameter-free prediction through O(p/M)2. The VAP to this order is determined

entirely by the imaginary part of the interference between the two-photon ex-

change, one-loop amplitude and the tree-level one-photon-exchange amplitude. In

the limit that M → ∞, our result exactly reproduces the VAP obtained in Ref.

[5] for scattering from a structureless, infinitely heavy proton that over predicts

the magnitude of An at the kinematics of the SAMPLE experiment. We find that

inclusion of all contributions through O(p/M)2 leads to agreement with the ex-

periment and leaves little room for important effects arising from dynamical pions

or nucleon resonances at these energies. The leading counterterm contributions

arise at O(p/M)4 and are consistent with zero. Thus, the SAMPLE measurement

provides no evidence for unusual hadronic physics effects at these scales. The data
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Figure 2.11: The Møller VAP vs. CM scattering angle at the E158 kinematics.

also constrain the magnitude of the counterterm coefficients to be of natural size

and lead one to expect the VAP as measured by the A4 collaboration at Mainz to

be at most of the order of a few ppm. Given the range of validity of our effective

theory, however, we cannot produce a reliable prediction for VAP at the Mainz

energies.

In this context, the results of the SAMPLE measurement have notable con-

sequences for studies of weak interaction processes. In the case of both neutron

β-decay and parity-violating ep scattering, theoretical consideration of final state

QED corrections to the leading-order weak amplitudes is important for the inter-

pretation of various measurements [19]. To the extent that these measurements

involve relatively low lepton energies, an analogous effective field theory computa-

tion of one-loop graphs involving the exchange of one weak vector boson and one

photon should be reliable at the ∼ 20% level relative to the size of other O(α)

corrections. Future, more precise measurements of the VAP at low-energies and

over a range of angles would provide important tests of this provisional assessment.
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One might also ask how competitive the SAMPLE measurement is with other di-

rect searches for new T-odd, P-even interactions. As discussed in Refs. [12, 13],

direct searches are most relevant in symmetry-breaking scenarios wherein parity

is broken at or above the scale for the breakdown of T. Existing direct searches

imply that αT
<∼ few × 10−3, where αT is the ratio of a typical T-odd, P-even

nuclear matrix element to those of the residual strong interaction. When trans-

lated into bounds on generic, dimension seven operator coefficients C7 [under the

normalization of Eq. (2.12)], one obtains |C7| <∼ 2. The sensitivity of the SAMPLE

measurement is comparable. Given that conventional, hadronic final state effects

that have been integrated out in our computation naturally imply a value of C7a

with a magnitude of order unity, it appears unlikely that one will be able to cir-

cumvent the corresponding theoretical hadronic uncertainties as needed to make

the VAP a direct probe of new physics. On the other hand, low-energy studies of

An could provide important information for the theoretical interpretation of other

precision, electroweak observables.

Appendix A: Bremsstrahlung Computation

Here, we show that the Bremsstrahlung amplitudes corresponding to Figure 2.2

give a vanishing contribution to the VAP. The amplitudes are:

Ma =
−i
q2
ū(K ′)(ie)γµ

i(/K − /l) +m)
(K − l)2 −m2

(ie)γαεα
1 + γ5/S

2
u(K)ū(p′)(ie)γµu(p)

Mb =
−i
q2
ū(K ′)(ie)γαεα

i(/K ′ + /l) +m)
(K ′ + l)2 −m2

(ie)γµ
1 + γ5/S

2
u(K)ū(p′)(ie)γµu(p)

Mc =
−i
q2
ū(K ′)(ie)γµu(K)ū(p′)(ie)γµ i(/p

′ + /l) +M)
(p′ + l)2 −M2

(ie)γαεαu(p)

Md =
−i
q2
ū(K ′)(ie)γµu(K)ū(p′)(ie)γαεα

i(/p − /l) +M)
(p− l)2 −M2

(ie)γµu(p) (2.16)

Here, lµ is the radiated photon momentum. The square of the invariant amplitude:

MB =
∣∣∣Ma + · · ·+Md

∣∣∣2 (2.17)
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depends on ten different products of leptonic and hadronic tensors. The leptonic

tensors are:

Laa
µν = Tr[(/K ′ +m)γµ

(/K − /l +m)
(K − l)2 −m2

γα
1 + γ5/S

2
(/K +m)γβ

(/K − /l +m)
(K − l)2 −m2

γν ]εαε∗β

Lab
µν = Tr[(/K ′ +m)γµ

(/K − /l +m)
(K − l)2 −m2

γα
1 + γ5/S

2
(/K +m)γν

(/K ′ + /l +m)
(K ′ + l)2 −m2

γβ]εαε∗β

Lac
µν = Tr[(/K ′ +m)γµ

(/K − /l +m)
(K − l)2 −m2

γα
1 + γ5/S

2
(/K +m)γν ]εα

Lad
µν = Lac

µν

Lbb
µν = Tr[(/K ′ +m)γα

(/K ′ + /l +m)
(K ′ + l)2 −m2

γµ
1 + γ5/S

2
(/K +m)γν

(/K ′ + /l +m)
(K ′ + l)2 −m2

γβ]εαε∗β

Lbc
µν = Tr[(/K ′ +m)γα

(/K ′ + /l +m)
(K ′ + l)2 −m2

γµ
1 + γ5/S

2
(/K +m)γν ]εα

Lbd
µν = Lbc

µν

Lcc
µν = Tr[(/K ′ +m)γµ

1 + γ5/S

2
(/K +m)γν ]

Lcd
µν = Lcc

µν

Ldd
µν = Lcc

µν (2.18)

The corresponding hadronic tensors are:

Hµν
aa = Tr[(/p′ +M)γµ(/p +M)γν ]

Hµν
ab = Hµν

aa

Hµν
ac = Tr[(/p′ +M)γµ(/p +M)γβ (/p − /l +M)

(p− l)2 −M2
γν ]ε∗β

Hµν
ad = Tr[(/p′ +M)γµ(/p +M)γν (/p′ + /l +M)

(p′ + l)2 −M2
γβ]ε∗β

Hµν
bb = Hµν

aa

Hµν
bc = Hµν

aa

Hµν
bd = Hµν

ad

Hµν
cc = Tr[(/p′ +M)γα (/p − /l +M)

(p− l)2 −M2
γµ(/p +M)γν (/p − /l +M)

(p − l)2 −M2
γβ]εαε∗β

Hµν
cd = Tr[(/p′ +M)γα (/p − /l +M)

(p− l)2 −M2
γµ(/p +M)γβ (/p′ + /l +M)

(p′ + l)2 −M2
γν ]εαε∗β

Hµν
dd = Tr[(/p′ +M)γµ (/p′ + /l +M)

(p′ + l)2 −M2
γα(/p +M)
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γβ (/p′ + /l +M)
(p′ + l)2 −M2

γν ]εαε∗β (2.19)

We now need to compute:

MB =
∑
pol

∫
d4l

{
1
q4

[
Laa

µνH
µν
aa + Lab

µνH
µν
ab + LacHµν

ac + Lad
µνH

µν
ad + Lbb

µνH
µν
bb

+ Lbc
µνH

µν
bc + Lbd

µνH
µν
bd + Lcc

µνH
µν
cc + Lcd

µνH
µν
cd + Ldd

µνH
µν
dd

]
+ h.c.

}

=
∑
pol

∫
d4l

{
1
q4

[
(Hµν

ac +Hµν
ad )(Lac

µν + Lad
µν) +Hµν

aa (Laa
µν + Lab

µν + Lbb
µν)

+ Lµν
cc (Hcc

µν +Hcd
µν +Hdd

µν)

]
+ h.c.

}
(2.20)

where the sum is over all polarizations of the radiated photon. We are only inter-

ested in the terms proportional to εαβγδS
αkβk′γpδ. First the momentum integrals

are investigated:

iπ2IB =
∫

d4l

[
1

(p′ + l)2 −M2

1
(p′ + l)2 −M2

+
1

(p′ + l)2 −M2

1
(p− l)2 −M2

+
1

(p − l)2 −M2

1
(p− l)2 −M2

+
1

(k′ + l)2 −m2

1
(k′ + l)2 −m2

+ . . .

]
(2.21)

We can evaluate the generic two point integral as defined by:

iπ2B(p2;m2
1,m

2
2) = µ4−n∫

dnq

[
1

q2 +m2
1 − iε

× 1
(q + p)2 +m2

2 − iε
]

(2.22)

We are only interested in the imaginary part of B. We find that above the physical

treshold s = −p2 ≥ (m1 +m2)2 this integral develops an imaginary part [50]:

ImB(p2;m2
1,m

2
2) = π

√
λ(s,m2

1,m
2
2)

s
Θ(s− (m1 +m2)2) (2.23)
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Evaluating the B functions for the kinematics involved here one finds that none

of the integrals of Eq. 2.21 develop an imaginary part. As such, evaluating the

traces and performing the integration, a result of the form:

MB = f1(m,M, s, t, u) + f2(m,M, s, t, u)iεαβγδS
αkβk′γpδ + h.c.

= 2f1(m,M, s, t, u) (2.24)

is obtained. Hence, there is no contribution to An.

Appendix B: Local Operators

As discussed in the text, we are interested in computing the contribution to the

VAP from local, four-fermion eeNN operators. The lowest-dimension operators of

this form have dimension six. First, we show by explicit calculation that all d = 6

operators give vanishing contributions to An. The most general form for the d = 6

operators are:

O6a
eN =

α2

M2
ē(C1 + C2γ5)eN̄(C ′

1 + C ′
2γ5)N

O6b
eN =

α2

M2
ē(C3 + C4γ5)γµeN̄(C ′

3 + C ′
4γ5)γµN (2.25)

O6c
eN =

α2

M2
ē(C5 + C6γ5)σµνeN̄(C ′

5 + C ′
6γ5)σµνN (2.26)

where we have used relativistic nucleon fields N (the corresponding argument car-

ries over straightforwardly in the heavy-baryon formalism). To make the above

hermitian we require all the constants Ci
eN to be real. We now compute the inter-

ference of the amplitudes associated with these operators and the tree amplitude

Mγ , retaining only the desired structure εαβγδS
αpβKγK ′δ. The corresponding

leptonic and hadronic tensors are:

Lµ
6a = Tr[(/K ′ +m)(C1 + C2γ5)

1 + γ5/S

2
(/K +m)γµ]

Lµν
6b = Tr[(/K ′ +m)(C3 + C4γ5)γν 1 + γ5/S

2
(/K +m)γµ]
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Lµνα
6c = Tr[(/K ′ +m)(C5 + C6γ5)σνα 1 + γ5/S

2
(/K +m)γµ]

Hµ
6a = Tr[(/p′ +m)(C ′

1 + C ′
2γ5)(/p +m)γµ]

Hµν
6b = Tr[(/p′ +m)(C ′

3 + C ′
4γ5)γµ(/p +m)γµ]

Hµνα
6c = Tr[(/p′ +m)(C ′

5 + C ′
6γ5)σµα(/p +m)γµ]

M6M∗
γ + h.c. =

(4πα)α2

tM2[
Lµ

6aHµ(6a) + Lµν
6b Hµν(6b) + Lµνα

6c Hµνα(6c)

]
+ h.c. (2.27)

Evaluating the traces and keeping only the terms of interest we obtain:

M6M∗
γ + h.c. = i16

(4πα)α2

tM2

( C1C
′
1M −C4C

′
4m)εαβγδS

αpβKγK ′δ + h.c. (2.28)

Since all the C’s are real we see there is no contribution from dimension six terms.

This result is as expected, as the operators O6a−c are even under both T and P.

Now consider d = 7 operators. As for the d = 6 operators, all contributions

from T-even P-even d = 7 operators will vanish. We may, however, write down

two Hermitian T-odd, P-even d = 7 operators:

O7a
eN =

α2

M3
C7aēγ5σ

µν(←−D +−→D)νeN̄γ5γµN (2.29)

O7b
eN =

α2

M3
C7bēγ5γµeN̄γ5σ

µν(←−D +−→D)νN (2.30)

As before, we evaluate the interference of the above withMγ . The corresponding

leptonic and hadronic tensors are:

Lµν
7a = iT r[(/K ′ +m)γ5σ

µαqα
1 + γ5/S

2
(/K +m)γν ]

Lµν
7b = Tr[(/K ′ +m)γ5γ

µ 1 + γ5/S

2
(/K +m)γν ]

Hµν
7a = Tr[(/p′ +m)γ5γ

µ(/p +m)γν ]

Hµν
7b = iT r[(/p′ +m)γ5σ

µαqa(/p+m)γν ]

M7M∗
γ + h.c. = i

(4πα)α2

tM3
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Figure 2.12: Momentum routing for the two-photon box graph integrals.

[
C7aL

µν
7aHµν(7a) + C7bL

µν
7b Hµν(7b)

]
+ h.c. (2.31)

Evaluating the traces we note that only the Lµν
7aHµν(7a) contributes:

M7Mγ + h.c. =
16(4πα)α2C7a

M3
εαβγδS

αpβkγk′δ (2.32)

We are intrested in the contribution such a term gives to the VAP. Keeping only

the leading piece of the tree amplitude we get:

A(7)
n =

αC7a

4π
t2| �K|| �K ′| sin θ

M2[8M2E2 + 2(2E +M)tM + t2]
(2.33)

Appendix C: Loop Integrals

Here, we provide additional details about the computation of Mγγ . As noted in

the text, the contribution from the crossed-box diagram vanishes, so we consider

only ImMbox
γγ M∗

γ . We may express the latter in terms of the leptonic and hadronic

tensors:
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Lµνα = ū(K ′)(ie)γµ i(−/l +m)
l2 −m2

(ie)γν 1 + γ5/S

2
u(K)ū(K)(ie)γαu(K ′)

Hµνα = ū(p′)[ie(1 + r(l +K ′)2)γµ − κσµβ

2M
(l +K ′)β]

i(/l + /K ′ + /p′ +M)
((l +K ′ + p′)2 −M2

× [ie(1 + r(l +K)2)γν +
κσνδ

2M
(l +K)δ]u(p)

× ū(p)[ie(1 + r(K −K ′)2)γα +
κσαγ

2M
(K −K ′)γ ]u(p′)

Mbox
γγ M∗

γ =
∫

d4l

(2π)2
Lµνα −i

(l +K ′)2
−i

(l +K)2
−i

(K −K ′)2
Hµνα (2.34)

We define the loop integrals from above as follows:

iπ2D0 =
∫
d4l

1
(l2 −m2)(l +K ′)2[(l +K ′ + p′)2 −M2](l +K)2

iπ2Dα =
∫
d4l

lα
(l2 −m2)(l +K ′)2[(l +K ′ + p′)2 −M2](l +K)2

iπ2Dαβ =
∫
d4l

lαlβ
(l2 −m2)(l +K ′)2[(l +K ′ + p′)2 −M2](l +K)2

iπ2Dαβγ =
∫
d4l

lαlβ lγ
(l2 −m2)(l +K ′)2[(l +K ′ + p′)2 −M2](l +K)2

iπ2Dαβγδ =
∫
d4l

lαlβlγ lδ
(l2 −m2)(l +K ′)2[(l +K ′ + p′)2 −M2](l +K)2

(2.35)

In order to evaluate these integrals, we follow the methods of Refs. [42, 43], and our

notation follows that of Ref. [43]. To this end, we need to compute the following

three point functions:

iπ2C0(1, 2, 3) =
∫
d4l

1
(l2 −m2)(l +K ′)2[(l +K ′ + p′)2 −M2]

iπ2C0(1, 2, 4) =
∫
d4l

1
(l2 −m2)(l +K ′)2(l +K)2

iπ2C0(1, 3, 4) =
∫
d4l

1
(l2 −m2)[(l +K ′ + p′)2 −M2](l +K)2

iπ2C0(2, 3, 4) =
∫
d4l

1
(l +K ′)2[(l +K ′ + p′)2 −M2](l +K)2

(2.36)
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and two point functions:

iπ2B0(1, 2) =
∫
d4l

1
(l2 −m2)(l +K ′)2

iπ2B0(1, 3) =
∫
d4l

1
(l2 −m2)[(l +K ′ + p′)2 −M2]

iπ2B0(1, 4) =
∫
d4l

1
(l2 −m2)(l +K)2

iπ2B0(2, 4) =
∫
d4l

1
(l +K ′)2(l +K)2

iπ2B0(2, 3) =
∫
d4l

1
(l +K ′)2[(l +K ′ + p′)2 −M2]

iπ2B0(3, 4) =
∫
d4l

1
[(l +K ′ + p′)2 −M2](l +K)2

(2.37)

For all the B, C and D integrals above we are interested only in the imaginary

part. The only two-, three-, and four-point integrals with non-vanishing imaginary

parts are:

Im D0 =
2π
−t ln(

−t
λ2

)
1√
Λ

Θ(s− (m+M)2)

Im C0(1, 2, 3) =
π√
Λ

ln(
Λ
sλ2

)Θ(s− (m+M)2)

Im C0(1, 3, 4) = Im[C0(1, 2, 3)] = C0

Im B0(1, 3) = π

√
Λ
s

Θ(s− (m+M)2) (2.38)

In the above λ is the photon mass and Λ = s2 − 2s(M2 +m2) + (M2 −m2)2.

The four-point intergrals are evaluated using the Passarino and Veltman pro-

cedure. First one sets up the required framework for the calculation. For the
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kinematics considered here, the Passarino and Veltman momenta and masses are:

p1 = K m1 = m

p2 = p m2 = 0

p3 = −p′ m3 = M

p4 = −K ′ m4 = 0

(2.39)

The f -functions are given by:

f1 = m2
1 −m2

2 − p2
1 = 2m2

f2 = m2
1 −m2

2 + p2
1 − p2

5 = (s−M2 −m2)

f3 = m2
2 −m2

4 − p2
4 + p2

5 = −f2 (2.40)

For space considerations not all the intermediate steps to obtain the integral coef-

ficients are shown. The Passarino-Veltman R-functions will be shown only for the

Dα integral:

Im

⎛
⎜⎜⎜⎜⎝
D11

D12

D13

⎞
⎟⎟⎟⎟⎠ = X−1Im

⎛
⎜⎜⎜⎜⎝
R20

R21

R22

⎞
⎟⎟⎟⎟⎠ (2.41)

where:

R20 =
1
2
[f1D0 + C0(1, 3, 4) − C0(2, 3, 4)] =

1
2
(2D0m

2 + C0)

R21 =
1
2
[f2D0 + C0(1, 2, 4) − C0(1, 3, 4)] =

1
2
[2D0(s−M2 −m2)− C0]

R22 =
1
2
[f3D0 + C0(1, 2, 3) − C0(1, 2, 4)]

=
1
2
[−2D0(s−M2 −m2) + C0] (2.42)
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and where the inverse of the momentum matrix X is:

X−1 =

⎛
⎜⎜⎜⎜⎝

p2
1 p1p2 p1p3

p1p2 p2
2 p2p3

p1p3 p2p3 p2
3

⎞
⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎝

4M2−t
Λ+ts

3M2+m2−s−t
Λ+ts

M2−m2+s
Λ+ts

3M2+m2−s−t
Λ+ts

2(M2+s+t)m2−(s+t−M2)2−m4

t(Λ+ts)
M2−m2

Λ+ts − 1
t

M2−m2+s
Λ+ts

M2−m2

Λ+ts − 1
t

s
Λ+ts − 1

t

⎞
⎟⎟⎟⎟⎠(2.43)

Puting things toghether we have:

Dα = pα
1D11 + pα

2D12 + pα
3D13 (2.44)

After performing the necessary algebra we obtain:

Im[D11] = −D0[2Λ + (m2 −M2 + s)t]− 2C0(s+M2 −m2)
2(Λ + ts)

Im[D12] = −
D0

[
m4 + [t− 2(M2 + s)]m2 + (M2 − s)(M2 − s− t)

]
2(Λ + ts)

+
2C0(m2 −M2)

2(Λ + ts)

Im[D13] =
−D0Λ + 2C0s

2(Λ + ts)
(2.45)

Looking at the integral with two powers of momenta in the numerator we have:

Dαβ = D21p
α
1 p

β
1 +D23p

α
2 p

β
2 +D23p

α
3 p

β
3 +D24[p1, p2]αβ

+ D25[p1, p3]αβ +D26[p2, p3]αβ +D27g
αβ (2.46)

where:

[a, b]αβ = aαbβ + aβbα (2.47)
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and after evaluating the coefficients we get:

Im[D21] =
2B0(Λ + st)(−m2 +M2 + s)2

2Λ(Λ + st)2

+
2C0

[
2Λ(m2 − 2M2 − s) + [(m2 −M2)2 − 2sM2 − s2]t

]
2(Λ + st)2

+
D0

[
2Λ2 + 2Λ(m2 − 2M2 + s)t+ [m4 − 2M2m2 + (M2 − s)2]t2

]
2(Λ + st)2

Im[D22] =
D0Λ[2t2 − 4(M2 − s)t+ 2Λ]

4(Λ + st)2

+
4C0[(m2 −M2)2 − 2M2(s+ Λ)]

4(Λ + st)2

+
4B0(Λ + st)

Λt

[
(s+ t)m4 − 2[(s + t)M2 + s2]m2

+ (M2 − s)2s+ (M4 + s2)t
]

Im[D23] =
D0Λ3t+ C0Λst(2Λ + st)t+ 2B0s(Λ + st)(Λ + 2st)

2Λ(Λ + st)2t

Im[D24] =
2B0(Λ + st)(m2 −M2)(m2 −M2 − s)2

2Λ(Λ + st)2

+
2C0Λ

[
Λ(m2 − 3M2) + [(m2 −M2)2 − 2sM2]t

]
2Λ(Λ + st)2

+
D0

[
Λ2 + Λ(m2 − 3M2 + 2s)t+ [m4 − 2M2m2 + (M2 − s)2]t2

]
2Λ(Λ + st)2

Im[D25] =
D0Λ[Λ + (m2 −M2)t]

2(Λ + st)2

+
C0[2Λ(m2 −M2 − 2s)− s2]

2(Λ + st)2

+
B0(−m2 +M2 + s)(s+ Λ)s

Λ(Λ + st)2

Im[D26] =
2D0Λ(Λ +m2 −M2 + s) + 4C0[Λ(m2 −M2 − s)− s2t]

4(Λ + st)2

+
B0s[Λ + (M2 −m2 + s)t]

(Λ + st)Λt

Im[D27] =
(2C0 +D0t)Λ

4(Λ + ts)
. (2.48)
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Looking at the integral with three powers of momenta in the numerator, we have:

Dαβγ = D31p
α
1 p

β
1p

γ
1 +D32p

α
2 p

β
2p

γ
2 +D33p

α
3 p

β
3p

γ
3 +D34[p1, p1, p2]αβγ

+ D35[p1, p1, p3]αβγ +D36[p1, p2, p2]αβγ +D37[p1, p3, p3]αβγ

+ D38[p2, p2, p3]αβγ +D39[p2, p3, p3]αβγ +D310[p1, p2, p3]αβγ

+ D311[p1, g]αβγ +D312[p2, g]αβγ +D313[p3, g]αβγ (2.49)

After evaluating the coefficients we get:

Im[D31] = − D0

2(Λ + st)3

[
[(m2 −M2)3 + s3 − 3M2s2 + 3M2(M2 −m2)s]t3

+ 3Λ(m4 − 3M2m2 + 2M4 + s2 − 3M2s)t2

+ 3Λ2(m2 − 3M2 + s)t+ 2Λ3
]

− 2C0

2(Λ + st)3

[
[(m2 −M2)3 − s3 − 3M2s2 + 3M2(M2 −m2)s]t2

+ 3Λ(m4 − 3M2m2 + 2M4 − s2 − 3M2s)t+ 3Λ2(m2 − 3M2 − s)
]

− B0

2sΛ(Λ + st)2
(m2 −M2 − s)

[
m8 + (2s − 4M2)m6

+ [6M4 − 16sM2 + 3s(t− 4s)]m4

+ [−4M6 + 26sM4 + 2s(10s − 3t)M2 + 14s3]m2

+ M8 − 12M6s− 6M2s2t− s3(5s+ 3t) +M4s(16s+ 3t)
]

Im[D32] =
4D0

8(Λ + st)3

[
− t3[(m2 −M2)3 + s3 − 3M2s3 + 3M2(M2 −m2)s]

− 3t2Λ[M(m+M)− s][M(m−M) + s] + 3tΛ2(m2 − s)− Λ3
]

+
C0

(Λ + st)3

[
[(m2 −M2)3 − 3M2s2 + 3M2(M2 −m2)s]

+ 3Λ(m2 −M2 + 2s)M2 − 3Λ2M2
]

+
B0

2(Λ + st)2Λst

[
− 3s[(m2 −M2)3 + s3 + 2M2(M2 −m2)s]t2

− Λ[(m2 −M2)3 + 6s3 + 6M2(M2 −m2)s]t− 3s2Λ2
]

Im[D33] = −D0
Λ3

2(Λ + st)3



48

+
C0s

(Λ + st)3
(3Λ2 + 3stΛ + 2s2t2)

+
B0s

2

[
s(−3st

Λ − 5)
(Λ + st)2

− 3
Λt

]

Im[D34] = − D0

2(Λ + st)3

[
Λ[(m2 −M2 + s)t3 + 2m4 − 7M2m2 + 5M4 + 3s2 − 8M2s]

+ Λ2(m2 − 6M2 + 3s) + Λ3
]

− C0

2(Λ + st)3

[
(m2 − 6M2)2Λ2 + (2m4 − 7M2m2 + 5M4 − 8M2s)Λt

+ [(m2 −M2)3 − 3M2s2 + 3M2(M2 −m2)s]t2
]

− B0

2sΛ(Λ + st)3[
s2t2[3(m2 −M2)3 − (m2 − 5M2)s2 − 2(m4 +M2m2 − 2M4)s]

+ stΛ[4(m2 −M2)3 − (m2 − 3M2)s2 + 3M2(M2 −m2)s]

+ Λ2[(m2 −M2)3 − (3m2 − 7M2)s2 + 2(m4 − 5M2m2 + 4M4)s]
]

Im[D35] =
D0

2(Λ + st)3

[
− Λ3 + (2m2 − 3M2)tΛ2 + [(m2 −M2)2 −M2s]t2Λ

]

+
C0

2(Λ + st)3

[
2[−sM2 + (m2 −M2)2 − 3s2]tΛ

− [4m2 − 6(M2 + s)]Λ2 − 2s3
]

+
B0

2Λ(Λ + st)3

[
− [m4 − (2M2 + 3s)m2 +M4 + 5s2 + 8M2s]Λ2

+ 4(3M2 − 2m2 + 2s)s2tΛ + [3s2 − (m2 −M2)2 − 2(m2 − 2M2)]st2
]

Im[D36] =
D0

2(Λ + st)3

[
− [(m2 −M2)3 + s3 − 3M2s2 + 3M2(M2 −m2)s]t3

− (m4 − 5M2m2 + 4M4 + 3s2 − 7M2s)Λt2 + (4m2 − 3s)Λ2t− Λ3
]

+
C0

(Λ + st)3

[
[(m2 −M2)3 + 3M2(M2 −m2)s− 3M2s2]t2

− (m4 − 5M2m2 + 4M4 − 7M2s)Λt− 4M2Λ2
]

+
B0

2Λ(Λ + st)3st

[
− 2s2(Λ + st)Λ2

− [(m−M2)3 + 4s3 + 2M2s2 + (m4 − 8M2m2 + 7M4)s]tΛ

− [3(m2 −M2)3 + 2s3 + 2M2s2 − (m4 + 4M2m2 − 5M4)s]st2
]
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Im[D37] =
D0

2(Λ + st)3
[Λ3 − (m2 −M2)Λ2t]

+
C0

(Λ + st)3
[2t2s3 + 6s2tΛ− 2(m2 −M2 − 3s)Λ2]

+
B0

2(Λ + st)3Λt
(Λ + st)s[−2Λ2

+ (m2 −M2 − 5s)st2 + 3(m2 −M2 − 3s)Λt]

Im[D38] =
D0

2(Λ + st)3

[
Λ3 + Λ2t(m2 − 2M2 − 2s)

+ Λ[m4 + (s− 2M2)m2 + (M2 − s2)t2]
]

+
C0

(Λ + st)3

[
t2s3 − (m2 − 2M2 − s)Λ2 − Λ[(m2 −M2)2

− 2s2 + (m2 − 2M2)s]t
]

+
B0

2(Λ + st)3Λt

[
3sΛ3 + [m4 − 2(M2 + s)m2 +M4 + 9s2 + 4M2s]tΛ2

− s2[(m2 −M2)2 − 3s2 + 2(m2 − 2M2)s]t3

− (4m2 − 8M2 − 9s)Λs2t2
]

Im[D39] =
D0

2Λ(Λ + st)3
Λ3
[
m4 + [t− 2(M2 + s)]m2 + (M2 − s)(M2 − s− t)

]

+
C0

2Λ(Λ + st)3
[−2

Λ
t
(m2 −M2 − 2s) + 6s2tΛ2 + 2s3t2Λ]

+
B0

2Λ(Λ + st)3
[−3sΛ3

t
+ s(−3m2 + 3M2 + 11s)Λ2

+ s2(4m2 − 4M2 − 13s)tΛ + s3(m2 −M2 − 5s)t2]

Im[D310] =
D0Λ

4(Λ + st)3

[
2Λ2 + [2(m2 −M2)2 + s2 + (m2 − 3M2)s]t2

+ (3m2 − 5M2 + 3s)tΛ
]

+
2C0

4(Λ + st)3
[2t2s3 − 2t(m2 −M2)2 − 5s2

+ (m2 − 3M2s)Λ− (3m2 − 5M2 − 3s)Λ2]

+
B0

2Λt(Λ + st)3

[
2sΛ3 + [m4 − 2(M2 + 2s)m2 +M4 + 7s2 + 6M2s]Λ2t

− 2(3m2 − 5M2 − 45)Λs2t2 − s2[(m2 −M2)2 − 3s2 + 2(m2 − 2M2)s]t3
]
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Im[D311] =
−2B0(m2 −M2 − s)(Λ + st)− (2C0 +D0t)Λ[2Λ + (m2 −M2 − s)t]

8(Λ + st)2

Im[D312] =
−2B0(m2 −M2)(Λ + st)

8(Λ + st)2

− (2C0 +D0t)Λ[Λ− (M2 −m2 − s)t]
8(Λ + st)2

Im[D313] =
2B0s(Λ + st)− (D0t+ 2C0)Λ2

8(Λ + st)2
(2.50)

Looking at the integral with four powers of momenta in the numerator, we have:

Dαβγδ = D41p
α
1 p

β
1p

γ
1p

δ
1 +D42p

α
2 p

β
2p

γ
2p

δ
2 +D43p

α
3 p

β
3p

γ
3p

δ
3 +D44[p1, p1, p1, p2]αβγδ

+ D45[p1, p1, p1, p3]αβγδ +D46[p1, p2, p2, p2]αβγδ +D47[p2, p2, p2, p3]αβγδ

+ D48[p1, p3, p3, p3]αβγδ +D49[p2, p3, p3, p3]αβγδ +D410[p1, p1, p2, p2]αβγδ

+ D411[p1, p1, p3, p3]αβγδ +D412[p2, p2, p3, p3]αβγδ +D413[p1, p1, p2, p3]αβγδ

+ D414[p1, p2, p2, p3]αβγδ +D415[p1, p2, p3, p3]αβγδ +D416[p1, p1, g]αβγδ

+ D417[p2, p2, g]αβγδ +D418[p3, p3, g]αβγδ +D419[p1, p2, g]αβγδ

+ D420[p1, p3, g]αβγδ +D421[p2, p3, g]αβγδ +D422[g, g]αβγδ (2.51)

and after evaluating the coefficients, we get:

Im[D41] =
D0

2Λ(Λ + st)4s2[
[m8 − 4M2m6 + (6M4 − 4M2s)m4 − 4(M3 −Ms)2m2 + (M2 − s)4]t4

+ 4Λ[m6 − 4M2m4 + (5M4 − 4M2s)m2 − (M2 − s)(2M2 − s)]t3

+ 2Λ2(3m4 − 12M2m2 + 10M2 + 3s2 − 12M2s)t2

+ 4Λ3(m2 − 4M2 + s)t+ 2Λ4
]

+
C0

Λ(Λ + st)4s2[
[(m2 −M2)4 − s4 − 4M2s3 + 2M2(3M2 − 2m2)s2 − 4(M3 −m2M2)s]t3

+ 4Λ[m6 − 4M2m2 + (5M4 − 4M2s)m2 − 2M6 − s3 − 4M2s2 + 5M4s]t2

+ 2Λ2(3m4 − 12M2m2 + 10M4 − 3s2 − 12M2s)t+ 4Λ3(m2 − 4M2 − s)
]
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+
B0

6Λ(Λ + st)4s2
(Λ + st)

[
2Λ2[(m2 −M2)4 + 2(m2 − 4M2)s(m2 −M2)2

+ 13s4 − 2(11m2 − 26M2)s3 + 6(m4 − 6M2m2 + 6M4)s2]

+ s2[11(m2 −M2)4 − 4(2m2 + 7M2)s(m2 −M2)2 + 11s4

− 4(2m2 − 11M2)s3 − 6(m4 − 2M2m2 −M4)2s2]t2

+ Λs[7(m2 −M2)4 + 4(5m2 − 17M2)s(m2 −M2)2 + 31s4

− 4(7m2 − 31M2)s3 − 6(5m2 − 7M2)(m2 +M2)s2]t
]

Im[D42] =
D0

2Λ(Λ + st)4s2t[
[m8 − 4M2m6 + (6M4 − 4M2s)m4 − 4(M3 −Ms)2m2 + (M2 − s)4]t4

− 4Λ[M2m4 − 2(M4 −M2s)m2 + (m2 − s)3]t3

+ 2Λ2[2m2M2 − 3(M2 − s)2]t2 − 4Λ3(M2 − 4s)t+ Λ4
]

+
C0

Λ(Λ + st)4s2t[
[(m2 −M2)4 − 4M2s3 + 2M2(3M2 − 2m2)s2 − 4(M3 −m2M2)s]t3

− 4Λ[(m2 −M2)2 + 3s2 + (2m2 − 3M2)s]M2t2

− 2Λ2(2m2 − 3M2 + 6s)M2t− 4Λ3M2
]

+
B0

6Λ(Λ + st)4s2t
(Λ + st)

[
11s3Λ3

+ [2(m2 −M2)4 + 33s4 + 12M2(3M2 − 2m2)2s2 − 12(M3 −m2M)2s]tΛ2

+ s2[11(m2 −M2)4 + 11s4 + 12M2(3M2 − 2m2)s2 − 36(M3 −m2M)2s]t3

+ s[7(m2 −M2)4 + 33s4 + 24M2(3M2 − 2m2)s2 − 48(M3 −m2M)2s]Λt2
]

Im[D43] =
1

6(Λ + st)4

[
3[D0Λ4 + 2C0s(−4Λ3 − 6stΛ2 − 4s2t2Λ− s3t3)]

+
B0s

Λt
(Λ + st)(11Λ3 + 59stΛ2 + 64s2t2Λ + 22s3t3)

]

Im[D44] =
D0

2Λ(Λ + st)4s2

[
[m8 − 4M2m6 + (6M4 − 4M2s)m4

− 4(M3 −Ms)2m2 + (M2 − s)4]t4

+ Λ[3m6 − 13M2m4 + (17M4 − 14M2s)m2 − (7M2 − 4s)(m2 − s2)]t3

+ Λ2(3m4 − 16M2m2 + 15M2 + 6s2 − 20M2s)t2 + Λ3(m2 − 10M2 + 4s)t+ Λ4
]
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+
C0

2Λ(Λ + st)4s2[
2[(m2 −M2)4 − 4M2s3 + 2M2(3M2 − 2m2)s2 − 4(M3 −m2M2)s]

+ 2Λ[−15s2M2 + 2(9M2 − 7m2)sM2 + (3m2 − 7M2)(m2 −M2)2]t2

+ Λ2(6m4 − 32M2m2 + 30M4 − 40M2s)t+ 2Λ3(m2 − 10M2)
]

+
B0

6Λ(Λ + st)4s2
(Λ + st)

[
Λ2[2(m2 −M2)4 + 3(m2 − 5M2)s(m2 −M2)2

− (11m2 − 47M2)s3 + 6(m4 − 9M2m2 + 10M4)s2]

+ s2[11(m2 −M2)4 − 6(m2 + 5M2)s(m2 −M2)2

− 2(2m2 − 13M2)s3 − 3(m4 − 5M4)s2]t2

+ Λs[7(m2 −M2)4 + 3(5m2 − 21M2)s(m2 −M2)2

− (7m2 − 67M2)s3 − 3(5m4 + 6M2m2 − 19M4)s2]t
]

Im[D45] =
D0

2Λ(Λ + st)4s
[Λ4 + 3Λ3(m2 − 2M2)t

+ Λ2(3m4 − 8M2m2 + 5M4 − 4M2s)t2 + (m2 −M2)5

− 2(m2 + 2M2)s(m2 −M2)3 −M2s4 + 4M4s3 + (m6 + 5M4m2 − 6M6)s2]

+
C0

2Λ(Λ + st)4s

[
2Λ3(3m2 − 6M2 − 4s)

+ 2Λ2(3m4 − 8M2m2 + 5M4 − 6s2 − 4M2s)t

+ 2Λ[(m2 −M2)3 − 4s3 −M2s2 + 2M2(M2 −m2)s]t2 − 2s4t3
]

+
B0

6Λ(Λ + st)4s2
(Λ + st)

[
Λ2[(m2 −M2)3 + 26s3

− 3(11m2 − 19M2)s2 + 6(m4 − 3M2m2 + 2M4)s]

+ s2[2(M2 −m2)3 + 11s3 − 6(m2 − 3M2)s2 − 3(m4 − 4M2m2 + 3M4)s]t2

+ Λs[5(m2 −M2)3 − 15s(m2 −M2)2 + 31s3 − 3(7m2 − 19M2)s2]t
]

Im[D46] =
D0

2(Λ + st)4Λs2t

[
[m8 − 4M2m6 + (6M4 − 4M2s)m4

− 4(M3 −Ms)2m2 + (M2 − s)4]t4

+ Λ[m6 − 7M2m4 + (11M4 − 10M2s)m2 − (5M2 − 4s)(M2 − s)2]t3

+ 2Λ2(4M4 − 3m2M2 − 7sM2 + 3s2)t2 − Λ3(5M2 − 4s)t+ Λ4
]

+
C0

(Λ + st)4Λs2t4
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[
[(m2 −M2)4 − 4M2s3 + 2M2(3M2 − 2m2)s2 − 4(M3 −m2M2)s]t3

+ Λ[−13s2M2 + 2(7M2 − 5m2)sM2 + (m2 − 5M2)(m2 −M2)2]t2

− 2Λ2M2(3m2 − 4M2 + 7s)− 5Λ3M2
]

+
B0

6Λ(Λ + st)3s2t

[
9s3Λ3 + [2(m2 −M2)4 + (m2 − 13M2)s(m2 −M2)2

+ 27s4 + 6M2s3 + 6M2(7M2 − 5m2)s2]tΛ2

+ s2[11(m2 −M2)4 − 2(m2 + 17M2)s(m2 −M2)2 + 9s4 + 6M2s3

+ 6M2(5M2 − 3m2)s2]t3 + Λs[7(m2 −M2)4

+ (5m2 − 53M2)s(m2 −M2)2 + 27s4 + 12M2s3 + 24M2(3M2 − 2m2)s2]t2
]

Im[D47] =
D0Λ

2Λ(Λ + st)4st

[
Λ2 + [m4 − 2M2m2 + (M2 − s)2]t2

− 2Λt(M2 − s)
[
m4 + [t− 2(M2 + s)]m2 + (M2 − s)(M2 − s− t)

]]

+
C0

Λ(Λ + st)4st[
Λ[(m2 −M2)3 − 3s3 + (m2 − 3M2)s2 + (m4 − 4M2m2 + 3M4)s]t2

+ Λ2[m4 + (2s − 4M2)m2 + 3(M4 − 2sM2 − s2)]t+ (m2 − 3M2 − s)Λ3 − t3s4
]

+
B0

6Λ(Λ + st)4st
(Λ + st)

[
11s2Λ3

+ [(m2 −M2)3 + 33s3 − 6(m2 − 3M2)s2 − 3(m4 − 4M2m2 + 3M2)2s]tΛ2

+ Λs[5(m2 −M2)3 + 33s3 − 12(m2 − 3M2)s2]t2

+ s2[2(M2 −m2)3 + 11s3 − 6(m2 − 3M2)s2 − 3(m4 − 4M2m2 + 3M4)s]t3
]

Im[D48] =
D0

6(Λ + st)4Λt
3tΛ4

[
m4 + [t− 2(M2 + s)]m2 + (M2 − s)2 −M2t

]

+
C0

6(Λ + st)4
6[−t3s4 − 4Λt2s3 − 6Λ2ts2 + (m2 −M2 − 4s)Λ3]

+
B0s

6(Λ + st)4Λt
[9Λ4 + (−11m2 + 11M2 + 62s)tΛ3

+ 3s(−6m2 + 6M2 + 37s)t2Λ2 + 2s3(−m2 +M2 + 10s)t4

− 3(3m2 − 3M2 − 26s)Λs2t3]

Im[D49] =
1

12Λ(Λ + st)4

[
6D0Λ4

[
m4 + [t− 2(M2 + s)]m2 + (M2 − s)(M2 − s− t)

]
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+
1
t

[
C0[12(m2 −M2 − 3s)tΛ4 − 72s2t2Λ3 − 48s3t3Λ2 − 12s4t4Λ]

+ B0s[22Λ4 + (−11m2 + 11M2 + 59s)tΛ3 − 6s(6m2 − 6M2 − 35s)t2Λ2

− 2s2(9m2 − 9M2 − 77s)t3Λ− 4s3(m2 −M2 − 10s)
]]

Im[D410] =
D0

6(Λ + st)4[
3[m8 − 4M2m6 + (6M4 − 4M2s)m4 − 4(M3 −Ms)2m2 + (M2 − s)4]t4

+ 6Λ[m6 − 5M2m4 + (7M4 − 6M2s)m2 − (3M2 − 2s)(M2 − s)]t3

+ Λ2(3m4 − 30M2m2 + 33M4 + 18s2 − 50M2s)− 4(5M2 − 3s)Λ3t+ 3Λ4
]

+
C0

6(Λ + st)4[
6[(m2 −M2)4 − 4M2s3 + 2M2(3M2 − 2m2)s2 − 4(M3 −m2M)2s]t3

+ 12Λ[−7s2M2 + 2(4M2 − 3m2)sM2 + (m2 − 3M2)(m2 −M2)]t2

+ 2Λ2(3m4 − 30M2m2 + 33M4 − 50M2s)t− 40M2Λ3
]

+
B0

6(Λ + st)3Λs2t

[
6s3Λ3 + 2[(m2 −M2)4 + (m2 − 7M2)s(m2 −M2)2

+ 9s4 + 9M2s3 + (m4 − 20M2m2 + 25M4)s2]tΛ2 + s2[11(m2 −M2)4

− 4(m2 + 8M2)s(m2 −M2)2 + 6s4 + 14M2s3 − (m4 + 10M2m2 − 23M4)s2]t3

+ Λs[7(m2 −M2)4 + 2(5m2 − 29M2)s(m2 −M2)2 + 18s4 + 32M2s3

− (5m4 + 38M2m2 − 67M4)s2]t2
]

Im[D411] =
D0

6(Λ + st)4

[
[3(m2 −M2)2 − 2M2s]Λ2 + 3Λ4 + 2(3m2 − 4M2)tΛ3

]

+
C0

6(Λ + st)4

[
6t3s4 − 24s3t2Λ + 4(3m2 − 4M2 − 6s)Λ3

+ 2[−2sM2 + 3(m2 −M2)2 − 18s2]tΛ2
]

+
B0

6(Λ + st)3Λt

[
6sΛ3 + 2[m4 − (2M2 + 11s)m2 +M4 + 22s2 + 14M2s]tΛ2

− s2[4sm2 + (m2 −M2)2 − 17s2 − 6M2s]t3

− Λs[5(m2 −M2)2 − 49s2 + 2(7m2 − 11M2)s]t2
]

Im[D412] =
D0

12(Λ + st)4

[
3Λ4 + 2[3m4 + (4s − 6M2)m2 + 3(M2 − s)2]Λ2
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+ 2Λ3(2m2 − 3M2 + 3s)t
]

+
C0

6(Λ + st)4

[
− 12t3s4 − 48Λs3t2 + 4[2m2 − 3(M2 + s)]Λ3

+ 2Λ2[4sm2 + 3(m2 −M2)2 − 15s2 − 6M2s]t
]

+
B0

6(Λ + st)3Λt
2
[
11sΛ3

+ [2m4 − 4(M2 + 3s)m2 + 2M4 + 39s2 + 18M2s]tΛ2

− s2[4sm2 + (m2 −M2)2 − 17s2 − 6M2s]t3

− Λs[5(m2 −M2)2 − 45s2 + 8(2m2 − 3M2)s]t2
]

Im[D413] =
D0

6(Λ + st)4

[
3Λ4 + 2(3m2 − 7M2 + 3s)tΛ3

+ Λ2[7m4 + 4(s− 5M2)m2 + 13M4 + 4s2 − 16M2s]t2

+ Λ[3(m2 −M2)3 + s3 + (m2 − 5M2)s2 + (m4 − 8M2m2 + 7M4)s]
]

+
C0

6(Λ + st)4

[
4(3m2 − 7M2 − 3s)Λ3

+ 2[7m4 + 4(s − 5M2)m2 + 13M4 − 14s2 − 16M2s]tΛ2

+ 2[3(m2 −M2)3 − 11s3 + (m2 − 5M2)s2

+ (m4 − 8M2m2 + 7M4)s]t2Λ− 6s4t3
]

+
B0

6(Λ + st)3Λst

[
6s2Λ3

+ [(m2 −M2)3 + 25s3 − (19m2 − 39M2)s2 + (5m4 − 16M2m2 + 11M4)s]tΛ2

+ s2[−2(m2 −M2)3 + 11s3 − 6(m2 − 3M2)s2 − 3(m4 − 4M2m2 + 3M4)s]t3

+ Λs[5(m2 −M2)3 − 10s(m2 −M2)2 + 30s3 − (19m2 − 51M2)s2]t2
]

Im[D414] =
D0

6(Λ + st)4

[
3Λ4 + (4m2 − 11M2 + 8s)tΛ3

+ Λ2[5m4 − 16M2m2 + 11M4 + 7s2 + 6(m2 − 3M2)s]t2

+ Λ[3(m2 −M2)3 + 2s3 + (2m2 − 7M2)s2 + 2(m4 − 5M2m2 + 4M4)s]t3
]

+
C0

6(Λ + st)4

[
2(4m2 − 11M2 − 4s)Λ3

+ 2[5m4 + (6s − 16M2)m2 + 11M4 − 11s2 − 18M2s]tΛ2

+ 2[3(m2 −M2)3 − 10s3 + (2m2 − 7M2)s2
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+ 2(m4 − 5M2m2 + 4M4)s]t2Λ− 6s4t3
]

+
B0

6(Λ + st)3Λst

[
9s2Λ3

+ [(m2 −M2)3 + 29s3 − 2(5m2 − 13M2)s2 + 2(2m4 − 7M2m2 + 5M4)s]tΛ2

+ s2[−2(m2 −M2)3 + 11s3 − 6(m2 − 3M2)s2 − 3(m4 − 4M2m2 + 3M4)s]t3

+ Λs[5(m2 −M2)3 − 5s(m2 −M2)2 + 31s3 − 4(4m2 − 11M2)s2]t2
]

Im[D415] =
D0

6(Λ + st)4

[ 3(m2 −M2)2 + s2 + 2(m2 − 2M2)sΛ2 + 3Λ4 + (5m2 − 7M2 + 4s)tΛ3]

+
C0

6(Λ + st)4

[
− 6t3s4 − 24s3t2Λ + 2(5m2 − 7M2 − 8s)Λ3

+ [6(m2 −M2)2 − 34s2 + 4(m2 − 2M2)s]tΛ2
]

+
B0

6(Λ + st)3Λt

[
9sΛ3 + [−17sm2 + 2(m2 −M2)2 + 39s2 + 23M2s]tΛ2

− s2[4sm2 + (m2 −M2)2 − 17s2 − 6M2s]t3

− Λs[5(m2 −M2)2 − 47s2 + (15m2 − 23M2)s]t2
]

Im[D416] =
1

12s(Λ + st)3

[
(D0t+ 2C0)sΛ

[
3Λ2 + Λ(3m2 − 4M2 + 3s)t

+ [m4 + (s− 2M2)m2 + (M2 − s)2]t2
]

+ B0(Λ + st)
[
m8 + (2s− 4M2)m6 + 3[2M4 − 4sM2 + s(t− 4s)]m4

+ [−4M6 + 18sM4 + 6s(2s − t)M2 + 14s3]m2 + (M2 − s)2(M4 − 6sM2 − 5s2)

+ s(3M4 − 2sM2 − 3s2)t
]]

Im[D417] =
1

12s(Λ + st)3

[
(D0t+ 2C0)sΛ

[
Λ2 + Λ(m2 − 2M2 + 2s)t

+ [m4 + (s− 2M2)m2 + (M2 − s)2]t2
]

+ B0(Λ + st)
[
m8 − 4M2m6 + 3[2M4 − 2sM2 + s(t− s)]m4

+ 2[−2M6 + 6sM4 + s(s− 3t)M2 + s2(s+ t)]m2

+ M2[M6 − 6sM4 + 3s(3s + t)M2 − 4s2(s+ t)]
]]

Im[D418] =
1

12(Λ + st)3

[
(D0t+ 2C0)Λ3 −B0s(Λ + st)(3Λ + st)

]
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Im[D419] =
1

24s(Λ + st)3

[
(D0t+ 2C0)sΛ

[
3Λ2 + Λ(4m2 − 6M2 + 5s)t

+ 2[m4 + (s− 2M2)m2 + (M2 − s)2]t2
]

+ 2B0(Λ + st)
[
m8 + (s− 4M2)m6 + 3[2M4 − 3sM2 + s(t− 2s)]m4

+ [−4M6 + 15sM4 + 2s(2s− 3t)M2 + s2(5s+ t)]m2 +M8 − 7M6s

− 3M2s2(s+ t)− s3(s+ t) +M4s(10s + 3t)
]]

Im[D420] =
1

24(Λ + st)3

[
(D0t+ 2C0)[3Λ + (2m2 − 2M2 + s)t]Λ2

+ 2B0[−(m2 −M2 + 2s)t2s2 − 6Λts2 + (m2 −M2 − 4s)Λ2]
]

Im[D421] =
1

12(Λ + st)3

[
(D0t+ 2C0)[

m4 + [t− 2(M2 + s)]m2 + (M2 − s)(M2 − s− t)
]
Λ2

+ 2B0[−(m2 −M2 + 2s)t2s2 − 4Λts2 + (m2 −M2 − 2s)Λ2]

]

Im[D422] =
Λ

96(Λ + st)2

[
(D0t+ 2C0)

[
− 2m6 + [4(M2 + s) + t]m4

− 2[(M2 − s)2 + (M2 + 2s)t]m2 + (M2 − s)2t
]

+ 2B0(Λ + st)

]
(2.52)
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Chapter 3

Parity-Violating Electron-Deuteron

Scattering

3.1 Introduction

An introduction to the parity-violating electron-deuteron scattering was presented

in Section 1.3. This work was published in Physical Review C63, 2001, 044007

(nucl-th/0011034). This work also includes a numerical computation that was

performed using software developed by Rocco Schiavilla at Thomas Jefferson Na-

tional Accelerator Facility (TJNAF). The Thomas Jefferson National Accelerator

Facility also provided computing time on their computing facility.

This chapter is organized as follows: a summary of the relevant formulas for

the calculation of the asymmetry is given in Section 3.2. The computation of

the current operators in EFT can be found in Section 3.3. Sections 3.4.1 and

3.4.2 contain a description of the inclusion of the one- and two-body currents into

the phenomenological model. The numerical computation of the asymmetry is

described in Section 3.5. Results and conclusions are presented in Section 3.6.

3.2 The Parity-Violating Asymmetry

Parity-violating electron-nucleus scattering results from the interference of ampli-

tudes associated with photon and Z0 exchanges as shown in Fig. 3.1. The initial



59

and final electron (nucleus) four-momenta are labeled by kµ and k′µ (Pµ and P ′µ),

respectively, while the four-momentum transfer Qµ is defined as Qµ ≡ kµ − k′µ ≡
(ω,q). The amplitudes for the processes in Fig. 3.1 are then given by [51]:

M = −4πα
Q2

(Mγ +MZ) (3.1)

Mγ = u ′γσu jγσ,fi (3.2)

MZ =
1

4π
√

2
GµQ

2

α
u ′γσ(g(e)

V + g
(e)
A γ5)u jZσ,fi (3.3)

where α and Gµ are the fine-structure constant and Fermi constant for muon decay,

respectively, g(e)
V = −1 + 4 sin2θW and g(e)

A = 1 are the Standard Model values for

the neutral-current couplings to the electron given in terms of the Weinberg angle

θW , u and u′ are the initial and final electron spinors, and jγ,σ
fi and jZ,σ

fi denote

nuclear matrix elements of the electromagnetic and weak neutral currents, i.e.:

jγ,σ
fi ≡ 〈f |jγ,σ(0)|i〉 ≡ (ργ

fi(q), jγfi(q)) (3.4)

and similarly for jZ,σ
fi . Here |i〉 and |f〉 are the initial and final nuclear states.

Note that in the amplitude MZ the Q2 dependence of the Z0 propagator has been

ignored, since here we restricted ourselves to |Q2| � m2
Z .

The parity-violating asymmetry in the quasi-elastic regime is given by:

A =

(
dσ+

dΩdω
− dσ−

dΩdω

)/(
dσ+

dΩdω
+

dσ−

dΩdω

)
(3.5)

where dσh/dΩdω is the inclusive cross section for scattering of an incident electron

with helicity h = ±1. It is easily seen that, to leading order:

A ∝ � (MγMZ∗)
|Mγ |2 (3.6)

Standard manipulations then lead to the following expression for the asymmetry

in the extreme relativistic limit for the electron [51]:
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e e’

d p,n

+

e e’

d p,n

Figure 3.1: (a) Single photon-exchange and (b) Z-exchange diagrams in parity-

violating quasi-elastic electron-deuteron scattering. The blobs denote the nuclear

currents.

A =
1

2
√

2
GµQ

2

α

g
(e)
A vLR

γ,0
L + g

(e)
A vTR

γ,0
T + g

(e)
V v′TR

γ,5
T

vLR
γ,γ
L + vTR

γ,γ
T

(3.7)

where the v’s are defined in terms of electron kinematical variables:

vL =
Q4

q4
(3.8)

vT = tan2(θ/2) +
|Q2|
2 q2

(3.9)

v′T = tan(θ/2)

√
tan2(θ/2) +

|Q2|
q2

(3.10)

θ being the electron scattering angle in the laboratory, while the R’s are the nuclear

electro-weak response functions, which depend on q and ω, to be defined below.

To this end, it is first convenient to separate the weak current jZ,σ into its vector

j0,σ and axial-vector j5,σ components, and to write correspondingly:

jZ,σ
fi = j0,σ

fi + j5,σ
fi ≡ (ρ0

fi(q), j0fi(q)) + (ρ5
fi(q), j5fi(q)) (3.11)
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The response functions can then be expressed as:

Rγ,a
L (q, ω) =

∑
i

∑
f

δ(ω +mi − Ef )�
[
ργ

fi(q)ρa∗
fi (q)

]
(3.12)

Rγ,a
T (q, ω) =

∑
i

∑
f

δ(ω +mi − Ef )�
[
jγx,fi(q)ja∗x,fi(q) + jγy,fi(q)ja∗y,fi(q)

]
(3.13)

Rγ,5
T (q, ω) =

∑
i

∑
f

δ(ω +mi − Ef )�
[
jγx,fi(q)j5∗y,fi(q)− jγy,fi(q)j5∗x,fi(q)

]
(3.14)

where mi is the mass of the target (assumed at rest in the laboratory), Ef is the

energy of the final nuclear state (in general, a scattering state), and in Eqs. (3.12)

and (3.13) the superscript a is either γ or 0. Note that there is a sum over the

final states and an average over the initial spin projection states of the target,

as implied by the notation
∑

i. In the expressions above for the R’s, it has been

assumed that the three-momentum transfer q is along the z-axis, which defines

the spin quantization axis for the nuclear states.

3.3 Operators in Effective Field Theory

The purpose of this section is to obtain from EFT the one and two-body operators

required in the computation. We consider only up and down quarks, in which

case the QCD Lagrangian has an approximate SU(2)L×SU(2)R chiral symmetry.

This symmetry is spontaneously broken by the vacuum to the diagonal SU(2)V

subgroup, and three pseudoscalar Goldstone bosons, the pions πa, appear in the

spectrum. Chiral symmetry provides important constraints on the description of

low-momentum processes involving pions. In particular, it allows one to estimate

the relative size of various contributions.

To accomplish this, the most general effective Lagrangian with broken SU(2)L×
SU(2)R is constructed. This effective Lagrangian includes terms with an arbitrary

number of derivatives and powers of the quark masses; however, higher-dimension

operators are suppressed by inverse powers of the characteristic mass scale of QCD,

Mχ = 4πfπ ∼ 1 GeV. Thus, pion interactions are determined as a power series in
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(q,mπ)/Mχ, where q is the typical external three-momentum. At low energies this

is a small number and hence only the lowest-order terms are considered here. The

diagrams that need to be included at the next order in the expansion are shown

but they are not evaluated.

We start with the ππ and πN Lagrangians. Details can be found, for example,

in Refs. [3, 31]. As described in the introduction, the pions are described by the

field U = u2 = 1 + iτ · π/fπ − π2/2f2
π + ..., where fπ = 93 MeV is the pion decay

constant. We denote the nucleon field of velocity vµ and spin Sµ by N . In order

to obtain the currents required for the computation of the asymmetry we must

use the proper covariant derivatives. The covariant derivatives on the pion and

nucleon field are constructed in terms of external vector and axial-vector fields Vµ

and Aµ in the usual manner. They are given by:

DµU = ∂µU − i(Vµ +Aµ)U + iU(Vµ −Aµ) (3.15)

DµN = ∂µN +
1
2
[u†, ∂µu]N − i

2

[
u†(V(3)

µ +A(3)
µ )u+ u(V(3)

µ −A(3)
µ )u†

]
N − 3iV(0)

µ N

(3.16)

where the superscripts (0) and (3) denote isoscalar and isovector components. It

is convenient to construct also other quantities that transform covariantly. For

example:

aµ = i[u†,Dµu]+, (3.17)

f †µν = u†FR
µνu+ uFL

µνu
† (3.18)

where FR,L
µν = ∂µF

R,L
ν − ∂νF

R,L
µ − i[FR,L

ν , FR,L
µ ] with FR

µ = Vµ + Aµ and FL
µ =

Vµ −Aµ.

One can find the relation between the external fields and Z0 or photon by

considering the covariant derivative on the quark fields (see, e.g., Ref. [52]):

Aµ =
g

2 cos θW

τz
2
Zµ (3.19)
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Vµ =
g

2 cos θW
(
τz
2
− 2 sin2 θWQq)Zµ + eQqAµ (3.20)

where Qq is the quark-charge matrix.

From these building blocks we can write the chiral Lagrangians:

Lππ =
f2

π

4
Tr[DµU

†DµU ] + . . . (3.21)

LπN = N †[i v ·D + gAS · a]N +
1

2m
N †
[
(v ·D)2 −D ·D − i gA[S ·D, v · v]+

]
N

− i
4m

N †[Sµ, Sν ]

[
(1 − κv)f †µν +

1
2
(κs − κv)Tr(f †µν)

]
N + . . . (3.22)

where κs = −0.12 and κv = 3.71, and . . . denote terms with more derivatives

and/or powers of the pion mass. One can also write down interactions containing

four or more nucleon fields [31, 53], which are important for a fully consistent

description of systems involving two or more nucleons. One- and two-body currents

can be obtained from these interactions.

3.3.1 Ordering of Terms

The symmetries allow an infinite number of interactions, so an ordering scheme is

necessary for predictive power. We want to estimate the size of matrix elements

of one- or two-body currents between NN wave functions. These matrix elements

involve: the final NN wave function, a two-nucleon propagator, the current oper-

ator, another two-nucleon propagator, and the initial NN wave function. Let us

now investigate the order of the current operators and the required diagrams.

Contributions to the amplitude Mγ start at O(e2/q2) with the tree-level one-

body charge operator shown if Figure 3.2. First corrections come in tree-level one-

body currents from O(q/Λχ) magnetic corrections in the Lagrangian. These are

shown in Figure 3.3. Second corrections are of two types: (i) one-loop corrections

and O(q2/Λ2
χ) interactions in one-body currents shown in Figure 3.4, and (ii) tree-

level two-body currents of Figure 3.5. As such, we see that two-body currents
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Figure 3.2: Electromagnetic charge one-body diagrams.

of interest in this work enter the calculation two orders below the leading order

one-body currents.

Contributions to the amplitude MZ follow the same pattern, but have an extra

overall factor of O(q2/M2
Z) = O(Gµq

2/e2) due to the different coupling of the Z

to the nucleon versus the photon.

Interesting also are the contributions to the asymmetry that come not from the

exchange of a Z0 between electron and deuteron, but from Z0 exchange between

hadrons (and photon exchange between electron and deuteron). Also, the contri-

bution from PV interactions between the pion and the nucleon must be considered.

Let us denote these contributions by Mγ(Z). How does Mγ(Z) compare to MZ?

The contributions from the pion nucleon PV interaction were discussed in [54] and

a more recent computation of these contribution shows that they are small [36].

Direct Z exchange between nucleons (PV in the deuteron initial state) are not

included in the computation. These have been recently calculated and shown to

be small [37].

This calculation involves all other contributions suppressed by O(q2/M2
χ) com-

pared to the leading one-body term. The leading two-body currents in the am-
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Figure 3.3: Electromagnetic one-body diagrams (magnetic corections) at O(q/Mχ)

relative to leading orger charge operators.

plitude MZ stemming from pion exchange are being calculated here for the first

time.

Figures 3.2 to 3.6 show the order by order contributions in the electromagnetic

sector. The leading order term is the one-body charge operator shown in Figure

3.2. Figure 3.4 shows the first order correction (magnetic corrections) to the charge

operator. Both these diagrams are included in the computation.

At the next order in the expansion, we have the one-body contributions from

Figure. 3.4 which are not included and the leading order two-body diagrams of

Figure 3.5 which are included. Finally, Figure 3.6 shows the first order corrections

to the two-body contribution, however these are not included in the computation.

Figures 3.7 to 3.10 show the order by order contribution for the weak sec-

tor. They are exactly as the electromagnetic ones except for the overall factor of

O(Gµq
2/e2) as described above.
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Figure 3.4: Electromagnetic one-body diagrams at O(q2/M2
χ) relative to leading

orger charge operators.

3.3.2 Connection with Phenomenological Model

The operators obtained from the EFT will be used in conjunction with a successful

phenomenological Lagrangian. The reason for doing this is three-fold. First, the

model and necessary software to perform the numerical computation already ex-

isted, and as such there was no need to generate an EFT description of the initial

and final state. This in turn, allowed the results to be generated and communi-

cated to the SAMPLE collaboration in a timely fashion. Second, the model allows

for inclusion of higher-order terms as will be discussed in this section. Although

this is not consistent with EFT, a sizable contribution from these terms would im-

ply that the EFT was truncated too early in the expansion, and more terms need

to be considered. Finally, the use of a phenomenological potential in conjunction

with currents derived from EFT has already been proven to be successful [31].

As noted above, the phenomenological model used in this computation has the

ability to include higher-order contribution through different techniques such as

the Riska prescription [33] where the pion meson exchange currents are extended

to account for heavier mesons. All these techniques, when translated into an
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Figure 3.5: Electromagnetic two-body diagrams at O(eq2/M2
χ) in EFT. Solid

(dashed) lines denote nucleons (pions).

EFT language correspond to the inclusions of terms beyond the ones considered in

the previous section. Furthermore, these techniques lack the systematic approach

found in the EFT; that is to say they may include some of the terms at a given order

in the expansion but not all. Nonetheless, their inclusion has been successful in

past computations, and as such in this computation we will investigate their impact

on the final result. As stated earlier, if they turn out to have a significant impact,

the implication is that the EFT expansion was truncated too early. One would

thus need to go back to the EFT expansion and rework the currents to include the

next order terms. In this case, that would mean including the diagrams shown in

Figure 3.6 and Figure 3.10.

After performing the computation, the results show that these higher-order

contributions are negligible and, as such, there is no need to include the next order

in the expansion.
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Figure 3.6: Electromagnetic two-body diagrams at O(eq3/M3
χ) in EFT. Solid

(dashed) lines denote nucleons (pions).

3.3.3 One- and Two-Body Currents

The one-body currents contributing to the processes in Fig. 3.1, depicted in Figs.

3.2, 3.3, 3.7 and 3.8, are given to O(eq/Λχ) by:

ρa(r) =
1
2

∑
i

(gS
E + gV

E τz,i)δ(r − ri) (3.23)

ja(r) =
1

4m

∑
i

[
(gS

E + gV
E τz,i)[δ(r − ri)pi + piδ(r− ri)]

+(gS
M + gV

Mτz,i)∇δ(r− ri)× σi

]
(3.24)

ρ5(r) = − 1
4m

gA

∑
i

[σi · piδ(r− ri) + δ(r− ri)σi · pi]τz,i (3.25)
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Figure 3.7: Leading order weak neutral one-body diagrams.

j5(r) = −1
2
gA

∑
i

δ(r − ri)σiτz,i (3.26)

where a = γ or 0, the coupling constants g(S,V )
E and g

(S,V )
M are given in Table 3.1,

and gA is the nucleon axial coupling constant. These results are in agreement with

those presented in Ref. [27]. These coupling constants acquire, in higher orders, a

Q2 dependence, as described, for example, in Ref. [55]. In our calculation we use

a phenomenological parametrization of the Q2 dependence, as described in Secs.

3.4.1 and 3.4.2.

Form Factor γ Z

gS
E 1 −2 sin2 θW

gV
E 1 1− 2 sin2 θW

gS
M 1 + κs −(1 + κs) sin2 θW

gV
M 1 + κv (1 + κv)(1− 2 sin2 θW )

Table 3.1: Coupling constants appearing in one-body currents to O(eq/Λχ) in

EFT.
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Figure 3.8: Next to leading order weak neutral one-body diagrams.

Note that Lππ contains a π-Z0 mixing term in the form Z · ∂π0. The corre-

sponding diagram is shown in Figure 3.11 which has a contribution proportional

to Qµ, the four-momentum transfer. Its contraction with the leptonic current

produces a contribution proportional to the mass of the electron. In the extreme

relativistic limit for the electron under consideration here, this contribution can

be neglected.

The two-body contributions to the processes shown in Fig. 3.1 are depicted in

Figs. 3.5 and 3.9, where again contributions from π-Z0 mixing are neglected in

the extreme relativistic limit. To O(eq2/Λ2
χ), they are given in momentum space

by:

ja(k1,k2) = 3i gV
E (τ 1 × τ 2)z

[
vπ(k2)σ2 · k2σ1 − vπ(k1)σ1 · k1σ2

−vπ(k2)− vπ(k1)
k1

2 − k2
2 (k1 − k2)σ1 · k1σ2 · k2

]
(3.27)

where ki = p′
i − pi with pi (p′

i) denoting the initial (final) momentum of nucleon
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Figure 3.9: Weak neutral two-body diagrams at O(eq2/M2
χ) in EFT.

i. In the formula above:

vπ(k) = −1
3

(
gA

4fπ

)2 1
mπ

2 + k2
(3.28)

Note that there is no contribution to the axial current operator or the electromag-

netic charge operator up to the order considered here. There is a contribution to

the axial charge operator which, however, does not enter in the asymmetry compu-

tation. These results are in agreement with Ref. [56], where the Fourier transform

of the above expressions are also given in detail.

In higher order other currents appear. There exist shorter-range currents,

which are expected to be smaller than the ones from pion exchange with leading-

order interactions. These higher-order effects are parameterized in our calculation

through the Riska prescription as outlined in Sections 3.4.1 and 3.4.2. In particular,

we do not use Eq. (3.28) for vπ(k), but the pseudoscalar component of the v18

potential.
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Figure 3.10: Weak neutral two-body diagrams at O(eq3/M3
χ) in EFT.

3.4 Phenomenological Model

This section describes how the model incorporates the different currents.

3.4.1 Electromagnetic Operators

The nuclear charge and current operators consist of one- and two-body terms that

operate on the nucleon degrees of freedom:

ργ(q) =
∑

i

ργ,1
i (q) +

∑
i<j

ργ,2
ij (q) (3.29)

jγ(q) =
∑

i

jγ,1
i (q) +

∑
i<j

jγ,2
ij (q) (3.30)
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Figure 3.11: Contributions from pion-Z mixing.

The one-body operators ργ,1
i and jγ,1

i have the standard expressions obtained from

a relativistic reduction of the covariant single-nucleon current and are listed below

for convenience. The charge operator is written as:

ργ,1
i (q) = ργ,1

i,NR(q) + ργ,1
i,RC(q) (3.31)

with:

ργ,1
i,NR(q) = εi eiq·ri (3.32)

ργ,1
i,RC(q) =

(
1√

1 + |Q2|/4m2
− 1

)
εieiq·ri− i

4m2
(2µi − εi)q·(σi×pi)eiq·ri (3.33)

where |Q2| = q2 − ω2 > 0 is the four-momentum transfer defined earlier, and m is

the nucleon mass. The current operator is expressed as:

jγ,1
i (q) =

1
2m

εi [pi , eiq·ri]+ −
i

2m
µi q× σi eiq·ri (3.34)

where [· · · , · · ·]+ denotes the anticommutator. The following definitions have been

introduced:
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εi ≡ 1
2

[
GS

E(|Q2|) +GV
E(|Q2|)τz,i

]
(3.35)

µi ≡ 1
2

[
GS

M (|Q2|) +GV
M (|Q2|)τz,i

]
(3.36)

and p, σ, and τ are the nucleon’s momentum, Pauli spin, and isospin operators,

respectively. The two terms proportional to 1/m2 in ργ,1
i,RC are the well-known

Darwin-Foldy and spin-orbit relativistic corrections [57], respectively. The dipole

parameterization is used for the isoscalar (S) and isovector (V ) combinations of

the electric and magnetic nucleon form factors (including the Galster form for the

electric neutron form factor [58]).

The most important features of the two-body parts of the electromagnetic

current operator are summarized below. The reader is referred to Refs. [56, 59, 60]

for a derivation and listing of their explicit expressions.

Two-body current operators

The two-body current operator has “model-independent” and “model-dependent”

components, in the classification scheme of Riska [33]. The model-independent

terms are obtained from the two-nucleon interaction (in the present study the

Argonne v18 interaction [34] is employed) and by construction satisfy current con-

servation with it. The leading operator is the isovector “π-like” current obtained

from the isospin-dependent spin-spin and tensor interactions. The latter also gen-

erate an isovector “ρ-like” current, while additional model-independent isoscalar

and isovector currents arise from the isospin-independent and isospin-dependent

central and momentum-dependent interactions. These currents are short-ranged

and numerically far less important than the π-like current.

The model-dependent currents are purely transverse and, therefore, cannot

be directly linked to the underlying two-nucleon interaction. The present calcu-

lation includes the isoscalar ρπγ and isovector ωπγ transition currents as well

as the isovector current associated with excitation of intermediate ∆-isobar reso-
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nances (for the values of the various coupling constants and cutoff masses in the

monopole form factors at the meson-baryon vertices, see Ref. [61]). Among the

model-dependent currents, those associated with the ∆-isobar are the most impor-

tant ones. In the present calculation, these currents are treated within the static

∆ approximation. While this is sufficiently accurate for our purposes here, it is

important to realize that such an approach can lead to a gross overestimate of ∆

contributions in electro-weak transitions (see Refs. [62, 63, 64] for a discussion of

this issue within the context of neutron and proton radiative captures on deuteron

and 3He, and the proton weak capture on 3He).

Finally, it is worth pointing out that the contributions associated with the

ρπγ, ωπγ, and ∆-excitation mechanisms are, in the regime of low to moderate

momentum-transfer values of interest here (q ≤ 2 fm−1), typically much smaller

than those due to the leading model-independent π-like current [65] as expected

from power counting.

Two-body charge operators

While the main parts of the two-body currents are linked to the form of the two-

nucleon interaction through the continuity equation, the most important two-body

charge operators are model-dependent and should be considered as relativistic

corrections. Indeed, a consistent calculation of two-body charge effects in nuclei

would require the inclusion of relativistic effects in both the interaction models

and nuclear wave functions. There are nevertheless rather clear indications for the

relevance of two-body charge operators from the failure of the impulse approxi-

mation in predicting the deuteron tensor polarization observable [66] and charge

form factors of the three- and four-nucleon systems [65, 67]. The model commonly

used [59] includes the π-, ρ-, and ω-meson exchange charge operators with both

isoscalar and isovector components, as well as the (isoscalar) ρπγ and (isovector)

ωπγ charge transition couplings, in addition to the single-nucleon Darwin-Foldy

and spin-orbit relativistic corrections. The π- and ρ-meson exchange charge oper-

ators are constructed from the isospin-dependent spin-spin and tensor interactions
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(those of the Argonne v18 here), using the same prescription adopted for the cor-

responding current operators.

It should be emphasized, however, that for q ≤ 2 fm−1 the contributions due to

these two-body charge operators are very small when compared to those from the

one-body operator. This is because as shown previously they enter at O(p/M)2

relative to the leading term and for small p they become very small.

3.4.2 Weak Operators

In the Standard Model the vector part of the neutral weak current is related to

the isoscalar (S) and isovector (V ) components of the electromagnetic current,

denoted respectively as jγ,σ
S and jγ,σ

V , via:

j0,σ = −2 sin2θW jγ,σ
S + (1− 2 sin2θW ) jγ,σ

V (3.37)

and, therefore, the associated one- and two-body weak charge and current opera-

tors are easily obtained from those given in the preceding section.

The axial charge and current operators also have one- and two-body terms.

Only the axial current:

j5(q) =
∑

i

j5,1
i (q) +

∑
i<j

j5,2
ij (q) (3.38)

enters in the calculation of the asymmetry. The axial charge operator is not needed

in the present work. The one-body axial current is given, to lowest order in 1/m,

by:

j5,1
i (q) = −GA(|Q2|)τz,i

2
σi eiq·ri (3.39)

where the nucleon axial form factor is parametrized as:

GA(|Q2|) =
gA

(1 + |Q2|/Λ2
A)2

(3.40)

Here gA is the nucleon axial coupling constant, gA = 1.2654, and the cutoff mass
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ΛA is taken to be 1 GeV/c2, as obtained from an analysis of pion electroproduction

data [68] and measurements of the reaction νµ p→ µ+ n [69].

There are relativistic corrections to j5,1 as well as two-body contributions aris-

ing from π-, ρ-, ρπ-exchange mechanisms and ∆ excitation [64]. All these effects,

however, are neglected in the present study. The reasons for doing so are twofold:

firstly, axial current contributions to the asymmetry are small, since they are pro-

portional to the electron neutral weak coupling g
(e)
V � −0.074 (see Eq. (3.7));

secondly, axial contributions from two-body operators are expected to be at the

� 1 % level of those due to the one-body operator in Eq. (3.39). For example, in

the proton weak capture on proton at KeV energies [70] (this process is induced

by the charge-changing axial weak current) the π, ρ, ρπ, and ∆ two-body opera-

tors increase the predicted one-body cross section by 1.5%. Such an estimate is

expected to hold up also in the quasi-elastic regime being considered here.

3.5 Calculation

In this section we describe the calculation of the deuteron response functions given

in Eqs. (3.12)–(3.14). The deuteron wave function is written as:

|d,Md〉 =

[
u(r)
r
YMd

011 +
w(r)
r
YMd

211

]
χ0

0 (3.41)

where the YMJ
LSJ are standard spin-angle functions, χT

MT
is a two-nucleon T,MT

isospin state, and u(r) and w(r) are the S- and D-wave radial functions. In the
2H(�e, e′)pn reaction the final state is in the continuum, and its wave function is

written as:

|q;p, SMS , TMT 〉 = eiq·R ψ(−)
p,SMS ,TMT

(r) (3.42)

where r = r1−r2 and R = (r1 + r2)/2 are the relative and center-of-mass coor-

dinates. The incoming-wave scattering-state wave function of the two nucleons

having relative momentum p and spin-isospin states SMS , TMT is approximated
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as [71]:

ψ
(−)
p,SMS ,TMT

(r) � 1√
2

[
eip·r − (−1)S+T e−ip·r]χS

MS
χT

MT
+

4π√
2

∑
JMJ

J≤Jmax

∑
LL′

iL δLST

[ZJMJ
LSMS

(p̂)]∗
[
1
r
u

(−)
L′L(r; p, JST )− δL′L jL(pr)

]
YMJ

L′SJχ
T
MT

(3.43)

where:

δLST = 1− (−1)L+S+T (3.44)

ZJMJ
LSMS

(p̂) =
∑
ML

〈LML, SMS |JMJ〉YLML
(p̂) (3.45)

The δLST factor ensures the antisymmetry of the wave function, while the Clebsch-

Gordan coefficients restrict the sum over L and L′. The radial functions u(−)
L′L are

obtained by solving the Schrödinger equation in the JST channel, and behave

asymptotically as:

1
r
u

(−)
L′L(r; p, JST ) ∼

r→∞
1
2

[
δL′Lh

(1)
L (pr) + (SJST

L′L )∗h(2)
L′ (pr)

]
(3.46)

where SJST
L′L is the S-matrix in the JST channel, and the Hankel functions are

defined as h(1,2)
L (x)=jL(x)± inL(x), jl and nL being the spherical Bessel and Neu-

mann functions, respectively. In the absence of interactions, u(−)
L′L(r; p, JST )/r −→

δL′L jL(pr), and ψ(−)(r) reduces to an antisymmetric plane wave. Interaction ef-

fects are retained in all partial waves with J ≤ Jmax. In the quasi-elastic regime of

interest here, it is found that these interaction effects are negligible for Jmax>7.

The response functions are written as (only Rγ,γ
L is given below for illustration):

Rγ,γ
L (q, ω) =

∑
S,T=0,1

Rγ,γ
L (q, ω;S, T ) (3.47)
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where the contributions from the individual spin-isospin states are:

Rγ,γ
L (q, ω;S, T ) =

1
3

∑
MdMS

∫
dp

(2π)3
1
2
|Aγ

ST (q,p;MSMd)|2δ
(
ω + Ed − q2

6m
− p2

m

)

(3.48)

with Aγ
ST defined as:

Aγ
ST (q,p;MSMd) ≡ 〈q;p, SMST,MT = 0|ργ(q)|d,Md〉 (3.49)

Here Ed = −2.225 MeV is the deuteron ground-state energy, the factor 1/2

in Eq. (3.48) is included to avoid double counting, and the states |d,Md〉 and

|q;p, SMST,MT = 0〉 are represented by the wave functions in Eqs. (3.41) and

(3.43), respectively. By integrating out the energy-conserving δ-function one finds:

Rγ,γ
L (q, ω;S, T ) =

mp

48π2

∑
Md,MS

∫ +1

−1
d(cosθp) |Aγ

ST (q, p, cosθp;MSMd)|2 (3.50)

where the magnitude of the relative momentum p is fixed by p =
√
m(ω + Ed)− q2/4,

and θp is the angle between q and p. The initial- and final-state wave functions

are written as vectors in the spin-isospin space of the two nucleons for any given

spatial configuration r. For the given r the state vector ργ(q)|d,Md〉 is calculated

with the same methods used in quantum Monte Carlo calculations of, for exam-

ple, the charge and magnetic form factors of the trinucleons [65]. The r and θp

integrations required to calculate the amplitudes and response function are then

performed by means of Gaussian quadratures.

Finally, note that, since the deuteron is a T = 0 state, one finds:

Rγ,0
L (q, ω;S, T = 0) = −2 sin2θW Rγ,γ

L (q, ω;S, T = 0) (3.51)

Rγ,0
L (q, ω;S, T = 1) = (1− 2 sin2θW )Rγ,γ

L (q, ω;S, T = 1) (3.52)
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with similar relations holding between the transverse response functions.

3.6 Results and Conclusions

The asymmetry has been calculated at the kinematics relevant to the SAMPLE

experiment. The incident electron energy was set to E = 193 MeV. SAMPLE mea-

sures the asymmetry at four different angles (θ = 138.4o, 145.9o, 154.0o, 160.4o).

Different electron final energies E′ correspond to different momentum transfers

Q2, |Q2| � 0.1 GeV2 in the SAMPLE experiment, which is small enough to jus-

tify the use of a non-relativistic formalism with leading interactions obtained from

EFT.

The calculated asymmetries, as functions of the electron final energy, are shown

in Figs. 3.12, 3.13, 3.14, and 3.15, for the four different electron scattering angles.

For each set of kinematics, the left panels display the asymmetry and the total

inclusive cross section, with different curves representing one-body contributions,

one- plus two-body contributions from pion-exchange currents only, and the sum

of all contributions. The ratios of one- plus two-body contributions from pion-

exchange only and full currents to one-body contributions for both asymmetries

and cross sections are displayed in the right panels.

As is apparent from the figures, the results at all angles are qualitatively similar.

Near the quasi-elastic peak two-body effects in the asymmetry are negligible, less

than 1%, while away from the quasi-elastic peak they become relatively more

important, increasing the asymmetry by at most 3%. Note, however, that the two-

body current contributions are large in the inclusive cross section, indeed dominant

in the left-hand side of the quasielastic peak. In this region the contribution

associated with the currents of pion range is more than 50% of the total two-body

contribution.

It is interesting to examine more closely the reasons for the relative unimpor-

tance of two-body current contributions in the asymmetry. At backward angles,

the expression for the asymmetry can be approximated as:



81

A

GµQ2/(2
√

2α)
� Rγ,0

T + (−1 + 4 sin2θW )Rγ,5
T

Rγ,γ
T

(3.53)

where terms proportional to the longitudinal response functions are suppressed by

the factor vL/vT ≤ 1/tan2(θ/2), a small number at the angles under consideration

here (note that the Rγ,a
L and Rγ,a

T response functions are of the same order of

magnitude). It is useful to identify the contributions from T = 0 and T = 1

pn final states, and to use Eqs. (3.51) and (3.52), relating the Rγ,0
T (T = 0, 1) to

Rγ,γ
T (T = 0, 1). One then finds:

A

GµQ2/(2
√

2α)
=

1− 2 sin2θW (1 + rγ,γ) + (−1 + 4 sin2θW ) rγ,5

1 + rγ,γ
(3.54)

rγ,γ = Rγ,γ
T (T = 0)/Rγ,γ

T (T = 1) (3.55)

rγ,5 = Rγ,5
T (T = 1)/Rγ,γ

T (T = 1) (3.56)

Note that the Rγ,5
T response function only receives contributions from T = 1 pn

final states, since the current j5,1 is isovector. The ratio rγ,γ is much smaller than

one, since the transverse response is predominantly isovector. For example, at

E′ = 55 MeV and θ = 160.5o, Rγ,γ
T (T = 0) = 0.769×10−5(0.935×10−5) MeV−1 and

Rγ,γ
T (T = 1) = 10.3× 10−5(25.9× 10−5) MeV−1, and hence rγ,γ = 0.0748 (0.0361)

with one-body (full) currents. In contrast, the ratio rγ,5 is of order one; again at

E′ = 55 MeV and θ = 160.5o, Rγ,5
T (T = 1) = −18.3× 10−5(−26.0× 10−5) MeV−1,

and hence rγ,5 = −1.78 (−1.00) with one-body (full) currents. However, it is

multiplied by the small factor (−1 + 4 sin2θW ) = −0.074, and so the asymmetry

turns out to be largely independent of nuclear structure details.

Finally, if A0 denotes the asymmetry obtained by ignoring the contribution of

the axial current, one finds:

|A|
|A0| = 1 +

(−1 + 4 sin2θW ) rγ,5

1− 2 sin2θW (1 + rγ,γ)
(3.57)

The computed value for this ratio is shown in Fig. 3.16 for one of the kinematics of
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the SAMPLE experiment. The contribution of the axial current to the asymmetry

is of the order of 13% to 24% throughout the kinematical range considered. Note

that in Fig. 3.16 we have included the small contribution from the longitudinal

response.

As a last remark, we should emphasize that the calculated transverse (Rγ,γ
T )

and longitudinal (Rγ,γ
L ) response functions-including one- and two-body operators-

reproduce [72] existing Bates data [73].

Since we have performed the computations at the SAMPLE kinematics, the

above results may be used to account for two-body current corrections in the anal-

ysis of the experimental data. The SAMPLE experiment measures a convolution

of the asymmetry A and the cross section (dσ/dΩdE′) over a certain range of

electron final energies:

Atotal =
∫
A (dσ/dΩdE′) dE′∫
(dσ/dΩdE′) dE′ (3.58)

The goal of the experiment is to extract the one-body part of Atotal. To accomplish

this, a model that includes only one-body contributions is used to generate the

cross section. One can now use our results for the ratios of total to one-body

contributions in the asymmetry and cross section to adjust for two-body effects in

the experiment.

In conclusion, we have presented a calculation of the asymmetry in quasi-elastic

electron-deuteron scattering arising from Z0 exchange. The calculation includes

one- and two-body contribution to both the electromagnetic and weak currents up

to O(p/M)2 relative to the leading one-body charge current. Parity violation in

the deuteron initial state or in the pion-nucleon vertex (anapole moment) are not

included. Since we find that, when the cross section is large at the quasi-elastic

peak, the change in the asymmetry due to two-body currents is negligible, we

expect that these two-body corrections will produce a modification in the analysis

of the SAMPLE experiment at the percent level, too small to affect significantly the

extraction of the strange and axial form factors of the nucleon. As discussed earlier
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the work to examined whether the same holds for effects from Z0 exchange that

manifest themselves within the two-nucleon system through the parity-violating

pion-nucleon coupling has been completed since the completion of this computation

[36], [37].
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Figure 3.12: Results for scattering of an electron with incident energy E = 193

MeV on a deuteron at rest, as function of the electron final energy E′ in MeV,

for a scattering angle θ = 160.5o. Left panels: longitudinal asymmetry |A| (top)

and cross section σ in fm2/MeV/sr (bottom). Shown are one-body contributions

(dotted line), one- plus two-body contributions from pion-exchange currents only

(dashed line), and the sum of all contributions (solid line). Right panels: ratios

of one- plus two-body contributions from pion only (dashed line) and full currents

(solid line) to one-body contributions for the asymmetry |A|/|A1| (top) and cross

section σ/σ1 (bottom).
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Figure 3.13: Same as Fig. 3.12, but for θ = 154.0o.
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Figure 3.14: Same as Fig. 3.12, but for θ = 145.9o.
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Figure 3.15: Same as Fig. 3.12, but for θ = 138.4o.
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asymmetry without the axial contribution for scattering of an electron with inci-

dent energy E = 193 MeV on a deuteron at rest, as function of the electron final

energy E′ in MeV, for a scattering angle θ = 160.5o.
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