DNA-MEDIATED CHARGE TRANSPORT DEVICES FOR PROTEIN DETECTION

Thesis by Ariel L. Furst

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry

California Institute of Technology Pasadena, CA 2015 (Defended May 28, 2015)

© 2015 Ariel Lesa Furst All Rights Reserved

Acknowledgements

It is with immense gratitude that I acknowledge the many people who have supported and guided me in this work. First and foremost, I wish to thank my advisor, Prof. Jackie Barton. Your passion for science and continued optimism are a constant inspiration. Thank you for everything you have taught me, especially how to make beautiful figures. With your guidance, I have learned to take risks and push back scientific frontiers. Your unwavering enthusiasm has made me a strong, fearless scientist.

I cannot find words to express my appreciation for Prof. Mike Hill. Your collaboration throughout my time at Caltech has been invaluable. I have learned so much from you, both inside and outside of the lab. Your ability to break extremely complex ideas into manageable pieces combined with your infinite knowledge of electrochemistry has helped shape my graduate training. Your advice and support have enabled me to take risks in the laboratory, which, as you have taught me, leads to the most interesting discoveries. I also thank you for your friendship; your constant positivity has been an inspiration over the past five years, especially when I had trouble finding my own.

I would also like to thank my committee chair, Prof. Doug Rees, for your guidance throughout my graduate studies. It has been incredibly rewarding to work as a TA for you over the past four years. You have showed me how to be an effective teacher, especially your ability to weave real-world examples and demonstrations into your lectures. I am thankful for the support of my committee members, Profs. Harry

Gray and Theo Agapie; your genuine interest in my work and insightful questions during my exams have made me a better scientist.

To Maureen Renta, thank you for everything you have done for me. Your humor kept me sane, especially while waiting for meetings with my committee. Your friendship has meant so much to me, and your advice has been invaluable.

I am so thankful to have worked with so many wonderful Bartonites. You truly make the lab what it is. In particular, I would like to thank the Barton group members who have collaborated with me or provided me guidance throughout this journey. Natalie Muren, you took me under your wing when I first joined the group and taught me how to become a scientist. You showed me everything I would need to know in the Barton group, from techniques like DNA purification and human cell culture to keeping an impeccable notebook and fixing the DNA synthesizer. You have also been a constant source of both scientific and emotional support, especially during difficult periods in the lab. Your mentorship and friendship are the reasons for my success, and one of my proudest moments of graduate school was feeling that you trusted me with your experiments.

In addition, Eric Olmon, Pam Sontz, Katie Schaefer, Catrina Pheeney, and Anna Arnold, among others, have taught me so much. You have always been available to offer advice or train me on a new technique. I have considered it an honor to work with other members of the electrochemistry subgroup, who are always willing to lend a hand and troubleshoot when obstacles arise.

To my Caltech friends, thank you for lending an ear or a shoulder and for making the past five years so wonderful. Thank you to Alexis Komor and Andrew Wang, Myles Herbert, Kathryn Perez, Mike Post, Guy Edouard, Kaycie Deyle, Adam Boynton, Anna and Seth Arnold, and so many others. Thanks especially to Phil Bartels for being an immense source of support both inside and outside of the lab. I must also thank my Occidental friends for your constant optimism, especially Lisa Pangilinan and Jeremy Kallick.

Thanks also to my non-Caltech friends; you are always able to keep things in perspective. Roy, Mike, and all of my friends at REKM have truly kept me grounded for the past three years. Lynn, Regina, and Linda: you have all added humor to my life and offered me so much insight and guidance. Molly, you have been my support since high school. Without you to talk to, I would have gone insane.

This thesis would not have been possible without my roommate and bestie, Alyson Weidmann. You have been a constant source of strength and advice. You truly are the reason I have stayed sane throughout graduate school. You have been there to congratulate me at the high points and pick me up at the low points. You are the only person who understands exactly what I am feeling from just a look.

I owe my deepest gratitude to my family for their endless love and support. Thank you to my Mom and Michael for all of the help and advice you have given me throughout the years and for reminding me about the importance of pursuing a career in something that truly inspires me. You both have showed me how to have an open mind while also thinking critically. Thank you for listening to me and providing unending understanding and support. I would also like to thank my brother, David, whose humor and insight have helped me throughout the years. I can always count on you to make me laugh. Finally, I would like to thank my grandparents for emphasizing the importance of education. Your love and encouragement (and care packages) have helped more than I can say.

Finally, to my better half, Tim: your constant encouragement is truly the reason I am where I am today. You have solved any problem that has arisen for me, sat with me in lab on the weekends, read every draft I have written, and listened to all of my talks. You have always put my needs before your own. You are the most patient, kind person I know, and I honestly do not know what I would do without your support and advice. I am so lucky to have you in my life. Thank you.

Abstract

Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π stack. Electrochemical sensors based on DNA CT have previously been used for singlenucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.

First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.

Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.

For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μ L per well). This multiplexed platform has enabled the simultaneous

detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.

With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals *via* a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.

As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of *DNMT1*, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.

Table of Contents

Acknowledgements	iii
Abstract	vii
Table of Contents	х
List of Figures	xvii
Chapter 1: Introduction	1
DNA Charge Transport	2
Nucleic Acid Biosensing	9
DNA-functionalized Electrochemical Sensors	11
DNA-modified Electrode Formation	14
Nanostructured Microelectrodes	14
Controlled Self-Assembly onto Flat Surfaces	16
Redox Probes for DNA-mediated Charge Transport Detection	20
Electrocatalysis for Signal Amplification	22
Methylene Blue as Electrocatalyst with Ferricyanide	22
Single Base Mismatch and Lesion Detection with Electrocatalysis	25
Tethering Methylene Blue	29
Covalent Methylene Blue with Hemoglobin as an Electrocatalysis Pair	30
Platforms for DNA Electrochemistry	33
Detection of Single Base Mutations and DNA Lesions	36
Detection of DNA-Binding Proteins	37

Detection of Transcriptional Regulators	37
Photolyase Activity and Detection	40
Methyltransferase and Methylation Detection	40
Conclusions	45

Chapter 2: DNA-modified Electrodes Fabricated using Copper-Free Click Chemistry for Enhanced Protein Detection 56

Introduction	57
Materials and Methods	61
Synthesis of NHS Ester Activated Cyclooctyne	61
Oligonucleotide Synthesis and Purification	61
AFM Measurements	62
Preparation of DNA-Modified Electrodes and AFM Surfaces	65
Electrochemical Measurements	66
TBP Binding Measurements	67
Results and Discussion	68
Formation of Low-Density Monolayers by Copper-Free Click Chemi	stry 68
Monolayer Characterization through AFM Imaging	70
Electrochemical Monolayer Characterization	72
Electrochemistry of TBP Binding	78
Conclusions	90

Chapter 3: Electrochemical Patterning and Detection of DNA Arrays on a Two-Electrode Platform

96

Introduction	97
Materials and Methods	101
DNA Synthesis and Purification	101
Preparation of Slides	101
DNA Patterning	102
Scanning Across Surface	103
TATA Binding Protein Experiments	103
Hybridization Experiments	104
Results	105
Discussion	117

Chapter 4: Label-Free Electrochemical Detection of Human Methyltransferase from Tumors	123
Introduction	124
Materials and Methods	129
DNA Synthesis and Purification	129
Western Blot Analysis of Lysate for DNMT1	130
³ H-SAM Methyltransferase Activity Assay	132
DNA Monolayer Formation	134
Cell Culture and Lysate Preparation	134
Electrochemistry	135
Results and Discussion	137
Electrochemical Platform	137
Differential Detection of DNMT1 Activity from Multiple Crude Cultured Lysates	d Cell 144

Detection of DNMT1 Activity from Human Tumor Tissue	147
Implications	149

Chapter 5: A Multiplexed, Two-Electrode Platform for Biosensing based on DNA-Mediated Charge Transport 155

Introduction	156
Materials and Methods	159
Preparation of Surfaces and First Alkanethiol Monolayers	159
DNA Synthesis and Purification	159
Design of Experimental Platform	161
DNA Attachment to Alkanethiol Monolayers	161
Characterization of DNA-modified Electrodes	162
TBP and CopG Experiments	162
Results and Discussion	164
Electrochemical Response of Coupling Catalyst	164
Formation of DNA Monolayers with Activation from Primary or Second Electrodes	lary 168
Electrochemical Readout at the Secondary versus Primary Electrode	175
Single-Base Mismatch Detection with Non-covalent and Covalent Re Probe	dox 181
Detection of DNA-binding Proteins	186
Implications	190
The Two Working Electrode Platform	191

Chapter 6: DNA Electrochemistry shows DNMT1 Methyltransferase Hyperactivity in Colorectal Tumors 199

Introduction	200
Materials and Methods	208
DNA Synthesis and Purification	208
RT-qPCR	209
Cell and Tumor Preparation for ³ H and Electrochemistry	210
³ H Assay	210
Electrochemistry	211
Western Blot Analysis of Lysate for DNMT1	213
Results 214	
DNMT1 Activity Measured Electrochemically	214
Radiometric Assay for DNMT1 Activity	220
DNMT1 Expression Measured by RT-qPCR	224
Protein Content Measured by Western Blot	227
Discussion	231
Significance	235

Chapter 7: Development of Glassy Carbon Flow-through Cells Biomolecule Analysis	for 240
Introduction	241
Methods and Materials	244
Glassy Carbon Flow-Through Cells	244
Synthesis of 4-azidobenzene Diazonium Tetrafluoroborate	245
Glassy Carbon Rod Electrode Modification	246
Glassy Carbon Flow-through Cell Modification	248

Results and Discussion	249
Fabrication of Flow-through Cells	249
Working Electrode Fabrication	251
Flow-through Cell Assembly	252
Surface Modification of Glassy Carbon Rod Electrodes	254
Modified Glassy Carbon Rod Electrode Passivation against Ferricyanide a Methylene Blue	and 258
Functionalization of Modified Glassy Carbon Rod Electrodes	261
Conclusions	268

Chapter 8: Thymine Dimers for DNA Nanocircuitry Applications 274

Introduction	275
Material and Methods	289
DNA Synthesis	289
Thiol-Containing DNA Synthesis	291
Nile Blue-modified DNA Synthesis	291
Methylene Blue-modified DNA Synthesis	291
Rhodium Conjugation to the 5' DNA Terminus	292
Rh(phi) ₂ bpy ³⁺ Synthesis	293
Thymine Dimer Formation and Repair in Solution	295
DNA-modified Electrode Preparation	295
Thymine Dimer Formation and Repair Attempts on Surfaces	296
Electrochemical Measurements	296
Results and Discussion	298

Chapter 9: Summary and Perspective	322
Conclusions	318
Rh(phi) ₂ bpy' ³⁺ as a Covalent Redox Probe: Synthesis and Initial Studies	312
Thymine Dimer Formation and Repair in Modified DNA in Solution	308
Electrochemical Experiments with Thymine Dimer Formation and Repair	304
Thymine Dimer Formation and Repair in Solution	298

List of Figures

Chapter 1

Figure 1.1	Schematic illustrations of the structures of graphene and DNA	3
Figure 1.2	A DNA modified with two metallointercalators to test photoinduced D CT	NA 5
Figure 1.3	Illustration of a single molecule experiment with DNA tethered to carb nanotubes to test ground state DNA CT	on 7
Figure 1.4	Electrochemical signal from well matched DNA and DNA containing a single-base mismatch using DNA-modified electrodes	a 12
Figure 1.5	Representation of DNA monolayers formed conventionally and with cl chemistry	ick 18
Figure 1.6	Assembly of DNA monolayers using copper-free click chemistry	19
Figure 1.7	DNA monolayer coverage determined by ruthenium hexammine and daunomycin	21
Figure 1.8	Electrocatalytic cycle between free methylene blue and ferricyanide on DNA-modified electrode	a 24
Figure 1.9	Electrocatalytic signals from DNA-modified electrodes and a variety or redox probes with $[Fe(CN)_6]^{3-1}$	f 26
Figure 1.10	Chronocoulometry of well-matched DNA as well as the same mismatch previously tested with free daunomycin examined with methylene blue $[Fe(CN)_6]^{3-}$	hes and 28
Figure 1.11	Electrocatalytic cycle between DNA tethered MB and freely-diffusing haemoglobin	32
Figure 1.12	Electrochemistry of DNA with TATA-binding protein (TBP)	39
Figure 1.13	Electrochemical assay for methyltransferase activity	43

Figure 2.1	DNA monolayers of different densities	60
Figure 2.2	Depth measurement of OCT-DNA monolayer with AFM	64
Figure 2.3	Synthesis of OCT-DNA and assembly of OCT-DNA monolayers	69
Figure 2.4	AFM images of the assembly of low-density OCT-DNA monolayers	71
Figure 2.5	Quantification of DNA in OCT-DNA monolayers assembled with vary solution concentrations of azide	ing 74
Figure 2.6	Electrochemical mismatch discrimination	76
Figure 2.7	Raw cyclic voltammogram (CV) of mismatch discrimination	77
Figure 2.8	Electrochemical determination of TBP binding	79
Figure 2.9	Percent signal decrease upon TBp binding for high- versus low-density DNA monolayers	80
Figure 2.10	TBP DNA CT signal attenuation compared to quantified DNA surface coverage on an OCT-DNA monolayer	82
Figure 2.11	TBP titration onto DNA-modified electrodes	84
Figure 2.12	Linear fit of TBP titration data to the Frumkin-Fowler-Guggenheim adsorption isotherm	86
Figure 2.13	Kinetics of TBP binding to DNA-modified electrodes	88

Figure 3.1	Two working electrode patterning and readout platform	100
Figure 3.2	Design for patterning electrodes and substrate electrode	107
Figure 3.3	Selective activation for specific covalent attachment of DNA to particulocations	ılar 108
Figure 3.4	Comparison between bulk and spatially-defined electrochemical measurements	110
Figure 3.5	Patterning of a pad containing four strips of well-matched DNA	112
Figure 3.6	TBP detection on a patterned surface	114

Figure 3.7	Oligonucleotide	detection through	dehybridization	and hybridization	116
0	- 0				

Figure 4.1	Electrochemical platform and scheme for the detection of human methyltransferase activity from crude cell lysates	127
Figure 4.2	Western blot for DNMT1	131
Figure 4.3	³ H-SAM DNMT1 activity assay	133
Figure 4.4	Substrate specificity and detection limits for purified DNMT1	139
Figure 4.5	Detection and reproducibility of DNMT1 activity in cell lysates using electrochemical platform	141
Figure 4.6	Signal protection from differing amounts of lysate	143
Figure 4.7	Dependence of lysate activity on the DNA substrate and cofactor	146

Figure 5.1	Multiplexed, two-electrode platform	166
Figure 5.2	Electrochemistry of $[Cu(phendione)_2]^{2+}$	167
Figure 5.3	General strategy for monolayer formation and detection	169
Figure 5.4	Effects of catalyst activation at the primary as compared to the seconda working electrodes with conventional detection from the DNA-modifie electrode	ary ed 171
Figure 5.5	Nyquist plots of electrochemical impedance spectroscopy of differential formed monolayers	ally 174
Figure 5.6	Optimizing the spacer height. Eight Teflon spacers of different heights were tested for electrochemical signal and mismatch discrimination	178
Figure 5.7	Detection strategy and constant-potential amperometry assay for DNA using the two-electrode detection platform	CT 180
Figure 5.8	Mismatch discrimination with electrochemical readout at the secondary electrode	y 183

Figure 5.9	Comparison of mismatch discrimination recorded with the two-	-electrode
	platform using methylene blue vs. Nile blue redox reporters	185
Figure 5.10	Titration of transcription factors TATA-binding protein (TBP)	and CopG
	on two-electrode array	188

Figure 6.1	Electrochemical array for DNMT1 activity detection	203
Figure 6.2	Signal-on electrochemical assay for DNMT1 detection	205
Figure 6.3	Overview of electrochemical DNMT1 analysis from tumors	207
Figure 6.4	Detection of DNMT1 in pure form and from crude lysate	216
Figure 6.5	DNMT1 activity measured electrochemically and radioactively	219
Figure 6.6	DNMT1 activity measured electrochemically without normalization to unmethylated substrate	the 222
Figure 6.7	DNMT1 activity measured with radioactivity	223
Figure 6.8	DNMT1 expression and DNMT1 protein quantification	226
Figure 6.9	Western blots used for quantification	228
Figure 6.10	Direct comparison between DNMT1 activity measured electrochemical and <i>DNMT1</i> expression	lly 230

Figure 7.1	Flow-through cell configuration	250
Figure 7.2	Assembled glassy carbon flow-through cell	253
Figure 7.3	Diazonium formation and glassy carbon surface modification	255
Figure 7.4	Electrochemical modification of glassy carbon surfaces with 4- azidobenzene diazonium salt	257
Figure 7.5	Methylene blue titration with modified glassy carbon electrodes	259
Figure 7.6	Aniline derivatives evaluated for methylene blue passivation ability	260

Figure 7.7	Functionalization of modified glassy carbon electrodes with ethynyl ferrocene (Fc)	262
Figure 7.8	Ethynyl ferrocene coupling to modified glassy carbon electrodes	264
Figure 7.9	Ethynyl ferrocene-modified glassy carbon electrodes upon treatment w EDTA	vith 266

Figure 8.1	Common covalent redox reporters for DNA CT on gold surfaces	278
Figure 8.2	Multiplexed chip platform	280
Figure 8.3	Thymine dimer formation	282
Figure 8.4	Crystal structure of a DNA duplex containing a thymine dimer	283
Figure 8.5	Modes of thymine dimer repair	285
Figure 8.6	Thymine dimer formation and repair on multiplexed chips	287
Figure 8.7	Overview of switching patterning on surfaces	288
Figure 8.8	Sequences of DNA used for testing thymine dimer formation and repar	ir 290
Figure 8.9	Synthesis of Rh(phi) ₂ bpy ³⁺	294
Figure 8.10 H	IPLC trace of thymine dimer formation	299
Figure 8.11 T	hymine dimer formation under optimized conditions	302
Figure 8.12	Thymine dimer repair under optimized conditions	303
Figure 8.13	Cyclic voltammogram of MB'-modified DNA on multiplexed chips	305
Figure 8.14	Rh(phi) ₂ bpy ³⁺ signal on multiplexed chips	307
Figure 8.15	Damage to free DNA by irradiation in the presence of methylene blue	309
Figure 8.16	Nile blue-modified DNA irradiated at 330 nm	311
Figure 8.17	Structure of Rh(phi) ₂ bpy ³⁺ to be coupled to the DNA	313

Figure 8.18	CD spectra of the Δ - and Λ -isomers of Rh(phi) ₂ bpy ³⁺ coupled to the backbone of DNA	316
Figure 8.19	Electrochemistry of backbone-coupled Rh(phi) ₂ bpy ³⁺	317