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ABSTRACT 

In Part I, we construct a symmetric stress-energy-momentum 

pseudo-tensor for the gravitational fields of Brans-Dicke theory, 

and use this to establish rigorously conserved integral expressions 

for energy-momentum P i 
and angular momentum J ik 

. Application of 

the two-dimensional surface integrals to the exact static spherical 

vacuum solution of Brans leads to an identification of our con-

served mass with the active gravitational mass. Application to the 

distant fields of an arbitrary stationary source reveals that P i  

and J ik 
have the same physical interpretation as in general rela-

tivity. For gravitational waves whose wavelength is small on the 

scale of the background radius of curvature, averaging over several 

wavelengths in the Brill-Hartle-Isaacson manner produces a stress-

energy-momentum tensor  for gravitational radiation which may be used 

J to calculate the changes in P i 
and 	ik 

 
of their source. 

In Part II, we develop strong evidence in favor of a conjecture 

by Penrose--that, in the Brans-Dicke theory, relativistic gravita-

tional collapse in three dimensions produce black holes identical  to 

those of general relativity. After pointing out that any black hole 

solution of general relativity also satisfies Brans-Dicke theory, we 

establish the Schwarzschild and Kerr geometries as the only possible 

spherical and axially symmetric black hole exteriors, respectively. 

Also, we show that a Schwarzschild geometry is necessarily formed in 

the collapse of an uncharged sphere. 
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Appendices discuss relationships among relativistic gravity 

theories and an example of a theory in which black holes do not exist. 
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INTRODUCTION 

WHAT IS THE BRANS-DICKE THEORY OF GRAVITY 

AND WHAT ARE THE PROBLEMS DEALT WITH IN 

THIS THESIS? 
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With the acceptance of the special theory of relativity early 

in the twentieth century, physicists had to face the concept, 

apparently necessary if the observed phenomena of electromagnetism 

are to be intelligible, that no signal may be propagated at a speed 

greater than that of light in vacuum. Clearly, the Newtonian view of 

gravitation as an instantaneous action at a distance was no longer 

acceptable. Albert Einstein (1916) laid the foundations of "the 

general theory of relativity," which is still regarded by most theo-

reticians as the simplest theory of gravity consistent both with 

special relativity (and indeed as the most "natural" extension of it) 

and with the observed phenomena of gravitation. His theory soon had 

the support of three "crucial experiments": 

(i) the advance of the perihelion of the planet Mercury by 

43" of arc per century (Leverrier, 1859; Newcomb, 1897), 

(ii) the deflection of light rays from distant stars in the 

gravitational field of the sun (Dyson, Eddington, and 

Davidson, 1920), 

(iii) the shift towards the red end of the spectrum of spectral 

lines in the light coming to us from the surfaces of compact 

stars (Adams, 1925). 

Other observations lent support both to some of the fundamental assump-

tions (such as the principle of equivalence (von Eaviis, Pek6r, and 

Fekete, 1922)) as well as to some further predictions (such as the 

expansion of the universe (Hubble, 1929)) of general relativity theory 

(GRT). 
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But even as the evidence for and acceptance of GRT grew, some 

theoreticians considered modifications of the theory. As an outgrowth 

of attempts to create a unified field theory of gravity and electro-

magnetism, Pascual Jordan (1955, 1959) proposed a theory of gravita-

tion involving a scalar field in addition to the (second-rank tensor) 

metric of GRT. This theory was open to the objection that, in 

general, it required violation of the law of conservation of energy-

momentum. Motivated by the desire to bring relativistic gravity 

theory into closer accord with Mach's principle, Brans and Dicke 

(1961) proposed another version of scalar-tensor gravity theory, which 

will hereafter be referred to as BDT. It is easy to show (see Appen-

dix B) that BDT is equivalent to the only special case of Jordan's 

theory which does not violate conservation laws. 

Our own approach to the study of scalar-tensor gravity theory 

is different from the motivations of either Jordan or Brans and Dicke. 

As shown in Appendix A, BDT is, in a very natural sense, the general-

ization of GRT involving the least additional complication. Thus, if 

experiments should force us to a theory more general than GRT, BDT is 

the candidate which should receive the most serious consideration. 

Furthermore, a large amount of theoretical effort has been expended 

in calculating the astrophysical implications of GRT. It would be 

very desirable to know which of these predictions remain unchanged, or 

at least are not modified qualitatively, in BDT. 

The first section of this thesis addresses itself to the prob-

lem of defining rigorously conserved quantities, for isolated systems, 

which can be reasonably interpreted as energy-momentum and angular 
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momentum in BDT. Although the distribution of stress-energy-momentum 

in the gravitational fields cannot be described in a generally 

covariant manner, we show how to define a physically meaningful stress-

energy-momentum tensor for gravitational waves in the high-frequency 

limit. Like the corresponding work in GRT (Landau and Lifshitz, 1962; 

Isaacson, 1968), the definition of conserved, physically interpretable 

quantities should prove most useful in the further understanding and 

applications of BDT. 

The second section of this thesis addresses itself to the 

problem of gravitational collapse and the formation of black holes in 

BDT. Ever since the pioneering investigations of the collapse of a 

sphere of dust in GRT (Tolman, 1934; Oppenheimer and Snyder, 1939), 

the conjecture that compression of a mass M into a region with cir-

cumference C 47GM/c 2 
in all three directions necessarily produces 

a black hole has received support from all further investigations of 

gravitational collapse. Now the scalar field of BDT, which has its 

source in the trace of the stress-energy-momentum tensor of matter, 

plays the role of reciprocal "gravitational constant." Thus, com-

pression of matter weakens the gravitational attraction, so one might 

naturally ask whether this effect may not be enough to prevent the 

formation of black holes. We present evidence in support of Penrose's 

(1970) conjecture that this is not the case; that in fact black holes 

identical  to those of GRT are formed in BDT. 	That is, after all the 

waves have flowed off to infinity and the "dust has settled", the 

hole's exterior will be the "charged-Kerr" solution to the Einstein-

Maxwell field equations, or one of the special cases of this solution: 
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Schwarzschild, Reissner-NordstrOm, or uncharged-Kerr. 

The black hole thus presents itself to us as a truly remark-

able phenomenon: a theoretical object with identically  the same 

properties in two different theories. I cannot resist the temptation 

to speculate that the "charged-Kerr" black hole exterior solution may 

be common to a large class of relativistic theories of gravitation. 

Finding simple criteria by which to judge whether or not a given theory 

is a member of this class would be a most interesting problem for 

further research. The fact that not all relativistic gravity theories 

imply black holes is established by a counterexample discussed in 

Appendix C. 
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PART I 

CONSERVED INTEGRALS AND THE STRESS-ENERGY- 

MOMENTUM OF GRAVITATIONAL WAVES 
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Chapter 1 

INTRODUCTION AND SUHMARY 

The original conformal form of Brans-Dicke theory (BDT) 

(Brans and Dicke, 1961) may be derived from a variational principle 

in which the Lagrangian density for matter is independent of the 

scalar field (I) . Therefore, the "equation of motion" for matter in 

a given gravitational field is the vanishing of the covariant diver-

gence of the stress-energy-momentum tensor T
ik 

, exactly as in 

general relativity theory (GRT). As is well known, the components of 

this vanishing divergence are not the differential expression of 

global conservation laws for an isolated system, because terms involv-

ing Christoffel symbols prevent the application of Gauss' theorem to 

integrals over a volume of spacetime. This mathematical statement 

supports our intuitive notion that energy-momentum (and angular 

momentum) must be associated with the gravitational fields as well as 

with matter. 

To determine conserved integrals for isolated systems, we 

construct a symmetric pseudo-tensor T
ik 

for the gravitational fields 

such that the ordinary divergence of 4)(-g)(T 1k+ T
ik
) vanishes. This 

allows us to define for an isolated system an energy-momentum vector 

P i  = (c 3 /161.40 ) j [cl, 2 (-g)(g
ik

g
km
- ggkmA

,Rm 
dS

k 

and an angular momentum tensor 
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J ik  = (c 3 /16'40 ) I {x i k) 2 (-g)(g kitgm13- gkmg4)] 
,mP 

-x 	gimg)] 	1 dS 
,mP 

both of which are rigorously conserved in the full nonlinear Brans-

Dicke theory. We also construct two-dimensional surface integrals 

for Pi  and Jik  . 

Application to the static, spherical vacuum solution of Brans 

(external field of a star) yields an identification of the "conserved 

mass" P°/c with the active gravitational mass m which enters into 

Kepler's laws for the motions of planets in the weak gravitational 

fields far from a star. The Brans solution is also used to point up, 

even more forcefully than in GRT, the absurd concepts which can arise 

if one attempts to localize the mass in the gravitational fields. 

Application of this formalism to weakly gravitating sources 

yields P i 
and Jik which are identical to the energy-momentum and 

i 	r io.3 angular momentum of special relativity: P =jT ax, 

ik 	r, _ iko k_io„3 J 	= j (x 	- x T )a x . 

Application to the gravitational fields of a stationary source 

J of arbitrary strength reveals that P i 
and ik  

have the same 

physical interpretation as in general relativity: (-P 1P i ) 1121c E m 

is the active gravitational mass, which governs the Keplerian motion 

of distant planets. The four-vector U i  EP i/m (a special relativ-

istic vector in the flat spacetime far from the source) is the four-

velocity of the source's distant, weak spherical field in the 

asymptotically flat spacetime. The four-vector S=*(J ik
- L ik)U

k
/c 



-9- 

is the intrinsic angular momentum four-vector (here * is the "dual 

operator"). It is orthogonal to the source's four-velocity, and it 

governs the precession of gyroscopes ("dragging of inertial frames") 

far from the source in the same way as in GRT, except that its effects 

are weaker
1 
by the well-known (O'Connell, 1968) factor (2w+3)/(2w+4). 

As in GRT, the tensor L
ik 

= J
ik 
-S Um is the orbital angular 

momentum, which can be derived from the energy-momentum as 

k 	 ikpk/  
L
ik 
=XP-XF, where Xi =J 	PPk is the vector offset of the 

source's distant spherical field from being accurately centered on the 

Minkowskian coordinates at "infinity", i.e., X i  is the "location of 

the center of mass." 

Whenever matter or (nongravitational) fields flow out of the 

source region to infinity, they decrease P
i 

and by precisely 

the (special relativistic) energy-momentum and angular momentum which 

the matter or fields carry. The decrease in P i 
and J ik 

produced 

by gravitational waves can be calculated, in the manner familiar in 

GRT, using the pseudotensor T
ik 

For gravitational waves whose wavelength is small compared to 

the radius of curvature of the background spacetime, the pseudotensor 

ik 
can be averaged over several wavelengths in the Brill-Hartle (1964)- 

ik 
Isaacson (1968) manner, to yield T

(GW) = 	
2

c
4
/3270<f h

kmii
h 

lk
0 	 2111 

pk +2w/f(2E' ik-y
ik

p2. 	
)-2 	(h

2ilk
+h Zk

I i  
)>. Here y

ik 
and f, ,9. 

1
Thus, the Lense-Thirring effect is in principle an experimental means 

of distinguishing between BDT and GRT. 
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both of order unity, are the fully relativistic but slowly changing 

background metric and scalar fields, h
ik 

and 	are the gravita- 

tional waves in the corresponding fields, and 6 = (wavelength)/ 

(background curvature)
1/2 << 1 is a small parameter embodying the 

high-frequency assumption. (Note that the background metric y i  is 
'k 

used to raise and lower indices and form covariant derivatives.) The 

object T
ik 
(GW) 

, which is gauge invariant to the order 0(6) , is a 

stress-energy-momentum tensor (not merely pseudo-tensor) for gravita-

tional waves. It has vanishing divergence with respect to the back-

ground spacetime, and can be used instead of 	to calculate the 

change in P
i 

and 	of a source due to energy-momentum and 

angular momentum carried away by gravitational waves. 

This paper is written rather concisely. Readers who find it 

too concise will find it helpful to review the treatments by Landau 

and Lifshitz (1962) and by Misner, Thorne, and Wheeler (1971) of 

conservation laws and pseudo-tensors in general relativity theory. 

The analysis given here is patterned after those treatments. 



Chapter 2 

CONSTRUCTION OF CONSERVED INTEGRALS 

The field equations of the original formulation of BDT (Brans 

and Dicke, 1961) may be written in the form 2 

_ikR  = (87,4) -1/c 4 )Tik 	(w42)((,) ,i„k -  1 _ik, ,,Z, 
g PP 

-2- 6 

-1 	i;k 	ik + (15 	- g 	 ( ;k) 	1)  

= [87/(2w+3)c 4 ] T 	 (2) 

Here, is is the Ricci tensor, (1) is the scalar field, and w is a 

dimensionless coupling constant. As remarked above, the equations of 

motion for matter are 

Tik 
k = 0 •  ; 
	

(3) 

To establish global conservation laws, we would like to find some 

object C/fik  whose ordinary divergence vanishes. It is clear that 

&elk this will automatically be true if 	can be written in the form 

5r1k = 	for some "potential" Ti which is antisymmetric on 

its last two indices. As the simplest heuristic way to introduce such 

a "potential", whose general usefulness will be established later, 

consider the evaluation of equation (3) at a particular (very special) 

ZWe use the conventions established by Landau and Lifshitz (1962), 

except that our line element is defined as ds 2
=+gikd x

i
dx

k
. 
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point where cb ,i  = 0 . Further, choose the coordinate system so that 

gik ,t  = 0 (locally inertial coordinates) there. Then, at this point, 

in the special coordinate system, equation (3) implies that 

[04
o
)(-g)Tik ] 	= 0 . Expressing T ik 

in terms of g
ik and qb by ,k 

means of equation (1), we can write ((1)4o)( _g)Tik = nikk 	
where the 

,t 
three-index "potential" is 

n 	= (c
4
/167(1)0 )[(1)

2
(-g)(g kgkm- g ikgkm)] 

(4)• 

Here, the constant cb
o is the value of (I) in the asymptotically flat 

spacetime far from any source, the so-called "cosmological value of 
11 

(1) • 	(For a true believer in the Machian motivation of BDT, the dimen- 

sional constant (I)
o is in principle determined in accordance with 

equation (2) by the distribution and evolution of matter throughout 

the Universe--i.e., by the cosmological model (Brans and Dicke, 1961)). 

In practice, cb
o is determined in terms of Newton's gravitational 

constant G by requiring that at large distances from any source the 

expansion defining the active gravitational mass m 

g = -1 + 20m/c 2
r + 0(r-2) 00 (5) 

must agree with the weak field solution of linearized BDT. This yields 

the relationship (bo  = G-1 (2w+4)/(2w+3), as shown by Brans and Dicke 

(1961). Although the appearance of ordinary, rather than covariant, 

derivatives in equation (4) shows that n lick 
is not a tensor, it does 

behave like a tensor under affine coordinate transformations of an 

arbitrary coordinate system. Thus, we are led to define the stress- 

energy-momentum pseudo-tensor T
ik 

for the gravitational fields at an 
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arbitrary point (where qb 	may not vanish), and in coordinates which 

are arbitrary except for the requirement that they be Lorentzian "at 

infinity" (far from all sources), by writing 

	

(4)40)(-g)(T ik + T 
1k

)  
	ik9. 

= fl 	• 	 (6) 

A glance at the defining equation (4) reveals the antisymmetry 

ikk 	iQk 
n 	=-n . 	 (7) 

Like the tensor T ik , the derivatives n 	are symmetric quanti- 

ties, so that 

ik 	ki 
= T 
	

(8) 

Expressing 	in terms of g ik  and q5 by means of the field equa- 

tions (1), and using expression (4) for n ikk , one obtains, after a 

rather tedious calculation, the following expression for T
ik 

: 

T
ik 

= t
ik

+ (ct,
-1

c
4
/87)[(w-1)Vcih ,k

- 1ik 11) 	] 2 

+ (c4
/8Tr)qb ,n i

2411 (g
kn

g
Zm

- g
Rn

g km) 

	

r kim(g ing .Qm_ gtng im) rmzin(2g  ikg 2,n_ 	_
g 
 in Id 
g ) 

+rn 
 (ggkm 

 - gikg Rm)] , 

	

ftm 	 (9) 

where 

t ik = (04/167)[(2 F rizinF Pnp - r n2,p PPmn - rnZnrP
mp)(ggkm -g ikQm) + 

After this was written (Spring 1971), it was pointed out to me that 
Nutku . (Astrophys. J., 158, 991-996) had previously derived equation (9) 
for T ik . Other results of this chapter were not derived or discussed 
by him. 
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+ irk r p ±rk rp _ 	rp _ rk rp \ ,iZsmn 
Rpi  mn 	mn Zp 	np 2,ra 	Zm np 1 5  

+ (ri  rP +r i  FP -ri  FP -ri  FP )gkYn  zp mn 	mn zp 	np zm 	zm np 

+ i
Qnr

k
mp- r mF

k
np
)km

g
np

] 	 (10) 

is formally identical to the well-known 3 
Landau-Lifshitz pseudo-tensor 

of GRT, although (I) -4-4- G-1 is, of course, variable in BDT. 

From the definition (6) and the antisymmetry equation (7), it 

follows that the equations 

T + T ik 	ik)] k  = 0 	 (11) ,  

are satisfied identically. This means there is a conservation law 

for the quantities ("total energy-momentum") 

	

P
i 

= c-1 j (0(1)0 )(-g)(Tik + T
ik

)dS
k 	

, 	 (12) 

which transform as a vector (not merely pseudo-vector) in the 

asymptotically Lorentz coordinates. The integration in (12) can be 

taken over any infinite hypersurface. If we choose the hypersurface 

x
o 
= constant, then P i 

can be written as a three-dimensional space 

integral: 

P = c i 	-i  I (01)0)(-g)(T i°  + i 10 )d3x 	. 	 (13) 

The fact that the conserved energy-momentum of matter plus fields is 

expressible as the integral of a symmetric quantity implies that there 

3
Cf. Landau and Lifshitz (1962), p. 343, eq. (100.6). 
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is also a conservation law for the quantities 

j ik = 	(x idpk xkdp i )  

_ -11 (04).0)(_g) f x i (Tkk+Tke. )- xk (T iZ+1. 12, 
)1dS 	

' 	
(14) 

which transform as a tensor (not merely pseudo-tensor) in the 

asymptotically Lorentz coordinates. Thus, for a closed system the 

total angular momentum is conserved and the "coordinates of the center 

of mass", given by 

f (44(1) 0 )xa(T00+ T00 )(-g)d3x 
a 
X - 	 (15) 

f (0)0 )(T 00+ T00 )(-g) d3x 

execute uniform motion as seen by a distant observer. The "coordi-

nates of the center of mass" (15) have a physical interpretation only 

in the asymptotically flat spacetime far from the source. There, they 

are the offset, at Lorentz coordinate time t , of the source's dis-

tant spherical gravitational fields from being centered in the 

asymptotically Lorentz coordinates. The X
a 

can be made to vanish, 

at any fixed time in the asymptotically flat space, by a translation 

y a 
of the space coordinates (x = x - X

a
). They can be made to vanish 

for all times by a suitable Lorentz transformation (x 	= Ai'
k
x
k 

, 

where A
i' 

is a member of the Lorentz group). 

By substituting equations (6) into the definition (12) and 

integrating by parts, we can write P i  as an integral over a two-

- c 

dimensional surface: 



-16- 

P i  = (2c) -1 
	

fl 	 (16) 

If we choose the hypersurface in (12) to be x°  = constant, then the 

surface in (16) is a two-dimensional surface in ordinary three-

dimensional space, enclosing an isolated system of matter and gravi-

tational fields: 

	

P i =c  -1 	n
ioa 

dfa 
	 (17) 

Notice that 
nlick 

can be derived from the four-index "super-

potential" A ikZm , defined as 

(I) 2 (_g)(g ikg Rm_ g iZgkm)  ikkm 
= 

c4 
(18) 1614 

it is the ordinary divergence 

n 	= X 	 (19) (19) 
9m ' 

	

It is easy to see that the A 	have the properties 

xikZm = - Aikkm 	Aikkm xkktm 
(20) 

Substituting equations (6) and (19) into the definition (14), inte-

grating by parts, and using equations (19) and (20), we find that the 

ik 
can also be expressed as a two-dimensional integral, namely 

Jik = (2c) -1 f 
 (x 	-x  - x

k im 
+)df* 

(21) 12,m 

If we choose the hypersurface in (14) to be x °  = constant, then the 

surface in (21) is a surface in ordinary space: 

ik 	-1, i koa 	k ioa 	ioak J 	=c 	(x 	- x 	+ A 	)df
a 	 (22) 
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Chapter 3 

APPLICATION TO BRANS SOLUTION 

Without loss of generality we can describe any static spherical 

configuration by a coordinate system in which the metric is diagonal 

and both metric and scalar fields are independent of coordinate time 

xo . Then it is apparent from (17) and (22) that the spacelike com-

ponents P
a 

and J 	all vanish. If the 	do not vanish, they 

merely indicate that the "center of mass" does not coincide with the 

spatial origin, but is located at X = Jeo /P
o 

. Such a clumsy choice 

can always be eliminated by a linear transformation in three-space 

which preserves the diagonal and time-independent features of the 

description. Thus, the only nontrivial conserved quantity is the con-

served mass, given by 

po /c  = (ccic 
2/167 ) 	(q)

2
( -g)g

00
g
ae

) 	df 	
• 	 (23) a  

Assuming the isotropic line element 

a 2 2 	2e 	 . ds
2 	2
= -e c dt +e [dr 2 

 + r 2  (de 2  + sin
2  e d 2 

 )] , 	 (24) 

Brans has found (Brans and Dicke, 1961) that the most general solution 

of the field equations (1),(2) in vacuo can be written, for w > -3/2 

(the physically acceptable range, with gravity always attractive), in 

the form 

e
2a = e

2ao 	 - B/r )
20. 

B/ 	 (25) 
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2(A-C-1)/X 
e213 	e

20
o (1 	11)4 (1 - B/r) 

	

r ) 	1 + B/r) 	
(26) 

 

	

= A (1 - B/r) 	 (27)
C/A 

o 1 + B/r )  

where 

1 
= [(C+1)

2 
- C(1 - —

2 
wC)]

1/2 (28) 

Asymptotic flatness requires u o  = 0 = 13 0  . By comparing with 

the weak field solution (Brans and Dicke, 1961), and by using the 

expansion (5) to define the active gravitational mass, one obtains 

for the remaining "arbitrary" constants: 

-1   
C - 	2 ' 
	B= m 	2w+4 1 / 2  

2 ( 2w+3 ) 	
(29) 

w + 40c 

	

= G
-1 

 (24)+4)/(2(+3) 	. 	 (30) 

Equations (28)-(30) imply that 

	

2w+3  1/2 	B 	Gm 
A - ( 2w4.4 ) ' 	A = — 	

• 	 (31) 
2c

2  

We will perform the integration (23) over the surface of a sphere of 

radius r , in the limit r -* 00 , so that all the fields are included. 

Thus, dfa = nccr
2
ch2 , where nu 

is an outward-pointing unit normal 

and fdS2 = 47 . For any function f(r) we have [f(r)] 	= f'(r)n 

and for the line element (24) we have (-g)g
oo

g
ay 

= -6
ay 

e
4f3 . Com-

bining these with equations (26) and (27) in evaluating equation (23), 

we find that 
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2 
P cYc = lim Flc- r2 (3  (q) 2

e
413

)] 
44) 	dr 

r -3-  co 	0 

(3X- 2C-4)/X 	B(3X+2C+4)/X = lim [m(1 - 
1
-)(1 - g 
	

(1+-r-) Xr 
r 	co 

(32) 

That is 

P c3/c = m 	 (33) 

the total conserved mass of matter and fields equals the active 

gravitational mass. This result is gratifying, but, as in GRT, any 

attempt to "localize" the mass in the gravitational fields leads to 

absurdity. Suppose we "define" the function P %o  (r) to be the expres-

sion whose limit is taken in equation (32): 

P= lim P
0 
(r) (34) 

r -* 00  

Then it may seem naiv aly natural to ask the question: What contribu-

tion do infinitesimal shells of field-containing space make to P °  ; 

i.e., what is dP/dr ? Using equation (32), we find 

= 	 2B 	 7B
2 

dP° /dr 	[(7+4C) - 	(4+3X
2
+2C) + 

Xr 	
---] 

2 2 

x  (1 !)2(x_c-2)/x
(1 +

2(x+C+2)/X 
(35) 

In the GRT limit, w co , this tends to 

di;°/dr 	7Gm2 
(1 + Gm

2 )
6 

(w±0D) 	2cr
2 

2c r 
(36) 

which at least has the "expected" property of being negative for all 
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r : crudely speaking, the gravitational field is a potential energy 

"well". But, for arbitrary w , equation (35) at large r approaches 

- 
dP° /dr ----> - — mcB (7+40  

(37) 
(00) Ar2  r- .0  

which, using (29), is positive for w in the range 

2
3 	10 < w < - -- • 	 (38)  7 

This bizarre result has absolutely no physical significance. 	The 

moral of the story is that no matter how peculiar and "unphysical" 

the behavior of the integrands in our expressions P i 
and J

ik
, 

their rigorously conserved integrals are reasonable, physically 

interpretable (see next section), numbers characterizing Brans-Dicke 

gravitational fields in terms of their sources. 
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Chapter 4 

DISTANT FIELDS OF ANY STATIONARY SOURCE 

Review of linearized BDT. 	In the obvious way, let 

g 	= n 	+ h. 	, 	Ih. I << 1 	 (39) . 
ik ik 

(i) = (Po 	E 	 «(1)0 	 (40) 

where n ik is the Minkowski metric and (I)
o is the constant value of 

(I) far from the source. In the expansion of (1) and (2) we will 

keep only terms linear in h
ik 

and E ; i.e., we will neglect terms 

of 0(h
2 ,E 2 ,hE) and all their derivatives. Obviously, the linear-

ized version of the scalar source equation (2) is 

E' 	= [811- /(2u+3)c
4
]T 	 (Al) 

- where E' 	v2  -E , the "d'Alembertian of E". If we introduce 

the "bar" notation 

=A 	- 	71 A 	 (42) ik 	ik 2 ik 

for any symmetric quantities A
ik 

, then R
ik is the linearized 

Einstein tensor, and the linearized form of the tensor field equation 

(1) is 

1-67, 	171 	 n IT ' Zra ) 2 1.2,k + 	- ik 	- ik 2m 

-1 4 	-1 = (8mI)0  /c )Tik+ (1) 0  (E ,ik- nikE „9„ ) . 	(43) 
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The third term on each side of (43) is a d'Alembertian; the term 

proportional to T
ik 
 is the matter source; and the remaining terms 

serve merely to keep the equations gauge invariant; they can be 

eliminated by imposing the gauge condition 

k-1 
TI.ik ' = 	• 	

(44) 

If (44) is satisfied and we make use of (41), then equations (43) can 

be written 

n = _ 16Tr  or 	ik  
T) 	. 	 (45) 

ik 2, 	4` ik 	4w+ 6 
4)0 °  

Symmetry arguments. The "retarded-time" solution of the 

linearized equations (45),(41) can be written 

Ix - x i  I 

i-ik
i (t,x) - 	

4 	ik 
4 	f [T (t - 	- - ,x') 

- 	 c 	- 
(I)o °  

nik d
3
x

, lx-x'l 
T(t 	— 	,x'fl 

4w + 6 	
c 	

(46a) 

- 	Ix - x t  I 

lx - x e  I d3x'  
E(t,x) = 	-2 	4  f T(t -  	 . - - ,x') 	 (46b) 

- 	(2w+3)c 	 c 	- 	I x _ x ,i 

If the source is localized (T
ik 
 = 0 for Ix'l > R), and stationary, 

- 

then far outside it (for r - Ix! >> R), the solution (46) has the 

form 
A 	B na 

-1-1 	-- ° + 	a 	+ 0(r-3 ) 	 (47a) oo r 
r 2 

A 	B n6 

--t: 	- a  +  al3 	+ 0(r-3 ) 	 (47b) oa r 
r
2 
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A 	
Bn 

Y  
ct + aBY  + 0(r-3 ) 	 (47c) 

a8 	r r 2 

a 4. bana . 	0(r-3) 	 (47d) 
r 2 

where na = x
a/r , A

c 8 
= A(a3) , Baay  = B (a8)y  , and round brackets 

on indices denote symmetrization. All the quantities Ai k ,  B. ik ik 

and 	 are constants. 

Applying the gauge condition (44) to the solution (47), we find 

that 

Aa = 0 , 
	Ba8

(6
a8 - 3nan8) = 0 	 (48) 

Ac03=4) -0-1anan , 	B(ct)y(f5
ay- 3n8ny ) = (1)-0(ba-3nabe8) • (49) 

Equations (49) imply that 

1 na (6 81-3n8nY) 	. 	(50) a = 11) o
A
a8

n
a
n
8 , ban

a = 	11) o
B
(a8)y 

Break Ba8 
up into its "irreducible tensorial parts" 

Y + c 	with Sa
a = 0 . Bcos = B'o 	+ S ( 	 Fct ) 	a f3y  

Then (48) implies that S
(c43) 

= 0 . Similarly, equations (49) tell us 

that if we break B(13)Y up into its "irreducible parts" 
a 

B
(a8)Y 

=
a8
C +D 

(a
6
8)Y 

+
PY(a

E
8) 

+ S
(a8Y) 

a8 	018)  where E = 	 Ea . 0 , 	sa 	0 , then E 	, 
a 	ay 

1 

	

= 0 	• 
Ca + Da =olba ' 	E(a8) = 0 , 
	S

(a81) 
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Finally, we can use coordinate transformations which maintain the 

gauge conditions (44) to fix any four constants arbitrarily. Clearly 

a choice which effects considerable simplification is B' = 0 = D
a 

(This is always possible, because equation (44) does not determine 

the coordinate system uniquely. Indeed, if these conditions are 

satisfied in some system of coordinates x i , they will be satisfied in 

any infinitesimally transformed coordinates x= x i 
+ xi , provided 

that the generating functions xi  of the transformation satisfy 

- 1 x. ,k 
k = $0  C ,1  ) Using all these results, we can write the solution 

(47) in the form 

A 	B n
a 

- = _ 2. 	a 	4. 0(r 3 ) 
00 	r 

r
2 

6 nF
Y  

-11 	= (1Y 	+ 0(r-3 ) 
oct 

r
2 

A 	d C 
°143  Y 	+ 0(r-3 ) afi 	r r 2 

Ante
a
n
a 

C n
a 

=   + 0(r-3 )] 
0 r 

r
2 

Reverting to the "unbarred" metric perturbations, we find that the 

solution can be written in the form 

a I 
A Kn 

h 	- ° + 	"
2 

+ 0(r-3) 	 (51a) 00 	r 
r 

6 	n(3
F
Y  

h 	- 	ct' Y
2 	+ 0(r

-3
) 	 (51b) oa 

r 
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A' 	d Cn
y  

aB 	c  
h

af2 	
t3 y

, 
= 	+ 	 + 0(r

-3
) 	 (51c) 

r
2 

	

E = cpo ir—i [A," 	- A' Yy )] 

1  
+ — r

2 
- (B - C')n

a 
 + 0(r

-3 
 )/ 	 (51d) 2 	a 	a 

in a suitable coordinate system satisfying the gauge conditions(44). 

Here, the primed constants are related to the unprimed constants of 

the preceding discussion by 

1 
A' = —(A + A 

a
)

' 	
B' = —(3C + B ) 

o 2 o a 	 a 2 a 	a 

A' =A +1 	CA - A 1 ) 	C' = 1-(B - C ) 	. aH 	ar3 	2 otoy' 	a2aa 

— 
(Notice that the property h ik  = hik  of the "bar" notation is 

reflected in the fact that 

11 
A = —(A' + A va  )B = —(3C' + o 20 	a 	a 2 a 	a 

A =A' + 	(A' - A' Y  ) 	C = 1(B' - C') af3 	a(3 	2 et 	o 	y 'a2aa 

are the inverse relations among these constants.) 

Evaluating the constants. 	For a stationary configuration 

(h
ik,o 

= 0 =
,o ) in linear order the conserved integrals (17) and 

(22) reduce to 

c 3 
o 	o  f  

- 	 oo,a 	af3 P 
167r 	

(h 	- 3h) df 	 (52a) a 
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3 
o
c  

- 	(h
oa 

 - 3(5
f3a 

h
oy 
 ) df P 	 (52b) 167 	 ,-Y 	a 

3 

J - 
fly 	(Po c  

[x ah°Y ' a  - xYh°a ' cc  - 3(ea
)(
a  - d auxY)h°6

,d 167 

+ eah°a  - d aN°Y ] df 	 (52c) 
CL 

J
(30 

- 
(P0c3 f 

[x
(3
(h

oo,et 
- 3haY  ) - x°0a ' ci  +h ace  167 	 ,1 

+S act (321-101 
 ,

+1+ h- h°°+ (P0-10] df . 	(52d) 

	

Y 	 a 

Inserting equations (51) into (52) and performing the integrals on a 

sphere of radius r -> co yields 

P
o 

=-
1 

(1) c
2
(-A

, 
+ 3A'l3 na n a ) 	 (53a) 4 o 	o 	ce 

a P = 0 	 (53b) 

fiy 	1  
= -i v 

3 
 s  I3yaF

a (53c) J 	q  

(3o 	1 	3 (3 	y 	,, Y J 	= 7,  (Pl o c n (-1y1 + 3Lyn ) 	. 	 (53d) 

But g 	,, , g,,, and 	should include terms of order 0(G 2
m
2
/c

4
r
2
) 

which linearized BDT ignores. Since these are completely determined 

by m , they may be added ad hoc from a second order expansion of the 

Brans solution. When this is done, and the results combined with an 

inversion of equations (53), we find that the distant fields of an 

arbitrary stationary source have the expansions 
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2Gm X
Y 	
x Y 	22 

] c 2
dt

2 

	

ds
2 
= - [1 --

- 23
2Gm 	

+ 2G m  2  
  42 

	

c r 	Cr 	Cr 

12. 

	

 
c 	

Y 
2+3 G  af3yxS 

 
+ 4(2w+

4
) 

2 	3 	
dt dxa 

+ [1+ 2(u21---1 )-C---
m 

w+2 2 
C 	r 	 Cr 

GmX xl  

	

w+1 	y 	6w 2_l14 G
2
m
2
'd dxadx 13 + 2( 	) 	+ 

w+2  

	

23 	 4 

	

Cr 	4(w+2)
2 

cr2 c03 

+ 0(r-3)dxdx
k 

(54a)  

1 2 	 GmXyxl 
-w+4 	Gm 	 2

m2 G  
(I) 	= G 

(w+2)c
2
r 	(w+2)c

2
r
3 

2(w+2)
2
c
4
r
2+0(r-3)] 

(54b) 

where 

m 
 = P°/c, 1,,E3 = 0,  jso = mcx6 , J 131  = JY's ' 	 (55a) a  

and where, as can be seen by inspection of the constant multiplying 

the right-hand side of equation (54b), Newton's gravitational con-

stant can be expressed in terms of the cosmological value cp
o 

of the 

scalar field by 

-1 
G = (pm  (2w+4)/(2w+3) 	. 	 (55b) 

Notice that these gravitational fields far from a completely general 

stationary source are determined uniquely by the source's total mass-

energy m (measurable via Kepler's third law), by its intrinsic angular 

momentum S
a  (measurable via the "dragging of inertial frames"), and by 

the offset Xa of the gravitational fields from being centered in the 

asymptotically Lorentzian coordinate system. A simple translation 
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va of the space coordinates (x = x
a 

- X
a
) completely removes the Xa 

terms ("dipole terms") from both metric and scalar fields. 

The results (54),(55) strictly speaking apply only for sources 

which are assumed to move on geodesics in the conformal form of BDT 

defined by equations (1),(2). Bodies with significant gravitational 

binding energy violate the equivalence principle in BDT. S. W. 

Hawking (1971, private communication through K. S. Thorne) has re-

cently pointed out that black holes in BDT move on geodesics in a 

conformally transformed version of BDT (Dicke, 1962) in which the ten-

sor field equations are Einstein's equations with the stress-energy-

momentum tensor augmented by that for a scalar field, but test 

particles do not move on geodesics. Hawking splits the mass of the 

gravitational field into two parts, 
Mtensor 

and 
 Mscalar. 

 Keplerian 

orbitsofnackholesdistantfromasourcemeasureM t ;Keplerian 

orbits of distant test masses (planets) measure the sum M
t 
+ M

s 
. 

Our pseudo-tensor T
ik 

includes all gravitational stress-energy-

momentum of the gravitational fields. 
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Chapter 5 

GRAVITATIONAL WAVES IN THE HIGH-FREQUENCY LIMIT 

We consider gravitational waves to be of "high frequency" when-

ever their wavelengths are small compared to the radius of curvature 

of the background geometry and the scale on which the background 

gravitational "constant" changes. Obviously, this is the case for such 

conventional weak-field sources as binary star systems or oscillating 

and rotating spheroids. Further, this situation holds for waves of 

optical frequency, such as the gravitational bremsstrahlung produced 

by the thermal motion of matter. Most important, all gravitational 

radiation from isolated systems is of high frequency when it gets far 

enough away from its source, since, assuming that the wavelength A 

remains approximately constant, at increasing distance r from a 

source of active gravitational mass m , the ratio of wavelength to 

radius of curvature of space is of the order A(m/(1)c 2
r
3

)
1/2 

and the 

ratio of wavelength to length scale for change in the background 

scalar field is of the order Air . At large r both of these ratios 

become negligible. 

Our picture of high frequency gravitational waves is one of 

small ripples in the geometry of space-time and in the strength of 

the gravitational "constant" propagating through strong, fully rela-

tivistic, but slowly changing background fields. Although their 

amplitudes are small, the energy carried by the gravitational waves 

may be a major (if not the only) source for the background fields. 

Generalizing the approach used by Brill and Hartle (1964) and 
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Isaacson (1968) in GRT, we assume that the total metric g
ik 

and the 

total scalar field (I) take the forms 

8 = E ik 	Yik 	
hik 

(1) = 4> 0 (f + 

where 
1•kand 

 f represent the background,h ik  and 	(assumed of 

order unity) are the waves, and 6 is a smallness parameter which 

guarantees that the geometry and the gravitational "constant" exhibit 

only microscopic fluctuations in the laboratory. If L and X are 

characteristic lengths over which the background and the waves change 

significantly, the field derivatives are typically of the orders (sup-

pressing indices) 

	

ay y/L , 	 an n/x 

	

Df % f/L , 	 3E 	EiX 

The high-frequency assumption is that L >> X . The effective energy 

density of the waves is of order (4>
o
c
4
)(6/X)

2
, while the curvature of 

the background is of order L-2 . In view of the field equations (1) 

and (2), L-2 	(4>o c
4

)
-1 

(q) oc
4
)(6/X)

2 
= (6/X) 2

. That is, 6 	X/L . 

The most interesting case occurs when gravitational waves are the only  

source of the background fields, i.e., T ik = 0 . In the remainder of 

this chapter we will restrict our attention to this situation. (The 

generalization to the case where matter and nongravitational fields 

are present is straightforward.) Then, our two small dimensionless 

numbers are equal, c ALL << 1 , so that w a may regard L as a 
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constant, say of order unity, and A may be replaced by c , since 

0(A) = 0(E) . Thus, we are studying the one-parameter class of back-

ground fields differing infinitesimally by high frequency wave 

sources. We will say that the background fields contain high-

frequency waves if and only if there exists a family of coordinate 

systems (called "steady coordinates", following Isaacson's (1968) 

usage in GRT), related by infinitesimal coordinate transformations, in 

which the total fields take the forms 4 

g 	(xk) = 	
z 	 2. 

y
ik

(x) + eh
ik
(xe) ik 	 (56a) 

<< 1 , 	yik  = 0(1) 	, 	hik  = 0(1) 	, 	 (56b) 

y
ik,Q 

= 0(1) 	, 	 h
ik,Z = 0(e

-1
) 	, 	 (56c) 

yik,zm  = 0(1) 	, 	h
ik,Zm = 0(E

-2) 	
, 	 (56d) 

	

= gbo [f(x
k
) 	EE(xk ,c)] 	 (57a) 

E « 1 , 	f - 0(1) 	, 	E = 0(1) 	, 	 (57h) 

f 	= 0(1) 	, 	 = 0(e-1 ) 	, 	 (57c) 

f
,Rm = 0(1) 	, 	 = 0(e

-2
) 	. 	 (57d) 

Equations (56) imply a highly curved background spacetime, since the 

Riemann tensor components Ri , whose typical terms are of the 

symbolic form (suppressing indices) 

4
Here F(x ,E) = 0(cn) means that F < NEn for some constant N , 

as e + 0 . 
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3(g3g) = 3[(y +6h)(3y + 63h)] 

_ 
= 6ya 2h 	 [0(6 1 )] 

+ya 2y+62ha 2h + (3y+ 63h) (ay+ eah) [0(1)] 

+ 6hD 2
y, 	 [0(6)] 

is clearly of the order 0(6 	
Z-1

). Similarly, although (1)' op= 0 by 

equation (2) applied in vacuum, equations (57) imply that this zero 

scalar field curvature is due to cancellation of terms of the form 

(f -1- 60 -1  3 2 (f +E) = (f +6) -1  ( 2f +t 2 ) 

-1 = a
-1

3
2 	

[0(6 )] 

4  f
-1
P

2
f - 6

2
(Uf)D

2
E] 	 [0(1)] 

and so of the order 0(6
-1

) in steady coordinates. 

Brill-Hartle Averaging and the Stress-Energy-Momentum Tensor. 

In discussing the energy and momentum carried by gravitational waves, 

we are not really interested in the fine details of the geometry's 

fluctuations. Thus, it is natural and advantageous to introduce an 

averaging process over regions containing many wavelengths. Follow-

ing Isaacson (1968), we let the symbol <--.> denote an average over 

a spacetime region with characteristic dimension d that (i) is small 

compared to the scale over which the background changes, but (ii) is 

independent of £ , and therefore is large compared to the wavelength 
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of the radiation in the limit E 0 . 

In order that the result be a tensor, we must construct an 

average over this region of spacetime by carrying all quantities 

through the background geometry to a common point and adding them 

there. To do this uniquely, we may use the bivector of geodesic 

parallel displacement (Synge, 1966) g
i
k
(x,x 1 ) for the background 

geometry. This object transforms as a vector with respect to coor-

dinate transformations at either x or x' , and if these points 

are close enough to insure a unique geodesic of the metric Yik 

betweenthem,therlikk.g.,kAi ' 
is the unique vector at x ob- i 

tained by parallel-transport of A i'  from x' along the geodesic. 

If Sik 
is a tensor which is the sum of (i) high-frequency compon-

ents and (ii) background containing only low frequency components, 

then we define the Brill-Hartle (BH) average to be the tensor 

ik 
S (x) = 	f 	gz ,(x,x') gm ,

k
(x,x

,
)S

32,1m1
(x")w(x,x 1 )d

4
x', 

all 
spacetime 	 (58) 

where w(x,x') is a weighting function which falls smoothly to zero 

when x and x' are an interval d apart (A << d « L) , and 

where 

w(x,x') d 4
x = 1 	 (59) 

all 
spacetime 

Clearly, 3w w/d and 3g g/L so that the only rapidly varying 

-1 quantity in the definition (58) is S , since 3S 4, S/A = O(e) . 
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By writing (again suppressing indices) 

gg(aS)w = a(ggSw) - (ag)gSw - g(ag)Sw - ggS(aw) , 

we see that, when averaged by (58), divergences are smaller than one's 

a priori  expectations by a factor e . (Notice that the first term 

can be converted to a surface integral taken in the region where 

w -0- 0.) As a trivial corollary, we may integrate by parts and neglect 

the integrated terms whenever we are interested in only the dominant 

contribution to the BH average. 

Applying BH averaging (58),(59) to the field equations (1),(2) 

with T
ik 

= 0 and assuming the forms (56),(57) for the fields, we see 

that 

ik(0) 	1  ik  
- 

	

	
ikR(°) = (8740fc4

) T(Gw) Y 

(w/f 2)(c if ,k 	1 _ik f f ,Q
)  

2 

„ 4ik f'1 
	

[87/(2w+3)woc] 	
, (CW) Z 

Here R1k(0) 
is the Ricci tensor formed from the background metric 

ik, R (0) is its trace, and the slash denotes covariant differentiation Y  

with respect to the background metric, which is used to raise and lower 

all indices. 

The quantity Tik
(GW) is the BH average of the pseudotensor 

(60)  

(61)  

ik 
T 	, 



-35- 

T ik = <Tik> 	 (62) (GW) 

defined by (9),(10); we call T ik
(GW) the "stress-energy-momentum 

tensor for gravitational waves". It is the analogue of the Isaacson 

tensor in GRT, and like the Isaacson tensor it transforms as a tensor 

under background coordinate transformations, and it has vanishing 

covariant divergence with respect to the background metric 	. 
Yik 

The explicit form of the dominant terms, 

Tik 
= (c20fc4/32Tr) <h Zmii 

Nan lk 
+ (2w/f2 )(2Y i C' k  (GW) 

-y
ik

E E '
t
) -(2/f) E 	(h

ki Ik
+h

Rk I i
)> 	(63) 

can be used instead of 	to calculate the energy-momentum and 

angular momentum carried away from a source by gravitational radiation 

in the high-frequency limit. Although we made use of the gauge condi-

tion 

ik 1 ik km 	 -1 ,i (h 	- 	 y y hem) !k= q0C 	 (64) 

in calculating equation (63), this result could easily be extended 

to an arbitrary gauge, as is done for GRT by Misner, Thorne, and 

Wheeler (1971, Chapter 35). Such an extension is unnecessary for our 

purposes, but would be useful for consideration of gravitational waves 

moving through matter or non-gravitational fields. In that case, the 

metric perturbations could not be made to satisfy equation (64) the 

analogue of the "transverse traceless" (or Lorentz) gauge in GRT. 



-36-- 

PART II 

GRAVITATIONAL COLLAPSE AND THE 

FORMATION OF BLACK HOLES 

[Chapters 1, 2, and 3 are an extended version of the 

paper, "Black Holes in the Dicke-Brans-Jordan Theory 

of Gravity", co-authored with Kip S. Thorne; 

Astrophysical Journal Letters 166, L35 (June 1, 

1971). The work discussed in Chapter 4 is due to the 

author alone.] 
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Chapter 1 

INTRODUCTION AND SUMMARY 

Compression of a body of mass M into a region of circumference 

C 	47GM/c2 
in all directions (i.e., three-dimensional compression) 

necessarily produces a black hole. Moreover, after all matter and 

waves have flowed off toward infinity or down the hole, the hole's 

exterior will be the "charged-Kerr" solution to the Einstein-Maxwell 

field equations--or one of the three special cases of charged Kerr: 

Schwarzschild, Reissner-NordstrOm, or uncharged Kerr. 

This slightly fuzzy conjecture is widely believed and is sup-

ported by extensive theoretical evidence within the framework of 

general relativity (GRT) [See, e.g., the review by Thorne (1971).], 

but the problem of gravitational collapse and the formation of black 

holes has not been so widely studied in other relativistic theories 

of gravity. However, Penrose (1970) has expressed the opinion that 

the conjecture is also true in the scalar-tensor theory 1 
of Brans and 

Dicke (BDT) (1961). That this suggestion is not trivial is pointed 

up by the counterexample discussed in Appendix C: Here we have a 

relativistic theory of gravity (NordstrOm 1913) which has the appro- 

priate correspondence limit with Newtonian theory, and whose spacetime 

metric is generated by matter according to a field equation derived 

'The Dicke-Brans theory is actually a special case, with change in 
outlook and motivation, of a wider class of theories due to Jordan 
(1955,1959). This relationship is carefully analyzed in Appendix B. 
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from an invariant action principle, and yet the formation of any  

type of black hole is impossible in this theory. 

The investigations reported upon in this second part of the 

thesis have produced strong evidence in support of Penrose's conjec-

ture for Brans-Dicke theory--that gravitational collapse in three 

dimensions produces black holes which are identical to those of 

general relativity. 

First, we present two elementary results of exact analysis 

giving firm support to the conjecture: (i) The Schwarzschild, 

Reissner-NordstrOm, Kerr, and charged-Kerr solutions of the Einstein-

Maxwell field equations are also exact solutions of the scalar-tensor 

field equations if the scalar-field 4) is taken constant; and 

(ii) The Schwarzschild solution is the only static spherically sym-

metric vacuum solution of the scalar-tensor field equations which 

possesses a non-singular event horizon. 

To establish further evidence, we consider an approximation to 

the scalar-tensor theory, constructed by expanding the full theory in 

powers of 11w and keeping only zero- and first-order terms. (Recall 

that w is the Dicke coupling constant, and that in the limit 

w 	the scalar-tensor theory agrees with general relativity.) In 

this "large-w version" of the theory, any stationary, axially sym-

metric changes in the Kerr geometry of order 11w would convert the 

Kerr horizon into a singularity. Furthermore, spherical gravita-

tional collapse of an uncharged star in the large-w version of the 

theory necessarily produces a Schwarzschild black hole. 
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Then, we argue that stationary, axially symmetric changes of 

the Kerr geometry of higher order in 1/w are also incompatible with 

a nonsingular Kerr horizon, and that higher order perturbations in 

the fields of an uncharged, nonrotating sphere are also radiated away 

as collapse proceeds to a Schwarzschild black hole. 
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Chapter 2 

THE EVIDENCE OF EXACT RESULTS 

Schwarzschild, Reissner-NordstrOm, Kerr, and Charged-Kerr  

Geometries. 	Recall that the field equations of the scalar-tensor 

theory of gravity, in the original form of Brans and Dicke (1961), can 

be written
2 

1 	$k N  G
ik = (870

-1
/c

4
) T

ik+ (w/0
2
)(0 .0 k 	gik0 , 2,0 / , 

-1 
0 (0 ,1 ; k 	giko ;22 (1) 

$k 0 	= [8m1(2w+3)c
4
]T 

; 	

(2) 

HereTik  is the stress-energy-momentum tensor for matter and non-

gravitational fields, T is its trace, 0 is the scalar field, 

g ik 
is the metric, G

ik is the Einstein tensor, and c is the speed 

	

of light. Suppose that g 	and f
ik are metric and electromagnetic ik 

fields, respectively, which satisfy the general relativistic, vacuum, 

Einstein-Maxwell field equations 

G
ik 

= (8'rrG/c
4
) T

ik 	' 	 (3a) 

	

k 	1 T
ik = (1/4n)(f f 	- 	f iZ k 	gik 2,mf ); T=T 	= 

0 . (3b) 

As before, we use the conventions established by Landau and Lifshitz 
(1962) in GRT wherever applicable, except that our line element is 
defined as 

ds 2 
= +g

ik
dx

i
dx

k 
. 
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Then g
ik 

and f
ik 

, when augmented by the statement 0 = 1/G = 

constant, are qlso a solution of the scalar-tensor field equations (1), 

(2). In part". liar, all the black-hole solutions of general rela-

tivity--Schwarzschild, Reissner-NordstrOm, Kerr, and charged-Kerr-- 

are also valid in the scalar-tensor theory. Notice that there is no 

direct electromagnetic source for the scalar field, since the trace 

of the stress-energy-momentum tensor of an electromagnetic field 

vanishes identically. 

Thus, in the work which follows we shall investigate the 

gravitational collapse of uncharged configurations, with the expecta-

tion that the generalization to black holes surrounded by electro-

magnetic fields would always be straightforward. 

Uniqueness of the Schwarzschild Black Hole. Carl Brans (1962) 

has constructed all static, spherically symmetric solutions of the 

BDT field equations (1),(2) in vacuum. In the isotropic coordinates 

defined by a line element of the form 

. ds
2 
= -e c dt + e 

2a 2 2 	
2 [dr2  + r 2  (d9

2 
 + sin

2 
 9 dO

2 
 )] 	, 	(4) 

the four forms of the solution can be written: 

a 	
a
o ( 1 - B/r  1 /X e =e  

1 + B/r ) (5a) 

B 
e8  = e ° (1 + B/r)

2 
(
1 - B/r

)
(X- C- 1)/X 

1 + B/r 	 (5b) 

th ( 1 - B/r-C/X 
= 'o'l + B/r' (5c) 
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where 
1 X

2 
= 	(C+1) 2 

- C(1 - -
2 

wC) 	> 0; (5d) 

a = a 	+ -

2 

tan-1 (r/B) 	, o 	A 

= 	
2(

CA
+1) 	 r

2 

(6a) 

(6b) f30 	 tan 	log 
r
2
+ B

2 ' 

where 

cl) = (P o  axp[ 2AC tan-l (r/B)] 	, (6c) 

1 A 2 
= C(1 - -

2- 
wC) - 	(C+1) 2 	

> 	0 	; • (6d) 

a 	= a
o 

- r/B 	5 (7a) 

IS 	= 130  - 2 log(r/B) + 	(C+1) 	r/B 	, 

-Cr/B 

(7b) 

(/) 	= 	(1) 0 	e 	 ; (7c) 

a 	= a
o 

- 1/Br 	, (8a) 

13 	= 	(30  + 	(C+1)/Br 	; (8b) 

-C/Br 

where 

Cb 	= 	(Po 	e 	 ; 

-1 t (-2w-3) 1/2 
for 

(8c) 

and (8). (9) C 	= 	 solutions 	(7) 
w + 2 

	

In each form of solution, 	a
o' 

[3
0 

-1 ± (_2w_3)1/ 2
' and B are arbitrary con- 

stants. The constant C 	  is arbitrary in (5) and w+ 2 

	

1 	 3 (6). 	Since (C+1) 2 
- C(1 - --i wC) = (-1  C+1)2 1  

+ -(w+-2-)C 2 
 , it is 

obvious that X 2 
> 0 and solution (5) applies for any real C 
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provided that w 	. But this is precisely the requirement 

which w must satisfy in order that the contribution to cip from a 

local mass be positive, which is the usual assumption in applications 

of EDT. Nevertheless, for the sake of completeness, it is of in-

terest to note the conditions under which the alternate forms of solu-

tion hold. Obviously, solution (6) can apply only if w < -3/2 . Even 

so, it does not apply throughout this range, but only if one of the 

conditions 

-1 - (-2w-3) 1/2 
-1 + (-2w-3) 1/2 

(i) 	 < C < 	 < 0 
w + 2 	 w + 2 

for -2 < w < -3/2 	, 

-1 + (-2w-3) 1/2 
< 0 or C > -I - (-2w-3)

1/2 	
0  <  

w + 2 	 w + 2 

for w < -2 , 

(iii) 	C < -1 	for w = -2 

is satisfied. If none of these conditions are satisfied, solution (5) 

is applicable even for w < -3/2, except at the singular values 

C - -1 ± (-2w-3)
1/2 

w + 2 

where solutions (8) and (9) apply. 

Examination of all four forms of the solution discloses the 

presence of naked singularities, not surrounded event horizons, unless 
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C = 0 . But in that special case, A
2 
= 1 > 0 , so that solution (5) 

is the only one which applies, and it reduces to the form 

a 	ao
(
1 - B/r  

e = e 
 

	

1 + B/r 	 (10a)) 

13o 
e 3' = e(1 + B/r) 2 

(10b) 

(I) = (I)
o , a constant 	. 	 (10c) 

Now, a glance at equations (1),(2) shows that if 	cb = constant 

the vacuum scalar-tensor equations reduce to the vacuum Einstein equa-

tions, whose general spherical solution is that of Schwarzschild. 

("Birkhoff's theorem"). Thus, the Schwarzschild metric with 

cP = constant is the unique static spherical solution of the vacuum 

scalar-tensor field equations which possesses a nonsingular event 

horizon. Indeed, equations (10) are merely an expression of the 

Schwarzschild solution in the isotropic coordinates defined by equa-

tion (4), instead of in the more customary curvature coordinates. 
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Chapter 3 

EVIDENCE IN AN APPROXIMATE SCALAR-TENSOR THEORY 

The Large-w Version of the Scalar-Tensor Theory. 	Consider an 

expansion of the stress-energy-momentum tensor, the metric, and the 

scalar field in powers of 11w 

(E) 
Tik = T. + (1/0 	+ 0(11w

2 ) 	 (11a) ik 	tik 

g 	= g (E) 	
+ (1/w) 	+ 0(1/w 2

) 	 (11b) ik 	ik 	hik 

(1) = qb .  + (11(0) 	+ o(1 1 c0 2 ) 	, 	 (11c) 

o = "cosmological qb"; the value of qb far 
(11d) from sources. 

Because the time scale (> 10 billion years) for changes in cp
o is 

very long compared to the time scale (< 1 second) for gravitational 

collapse, we will assume that
o is a constant. Then using equa-

tions (11) in equations (1) and (2) leads to the following field 

equations: 

G (E)
ik  = (81T/cboc 4 ) T CE) ik 	 (12) 

(1) 	 , (E) G' ' ik = ( 87No c
4
)[ - (E/qbo ) T 	ik 	tikj 

+ (1/q)
2
) ( E 	- 	g 

(E) 
. k 	 ) i 	, 

(E) 
(13a) (14o )(E ,iik 	g 	ikE  12, )  

k 1 2, 	(4Tr/c 4 ) T (E) 	
(13b) 
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Here the zero-order "Einstein metric" g
(E)

ik 
is used to raise and 

lower all indices; a slash denotes a covariant derivative with 

respect to g
(E)

ik; and G
(1) 

ik is the first-order perturbation in 

the Einstein tensor produced by the metric perturbationh ik  . These 

equations may be thought of in the following way: As shown by equa-

tion (12), the zero-order stress-energy-momentum T (E)
ik 

produces 

the "Einstein metric" g (E)
ik in the usual general relativistic man-

ner. The perturbations t ik ,hik , and 	"reside" and evolve in this 

"background" spacetime g (E)
ik in accordance with equations (13). 

One consequence of the field equations (1),(2) is T
ik

;k 
= 0 . 

Calculated using equations (12) and (13) this becomes T (E)
ik

lk 
= 0 

and 

I k t ik 	- ( 0c
4
/87) G

(1)
ik lk 

= 0 	. 	 (13c) 

Uniqueness of the Kerr Black Hole. Assuming that the back-

ground geometry is that of Kerr, consider solutions of the vacuum wave 

equation 	0 . These have been studied by Carter (1968) and by 

Fackerell and Ipser (1971) (but they were not aware of the application 

to the large-w version of the scalar-tensor theory). One of the 

Fackerell-Ipser results is the following: "In a Kerr background 

metric with at least one real horizon (i.e., with lal < M), the only 

solution of the vacuum wave equation Y Z I st  = 0 which is nonsingular 

at the horizon and at infinity is the trivial solution 	= constant." 

Even this trivial solution is restricted by the requirement that 

St) 	(1)o 
as r 	cc . Thus, to retain a nonsingular horizon we must 

have E = 0 , which implies that G (1)
ik = 0 . Carter (1971) has 
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shown that all nontrivial, axially symmetric solutions hik of 

G
(1) = 0 in the Kerr background with lal < M , which are well-

behaved at infinity, are singular at the horizon. Hence, both E 

and h must vanish if the Kerr horizon is to remain nonsingular. 
ik 

Uncharged Spherical Collapse Produces a Schwarzschild Black  

Hole. Our proof of this statement in the large-w version of the 

scalar-tensor theory is based on the work of Price (1971a,b). His 

analysis of a monopole scalar field generated by a "scalar charge" 

in a general relativistic, spherically collapsing star applies 

directly to the "11w" equation (13b) if one only replaces the gravi-

tation constant G by 14 0  . It reveals that (i) the "110 field 

E is well-behaved outside and at the Schwarzschild radius; and 

(ii) E is radiated away completely as the collapse proceeds, with 

its decay at late times dominated by the "tail" 

(Iv
2
r 

E(r,t) - F(r) 
	

for 	ct » 1r + 
214

2 
kr;

( 2n 
	 - 1) , (14a) 

t 2 	 (1) 0c 

F(r) = A 2,11(1 - 	
21.1 ) 

+ B ; 	A,B = constants. 	(14b) 
(1)0c 2r  

We shall see that the metric perturbations decay in a similar manner, 

leaving behind a Schwarzschild black hole. To prove this, write the 

exact spacetime metric outside and at the star's surface in the form 

ds
2 = -[1- 2m(r,t)/qo o c

2
r] e

Y(t)
c
2
dt

2
4 

dr 2 

1- 2m(r,040c 2r 

2 	2 	. 2 	2 + r (d0 + sin 	dcp ) 	. 	 (15) 
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(There exist coordinates in which any spherically symmetric system 

has a line element of this form; see, e.g., §VII-2 of Synge (1966).) 

The metric functions can be expressed in a purely geometrical manner 

in terms of the Einstein tensor, without any reference to the field 

equations (cf. §VII-3 of Synge (1966), but note differing sign 

conventions for G. 
) 

1 m(r,t) = const.
o
c
2 I 

r
2 

G
t
t 

dr 	 (16a) 

Y(r,t) - const. + I 	
2 (Gr

r
- G t

) dr. 	(16b) 
1 - 2m4

o
cr 	t  

Now, in our large-w version of the scalar-tensor theory the zero-order 

Schwarzschild metric satisfies G (E)
ik = 0 • Hence, equation (13a) 

outside and at the star's surface reads 

G.k 	1 (1) k =  1 	k 1 
i
k 	

+ lk ) • 	(17) w 	 2 	,i 	 o ,1 
w‘l'o 

By using the zero-order Schwarzschild metric in equation (17) and 

combining with equations (14) and (16), we obtain 

M  m(r,t) - M 	
11 	

(r,t) + 
40  

r 
TA  2 c

2 
[2q5

0
E
,tt

+ (
,t

) 2 + (1 	-- )
,r )

2] 	r2dr  + 
44o  f Ito c

2
r 	 1- 2M4oc

2
r r i  

2 
M  F(r) 	 2M 	qv

2
r 

- m 
/

A)
( 	for 	ct >> r + 	2  kn( 	214  - 1) 	, (18a) I)
o 	t 

 
ci50c 
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y(r,t)  = 1 Erc 	_ 0 	
,r' 

+  1 2  1 i (c \ 2 + 4)( :),tt + ( ,t )
2  j 

r dr 40 	,r 	" 
4  
o r1 	 (1- 2M/00 c

2
r)

2 

1 	 1 	 2M 	4)cl e2r  

	

= -(17c[rF'(r)- F(r)] --2- for ct >> r+ 	2  2,n( 2m 	1) . 

(18b) 

Here r
1 

> 2M/cp
o
c
2 

is a fixed finite value of the radial coordinate. 

By choosing this lower limit of integration to be neither r= 2M/0
o
c
2 

nor r = 00, one insures that the integrals vanish at any fixed r , 

2M/0
o
c
2 
< r < 00 , in the limit t 	00 . The constant M is then the 

mass of the black hole as measured, after all the waves have passed 

a distant observer, using Keplerian orbits. Note that our approximate 

solutions (14) and (18) for the scalar field and metric perturbations 

in terms of F(r) do not attempt to treat either (i) the region 

r ct in which the transients of the outgoing scalar waves reside, 

	

2 	 -0oc3t/2M or (ii) the region (00cr/2M) - 1 	e 	 in which the collaps- 

ing star's surface and the transients of the ingoing scalar waves 

reside. It is sufficient to consider only the "tail" region, since at 

arbitrarily late times the boundaries of this region approach arbi-

trarily close to the Schwarzschild radius and to r = 00 . 
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Chapter 4 

EVIDENCE IN HIGHER ORDER PERTURBATION THEORY 

The Generalization to Second Order Expansion in 11w . 	A 

significant feature which Brans-Dicke theory shares with GRT is the 

nonlinearity of its field equations. Thus, any linearized perturba-

tion theory runs the risk of yielding results which suffer from the 

failure to include some unforeseen, but essential, nonlinear effect. 

Although the first order 11w expansion of BDT used in the preceding 

section was performed around a fully relativistic, and hence nonlinear, 

background metric, it included only the linear part of a variable 

scalar field. Because the time required for gravitational collapse is 

very brief on the cosmological time scale Q., 1/10
17

), it would be most 

unreasonable to suppose that taking into account the "variation" of 

the cosmological value of cP,  during collapse would have any appre-

ciable effect. It is not intuitively obvious that we can make the same 

remark about variable parts of the scalar field of higher order in 

11w . However, we shall show that the results of the preceding chapter 

carry over unchanged in quality in a second order 17w expansion of 

BDT. Furthermore, we shall see that this generalization to second 

order is the key to inductive arguments about the uniqueness and neces- 

sary formation of black holes to all orders in a l/w expansion. 

To carry out the second order expansion, we assume that the 

stress-energy-momentum tensor, the metric, and the scalar field can be 

written in the forms 
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„ J , T 	= T
(E) 	

+ (1/w)t
(1) 

+(l/w2
)t (2) 

+ 0 1 1 /w
3 
 ) , 	(19a) ik 	ik 	 ik 	 ik 

g 	= g (E) 	
+ (1/w)h (1) 	

+ (1/w2
)h

(2) 	
+ 0(1/w3

) , 	(19b) ik ik 	ik 	 ik 

M = Mo  + (1/w) (1) 
+ (1/w2 ) (2) 

+ 0(1/w3
) 	, 	 (19c) 

00  = "cosmological value of M" , a constant. 	 (19d) 

Using equations (19) in equations (1) and (2) is a tedious but straight-

forward exercise leading to field equations which can be written in 

the following form: 

(20) G
(E)

ik  = (87/Mo c
4
)T

(E)
a 	, 

= (47/c4 ) T(E) 	 (21a) 
1 2'  

G (1)
ik 	

= (81T/Mc4 )[-(UM0 )T (E) 	+ o 	 ik 	t (1) 1k ] 

•(1/0 2)( (1)el) 	g(E)(l)(1),k ,i 	,k 	ik  

•(140)(e1) ,iik  _ g(E) 	
(21b) 1k 	2. 

3(E)  i z-(47/c A - 	+t 	+ h 
ik)  

1 (E)km (1)ko 	(E) 	(E) + -y  g 	[h 	- (2g 
pk,m - 8  

(E)kp
(2h

(1) 
- h (1) 	(1) + g 	 zill,p)] 

Pk, 171 	 ,k 

- h (1)2.m (1) (22a) 

	

,klm 	, 
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G 2 
	= 	

/90  ) I 
r_ [ c(2) /(po  _ (E(1)/(1)0)2] T(E) ik  

ik  

(1) 	(1) 	 1 
(E 	4o)t 	ik 	

(2) 
t ik 

2 	(1) 	(1) 	(1) 	(1) 	(2) 	(2) 	(1) + (140  )1 -2(E 	No)E 	,iE 	,k+ E 	,iE 	,k+ E 	,iE 	,k  

1 	(1) 	(E) 	(1) 	 (E) 	(1) 	(2),Z 
/g5o )g 	ik 	 2g 	ikC  

	

_(E) .  „(1) h (1)2mE (1) 	h(1) „(1) „(1),21 1 

(1/430)W2) ,iik _ g (E) ikE (2) 12, _ (E (1) /(1)0) [E (1) 41k  

,(E) 	,(1),Z 	,(1)  
ik 	 " ik 

1 ,(1) 	r,(1).2.m, (E) 	(E) 	(E) 
`g 	mi,k ' g 	mk,i 	g 	ik,m1  

+ g (E)km
(h (1) + h (1) 

- h (1) 	
)] 

	

mi,k 	mk,i 	ik,m 

1 (E) 	(E)Zm(1)
,r[h

(1)rp
(2g (E) 	

- g (E) 	
) + —g 

2 	ik 	 pk,m 	km,p 

+ g (E)rp
(2h

(1)  

	

- h 1 	 CE) 	h (1)km(1) ,Riml (22b) P 111  Z, 	 ik 

As before, the zero-order "Einstein metric" g (E)
ik is used to raise 

and lower all indices, and a slash denotes a covariant derivative with 

respect to g (E) 
	The expansion of the metric (19b) implies that 

the Einstein tensor has the expansion 

	

G
ik 

= G (E)
ik + (11w) G

(1) 	
+ (11w2

) G (2) 	
+ 0(1/w 3

) . ik 	 ik 

We may think of these equations in the following way: As shown by 
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equation (20), the zero-order stress-energy-momentum T (E)
ik 

produces 

the "Einstein metric" g
(E)

ik in the usual general relativistic man- 

	

, 	 E
(1) ner. The first-order perturbations t (1)

ik h (1) ik ' 
and 

 

"reside" and evolve in this "background" spacetime g (E)
ik in accord-

ance with equations (21). The second-order perturbations t (2)
ik ' 

h(2)
ik 
 , and E (2) also "reside" in the zero-order spacetime, but 

equations (22) show that their evolution is also influenced by the 

first-order perturbations. 

One consequence of the field equations (1),(2) is T ik ;k = 0 . 

Calculated using equations (20),(21), and (22), this becomes 

T (E) 11( = 0 and 
ik 

,(1) 	11' 	/, 4 /g  ‘ ,(1) 	lk 
' 	ik 	= 	c l '71. ' s" 	ik 	, 	 (21c) 

lk 	(1) t
(2)

ik
1k 

= (yboc
4
/8Tr) [G (2) 	+ 	)G(1) 1kk 	 o 	ik 	•

] . 	(22c) i  

	

When applied to a vacuum (T (E)
ik 

= 0 = t
(1)

ik 
= t

(2)
ik

) 	, equations 

(20)-(22) reduce to: 

G (E) 	
= 	0 	, 	 (23) ik 

 
= n 	, 	 (24a) s 	1 k 	,-,  

	

2 	(1) 	(1) 	1 	(E) 	(1) 	,(1),Q )  G (1)
ik = 	(1/00  )(C 	,i 	,k  - -2- g 	1.1( 	,kS 

	

+ ( 140 )E
(1)

,i i k 	, 	(24b) 

G (1) 	1k 
ik 	

= 	0 	, 	 (24c) 
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1 k  = (E)2411
lh

(1)kp(2g(E) 	
- g(E) 
	

) 
PL,m 	ma,P 

+ g
(E)kp

(2h
(1)  

- h (1) 
)] 	,k -h

(1)9.m (1) (1) 

Pilm 	2m,p 	 ,Xlm 

(25a) 

G (2) ik 	(1/4,0 2 ) /_ 2( (1) /(1)0)E (1) ,i 	 (2) ,k  

(2) 	(1) 	1 	(1) 	(E) 	(1) 	(1),Z 
E 	E 	,k 27J -2(E 	4o)g 	ik E 

+2g (E) (1) 	E (2) 	+g (E)
ikh

(1)Qm (1) 	(1) 
ik 	 E 	,m 

h (l ) ik  (l) ,st  (1), 211 +0. / (1)0 )R(2) ,iik  _ (E (1) 40)E (1) ,ilk  

- 
1 (1) 	

[h 
(1) 	

(g (E) 	+ g (E) 	(E) 
2 	 mi,k 	mk,i 	g 	ik,m)  

+ g (E)im (h
(1) 	

+ h (1) 
- h (1)

ik,m)]} 

	

mi,k 	mk,i 

(25b)  

G(2) 1k . 0 	. 
(25c) ik 

Consider the Kerr background metric, which is the solution of 

equation (23) for an uncharged rotating black hole in GRT. In the 

background, recall the Fackerell-Ipser (1971) theorem regarding solu-

tions of equation (24a): "In a Kerr background metric with at least 

one real horizon (i.e., with lal < M), the only solution which is 

nonsingular at the horizon and at infinity is the trivial solution 

	

E = constant." Since we require that 14) -> 4) 0  as r 	00 , we must have 

= 0 . But, this implies that equation (24b) reduces to  
ik 
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Now, Carter's (1971) work on axially symmetric solutions of this equa-

tion in the Kerr background with jai < M shows that all nontrivial 

solutions which are well-behaved at infinity are singular at the 

3 horizon. Thus h (1)
ik also vanishes if the horizon is to remain 

nonsingular. But then equation (25a) reduces to E (2),i 10  = 0 and 

the Fackerell-Ipser theorem again applies, so that E (2) 
= 0 . The 

vanishing of E (2) , E (1) , and h
(1) 

ik is sufficient to reduce (25b) 

to the form G (2)
ik = 0 , and another application of Carter's result 

shows that h (2) 
ik = 0 . To summarize: The only axially symmetric 3 

solution of equations (24),(25) in a Kerr background metric with 

Ial < M which is nonsingular at the horizon and at infinity, and in 

which the scalar field takes on its proper asymptotic value 0 -*
o as 

r 00 is the trivial solution 

(1) 	(2) E 	= 	= 0 (26a) 

h
(1)

ik 
= h (2) 	

= 0 	. 	 (26b) ik 

It is obvious that the work of the preceding chapter on un-

charged spherical collapse necessarily producing a Schwarzschild black 

hole could also be extended to the second-order 11w expansion, since 

examination of equation (25b) shows that 

(1) E 	(r,t) = F(r)/t 2 
(27a) 

h(1)
ik

(r
'
t) . H(1)

ik
(r)/t2 	

(27b) 

3Recent work by Ipser (1971, private communication) shows that this 
result can be established without requiring axial symmetry. 
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implies that 

E (2) (r,t) 	F (2) (r)/t 2 

h
(2)

ik
(r

'
t) =  

ik 

for sufficiently late times, i.e., for 

(28a) 

(28b) 

ZM „
(I)
oc2r ct >> Jr + — knk

2 	 1) 2M cf>
o
c 

 

in the "tail" region of the gravitational waves. 

Uniqueness of the Kerr Black Hole to All Orders in 11w . The 

"trick" which allowed us to write the second order expansion in the 

form (22) is the identity 

(2);2, 	(2)12, 	1 (E)km
[h (1)kp (g (E) 	(E) = E 	E 1 2, 	 ÷g 	pm,k 

(E) 
+h (1)  )+g (E)kp

(h (1)  - h (1)
2m,p )] E (1) _ g  

Fasm 	Pm,x, 	 ,k 

+ —1 h (1)32m (1) ,2,im + 0(1/w2 ) 
	

(29) 

This split of the full covariant d'Alembertian into a covariant 

d'Alembertian taken with respect to the zero-order metric plus terms 

involving derivatives of all lower-order perturbations is always pos-

sible. Thus, the generalization to an arbitrary order of the results 

of the preceding section is straightforward. In the formal language 

of a proof by mathematical induction, the argument for the uniqueness 

of the Kerr black hole to all orders runs as follows: 

(i) Expand the stress -energy-momentum tensor, the metric, and 

the scalar field in the forms 
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m 

T
ik 

=T 	+Lt 	 (30a) ,   ik 
n=1 

00 
(E) 

+ 1 h (n)
ik

/wn 	, 	 (30b) gik = g  ik 
n=1 

OD 

ci)  . 
	'o 
	1 	(n) /(011 	, 

(30c) 
n  n=1 

where 

cp o  = "cosmological value of cp'', a constant. 	 (30d) 

Use this expansion in the field equations (1),(2) in vacuum. Let 

(E) 
be the Kerr solution of the zero-order equation (23). ik 

(ii) If a scalar field perturbation satisfies 

(31a) 

for any n , then the Fackerell-Ipser theorem and the asymptotic form 

of (1) require that C (n)  vanish if I al _ < M and both infinity and 

the event horizon are to be nonsingular. 

(iii) If a metric perturbation satisfies 

(n) 
G 	= 0 	 (31b) ik 

and if one has already proved C (b)
= 0 = h (b)

ik for b=1, — ,n-1 , 

for any n , then Carter's theorem requires that h (n)
ik vanish if 

4 
la! < M, if the solution is assumed to be axially symmetric and if 

both infinity and the event horizon are to be nonsingular. 

Recall that Ipser's work shows that the requirement of axial symmetry 
may be relaxed. 
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(iv) The field equations derived from using (30) in (1),(2) 

guarantee that equations (31) are satisfied if 

(b) = 0  = h(b)
ik 	

for 	b = 	 (32) 

(v) But equations (31) are true if n = 1 . Thus (ii), (iii), 

and (iv) guarantee that they are true for all n . Hence, 

(n) . 0  . h(n)
ik 	for all n 	 (33) 

if lal <M, if the solution is assumed to be axially symmetric 5 
 , and if 

both infinity and the event horizon are to be nonsingular. 

Uncharged Spherical Collapse Produces a Schwarzschild Black Hole  

to All Orders in 11w . The mathematical induction argument is an 

obvious generalization of remarks surrounding equations (27),(28): 

(i) As before, use the expansion (30) in the field equations 

(1),(2). Then for the Schwarzschild background, 

(n) 
(r,t) = F

(n)
(r)/t

2 
(34a) 

h
(n)

ik
(r

' t) = H
(n)

(r)
/t

2 
(34h) 

for any n at sufficiently late times 

(Po c
2
r 

ct >> r + 2M2n( 	1) 	 (34c) 2 	2M 

provided that  
and h (b) 

ik take on the forms (34) for all 

b= 1,"',n- 1. 

Ipser's (1971, private communication) work shows that the requirement 
of axial symmetry may be relaxed. 
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(ii) But equations (34) are satisfied in the "tail" region 

for n = 1 . 

(iii) Hence, (i) and (ii) guarantee that the scalar field and 

metric perturbations of the Schwarzschild background are of the forms 

(34) for all n. Since the boundaries of the "tail" region approach 

arbitrarily close to the Schwarzschild radius and to r = 00 at suf-

ficiently late times, we see that the dynamics of uncharged spherical 

collapse necessarily produces a Schwarzschild black hole. 
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Appendix A 

ON THE SIMPLICITY OF THE BRANS-DICKE THEORY OF GRAVITATION 

It is well known (cf. Landau and Lifshitz, 1962, pp.313-315) 

that Einstein's field equations of general relativity theory (CRT) 

1 Rik 	g ikR = (81-G/c
4
) T

ik (Al) 

can be derived from the variational principle (SS = 0 , with 

4 
	 R + L) V:i d4

x . 	 (A2) c 	16u G 

Here is the Ricci tensor with trace R formed from the metric Rik  

tensor g 	which has determinant g . The stress-energy-momentum ik 

tensor T
ik  is derived from the Lagrangian density L for matter and 

nongravitational fields (e.g., electromagnetism) in the familiar manner 

2 	, 3 	3()/ 	L) 	3(1/=:4-  L)
] T

ik 
= 	L 	 (0) 

3g
ik  

3g
ik  V:i 3

x
k 

As an alternative to the customary geometric interpretation 

we may take the view that GRT describes gravitation as a field derived 

from a (second-rank) tensor potential g 	. From this perspective ik 

it is natural to ask whether potentials having other transformation 

properties may also contribute to the gravitational interaction, and 

if so what is the theory with the least complexity beyond GRT. 	We 

shall see that quite general assumptions and natural criteria of 

"simplicity" lead directly to the scalar-tensor theory of Brans and 

Dicke. 
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Since we seek to generalize GRT with the least complication, it 

will serve us well to list here a set of assumptions from which GRT may 

be derived. (See Misner, Thorne, and Wheeler (1971) for the explicit 

derivation from a set of assumptions completely equivalent to these, 

although worded somewhat differently.) 

[1] The strong equivalence principle: In local inertial refer-

ence frames, special relativity holds. Thus there is a metric, free 

particles move along its geodesics, and clocks and rods measure proper 

times and proper lengths of the metric. 

[2] The correspondence principle: Under Newtonian conditions 

the field equations of the theory reduce to V 2
(1) = 47Gp . 

[3] The field equations of the theory may be derived from an 

invariant action principle. This assumption is suggested by the re-

quirements of quantum mechanics and the close relation between varia-

tional principles and conservation laws. Also, this assumption will 

guarantee that the theory has a well-posed initial-value problem. 

[4] The field equations are as simple as possible: 

(a) They are a set of second-order partial differential 
equations. 

(b) They are linear in the second derivatives. 

[5] The gravitational fields are generated by the stress-energy-

momentum tensor Tik of matter and nongravitational fields. If Tik =0, 

one solution of the field equations in a suitable coordinate frame is 

g= ik 	ik 

[6] The only gravitational field is the (second-rank tensor) 

spacetime metric. 

[7] The theory agrees with experiment. This requirement is 

necessary to rule out, e.g., NordstrOm's theory (see Appendix C), which 
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satisfies [l]-[6] but predicts no deflection for light in the gravi-

tational field. 

Of these assumptions, it is clear that [4] and [6] are the 

simplicity requirements. It is obvious that we tamper with [4] only 

at the peril of introducing monstrous complexity into the field equa-

tions, and so we shall accept assumption [4] unchanged. The modifica-

tion of [6] introducing the minimum of new complexity is obviously: 

[6'] The only gravitational fields are the spacetime metric 

and a scalar (zero-rank tensor) field. 

The simplest source equation for the new field cp postulated 

in [6'], compatible with assumption [4], is 

4) 	= (invariant derived from L independent of ¢1 ) 	(A4) 

Although assumption [4] does not demand that the right-hand-side of 

equation (A4) be independent of qb ,  , this is clearly the simplest 

choice which we can make. It remains to be seen that equation (A4) 

is consistent with all of the assumptions [l]-[5], [6 1 ], and [7]. In 

fact, we shall see that equation (A4) taken together with these 

assumptions leads to Brans-Dicke theory. 

The most general form of action from which we can have any 

hope of deriving ( 6,4) is 

r- S = 	[f()R + k(cP) L + h(gb)q),i 	
ik 

(1) ,k  g ] v-g d
4 
 x 	 (A5) 

Carrying out the variation with respect to both metric and scalar 

fields is a straightforward exercise which leads to the field equa-

tions 
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1 R 	- — g R = (k/2f)T 	+ (f7f)(q) . 	- g. 	) ik 	2 ik 	 ik 	 ,i;k  

-(h/f)(qb ,i,k - 	g ik4) ,05')  

k' 	Z 	(/27, L)  
(A6) ik ,z  

214 	+ h' 	+ k'L 
,Z (A7) 

Here, primes denote differentiation with respect to cib . Using the 

contracted form of equation (A6) to eliminate the scalar curvature in 

favor of matter as source in equation (A7) yields 

(2h - 3f' 2 /f)cp ,2, ;z  

f' 	1 = - —f F kT +k' 	amp 

33(;1
1713 L)

] + k'L 	 (A8) 

To identify this with equation (A4) we must satisfy the identities  

(i) f'k v /f = 0 	, 

(ii) h' + hf'/f - 3f 1 f"/f = 0 , 

(iii) f'k/f = a(2h - 3f' 2 /f) 

(iv) k' = f3(2h - 3f' 2 /f) 

where a and 8 are constants, not both zero. Comparing (i), (iii), 

and (iv) shows that at least one of a and 8 must be zero. 	Thus, 

we have two cases to consider. 
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Case I. a = 0, 8 A 0 :  Then, since k # 0, (iii) implies 

f' = 0 [Without loss of generality (because of the arbitrariness of 

) we can choose f = 1.], and (i) is automatically satisfied. Now 

(iv) implies k' = 28h and (ii) reduces to h' = 0 , implying that h 

is a constant. Thus k() = 2Hh(cP + e), where e is a constant of 

integration, so that equation (A8) becomes 

(1) 	$((p + 	L 	. 	 (A9) 

However, since k'((p) # 0 , free particles do not move along geodesics, 

so that this theory violates assumption [1] and will not be considered 

further. 

Case II. a # 0, B = 0 :  Then, (iv) implies k = constant and 

(i) is automatically satisfied. Now (iii) implies h = 	+k/a) (CM. 

As a matter of notational convenience, let us give the combination of 

constants in this equation a simple name: 

1 
w = - 

2-(3 + k/a) 	• 	 (A10) 

Thus h = -wrif implies that h' = -wf"/f + wf'
2
/f

2
, so that (ii) 

reduces to (w + 3r)f" = 0 . Thus, f' = constant. Without loss of 

generality (because of the arbitrariness of w ) we can choose 

f' = 1 . Thus f(4)) = + 6 , h(q)) = 
--w 

, where 6 is a constant 

of integration. Clearly 6 merely sets the "zero-point" of cl) , which 

should be established by boundary conditions on the field equations. 

Thus, without loss of generality we can set 6 = 0 . Then the action 

(A5) and the field equations (A6),(A8) reduce to 
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S = f [cbR + kL - 	d4x 	 (All) 

1 	 1 	, R
ik 

-- g
ik
R = (k/2) 	.M 	-  Tik  + 	

0_ ,k 2  

+ (1/00 40(  - g ily 00 , 	(Al2) 

„2, 	k  
T 	 (A13) ;2,-  2(2w+3) 	' 

respectively. Imposing the correspondence principle (2) determines 

the constant k= 167/c
4
and the correspondence M 	1/G . This is 

indeed the Brans-Dicke scalar-tensor theory of gravitation, although 

our derivation of it has been along quite different lines from their 

original motivation (Brans and Dicke, 1961). 

Incidentally, we may note that the failure of assumption [4] to 

uniquely  impose a source equation for M is reflected in the fact 

that we could use a transformed scalar field variable to arrive at a 

formally somewhat more complicated equation than (A13) in a com-

pletely equivalent scalar-tensor theory, such as the special case of 

Jordan's theory discussed in Appendix B. 
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Appendix B 

BRANS-DICKE THEORY AS A SPECIAL CASE OF JORDAN'S THEORY 

As an outgrowth of attempts to create a unified field theory 

of gravitation and electromagnetism, Pascual Jordan (1955,1959) pro-

posed a scalar-tensor theory based on the variational principle 

6S = 0, with 

nr 	2K 	 ik, 	,4 S = K LR — L + 	K 	g j v-g a x . 	 (B1) 2 ,i ,k C 
 

As usual, R
ik is the Ricci tensor, with trace R, formed from the 

metric tensor g
•k , which has determinant g . The scalar field is 

K , while n and 	are (as yet undetermined) constants. (If we 

set K = 811G/c 2
, "Einstein's gravitational constant", the theory 

reduces to general relativity.) In Jordan's original formulation 

(1955), it was assumed that L was the Lagrangian density for elec-

tromagnetic fields, so that only the traceless stress -energy-momentum 

tensor 

1 T
ik = (1/41r)(f. f 

R. 
 - Zm

) 	 (B2) k 	4 ik 

was considered. Later work in this theory assumed that L could 

represent any matter or nongravitational fields, with stress-energy-

momentum derived in the familiar manner 

T 	. 2 	D(/7 L) 	(V7-g-  L) 	
• ik 	)47i- Dx.Q. 	i 

Dg 	
(B3) k 	 ik og 

When we speak of Jordan's theory we mean this latter form of it, 

including matter as well as electromagnetism. 
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Carrying out the variation of equation (B1) with respect to 

both metric and scalar fields leads to the field equations 

1 	, , 2, R - - g R = 	)T + (1/0(K 
i . k 	gikK 	) ik 2 ik 	 ik 	 3 

, 
--2—  f[n(n-1)- ]K ,I_K ,k— [1101-1)—i] 	

Z1 
 

2 	K  Z 9(V1-  L)  + 	0-1+1) 	 (B4) 

2E 	2, 	“n-2) 	 2K , .„ K' n 	 K K' — nit = — kr1+1) L 	. 	 (B5) 

Using the contracted form of equation (B4) to eliminate the scalar 

curvature in favor of matter as source in equation (B5) yields 

2 1 ,k 	11-1 	2, 	—11K 
 T (2 - 3n 	K 	 K K' ) = 

K 	;2, 	2 	,Z 
C 2 

D7 + -
2
-(1+1) [KL - 	g

mp  (L) 1 
 • 	 (B6) 

C 2 3gin '" ,z  

The explicit appexance of the Lagrangian density on the right-hand-

sides of equations (B4)-(B6) suggests that, in general, conservation 

of energy-momentum may be violated in this theory. To prove this, con-

sider an infinitesimal transformation 

x = x +x 	 (B7) 

of the spacetime coordinates, which induces the variations 

68
ik 

= X
i;k 

X
k;i 

(B8a) 



-69-- 

(5K =K 	 (B8b) 

in the metric and scalar fields. When applied to (B1), this "trivial" 

variation of scalar and metric fields yields 

	

(0+1T ) ;k 	
(n+1)KrIK 	L 	 (B9) 

as the "equations of motion" for energy-momentum. The nonvanishing 

right-hand-side of equation (B9) shows that energy-momentum is 

created (or destroyed, depending on the value of n ) unless  

	

= -1 	 (B10) 

Only in this special case do we have local conservation of energy momen-

tum. Indeed, for the value n=-1, equation (B9) reduces to  

the same  equations of motion as in general relativity. If equation 

(B10) holds, the action (B1) and field equations (B4),(B6) become 

ik S = 
	
[KR + (2/c2

)L + (C/K3
)1C .K g ] v-g d4 

 x , 	(B11) ,1 ,k 

1 R
ik 	g ikR = (K/c

2
) T

ik 
- K-1(K

i;k g ikK  ;Q )  

	

1 	 1 + —
2 

[2- 0K .K 	- 	 < K'] 	, 	 (B12) 

	

,k 	2 	ik ,k 

1 .12 	2 	 K  - K" 	- - K K" - 	 T 	. 	 (B13) < 	;R, 	2 	,k 
(2C-3)c

2 

Now, if we redefine the scalar field coupling constant as 

w = -c 	 (B14) 
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and perform an elementary inverse transformation 

. (8711c 2 ) K-1 	
(B15) 

on the scalar field, the equations (B11)-(B13) become formally 

identical to the corresponding equations of Brans-Dicke theory. 

[That is, equations (A11)-(A13) of Appendix A.] Thus, the only  

special case of Jordan's theory which does not violate the law of 

conservation of energy-momentum is completely equivalent to the Brans-

Dicke theory. The fact that BDT is a special case of Jordan's theory 

was known to the authors of BDT, as evidenced by a footnote in their 

original paper (Brans and Dicke, 1961). But they remarked on this 

without presenting proof or discussing the unique status of this 

Special case with respect to conservation laws. 
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Appendix C 

ON THE IMPOSSIBILITY OF BLACK HOLES IN NORDSTROM'S 

THEORY OF GRAVITY 

Before Albert Einstein (1916) presented the foundations of 

the general theory of relativity, Gunnar NordstrOm (1912,1913) pro-

posed a relativistic theory of gravity based upon a spacetime metric 

which, described in modern terminology, is conformally flat: 

42 
g ik = 4' n ik 	• 	 (Cl) 

Here, n
ik  is the Minkowski metric of special relativity, and the 

scalar function (1) satisfies the field equation 

= -(47G/c 4
) T , 	 (C2) 

where 0 ,4) = V
2
(I) - .(13 is the d'Alembertian of (I) and T is the trace - 

of the stress-energy-momentum tensor of matter. 

It was quickly recognized (Einstein and Fokker, 1914) that 

NordstrOm's theory of gravity is a Riemann-geometric theory in which 

the field equation (C2) can be written as 

	

R = (247G/c 4 ) T 	 (C3) 

if one assumes that the scalar curvature R is that derived from a 

metric of the special form (Cl). 

But the field equation (C3) can be derived from the variational 

principle (SS = 0 , with 

-1 
S = c 	f [L - (c

4
/4870 R(ik) 

	

q)
2n 	] (1)4 d4x 	. 	 (C4) 
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For the metric form (Cl), the matter term in the action (C4) is of 

the same form as in GRT. Thus, it is immediately apparent that the 

"equations of motion" for matter are the familiar ones 

Tik
;k 

= 0 	 (C5) 

the vanishing of the covariant divergence of the stress-energy-momentum 

tensor. 

Thus, it is clear that NordstrOm's theory satisfies the first 

six of the seven assumptions (listed in Appendix A) from which general 

relativity may be derived: 

[1] The strong equivalence principle is satisfied because this 

is a Riemann-geometric theory and test particles move on geodesics, as 

shown by equation (C5). 

[2] Equation (C2) reduces to the Newtonian field equation under 

the appropriate conditions if we make the identification 

= 1 + (I) Newtonian 

[3] The field equations are derived from the invariant action 

(C4). 

[4] The field equations (C2) are simple: 

(a) They are second order differential equations. 

(b) They are linear in the second derivatives. 

[5] In the absence of matter or nongravitational fields, equa-

tions (C3) reduce to R = 0 , which obviously have flat spacetime as 

one solution. 

[6] The only gravitational field is the metric (Cl). Unfortu-

nately, this theory disagrees with experiment, since it is clear from 
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equation (Cl) and the fact that light travels on null geodesics, that 

a ray of light will experience no gravitational deflection on passing 

near a massive body, such as the sun. [Even if one accepts a recent 

report (Sramek, 1971) indicating that the bending of light in the 

sun's gravitational field may be only (90 ± 5)% of the value predicted 

by GRT, the fact that there is some relativistic deflection is very 

well established by experiments.] 

However, as a question of principle it is interesting to 

inquire whether black holes are possible in this theory. When 0 is 

static, as in the vacuum surrounding a possible black hole, the field 

equation (C2) reduces to Laplace's equation. The general spherically 

symmetric solution is 	= A + B/r . Requirements of asymptotic 

flatness of the metric and correspondence with Newtonian theory at 

large distances fix the constants A and B . Thus, 

Gm 
0 = 1 - — 	 (C6) 2 

C r 

is the general vacuum solution for a spherically symmetric configura-

tion with active gravitational mass m . From (C6) and (Cl), it is 

clear that the metric component g -oo vanishes at 

r
1 
= Gm/c

2 
(C7) 

which thus defines a "surface of infinite red shift." But for the 

solution (C6), the invariant 

Rikkm 	 8G
2
m
2 

1  
(C8) Rikkm 	4 6 

C 	(1 - Gm/c
2
r)

6 	' 

constructed from the full Riemann curvature tensor, diverges  as 
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r 	r
1 . Thus, an observer falling toward r = r I would experience 

indefinitely increasing tidal gravitational forces, but would be able 

to send light signals to an arbitrarily distant receiver from any  

r > r
1 . If a source is entirely contained within r = r 1 

, the 

"surface of infinite red shift" is not an event horizon surrounding a 

black hole, rather it is a naked singularity. Thus, a spherically 

symmetric black hole is impossible in NordstrOm's theory of gravity. 

What of possible "nonspherical black holes"? Since light rays 

move on geodesics of a conformally flat metric, if they are able to 

enter any region of spacetime they are also able to leave. Thus, 

any conceivable "black hole" in NordstrOm's theory could neither have 

light sent into it, nor emit light to a distant observer. That is, 

the light cone structure becomes degenerate on the "surface of the 

black hole". This is a breakdown of the locally Minkowskian charac-

ter of spacetime. Thus, if such a surface has finite proper area, we 

may say that it encloses an "excluded region of spacetime", a dis-

tributed (rather than point-like) naked singularity. But such a 

surface is quite unlike the "one-way membrane" around a GRT (or BDT) 

black hole, since such a surface in NordstrOm's theory would permit no 

communication in either direction. 
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