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ABSTRACT 

Over the last forty years, the advent of transition metal-catalyzed cross-coupling 

has revolutionized the synthetic chemist’s ability to generate C–C bonds. Since the 

1970s, a parallel effort to control the stereochemical outcome of such transformations has 

yielded a variety of chiral catalyst complexes that deliver enantioenriched cross-coupled 

products. Nonetheless, challenges in the use of C(sp3)-hybridized coupling partners have 

limited asymmetric variants to a narrow fraction of the total number of cross-coupling 

methodologies published each year. 

Herein, we report studies on the asymmetric cross-coupling of benzylic groups 

under either Pd or Ni catalysis. We have developed a Pd-catalyzed Fukuyama cross-

coupling of thioesters and secondary benzylzinc halides to deliver racemic ketones under 

mild conditions. Investigations with chiral catalysts revealed that a promising asymmetric 

transformation could be achieved to give modestly enantioenriched ketones. 

Reductive cross-coupling, involving the union of two different electrophiles, has 

the added advantage of avoiding harsh or expensive organometallic reagents. We have 

discovered the first highly enantioselective Ni-catalyzed reductive cross-couplings of two 

organohalide electrophiles. Treatment of an acid chloride and a secondary benzyl 

chloride with a chiral nickel/bis(oxazoline) complex and Mn0 as the stoichiometric 

reductant furnishes ketone products in good yield and high enantioselectivity. Expanding 

on this result, we have demonstrated that vinyl bromides and secondary benzyl chlorides 

can be cross-coupled using a different chiral nickel/bis(oxazoline) complex, illustrating 

the generality of an asymmetric reductive coupling platform. Preliminary studies directed 

toward other coupling partners are also disclosed. 
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