DEVELOPMENT OF NICKEL-CATALYZED ASYMMETRIC REDUCTIVE CROSS-COUPLING OF BENZYLIC ELECTROPHILES

Thesis by

Alan Hayden Cherney

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2015

(Defended May 21, 2015)

Alan Hayden Cherney

All Rights Reserved

To my teachers

ACKNOWLEDGEMENTS

The five years I have spent at the California Institute of Technology have been a transformational experience because of both the research I have been immersed in and the talented people that surrounded me. Caltech is truly a unique environment that I will remember fondly as I move on in my career.

First and foremost, I would like to thank my research advisor, Prof. Sarah Reisman. I have learned a great deal from her mentorship that will carry me well beyond the walls of Schlinger Laboratory. It has been a privilege to work for such an insightful and diligent advisor who is honestly concerned about the well-being of her students. I have enjoyed watching her evolve from a pre-tenure junior faculty member to a full professor who is known across the globe. Similarly, seeing our research group double in size and witnessing the success of our fellow lab members makes me more aware of all she has accomplished.

I am also grateful to the members of my thesis committee, Profs. Jonas Peters and Gregory Fu, and chairman, Prof. Brian Stoltz. Jonas's organometallic and mechanistic perspective has served an important role in my committee meetings, and Greg's recent move to Caltech has given our lab a new source of guidance and experience in the field of asymmetric catalysis. I am appreciative of our special relationship with the Stoltz group, which has enabled me to receive input from Brian and his lab during joint meetings. The Stoltz group has also been an irreplaceable source of chemicals, equipment, knowledge, and friendship. I believe that this collaborative and open environment is one of the hallmarks of the Caltech experience. The Caltech staff has played an important role in helping students move their research projects forward. Dr. David Vander Velde has kept the NMR facility running smoothly for the entirety of my tenure. Dr. Scott Virgil and the Caltech Center for Catalysis and Chemical Synthesis have been a tremendous resource for instrumentation, expensive catalysts and ligands, and chemical knowledge. A large component of my research would have proceeded much more slowly if it were not for daily excursions to Scott's facility to use the SFC, rotary stirrers, cooling wells, and much more.

It has been an honor to work with some exceptionally intelligent and dedicated people during my time in the Reisman lab. They inspire me to be a better chemist and have made my time at the bench more enjoyable. The lab as we know it would not be possible without the pioneering efforts of Sarah's first class, Drs. Roger Nani, Lindsay Repka, Julian Codelli, Raul Navarro, and John Yeoman, and her second class of Dr. Jane Ni (as well as Kangway Chuang, who first left Champaign-Urbana, Illinois for Caltech nine years ago). I have been privileged to proceed through all the milestones of graduate school with labmates Madeleine Kieffer and Haoxuan Wang and am excited to be defending my thesis within a week of both of them. I have also enjoyed overlapping with a number of talented post-docs and energetic first-year graduate students who themselves have grown into experienced scientists.

When I first joined the group, Sarah entrusted me with a new project for the lab, and working alone in the trenches has made me appreciate the coworkers who have since joined me on Team Nickel. Nathaniel Kadunce was an invaluable collaborator in our initial development of an asymmetric reductive cross-coupling and is now applying the lessons we have learned toward his own reaction development. His friendship and unique outlook made the long days in lab go by just a little bit quicker. Dr. Leah Cleary expanded our chemistry in a new direction and gave me fresh ideas and enthusiasm arising from her perspective as a post-doc. I have also benefited from direct and indirect mentoring experiences with several undergraduates and visiting students. Lastly, I am pleased to leave my research efforts in the clever and capable hands of graduate students Julie Hofstra and Kelsey Poremba.

I must also thank my undergraduate research advisor Prof. Martin Burke and mentor Dr. Eric Woerly at the University of Illinois at Urbana-Champaign for initially fostering my passion for synthetic organic chemistry. Without the opportunities they provided me, I would not have been able to find myself in graduate school at Caltech. As I have progressed through my doctoral degree, my appreciation for the time they put into my training has only increased.

Lastly, I would like to thank my friends and family, who have played an important role in my development. My parents' love and continued support throughout my life has driven me to pursue my dreams and ambitions, from dinosaurs in grade school to organic synthesis in graduate school. My brother Michael and sister Elyssa have always been a source of company and friendship, and I remain inspired by their determination to fulfill their own dreams. Jessica Ricci's love, companionship, and patience have sustained me during the long days and weeks of graduate school and have enriched my life in a way I never would have expected when I first moved to California; I look forward to spending more evenings and Sundays with her and Oscar the cat without having to rush back to the lab. As my time at Caltech reaches its end, these are the people that deserve credit for making it all possible.

ABSTRACT

Over the last forty years, the advent of transition metal-catalyzed cross-coupling has revolutionized the synthetic chemist's ability to generate C–C bonds. Since the 1970s, a parallel effort to control the stereochemical outcome of such transformations has yielded a variety of chiral catalyst complexes that deliver enantioenriched cross-coupled products. Nonetheless, challenges in the use of $C(sp^3)$ -hybridized coupling partners have limited asymmetric variants to a narrow fraction of the total number of cross-coupling methodologies published each year.

Herein, we report studies on the asymmetric cross-coupling of benzylic groups under either Pd or Ni catalysis. We have developed a Pd-catalyzed Fukuyama crosscoupling of thioesters and secondary benzylzinc halides to deliver racemic ketones under mild conditions. Investigations with chiral catalysts revealed that a promising asymmetric transformation could be achieved to give modestly enantioenriched ketones.

Reductive cross-coupling, involving the union of two different electrophiles, has the added advantage of avoiding harsh or expensive organometallic reagents. We have discovered the first highly enantioselective Ni-catalyzed reductive cross-couplings of two organohalide electrophiles. Treatment of an acid chloride and a secondary benzyl chloride with a chiral nickel/bis(oxazoline) complex and Mn⁰ as the stoichiometric reductant furnishes ketone products in good yield and high enantioselectivity. Expanding on this result, we have demonstrated that vinyl bromides and secondary benzyl chlorides can be cross-coupled using a different chiral nickel/bis(oxazoline) complex, illustrating the generality of an asymmetric reductive coupling platform. Preliminary studies directed toward other coupling partners are also disclosed.

TABLE OF CONTENTS

CHAPTER 1					1
Enantioselective	Transition	Metal-Catalyzed	Cross-Coupling	Reactions	of
Organometallic Reagents to Prepare C–C Bonds					

1.1 INTRODUCTION	1
1.2 REACTIONS OF SECONDARY ALKYL ORGANOMETALLIC REAGENTS	4
1.2.1 Organomagnesium Reagents	5
1.2.2 Organozinc Reagents	14
1.2.3 Organoboron Reagents	16
1.3 REACTIONS OF SECONDARY ALKYL ELECTROPHILES	17
1.3.1 With Organomagnesium Reagents	18
1.3.2 With Organozinc Reagents	20
1.3.3 With Organoboron Reagents	27
1.3.4 With Organosilicon Reagents	33
1.3.5 With Organozirconium Reagents	33
1.3.6 With Organoindium Reagents	34
1.4 TRANSITION METAL-CATALYZED DESYMMETRIZATION REACTIONS	35
1.4.1 With Organozinc Reagents	36
1.4.2 With Organoboron Reagents	40
1.5 CONCLUDING REMARKS	43
1.6 NOTES AND REFERENCES	45

Pd-Catalyzed Fukuyama Cross-Coupling of Secondary Organozinc Reagents for the
Direct Synthesis of Unsymmetrical Ketones
2.1 INTRODUCTION
2.2 DEVELOPMENT OF A RACEMIC FUKUYAMA CROSS-COUPLING OF
SECONDARY ORGANOZINC REAGENTS
2.3 EFFORTS TOWARD AN ENANTIOSELECTIVE FUKUYAMA CROSS-
COUPLING
2.4 CONCLUDING REMARKS
2.5 EXPERIMENTAL SECTION
2.5.1 Materials and Methods70
2.5.2 Substrate Synthesis71
2.5.3 General Procedure for Fukuyama Cross-Coupling Reaction76
2.5.4 Procedure for Acid Chloride Cross-Coupling
2.6 NOTES AND REFERENCES
APPENDIX 1 88
Spectra Relevant to Chapter 2
CHAPTER 3 131

CHAPTER 2

Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α,α-Disubstituted Ketones

3.1 INTRODUCTION131
3.2 DEVELOPMENT OF AN ASYMMETRIC REDUCTIVE ACYL CROSS-COUPLING

51

3.2.1 Identification of a Chiral Catalyst System	135
3.2.2 Optimization of Reactivity for an Enantioselective Reaction	138
3.2.3 Substrate Scope and Further Studies	147
3.3 CONCLUDING REMARKS	152
3.4 EXPERIMENTAL SECTION	152
3.4.1 Materials and Methods	152
3.4.2 Substrate Synthesis	153
3.4.3 Enantioselective Reductive Cross-Coupling	156
3.4.4 SFC Traces of Racemic and Enantioenriched Ketone Products	175
3.5 NOTES AND REFERENCES	196

APP		Nν	2
AFF	ENL	пл	4

200

Spectra Relevant to Chapter 3

CHAPTER 4	253
Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between	Vinyl and Benzyl
Electrophiles	

4.1 INTRODUCTION253				
4.2 DEVELOPMENT OF AN ASYMMETRIC REDUCTIVE VINYL CROSS-				
COUPLING	256			
4.2.1 Identification of a Chiral Catalyst System	256			
4.2.2 Optimization of Reactivity for an Enantioselective Reaction	258			
4.2.3 Substrate Scope and Further Studies	264			
4.3 CONCLUDING REMARKS	270			
4.4 EXPERIMENTAL SECTION	270			
4.4.1 Materials and Methods	270			

4.5 NOTES AND REFERENCES	344
4.4.4 SFC Traces of Racemic and Enantioenriched Products	311
4.4.3 Enantioselective Reductive Cross-Coupling	284
4.4.2 Ligand and Substrate Synthesis	272

APP	ENDIX 3				348
~		~ 1			

Spectra Relevant to Chapter 4

CHAPTER 5433Toward New Coupling Partners for Asymmetric Ni-Catalyzed Reductive Cross-

Coupling

5.1 INTRODUCTION	433
5.2 DEVELOPMENT OF NEW NI-CATALYZED REDUCTIVE CROSS-CO	UPLINGS
(RACEMIC OR ACHIRAL)	437
5.3 DEVELOPMENT OF NEW NI-CATALYZED REDUCTIVE CROSS-CO	UPLINGS
(ASYMMETRIC)	441
5.4 CONCLUDING REMARKS	447
5.5 EXPERIMENTAL SECTION	448
5.5.1 Materials and Methods	448
5.5.2 Ni-Catalyzed Reductive Cross-Coupling	449
5.6 NOTES AND REFERENCES	452

LIST OF ABBREVIATIONS

$[\alpha]_{D}$	angle of optical rotation of plane-polarized light
Å	angstrom(s)
Ac	acetyl
acac	acetylacetonate
^t Am	<i>tert</i> -amyl
APCI	atmospheric pressure chemical ionization
app	apparent
aq	aqueous
Ar	aryl group
bathophen	bathophenanthroline
BBN	borabicyclo[3.3.1]nonane
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol (" <u>b</u> utylated <u>h</u> ydroxy <u>t</u> oluene")
Biox	bi(oxazoline)
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
BINOL	1,1'-bi(2-naphthol)
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
Box	bis(oxazoline)
bp	boiling point
BPPFA	N,N-dimethyl-1-[l',2-bis(diphenylphosphino)ferrocenyl]ethylamine
br	broad

Bu	butyl
ⁱ Bu	iso-butyl
ⁿ Bu	butyl or <i>norm</i> -butyl
^s Bu	sec-butyl
′Bu	<i>tert</i> -butyl
Bz	benzoyl
С	concentration of sample for measurement of optical rotation
°C	degrees Celsius
calc'd	calculated
CAM	cerium ammonium molybdate
cm^{-1}	wavenumber(s)
cod	1,5-cyclooctadiene
conc.	concentrated
Ср	cyclopentadienyl
Су	cyclohexyl
Сур	cyclopentyl
d	doublet
d	dextrorotatory
D	deuterium
dba	dibenzylideneacetone
DFT	density functional theory
DIOP	2,3-O-isopropylidene-2,3-dihydroxy-1,4-
	bis(diphenylphosphino)butane

DKR	dynamic kinetic resolution
DMA	N,N-dimethylacetamide
DMBA	2,6-dimethylbenzoic acid
DME	1,2-dimethoxyethane
DMF	<i>N</i> , <i>N</i> -dimethylformamide
DMI	1,3-dimethyl-2-imidazolidinone
DMPU	<i>N</i> , <i>N</i> '-dimethylpropylene urea
DMSO	dimethylsulfoxide
dppb	1,4-bis(diphenylphosphino)butane
dppbz	1,2-bis(diphenylphosphino)benzene
dppf	1,1'-bis(diphenylphosphino)ferrocene
dppe	1,2-bis(diphenylphosphino)ethane
dr	diastereomeric ratio
dtbpy	4,4'-di-tert-butyl-2,2'-bipyridine
DYKAT	dynamic kinetic asymmetric transformation
Ε	trans (entgegen) olefin geometry
ee	enantiomeric excess
EI	electron impact
EPPF	1-diphenylphosphino-2-ethylferrocene
ESI	electrospray ionization
Et	ethyl
FAB	fast atom bombardment
FcPN	l-dimethylaminomethyl-2-diphenyl-phosphinoferrocene

g	gram(s)
GC	gas chromatography
h	hour(s)
¹ H	proton
hex	hexyl
HMDS	hexamethyldisilazane
hv	light
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz
IPA	isopropanol
IR	infrared spectroscopy
J	coupling constant
k	rate constant
L	liter or neutral ligand
1	levorotatory
LED	light-emitting diode
m	multiplet or meter(s)
М	molar or molecular ion
m	meta
Me	methyl
mg	milligram(s)
MHz	megahertz

min	minute(s)
mL	milliliter(s)
MM	mixed method
mol	mole(s)
MOP	2-(diphenylphosphino)-2'-methoxy-1,1'-binaphthyl
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves or mass spectrometry
<i>m/z</i> .	mass-to-charge ratio
naph	naphthyl
Naphos	2,2'-bis(diphenylphosphinomethy1)-1,1'-binaphthyl
nbd	norbornadiene
NBS	N-bromosuccinimide
NMDPP	neomenthyldiphenylphosphine
NMP	N-methyl-2-pyrrolidone
NMR	nuclear magnetic resonance
Norphos	2,3-bis(diphenylphosphino)-bicyclo[2.2.1]hept-5-ene
0	ortho
р	para
Рс	phthalocyanine
Ph	phenyl
рН	hydrogen ion concentration in aqueous solution
phen	1,10-phenanthroline

pin	pinacol
Piv	pivaloyl
p <i>K</i> _a	acid dissociation constant
PPFA	N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]ethylamine
Pr	propyl
ⁱ Pr	isopropyl
"Pr	propyl or <i>norm</i> -propyl
Prophos	1,2-bis(diphenylphosphino)propane
ру	pyridine
PyBox	pyridine-bis(oxazoline)
PyOx	pyridine-oxazoline
pyphos	(2-diphenylphosphino)ethylpyridine
q	quartet
Quinox	quinoline-oxazoline
R	alkyl group
R	rectus
ref	reference
R_{f}	retention factor
rt	room temperature
S	singlet or seconds
S	sinister
sat.	saturated
SET	single-electron transfer

SFC	supercritical fluid chromatography
t	triplet
TADDOL	$\alpha, \alpha, \alpha, \alpha$ -tetraaryl-1,3-dioxolane-4,5-dimethanol
TBAB	tetra- <i>n</i> -butylammonium bromide
TBAI	tetra-n-butylammonium iodide
TBAT	tetra-n-butylammonium difluorotriphenylsilicate
TBS	tert-butyldimethylsilyl
TDAE	tetrakis(dimethylamino)ethylene
TFA	trifluoroacetic acid
temp	temperature
terpy	2,2':6',2"-terpyridine
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	<i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-tetramethylethylenediamine
TMS	trimethylsilyl
TOF	time-of-flight
tol	toluene
UV	ultraviolet
v/v	volume per volume
Х	anionic ligand or halide
Ζ	cis (zusammen) olefin geometry