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Chapter 1 

Enantioselective Transition Metal-Catalyzed Cross-Coupling Reactions 

of Organometallic Reagents to Prepare C–C Bonds† 

 

1.1 INTRODUCTION 

The stereocontrolled construction of C–C bonds remains one of the foremost 

challenges in organic synthesis. At the heart of any chemical synthesis of a natural 

product or designed small molecule is the need to carefully orchestrate a series of 

chemical reactions to prepare and functionalize a carbon framework. The advent of 

transition metal catalysis has provided chemists with a broad range of new tools to forge 

C–C bonds and has resulted in a paradigm shift in synthetic strategy planning. The 

impact of these methodologies has been recognized with the awarding of the 2010 Nobel 

Prize in Chemistry to Richard Heck, Ei-ichi Negishi, and Akira Suzuki for their seminal 

contributions to the development of Pd-catalyzed cross-coupling.  
                                                
† Portions of this chapter will be reproduced as a review written in collaboration with 
Prof. Sarah E. Reisman and Nathaniel T. Kadunce 
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 The potential of using transition metal-catalyzed C–C bond formation to prepare 

enantioenriched molecules was immediately recognized by the synthetic chemistry 

community.  Indeed, the first forays into enantioselective cross-coupling reactions 

occurred contemporaneously with the development of the transition metal-catalyzed 

reactions themselves. Here we define transition metal-catalyzed cross-coupling reactions 

as C–C bond forming reactions between an organic electrophile (typically an organic 

halide or pseudo halide, which in this review includes alcohols, amines, and their 

derivatives) and an organometallic reagent, mediated by a transition metal catalyst.  

 Enantio-controlled transition metal-catalyzed cross-coupling reactions to form C–

C bonds, in which the stereogenic unit is defined by the C–C bond forming event, can be 

organized into two general categories. The first group comprises enantioselective 

transition metal-catalyzed cross-coupling reactions, which we define as reactions in 

which there is selective formation of one enantiomer over the other as defined by a non-

racemic chiral metal catalyst. There are several different types of enantioselective cross-

coupling reactions: those in which (a) racemic, C(sp)3 organometallic reagents are 

stereoconvergently coupled to organic electrophiles; (b) racemic, C(sp)3 organic 

electrophiles are stereoconvergently coupled to organometallic reagents; (c) achiral 

organic electrophiles are coupled to achiral organometallic reagents to produce chiral, 

non-racemic products; and (d) a prochiral starting material (either the organic electrophile 

or organometallic reagent) is desymmetrized. These reactions are schematically 

represented in Figure 1.1. 

The second group comprises enantiospecific transition metal-catalyzed alkyl 

cross-coupling reactions, which we define as chirality exchange reactions in which the 
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stereochemistry of a chiral, enantioenriched substrate defines the stereochemistry of the 

product. These reactions can be further categorized into those which involve the cross-

coupling of (a) a stereodefined organometallic reagent with an electrophile, or (b) a 

stereodefined electrophile with an organometallic reagent. These types of 

enantioselective and enantiospecific reactions have been used to prepare molecules 

exhibiting centro, axial, and planar chirality. This review will encompass enantioselective 

transition metal-catalyzed cross-coupling reactions of organic electrophiles and 

organometallic reagents, covering the literature published through the end of the year 

2014. 

Figure 1.1. Strategies for enantiocontrolled cross-coupling. 

 

Despite promising initial reports, highly enantioselective transition metal-

catalyzed alkyl cross-coupling reactions were slow to develop, in part because of the 

general challenges encountered in Pd-catalyzed alkyl cross-coupling reactions. For Pd 

and other metals that react by polar, two-electron mechanisms, sec-alkyl organometallic 

reagents are typically slower than their n-alkyl or C(sp)2 hybridized counterparts to 
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undergo transmetalation.1 Similarly, sec-alkyl electrophiles are frequently slow to 

undergo oxidative addition to Pd.2 Moreover, in either case, the resulting sec-alkyl 

transition metal complexes can suffer from rapid, non-productive β-hydride elimination. 

Thus, the successful realization of enantioselective transition metal-catalyzed alkyl cross-

coupling reactions has resulted from fundamental studies of the factors, particularly 

ligands, which control and influence the efficiency of these transformations. In addition, 

a renewed interest in Ni catalysts, which can engage with sec-alkyl halides through single 

electron oxidative addition mechanisms, has resulted in a rapidly increasing number of 

enantioselective alkyl cross-coupling reactions.  

 

1.2 REACTIONS OF SECONDARY ALKYL ORGANOMETALLIC 
REAGENTS 

 
Early efforts to develop enantioselective transition metal-catalyzed alkyl cross-

coupling reactions focused primarily on the use of configurationally labile sec-alkyl 

organometallic species such as organomagnesium and organozinc reagents. In general, 

the configurational stability of an organometallic reagent correlates to the 

electronegativity of the metal, with less electronegative metals resulting in more 

configurationally labile sec-alkyl reagents.3 For example, sec-alkyl magnesium reagents 

have been shown to racemize above –10 °C, while the corresponding sec-alkyl boron 

reagents are configurationally stable indefinitely at room temperature.4 In principle, fast 

equilibration between the two enantiomers of a sec-alkyl organometallic reagent or 

between two diastereomers of a chiral transition metal complex could enable 

enantioselective cross-coupling through a dynamic kinetic asymmetric transformation 
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(DYKAT), in which the newly formed stereogenic center is controlled by the chirality of 

the metal catalyst (Figure 1.2).  

Figure 1.2. Stereochemical outcome of cross-coupling with secondary nucleophiles. 
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salts and the chiral bidentate phosphine ligand DIOP (L1) catalyzes the reaction between 

sec-butylmagnesium bromide or chloride  and bromo- or chlorobenzene to give product 1 

with promising enantioinduction (Figure 1.3).7 These results were an important proof of 

concept for the area of enantioselective cross-coupling; however, since low yields of 

product were obtained, it remains ambiguous whether these reactions proceed by kinetic 

resolution of the sec-alkylmagnesium reagent or through a DYKAT. It was subsequently 

reported that Prophos (L2) provides improved enantioinduction and higher yields of 1.8 

The identity of the halogen on both the organic halide and the organometallic reagent was 

shown to significantly influence the absolute configuration and the ee of 1. Further 

improvements were observed when Norphos (L4) was employed as the chiral ligand, 

providing 1 in 50% ee.9 A carbohydrate-derived chiral ligand (L3) was also reported to 

deliver 1 in good ee, although with poor yields.10 

Figure 1.3. Stereoconvergent arylation of sBu Grignard reagents. 
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development and expansion of the substrate scope are imperative, but this initial result 

represents a solid advance for in situ Grignard formation in stereoconvergent cross-

couplings. 

Scheme 1.1. Stereoselective coupling of a Grignard reagent prepared in situ. 

 

 Concurrent to their efforts to develop enantioselective cross-coupling reactions of 
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Figure 1.4. Stereoconvergent vinylation of benzylic Grignard reagents. 
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Figure 1.5. Chiral ligands developed for the enantioselective cross-coupling of α-

methylbenzyl Grignard reagents. 
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increasing the steric profile of the ligand raised the ee from 38% when the chiral tertiary 

substituent was Me (L7) to 94% when this group was tBu (L10). In order to probe the 

origin of asymmetric induction, the isomeric P,N-ligand L11 was designed. Under the 

same reaction conditions, L11 delivered 4 in only 25% ee. Moreover, the analogous bis-

phosphine L12 provided no enantioinduction, suggesting a critical role for the amino 

group. A proposed catalytic cycle for this reaction is shown in Figure 1.6 and involves 

precoordination between Grignard reagent 5 and the amino group of the ligand to give 

complex 7. The authors hypothesize that this coordination could selectively direct the 

transmetalation of a single enantiomer of the organometallic reagent, although the 

importance of this interaction has been debated.15 

Figure 1.6. Proposed catalytic cycle for the enantioselective coupling of α-

methylbenzyl Grignard reagents. 
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generated α-methylbenzylzinc bromide did not support the intermediacy of an organozinc 

species; instead it is possible that coordination between the Lewis acidic zinc halide and 

the sidechain heteroatom could alter or disrupt the ability of the amino group to direct the 

transmetalation event. 

Figure 1.7. Addition of exogenous zinc halide salts reverses the sense of 

enantioinduction when sulfur-containing ligand L26 is used. 
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comes from L16, which possesses a methoxy moiety instead of a dimethylamino group 

and provides 4 in 57% ee. Diphosphine BPPFA (L17), which could potentially 

coordinate through phosphorus in a bidentate fashion, also provides 4 in 65% ee. The 

similarity of the ee data obtained with L13 and L17 suggests that they both coordinate 

the metal in the same fashion, likely through a P-N mode. Consistent with this 

observation, changing the steric bulk on the amine of L13 gives a range of ee values for 4 

(see L20), while changing the steric environment of the phosphine does not significantly 

perturb the selectivity (see L19). Homologated ligand L18 delivers 4 in poor ee.19 Pd 

catalysts were also investigated and were shown to give comparable results to Ni (Figure 

1.8).17c 

Figure 1.8. The use of the P-N ligand PPFA provides similar results in both Ni- and 

Pd-catalyzed transformations. 
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improved results with respect to PPFA (L13).23 High ee can also be achieved with 

phosphine-quincoridine L25.24 

 Despite the advances made through ligand tuning when vinyl bromide is used as 

an electrophile, the scope of the asymmetric alkyl cross-coupling is poor. Disubstituted 

alkenes were typically found to be less enantioselective; for example, the reaction of E-

bromostyrene using PPFA (L13) as the ligand delivered 10 in only 52% ee and moderate 

yield (Figure 1.9).17c,25 While the yield could be improved using the simpler 

aminophosphine L27, the ee of 10 decreased.26 L28, designed to induce axial chirality 

upon coordination to a transition metal, was able to induce 76% ee for 10.27 Moderate ee 

could also be attained with phosphine-oxazoline ligand L29.28 Knochel and coworkers 

reported C2-symmetric ferrocenyl phosphine L30 as being capable of delivering excellent 

ee for the coupling of bromostyrene, although the reaction scope is still limited.29 

Figure 1.9. Asymmetric Kumada–Corriu cross-coupling of bromostyrene. 
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that Ni catalysts delivered poor yields of the desired allylsilane. However, the chiral 

PdCl2[PPFA] complex furnished 12 in 93% yield and 95% ee (Scheme 1.2, a). 30 E-Vinyl 

bromides were found to provide higher selectivities than the corresponding Z-substrates, 

and the enantioselectivity was independent of the ratio of Grignard reagent to vinyl 

bromide. In contrast, the coupling of alkyl-substituted Grignard 13 proceeded in 93% ee 

when excess organomagnesium reagent was employed, but the ee fell precipitously when 

Grignard 13 was used as the limiting reagent (Scheme 1.2, b). These findings might 

suggest that for Grignard 13, the rate of racemization is slow relative to the rate of C–C 

bond formation, resulting in a simple kinetic resolution instead of a DKR. A similar 

kinetic resolution had been observed previously in the diastereoselective coupling of non-

benzylic Grignard reagents.31 Lastly, an ee of 18% could be achieved in the alkynylation 

of 11 in the presence of PdCl2[PPFA] (Scheme 1.2, c).30b,32 

Scheme 1.2. Diphosphine ligands in the coupling of α-silyl Grignard reagents. 
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Figure 1.10. Enantioselective alkyl Negishi-type cross-couplings. 
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outcome implicates RZnCl as the transmetalating agent, rather than ZnCl2 behaving as a 

Lewis acid to otherwise effect the transformation.16a Lower selectivities are obtained with 

the corresponding Grignard reagent under similar conditions. Additional improvements in 

ligand design revealed that 4 is formed in 93% ee when L31 is used.34 Despite a growing 

interest in the enantioselective cross-coupling reactions of organozinc reagents over the 

past three decades, successful efforts to further expand upon the enantioselective alkyl 

Negishi cross-coupling have been limited. Recently, Reisman and coworkers reported the 

Pd-catalyzed coupling between thioester 17a and organozinc 16 to form ketone 18a using 

chiral phosphoramidite L32 (Figure 1.10, b).35 While the enantioselectivity of the 

transformation is still low, the study represents a proof of concept for the possibility of 

employing organozinc reagents in enantioselective acyl cross-coupling reactions. 

Scheme 1.3. Enantioselective functionalization of pyrrolidine. 
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in a stereoconvergent fashion, representing the first enantioconvergent alkyl-alkyl 

coupling of a racemic organometallic reagent (Scheme 1.3).37 Mechanistic studies have 

determined that this stereoconvergence does not arise from a series of β-hydride 

elimination/alkene insertion processes of the organometallic reagent. 

Figure 1.11. Dual catalysis approach to asymmetric cross-coupling. 
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envisaged a dual catalysis mechanism in which Ni-catalyzed cross-coupling and Ir-

catalyzed photoredox events occur synergistically (Figure 1.11).38 In an important proof 

of concept, chiral bioxazoline (BiOX) L34 was used to furnish 23 in 50% ee. Electron 

transfer to an excited state *IrIII complex from an organoboron species would generate an 

alkyl radical. The alkyl radical can then combine with a chiral NiII complex to form a NiIII 

species that can reductively eliminate the desired product. The resulting NiI can be 

reduced by IrII to complete both catalytic cycles. Additional investigations toward 

asymmetric catalysis would be valuable. 

Figure 1.12. Stereochemical outcome of cross-coupling with secondary 

electrophiles. 
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for the cross-coupling of sec-alkyl halides and organometallic reagents.2 Following the 

first reports of alkyl cross-coupling to form stereogenic C(sp3) centers, the systematic 

examination of asymmetric induction in these processes became a chief objective. In 

these systems, catalysts that favor a single-electron oxidative addition mechanism may 

undergo a stereoconvergent oxidative addition to set the ultimate stereochemistry of the 

product. Alternatively, rapidly equilibrating mixtures of diastereomeric transition metal 

complexes can result in preferential transmetalation or reductive elimination of one 

diastereomer over the other (Figure 1.12). 

Scheme 1.4. Primary-to-secondary isomerization in asymmetric cross-coupling. 
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by Kumada and coworkers, it presaged the explosion of asymmetric cross-couplings of 

sec-alkyl electrophiles that would emerge in the literature nearly two decades later.  

Scheme 1.5. Asymmetric C(sp3)−C(sp3) Kumada–Corriu cross-coupling. 
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Figure 1.13. Stereoconvergent Kumada–Corriu coupling of α-haloketones. 
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The first synthetically useful enantioselective, stereoconvergent cross-coupling 

between a sec-alkyl electrophile and a Grignard reagent was reported two decades later 

by Fu and coworkers. In this seminal report, the combination of NiCl2(dme) and bidentate 

bis(oxazoline) ligand L36 or L37 was found to promote the coupling of α-haloketones 28 

and arylmagnesium halides to give α-aryl ketones (Figure 1.13).42 Notably, the reaction 

can be run at some of the lowest temperatures reported for the cross-coupling of alkyl 

electrophiles (−60 °C); the low temperature prevents the racemization of ketone product 

29 through enolization by the Brønsted basic Grignard reagent. Both alkyl and aryl 

ketones can be prepared by this method, and these products can be diastereoselectively 

derivatized to access chiral alcohols and amines.43 

 

1.3.2 With Organozinc Reagents 

 In 2005, two reports from the Fu laboratory demonstrated the first utilization of 

secondary alkyl electrophiles in highly enantioselective cross-coupling reactions. In one 

example, treatment of α-bromo amide 30 with an alkylzinc reagent and a Ni/L38 catalyst 

delivered 31 in good yield and high ee (Figure 1.14, a).44 The identity of the amide 

substituents played a key role in achieving high enantioselectivity. When the organozinc 

reagent is used as a limiting reagent, the α-bromo amide is recovered as a racemate, 

suggesting that the reaction does not proceed by a kinetic resolution. In a second example 

by Fu and coworkers, the Ni/L38-catalyzed coupling of 1-bromoindanes and alkyl 

halides produced chiral indane 33 in good yield and high ee (Figure 1.14, b).45 The use of 

acyclic 1-(1-bromoethyl)-4-methylbenzene furnished 33c with more modest 
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enantioselectivity. In both cases, only primary organozinc reagents were compatible with 

the reaction conditions. A computational investigation by Lin and coworkers proposed 

that a NiI/NiIII mechanism consisting of transmetalation/oxidative addition/reductive 

elimination is more energetically favorable than a Ni0/NiII mechanism.46 The 

enantioselectivity of the reaction was also correlated to the difference in free energy 

between the two transition states for reductive elimination.  

Figure 1.14. Seminal stereoconvergent cross-couplings of secondary alkyl halides. 
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commercially available, the group sought to identify other arylzinc reagents that were 

effective for this transformation. Unfortunately, the use of arylzinc halides or in situ-

prepared diarylzincs, generated from transmetalation of the corresponding organolithium 

or –magnesium reagent, was unsuccessful. However, the group determined that ArZnEt, 

prepared from ArB(OH)2 and Et2Zn, could react to provide comparable results. In 

contrast to the stereospecific Pd-catalyzed coupling of propargyl halides, no allene 

formation arising from SN2' oxidative addition was observed.48 

Figure 1.15. Stereoconvergent Negishi cross-coupling of propargylic electrophiles. 
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transformations. However, these substrates performed poorly, producing 35 in low yield 

and ee. (Figure 1.15, b).49 On the other hand, simple carbonate 36b underwent cross-

coupling with improved enantioselectivity. Further investigation revealed that both the 

yield and ee could be improved by use of aryl-substituted carbonates, with 36d delivering 

35 in 83% yield and 90% ee. The optimized reaction conditions proved to be general not 

just for propargyl carbonates, but also for the coupling of propargyl chlorides and 

bromides. 

 In 2013, Fu and coworkers published a stereoconvergent Negishi coupling of 

benzylic mesylates that could be prepared from the corresponding alcohols immediately 

prior to the coupling and used without purification (Figure 1.16).50 Bi-oxazoline L40 was 

identified as the optimal ligand, with more traditional Pybox and Box ligands delivering 

poor enantioselectivity. LiI was employed to allow in situ displacement of the mesylate to 

form a reactive benzylic iodide. A wide substrate scope was demonstrated for the cross-

coupling; a slight erosion of ee is observed when R = Me. Although several stereospecific 

routes to diarylalkanes have been developed to date,51 this reaction provides a 

complementary approach. 

Figure 1.16. Stereoconvergent Negishi cross-coupling of benzyl alcohol derivatives. 
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 A long-term objective in the area of enantioselective alkyl cross-coupling is to 

couple sec-alkyl electrophiles with sec-alkyl organometallic reagents. The Fu laboratory 

made a significant advance toward this objective in 2012 when they reported the 

asymmetric Negishi cross-coupling between benzylic bromide 39 and cyclic organozinc 

halides (Figure 1.17).40 Isoquinoline-oxazoline ligand L41 delivered the products in high 

yields and ee’s, in contrast to the more commonly employed PyBox and Box ligands. 

Acyclic secondary organozinc halides resulted in a mixture of branched and linear 

products; surprisingly, primary organozinc halides also resulted in a mixture of branched 

and linear products.  

Figure 1.17. Enantioconvergent Negishi cross-coupling of secondary organozinc 

reagents. 
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enantioinduction; however, this substrate limitation is addressed by their subsequently 

developed Kumada–Corriu conditions.42 A recent modification of the reaction conditions 

has permitted the use of α-halo-α-fluoroketones, enabling the asymmetric formation of 

tertiary fluorides (Figure 1.18, b).52 

Figure 1.18. Asymmetric Negishi cross-coupling of α-halo ketones. 
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thus required to elucidate the mechanism of oxidative addition for the given 

transformation. 

Figure 1.19. Other directing groups in asymmetric Ni-catalyzed Negishi cross-

coupling. 
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α-radicals, 47 can be considered as an unactivated electrophile. Investigations of the 

substrate scope revealed that sulfones are also suitable substrates without any change in 

the reaction conditions, furnishing 48d in high yield and ee. Subjection of radical clock 

substrate 49 to the reaction conditions provided a mixture of 50, cis-51 and trans-51; the 

ratio of uncyclized product to cyclized product was found to increase linearly with 

increased Ni loading. These data could suggest that the reaction proceeds through a 

noncaged radical species, and also illustrates the dichotomy between the coupling of 

electrophiles 45 and 47. 

 

1.3.3 With Organoboron Reagents 

 Seminal contributions to the transition metal-catalyzed enantioselective cross-

coupling of sec-alkyl electrophiles with organoboron reagents have been made by the Fu 

laboratory. Shortly after disclosing the Ni-catalyzed cross-coupling of sec-alkyl 

electrophiles with alkylboranes to prepare racemic products,57 Fu and coworkers reported 

that use of catalytic Ni(cod)2 in conjunction with chiral 1,2-diamine ligand L45 enabled 

the enantioselective coupling of homobenzylic bromides (52) with organoboranes (Figure 

1.20, a).58 The Ni catalyst was proposed to engage in a secondary interaction with the 

benzylic substituent on 52, allowing for differentiation between the two alkyl groups of 

the starting material. While a variety of homobenzylic bromides were tolerated, poor 

enantioselectivity was attained in the formation of 53b. Fu hypothesized that the ether 

might also interact with the Ni catalyst, leading to poor asymmetric induction. Based on 

this hypothesis, the group subsequently reported that carbamate-protected halohydrins 
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(54) can also be coupled with alkylboranes in high enantioselectivity using a chiral 1,2-

diamine L46 (Figure 1.20, b).59 Modified conditions permitted the enantioselective 

coupling of a homologated halohydrin. Further expansion of the substrate scope 

determined that halides (56) bearing proximal arylamines as directing groups can be 

coupled with alkylboranes in high enantioselectivity as well (Figure 1.20, c).60 The 

reaction was found to be directed by the nitrogen atom of the arylamine group. 

Figure 1.20. Enantioconvergent Ni-catalyzed alkyl-alkyl Suzuki–Miyaura coupling. 
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how far removed the directing group could be from the reacting C−halide bond. 

Illustrating that distal functional groups are still capable of directing highly 

enantioselective reactions, both γ- and δ-chloroamides were shown to undergo Suzuki–

Miyaura cross-coupling with good asymmetric induction to form 58 and 59, respectively 

(Figure 1.21).61 Various halides proximal to protected amines, such as carbamates or 

sulfonamides, were also optimized toward enantioconvergent cross-coupling.62 After 

confirming that the oxygen of the sulfonamide was the key directing atom, Fu and 

coworkers examined sulfone-containing electrophiles and reported that good 

enantioselectivity can still be maintained for these substrates.62a  

Figure 1.21. Examples of directing groups for the enantioconvergent Suzuki–

Miyaura coupling. 
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(63) and Ar-(9-BBN) reagents to furnish 64 in good yields and high ee’s (Figure 1.22).63 

The identity of the amide substituents was important for good enantioinduction: diphenyl 

amides and Weinreb amides delivered nearly racemic products. In contrast to previous 

stereoconvergent couplings of secondary electrophiles, a modest kinetic resolution of 63 

was observed. Further studies confirmed an irreversible oxidative addition step. γ-

Haloamides can also be arylated with Ph-(9-BBN) in good ee but only moderate yield.61  

Figure 1.22. Asymmetric Suzuki–Miyaura coupling of α-haloamides. 
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γ-haloamides (see Figure 1.21), a γ-haloamide was also used as an electrophile.61 

Remarkably, a single Ni complex controls the stereochemical outcome of two distinct C–

C bond forming processes, giving product 66c in good yield, good dr, and excellent ee. 

Figure 1.23. Asymmetric cascade cyclization/cross-coupling. 
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Figure 1.24. Asymmetric addition into quinolinium ions. 

 

 In 2006, Yamamoto, Miyaura, and coworkers reported a novel strategy for the 
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1.3.4 With Organosilicon Reagents 

Only a single example of an asymmetric cross-coupling between sec-alkyl organic 

halides and organosilicon reagents has been reported to date. Fu and colleagues 

developed a Ni/L46-catalyzed stereoconvergent coupling of α-bromoesters (75) and aryl 

siloxanes to furnish α-aryl esters in good yields and with high enantioduction (Figure 

1.25).74 While simple ethyl esters gave good yield but poor ee, the use of the BHT ester 

resulted in formation of 76b in a remarkable 99% ee. The nature of the fluoride source 

and the steric profile of R2 also affected the level of enantioinduction. In the same report, 

the optimized reaction conditions were extended to the coupling of alkenyl silanes as 

well. 

Figure 1.25. Stereoconvergent coupling of aryl silanes. 
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coupling of alkenyl metal species, with alkenyl silicon74 and zinc54 reagents being the 

most promising. In 2010, Fu and coworkers published the Ni/L50-catalyzed asymmetric 

cross-coupling of alkenylzirconium reagents and α-bromoketones, allowing access to 79 

in 93% ee (Figure 1.26, a).75 The versatility of this approach has been exemplified by the 

efficient coupling of both aryl-alkyl ketones and dialkyl ketones under the same 

conditions. Alkenylzirconium complexes have also been shown to react with α-

bromosulfonamides in high yield and ee (Figure 1.26, b).56 

Figure 1.26. Stereoconvergent coupling of alkenylzirconium reagents. 
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coworkers investigated the asymmetric coupling between C(sp)-hybridized 

organometallic reagents and benzylic bromides. Alkynylindium reagents exhibited clean 

cross-coupling under Ni-catalysis, and were selected for further study. Pybox ligand L38 

was optimal, delivering cross-coupled product 83 in up to 87% ee for several different 

alkynes (Figure 1.27).76 Further work on the asymmetric coupling of C(sp) 

organometallic reagents has not been disclosed. 

Figure 1.27. Alkynyl organometallic reagents in stereoconvergent cross-coupling. 
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meso electrophiles; however, some researchers have investigated the desymmetrization of 

meso bis-organometalic reagents or processes that involve desymmetrization by C-H 

functionalization. 

Scheme 1.7. Alkylative desymmetrization of meso-anhydrides. 

 

 

1.4.1 Organozinc Reagents 

The desymmetrization of meso-anhydrides has emerged as a robust method for 

the synthesis of enantiopure products.77 Rovis and coworkers78 have developed a 

monofunctionalization of cyclic anhydrides through a Ni-catalyzed Negishi coupling with 

Et2Zn.79 The transformation was sensitive to the bite angle of the ligand and required an 

electron-deficient styrene additive, which has been demonstrated by Knochel to 

accelerate reductive elimination over β-hydride elimination.80 Based on these initial 

findings, the authors sought to develop a desymmetrizing Negishi reaction of meso-cyclic 

anhydride 84, and determined that the catalyst prepared from of Ni(cod)2 and iPr-PHOX 

(L52) furnished 85 in 79% ee (Scheme 1.7).81 Surprisingly, omission of the p-CF3-styrene 

R

R
O

O

O

O

OH
Et

O

Ni(cod)2 (10 mol %)
L52 (12 mol %)

Et2Zn (1.4 equiv)
p-CF3-styrene (0.2 equiv)

THF, 0 °C, 3 h
(85% yield, 79% ee)

O

Me
OH

O

Pd(OAc)2 (5 mol %)
L53 (5 mol %)

Me2Zn (1.2 equiv)
p-F-styrene (0.25 equiv)

THF, 23 °C, 22 h
(80% yield, 91% ee)

84

85

86

FePh2P
Me

PCy2

Josiphos (L53)

PPh2 N

O

iPr
iPr-PHOX (L52)



Chapter 1 – Enantioselective Transition Metal-Catalyzed Cross-Coupling Reactions of 
Organometallic Reagents to Prepare C–C Bonds  
 

37 

additive reduced the ee to 4%, prompting Rovis and coworkers to more closely examine 

the mechanism of the reaction. 

Figure 1.28. Competing mechanisms in the Ni-catalyzed desymmetrization of 

meso-anhydrides. 
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providing a three-coordinate Ni complex capable of undergoing oxidative addition. The 

kinetic analysis determined that cycle A proceeds approximately four times faster than 

cycle B and is roughly consistent with the somewhat modest enantioselectivities obtained 

under these conditions. 

The Pd-catalyzed desymmetrization of succinic anhydrides was also developed by 

Rovis and coworkers (Scheme 1.7). Treatment of 84 with Me2Zn in the presence of 

Pd(OAc)2 and the bidentate phosphine Josiphos (L53) furnished 86 in 91% ee; the use of 

p-F-styrene as an additive was crucial to achieving the high level of enantioselectivity.83 

Figure 1.29. Rh-catalyzed desymmetrization of glutaric anhydrides. 
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alternative to Breit’s enantiospecific Kumada–Corriu coupling for the synthesis of 

deoxypolypropionates.85 

Figure 1.30. Pd- and Rh-catalyzed desymmetrization with arylzinc reagents. 
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conditions with uniformly good enantioselectivity, leading the authors to propose that the 

stereochemistry-determining step occurs independent of the organometallic reagent. 

These reaction conditions could not be extended to the coupling of alkylzinc reagents. 

Figure 1.31. Enantiotopic-group-selective cross-coupling. 
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generate an enantioenriched diarylalkane.51a Prior studies by Shibata and coworkers had 

demonstrated that geminal bis(boronate) 99 is activated toward transmetalation and 

proposed that the “ate” complex of one boronate can coordinate to Pd and assist in an SE2 

transmetalation of the second boronate.89 The resulting monoboronate 100 lacks this 

mode of activation, avoiding the formation of diarylated products. 

In a distinct desymmetrization approach, Willis and coworkers reported the 

asymmetric Suzuki–Miyaura cross-coupling of meso-ditriflate 102.90 The catalyst 

generated from Pd(OAc)2 and chiral biaryl phosphine L57 furnished mono-arylated 103 

bearing a stereodefined quaternary center (Figure 1.32). Even though the yield of the 

transformation was moderate, good enantioselectivity was still accomplished. The 

remaining triflate on 103 was shown to serve as a versatile handle for further 

diversification of the reaction products. 

Figure 1.32. Enantioselective desymmetrization of a meso-ditriflate. 
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acid L58 in conjunction with Pd(OAc)2 was found to impart a high degree of asymmetric 

induction for the C-H activation/cross-coupling between 104 and butylboronic acid to 

give 105 (Figure 1.33, a). The N-protecting group on L58 was a critical element for 

generating high ee. The reaction is hypothesized to proceed through concerted 

metalation/deprotonation transition state 106, in which the unreactive aryl group is 

positioned anti to the carbamate protecting group of the ligand.92 

Figure 1.33. Desymmetrizing enantioselective C−H activation/cross-coupling. 
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hypothesized that a more strongly coordinating ligand could increase stereoselection and 

reactivity in the C−H activation of cyclobutylamide 111. Using the more Lewis basic 

hydroxamic acid L60, 112 could be produced with a high level of enantioinduction 

(Scheme 1.8, b).93 A related ligand also enabled the desymmetrization of prochiral methyl 

groups in acyclic amides to forge β-arylated products in modest ee.93 

Scheme 1.8. C−H activation of strained cycles. 
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coupling, allowing chemists to leverage the flexibility of cross-coupling to streamline the 

synthesis of complex molecules. However, there remain challenges at the forefront of this 

field. Whereas enantiocontrolled cross-couplings of sec-alkyl partners with n-alkyl or 

C(sp2) partners have been well-explored, the analogous asymmetric cross-coupling 

reactions of tert-alkyl partners represent a largely-undeveloped area of great synthetic 

promise. Similarly, the completely stereocontrolled cross-coupling of two sec-alkyl 

partners is yet to be realized. These reactions would provide entry to molecules with all 

carbon-quaternary centers or vicinal tertiary centers, respectively—motifs that are present 

in many bioactive small molecules and natural product targets. The promise of 

enantiocontrolled cross-coupling methodologies has been made clear in the years since 

their inception. We anticipate that their development and application will continue to 

address long-standing challenges in the field of organic synthesis. 
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