
61

Chapter 6

Detection and Tracking of Objects
in Underwater Video

6.1 Introduction

In chapter 5 we demonstrated the application of the saliency-based attention system introduced in

chapter 2 to solve learning and recognition of multiple objects in single scenes and objects in cluttered

scenes. In this chapter we show how the same basic principles can be applied to the detection and

tracking of objects in a multiple target tracking scenario. In particular, we are interested in detecting

and tracking objects in underwater video used to estimate population statistics of marine animals.

This task is challenging because of the low contrast and the large amount of clutter in the video.

However, human annotators can learn this task in a matter of months. This led us to look at our

model of selective visual attention in humans for insights into how we might be able to tackle this

hard problem with biologically inspired algorithms.

This work is a collaboration with the Monterey Bay Aquarium Research Institute (MBARI). After

extensive consultation with professional video annotators at MBARI, I designed and implemented

the attention and tracking system, initially as part of the iLab Neuromorphic Vision C++ Toolkit.

Karen Salamy set up the computer infrastructure at MBARI and conducted the evaluations in

subsection 6.4.1. Danelle Cline set up processing on the Beowulf computer cluster at MBARI,

and she conducted the evaluations in subsection 6.4.2. Rob Sherlock was the expert annotator for

subsection 6.4.2. As the group manager at MBARI, Dr. Duane Edgington provided organizational

support for the project throughout. He and I initiated the project during the 2002 Workshop

for Neuromorphic Engineering in Telluride, Colorado, and the initial phase was supported by a

collaborative research grant by the Institute for Neuromorphic Engineering.
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Figure 6.1: (a) ROV Ventana with camera (C) and lights (L). (b) Manual annotation of video tapes
in the video lab on shore.

6.2 Motivation

Ocean-going remotely operated vehicles (ROVs, figure 6.1 a) increasingly replace the traditional tow

net approach of assessing the kinds and numbers of animals in the oceanic water column (Clarke

2003). At MBARI, high-resolution video equipment on board the ROVs is used to obtain quantitative

video transects (QVTs) through the ocean midwater, from 50 m to 1000 m depth. QVTs are superior

to tow nets in assessing the spatial distribution of animals and in recording delicate gelatinous

animals that are destroyed in nets. Unlike tow nets, which integrate data over the length of the

tow, QVTs provide high-resolution data at the scale of the individual animals and their natural

aggregation patterns for animals and other objects larger than about 2 cm in length (Robison 2000).

However, the current manual method of analyzing QVT video material is labor intensive and

tedious. Highly trained scientists view the video tapes, annotate the animals, and enter the an-

notations into a data base (figure 6.1b). This method poses serious limitations to the volume of

ROV data that can be analyzed, which in turn limits the length and depth increments of QVTs as

well as the sampling frequency that are practical with ROVs (Edgington et al. 2003; Walther and

Edgington 2004).

Being able to process large amounts of such video data automatically would lead to an order-

of-magnitude shift in (i) lateral scale of QVTs from current 0.5 km to mesoscale levels (5 km); (ii)

depth increment from current 100 m to the biologically significant 10 m scale; and (iii) sampling

frequency from currently monthly to daily, which is the scale of dynamic biological processes. Such

an increase in data resolution would enable modeling of the linkage between biological processes and

physicochemical hydrography.
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6.3 Algorithms

We have developed an automated system for detecting and tracking animals visible in ROV video

(Walther et al. 2004a; Edgington et al. 2003). This task is difficult due to the low contrast of many

of the marine animals, their sparseness in space and time, and debris (“marine snow”) cluttering

the scene, which shows up as ubiquitous high contrast clutter in the video.

Our system consists of a number of sub-components whose interactions are outlined in figure 6.2.

The first step for all video frames is the removal of background. Next, the first frame and every pth

frame thereafter (typically, p = 5) are processed with an attentional selection algorithm to detect

salient objects. Detected objects that do not coincide with already tracked objects are used to

initiate new tracks. Objects are tracked over subsequent frames, and their occurrence is verified in

the proximity of the predicted location. Finally, detected objects are marked in the video frames.

6.3.1 Background Subtraction

Images captured from the video stream often contain artifacts such as lens glare, parts of the camera

housing, parts of the ROV, or instrumentation (figure 6.3). Also, non-uniform lighting conditions

cause luminance gradients that can be confusing. All of these effects share the characteristic that

they are constant over medium or long periods of time, unlike the apparently fast moving objects

in the water. Hence we can remove them by background subtraction (x, y, and t are assumed to be

discrete):

I ′(x, y, t) =

I(x, y, t)− 1
∆tb

t−1∑
t′=(t−∆tb)

I(x, y, t′)


+

, (6.1)

where I is the image intensity before and I ′ after background subtraction; [·]+ denotes rectification,

i.e., setting all negative values to zero. This process is repeated separately for the R, G, and B

channels of the color images.

The value of ∆tb should be larger than the typical dwell time of objects in the same position in

the camera plane and shorter than the timescale of changes in the artifacts. In our transect videos,

objects typically move fast. We found that ∆tb = 0.33 s (10 frames) works quite well, giving us

enough flexibility to adjust to changes in the artifacts quickly (figure 6.4b).

6.3.2 Detection

We use the model of saliency-based bottom-up attention described in chapter 2 for the detection of

new objects. Following background subtraction, input frames are decomposed into seven channels

(intensity contrast, red/green, and blue/yellow double color opponencies, and the four canonical

spatial orientations) at six spatial scales, yielding 42 “feature maps.” After iterative spatial compe-
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Figure 6.2: Interactions between the various modules of our system for detecting and tracking
marine animals in underwater video.
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Figure 6.3: Example frames with (a) equipment in the field of view; (b) lens glare and parts of the
camera housing obstructing the view.

tition for salience within each map, only a sparse number of locations remain active, and all maps

are combined into a unique “saliency map” (figure 6.4c). The saliency map is scanned by the focus

of attention in order of decreasing saliency through the interaction between a winner-take-all neural

network (which selects the most salient location at any given time) and an inhibition-of-return mech-

anism (transiently suppressing the currently attended location from the saliency map). Objects are

segmented at the salient locations found this way, and their centroids are used to initiate tracking

(see subsection 6.3.3).

We found that oriented edges are the most important feature for detecting marine animals. In

many cases, animals that are marked by human annotators have low contrast but are conspicuous

due to their clearly elongated edges (figure 6.5a), whereas marine snow has higher contrast but lacks

a prevalent orientation. In order to improve the performance of the attention system in detecting

such faint yet clearly oriented edges, we use a normalization scheme for the orientation filters that

is inspired by the lateral inhibition patterns of orientation-tuned neurons in visual cortex.

We compute oriented filter responses in a pyramid using steerable filters (Simoncelli and Freeman

1995; Manduchi et al. 1998) at four orientations. High-contrast “marine snow” particles that lack a

preferred orientation often elicit a stronger filter response than faint string-like animals with a clear

preferred orientation (figure 6.5c). To overcome this problem, we normalize the response of each of

the oriented filters with the average of all of them:

O′i(x, y) =

Oi(x, y)− 1
N

N∑
j=1

Oj(x, y)


+

, (6.2)

where Oi(x, y) denotes the response of the ith orientation filter (1 ≤ i ≤ N) at position (x, y), and

O′i(x, y) is the normalized filter response (here, N = 4). Figure 6.6 shows a possible implementation

of this kind of normalization in neurons, using an inhibitory interneuron, which represents the sum
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Figure 6.4: Processing steps for detecting objects in video frames. (a) original frame (720×480
pixels, 24 bits color depth); (b) after background subtraction according to eq. 6.1 (contrast enhanced
for displaying purpose); (c) saliency map for the preprocessed frame (b); (d) detected objects with
bounding box and major and minor axes marked; (e) the detected objects marked in the original
frame and assigned to tracks; (f) direction of motion of the object obtained from eq. 6.11.
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Figure 6.5: Example for the detection of faint elongated objects using across-orientation normal-
ization. (a) original video frame with three faint, elongated objects marked; (b) the frame after
background subtraction according to eq. 6.1 (contrast enhanced for illustration); (c) the orientation
conspicuity map (sum of all orientation feature maps) without across-orientation normalization; (d)
the same map with across-orientation normalization. Objects I and III have a very weak represen-
tation in the map without normalization (c), and object II is not represented at all. The activation
to the right of the arrow tip belonging to object II in (c) is due to a marine snow particle next to
the object and is not due to object II. Compare with (d), where object II as well as the marine snow
particle create activation. In the map with normalization (d), all three objects have a representation
that is sufficient for detection.

on the right-hand side of eq. 6.2.

Although this simple model of across-orientation normalization falls short of modeling the full

array of long and short range interactions found in primary visual cortex (DeAngelis et al. 1992;

Lee et al. 1999; Peters et al. 2005), normalization leads to a clear improvement in detecting faint

elongated objects (figure 6.5 d).

6.3.3 Tracking

Once objects are detected, we extract their outline and track their centroids across the image plane

using separate linear Kalman filters to estimate their x and y coordinates.

During QVTs the ROV is driven through the water column at a constant speed. While there

are some animals that propel themselves at a speed that is comparable to or faster than the speed
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inhibitory

Figure 6.6: A schematic for a neural implementation of across-orientation normalization using an
inhibitory interneuron. This circuit would have to be implemented at each image location for this
normalization to function over the entire visual field.

of the ROV, most objects either float in the water passively or move on a much slower time scale

than the ROV. Hence, we can approximate that the camera is moving at a constant speed through

a group of stationary objects.

Figure 6.7 illustrates the geometry of the problem in the reference frame of the camera. In this

reference frame, the object is moving at a constant speed in the x and z directions. The x coordinate

of the projection onto the camera plane is

x′(t) =
x(t) · zc

z(t)
=

vxzc · t + cxzc

vz · t + cz
. (6.3)

To a second order approximation, the dynamics of this system can be described by a model that

assumes constant acceleration:

dx

dt
=


0 1 0

0 0 1

0 0 0

x (6.4)

with

x =


x′

v

a

 , (6.5)

which results in a fundamental matrix that relates x(t) to x(t + τ):

Φ(τ) =


1 τ τ2

2

0 1 τ

0 0 1

 . (6.6)

Φ(τ) is used to define a linear Kalman filter (Kalman and Bucy 1961; Zarchan and Musoff 2000).

The deviations of this simplified dynamics from the actual dynamics are interpreted as process noise
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Figure 6.7: Geometry of the projection problem in the camera reference frame. The nodal point of
the camera is at the origin, and the camera plane is at zc. The object appears to be moving at a
constant speed into the x and z direction as the camera moves toward the object. Eq. 6.3 describes
how the projection of the object onto the camera plane moves in time.

Q. The resulting iterative equations for the Kalman filter are:

Mk = ΦkPk−1ΦT
k + Q, (6.7)

Kk = MkHT
(
HMkHT + R

)−1
, and (6.8)

Pk = (I −KkH) Mk, (6.9)

where P0 is initialized to a diagonal matrix with large values on the diagonal, R = [σ2
m] is the variance

of the measurement noise, H = [1 0 0] is the measurement matrix relating the measurement xM to

the state vector x. Q is the process noise matrix:

Q(τ) = σ2
p


1
20τ5 1

8τ4 1
6τ3

1
8τ4 1

3τ3 1
2τ2

1
6τ3 1

2τ2 τ

 , (6.10)

where σ2
p is the variance of the process noise. For our particular tracking problem we found σ2

m = 0.01

and σ2
p = 10 to be convenient values.

Once the Kalman matrix Kk is obtained from eq. 6.8, an estimation for xk can be computed
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from the previous state estimate x̂k−1 and the measurement xM
k :

x̂k = Φkx̂k−1 + Kk(xM
k −HΦkx̂k−1). (6.11)

When no measurement is available, a prediction for xk can be obtained by extrapolating from the

previous estimate:

x̂k = Φkx̂k−1. (6.12)

For the initiation of the tracker we set x̂0 = [xM
0 0 0]T , where xM

0 is the coordinate of the object’s

centroid obtained from the saliency-based detection system described in the previous section.

We employ the same mechanism to track the y coordinate of the object in the camera plane.

Whenever the x or y coordinate tracker runs out of the camera frame, we consider the track finished

and the corresponding object lost. Re-entry of objects into the camera frame almost never occurs in

our application. We require that an object is successfully tracked over at least five frames, otherwise

we discard the measurements as noise.

In general, we are tracking multiple objects all at once. Normally, multi-target tracking raises

the problem of assigning measurements to the correct tracks (Kirubarajan et al. 2001). Since the

attention algorithm only selects the most salient objects, however, we obtain a sparse number of

objects whose predicted locations are usually separated far enough to avoid ambiguities. If ambigu-

ities occur, we resolve them using a measure that takes into account the Euclidean distance of the

detected objects from the predictions of the trackers and the size ratio of the detected and tracked

objects.

6.3.4 Implementation

We use two ROVs for deep sea exploration, the ROV Ventana and the ROV Tiburon (Newman and

Stakes 1994; Mellinger et al. 1994). ROV Ventana (figure 6.1a), launched from R/V Point Lobos,

uses a Sony HDC-750 HDTV (1035i30, 1920x1035 pixels) camera for video data acquisition, and the

data are recorded on a DVW-A500 Digital BetaCam video tape recorder (VTR) on board the R/V

Point Lobos. ROV Tiburon operates from R/V Western Flyer; it uses a Panasonic WVE550 3-chip

CCD (625i50, 752x582 pixels) camera, and video is also recorded on a DVW-A500 Digital BetaCam

VTR. On shore, a Matrox RT.X10 and a Pinnacle Targa 3000 Serial Digital Interface video editing

card in a Pentium P4 1.7 GHz personal computer (PC) running the Windows 2000 operating system

and Adobe Premier are used to capture the video as AVI or QuickTime movie files at a resolution of

720 x 480 pixels and 30 frames per second. The frames are then converted to Netpbm color images

and processed with our custom software.

All software development is done in C++ under Linux. To be able to cope with the large amount
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Table 6.1: Single frame analysis results.
Image set 1 Image set 2

Date of the dive 06/10/2002 06/18/2002
ROV used for the dive Tiburon Ventana
Number of images obtained 456 1004
Images without animals 205 673
Images with detected animals 224 291
Images with missed animals 27 40

of video data that needs to be processed in a reasonable amount of time, we deployed a computer

cluster with 8 Rack Saver rs1100 dual Xeon 2.4 GHz servers, configured as a 16 CPU, 1 Gigabit per

second Ethernet Beowulf cluster. We currently process approximately three frames per second on

each of the Xeon nodes at a resolution of 720× 480 pixels.

6.4 Results

We present two groups of results – an assessment of the attentional selection algorithm for our

purpose and a comparison of the automatic processing of three 10 minute video clips with expert

annotations.

6.4.1 Single Frame Results

In order to assess the suitability of the saliency-based detection of animals in video frames in the

early stage of our project, we analyzed a number of single video frames. We captured the images

from a typical video stream at random. We analyzed two image sets – one with 456 images from

video recorded by ROV Tiburon on June 10, 2002 and one with 1004 images from video recorded

by ROV Ventana on June 18, 2002. Only some of the images in the sets contain animals. We used

the attentional detection system described in subsection 6.3.2 to evaluate its performance on these

images. We counted the number of images in which the most salient location, i.e., the location first

attended to by the algorithm, coincides with an animal. The results are displayed in table 6.1.

In the images that did not contain animals the saliency mechanism identified other visual features

as being the most salient ones, usually particles of marine snow. Originally, the system had no ability

to identify frames that did not contain any objects of interest. We introduced this concept when

we implemented tracking of objects (see subsection 6.3.3). For the majority of the images that did

contain animals, the saliency program identified the animal (or one of the animals if more than one

were present) as the most salient location in the image. In image set 1 the animals were identified

as the most salient objects in 89% of all images that contained animals. In image set 2 this was the

case for 88% of the images with animals. Ground truth was established by individual inspection of
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Table 6.2: Results from processing four quantitative video transects.
Video Clip (10 min duration each) A B C D

Dive depth 400 m 50 m 1000 m 900 m
Number of animals annotated by person 122 57 29 29
Of those, found by the software 102 (84 %) 40 (70 %) 25 (86 %) 21 (72 %)
Missed by the software 20 (16 %) 17 (30 %) 4 (14 %) 8 (28 %)
Found by the software but missed by the person 5 2 3 4

the test images.

6.4.2 Video Processing

As a test of the video processing capabilities of our system, we processed four 10 min video segments

that had previously been annotated by scientists. Table 6.2 shows the results. Our system missed

on average 21 % of the annotated objects in the video clips. In several cases, our automated

detection system detected animals that the annotators had missed. The program also detected

several other objects that the scientists had not annotated. However, we did not consider these cases

as false positives because a classification system capable of recognizing species would also be able

to distinguish target animals from salient debris. The big advantage of the attention and tracking

system is a massive reduction of data by 95–98 % for subsequent processing by a classification

system.

Almost all misses by the software are of the sub-class Siphonophora, which are long string-like

colonial animals that yield very low contrast in the video frames. Interestingly, most of the animals

that were initially missed by the scientist were of the same sub-class.

Since our system can detect and track objects in the video fairly consistently, it can be used

to summarize longer video segments by displaying a collection of small thumbnail video clips that

show the most interesting parts of the original video. The individual frames for these thumbnail

clips can be extracted automatically from the segmentation and tracking results. This mode is

best described as a virtual camera following individual objects in the video. Using such automatic

indexing, scientists would be able to grasp the most interesting parts of a particular video quickly

without having to review the entire tape. Once these miniature clips are made part of the existing

video annotation reference system (VARS 2005), they will help users identify potentially relevant

tapes in the existing large collection of video data.

6.5 Discussion

We have presented a new method for processing video streams from ROVs automatically. This

technology has a potentially significant impact on the daily work of video annotators by aiding their
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analysis of noteworthy events in video. After continued refinement we hope that the software will be

able to perform a number of routine tasks fully automatically, such as “outlining” video, analyzing

QVT video for the abundance of certain easily identifiable animals, and marking especially interesting

episodes in the video that require the attention of the expert annotators.

Beyond its applications to ROV video, our method for automated underwater video analysis

may potentially have a larger impact by enabling Autonomous Underwater Vehicles (AUVs) to

collect and analyze quantitative video transects, with the potential to sample more frequently and

at an ecologically significant finer spatial resolution and greater spatial range than is practical and

economical for ROVs. We also see great benefit in automating portions of the analysis of video from

fixed observatory cameras, where autonomous response to potential events (e.g., pan and zoom to

events) and automated processing for science users of potentially very sparse video streams from

hundreds of network cameras could be key to those cameras being practical scientific instruments.

In chapter 5 we showed that our attentional selection model can successfully cue object recogni-

tion systems for learning and recognition of multiple objects. In this chapter we have demonstrated

the use of such an algorithm for multi-target tracking. In particular, the selective attention system

detects the targets for track initiation completely automatically. Saliency-based filtering of targets

even before resources are spent on tracking them saves computational resources, and it drastically

reduces the complexity of the assignment problem in multi-target tracking.
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