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Abstract

This thesis outlines the construction of several types of structured integrators for incompressible

fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the exist-

ing Lagrangian-based fluid integrator [32]. We next present a model-reduced variational Eulerian

integrator for incompressible fluids, which combines the efficiency gains of dimension reduction,

the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and

the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped

domains with sub-grid accuracy.

Both these numerical methods involve approximating the Lie group of volume-preserving diffeo-

morphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle

by means of a non-holonomic constraint. Advantages and limitations of this discretization method

will be outlined. It will be seen that these derivation techniques are unable to yield symplectic

integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin’s

circulation theorem.

Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful

element in producing structured numerical methods for fluids in the future.
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Chapter 1

Introduction

Imitating continuous structures in order to produce numerical integrators that preserve geometric

properties of the problem being approximated is a technique that has been used in a wide variety of

contexts in recent decades. Within the field of ordinary differential equations, the study of geometric

integrators is very well developed [17]. In particular, the technique of variational integration [43],

which imitates the action integral via a sum over discrete times, was developed in order to reliably

create symplectic integrators for ODE systems.

Structured integrators for partial differential equations are a more recent and less well-developed

subject, but considerable strides have been made in recent years in subjects such as electromagnetics

[38] and Lagrangian field theories [41]. 2011 saw the publication of a structure-preserving integra-

tor for incompressible fluids [32], which discretized Arnold’s classic formulation of incompressible,

inviscid fluids in terms of geodesics on the Lie group of volume-preserving diffeomorphisms. This

paper drew on earlier techniques such as discrete exterior calculus [11] and the discrete action [43],

but it also introduced the completely new technique of approximating the infinite-dimensional Lie

group of volume-preserving diffeomorphisms by a finite-dimensional Lie group. Techniques such

as discrete exterior calculus and the finite-dimensional Lie group method are structure-preserving

discretizations in space, and may be employed either separately or together with existing variational

integrators in time.

In Chapter 2 we review the existing geodesic integrator for incompressible inviscid fluids that

was presented in [32]. Chapter 3 introduces a discretization of the corresponding Hamiltonian

view of incompressible inviscid fluids[26], thereby giving a method based on the vorticity equation.

The semidiscretization in space of a Lie-Poisson system such as that of the vorticity equation may
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be achieved either variationally or by means of a discrete Lie-Poisson bracket. We also derive

discrete Lie-Poisson integration in time. These developments may be viewed as analogous to the

development of discrete Hamiltonian variational integrators for ordinary differential equations [43].

A notable disadvantage of these earliest geometric fluids methods [32], [14] is the large num-

ber of variables involved. These arise as a result of the discretization of the space into a large

number of cells, all of which may theoretically interact with one another. In practice, we are able

to restrict interactions to nearest neighbors by means of a non-holonomic constraint. However,

further reduction in the number of variables and in the computational time would be desirable,

particularly for applications in fluid animation. For this reason, we turn to the techniques of model

reduction, approximating the fluid motion using only a small number of basis functions in the style

of computational fluid dynamics methods such as [35, 45, 31]. Dimensionality reduction was first

introduced for fluid animation by Treuille et al. [40] through Galerkin projection onto a reduced

set of basis functions computed through principal component analysis of a training set of fluid

motion. A number of works followed proposing the use of different bases such as Legendre polyno-

mials [16], trigonometric functions [24], or even non-polynomial Galerkin projection [37]; eventually,

Laplacian eigenvectors were pointed out by [10] to be particularly appropriate, as they guarantee

divergence free flows and facilitate the conversion between vorticity and velocity, while offering a

sparse advection operator for regular domains. These eigenfunctions also allow easy implementation

of viscosity.

Chapter 4 presents a model-reduced variational integrator. Interestingly, despite the smaller

space of variables, this method still requires a non-holonomic constraint, which will prompt some

important theoretical insights. We use spectral approximation of the functional map through (cell-

based) scalar and (face-based) vector Laplacian eigenvectors in order to offer model reduction

without losing the variational properties of the integrator. Furthermore, we extend the embedded-

boundary approach of [30] to our framework in order to compute spectral (scalar- and vector-valued)

basis functions of arbitrary domains directly on regular grids for fast computations with sub-grid

accuracy We demonstrate the efficiency of our resulting integrator through a number of examples

in 2D, 3D, and curved 2D domains.

We will see in Section 4.3.1 that discretizing the Lie group picture does have some limitations.

In particular, this method requires the use of a non-holonomic constraint, which makes it impossible

to create a symplectic method using this style of discretization. In Chapter 5 we outline the theory
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of a spectral discrete exterior calculus, which may be of use in creating a structured fluid integrator

which does not employ a finite-dimensional Lie group.

Together, these new developments in the structure-preserving simulation of incompressible fluids

significantly increase our theoretical understanding of the application of variational and geometric

methods to the mathematics of fluid motion.

1.1 Contributions

• Chapter 2 reviews the work of Pavlov et al [32], emphasising the techniques used and outlining

some of its limitations.

• Chapter 3 presents a new Hamiltonian integrator for incompressible fluids (work done with

the mentorship of Christian Lessig).

• Chapter 4 presents a model-reduced integrator, using Laplacian eigenfunctions to improve

the computation speed (work done in collaboration with Beibei Liu, Yiying Tong, and my

adviser).

• Chapter 5 outlines a spectral discrete exterior calculus, as previously published in [33] (this

work was a collaboration between Dzhelil Rufat, myself, Patrick Mullen and my adviser).
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Chapter 2

Summary of Lagrangian Fluids

This chapter will outline structure-preserving integrators for inviscid, incompressible fluids as de-

veloped in [32] and [14]. We will see how to mimic the Lie group Lagrangian structure of the fluid

(as discovered by Arnold in 1966 [2]) in a discretized form. This allows us to create integrators with

good energy behavior, and that preserve a discrete version of Kelvin’s circulation theorem. We will

see in later chapters that elements of the process used here may be applied to a wide variety of

structure-preserving integrators for fluids.

2.1 Continuous theory

The variational understanding of incompressible fluids is based upon the observation by Arnold

[2] that the motion of an incompressible, inviscid fluid on a manifold M (possibly with boundary)

may be derived as geodesic motion on the infinite-dimensional Lie group Diffvol(M) of volume-

preserving diffeomorphisms on that manifold. Specifically, the position of the fluid at time t is

represented by a diffeomorphism φt, which represents the change in position of each fluid particle

when we change from time 0 to time t. Because the fluid is incompressible, this diffeomorphism

will be volume-preserving.

This Lie group representation is Lagrangian in that it records the motions of specific particles1.

The associated Eulerian representation, which records the velocity field at each fixed point in space,

may be obtained by moving to the associated Lie algebra χdiv, consisting of the divergence-free

1The word ‘Lagrangian’ will inevitably arise in this dissertation in two distinct contexts: both in the sense (used
here) of following specific fluid particles and also in the sense of Lagrangian (as opposed to Hamiltonian) mechanics.
I apologize for any confusion caused by this unfortunate confluence of nomenclature.
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vector fields on the manifold M which are parallel to the boundary, if M has a boundary. We can

find the appropriate geodesic motion by solving for the time-dependent velocity field v(x, t), which

is a stationary point of the action
∫ t
0
Ldt, where the Lagrangian function L is defined by

L =

∫
M
‖v‖2 dV , (2.1)

where ‖v‖ uses the standard Euclidean norm on vectors in Rn, and the variations satisfy the Lin

constraints:

δv = ξ̇ + [v, ξ]. (2.2)

A Lagrangian stationary action problem of this type, which uses Eulerian rather than Lagrangian

co-ordinates, is solved by the Euler-Poincaré equations [9], which are similar to the Euler-Lagrange

equations for Lagrangian co-ordinates. In this case, the resulting equations are

v̇[ + Lv(v[) = −dp, (2.3)

where v[ is the 1-form dual to the vector field v, Lv is the Lie derivative with respect to v, and dp

is the exterior derivative of some 0-form p.

On regions in R2 or R3, these equations are equivalent to the expected Euler equations for an

incompressible, inviscid fluid:

∂v

∂t
+ v · ∇v = −∇P , (2.4)

where P is a function which accounts for the pressure.

Arnold’s Lagrangian derivation can be used to show that Kelvin’s theorem holds. Specifically,

the circulation-preservation required by Kelvin’s theorem is a special case of Noether’s theorem,

which states that a continuous symmetry of a Lagrangian system induces a conserved momentum.

In this case, the Lagrangian is conserved under a particle-relabeling symmetry. That is, if we

relabel each fluid particle by rearranging them according to some volume-preserving diffeomorphism

g ∈ Diffvol(M), the Lagrangian function is unchanged. Kelvin’s theorem follows as a result.
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2.2 Discretization process

The 2011 paper of Pavlov et al [32] introduced a variational integrator for fluids, based on the

continuous variational derivation of Euler fluids as geodesics on χvol. This method used several

varieties of geometric discretization at once. Most notably, it introduced the idea of approximation

of the infinite dimensional Lie group of volume-preserving diffeomorphisms with an appropriate

finite-dimensional Lie group G. It also introduced a new variant on discrete exterior calculus [11]

which interacts with the associated Lie algebra g. With the help of a non-holonomic constraint, these

two elements can spatially discretize the motion of the fluid in a manner that respects the Lagrangian

structure. It is then possible to derive an associated time-discretization using the method of a

discrete variational principle, a geometric discretization method that has been extensively developed

for use with ODEs [43].

I shall detail here the main elements of the spatial discretization.

2.2.1 The finite-dimensional Lie group method

To find a finite-dimensional Lie group that can approximate the behavior of the infinite-dimensional

Lie group Diffvol(M), we begin by discretizing the fluid domain into a finite number of cells. In

preparation for the rest of this thesis, the explanation given here will focus on regular Cartesian

grids, with square cells of width h.

We discretize a continuous function f(x) on the manifold M by taking an average (integrated)

value fi per grid cell i of the mesh, which we arrange in a vector f . This definition of discrete

functions allows us to discretize the set of possible flows φt ∈ Diffvol(M) using a Koopman operator

(or functional map, as it is known in computer graphics literature), which describes the action of

the flow in terms of how it changes a discrete function. Specifically, the flow map is encoded as a

matrix q of size the square of the number of cells, and the integrated values f of f per cell become

qf once f is advected by the flow φ.

The constant function is unchanged when advected by the flow, so every discrete flow should

take the constant function to itself. That is, for all q, we require that q1=1, where 1 is a vector of

ones (see [32] for the equivalent condition on an arbitrary mesh). This is the same as saying that

the row sums of q are equal to 1, i.e., q is signed stochastic.

Since we are simulating an incompressible fluid, we also require that the discrete flow be volume-
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preserving. This condition is achieved by asking that the discrete flow preserves the inner product

of vectors, that is, q is orthogonal, i.e., qT = q−1. Thus, we find that we need to take q to be an

element of the Lie group G of orthogonal, signed stochastic matrices. This matrix group represents

our discrete fluid configuration, as we describe next.

We can view the finite-dimensional Lie group G as a configuration space: it encodes the space

of possible “positions” for the discrete fluid, in that each element of the Lie group represents a

possible way that the fluid could have evolved from its initial position. This Lie group represents a

Lagrangian perspective as it identifies the fluid particles in a given cell by recording which cells they

originally came from. The associated Eulerian perspective is given by the Lie algebra g of matrices

of the form q̇ ◦ q−1 for q∈G. It was shown in [32] that any matrix A∈g of this Lie algebra is both

antisymmetric (AT =−A) and row-null (A1=0), and corresponds to a discrete counterpart of the

Lie derivative Lv with respect to the continuous velocity field v = φ̇ ◦ φ−1. Thus, the product Af

of such a matrix with a discrete function f approximates the continuous term v · ∇f . Furthermore,

if cells i and j are nearest neighbors, then the matrix element Aij represents the flux of the fluid

through the face shared by cells i and j. Thus, an element of the Lie algebra g of G is directly linked

to the usual flux-based (Marker And Cell) discretization of vector field in fluid simulators [18].

2.2.2 Discrete exterior calculus

The Lie algebra g consists of vector fields on our discrete manifold. The space Ω1 of functionals

on these vector fields may therefore be viewed as a space of discrete 1-forms, while the integrated

functions f that we defined above would naturally form the space Ω0 of discrete 0-forms. This

suggests that we might be able to form some sort of discrete exterior calculus [11], defining discrete

versions of operators such as the exterior derivative, which will be of use in describing the motion

of a discrete fluid.

Throughout this thesis, the discrete versions of continuous operators will be indicated by bold-

face. For example, the continuous exterior derivative is written as d, and the discrete exterior

derivative (defined below) will be denoted d.

We define the space of discrete 1-forms Ω1 as the space of antisymmetric matrices. We pair a

1-form C[ with a vector field B using a Frobenius pairing:

〈C[, B〉 = Tr((C[)TB). (2.5)
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2-forms are defined in this formulation as antisymmetric 3-tensors Fijk. We define the contraction

of a 2-form F with a vector field A as

(iAF )ij =
∑
k

(FikjAik − FjkiAjk) , (2.6)

which is constructed to be antisymmetric so as to yield a 1-form. It was shown in [32] that this

definition is consistent with defining the total pairing of a 2-form F with two vector fields A, B as

〈F,A,B〉 =
∑
i,j,k

FijkAijBik. (2.7)

We can now define a discrete exterior derivative which takes us from a vector f of function values

(f1, f2, ...fN ) to an antisymmetric matrix as follows:

Aij = (df)ij = fi − fj . (2.8)

The exterior derivative on 1-forms is similarly defined by antisymmetry as:

(dA)ijk = Aij +Ajk +Aki. (2.9)

More generally, a k-form is given by an antisymmetric (k+1)-tensor, and the discrete exterior

derivative on a k-form is

dGi1i2···ik+1
=

∑
j∈{1,2,··· ,k+1}

(−1)j+1Gi1···ij−1ij+1···ik+1
. (2.10)

The discrete exterior derivative satisfies d2 = 0, as we would expect by comparison with the

continuous version of the operator.

It should be noted that the version of discrete exterior calculus defined here and in [32], [14]

differs in several important respects from the discrete exterior calculus that was previously defined

by Desbrun et al [11]. Notably, the definitions above define elements of a 1-form corresponding to

every pair of cells, rather than locating 1-forms on edges. The non-holonomic constraint defined in

the next section will bring this version of DEC and the traditional version into closer alignment.

One consequence of this is that we will then be able to use concepts from traditional DEC to inform
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the construction of the discrete flat operator in Section 2.2.4.

2.2.3 Non-holonomic constraint

Whilst the elements Aij for A ∈ g have a clear physical interpretation in the case where i and

j are nearest neighbors, this is not the case for elements representing interactions between cells

that are not immediate neighbors. Similarly to a CFL condition, we prohibit fluid particles from

skipping to non-neighboring cells by restricting the Lie algebra to the constrained set S, the set

of matrices A such that Aij = 0 unless cells i and j share a face (or an edge in 2D). We require

the elements of g that we use to represent the fluid velocity fields to fall into this constrained

set. This has the additional advantage of making the matrices sparse, dramatically decreasing the

amount of memory required and the computational time, as much fewer degrees of freedom need

to be updated. Moreover, a Lie algebra element in this constrained set corresponds exactly to the

traditional MAC discretization with fluxes. We can also relate fluxes between nearest neighbors to

the fluxes on edges that are used in discrete exterior calculus [11].

Constraining the matrices in this way requires a non-holonomic constraint, because the set S

is not closed under the Lie bracket. That is, interactions between nearest neighbors followed by

further interactions between nearest neighbors produce interactions between cells that are two-away

from each other, which are therefore not inside the constrained set S.

2.2.4 Discrete flat operator and inner product

The co-ordinate-independent nature of exterior calculus allows us to translate it to the discrete

setting with the structure intact, in such a way that no error whatsoever is introduced by the

discretization process. However, all numerical methods introduce error at some point, and with

numerical methods derived from discrete exterior calculus that error comes from places in the

method where the co-ordinates (and thus the local metric) must unavoidably be introduced. The

method of Pavlov et al [32] does this by introducing both an inner product and a flat operator,

which takes a vector field A ∈ g and maps it to the 1-form A[ ∈ g∗ such that

〈A[, B〉 = (A,B), ∀B ∈ S, (2.11)
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where the angle brackets on the left hand side indicate the pairing of a 1-form with a vector field

(2.5), and the curved brackets on the right hand side indicate an inner product between vector

fields. We use a Frobenius inner product between vector fields as follows:

(A,B) = 2h2Tr(ATB) (2.12)

where h is the spatial step size. This definition approximates an integral of the product of the two

functions over the space M.

One might think that condition (2.11) would be sufficient to define the flat operator. This turns

out not to be the case. Equation (2.11) only defines those elements of A[ that record interactions

between cells that are nearest neighbors. However, we will also need to know the entries of A[ for

pairs of cells that share a nearest neighbor in common. To define these elements of A[, we require

that the flat operator satisfies the following condition on the total pairing of its discrete exterior

derivative with two discrete vector fields:

〈dA[, B,C〉 →
∫
M

dv[(u,w)dV (2.13)

as h → 0, where A, B and C converge to v, u and w, respectively, as h → 0. It was shown in [32]

that this may be achieved with a little help from discrete exterior calculus to determine the desired

form of the vorticity elements dA[. I refer the reader to this paper for more details.

2.3 Creating a variational numerical method

Using the spatial discretization outlined in the preceding section, Pavlov et al [32] showed that

one can create a semidiscretized numerical method for ideal, incompressible fluids through the

Euler-Poincaré equations [14] for the Lagrangian given by

Lsemidiscrete =
1

2
(A,A) ≈ 1

2

∫
v2dx, (2.14)
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where variations of A satisfy the Lin constraint δA = Ḃ + [A,B], and A is subject to the non-

holonomic constraint A ∈ S. This gives the equations

Ȧ[ + LAA[ = −dp. (2.15)

Because the semidiscretized equations constitute a Lagrangian system of ODEs, they may be

discretized in time using the method of a discrete Lagrangian [43]. The resulting equations are

equivalent to the Harlow-Welch Scheme [18] with a Crank-Nicolson (trapezoidal) update rule. Al-

ternatively, we may create an energy-preserving method by updating with the midpoint rule [28].

2.4 Results and Discussion

We see that the technique of representing the Lie group structure of Diffvol(M) using an appropriate

finite dimensional Lie group may be used, together with a version of discrete exterior calculus and

a non-holonomic constraint, in order to construct a numerical method for fluids which discretizes in

space in a way that preserves the variational structure. Time discretization may then be achieved

either by the energy-preserving midpoint rule, or using a discrete-time variational integrator.

The resulting numerical method exhibits no numerical dissipation (see Figure 2.1), and has been

empirically observed to produce good qualitative behavior over long timescales. This variational

integrator also guarantees that the relabeling symmetry implies a discrete version of Kelvin’s circu-

lation theorem, i.e., circulation of velocity field (represented as a Lie algebra element) along a closed

loop (represented as a 1-cycle [32]) transported along the fluid flow is invariant, which helps keep

the vivid details of vorticity in the fluid simulation without resorting to additional energy-injecting

measures such as vorticity confinement, as shown in [28]. However, the time integration requires a

quadratic solve based on all the fluxes in the domain, making it inappropriate for realtime simu-

lation. Moreover, the non-holonomic constraint means that we no longer preserve the symplectic

structure.
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Figure 2.1: Energy behavior of the numerical method developed in [32], using a discrete-time
variational integrator for the timestepping, and evaluated on a 10 by 10 Cartesian grid.
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Chapter 3

Hamiltonian Fluids

Arnold’s geodesic formulation of inviscid, incompressible fluids has an associated Hamiltonian for-

mulation, as described by Marsden and Weinstein [26]. The primary variable in the Hamiltonian

viewpoint is the vorticity rather than the velocity. This chapter describes a numerical method for

fluids based on this Hamiltonian vorticity viewpoint.

Expanding our understanding of geometric numerical methods for fluids to the Hamiltonian

perspective is useful from a practical perspective, in that the stream function is located on points, a

property which may be useful for constructing embedded boundary methods. Specifically, if there

is no fluid flow through the boundary, then the stream function is constant on the boundary. If the

boundary is connected, then without loss of generality we may set the stream function to zero there.

If we then wish to consider the flux through an edge that passes through an embedded boundary,

we may find it by subtracting the boundary value of the stream function from the value of the

stream function at one of the edge’s two vertices, taking the vertex located inside the boundary.

Although the vorticity form of the Euler equations is generally used in two dimensions, the

framework of differential forms does allow it to be used in three dimensions as well [26]. However,

in this thesis we will consider only the two-dimensional case.

In addition to opening up new possibilities for applications, discretizing the Hamiltonian view of

fluids is also interesting from a theoretical perspective. We will demonstrate two ways of doing this,

one of which utilizes a variational formalism, and the other of which mimics the Poisson bracket.
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3.1 Review of continuous theory

Recall from Section 2.1 that the motion of an incompressible fluid may be described by elements

of Diffvol(M), the Lie algebra of volume-preserving diffeomorphisms, or in the Eulerian sense by

elements of χdiv, the Lie algebra of divergence-free vector fields. The Lagrangian L is invariant

under a particle-relabeling symmetry: for any g ∈ Diffvol(M), L(gR(v)) = L(v) for v ∈ χdiv,

where gR(v) is the right action of g on v. Marsden and Weinstein showed in 1983 [26] that this

symmetry allows us to perform a Lie-Poisson reduction in order to induce a Hamiltonian system

on the dual space χ∗div. This dual space consists of 1-forms modulo exact 1-forms (in the Euler

equations for an incompressible fluid, the modulo over exact 1-forms is accounted for by the dp

term). Equivalently, we may identify any element of χ∗div with an exact 2-form via a bijection given

by the exterior derivative1. Taking the exterior derivative of a 1-form is equivalent to taking the

curl of the associated vector field, and this bijection takes us from a given velocity to the associated

vorticity.

Since we have only kinetic (and not potential) energy, when we move to the Hamiltonian picture

the Hamiltonian function is equal to our earlier Lagrangian (2.14), transformed into momentum co-

ordinates. Given homogeneous boundary conditions (so that the codifferential δ will be the adjoint

of the exterior derivative), this transformation is as follows:

H = (v[, v[) (3.1a)

= (δd∆−1v[, v[) (3.1b)

= (∆−1dv[,dv[) (3.1c)

= (∆−1ω, ω). (3.1d)

Note that the Laplace-deRham operator ∆v[ = (δd + dδ)v[ = δdv[ since the codifferential δv[ = 0

because v is divergence-free. A similar formula holds for ω, where we have ∆ω = (δd+dδ)ω = dδω,

because dω = 0. I have also used the fact that d commutes with ∆−1. This follows easily from the

fact that d commutes with ∆, which can be verified using the definition of ∆ and the nilpotence of

the exterior derivative.

Marsden and Weinstein [26] use this Hamiltonian along with the following Lie Poisson bracket

1Strictly speaking, we need not only the exact 2-form but also the circulation around any non-contractible loops
in the event that M is not simply connected.
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(derived via momentum reduction):

{F,G}(ω) =

∫
M

〈
ω,

[
δF

δω
,
δG

δω

]〉
dx, (3.2)

where δF
δω ∈ χdiv is a functional derivative and an element of the Lie algebra. Then the Lie-Poisson

equations Ḟ = {F,H} yield the vorticity equations:

∂ω

∂t
+ Lvω = 0 (3.3a)

with ω = dv. (3.3b)

More recently, Cendra et al [9] explained how to derive the Lie-Poisson equations from a varia-

tional principle. In the context of incompressible fluids, the Lie-Poisson variational principle states

that the curve (v(t), ω(t)) ∈ χdiv × χ∗div is a critical point of the action

δ

∫ t1

t0

(〈ω, v〉 −H(ω(t))) dt = 0 (3.4)

for variations of the form

δv(t) = η̇(t)− [v(t), η(t)], (3.5)

where η is a curve in χdiv such that η(t1) = η(t2) = 0, and the variations δω are arbitrary.

This variational principle is equivalent both to Hamilton’s principle of critical action and to the

Lie-Poisson equations, which are equivalent to the vorticity equation (3.3a) given above.

3.2 Derivation

3.2.1 Preliminary theoretical elements

By analogy with the continuous theory, we convert a velocity into a vorticity by moving from the

space Ω1/dΩ0 of discrete 1-forms modulo exact discrete 1-forms to the space Ωex
2 of exact discrete

2-forms. A bijection β(A) = dA[ between the two spaces is given by the discrete exterior derivative.

Thus, we define the vorticity 2-form W = dA[ to be the discrete exterior derivative of the velocity

1-form.

If we assume that A ∈ S satisfies the nonholonomic constraint, and use the form of the flat
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Figure 3.1: The square cells i, j, k and l share a vertex. Wijk = Wjkl, because both triangles are
clockwise with the given index order.

operator defined by [32], then Wijk = 0 unless cells i, j and k share a vertex. Furthermore, if cells

i, j, k and l all share a vertex, then Wabc = Wijk for any indices a, b, c ∈ {i, j, k, l} such that no two

indices are repeated, provided that the triangle abc is oriented in the same way as the triangle ijk

(i.e., if travelling from the center of cell i to the center of cell j to the center of cell k and then back

to the center of cell i represents a clockwise/anticlockwise motion, then we require that the triangle

abc should also be clockwise/anticlockwise in order for the equality to hold; see Figure 3.1). This

allows us to make a direct analogy between the 2-form W and an integrated 2-form on dual cells

in discrete exterior calculus [11].

We define a pairing between elements of Ωex
2 and vector fields by defining

〈dB,A〉 = 〈B,A〉 (3.6)

for dB ∈ Ωex
2 and B ∈ Ω1/dΩ0. That is, when we pair a vector field with an element of Ωex

2 , the

result is the same as if we had paired it with the corresponding element of Ω1/dΩ0 as defined by

the discrete exterior derivative bijection between the two spaces.

Previous work [32], [14] defined the metric using a flat operator, which takes us from a vector

field to the 1-form which is equivalent to taking an inner product with that vector field. There are

several other ways to introduce a metric, notably the Hodge star, denoted by ?. For the purposes

of a derivation on vorticity, it is convenient to use a codifferential, which acts on a k-form α as

δα=(−1)k+1?−1d?α. When we have periodic or zero boundary conditions, the codifferential is the
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adjoint of the exterior derivative. Thus, we require that the discrete codifferential δδδ must satisfy

(δδδF,A) = (F,dA). (3.7)

Recall that we have the following inner product on 1-forms:

(A,B) = 2h2
∑
i,j

AijBij . (3.8)

Define the following Frobenius inner product on 2-forms:

(F,G) =
1

9

∑
i,j,k

FijkGijk. (3.9)

A discrete codifferential that is consistent with these inner product definitions is then defined as

follows:

(δδδF )ij =
1

6h2

∑
k

(Fijk + Fkij + Fjki). (3.10)

These definitions for the inner product and the codifferential are consistent in that they satisfy the

equality (3.7). The constants have also been chosen so that, if i, j, k, and l are four cells that share

a vertex, then (dδδδF )ijk + (dδδδF )ikl gives an expression equivalent to the five-point stencil for the

Laplacian. It may also be seen that, on a Cartesian grid and using the non-holonomic constraint,

this definition for the codifferential is equivalent to taking appropriately-scaled differences between

adjacent dual cells.

Using the discrete codifferential rather than a discrete flat operator allows us to introduce a

metric to our space in a much more straightforward way. Whereas the flat operator was defined

on a rather ad hoc basis as an operator satisfying the definition and the limiting equality (2.13),

the discrete codifferential may be easily derived from the definition of a codifferential along with a

standard discrete form of the Laplacian.

3.2.2 Variational derivation

To derive the semidiscretized vorticity equations from a variational principle, we create a non-

holonomically constrained Lie-Poisson system using the Lie-Poisson variational principle (3.4). We
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define the discrete Hamiltonian Hd = 〈∆−1W,W 〉, using the discrete Laplacian ∆ = dδδδ + δδδd, and

consider variations of the action

∫
(〈W,A〉 −Hd(W )) dt, A ∈ S (3.11)

for arbitrary variations δW and variations δA of the form δA = Ḃ + [B,A], where B ∈ S satisfies

the nonholonomic constraint.

This yields
δHd

δW
= A (3.12)

and 〈
Ẇ + ad∗AW,B

〉
= 0, for all B ∈ S. (3.13)

Both these equations require further interpretation. The expression δHd

δW is defined by

DHd(µ) · ν = 〈ν, δHd

δµ
〉, (3.14)

where DHd ∈ g is the derivative of F. We can calculate δHd

δW as follows, using the fact that the

Laplacian (and its inverse) are self-adjoint:

DHd(W ) · δW = lim
ε→0

1

ε
(Hd(W + εδW )−Hd(W )) (3.15a)

= lim
ε→0

1

ε

(1

2
〈∆−1(W + εδW ),W + εδW 〉 − 1

2
〈∆−1W,W 〉

)
(3.15b)

= 〈∆−1W, δW 〉. (3.15c)

This means that the pairing of δHd

δW with a 2-form dσ can be related to the following inner product

on 2-forms:

〈dσ, δHd

δW
〉 = (dσ,∆−1W ). (3.16)

Given the definition 3.6 of the pairing of a 2-form with a vector field, we can then conclude that

〈σ, δHd

δW
〉 = (dσ,∆−1W ) (3.17a)

= (σ, δ∆−1W ). (3.17b)
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That is, if we set A = δH
δW , then we have A[ = δ∆−1W . When we take the discrete exterior

derivative of both sides, we see that equation (3.12) implies that W = dA[, as expected.

To interpret the second equation (3.13), recall that the pairing of a 2-form with a vector field

is defined (3.6) to be the same as pairing the equivalent 1-form with a vector field when we invert

the bijection β between the two spaces. Equation (3.13) thus implies that

β−1(Ẇ + ad∗AW ) ∈ S⊥, (3.18)

where S⊥ is the space perpendicular to S, which was shown in [32] to be the space of exact 1-forms

dP for some 0-form P . Thus,

β−1(Ẇ + ad∗AW ) = dP (3.19)

=⇒ Ẇ + ad∗AW = 0, (3.20)

since the bijection β :Ω1/dΩ0→Ωex
2 is given by the discrete exterior derivative. Given the definition

of the adjoint action ad∗, this is equivalent to

Ẇ + LAW = 0 (3.21)

This is a semidiscrete version of the vorticity equation (3.3a).

3.2.3 Derivation from a discrete version of the Lie-Poisson bracket

We can construct an alternate derivation based on the fact that the vorticity equations can be

derived from the Lie-Poisson equations Ḟ = {F,H} on χ∗vol. Following the continuous derivation

given in [26], we can construct a similar derivation on our discrete Lie algebra dual g∗.

The Lie-Poisson bracket is defined in the continuous case by

{F,G}(ω) =

∫
〈ω,
[δF
δω

,
δG

δω

]
〉dx. (3.22)

In the discrete case, we drop the integral as it is effectively included in the pairing. This gives:

{F,G}(W ) = 〈W,
[ δF
δW

,
δG

δW

]
〉. (3.23)



20

This is already well-defined as an expression. We have a Lie bracket on g and a discrete pairing

with the dual. It is worth noting, however, that if we constrain W to be in the set δA[ for A ∈ S,

then the introduction of the non-holonomic constraint will mean that this bracket no longer satisfies

the Jacobi identity [5].

We can now derive the vorticity equations from the Lie-Poisson equations as follows. For an

arbitrary function F , we know that:

Ḟ = {F,Hd}, (3.24)

where Hd = 〈δ−1W,W 〉 is the discrete Hamiltonian as before. Considering the left hand side, we

have:
dF

dt
= DF (W ) · Ẇ = 〈Ẇ ,

δF

δW
〉. (3.25)

On the right hand side, we have:

{F,Hd} = 〈W,
[ δF
δW

,
δHd

δW

]
〉 (3.26a)

= 〈W,
[ δF
δW

,A
]
〉 (3.26b)

= 〈W,−adA
δF

δW
〉 (3.26c)

= 〈−ad∗AW,
δF

δW
〉 (3.26d)

= 〈−LAW,
δF

δW
〉. (3.26e)

Given that F is arbitrary, we have thus proved that

Ẇ + LAW = 0 (3.27)

in the discrete case.

Equations (3.2.2) to (3.17b) apply here, just as they did in the previous derivation, to show that

W = dA[.

3.2.4 Geometric properties of the semidiscretization

We can use the Lie-Poisson derivation of the semidiscretized equations of motion to show that these

equations preserve the Hamiltonian. We can see that the Hamiltonian is preserved, because the
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derivation shows that equation (3.27) holds if and only if Ḟ = {F,Hd} for all functions F . Thus, if

we take F = Hd,

dHd

dt
= {Hd, Hd} = 0. (3.28)

Note that, as with the Lagrangian method developed in [32] and outlined in Chapter 2, we

expect that the semidiscretized equations cannot be symplectic, due to the use of a nonholonomic

constraint. We will, however, still satisfy a discrete version of Kelvin’s theorem, in the same style as

in Chapter 2. This may be seen from the equivalence between equation (3.19) and equation (2.15).

Since the latter satisfies the discrete Kelvin’s theorem property, it follows that the former will, also.

3.2.5 Time discretization

Having obtained the semidiscretization (3.21), we now wish to discretize in time. To retain good

energy behavior and avoid numerical viscosity, we will use a time-symmetric discretization [17]. The

lowest order time-symmetric discretizations are of order two; one may use either the trapezoidal rule

or the midpoint rule. The midpoint rule has the advantage that it preserves quadratic invariants

[17], including the energy of the fluid.

The trapezoidal rule, which may be derived from a variational method in the style of [43], would

ordinarily give a symplectic method. However, as a rule, systems derived from a non-holonomic

constraint are not symplectic unless the constraint can be rewritten to be holonomic [5]. As this

is not the case for the constraint that we are using, our semidiscretization (3.21) is already not a

symplectic system. Nonetheless, for completeness, we detail here how to use a discrete Lie-Poisson

action to variationally derive a trapezoidal time discretization. Variational Lie-Poisson integrators

have been developed before [25], but not in the presence of a non-holonomic constraint, so we derive

the time integration from first principles.

The discrete action for timesteps of size h is defined to be

Sh =

N∑
k=0

[
〈Wk, Ak〉 −H(Wk)

]
h. (3.29)

We place no restrictions on variations of Wk, and we ask that variations of Ak satisfy a discrete Lin

constraint. These discrete Lin constraints were developed in [32], and may vary in form depending



22

on how we posit the group element qk (denoting position of the fluid in the Lagrangian sense) to

update based on the current fluid velocity Ak. The simplest of these, which corresponds to an

explicit Euler method update of the fluid position, is

δkAk = −Bk
h

+AkBk (3.30a)

with δk+1Ak =
Bk+1

h
−Bk+1Ak, (3.30b)

where δkAk denotes the variations of Ak with respect to δqk, and Bk ∈ S.

Equating the variation of the action (3.29) with respect to Wk to zero yields

Ak =
δH

δW
(Wk), (3.31)

which, as we have seen before, is equivalent to the statement Wk = dAk.

Equating the variations of the action with respect to δqk to zero for k = 1...N − 1 yields

〈Wk−1, δkAk−1〉+ 〈Wk, δkAk〉 = 0. (3.32)

Now we substitute in the discrete Lin constraints to get

〈Wk−1,
Bk
h
−BkAk−1〉+ 〈Wk,−

Bk
h

+AkBk〉 = 0 (3.33)

〈Wk−1 −Wk,
Bk
h
〉+ 〈Wk, AkBk〉 − 〈Wk−1, BkAk−1〉 = 0 (3.34)〈

Wk −Wk−1

h
,Bk

〉
−
〈
Wk,

Ak −ATk
2

Bk

〉
−

〈
Wk−1, Bk

Ak−1 −ATk−1
2

〉
= 0, (3.35)

where we have used the fact that Bk is antisymmetric. However, as it happens Ak is also antisym-

metric, which means ATkBk = −(ATkBk)T = −BTk Ak = BkAk. A similar expression of course holds
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for Ak−1, and thus,

〈
Wk −Wk−1

h
,Bk

〉
−
〈
Wk,

AkBk −BkAk
2

〉
−
〈
Wk−1,

BkAk−1 −Ak−1Bk
2

〉
= 0 (3.36)〈

Wk −Wk−1

h
,Bk

〉
+

〈
Wk,

1

2
[Ak, Bk]

〉
−
〈
Wk−1,

1

2
[Ak−1, Bk]

〉
= 0 (3.37)〈

Wk −Wk−1

h
,Bk

〉
+

〈
1

2
(ad∗AkWk + ad∗Ak−1

Wk−1), Bk

〉
= 0. (3.38)

Bk ∈ S is arbitrary, and so we find that, by the definition (3.6) of the pairing of a 2-form with a

vector field,

β−1
(
Wk −Wk−1

h
+

1

2
(ad∗AkWk + ad∗Ak−1

Wk−1)

)
∈ S⊥ (3.39)

β−1
(
Wk −Wk−1

h
+

1

2
(ad∗AkWk + ad∗Ak−1

Wk−1)

)
= dP (3.40)

Wk −Wk−1

h
+

1

2
(ad∗AkWk + ad∗Ak−1

Wk−1) = 0, (3.41)

as expected.

3.2.6 Explicit numerical formulas

Recall that the semidiscretized equations were

Ẇ + LAW = 0 (3.42a)

W = dA. (3.42b)

Let us examine in more detail the Lie derivative term LAW . We expand this term using the

discrete version of Cartan’s “magic” formula, which states that

LAW = diAW . (3.43)

Using the definition of the contraction (2.6), we have that, for a 2-form W and a 1-form A,

(iAW )ij =
∑
m

(WimjAim −WjmiAjm). (3.44)
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Figure 3.2: A grid for calculating the (discrete) Lie derivative.

Consider cells i and j in Figure 3.2. Then, bearing in mind the non-holonomic constraint, we find

(iAW )ij =
∑
m

(WimjAim −WjmiAjm) (3.45a)

= WiljAil +Wim1jAim1
−WjkiAjk −Wjm2iAjm2

. (3.45b)

Recall that if the 2-form W is equal to dB[ for some B ∈ S, then Wim8j = Wjm3i = 0 (since the

cells are in a straight line), so those terms are not included above. Furthermore, this constraint

on W also implies that Wilj = −Wjki. Write Wjki = ω1, and label the vorticities on other nodes

similarly (see Figure 3.2 for details). This results in the equation

(iAW )ij = −ω1(Ail +Ajk) + ω2(Aim1
+Ajm2

). (3.46)

Similarly, it can be calculated that

(iAW )jk = −ω1(Aji +Akl) + ω3(Ajm3 +Akm4) (3.47)

(iAW )ki = ω1(Ail +Akl −Akj −Aij). (3.48)

Putting these together, the discrete form of Cartan’s formula is

(diAW )ijk = (iAW )ij + (iAW )jk + (iAW )ki (3.49a)

= ω2(Aim1 +Ajm2) + ω3(Ajm3 +Akm4). (3.49b)

Notice that, while Wijk = Wkli whenever W = dB[ for some B ∈ Ω1, it is not generally true

in this case that (diAW )ijk = (diAW )kli. This means that while the vorticity values over ijk and
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kli will be the same, the update equations for these quantities will still differ. Knowing this, how

can we be sure that Wijk = Wkli will still hold at the next timestep? The answer comes from the

other equation governing the motion of the fluid, which tells us that W = dA[. Given that A has

been restricted to satisfy the non-holonomic constraint, this places the desired restriction on the

structure of W .

We can further streamline our equations by defining the value Gijkl = Wijk +Wkli, located on

the square dual cell that overlaps with cells i, j, k and l. Physically speaking, this is as if we have

added the vorticity integrated over the triangle ijk to the vorticity integrated over the triangle kli

to obtain a value integrated over the dual square ijkl. It is then natural to use linearity of the

exterior derivative and define

(diAG)ijkl = (diAW )ijk + (diAW )kli (3.50a)

= ω2(Aim1 +Ajm2) + ω3(Ajm3 +Akm4) (3.50b)

+ ω4(Akm5
+Alm6

) + ω5(Alm7
+Aim8

). (3.50c)

This formula is nicely symmetric, and is the form that was used for the numerical results below.

3.3 Results

To show the good qualitative behavior of the method outlined in this chapter, we used it to simulate

the behavior of two co-rotating vortices. Each vortex was given by a Gaussian vorticity distribution

ω = −a · e
1
2

1−(x2+y2)

a2 , appropriately shifted away from the origin so that the two vortices start at a

distance d = 0.8 apart. The width factor a was set to be 0.3. These parameters give a system that

is very close to a bifurcation point. If the vortices were ever so slightly closer, they would merge.

With the parameters given, however, the correct behavior should be that they move apart. Figure

3.4 shows the behavior of corotating vortex simulations using several other methods. It can be seen

that methods with good energy behavior generally perform well at this test, whereas methods that

introduce numerical dissipation generally cannot resolve the bifurcation point.

In Figure 3.3, we see the behavior obtained from the Hamiltonian semidiscretization, using the

midpoint rule in time, on a 50 by 50 grid. It can be seen that the correct behavior is obtained, even

for this low resolution.
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Figure 3.3: The Hamiltonian midpoint method on a 50 by 50 grid captures the behavior of two
co-rotating vortices which almost merge, then move apart.
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Figure 3.4: Performance of some other methods on the problem of two co-rotating vortices, taken
from [28]. From left to right, top to bottom: Reference solution; Stable fluids [36]; energy-
preserving scheme (Harlow-Welch [18] with midpoint time discretization); a simplicial energy-
preserving scheme [28]; a MacCormack scheme [34]; FLIP [46]. All results were computed on
grids of around 216 cells or triangles.
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Figure 3.5: Energy divided by initial energy for a long-time simulation using the Hamiltonian
trapezoidal method.

We can also see empirically (Figure 3.5) that the Hamiltonian trapezoidal method does not have

any innate tendency to gain or lose energy over time. Over 700 timesteps, with a spatial resolution

of h = 0.08 and timesteps of length 0.05, the energy drifts by less than three percent. Unlike the

results from a symplectic method, here there is nothing to stop the energy from eventually drifting

arbitrarily far from the start point. However, the energy behavior of this method is stable enough

that this drift would take a very long time to occur. If we instead use the midpoint rule, we attain

exact energy conservation as expected.
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3.4 Discussion

The Hamiltonian methods detailed here expand our theoretical and practical understanding of

the structure-preserving simulation of incompressible fluids. The spatial semi-discretization has

been shown to be possible either using a continuous-time variational formalism, or using a discrete

version of the Lie-Poisson bracket. We have also seen how to construct a variational Lie-Poisson

time integrator in the presence of a non-holonomic constraint. We have created an energy and

circulation preserving vorticity method.

In this case, because of the non-holonomic constraint, the discrete Lie-Poisson bracket does not

satisfy the Jacobi identity. However, we have seen that it is nevertheless useful in the creation of a

numerical method, particularly since the conservation of energy relies only on the antisymmetry of

the bracket, a property which we still keep.

In the course of creating these methods, we have included the discrete codifferential, which

was previously proposed by Bochev et al [6]. In combining the Hodge star with a derivative, the

codifferential is sometimes more elegant than a direct Hodge star, particularly since the simplest

version of the Hodge star used in DEC is the diagonal Hodge star, which is, strictly speaking, a

zeroth-order approximation, whereas the codifferential based on the diagonal Hodge star may be

created so as to be second-order on a regular grid, as it is essentially a central difference method.

Future work includes the extension of this work to three dimensions, and the potential ap-

plication of the stream function formalism to embedded boundaries. The work done here is also

potentially applicable to other Lie-Poisson systems besides that of fluids, such as the Poisson-Vlasov

system, which describes plasma [27].
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Chapter 4

Model-Reduced Lagrangian Fluids

So far, we have seen that the technique of using a finite-dimensional Lie group to approximate the

infinite-dimensional Lie group Diffvol(M) is useful for creating a semidiscretization that preserves

the variational structure of the equations, resulting in energy-preservation (with an appropriate time

discretization), a discrete version of Kelvin’s circulation theorem, and good qualitative behavior

in resolving the bifurcation point between merging and separation of two co-rotating vortices.

However, the resulting implicit methods are not especially fast, making them impractical for use in,

for example, computer graphics. Moreover, the introduction of the non-holonomic constraint was a

computational necessity in order to avoid dense matrices whose number of entries would be on the

order of (∆x)−2×(∆x)−2 =(∆x)−4, where ∆x is the spatial step size. This non-holonomic constraint

then made it impossible to use this technique to construct a symplectic numerical method. Thus,

we aim to improve the speed of computation, with an eye to perhaps making the non-holonomic

constraint unnecessary by reducing the number of variables. In collaboration with Beibei Liu and

Yiying Tong, we consider how to introduce model reduction to a variational fluids method. That is,

instead of describing the fluid by recording the value of a function at many different points is space,

we instead describe functions by projecting them onto a partial basis for the function space. This

allows us to use fewer variables while still retaining considerable accuracy. Interestingly, it does

not remove the need for a non-holonomic constraint, and the insights gained from the recurrence

of this necessity will be detailed at the end of the chapter.
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4.1 Derivation

We will first define the discrete, reduced scalar and velocity fields on which our functional map

Lie group will act. Extending what was advocated in [10], we expand functions and vector fields

using the orthonormal bases for 2-forms and 3-forms given by the eigenfunctions of the (deRham-

)Laplacian operators on an arbitrary discrete meshM. These are calculated using the discrete op-

erators of Finite-Element Exterior Calculus (FEEC [1]) and Discrete Exterior Calculus (DEC [11]),

allowing us to leverage the large literature on their implementation and structure-preserving prop-

erties with respect to topology. Although there are several sets of orthogonal eigenfunctions that

we could use, this set also has the advantage of simplifying our equations in the event that we

wish to add vorticity. This set of basis functions can efficiently encode through reduced coordinates

the full-space fields typically used in the MAC scheme, i.e., fluxes through cell boundaries (dis-

crete 2-forms) to represent velocity fields, and densities integrated in each cell (discrete 3-forms) to

represent scalar fields (such as smoke density).

4.1.1 Spectral Bases

Choice of eigenfunctions. We consider a reduced space of volume forms given by the span of

the first N Laplacian eigenfunctions on our space. To find these Laplacian eigenfunctions, we follow

the approach of [10]. That is, we either calculate Laplacian eigenfunctions explicitly (in the case of

a simple space like a circle or rectangle), or, more likely, we use a mesh, which need not be regular,

and calculate eigenfunctions of a discrete Laplacian operator on that mesh.

We denote the i-th eigenfunction of 3-form Laplacian ∆3 as Φi with associated eigenvalue −µ2
i ,

∆3Φi = −µ2
iΦi.

The eigenfunctions corresponding to the M3+1 smallest eigenvalues µi can be assembled into a

low-frequency basis:

{Φ0, ...,ΦM3
}.

A general volume form ρ will then be represented by a vector (ρ0, ..., ρM3
) of (M3+1) values, each

representing the inner product of ρ with an element of this reduced orthonormal basis, so that

ρ =
∑M3

i=0 ρiΦi. Note that, depending on the boundary condition, µ0 = 0 may correspond to more
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than one harmonic function, but these are not influenced by divergence-free velocity fields with zero

flux across the boundary and are omitted in our discussion.

Similarly, we denote the i-th eigenfunction of 2-form Laplacian ∆2 as Ψi, with its associated

eigenvalue −κ2i :

∆2Ψi = −κ2iΨi.

We also assemble the first M2 eigenvector fields (corresponding to the M2 smallest eigenvalues) into

a finite dimensional low-frequency basis:

{Ψ1, ...ΨM2
}.

Some of the 2-form eigenfunctions are not divergence-free, and these eigenfunctions can be identified

as gradient fields, ∇Φi/µi. Thus, we can reorder the eigenfunctions of ∆2 into

{h1, ..., hβ1
,
∇Φ1

µ1
, ...,
∇ΦM3

µM3

,Ψ1, ...ΨMC
},

where hi are harmonic 2-forms (corresponding to frequency κi=0) with β1 is the first Betti number

determined by the topology of the domain (basically, the number of tunnels plus the number of

connected components of the boundary minus one), and MC =M2−M3−β1 denoting the number

of non-harmonic but divergence-free basis functions.

Lie Group action. In similar fashion to the other derivations outlined in this thesis, we represent

the action of a volume-preserving diffeomorphism on the space using the approach of Koopmanism,

by looking at how a given diffeomorphism acts on functions. We encode the fluid motion through

a time-varying Lie group element q(t) that represents a functional map induced by the fluid flow

φt, mapping a function f(x) =
∑
i fiΦi(x) linearly to another function g(x) =

∑
i giΦi(x) such

that g(x) = f ◦ φ−1(x). Since a volume form fdV is represented by a vector of (M3 + 1) values, a

diffeomorphism q can be encoded by a (M3 + 1)-by-(M3 + 1) matrix.

The volume-preserving property of the flow still implies the orthogonality of the matrix q, i.e,

qtq=Id. So we are looking for a subgroup of O(M3+1), or, more accurately, of SO(M3+1), since

we wish to describe gradual changes from the identity.

The condition that constant functions are mapped to themselves in this low-frequency Lie group
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becomes q0i= δ0i and qi0 = δi0, where δij is the Kronecker symbol, since 0-th frequency represents

the constant function. This effectively removes one dimension of possible changes that an element

of the Lie group could make. The Lie group that we are using is thus isomorphic to SO(M3).

This is much smaller than the full Lie group used for the spatial representation [32], which had a

dimension proportional to the square of the number of cells of the mesh—a potential reduction of

several orders of magnitude.

Lie Algebra. We identify each velocity eigenfunction Ψm with an element of the Lie algebra of

the above Lie group as follows. We take the Lie derivative along the velocity field Ψm of a scalar

eigenfunction Φi projected onto another scalar eigenfunction Φj , which is a matrix Am for each

velocity eigenfunction Ψm, with entries

Am,ij =

∫
M

Φi(Ψm · ∇Φj). (4.1)

As in the non-spectral case, the divergence-free condition leads to the antisymmetry of these ma-

trices:

Am,ij +Am,ji =

∫
M

(ΦiΨm · ∇Φj + ΦjΨm · ∇Φi) (4.2a)

=

∫
M

Ψm · ∇(ΦiΦj) (4.2b)

= −
∫
M

ΦiΦj∇ ·Ψm (4.2c)

= 0. (4.2d)

This is expected, since the Lie algebra so(M3) of SO(M3) contains only antisymmetric matrices.

The Lie algebra has a Lie bracket given by the usual matrix commutator [Am, An] = AmAn−AnAm.

4.1.2 Non-holonomic constraint.

There are M3(M3 − 1)/2 degrees of freedom in the Lie algebra of antisymmetric matrices so(M3).

However, we cannot simply use the first M3(M3 − 1)/2 elements of the Laplacian basis of vector

fields, because most of these elements will be of such high frequency that when we calculate its effect

on a volume form basis element Φj according to the definition (4.1), we will find that the result is
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Figure 4.1: Effect of shape on spectral bases: The Laplacian eigenvectors depends heavily
on the domain Ω. Here, rectangle (top) vs. ellipse (bottom) domains (both computed on 2D
rectangular grid of size 1202) exhibit very different eigenvectors Ψ10 and Φ10.
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still of such high frequency that its inner product with each basis element Φi gives zero. The space

of divergence-free vector fields acting on the reduced basis of volume forms is of lower dimension

than the Lie algebra. It follows that some elements of the Lie algebra must not correspond to a

vector field at all.

We force the dynamics on the Lie algebra to remain within the domain of physically-sensible

elements using the following non-holonomic constraint, which keeps the velocity within the space

spanned by the lowest frequency MC+β1 divergence-free 2-form basis fields:

A =

MC+β1∑
i=1

vi Ai (4.3)

where vi is a coefficient for Ai representing the modal amplitude of frequency κi. This linear

condition can be seen as an intuitive extension of the one-away spatial constraint on Lie algebra

elements that was used in [32] and explained in Section 2.2.3. Instead of constraining interactions

to be local in space, we have constrained them to the part of the Lie algebra that corresponds to

lower-frequency basis functions1.

4.1.3 Implementation

Computing our spectral bases requires a proper discretization of the Laplacian operators and of

boundary conditions. Both topics are well studied, and many implementations can be leveraged [12,

4]. A detailed guide to discretization on arbitrary unstructured meshes may be found in Appendix A

of [23] to explicate how to enforce no-transfer and free-slip conditions (corresponding, respectively,

to vn|∂M=0 and ∂vt/∂n |∂M=0 if the continuous velocity field is decomposed at the boundary into

its normal and tangential components, v=vn+vt). Note that only two operators are required: the

exterior derivative d and the Hodge star ?. The first operator is purely topological, while the second

is just a scaling operation per edge, face, and cell. Moreover, as explained in the next paragraph,

this latter operator can be trivially modified to handle arbitrary fluid domains without having to use

anything else but a regular grid. From these two operators, both Laplacians are easily assembled,

and low-frequency eigenfields are found via Lanczos iterations since each operator is symmetric by

construction.

1Note that the rest of the Lie algebra does not actually correspond to higher-frequency basis functions (if it did,
we could keep them). Rather, it corresponds to elements with no clear physical interpretation.
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Figure 4.2: 3D bunny buoyancy test: A hot cube of air initially located at the center of a
3D bunny-shaped domain is advected through buoyancy. Computations were performed using a
modified Hodge star on a 42×42×32 grid, with only 100 modes.
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Figure 4.3: Domain-altered Hodge stars: Hedge-hog visualization of Ψ5 on a 2562 grid for three
different 2D domain shapes, obtained through a simple alteration of the Hodge star ? operator.

To implement embedded boundaries we propose a simple extension of the technique of [30] to

compute k-form Laplacians of an arbitrary domain while still using a regular grid. This renders the

implementation of Laplacians and their boundary conditions quite trivial, and removes the arduous

task of tetrahedralizing arbitrary domains. This idea was introduced in [3] for their pressure-based

projection, and a simple alteration proposed by [30] made the approach robust and convergent. We

leverage this latter work by noticing that the modification of the Laplacian ∆3 that they proposed

amounts to a local change to the Hodge star operator ?2.

More precisely, consider a continuous domain Ω, e.g., defined implicitly by a function χ via

Ω = {x|χ(x) ≥ 0} (see Figure 4.4). Recall that the diagonal Hodge stars on a mesh M are all

expressed using local ratios of measurements (edge lengths, face areas, cell volumes) on both the

primal elements ofM and its dual elements [11]. The changes to the Laplacian operator ∆3 that Ng

et al. [30] introduced can be reexpressed by an alteration of the Hodge star ?2, where each primal

area measurement only counts the part of the primal face that is inside Ω, but dual edge lengths

are kept unchanged. We extend this simple observation (which amounts to a local, numerical

homogenization to capture sub-grid resolution) by computing modified Hodge stars ?̂1, ?̂2, and ?̂3

where only the parts of the primal elements (partial lengths, areas, or volumes) that are within the

domain Ω are counted (see inset). Note that changing directly the Hodge stars does not affect the

symmetry and positive-definiteness of the Laplacians, and thus incurs no additional cost for our

method. This straightforward extension allows us to compute our spectral bases on regular grid for

arbitrary domains Ω as illustrated in Fig. 4.3 for a basis element of vector fields. We also show the
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Figure 4.4: Diagram of the Hodge star near an embedded boundary.

behavior of this Hodge star modification under refinement of the regular grid for a given continuous

elliptic domain Ω, resulting in very good approximations of the eigenvectors.

4.1.4 Spectral variational integrator

The Lagrangian of the fluid motion (i.e., its kinetic energy in the case of Euler fluids) can be written

as LEuler = 1
2 〈A(t), A(t)〉 as we reviewed in Sec. 2.3. Thus, the equation of motion can be derived

from Hamilton’s (least action) principle:

∫
〈A(t), δA〉dt = 0 (4.4)

under the Lin constraint [14] restricting the variations of A to those of the form

δA = Ḃ + [A,B], (4.5)
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Figure 4.5: Convergence of Laplacians: Our discretization of the two Laplacians creates (vector
and scalar) eigenfields that converge under refinement of the regular grid used to compute them,
extending the linear convergence proved in [30]. Here, particle-tracing visualization of the 15th

eigenbasis for vector fields on the ellipse (top) at resolution 302, 602, 1202, and 2402, and 15th eigen
function (bottom) at the same resolutions.

where B =
∑
i ξiAi is an arbitrary element of the Lie algebra with coordinates {ξi}i in the 2-form

basis. Substituting Eq.(4.5) into Eq.(4.4), we then have

0 =

∫
〈A, δA〉 dt

=

∫ ∑
i,k

vk ξ̇k 〈Ai, Ak〉+
∑
i,j,k

vivjξk 〈Ai, [Aj , Ak]〉 dt

=

∫ ∑
k

(
−
∑
i

v̇k 〈Ai, Ak〉+
∑
i,j

vivj 〈Ai, [Aj , Ak]〉
)
ξk dt.

Since this last equation must be valid for any ξk, the update rule for the velocity field has to be

v̇k =
∑
i,j

vivj 〈Ai, [Aj , Ak]〉 ≡ vTCkv, (4.6)

where v is the column vector storing the coefficients vi of the discrete velocity A (Eq. 4.3), and Ck

is the square matrix with components

Ck,ij = 〈Ai, [Aj , Ak]〉 =

∫
M

(∇×Ψi) · (Ψk×Ψj). (4.7)
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Time integrator. The continuous-time update in Eq. 4.6 is then discretized via either a midpoint

rule (which will lead to an energy-preserving model-reduced variant of [28]) or a trapezoidal rule

(which corresponds to a model-reduced variant of the variational method of [32]). Specifically, the

midpoint rule is implemented as

vt+hk − vtk = h
∑
i,j

Ck,ij
vti + vt+hi

2

vtj + vt+hj

2
. (4.8)

The energy preservation can be easily verified by multiplying vtk + vt+hk on both sides of the above

equation, summing over k, and invoking the property of coefficients Ck,ij = −Cj,ik. The trapezoidal

rule can, instead, be implemented as

vt+hk − vtk =
h

2

∑
i,j

Ck,ij(v
t
iv
t
j + vt+hi vt+hj ), (4.9)

which is derived from a temporal discretization of the action with variation of (δq)q−1 for q along the

path to be in the restricted Lie algebra set (to enforce Lin constraints). Both the energy-preserving

and trapezoidal variational method are time-reversible implicit methods solved through a simple

quadratic set of equations with a small number of variables. Note that an explicit forward Euler

integration can also be used for small time steps, but with no guarantee of good behavior over long

periods of time.

4.1.5 Kelvin’s circulation theorem

The model-reduced method obeys a form of Kelvin’s theorem as follows. We can define generalized

curves as spectral dual 1-chains (also called 1-currents [11]) of the form:

Γ =
∑
i

γi ?2 Ai. (4.10)

Although generalized curves of this form do not necessarily have an obvious relation to a one-

dimensional curve in space, the above expression represents a closed curve in the sense of chains,

because each Ai corresponds to a closed (divergence-free) 2-form, which means that its dual 1-chain
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is boundaryless. A pairing between a 2-form and a generalized loop is defined as expected:

〈A,Γ〉 =

〈∑
i

viAi,
∑
j

γj ?2 Aj

〉
=
∑
i

viγi. (4.11)

The Lie advection of the generalized curve along the velocity field

Γ̇ = −[A,Γ] (4.12)

indicates that the coefficients {γi}i must evolve such that

γ̇k = −
∑
i,j

γivj

∫
M

Ψk · (∇× (Ψi ×Ψj))

=
∑
i,j

γivj

∫
M

(∇×Ψk) · (Ψj ×Ψi) =
∑
i,j

γivjCj,ki.

Thus, the spectral version of Kelvin’s theorem holds since

d

dt
〈A,Γ〉 =

∑
i

(v̇iγi + viγ̇i)

=
∑
i

vtCivγi+
∑
i

vi
∑
j,k

vkγjCk,ij

=
∑
i,j,k

vjCi,jkvkγi−
∑
i,j,k

vjvkγiCi,jk = 0.

In the above derivation, dummy index variables are swapped and the identity Ck,ij = −Cj,ik is

used.

4.2 Results

All these results are taken from [23], with thanks to Beibei Liu and Julian Hodgson for the images,

and were generated on an Intel i7 laptop with 12GB RAM.

Reduced vs. full simulation. In order to check that validity of our reduced approach, we

performed a stress test in a periodic 2D domain to visualize how the increase in the number of

bases used in our spectral integrator impacts the simulation over time. We selected a band-limited
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initial velocity field at time t=0 that only contains non-zero components for the first 120 frequencies.

We then advected the fluid using our integrator, with fluid markers initially set as two colored disks

near the center. Because of the propensity of vorticity to go to higher scales, our reduced approach

does not lead to the exact same position of the fluid markers after 12s of simulation if one uses

only 120 bases. However, as the number of bases increases to 300 or 500, the simulation quickly

captures the same dynamical behavior as a full variational integrator with 2562 degrees of freedom

(see Figure 4.6).

Figure 4.6: Convergence of simulation: A flow in a periodic domain is initialized with a band-
limited velocity fields with 120 wave number vectors. Fluid markers (forming a blue and red circle)
are added for visualization. After 12s of simulation, the results of our reduced approach (from the
left: with 120, 300, 500 modes) vs. the full 2562 dynamics (right) are qualitatively similar.

Arbitrary domains. We also show in Figs. 4.1, 4.3, and 4.8 for 2D and Figs. 4.7, 4.2, 4.10,

and 4.11 for 3D that the use of a homogenized boundary condition on regular grids leads to the ex-

pected visual behavior near the domain boundaries, eliminating the staircase artifacts of traditional

immersed-grid methods. Our homogenized boundary treatment obtains results similar to those of

unstructured meshes while using only calculations that are directly performed on regular grids—

thus requiring significantly simpler, smaller, and more efficient data structures. Our fluid dynamics

is also consistent across a wide range of temporal and spatial discretizations (see Figure 4.8). In

addition, the regular grid structure also simplifies the interaction with immersed solid objects as in

the case demonstrated in Fig. 4.10 through a flow induced by a scripted car turning around a corner;

interactive fluid stirring by a paddle manipulated by the user is also easily achieved as shown in

Fig. 4.11. Finally, our spectral integrator can be carried out in the same fashion on curved domains

as well, since the eigenvectors of the Laplace(-Beltrami) operator are no more difficult to compute

on a triangulated surface; Fig. 4.9 shows a simple laminar flow on the surface of the bunny model.
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Figure 4.7: Model-reduced fluids on regular grids. Our energy-preserving approach integrates
a fluid flow variationally using a small number of divergence-free velocity field bases over an arbitrary
domain (visualized here are the 5th, 10th, and 15th eigenvectors of the 2-form Laplacian) computed
with subgrid accuracy on a regular grid (here, a 42×42×32 grid). Our integrator is versatile: it can
be used for realtime fluid animation, magnetohydrodynamics, and turbulence models, with either
explicit or implicit integration.

Advanced fluid models. We also extended our method to the LANS-α turbulence model to

better capture the spectral energy distribution with a small number of modes. On a 3D regular

grid, we performed a simulation as described in [13] by holding the low wave number components vi

fixed for |κi|<2 to act as a forcing term, and running the simulation until t=100. We then extracted

the average spectral energy distribution present between t= 33 to t= 100. We show in Fig. 4.12

that the Kolmogorov “−5/3 law” is much better captured than with the usual Navier-Stokes model,

even for the low number of modes used in our spectral context: the α-model produces a decay rate

at high wave numbers much steeper than a Navier-Stokes simulation, allowing us to cut off the

higher frequencies at a lower threshold without significant deviation from the spectral distribution.

This indicates that our approach consisting in a simple scaling of the structural coefficients helps

improving fluid simulation on coarse grids.

Computational efficiency. Our use of model reduction via Laplacian eigenbases provides a

significantly more efficient alternative to full simulators, obviously. Due to our variational treatment

of time integration, we also prevent many shortcomings of the previous reduced models as we ensure

consistency of the results over a large spectrum of spatial and temporal discretization rates, and

maintain a qualitatively correct behavior even on coarse grids. The efficiency gain compared to

the full variational simulation is apparent, be it in 2D, curved 2D, or 3D. For instance, a full-
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Figure 4.8: Robustness to resolution: With the homogenized boundary condition on grids of
resolution 402 (blue), 802 (green), and 1602 (red), no staircase artifacts are observed, and the
simulation results are consistent across resolutions.

blown 1282 grid takes around 50s for the variational integrator to update one step (through a

Newton solver) in a typical simulation using the trapezoidal rule update, while a 50-mode (resp.,

100-mode and 200-mode) simulation with our integrator takes only 0.098s (resp., 0.65s and 2.0s)

for complex boundaries (i.e., with dense structural coefficients), and 0.026s (resp., 0.070s, 0.28s) for

simple box domains (with sparse coefficients). Our Newton solver normally converges in a couple

of iterations depending on the time step size (which determines the quality of the initial guess); for

instance, the average in our 3D bunny buoyancy test in Fig. 4.2 is below 3 iterations. Depending

on how many modes the user is willing to discard (and replace by wavelet noise or dynamical

texture for efficiency), the computational gains can thus total several orders of magnitude, and

this allows us to simulate flows at interactive rates—or even in realtime for periodic 3D domains

if we compute the eigenbases in closed form as shown in Fig. 4.11. Note however that our model-

reduced integrator suffers from the usual limitation of model reduction: the complexity is actually

growing quadratically (resp., cubically) with the number of modes for sparse (resp., dense) structural

coefficients. So our integrator is numerically efficient only for relatively low mode counts.

4.2.1 Generalization to other bases

While we provided detail on the construction of a variational model-reduced integrator for fluid

simulation using Laplace eigenvectors, one can easily adapt our approach to arbitrary basis func-

tions, even those extracted from a training set of fluid motions. Suppose that we are given a set
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of scalar basis elements Φi (orthonormalized through the Gram-Schmidt procedure) and a set of

velocity basis elements Ψi. The Lie derivative matrix A will still be antisymmetric as long as Ψi’s

are divergence-free. This means that one can use existing finite element basis functions instead

of our Laplace eigenvectors—or even wavelet bases of H(div,Ω) (see for instance [42]) if spatially

localized basis functions are sought after to get a sparser advection. The key to the numerical

benefits of our variational approach is to ensure the anti-commutativity of the Lie bracket in the

evaluation of 〈Ai, [Aj , Ak]〉 (Eq. (4.7)) and the advection of other fields by the exponential map

(or approximations thereof) of the matrix representing the Lie derivative (as done in MHD and

complex fluids [14]). In a way, the original non-spectral variational integrators can be seen as a

special case of our framework where Whitney basis functions are used. However, viscosity can no

longer be handled as easily in this case as the Laplacian is not diagonal in general bases. Moreover,

the required number of degrees of freedom to produce smooth flows may be high if the bases are

arbitrary.
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Figure 4.9: Curved domain: While all our other results were achieved on a regular grid, our
approach applies to arbitrary domains, here on the surface of a triangulated domain; a simple
laminar flow with initial horizonal velocity smoothly varying along the vertical direction quickly
develops vortical structures on this complex surface.

Figure 4.10: Immersed moving objects. As the car makes a right turn, the low frequency motion
of the air displaced around it lifts the dead leaves. The velocity field above is visualized through
arrows.
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Figure 4.11: Interactivity: We can also use the analytic expressions for Ψk and Ck,ij in a periodic
3D domain to handle a large number of modes without even calculating the spectral bases. The
explicit update rule exhibits no artificial damping of the energy as expected, but offers realtime
flows.

Figure 4.12: Spectral energy distribution: With forcing terms keeping the low wave number
amplitudes fixed [13], our 3D reduced model applied to the LANS-α model of turbulence produces
an average spectral energy distribution (blue) much closer to the expected Kolmogorov distribution
(black) than with the usual Navier-Stokes equations (red).
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4.3 Discussion

We have introduced a variational integrator for fluid simulation in reduced coordinates. By restrict-

ing the variations in Hamilton’s principle to a low-dimensional space spanned by low-frequency

divergence-free velocity fields, our method exhibits the properties of variational integrators in cap-

turing the qualitatively correct behavior of ideal incompressible fluids (such as Kelvin’s circulation

and energy preservation) while greatly reducing the computational cost. The resulting method is

versatile, energy-preserving, and computationally efficient.

While any application targeting low computational complexity of fluid simulation will benefit

from this reduced space approach, one possible limitation of our method in some cases is the lack

of spatial locality in our bases. For this reason, it should be noted that our integrator is not

restricted to a particular set of basis functions. Future work could explore the use of wavelets for

vorticity to offer optimal sparsity in the structural coefficients. Another possible future extension

is to incorporate free surface boundary conditions through our modified Hodge star, combined with

wavelet representations for the volume of fluid per cell.

4.3.1 Persistence of non-holonomic constraints

Among the initial aims for this method was the hope that the use of a reduced basis would allow us

to forgo the non-holonomic constraint used in earlier methods [32]. This proved impossible, because

the mapping that we chose between Laplacian basis functions for the vector field and the Lie algebra

g was not surjective, and thus there were elements of the Lie algebra that did not correspond to

any vector field.

A related problem is that the Lie bracket is not preserved by this form of discretization. Instead,

taking Lie brackets in the continuous space leads us to higher-frequency functions, which would

require more basis functions if we wished to resolve them. This tendency of the Lie bracket to

lead us outside our reduced basis is related to the cascade of energy to higher-frequency motions,

as famously recognized by Kolmogorov [20]. In theory, if we could find a set of finite-dimensional

Lie algebra discretizations which did preserve the Lie bracket, this problem could be solved. In

particular, this would require a Lie algebra isomorphic to a suitable finite-dimensional Lie subalgebra

of χvol. I have not found in the literature any complete classification of finite-dimensional Lie

subalgebras of χvol. In practice, however, if so perfect a closure of the energy cascade existed, it
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would probably have been noted before now.

We therefore see that the problem of creating a symplectic method for incompressible fluids is,

perhaps surprisingly, intimately related to the problem of closing the turbulent energy cascade.
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Chapter 5

Spectral Discrete Exterior
Calculus

We have seen that we can create a Lie group based method for incompressible fluids using Laplacian

eigenfunctions, and this method may be easily extended to other sets of orthogonal eigenfunctions.

We have also seen that the Lie group method for fluids has limitations, because it requires the

non-holonomic constraint, which breaks the symplecticity of the method. One possible avenue for

future work is to try to find a structured integrator for fluids using a field theoretic perspective

rather than the Lie group perspective. For this purpose, it may be useful to build on work I did with

Dzhelil Rufat, Patrick Mullen, and my adviser on a spectral version of discrete exterior calculus.

Discrete exterior calculus [11] represents k-forms by integrating them on k-dimensional elements

of a mesh. Thus, 0-forms are represented by their values at points, 1-forms are represented by

quantities integrated along edges, 2-forms on faces, and 3-forms on volumes. One particularly nice

aspect of this style of discretization is that we can use Stokes’ theorem to define a discrete exterior

derivative which introduces no error whatsoever – see Section 5.2.1. Along with this discrete exterior

derivative, we define operators of discrete exterior calculus such as the wedge product and the hodge

star. These operators do introduce error. In particular, existing versions are sometimes of very low

order. For example, the diagonal hodge star is zeroth order [11].

To obtain a discrete operators of higher accuracy, we introduce a spectral discrete exterior

calculus, obtaining faster-than-polynomial convergence, and using the Fast Fourier Transform for

calculational speed. For this, we will consider reconstruction maps (Section 5.1.1) which interpolate,

or histopolate, discrete k-forms using either the Fourier or Chebyshev basis. Histopolation allows
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us to take into account the fact that we are dealing with integrated quantities, which is an essential

element in preserving the perfect accuracy of the discrete exterior derivative. We may then apply the

corresponding continuous operator to the interpolated or histopolated function, before discretizing

again using a reduction operator. In this way we are able to create a spectrally-accurate discrete

exterior calculus.

5.1 Basic Spectral Tools

Before delving into the design of spectrally-accurate discrete operators, we must define a series of

basic tools and conventions which will be particularly useful for our task. We start by introducing

the general notions of reduction and reconstruction maps. The reduction map will allow us to

represent a continuous form in terms of a finite number of basis functions. The reconstruction map

will then allow us to reconstruct the continuous form again from this information.

The reduction and reconstruction maps will first be explained in terms of general basis functions.

We will then proceed to define the spectral basis functions on periodic regular grids which our

specific reduction and reconstruction maps will use, before moving on to the case of Chebyshev

grids, which allow us to consider regions with boundaries.

5.1.1 Reduction and Reconstruction Maps

The reduction and reconstruction maps provide a way to go back and forth between continuous

forms and their discrete realizations.

Reduction. The reduction map (also called the de Rham map) is a linear operator P that projects

a continuous form to its discrete realization on the grid through integration over mesh elements:

P : Λk → Λ̄k

ωk → ω̄k with ω̄ki = (Pωk)i ≡
∫
σki

ωk.
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We will denote by P̃ the analogous operator mapping continuous forms to their dual discrete

counterparts in a similar fashion:

P̃ : Λk → Λ̃k

ωk → ω̃k, with ω̃ki = (P̃ωk)i ≡
∫
σ̃ki

ωk.

Note that this definition of reduction extends the notion of point sampling : while the reduction of

a 0-form is found by simply point-sampling its value at each vertex of the grid, the reduction of a

general k-form is its evaluation (i.e., integral) on all the k-dimensional elements (vertices for k=0,

edges for k=1, faces for k=2, etc) of the grid.

Reconstruction. Conversely, the reconstruction map (R) is a map which reconstructs a contin-

uous k-form from its discrete realization by interpolation for k=0, and by histopolation otherwise:

R : Λ̄k → Λk

ω̄k → ωk.

We will denote by R̃ the analogous operator mapping dual discrete forms to continuous forms in a

similar fashion. Note that we will sometimes omit the dual sign .̃ for clarity, as which reconstruction

operator is meant is unambiguously implied by the (primal or dual) nature of the discrete form it

is applied on.

If one has a set of basis functions {φk0(x), φk1(x), . . . } for k-forms that satisfy the property

∀i, j,
∫
σki

φkj = δij , (5.1)

then, R can trivially be defined as

ωk = Rω̄k ≡
∑
i

ω̄ki φ
k
i .
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One can readily verifies that this reduction map is a left inverse of the reconstruction map:

PR = Id.

However, the converse is not true; the reconstruction map is only approximately the right inverse

of the reduction map, with equality in the limit when the mesh element size h approaches 0:

‖ω −RPω‖ −−−→
h→0

0,

with a rate of convergence determined by the chosen norm on forms and the degree of the basis

functions. While Whitney first introduced a one-sided inverse of the de Rham map using what

amounts to piecewise linear basis functions [44], we will instead use global basis functions satisfying

Eq. (5.1) to provide spectrally-accurate reconstructions.

5.1.2 1D Periodic Interpolator & Histopolator Functions

To build our spectral wedge and Hodge star operators to work on discrete forms of arbitrary degree,

we will need not only spectral interpolating basis functions, but also spectral histopolating basis

functions, i.e., basis functions which integrate to one over assigned intervals [7]. To this end,

we consider a one-dimensional periodic domain of width 2π with N regularly-spaced nodes, and

define over this canonical domain two scalar functions αN and βN—that we will respectively call

interpolator and histopolator—as follows:

αN (x) =
1

N

cot x2 sin Nx
2 if N even,

csc x
2 sin Nx

2 if N odd,

(5.2)

and

βN (x) =


1
2π −

1
4 cos Nx2 + 1

N

N/2∑
n=1

n cosnx
sin nπ

N
if N even,

1
2π + 1

N

(N−1)/2∑
n=1

n cosnx
sin nπ

N
if N odd.

(5.3)
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For convenience, let us denote any translation of the above functions using the notation below

αN,n(x) = αN (x− hn), and βN,n(x) = βN (x− hn)

where h = 2π/N is the mesh’s edge element size and the nodes are enumerated by xn = nh. For any

given number N of nodes, these two functions satisfy the following important properties mentioned

in Eq. (5.1) (where δmn refers to the Kronecker delta):

αN,n(xm) = δmn, and

∫ xm+h
2

xm−h2
βN,n(x) dx = δmn.

In other words, αN provides a smooth interpolation of a discrete function with 1 at node x0 and

0 at every other nodes, while βN integrates to 1 over the interval [x0 − h
2 , x0 + h

2 ], and to 0 over

all other intervals (see Figure 5.1). Notice that these functions are the only Fourier series with N

sinusoidal components satisfying the point-wise (resp., interval-wise) constraints. Note also that

αN and βN are related to each other:

∫ x+h
2

x−h2
β′N (ξ)dξ = αN (x), or equivalently, βN (x+

h

2
)− βN (x− h

2
) = α′N (x).

Next, we show that these two functions provide building blocks to construct basis functions for

arbitrary forms on regular, periodic grids—from which we will derive basis functions for bounded

domains via pushforward.

5.1.3 Spectral Basis Functions on Regular Grids

Basis functions for periodic grids in arbitrary dimensions can be easily built through tensor prod-

ucts of (translated) interpolators αN and histopolators βN , where the number of βN used in the

tensor product is equal to the degree of the form. To make this point clear, we will now introduce

our notation for 1-, 2-, and 3-dimensional basis functions, with the extension to higher dimensions

being straightforward. We will denote the basis functions as φ
p[comp]
[ind] with superscripts used to

indicate the degree p, followed by the component of the form when appropriate (e.g., x, xy, etc),

and subscripts used for grid indices; for instance, φ1ymnk(.) is the function of R3 representing the

dy-component of the 1-form basis, located on the edge parallel to the y axis indexed by (m,n, k).
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See Figure 5.2 for an illustration of the 2D notations.

Primal and dual nodes. On a 1D regular grid the N primal nodes are equally spaced, and the

dual nodes are placed in the middle between two adjacent primal nodes. Consequently, the primal

node are: xn = 2πn/N , and the dual nodes are at: x̃n = 2π(n+ 1
2 )/N .

Basis Functions for Forms in 1D. Because of their interpolation (resp., histopolation) prop-

erty, translated versions of the functions αN and βN can directly be used as basis functions for 0-

and 1-forms respectively as follows:

φ0N,n(x) = αN,n(x), and φ1N,n(x) = βN,n+ 1
2
(x) dx.

where n ∈ {0, 1, . . . , N − 1}. Indeed, a discrete 0-form ω̄0 (resp., a discrete 1-form ω̄1) can be

reconstructed as a smooth form through ω0 =
∑
i ω̄

0
i φ

0
i (resp., ω1 =

∑
i ω̄

1
i φ

1
i ); the reconstructed

form then satisfies Pω0 = ω̄0 (resp., Pω1 = ω̄1). Similarly, dual basis functions are easily designed

as well through:

φ̃0N,n(x) = αN,n+ 1
2
(x) and φ̃1N,n(x) = βN,n(x) dx.

Basis Functions for Forms in 2D. In two dimensions, tensor products of the one-dimensional

bases provide basis functions for 0-, 1-, and 2-forms on a regular M×N grid. These functions are

expressed as follows:

φ0MN,mn(x, y) = φ0M,m(x) ∧ φ0N,n(y)

φ1xMN,mn(x, y) = φ1M,m(x) ∧ φ0N,n(y)

φ1yMN,mn(x, y) = φ0M,m(x) ∧ φ1N,n(y)

φ2MN,mn(x, y) = φ1M,m(x) ∧ φ1N,n(y)

One can easily check that these functions are 1 on their associated degree of freedom and 0 on all

others (vertices for 0-forms, edges for 1-forms, and faces for 2-forms), thus offering a proper set
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of bases for smooth reconstructions of discrete forms. Formulas for the dual basis functions are

strictly analogous, where φ̃ is used in lieu of φ.

Basis Functions for Forms in 3D. The same construction can be used in three or higher

dimensions. For completeness, we describe the three-dimensional basis functions for primal forms:

φ0MNK,mnk(x, y, z) = φ0M,m(x) ∧ φ0N,n(y) ∧ φ0K,k(z)

φ1xMNK,mnk(x, y, z) = φ1M,m(x) ∧ φ0N,n(y) ∧ φ0K,k(z)

φ1yMNK,mnk(x, y, z) = φ0M,m(x) ∧ φ1N,n(y) ∧ φ0K,k(z)

φ1zMNK,mnk(x, y, z) = φ0M,m(x) ∧ φ0N,n(y) ∧ φ1K,k(z)

φ2xyMNK,mnk(x, y, z) = φ1M,m(x) ∧ φ1N,n(y) ∧ φ0K,k(z)

φ2xzMNK,mnk(x, y, z) = φ1M,m(x) ∧ φ0N,n(y) ∧ φ1K,k(z)

φ2yzMNK,mnk(x, y, z) = φ0M,m(x) ∧ φ1N,n(y) ∧ φ1K,k(z)

φ3MNK,mnk(x, y, z) = φ1M,m(x) ∧ φ1N,n(y) ∧ φ1K,k(z)

Here again, it is easy to check that these functions provide smooth reconstructions from values of

vertices, edges, faces, or volumes on a regular grid indexed by m,n, and k, in a periodic domain.

Formulas for the dual basis functions are strictly analogous, where φ̃ is used in lieu of φ.

5.1.4 Chebyshev Grids over Bounded Domains

For bounded domains, a popular choice of spatial discretiation in spectral methods is the use of

Chebyshev computational grids [8]. It is well known that Chebyshev polynomials can be derived

as the pullback of Fourier basis functions from a circle onto its diameter; see Fig. 5.3. We can, in

fact, perform the same pullback of our regular-grid basis functions of forms to obtain new spectral

bases of forms applicable for Chebyshev grids over non-periodic domains.

Denote by ϕ the map from the interval between −1 and 1 on the real line (with Cartesian
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coordinate x) to the unit semicircle (with polar angle θ, see Figure 5.3):

ϕ : [−1, 1] ⊂ R → [0, π] ⊂ S1

x 7→ θ = arccos(−x)

Primal and dual nodes. Let the 1D grid consist of N points (including the boundaries) in the

interval [−1, 1]. The corresponding unit circle will then have 2N − 2 points (see Figure 5.3). The

primal nodes {xn} (n = 0..N−1) and dual nodes {x̃n} (n = 0..N−2) of the Chebyshev grid are

thus

xn = − cos
nπ

N − 1
and x̃n = − cos

(n+ 1
2 )π

N − 1
.

Basis functions. To design our basis functions, we first define functions on the semi-circle (θ ∈

[0, π]) by mirroring/antimirroring the regular basis functions φ on the whole circle (see [39] for

the usual case of primal 0-forms), in order to satisfy the interpolation/histopolation properties

(Eq. (5.1)) on the semi circle. The resulting functions κ are expressed as:

κ0N,n =

φ
0
2N−2,n, n = 0 or n = N − 1 (endpoints)

φ02N−2,n + φ02N−2,2N−2−n, n ∈ {1, . . . , N − 2} (midpoints)

for primal 0-forms,

κ1N,n = φ12N−2,n − φ12N−2,2N−3−n, n ∈ {0, . . . , N − 2}

for primal 1-forms,

κ̃0N,n = φ̃02N−2,n + φ̃02N−2,2N−3−n n ∈ {0, . . . , N − 2}
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for dual 0-forms, and

κ̃1N,n(θ) =


δN (θ) n = 0[
φ̃02N−2,n − φ̃02N−2,2N−2−n − ρN,n

]
(θ) n ∈ {1, . . . , N − 2}

δN (π − θ) n = N − 1

for dual 1-forms, where

δN (θ) =
(
(N − 1)2α2N−2,0 (θ) +

1

2
cos ((N − 1)θ)

)
sin θ dθ,

and ρN,n(θ) = 2 (γ2N−2,nδN (θ) + γ2N−2,N−n−1δN (π − θ)) dθ,

with: γN,n =

∫ π
N

0

βN,n(θ) dθ

=


1−(−1)k

2N + 1
N

N/2∑
n=1

sin(2knπ/N)−sin((2k−1)nπ/N)
sin nπ

N
if N even,

1
2N + 1

N

(N−1)/2∑
n=1

sin(2knπ/N)−sin((2k−1)nπ/N)
sin nπ

N
if N odd

The function δ is used to deal with the special case of the two boundary dual (half-)edges, and the

function ρ adds contributions to intermediate basis functions so that they integrate to zero at both

boundary dual edges. Finally, we pull back the functions κ by ϕ to obtain the form basis functions

ψ on the Chebyshev 1D grid (ψ = ϕ∗κ):

ψ0
N,n(x) = κ0N,n(arccos(−x))

ψ1
N,n(x) = κ1N,n(arccos(−x))

dx√
1− x2

ψ̃0
N,n(x) = κ̃0N,n(arccos(−x))

ψ̃1
N,n(x) = κ̃1N,n(arccos(−x))

dx√
1− x2

One can easily check that the functions above satisfy the property in Eq. (5.1) required for

basis functions, as the functions κ were designed to satisfy these properties, and the pullback ϕ∗

commutes with integration.
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Note that the basis functions for primal zero-forms turns out (unsurprisingly) to be the Lagrange

polynomials of order N , i.e.,

ψ0
N,n(x) =

N−1∏
m=0
m 6=n

x− xm
xn − xm

where {xn}n=0,...,N−1 represent the coordinates of the primal points. All other basis functions of

forms are also polynomials for any choice of N . Examples for the primal and dual basis functions

for 0- and 1-forms are provided in Figures 5.4 and 5.5 for N = 7.

Finally, basis functions in higher dimensions for arbitrary forms are derived using tensor products

of these two primal and two dual 1D basis functions, just as we explained in Section 5.1.3.
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0 2π

0

1

(a) α6(x)

0 2π

0

1

(b) α7(x)

0 2π

0

1

(c) hβ6(x)

0 2π

0

1

(d) hβ7(x)

Figure 5.1: Examples of periodic interpolators for N = 6 (a) and 7 (b), and corresponding periodic
histopolators (c) and (d), scaled by h = 2π/N for clarity. While the interpolator αN satisfies αN (nh
mod 2π) = δ0n ∀n, the histopolator βN integrates to 1 over the dual cell straddling x = 0, and to
0 over other dual cells in the range [0, 2π]. Note that the alternating red and green colors are used
to mark out dual cells, and to illustrate that the integral of βN over each of these dual cells sums
to zero or one.

(a) Primal/Dual grid

φ̄2mn

φ̄0mn φ̄1xmn

φ̄1ymn

(b) Primal grid

φ̃2mn

φ̃0mn

φ̃1ymn

φ̃1xmn

(c) Dual grid

Figure 5.2: Illustration of a regular 2D grid (in black) along with its dual (in red), along with our
mesh orientation and index convention.

θ = πθ = 0, 2π

x = 1x = −1

ϕ

Figure 5.3: The map ϕ mapping the canonical interval [−1, 1] to the bottom unit hemicircle (0 ≤
θ ≤ π).
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−1 0 +1

0

1

(a) ψ0
0(x)

−1 0 +1

0

1

(b) ψ0
1(x)

−1 0 +1

0

1

(c) ψ0
2(x)

−1 0 +1

0

1

(d) ψ0
3(x)

−1 0 +1

0

1

(e) (x1 − x0)ψ1
0(x)

−1 0 +1

0

1

(f) (x2 − x1)ψ1
1(x)

−1 0 +1

0

1

(g) (x3 − x2)ψ1
2(x)

Figure 5.4: Chebyshev primal basis functions for a grid with N = 7. We normalize the one-form
basis functions by xn − xn−1 to have approximately the same scale in our visualizations.

−1 0 +1

0

1

(a) ψ0
0(x)

−1 0 +1

0

1

(b) ψ0
1(x)

−1 0 +1

0

1

(c) ψ0
2(x)

−1 0 +1

0

1

(d) ψ0
3(x)

−1 0 +1

0

1

(e) (x1 − x0)ψ1
0(x)

−1 0 +1

0

1

(f) (x2 − x1)ψ1
1(x)

−1 0 +1

0

1

(g) (x3 − x2)ψ1
2(x)

Figure 5.5: Chebyshev dual basis functions for a grid with N = 7
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5.2 Spectrally Accurate Discrete Operators

Equipped with these basis functions on regular and Chebyshev grids, we can now derive the discrete,

spectrally accurate version of the exterior derivative d, the wedge product ∧, and the Hodge star

?. These operators may be quickly calculated using the Fast Fourier Transform. More thorough

implementation details are given in [33]; here we focus on the theoretical construction.

5.2.1 Discrete Exterior Derivative D

The most common discrete realization of the exterior derivative based on algebraic topology [29]

using chains and cochains is a linear operator D:

D : Λ̄k → Λ̄k+1.

which is the (signed) incidence matrix between (k+ 1) elements and k elements of the grid, with a

sign determined by the relative orientation of the elements. In other words,

D = ∂∂∂t,

where ∂∂∂ refers to the boundary operator acting on chains (see [29, 11]). Note that the operator D

is thus implemented via a sparse matrix whose non-zeros elements are only +1 and −1 values to

indicate incidence between mesh cells. It also satisfies D2 = 0 like its continuous equivalent (since

the boundary of a boundary is always the empty set), and that a discrete Stokes’ theorem is also

enforced on chains since the very definition of D is tantamount to enforcing

∫
σ

dω =

∫
∂σ

ω

for every mesh element σ. This discrete realization of the exterior derivative is exact, in the sense

that the operator D commutes with the reduction operator:

dP =PD. (5.4)
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This implies that the following diagram fully commutes:

Λ̃k

R̃
//

D
��

Λk

d
��

P //P̃oo Λ̄k
R

oo

D
��

Λ̃k+1 Λk+1 P //P̃oo Λ̄k

Discrete Differential Discrete

Dual Forms Forms Primal Forms

Therefore, as mentioned in the introduction to this chapter, the classic discrete exterior derivative

used in mimetic methods, DEC, or finite-dimensional exterior calculus needs no special treatment

to obtain spectral accuracy. However, its use for spectral computations represents a clear departure

from the conventional spectral methods [7], since all operators of classical vector calculus (diver-

gence, gradient, and curl) can be achieved exactly via D [15]. In our framework, we also use the

exterior derivative on dual forms:

D̃ : Λ̃k → Λ̃k+1.

Its implementation and properties are no different from its primal version, since the adjacency of

the dual mesh is directly derived from the adjacency on the primal:

D̃ = ∂̃∂∂
t
.

We now turn to the definition of a discrete wedge product and discrete Hodge star operator.

5.2.2 Discrete Wedge Product W

Various discrete definitions of the wedge product have been proposed, sometimes mixing primal

and dual elements [19]. We instead follow Bochev and Hyman’s treatment [6]: by utilizing the de

Rham and reconstruction maps, one can define a discrete wedge product W(ᾱ, β̄) in a general way

that applies to any pair of discrete (primal or dual) forms ᾱ and β̄ through:

W(ᾱ, β̄) = P(Rᾱ ∧Rβ̄) (5.5)

That is, we first reconstruct the two discrete forms with our trigonometric or Chebyshev basis

functions, we then apply the wedge product to the two continuous forms that we have created, and
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finally, integrate (or, in the case of 0-forms, point-sample) the result to get the final discrete form

W(ᾱ, β̄). The resulting operator satisfies a discrete Leibniz rule:

DW(ᾱ, β̄) = W(D(ᾱ), β̄) + (−1)kW(ᾱ,D(β̄)),

where ᾱ is a discrete k-form, and β̄ is an arbitrary discrete form. Indeed, because the exterior

derivative commutes with the reduction and reconstruction maps, this discrete Leibniz rule can

be derived directly from the continuous Leibniz rule. Our spectrally-accurate definition of the

discrete wedge product is bilinear and anticommutative, but it is not associative. It is, however,

associative in the limit as the mesh size approaches zero. That is, the associator W(ᾱ,W(β̄, γ̄))−

W(W(ᾱ, β̄), γ̄) (i.e., the measure of nonassociativity) will approach zero exponentially fast as the

step size is reduced. The difficulty of creating an associative discrete wedge product has been

previously noted by, e.g., Kotiuga [21], who refers to it as the “commutative cochain problem” and

discusses some deeper topological reasons behind it. The spectral accuracy of our wedge operator

will mitigate this lack of associativity exponentially fast under mesh refinement.

Note that the discrete wedge product of a (primal or dual) p-form and a (primal or dual) q-form

can also be seen as a three tensor

Wp,q
ijk =

∫
σp+ki

φpj ∧ φ
q
k,

since we can write the value of the wedge product on element σp+qi as :

[
W(ᾱ, β̄)

]
i

=
∑
j,k

Wijkᾱj β̄k

5.2.3 Discrete Hodge Star H

As explained earlier, our discrete Hodge star H exploits the notion of mesh duality in that the

discrete Hodge star of a primal k-form is a dual (d−k)-form, and vice-versa. The discrete Hodge

star for a discrete form is realized conceptually by first reconstructing the continuous form with

our primal (resp., dual) spectral bases, applying the continuous Hodge star to this form, and then
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projecting this form back to the dual (resp., primal) grid. In our notation, this can be written as

Hk = P̃ ?k R, (5.6)

and is easily understood from the following diagram:

Λk

?k

��

P // Λ̄k
R

oo

Hk

��
Λn−k

P̃ // Λ̃n−k

The operator H can be built as a matrix with easily precomputed entries. For instance, for k-forms,

this matrix contains the terms

Hk
ij =

∫
σ̃n−k
i

?φkj . (5.7)

Similarly, the dual Hodge star operator is given by:

H̃k
ij =

∫
σn−k
i

?φ̃kj (5.8)

We require our discrete Hodge stars to satisfy the discrete equivalent of the continuous requirement

that ?k?d−k = (−1)k(d−k). That is, we need:

HkH̃n−k = H̃n−kHk = (−1)k(n−k)Id. (5.9)

This imposes a constraint on dual basis functions. Indeed, for Eq. (5.9) to hold true, they must be

a linear combination of the primal basis functions:

φ̃ki =
∑
j

[(Hn−k)−1]ji ? φ
n−k
j . (5.10)

Both the regular (φ) and Chebyshev (ψ) basis functions that we defined above satisfy this constraint.

Finally, our Hodge matrices are dense; however, each matrix is circulant for a regular grid on

periodic domains (due to the invariance of the grid under translation), and centrosymmetric for a

Chebyshev grid (due to mirror symmetry around its center). While circulant matrices are special

cases of Toeplitz matrices, for which multiplications by vectors can be done O(N logN), we will
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show that all discrete Hodge stars for arbitrary dimensions can be efficiently implemented in Fourier

space in O(N logN) time complexity where N is the total number of spatial points.

5.3 Discussion

This chapter outlines the foundations for a spectral instance of Discrete Exterior Calculus. Using

chains and cochains as discretization for differential forms, we have provided a discrete exterior

derivative, a discrete Hodge star, and a discrete wedge product that are spectrally accurate. One

can use the resulting calculus as a chain collocation method to solve differential equations. Figure

5.6 gives an example of the expected spectral convergence. Further analysis of convergence and

implementaton may be found in [33].

While the three exterior operators we treated cover already a large range of differential operators

(allowing a number of computational tasks including Hodge decomposition), contractions (exterior

product) and Lie derivatives still need to be derived in a similar geometric manner. Note that

defining the contraction operator would be enough, since one can then define the Lie derivative

algebraically with Cartan’s “magic formula”. This may be useful in the construction of numerical

methods for incompressible fluids in the future.
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Figure 5.6: Convergence graphs for a 2D Poisson equation, using spectral discrete exterior calculus
to calculate the Laplacian operator; (a) we solve ∆f = esin x(cos2 x− sinx)+esin y(cos2 y− sin y) on
a periodic domain for either a primal, or dual 0-form f ; (b) Now for ∆f = esin x(cos2 x− sinx)dx+
esin y(cos2 y − sin y)dy; (c) we solve ∆f = ex + ey on a Chebyshev grid, for either a primal 0-form
with Dirichlet boundary conditions f(x, y) = ex+ey, or for a dual 0-form with Neumann boundary
conditions ∇f(x) · n = (ex ey)t n; (d) Now for ∆f = exdx + eydy. All of our results exhibit
spectral convergence (measured through the L∞ error ‖∆f − q‖∞), with the conventional plateau
in accuracy for fine meshes.
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Chapter 6

Conclusion

The structure-preserving simulation of incompressible fluids is a field that is still very much under

development. This thesis has significantly broadened the tools at our disposal. We have seen how

to introduce model-reduction using a given set of orthogonal eigenfunctions in a manner that allows

us to spatially discretize while retaining the Lagrangian structure of the fluid. This significantly

reduces the number of variables necessary in order to represent fluid motion in a way which respects

the structure, and decreases the time necessary for computation. We have also seen how to dis-

cretize the Hamiltonian structure associated with the Lagrangian structure of the fluid. Together,

these provide two very different expansions of our knowledge of how to geometrically simulate an

incompressible fluid, which may be used in future work on conservative fluid-structure interactions,

moving boundaries, and fast but visually sensible simulations of fluids for the purpose of computer

graphics.

The toolbox of discretization techniques that were introduced in [32] has been extended and

reapplied in new contexts to create a wide variety of numerical methods for fluids with useful

geometric and computational properties. However, we have also seen that some of these techniques

are perhaps best not used together. For example, if we wish to use a finite-dimensional Lie algebra

to mimic the behavior of χdiv, we will need to use a non-holonomic constraint. This then means

that the time-discrete Lagrangians of [43] will no longer yield symplectic integrators as expected.

On the other hand, because the energy of the fluid is a quadratic invariant, we may use the midpoint

rule to obtain energy-preserving integrators. Energy-preserving methods which are of higher order

in time would be equally easy to obtain, since the property of preserving quadratic invariants is

shared by all Gauss collocation methods, as detailed in [17].
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An important development is the relationship between the non-holonomic constraint and the

closure problem for the turbulence cascade. We have seen that the development of a symplectic

method for incompressible fluids is unexpectedly difficult, or, to put it more optimistically, if we

could find a truly symplectic fluids method, we might find ourselves with a better understanding

of the turbulence cascade phenomenon as a result. A better understanding of viscous structure-

preserving incompressible fluids would be important to this endeavor. The obvious way to include

viscosity is with a discrete Laplace-deRham operator ∆ = δδδd + dδδδ. However, further work is

needed in order to determine how best to preserve viscous energy behavior. We would hope to

obtain similar results to those found for dissipative ordinary differential equations in [22].

These theoretical and practical developments have expanded our ability to efficiently simulate

incompressible fluids in a manner that supplies good qualitative behavior. We now have methods

that are significantly faster than earlier structure-preserving fluid simulators, along with a broader

theoretical basis on which to build. This will enable the development of structure-preserving fluid

integrators for new applications such as fluid-structure interactions and free surfaces in the future.
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