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CHAPTER 1 

 

 

 

Palladium-Catalyzed Decarboxylative and Decarbonylative 

Transformations: Past, Present, and Future 

 

1.1 Introduction 

 Decarboxylation and decarbonylation are important transformations in synthetic 

organic chemistry.  Loss of carbon dioxide or carbon monoxide from a carboxylic acid 

(R–COOH) or its derivatives (R–COY) generates a reactive intermediate (formally a 

carbocation, carbanion, radical, or organometallic species) of the R fragment, which may 

participate in a variety of subsequent transformations, including protonation, elimination, 

electrophilic halogenation, cross-coupling, and Heck-type reactions (Scheme 1.1).  Since 

many carboxylic acids and their derivatives are readily available and inexpensive, using 

these compounds as starting materials in organic synthesis is an attractive option. 
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Scheme 1.1 Decarboxylation/decarbonylation and subsequent transformations 

 

 

  Since the 1980s, palladium-catalyzed decarboxylative and decarbonylative 

reactions have received significant attention from the synthetic community.  Due to the 

excellent catalytic activity of palladium, a large number of synthetically useful 

decarboxylative and decarbonylative transformations using palladium catalysis have been 

developed.  In this chapter, we will review past literature, then discuss our own adventure 

in this exciting field, and finally point out future directions for decarboxylative and 

decarbonylative chemistry. 

 

1.2 Palladium-Catalyzed Decarboxylative Reactions 

 The earliest accounts of palladium-catalyzed decarboxylative reactions focused on 

carboxylates that readily undergo decarboxylation, e.g. β-keto carboxylates.  Saegusa1 

and Tsuji2 independently reported palladium-catalyzed decarboxylative allylic alkylation 

of β-keto esters in the early 1980s (Scheme 1.2A).  Presumably, the Pd-carboxylate is 

generated upon deallylation of the ester.  Two decades later, the Stoltz group developed 

enantioselective variants of this reaction (Scheme 1.2B).3 
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Scheme 1.2 Palladium-catalyzed decarboxylative allylic alkylation reactions 

 

 

 Besides β-keto carboxylates, other α- or β-activated carboxylic acids and 

derivatives have also been utilized in palladium-catalyzed reactions.  For example, Fu 

and Liu jointly reported the decarboxylative coupling of potassium oxalate monoesters 

with aryl bromides and chlorides (Scheme 1.3A).4  Kwong and co-workers developed a 

palladium-catalyzed decarboxylative arylation of potassium cyanoacetate (Scheme 

1.3B).5 

 

Scheme 1.3 Decarboxylative reactions of other activated carboxylic acids 
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 Another broad class of substrates for decarboxylation is aromatic carboxylic 

acids.  A seminal publication from the Myers group describes the decarboxylative Heck-

type olefination of aromatic carboxylic acids (Scheme 1.4).6  The reaction requires 

Ag2CO3 for catalyst turnover; however, decarboxylation is thought to be promoted by 

palladium alone as evidenced by the results of control experiments using 1.2 equiv 

Pd(O2CCF3)2 in the absence of Ag2CO3 (Scheme 1.4). 

 

Scheme 1.4 Decarboxylative Heck-type olefination of aromatic carboxylic acids 

 

 

  In the past decade, decarboxylative cross-coupling reactions have experienced a 

tremendous growth, in part because aromatic carboxylic acids can serve as the carbanion 

equivalent through decarboxylation and replace conventional but more expensive 

organometallic reagents (e.g. arylboronic acids).7  These reactions often involve another 

transition metal (catalytic or stoichiometric) such as copper or silver that facilitates 

decarboxylation.8  The Gooßen group has pioneered this field (Scheme 1.5).9  A proposed 

reaction mechanism is outlined in Scheme 1.6.7  In addition to aromatic carboxylic acids, 
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alkenyl carboxylic acids such as cinnamic acid have also been employed in palladium-

catalyzed decarboxylative cross coupling reactions under similar conditions.10 

 

Scheme 1.5 Palladium-catalyzed decarboxylative cross-coupling reactions 

 

 

Scheme 1.6 Proposed reaction mechanism for decarboxylative cross-coupling 
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 A third class of substrates are alkynyl carboxylic acids, which decarboxylate upon 

heating to produce an alkynylpalladium species that may be coupled with allylic or 

benzylic electrophiles (Scheme 1.7).11 

 

Scheme 1.7 Palladium-catalyzed decarboxylative allylic alkylation and benzylation of alkynyl 

carboxylic acids 

 

 

1.3 Palladium-Catalyzed Decarbonylative Reactions 
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Scheme 1.8 Palladium-catalyzed decarbonylation of aliphatic acyl chlorides 

 

 

 On the other hand, aromatic/alkenyl carboxylic acid derivatives have been 
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Scheme 1.9 Palladium-catalyzed decarbonylative Heck olefinations 

 

 

 In addition to carboxylic acid derivatives, aldehydes have also been employed in 

decarbonylation reactions.  Maiti and co-workers developed a decarbonylation process 

for converting aromatic and aliphatic aldehydes to arenes and alkanes, respectively 

(Scheme 1.10). 

 

Scheme 1.10 Palladium-catalyzed decarbonylation of aldehydes 
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1.4 Our Explorations in the Field of Palladium-Catalyzed Decarboxylative and 

Decarbonylative Reactions 

1.4.1 Palladium-Catalyzed Enantioselective Decarboxylative Allylic Alkylation of 

Lactams 

 At the outset of this study, our group had developed a palladium-catalyzed 

decarboxylative asymmetric allylic alkylation reaction that delivers α-quaternary ketones 

in high yield and enantioselectivity.3  Considering the ubiquity and medicinal importance 

of N-heterocycles, as well as the lack of direct, catalytic enantioselective methods for the 

synthesis of α-quaternary lactams, we became interested in extending our allylic 

alkylation methodology to this important class of substrates.  A combinatorial screen of 

ligand, solvent, and lactam N-protecting group allowed us to identify a set of optimal 

reaction parameters.  A wide range of α-quaternary lactams bearing various substituents, 

functional groups, and scaffolds were synthesized using our decarboxylative allylic 

alkylation reaction in high yield and exceptionally high enantioselectivity (Scheme 1.11, 

see Chapter 2 for details).15 
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Scheme 1.11 Palladium-catalyzed enantioselective decarboxylative allylic alkylation of lactams 
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building blocks that enable the catalytic asymmetric formal total synthesis of numerous 

classical natural products (Scheme 1.12, see Chapter 3 for details).16   

 

Scheme 1.12 Formal synthesis of classical natural products via palladium-catalyzed enantioselective 

alkylation chemistry 
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chain fatty acids, which are abundant, renewable, and inexpensive.  However, existing 

methods for converting fatty acids to alpha olefins require either very high temperature or 

high loading of precious metal catalysts.  To address these issues, we developed a new 

decarbonylative dehydration process that uses low catalyst loading and proceeds under 

relatively mild conditions.  Alpha olefins of various chain lengths and bearing different 

functional groups are prepared, and the reaction can be easily scaled up (Scheme 1.13, 

see Chapter 4 for details).17 

 

Scheme 1.13 Palladium-catalyzed decarbonylative dehydration of fatty acids for the synthesis of 

linear alpha olefins 
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bearing an ethylene substituent is a common structural motif in many natural products.  

An important approach to the construction of this unit is the α-vinylation of carbonyl 

compounds.  However, direct enolate vinylation is particularly challenging due to the 

unreactive nature of vinyl electrophiles.  Current methods for installing a vinyl group α to 

a carbonyl often rely on an indirect alkylation-elimination strategy and are generally 

limited in substrate scope.  Asymmetric vinylation reactions are rare and severely limited 

in scope.  At the outset of our investigation, even the simple 2-methyl-2-

vinylcyclohexanone was not known as a single enantiomer in the literature.  We 

hypothesized that our decarbonylative dehydration chemistry would be a good method 

for obtaining enantioenriched α-vinyl carbonyl compounds since the quaternary 

stereocenter in the substrate carboxylic acid can be constructed in an asymmetric fashion 

using well-established chemistry.  To test this hypothesis, we prepared a variety of γ-

quaternary-δ-oxocarboxylic acids, subjected them to slightly modified decarbonylative 

dehydration conditions, and were pleased to obtain the corresponding α-vinyl carbonyl 

compounds in good yields (Scheme 1.14, see Chapter 5 for details). 
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Scheme 1.14 Palladium-catalyzed decarbonylative dehydration for the synthesis of α-vinyl carbonyl 

compounds 
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Scheme 1.15 Total synthesis of (–)-aspewentin B: union of palladium-catalyzed allylic alkylation and 

decarbonylative dehydration reactions 
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Scheme 1.16 Challenges and opportunities in palladium-catalyzed decarboxylative and 

decarbonylative reactions 

 

 

1.6 Concluding Remarks 
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synthesis, and should find application in the context of both academic and industrial 

research. 
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