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ABSTRACT 

Individuals often have difficulty delaying gratification – that is, forging smaller sooner rewards in 

favor of larger rewards delivered at a delay. Common examples of this deficit in self-control are 

difficulties in saving for retirement, going to the gym, or eating healthy foods. Despite an extensive 

literature on the neural substrates of decision-making, relatively little is still known about the 

sources of underlying individual variation in the ability to successfully execute self-control. This 

manuscript presents three studies examining the sources of individual differences in delay of 

gratification, with the goal of obtaining a more complete understanding of the neural mechanisms 

underlying choice. The main question this thesis addresses is: what features of the brain’s decision 

process allow individuals to down-regulate the appeal of smaller sooner rewards, in order to forgo 

them in favor of greater future reward? 

In the first study, I present a novel method of measuring decision process dynamics, in which we 

harness the power of fine temporal resolution in recording computer mouse movements in dietary 

choices. We find that up to 39% of individual variation in dietary self-control can be explained by 

differences in the speed with which the decision-making circuitry processes basic attributes, such as 

tastiness, versus more complex, abstract, attributes, such as healthfulness.  

In the second study, we extend this novel approach to a classic experimental economics paradigm, 

intertemporal choice. We found large individual variance in the speeds with which immediate and 

delayed reward values were processed. We found that about 25% of the individual differences can 

be explained by differences in the speed at which delayed rewards are processed. We also found 

that the relative speed at which immediate and delayed rewards are processed fluctuated across 

trials: subjects processed delayed rewards faster than immediate rewards when they made patient 

choices, but the order of processing speeds was reversed during impulsive choices. Together, these 

results show that a sizable fraction of variation in the ability to postpone gratification might be 

attributable to variables that affect the speed at which different types of rewards are processed, and 

not to differences on deep preference parameters like the temporal discount rate used by the brain’s 

valuation systems. 

Across the lifespan, self-control improves in many choice domains. The third and final study 

capitalizes on this phenomenon of behavioral change with age to investigate the neural mechanisms 

underlying improvements in self-control. I use functional magnetic resonance imaging (fMRI) to 



 v 
examine the neural correlates of changes in discounting of future monetary rewards across the 

lifespan from adolescents (13 years old) to seniors (70 years old). We find that neural response to 

value in reward-related striatal brain regions dramatically decrease with age. In contrast, we find 

that the left dorsolateral prefrontal cortex, often found to be related to successful self-control, 

increases its functional connectivity to key valuation, reward, and future-thinking brain regions with 

age during very tempting trials. These results suggest a mechanism through which increased self-

control is improved. 

Taken together, these studies argue that individual features of the decision process have a large 

influence on the overall ability to exert self-control in both dietary and monetary choice domains. 

Specifically, we find that the speed with which abstract future attributes such as health information, 

relative to more concrete attributes such as taste, are processed have a large influence on individual 

self-control ability. We also find that decreased reward sensitivity, paired with increased effective 

connectivity between control and valuation regions specifically when control is required most, 

allow for increased ability to delay gratification with age. 
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1 
C h a p t e r  1  

INTRODUCTION 

1.1 Self-control in decision-making 

Self-control deficits have long-term consequences for both the individual and for society. For 

example, dietary self-control choices present a trade-off between an immediate, pleasurable reward 

– like eating a delicious cookie – and a greater reward later, like forgoing the treat and having better 

health in the future. A large percentage of Americans struggle with these choices each year, and 

spend sizable amounts of money doing so; the diet business is currently a sixty-one billion dollar 

industry (Marketdata Enterprises Inc., 2014; Paeratakul, York-Crowe, Williamson, Ryan, & Bray, 

2002) . Despite this, approximately 34% of U.S. adults are still overweight (Flegal, Carroll, Ogden, 

& Curtin, 2010). This not only has serious consequences for the individual, but also for society; it’s 

estimated that obesity produces a 33% increase in cost to the health care system (Andreyeva, Sturm, 

& Ringel, 2004). Dietary self-control is not the only area in which individuals have difficulty 

forgoing tempting immediate rewards. The “revolving door” nature of drug, alcohol, and gambling 

rehabilitation facilities (Carey, 2008; Hunt, Barnett, & Branch, 1971) suggests that across many 

choice domains, individuals often fail at self-control despite costly efforts to succeed. 

What accounts for this disparity between intention and outcome? I argue that much of the difference 

has to do with deficits in the ability to successfully exert self-control in everyday decisions – or, as 

philosophers term it, the uniquely human conflict between first and second order preferences 

(Brandt, 1979, 1998; Frankfurt, 1971). Philosophers call a lower or first order preference one that is 

a preference of the moment, such as the preference to satisfy a craving for fatty foods. A higher or 

second order preference is typically long-term focused, concerning the kind of person one desires to 

be – for example, a fit, healthy person who eats well and exercises. A contradiction between one’s 

first and second order preferences presents conflict; making a choice in favor of one’s second-order 

preference requires bringing one’s choices more in line with long-term goals instead of fleeting 

first-order preferences. In this thesis I will term this the process of self-control exertion.  



 

 

2 
Decision-making requires the brain to calculate the subjective value1 each option holds to the 

decision maker, so an individual can decide between those options. Successful self-control further 

requires the brain to make those values reflective not only of short-term rewards, but also of future 

long-term consequences. The main question of this thesis is: What features of the decision process 

allow individuals to down-regulate the value of tempting first order options by incorporating 

information about their second-order preferences, in order to forgo them in favor of greater future 

reward? 

1.2 The neural computations of value processing and comparison 

To make a motivated choice between different options, the brain must first compute the value of 

each option. A great deal of experimental work has been done to pinpoint the neural computations 

involved in valuation, and has converged on a network of brain regions that appear to be involved in 

processing value across many different types of tasks and stimuli. For example, the neural 

computations of value-based decision-making can be studied using a classic experimental 

economics paradigm, monetary intertemporal choice (e.g., Ainslie, 1975; Berns, Laibson, & 

Loewenstein, 2007; Green, Fristoe, & Myerson, 1994; Laibson, 1997; Loewenstein & Prelec, 

1992). In these experiments, subjects are asked to decide between a small immediate amount of 

money, and a larger, but delayed, amount. This kind of financial choice is conceptually similar to 

the dietary choice trade-off discussed previously, and is another domain in which there are large, 

widespread deficits in self-control.  For example, 31% percent of American adults do not have any 

retirement savings (Federal Reserve Board, 2014), preferring instead to spend all of their money 

maintaining their current lifestyle. The intertemporal choice task has another distinct advantage, that 

of external validity for predicting well-being. Low self-control in this task among aging populations 

predicts decreased well-being and higher mortality (Boyle, Yu, Gamble, & Bennett, 2013; 

Forstmeier, Drobetz, & Maercker, 2011). 

An early functional magnetic resonance imaging (fMRI) study of monetary intertemporal choice 

found that activity in a specific set of brain regions, including the ventromedial prefrontal cortex 

(vmPFC), posterior cingulate cortex (PCC), and ventral striatum, correlates positively with value, 

(Kable & Glimcher, 2007). Since then, this network has been shown to increase in activity with 

                                                 
1 Here, we define value as the importance or worth of an item – specifically, it is a quantifiable attribute assigned to an item that 

has high explanatory power for choice behavior. For example, taste is a value parameter in dietary choice. 



 

 

3 
increasing value for a wide range of goods such as foods, trinkets, and money (Chib, Rangel, 

Shimojo, & O'Doherty, 2009; Clithero & Rangel, 2014). There is even evidence that this network 

may convert such disparate stimuli types into a “common currency” of value for comparison before 

a choice can be made (McNamee, Rangel, & O'Doherty, 2013). 

The literature suggests a reliable network that represents the value of choices across various studies 

and types of stimuli, but how are values constructed in the first place, and used to select one option? 

Decision making is a dynamic process that occurs over time, requiring the computation and 

comparison of various pieces of value information (“attributes”). Many computational models have 

attempted to describe the brain’s value construction and comparison process, and prominent among 

them are accumulator models of choice such as Decision Field Theory (Busemeyer & Townsend, 

1993), the Drift-Diffusion Model (Ratcliff & McKoon, 2008), and the Leaky Competing 

Accumulator Model (Usher & McClelland, 2001). In all of these models, decisions are made by 

dynamically integrating information for and against each option in a choice into a value signal. A 

decision is made when this relative value signal becomes sufficiently large or sufficiently small. 

This thesis will use one of these models in particular, the Drift Diffusion Model (DDM), to 

conceptualize this process. 

To understand this process, imagine that an individual is deciding whether to eat a chocolate chip 

cookie or a less delicious snack like celery (Figure 1). At the beginning of the decision process, the 

relative value signal (RVS) has a value of zero. Over time, the RVS changes by accumulating 

information in the following manner:  

RVSt = RVSt-1 + δ(V1-V2) + εt. 

The brain takes some amount of time (t) to calculate the value (V) each option holds for them; this is 

referred to as the non-decision time (NDT). Before this information is calculated, the RVS simply 

reflects any noise that exists in the decision circuitry (εt). After these values are calculated, the RVS 

begins accumulating a noisy weighted sum of the evidence in favor of each option according the 

equation above. Value information adds a certain amount, determined by the drift rate parameter 

(δ). A choice is made once the RVS becomes sufficiently strong in favor of one option, 

mathematically represented by the RVS crossing the boundary for that option. 
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Figure 1. Illustration of a sequential integrator model of choice. In 
this example, an individual decides between eating a highly-
valued cookie and a lower-valued bunch of celery. The dotted line 
indicates the time the brain takes to process the value of each 
option (100 ms). A choice is made by computing a relative value 
signal (RVS) that sequentially integrates a weighted linear sum of 
the value (once it is processed, at 100 ms). Random noise is also 
added to the RVS at each time point to represent noise in the 
decision circuitry. When the RVS crosses one of the two barriers 
(here, at approximately 680 ms), a choice is made. 

Several questions arising from this model have not been addressed in the literature, and are 

examined in Chapters 2 and 3 of this thesis. Firstly, although previous research uses only one value, 

in reality there are vastly different types of information one must use to make most real-world 

choices. In even a simple food choice like the one introduced above between a cookie and some 

celery, there are various attributes one must compute before constructing each option’s total value. 

For example, the taste of the foods is a distinctly different type of value information than their 

healthfulness. Individuals tend to place more weight on taste than health in their food choices, and 

taste, relative to health, has been found to be more strongly reflected in the vmPFC in individuals 

who are not successful at maintaining a diet to lose weight (T. Hare, C. F. Camerer, & A. Rangel, 

2009). Moreover, these attributes are very different conceptually; taste is a more visceral, innate 

attribute, whereas health is more a complex, abstract attribute. More abstract values like 

healthfulness may be more difficult to process, and therefore take longer to compute by the brain’s 
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valuation circuitry (Liberman & Trope, 2008). If taste (T) and health (H) information are truly 

distinctly different types of information, the relative value signal may evolve over time according to 

the following equation: 

RVSt = RVSt-1 + δT(TLeft-TRight) + δH(HLeft-HRight) + εt. 

This equation implies that taste and health may contribute different amounts to the RVS at each 

time point. Additionally, the brain may require different amounts of time to calculate each type of 

information (i.e., have different NDTs). In the example depicted in Figure 2, an individual is again 

deciding between a chocolate chip cookie and celery. However, taste information is processed 

quickly, causing the RVS to initially trend toward selecting the tastier option. Health information is 

processed more slowly. In this example, health information is processed early enough and 

accumulates enough evidence to sufficiently bias the RVS in favor of the healthier option. 

However, one could easily imagine a case in which health information enters the value comparison 

process so late that it does not have an opportunity to influence this signal, leading to a self-control 

failure regardless of the true preference on how heavily to weight health in choice. In this example, 

even a milliseconds-later processing of health would have led to selection of the cookie instead. 

 

Figure 2. Illustration of how attribute value processing speed 
could influence choice. In this example, an individual decides 
between eating a tasty but very unhealthy cookie, and a very 
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healthy but not tasty bunch of celery. Suppose that it takes 100 ms 
to compute taste information (indicated by the red dotted line), 
whereas health information takes 250 ms to process (indicated by 
the blue dotted line). A choice is made by computing a relative 
value signal (RVS), which begins with a value of zero, and then 
sequentially integrates a weighted linear sum of the attributes 
represented at this time plus noise. A choice is made the first time 
the RVS crosses one of the two barriers. 

Theory also suggests that, even if processing speeds for different choice features are the same, fast 

overall processing speeds may influence choice in favor of value types that are more weakly 

represented in the decision process (in this example, health information may be more weakly 

represented due to a general disregard for eating healthily). For example, imagine that taste and 

health actually are processed at the same time. However, due to a general deficit in preference for 

health, health value information contributes less to the RVS at every time point (that is, in the 

equation above, δH < δT). It is very possible that the longer that health has to influence the RVS, the 

more the RVS will reflect health’s value. Additional elements could also be included in this model, 

such as inhibition or down-weighting of taste once health is processed. 

These concepts are critical for building a more representative computational model of the decision 

process. Chapters 2 and 3 of this thesis will address these questions: do some types of attribute 

values take longer to process? Do earlier-processed attribute values have a larger weight in 

choice? Do faster overall processing speeds lead to a better reflection of lower-weighted, longer-

term goal focused, attribute values? Next, I will discuss the brain circuitry involved in 

incorporating long-term goals, such as healthiness, into value calculations, allowing an individual to 

execute self-control. 

1.3 Control over impulses 

Bringing one’s decision values more in line with one’s long-term, likely more abstract, goals, 

instead of those offering only immediate gratification, is a difficult computational problem. A great 

deal of work has been done in the neuroscience literature to understand the neural computations 

underlying this process, and suggests that the regions discussed above involved in valuation may 

work in tandem with regions associated with cognitive control to allow an individual to down-

regulate the value of tempting options. These studies suggested that one brain region in particular, 

the left dorsolateral prefrontal cortex (L DLPFC), is a crucial component of this process. For 

example, this region appears to be functionally connected to the vmPFC valuation region, and may 
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be responsible for down-weighting the value of tempting options, allowing more patient choices 

(T. Hare et al., 2009). Greater DLPFC cortical surface area and thickness have been associated with 

less temporal discounting – that is, less selection of the shorter, smaller monetary reward – in an 

intertemporal choice task (Drobetz et al., 2014).  Further, inhibition of this region using transcranial  

magnetic stimulation leads to more impulsivity in a monetary intertemporal choice task (Figner et 

al., 2010). Together with the brain’s valuation network discussed above, there is strong evidence to 

suggest there is a concerted system for decision-making when top-down regulation is required to 

bring one’s actions in line with more long-term, abstract, goals. 

To pinpoint the contribution of this control region on overall choice behavior, it is useful to measure 

simultaneous changes in this region’s structure, function, and connectivity that are associated with 

changes in self-control. Such changes have, in fact, been seen across one dimension: age. Self-

control increases with age across a number of choice domains, from experimental measures such as 

temporal discounting to alcoholism and gambling (Green et al., 1994; National Institute on Alcohol 

Abuse and Alcoholism, 2008; Read & Read, 2004; Sangrock, 2002; Spear, 2009). Additionally, the 

structure and function of the regions related to valuation and control discussed above change 

systematically across the lifespan (Eppinger, Nystrom, & Cohen, 2012; Eppinger, Schuck, Nystrom, 

& Cohen, 2013; Hare et al., 2008; Samanez-Larkin, Levens, Perry, Dougherty, & Knutson, 2012). 

For example, research suggests that children and adolescents have a much stronger response to 

reward in the ventral striatum than do adults (Galvan et al., 2006), and that older subjects have 

significantly less response to the valence of stimuli than adults (Mather et al., 2004). Moreover, 

lateral brain regions associated with control, such as the DLPFC, show marked change in their 

structure with age relative to other regions (Sowell et al., 2003). 

This research suggests systematic improvements in the brain’s self-regulation network across the 

lifespan that could lead to a better assignment of value to tempting options, resulting in better 

choices. Understanding how changes in the structure and function of the brain’s decision-making 

circuitry allow for better reflection of second-order preferences will help us pinpoint the brain 

circuitry important for these choices in general. This brings us to the final question of this thesis: are 

there neural markers for improvements in self-control? The study presented in Chapter 4 will 

address this question. 

1.4 In this thesis 
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To address all of the questions raised above requires methods that can measure the neural 

processes involved in executing self-control. It also requires a way to measure the value comparison 

process at a fine temporal resolution. To do so, I will use converging evidence from several 

methodologies. These methodologies are mentioned below, and are described in more detail in the 

relevant chapters. 

In Chapter 2, I address the question of how attribute value processing speeds can influence self-

control behavior. As illustrated in the example in Figure 2, very small, millisecond-level timing 

differences may be all that stands between choosing a cookie and choosing the healthier option. To 

observe the decision process at such a fine temporal resolution is a challenge. In this chapter, I 

introduce a new method that harnesses the power of fine temporal resolution available when 

recording computer mouse movements to estimate the decision process in dietary self-control. I 

propose that variation across individuals in self-control abilities is partly due to differences in the 

speed with which the decision-making circuitry processes basic attributes, such as tastiness, versus 

more abstract attributes, such as healthfulness. 

In Chapter 3, I apply this new method to the classic experimental economics choice paradigm of 

monetary intertemporal choice. Using the mouse tracking approach introduced in Chapter 2, I 

investigate how differences in value processing speeds influence ability to exert self-control in the 

financial domain. I  extend this technique to understand how small differences in decision value 

processing speeds during a trial can lead a generally-patient subject to fail at self-control, and 

conversely allow an impatient subject to succeed. 

Chapter 4 presents a lifespan study to understand the neural underpinnings of successful self-

control. In this experiment, I harness the power of fMRI to examine the structure and function of 

neural systems associated with reward, valuation, future thinking, and control. I examine how these 

systems change through the lifespan to bring valuations more in line with long-term rewards, rather 

than short-term gains.  In doing so, I also propose that there are not only age-dependent changes, 

but also age-invariant neural correlates of self-control.  

Chapter 4 summarizes the research detailed in the previous chapters. In addition, I discuss 

implications of my findings on our understanding of the decision process, including the origins of 

self-control success and failure, and several open questions for the field of decision neuroscience 

that arise from this work. 
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C h a p t e r  2  

DIETARY SELF-CONTROL IS RELATED TO THE SPEED WITH WHICH HEALTH AND 
TASTE ATTRIBUTES ARE PROCESSED2 

2.1 Introduction 

A large fraction of the population struggles with dietary self-control. For them, a choice between an 

apple and a chocolate chip cookie is more difficult than a choice between an apple and an orange, 

and is also more likely to result in decision mistakes (Rangel, 2013). This leads to two basic 

questions: why is sustained dietary self-control so difficult for so many, and why do some 

individuals have better self-control than others? 

These important questions have received considerable attention in several disciplines, including 

economics, psychology, and neuroscience. Behavioral economists conceptualize self-control 

failures as instances in which individuals over-discount the future consequences of their decisions 

(Ikeda, Kang, & Ohtake, 2010; Laibson, 1997; O'Donoghue & Rabin, 1999). Related to this idea, 

psychologists have proposed that dietary self-control is hard due to inherent limitations in how we 

process two different types of attributes (Liberman & Trope, 2008). In this view, basic attributes 

like the anticipated taste of foods are easily represented at the time of choice, and reliably weighted 

in decisions. In contrast, taking into account more abstract attributes like the healthiness of foods is 

thought to require effort, and as a result they are not weighted as reliably in decisions. This leads to 

a relative overweighting of taste compared to health information, which can result in poor dietary 

choices. Neuroscientists have identified neural mechanisms underlying the differences between how 

taste and health attributes are computed at the time of decision in people with good and poor self-

control (T. Hare et al., 2009). In both groups, areas of ventromedial prefrontal cortex (vmPFC) 

represent the overall value assigned to the food. However, in individuals with poor self-control this 

area responds only to the taste of foods, whereas in individuals with good self-control it responds to 

both health and taste information. Furthermore, in those with good self-control, areas of the left 

dorsolateral prefrontal cortex seem to modulate value-related activity in vmPFC.  

                                                 
2 Adapted with permission from Sullivan et al., 2015. 
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Here we propose that dietary self-control failures are partly due to differences in the speed with 

which the decision-making circuitry processes basic attributes like taste, versus more abstract 

attributes such as health. In particular, we test the following two explanations of the questions posed 

above. First, we hypothesize that dietary self-control is difficult for many because, on average, taste 

attributes are processed earlier than health attributes. Second, we hypothesize that individual 

differences in dietary self-control abilities are related to differences in the relative speed with which 

taste and health attributes are processed. In particular, we hypothesize that the ability to deploy self-

control decreases with increasing delays of the start of health information processing, relative to 

taste. 

These two hypotheses are inspired by a robust implication of several models of choice, including 

Decision Field Theory (Busemeyer & Townsend, 1993), the Drift-Diffusion Model (Ratcliff & 

McKoon, 2008), and the Leaky Competing Accumulator Model (Usher & McClelland, 2001). As 

illustrated in Figure 1, these models assume that the brain makes decisions by computing a dynamic 

signal that measures the value of two possible responses: in the example described above, choosing 

to eat a cookie (“Yes”) or declining it (“No”). At every instant, the signal estimates the relative 

value of “Yes” by adding a noisy measure of the value of the item, given by a weighted linear 

combination of the item’s attributes plus some Gaussian noise. A choice is made the first time one 

of two pre-established barriers is crossed: “Yes” if the upper one is reached first, and “No” in the 

other case. A critical feature of this model is that an attribute can affect the evolution of the value 

signal only if it is being represented at that instant. Thus, as illustrated in Figure 1, if taste 

information is processed starting at 500 ms, but health information is processed only starting at 

1000 ms, then during the interim the value signal is influenced only by taste. This would move the 

signal closer to the choice associated with the tastier item and decrease the likelihood of choosing 

the healthy item. In fact, if the onset of health information processing is sufficiently delayed, a 

choice will be made before it can influence the decision at all. 
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Figure 1. Illustration of how the time at which attributes are 
computed could affect choices in sequential integrator models of 
choice. Consider an example in which the subject needs to decide 
whether to eat a food that is somewhat tasty, but which is quite 
unhealthy. Suppose also that taste information is computed from 
500 ms until a decision is made, whereas health information is 
computed only after 1000 ms. A choice is made by computing a 
dynamic value signal that starts at zero and sequentially integrates 
a weighted linear sum of the attributes represented at this time 
plus noise. These weights can be interpreted as the “true 
preferences” that the individual is trying to maximize. A choice is 
made the first time the integrated value signal crosses one of the 
two pre-established barriers. For simplicity, the integrated value 
signal is depicted without noise. The gap in processing times then 
implies that only taste information affects the value signal 
between 500 and 1000 ms, which increases the likelihood that an 
unhealthy choice is made. 

These hypotheses are related to the previous findings discussed above, but posit a different and 

novel mechanism underlying difficulties in the ability to exercise self-control. The emphasis here is 

on the speed at which attributes are processed, and not on differences in the ability to process the 

attributes, or on how they would be weighted under the individual’s true preference (i.e., if choices 

could be made without noise). In particular, differences in the speed of processing can generate 
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differences in the relative influence of health and taste on the final decision, but such weighting 

differences need not be due to differences in processing speed. This distinction is important because 

many contextual variables (e.g., time pressure, marketing) could have a direct effect on the relative 

speed at which different attributes are computed, without directly affecting how they influence 

choice. 

In order to test these hypotheses, it is necessary to have a dynamic measure of the extent to which 

different attributes are integrated into the choice process while the decision is being made, and with 

sub-second temporal resolution. Building on the pioneering mouse-tracking literature (Dale, Kehoe, 

& Spivey, 2007; Dshemuchadse, Scherbaum, & Goschke, 2013; Freeman & Ambady, 2009; 

Freeman, Ambady, Rule, & Johnson, 2008; McKinstry, Dale, & Spivey, 2008; Song & Nakayama, 

2008; Spivey, Grosjean, & Knoblich, 2005), we asked subjects to indicate their choice using a 

continuous computer mouse movement. By measuring the mouse positions along the trajectory, we 

can infer the state of the choice process prior to the final decision. Scherbaum, Dshemuchadse, and 

Goschke (2012) propose a related link between connectionist models and intertemporal choice. 

2.2 Methods 

Subjects. Twenty-eight students (25% female, 93% right-handed) participated in the experiment, 

which was approved by Caltech’s Institutional Review Board. Subjects received $25 for their 

participation. They were asked to fast for four hours prior to the experiment. Compliance with this 

instruction was monitored by self-report. 

Task. Subjects performed the following three tasks, always in the same order. 

First, over three separate blocks, they rated 160 different foods in terms of 1) tastiness (“How tasty 

is this food?”), 2) healthiness (“How healthy is this food”), and 3) overall liking (“How much would 

you like to eat this food at the end of the experiment?”). Block and stimulus order were randomized 

across subjects. All ratings used a five-point scale (-2=very little to 2=very much). Based on pre-

testing, we selected food stimuli in which health and taste had minimal correlation for a typical 

subject (r=.2, p<.001). The foods included fruits, candies, chips, and granola bars. On every rating 

trial, one color image was presented at the center of the screen (~ 5.6 x 4.3 inches), on a black 

background, and in high resolution (1680 x 1050 pixels) on 20.1-inch 96 DPI LCD monitors.  
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Second, subjects were asked to read a short excerpt from WebMD.com on the importance of 

healthy eating (Fig. S1). This was done to increase the frequency with which they exhibited dietary 

self-control in the food choice task described next. 

Third, subjects made 280 binary choices among randomly-selected pairs of foods. Food pairs were 

selected for the choice task to include an equal number of trials for each combination of taste-health 

rating pairs, with foods rated as neutral on both taste and health excluded. Choices were made in 40-

trial blocks, with short rests in between. There were two types of trials. In six randomly selected 

blocks, subjects used the computer mouse to indicate their choice (“mouse trials”). In the other 

block, they used the keyboard to enter their response (“keyboard trials”). Subjects were informed of 

the type of the trial at the beginning of each block. 

Figure 2A describes a typical mouse trial. The trial began with the display of the Start Box at the 

bottom-center of a black screen. Subjects had to click in this box with the mouse to start the trial. 

This was followed by a blank screen of random duration drawn from a uniform distribution of 200-

500 ms (mean duration 350 ms), during which the mouse cursor disappeared from the screen. At the 

end of this blank screen, the mouse cursor reappeared in the bottom-center of the screen, where the 

start box used to be, and pictures of two foods appeared on the top-left and top-right portions of the 

screen, surrounded by equal-size white boxes (174 x 131 pixels). Subjects were instructed to make a 

choice by using the mouse to move the cursor continuously to the location where their preferred 

food was displayed, either top-left or top right. The location of each food (left versus right) was 

randomized on each trial. Once the subject clicked inside one of the food boxes, a choice was 

recorded. Subjects were not constrained in how long they could take to enter their response, but 

were instructed to respond as quickly and accurately as possible. Importantly, the actual foods did 

not appear until a mouse movement was detected. This was done in order to promote fluid mouse 

movements during the choice process. Cursor velocity was significantly greater than zero for 

normalized time points 1 through 99 (two-sided t-test; p<.01, uncorrected for multiple 

comparisons), suggesting that movements were fluid on average. Trials were separated by a fixation 

of random duration (uniform random 400-700 ms; mean 550 ms). 

Keyboard trials had an identical structure except for the following differences. Subjects kept two 

fingers over the keyboard buttons associated with left and right responses at all times, and did not 
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use the mouse. Trials were initiated by pressing the spacebar. Foods appeared automatically after 

the middle blank screen. Subjects indicated their choices by pressing the left or right keys. 

Subjects cared about the choices because at the end of the experiment, their choice from a single 

randomly selected trial was implemented. Subjects were asked to remain in the lab following the 

choice task until they had eaten the food, or 30 minutes had expired, whichever occurred first. Since 

they did not know in advance which trial would be selected, their best strategy was to treat every 

choice as if it were the only one. 

 
 

Figure 2. Task description. A) Structure of trials in the mouse 
tracking choice task. B) Representative paths with two (left) and 
one (right) changes of direction along the x-axis. C) Average path 
over all trials for the same subject, conditional on choosing left 
and choosing right. 

Mouse tracking. During mouse trials, the cursor’s X, Y position was tracked using Psychophysics 

Toolbox (Brainard, 1997) with a temporal resolution of 67 Hz. For the purpose of the analyses 

below, we shifted and normalized the coordinates so that the center of the Start Box (the location at 

which the cursor appears) is at (0,0), the pixel clicked to select the left option is at (-1,1), and the 

pixel clicked to select the right option is at (1,1). 
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Data pre-processing. To reduce some of the noise caused by trials where subjects seemed to 

have difficulty complying with the instruction to make continuous and rapid mouse movements, we 

applied two pre-processing steps to the mouse data. First, for each subject, mouse trials with 

reaction times (RTs) greater than two standard deviations above their mouse trial mean were 

excluded from further analysis (mean 13.3% of trials). For comparison, the mean RT in mouse trials 

was 1814 ms (S.D. = 524 ms). Second, we also removed a small fraction of trials in which the 

mouse trajectory crossed the y-axis more than three times (mean 3.3% of trials per subject; 26 of 28 

subjects had at least one such trial).  In contrast, as illustrated in Figure 2B, most trials involved one 

or two changes of direction. We emphasize that these criteria were selected a priori, are not based 

on their effect on the analyses below, and do not have a qualitative impact on the results. 

Time normalization. In order to facilitate comparison across trials with large differences in reaction 

times, time was normalized in most of the analyses described below. In particular, the duration of 

every trial was sliced into 101 identical time bins, with t = 1 indicating the start position at (0,0), 

and t = 101 indicating the time a choice was recorded. Thus, the index t provides a measure of 

normalized time. 

We have also carried out all of the analyses using absolute time and found similar but noisier 

qualitative results. We believe that this is due to sizable cross-subject differences in reaction times, 

which might reflect differences in underlying cognitive processing speeds. Such differences would 

render these analyses problematic, because absolute time then reflects different stages of cognitive 

processing in different subjects. In contrast, this issue does not arise in the time-normalized 

analyses. For this reason, here we work with normalized time.  

Trajectory analyses. Below, we report various types of trajectory analyses. These analyses come in 

two different types.  

First, we estimate several linear regressions of how the trajectory angle at every normalized time 

point is affected by the attributes of the foods. The trajectory angle at time t provides a measure of 

the direction of movement between t and t+1, and is normalized such that -45o always indicates a 

direct movement towards the left item, 0o always indicates a movement straight upwards, and +45o 

always indicates a direct movement towards the right item.  These regressions are estimated at the 

individual level, and then the relevant estimated coefficients are pooled across subjects.  

Second, we also use the results from these regressions to identify the earliest (normalized) time at 

which various properties of the foods have a significant and lasting influence on the trajectories. 
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This is done by carrying out a one-sided test of the hypothesis that the estimated regression 

coefficient of interest is significant at the 5% level, for each individual and time index. We use one-

tailed tests because we are interested in when they become positively significant. The earliest time 

window at which the test is satisfied is then labeled as the earliest time at which the variable of 

interest has a significant positive impact on the mouse trajectory for that subject. Importantly, the 

test requires that the variable maintain its significance from that time point through the end of the 

trial. Group comparisons are then performed by carrying out two-sided t-tests on the relevant 

distribution of individual statistics.  

For expositional reasons, further details on the trajectory analyses are provided in the relevant parts 

of the Results section. 

2.3 Results 

To test the hypothesis that the relative speed with which taste and health are computed affects 

dietary self-control, it is necessary to have a good measure of how the influence of these attributes 

evolves over the decision process. Here we constructed such a measure by asking subjects to 

indicate their choice using a continuous mouse movement, with positions along the trajectory 

serving to measure the state of the choice process prior to the final decision. This is a critical aspect 

of our experiment because it allows us to identify, prior to the final decision, the time at which the 

taste and health attributes begin influencing choice. The method is justified as long as movements 

of the computer mouse are correlated at every instant with changes in the integrated value signal 

illustrated in Figure 1. In this case, if the trajectory of the mouse at time t is affected by health 

information, then we can conclude that the underlying relative value signal of interest is also being 

modulated by health at that time. 

To see the power of this technique, consider a hypothetical example. Suppose that we look at the 

mouse trajectories for a given subject and find that they have the following two properties. First, the 

relative position between the left and right options, as measured by x-position, is significantly 

related to the relative taste rating (given by tasteR – tasteL) after 300 ms, but not before. Second, the 

x-position is also related to the relative health rating of the foods (given by healthR – healthL) after 

800 ms, but not before. Then we could conclude that the taste attributes were processed by the 

choice circuitry 500 ms earlier than the health attributes. Furthermore, the technique allows us to 

test whether differences in the earliest time at which health and taste information are processed 

could explain differences in dietary self-control across individuals.   
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Paradigm validation. We began the analysis by carrying out several tests designed to address 

concerns about the validity of the paradigm. 

One natural concern is that requiring subjects to indicate their choices with a mouse, instead of 

more common methods such as a button press, might affect the choices or the computations of the 

choice circuitry. In order to address this concern, we asked subjects to make otherwise identical 

choices using either the keyboard or the mouse, and then compared the behavior generated by both 

conditions. Figure 3A depicts the average choice curve for the group, which relates the relative 

value of the left item (measured independently by likingL – likingR) to the probability of choosing 

left. We found that the two cases led to indistinguishable choice curves (mean logistic slope mouse 

= -0.37, mean logistic slope keyboard = -0.33; p=.22, t(27)=1.25, two-tailed). Figure 3B plots the 

reaction time curves as a function of choice difficulty (measured by |likingL – likingR|). Although 

mean reaction times were longer in the mouse condition (mouse mean = 1814 ms; keyboard mean = 

1258 ms; t(27)=4.54, p=.0001, two-tailed), likely due to the additional motor complexity of the 

mouse-tracking task, in both cases RTs decreased with choice difficulty, as measured by the 

absolute value of the liking rating differences (mouse mean linear regression slope = -0.036; 

keyboard mean linear regression slope=-0.051; p=.18, t(27)=-1.36, two-tailed). This pattern is a 

common property of binary choice (Ashby, 1983; Luce, 1986; Milosavljevic, Malmaud, Huth, 

Koch, & Rangel, 2010; Ratcliff & Rouder, 1998; Rolls, Grabenhorst, & Deco, 2010), and a key 

prediction of the type of integrator models of decision-making discussed above. These results 

suggest that the nature of the choice process was not substantially altered by the use of mouse 

tracking. 

Another natural concern is that the mouse trajectories might not provide a good measure of the 

extent to which the properties of the foods are dynamically incorporated in the decision process. 

This could happen, for example, if individuals always made their decision before moving the 

mouse, and then made a very rapid straight movement to the chosen option. The paths depicted in 

Figure 2B suggest that this was not the case, but we also conducted a more rigorous test, which was 

constructed as follows. For each normalized time window (from t = 1 to t =101), and each 

individual, the local angle trajectory was regressed against the relative value of the two options (as 

measured by likingR – likingL). The estimated slope, plotted in Figure 3C for each time window, 

provides a measure of the extent to which the value information is influencing the choice process at 

different times. We found that, across the group, the earliest time at which the value information 
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had a sustained, significant effect on the trajectories, without ever returning to being not-

significant, was t = 56 for the group. Furthermore, the impact of value rose gradually over the 

course of the trial. In contrast, if individuals had made their choice before moving their mouse, and 

then had responded very rapidly with a straight trajectory, the time-course depicted in Figure 3C 

would look approximately like a step function.  This suggests that the information about the choice 

options is incorporated gradually into the choice process, and that the magnitude of the effect could 

be measured with our methodology. 

Finally, we tested if there was cross-subject variation in the ability to exercise dietary self-control. 

This is important since we are interested in looking at the extent to which individual differences in 

self-control can be explained by differences in the speed with which taste and health attributes are 

computed. To measure self-control success for each subject, we first divided trials into those that 

entailed a self-control challenge and those that did not. Challenge trials involved a choice between 

two foods in which one food had a higher health rating and the other had a higher taste rating. In 

this case, successful self-control occurred when the subject chose the healthier item, whereas 

choosing the tastier item constituted a self-control failure. In contrast, in non-challenge trials one of 

the items had a higher rating in both dimensions, and thus there was no need to exercise self-

control. Given this, we defined a subject’s self-control success ratio (SCSR) to be the fraction of 

challenge trials in which self-control was successfully exercised. Figure 3D depicts the distribution 

of SCSRs across the group, and shows that there was substantial variation across subjects (mean = 

25%, range: 2-78%). There were no significant RT differences between challenge and non-

challenge trials (challenge mean = 1782 ms; non-challenge mean = 1701 ms; t(27)=.78, p=.44, two-

tailed), consistent with the hypothesis that both types of trials utilize a similar decision process. 
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Figure 3. Paradigm validation. A) Psychometric choice curve for 
mouse and keyboard choice trials. B) Mean reaction time versus 
choice difficulty, as measured by |likingR – likingL|. A zero here 
indicates a difficult choice between two equally liked foods, and a 
four indicates an easy choice between foods with opposite liking 
ratings. C) Impact of relative food value (as measured by likingR – 
likingL) on the mouse’s angle trajectory, measured at each 
normalized time window. Error bands denote standard errors 
computed across subjects. D) Distribution of self-control success 
ratio (SCSR) across subjects. 

Taste is reflected in the choice process earlier than health. We now address the first hypothesis of 

the study: does taste information tend to influence the choice process earlier than health 

information?  

To test this question, we examined how mouse angle trajectories across successive normalized time 

windows were weighted on taste and health information. For every subject and time window, we 

estimated a linear regression of the angle trajectory on relative taste (tasteR – tasteL) and relative 

health (healthR – healthL). The resulting estimated coefficients provide a measure of the extent to 
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which each attribute influences the choice process at that time window. Figure 4A summarizes 

the effect of these regressions by plotting the mean time course of the estimated coefficients, as well 

as the times at which the distribution of estimates for the group first became significantly larger than 

zero without ever returning to being not-significant. As hypothesized, mouse trajectories were 

influenced by taste at significantly earlier time slices compared to health (taste: t = 55; health: t = 

67; p<.05 threshold, one-tailed). We carried out an additional test of the same hypothesis by 

estimating, separately for each individual, the earliest normalized time at which each attribute 

became significant and then comparing their distributions. We found that health never became a 

significant influence on the trajectory for 32% of subjects, whereas for taste this happened for zero 

subjects. Furthermore, as shown in Figure 4B we also found that the mean earliest time for a 

significant effect of health was later than the mean earliest time for taste (mean difference = 9.11, 

p=.032, t(18)=-1.97, one-tailed). 

Together, these results suggest that, on average, taste information began to influence the choice 

process about 9% earlier than health information. Given the average duration of the trials, this 

corresponded to an onset of health attribute processing by the choice circuitry approximately 195 

ms later than the onset for taste. 
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Figure 4. Average effect of taste and health attributes on mouse 
trajectories. A) Evolution of the effect of relative taste (given by 
tasteR – tasteL) and relative health (given by healthR – healthL) on 
the change in trajectory angle at each normalized time window. 
Lines denote group means. Error bands denote standard errors. 
Vertical lines are the earliest times at which each attribute 
becomes and remains significantly greater than zero (see text for 
details). B) Distribution of individual estimates of the earliest time 
at which each attribute significantly affects the trajectory. 

Dietary self-control and the relative speed at which taste and health attributes are computed. We 

next addressed the second hypothesis of the paper: are individual differences in dietary self-control 

associated with differences in the relative speed at which the health and taste attributes are 

computed?  

To answer this question, we began by comparing how taste and health information were reflected in 

the mouse trajectories for individuals with high versus low self-control, as defined using a median 

split of the SCSR statistic. As shown in Figure 5A, we found substantial differences across the 

groups. In particular, in the high self-control group, the paths for taste and health were quite similar 
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and became significantly greater than zero at approximately the same time (health: t = 67; taste: t 

= 60). In contrast, for the low self-control group, the latency at which taste became significant was 

similar to that of the high self-control group (t = 56), but that for health occurred much later (t = 85). 

As before, we tested for the significance of these differences by estimating at the individual level 

the earliest time at which health attributes become significantly greater than zero, and then 

comparing the distributions. The normalized time at which taste and health became significant did 

not differ for high self-control subjects (mean health: t = 69.50; mean taste: t = 68.54; mean 

difference = -2.9; t(9)=-0.46, p=.33, one-tailed), but they were significantly different in the low self-

control group (mean health: t = 81.22; mean taste: t = 61.35; mean difference = -16, t(8)=-2.5, 

p=.02, one-tailed). 

Figure 5B takes this analysis a step further. For each subject, we computed a measure of the 

“computational advantage” of taste, given by the earliest time at which taste significantly affected 

and continued to affect the trajectories minus the earliest time at which health did. We then 

estimated a linear regression of the SCSR measures of self-control against the individual measures 

of the ‘computational advantage’ for taste versus health. This regression tests the extent to which 

individual differences in self-control can be attributed to individual differences in the relative speed 

at which the health and taste attributes are processed. Since health never became significant for 32% 

of the subjects, we carried out the test in two different ways. In one case we assumed that, for the 

problem subjects, health first became significant at t = 102, one time point after the final time point, 

and estimated the regression using all of the subjects (linear regression slope=.005, p<.0004, R2= 

0.39). In the other case, we simply excluded these subjects, carrying out the regression using only 

the 67.9% of subjects for whom health became significant during the trial. This yielded a similar 

result (linear regression slope=.005, p=.02, R2=.29).  
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Figure 5. Individual differences in self-control. A) Evolution of 
the effect of relative taste and relative health on the mouse 
trajectory, computed separately for individuals with high and low 
self-control. Error bands denote standard errors. Vertical lines are 
the earliest times at which each attribute becomes significantly 
different than zero. Note that the health attribute never becomes 
significant for the low self-control group. B) Self-control success 
ratios against individual measures of the computational advantage 
of taste over health, as measured by the difference between the 
earliest time at which health becomes significant minus the 
earliest time at which taste becomes significant. Circles indicate 
subjects for whom both taste and health had a significant effect on 
trajectories before the end of the trial. Crosses indicate subjects 
for whom it did not. For those subjects, the value of the earliest 
time for health was set to t = 102. See text for details. 

We also carried out an additional analysis to rule out a potential confound in these results. To 

understand the concern, suppose that health and taste begin to influence the true data generation 

process at the same instant, but that on average the weight given to taste in the instantaneous value 

signal being integrated is larger than the average weight given to health. In this case, if the noise 

associated with both signals is sufficiently similar, a test based on significance time will identify an 
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earlier entrance for taste than health based purely on the ratio of the weight to the noise, and may 

falsely overestimate the difference in significant times. Furthermore, this potential bias would be 

correlated with the relative “true” weights of health and taste, and thus with the SSCR measure, 

which could lead to a spurious correlation. Figure 6 depicts the results of an analysis designed to 

control for this problem. For every subject and for every percentile value p between 10% and 90% 

we use the previous regression results to identify the time at which each of the attributes reaches 

and never drops below p% of its final magnitude. This leads to the plot in Fig. 6A, which depicts 

the speed at which health and taste reach different thresholds. We then fit a cubic polynomial to the 

estimates of each subject, separately for health and taste, and interpolate its value to the y-axis, 

which provides a measure of the earliest time at which each of the attributes begins and continues to 

influence the mouse trajectories. Note that this measure is free from the confound described above, 

and is fairly robust to noise. As shown in Figure 6B, we find that the differences in earliest 

significant time identified with the previous analysis are highly correlated with those identified with 

this new method (R2=.51, p=.006). Likewise, the alternative measure of the relative earliest times 

can still significantly predict a sizable fraction of the individual differences in self-control (Fig. 6C; 

R2=.13, p=.059).  

Together, these results suggest that a sizable fraction of individual differences in dietary self-

control, on the order of 13-39%, might be attributable to differences in the relative speed at which 

the health and taste attributes are processed by the choice circuitry. 
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Figure 6. Control analysis. A) Estimated normalized time at which 
each attribute’s weighting on cursor trajectory had accumulated a 
percent of its final value. Error bands denote standard errors. B) 
Cross-subject scatter plot showing of the relationship between the 
two measures of the time advantage of taste over health attributes. 
Crosses indicate subjects for whom health did not have a 
significant effect on trajectories before the end of the trial. C) 
Cross-subject scatter plot showing the correlation between of self-
control success ratios and the intercept-based measure of the time 
advantage for taste. 

Relationship between relative computation time and attribute decision weights. The previous 

results suggest that the relative speed at which health and taste are computed is related to the ability 

to exercise dietary self-control. We conclude our analyses by carrying out a post hoc analysis to 

investigate further the nature of the relationship. This was done in two steps. 

First, Figure 7A depicts the extent to which differences in SCSRs are related to differences in the 

weights given to the taste and health attributes in the final decision. The plot was constructed as 

follows. For every subject we computed a logistic regression of the probability of choosing the right 
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item against relative taste (tasteR – tasteL) and relative health (healthR – healthL). This provided 

individual estimates of the weights that each attribute received on the final decision. We then 

plotted the individual estimates against the SCSR, and for each type of attribute we carried out a 

linear regression of the SCSR measure against the individual estimates. Both attributes were highly 

significant and, on their own, explained a sizable fraction of the individual differences in self-

control (health: p=.0004, R2=.39; taste: p=.0004, R2=.38). 

Second, we hypothesized that the final decision weights for taste and health are influenced by the 

speed with which the attributes were computed. This hypothesis is based on the idea that the earlier 

an attribute starts influencing the choice process, the longer it is integrated and thus the stronger its 

effect on the final choice. This hypothesis is consistent with the type of integrator decision models 

described in the Introduction. To test this hypothesis, we regressed the individual estimates of the 

final relative decision weight of health minus taste on the “computational advantage” of taste, as 

defined in the previous section. As shown in Figure 7B, we found that the two variables had a 

significant and sizable relation (slope = -0.02, p=.001, R2=.487).  

Given these results, we also hypothesized post-hoc that the main mechanism through which the 

speed of attribute processing influences SCSR is by modulating the weight assigned to each 

attribute in the final choice. To test this hypothesis, we carried out a mediation analysis. Using this 

method, we found that the final weight of taste was a significant mediator of taste’s time-to-

significance, reducing path strength by 79.14%, and making taste’s time-to-significance not-

significant for predicting SCSR (p=.60). This was also true for the health coefficient, reducing path 

strength by 88.26%, and also making health’s time-to-significance non-significant for predicting 

SCSR (p=.75). See Figure S2 for details. 

Together, these results suggest that attributes that are computed earlier have a stronger weight in the 

final decision, likely by increasing the amount of time during which they are integrated into the 

decision. In particular, this suggests that initial delays in the computation of an attribute are not 

made up later on during the choice process, for example by a heavier weighting closer to the time of 

decision. 
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Figure 7. Relationship between final decision weights and speed 
of computation. A) Plot of the individual self-control success 
ratios versus the individual final decision weights for the health 
and taste attributes. Lines denote best linear fits for the 
regressions of SCSRs on each of the attribute weights, separately. 
B) Plot of relative final decision weights versus the 
“computational advantage” of taste, as measured by the earliest 
time at which taste significantly affects the trajectory minus the 
earliest time at which health does. 

2.4 Discussion 

In this study we propose that dietary self-control failures can be traced back to relative differences 

in the speed with which the decision-making circuitry processes basic attributes like taste versus 

more abstract attributes such as health. We find evidence that, on average, taste attributes are 

processed about 195 ms earlier than health attributes during the choice process. We also find that 

individual differences in dietary self-control are related to differences in the relative speed with 

which taste and health attributes are processed. In particular, we find that self-control decreases with 

increasing lag between the onset of taste and health information processing. 

Since several alternative mechanisms are likely to be at work in dietary self-control (Baumeister & 

Vohs, 2004; Beaver et al., 2006; T. A. Hare, C. F. Camerer, & A. Rangel, 2009; Harris, Hare, & 

Rangel, 2013; Hutcherson, Plassmann, Gross, & Rangel, 2012; Ikeda et al., 2010; Loewenstein, 

1996; Muraven & Baumeister, 2000), we were surprised to find that between 13% and 39% of 

observed individual differences in self-control ability could be explained by differences in the 

relative speed with which taste and health attributes are processed. By comparison, previous studies 

have found that personality traits such as impulsivity or I.Q. can only explain, respectively, around 
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13% and 5% of individual differences in self-control (de Wit, Flory, Acheson, McCloskey, & 

Manuck, 2007; Mitchell, 1999; Shamosh & Gray, 2008; Steinberg et al., 2009). 

Our results are consistent with basic ideas from a wide class of integrator models of decision 

making, including Decision Field Theory (Busemeyer & Townsend, 1993), the Drift-Diffusion 

Model (Ratcliff & McKoon, 2008), and the Leaky Competing Accumulator Model (Usher & 

McClelland, 2001). Despite technical differences, in all of these models decisions are made by 

dynamically integrating information for and against the different options (Bogacz, 2007; Rangel & 

Clithero, 2013). At every instant during the choice process, the decision circuitry receives 

instantaneous information about the attributes associated with each stimulus under consideration, 

and integrates them into a dynamic value signal that measures the relative value of the two options. 

A decision is made when the relative value signal becomes sufficiently large or sufficiently small. 

These models are an important benchmark for understanding self-control because they have been 

shown to account, with high quantitative accuracy, for psychometric choice data. Importantly, they 

predict that the earlier an attribute is processed, the longer it is integrated into the relative value 

measure, and thus the larger the weight that the attribute receives in the final decision. Thus, these 

models provide computational foundations for our findings. 

Our study borrows heavily from the pioneering mouse-tracking literature, which has been used to 

study intertemporal choice (Dshemuchadse et al., 2013), visual search (Song & Nakayama, 2008), 

stereotyping (Freeman & Ambady, 2009), and psycholinguistics (Spivey et al., 2005). However, we 

use the mouse-tracking data in a different way. In particular, whereas most mouse-tracking papers 

focus on comparisons between the average paths generated by various experimental conditions, 

here we use regression analyses to identify the time at which different stimulus attributes begin 

influencing choice. (See Dshemuchadse et al., 2013; Scherbaum, Dshemuchadse, Fischer, & 

Goschke, 2010; Scherbaum, Dshemuchadse, Leiberg, & Goschke, 2013 for related uses of mouse-

tracking data.) 

Our study also suggests a potential mechanism by which the difficulty and abstractness of attributes 

may influence the choice process (Liberman & Trope, 2008). Rather than simply resulting in a 

weaker representation of attributes like health, as is sometimes assumed, the abstractness of 

attributes might also affect the speed with which they are processed. One limitation of our study is 

that we cannot disentangle the influence that processing difficulty and processing speed have in 
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self-control. In fact, it is possible that in some contexts both effects might be correlated. Future 

work will be needed to tease apart the relative roles of these two mechanisms. 

Several implications of these findings merit future investigation. First, these data suggest that 

slowing down decisions, even if only by adding a waiting period before choice, might increase the 

relative influence of abstract attributes like health on final choice. To see why, note that at longer 

decision times, there is a decrease in the fraction of time during which only the taste attribute is 

computed. Indeed, there is already a literature suggesting the influence of time pressure on choice 

(e.g., Reutskaja, Nagel, Camerer, & Rangel, 2011; Suter & Hertwig, 2011). Second, our results 

suggest that self-control could be improved by interventions that increase the relative speed with 

which health information is processed. Consistent with this, a previous study showed that simply 

cuing subjects to pay attention to health can improve dietary self-control (Hare, Malmaud, & 

Rangel, 2011). Third, these findings provide a rationale for regulating marketing practices that 

increase the relative ease with which abstract attributes such as health are processed. For example, 

prominently displaying health information such as calorie count may allow more rapid integration 

of health attributes. Fourth, they provide a potential mechanism through which differences in 

cognitive abilities might affect self-control. For example, it might be the case that individuals with 

higher I.Q. are relatively faster at processing abstract attributes, such as health, which increases their 

self-control. Fifth, the relative speed of attribute processing might also play a role in other types of 

decisions in which basic and abstract information need to be combined. Potential examples include 

altruism, where information about the self might be calculated faster than information about others, 

and any decision involving discounting, where information about immediate rewards might be 

processed earlier than information about future rewards.  
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2.5 Supplementary Figures 

 
Figure S1. Task details. A) Flow of the experiment. B) Healthy eating manipulation. Mean view 
time was 1634 ms (min. 587 ms, max. 3409 ms, SD 587 ms). 
 
 

 
 

Figure S2. Mediation analyses. Analysis measured the mediating effect of final attribute weights on 
the association between self-control success ratios (SCSRs) and the earliest time at which the 
attribute becomes and remains predictive of angle of movement (ST) for A) taste and B) health.  
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C h a p t e r  3  

DELAY OF GRATIFICATION IN INTERTEMPORAL CHOICE IS RELATED TO THE 
SPEED WITH WHICH IMMEDIATE AND FUTURE REWARDS ARE PROCESSED3 

3.1 Introduction 

The ability to postpone gratification has a profound influence in health, education, financial 

outcomes, and varies greatly across individuals and contexts. This is powerfully illustrated by 

Walter Mischel’s marshmallow experiments, which have shown that behavioral differences 

measured at age 4 are predictive of life-outcomes many decades later (Casey et al., 2011; 

Mischel, 2014; Mischel, Shoda, & Peake, 1988). Individual differences in temporal discounting 

have been linked to many important real-world outcomes, such as well-being, gambling, drug 

addiction, and mortality rates (Boyle et al., 2013; Forstmeier et al., 2011; Mischel et al., 1988). 

Research in psychology and behavioral economics has shown that observed temporal discount 

rates are inconsistent across time and domains (Ainslie & Monterosso, 2003; Berns et al., 2007; 

Chabris, Morris, Taubinsky, Laibson, & Schuldt, 2009; Charlton et al., 2013; Frederick, 

Loewenstein, & O'Donoghue, 2002; Green et al., 1994; Laibson, 1997; Loewenstein & Prelec, 

1992).  

 

Given this, a systematic characterization of the neurocomputational mechanisms responsible for 

this variation is of critical importance. Decades of work in psychology have identified a number 

of mechanisms that affect the ability to delay gratification during intertemporal choice. Examples 

include cognitive depletion (e.g., Baumeister & Vohs, 2004), memory (Peters & Buchel, 2010; 

e.g., Peters & Buchel, 2011; Weber et al., 2007) and cognitive biases (e.g., Fassbender et al., 

2014; Kable & Glimcher, 2010; Liberman & Trope, 2008). A growing effort in decision 

neuroscience has also begun to identify the neurocomputational basis of some these processes 

(e.g., Ballard & Knutson, 2009; Hare, Hakimi, & Rangel, 2014; Harris et al., 2013; Kable & 

Glimcher, 2010; Muraven & Baumeister, 2000; Rodriguez, Turner, & McClure, 2014). However, 

most of the observed variation across individuals and contexts remains unexplained. For example, 

even non-mechanistic variables such as impulsivity personality traits or IQ can only explain 

                                                 
3 In collaboration with Antonio Rangel. 
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around 13% and 5%, respectively, of individual differences in self-control (de Wit et al.; 

Shamosh & Gray, 2008; Steinberg et al., 2009), and they cannot account for contextual variation. 

 

We propose that the relative speed at which immediate and delayed rewards are processed has a 

sizable impact on the ability to postpone gratification, and that differences in these speeds can 

explain an important fraction of the observed individual and contextual variation. As shown 

below in more detail, this prediction follows directly from the class of sequential integrator 

models of choice, such as the Drift-Diffusion Model (Ratcliff, 1978, 1980; Ratcliff, Cherian, & 

Segraves, 2003; Ratcliff & McKoon, 1982; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; 

Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 2002), the attentional Drift Diffusion-Model 

(Krajbich, Armel, & Rangel, 2010; Krajbich, Lu, Camerer, & Rangel, 2012; Krajbich & Rangel, 

2011), the leaky-accumulator model (Usher & McClelland, 2001), and Decision Field Theory 

(Busemeyer & Diederich, 2002; Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend, 

2001), which provide highly accurate algorithmic descriptions of the psychometrics of value-

based choices, including in intertemporal monetary choice tasks (Dai & Busemeyer, 2014; 

Rodriguez et al., 2014). An important prediction of these models is that the faster information 

about a choice attribute is processed by the choice circuitry, the stronger the influence that it has 

on the choice algorithm (Ratcliff & McKoon, 1989; Sullivan, Hutcherson, Harris, & Rangel, 

2015). 

We test this hypothesis by combining an intertemporal monetary choice task, where subjects  

choose between smaller-sooner and larger-later money prizes, with methods pioneered in the 

mouse tracking literature (Dale et al., 2007; Dshemuchadse et al., 2013; Freeman & Ambady, 

2009; Freeman et al., 2008; Lohse & Johnson, 1996; McKinstry et al., 2008; Song & Nakayama, 

2008; Spivey et al., 2005). Subjects make their choices using continuous mouse movements, 

which provide a proxy measure of the state of the decision processes before a choice is actually 

made with millisecond temporal resolution. This, together with the analysis methodology 

developed in Sullivan et al. (2015), allow us to ask the following three basic questions. First, are 

immediate rewards processed faster than delayed rewards on average? Second, can individual 

differences in the processing speed of immediate and delayed rewards account for a sizable 

fraction of the cross-individual variation in the ability to delay gratification? Third, can 

fluctuations in the relative processing speed of immediate and delayed rewards explain contextual 

fluctuations within subjects? 
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3.2 Methods 

Subjects. 36 subjects recruited from the Caltech community participated in the experiment 

(59.5% male, mean age 20.9 years old). Subjects were compensated with a $10 show-up fee, as 

well as the payment option selected in a randomly selected trial of the experiment, as described 

below. The experiment was approved by Caltech’s IRB. 

Task. Subjects performed 280 binary choices in a monetary inter-temporal choice task, divided in 

25 trial blocks separated by self-timed rests. On each trial, they chose between a constant 

reference offer of $25 paid at the end of the experiment (not shown in the screen) and a 

combination offer (shown in the screen) consisting of an amount (<$25) paid that day and another 

amount paid at a specified future date. Text was shown in white on a black background on 20.1-

inch 96 DPI LCD monitors (1680x1050 pixels) using the Psychophysics Toolbox (Brainard, 

1997).  

As described in Figure 1A, each trial began with the display of a Start Box at the bottom-center of 

a black screen. Subjects had to click in this box with the mouse to start the trial. This was 

followed by a black screen of random duration (uniform on 200-500 ms). During the black screen 

the mouse cursor disappeared from the screen, and reappeared at its conclusion at the bottom-

center of the screen. Once mouse movement was detected, “yes” and “no” options were displayed 

in equal-size white boxes (75 x 50 pixels) on the top-left and right of the screen, with their 

respective locations randomized for each trial. The combination offer also appeared on the screen 

at that time. Subjects were instructed to indicate their choices by moving the mouse cursor 

continuously to either response box. A choice was recorded as soon as the mouse was detected 

inside one of the boxes. Subjects were given a free response time, but were asked to make each 

choice as quickly and accurately as possible. Trials were separated by a fixation cross of random 

duration (uniform on 400-700 ms).  

The number of days delay for the delayed payment portion of the combination offer could vary 

from 5 to 465 days in 10-day increments, and the delayed payment amounts varied from $5 to 

$65 in $5 increments. The immediate payment portion of the combination offer varied from $0 to 

$25 in $5 increments. 
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The first 45 trials consisted of an equal number of three types of trials, randomly intermixed. 

First, subjective values for all possible combination offers were calculated using a fixed 

hyperbolic discounting parameter k of 0.009, which was the mean k value of a pilot study. Next, 

15 combination offers were randomly selected in which the reference item would be preferred 

(i.e. was of higher subjective value) over the combination offer by the average subject. An 

additional 15 offers were randomly selected in which the combination offer would be preferred. 

A final 15 offers were randomly selected in which the reference item and combination offer were 

within $1 of each other. After completing these 45 trials, the subject’s individual hyperbolic 

discounting parameters were estimated (see Preference Parameter Estimation below for 

estimation procedure) and used to generate the remaining 235 choices such that that in 1/3 of 

trials the combination offer is of greater subjective value, in 1/3 of trials the off-screen reference 

option is of greater subjective value, and 1/3 of trials within $1 of the subject’s point of 

indifference between the two options. 

At the end of the experiment, one trial was selected at random, and the option chosen was 

implemented. All payments, delayed or not, were implemented using PayPal accounts to equate 

the associated transaction costs across both options. Subjects were offered, but none needed, 

assistance in signing up for PayPal. They were also given detailed instructions on how to collect 

and use the money. To reduce transaction costs, subjects received an email reminder whenever 

new funds were deposited in their PayPal account. The majority of subjects reported that using 

PayPal would be “easy” or “very easy” (69%).  

Preference Parameter Estimation. Each subject’s choices were fit to a standard hyperbolic 

model of discounting. The model assumes that subjects have linearly additive preferences over 

prizes received at different dates, and that the value of each such prize is given by  

𝑆𝑆 =
𝑋𝛼

1 + 𝑘𝑘
, 

where X denotes the size of the prize, D represents the delay in days, k is the hyperbolic discounting 

parameter, and α represents the curvature of the utility function. The SV of the combination offers 

was computed by summing the SV of the immediate and delay payments, and denoted by SVCombo. 

The SV of the constant reference point, denoted by SVToday, equals $25α. As is standard in the 
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literature (Chabris et al., 2009; Pawitan, 2001; Rodriguez et al., 2014), the model also assumes 

that subjects make probabilistic choices, with the probability of choosing the combo option given 

by 

 
𝑒𝜔𝑆𝑆𝐶𝐶𝐶𝐶𝐶

𝑒𝜔𝑆𝑆𝐶𝐶𝐶𝐶𝐶 + 𝑒𝜔𝑆𝑆𝑇𝐶𝑇𝑇𝑇
, 

where ω is a non-negative sensitivity parameter determining the influence of the SVs on the 

choices. Note that choices are random when ω=0, but become more responsive to the relative value 

of the two options as ω increases. For each subject, we estimated the α, k, and ω parameters that 

best fitted the choice data using maximum likelihood estimation.  

Mouse trajectory preprocessing. On each trial, the mouse cursor’s (x, y) pixel coordinates were 

recorded every 10 ms. To facilitate spatial comparison across trials, recorded pixel values were 

transformed and normalized so that the initial cursor position is (0,0), and the final cursor position 

(the point at which the cursor entered the response box) was recorded as either (1,1) if the choice 

was to the right option, or (-1,1) if the choice was to the left option.  

Some outlier trials were excluded based on a priori defined criteria. Since our goal is to use 

mouse location as a proxy for the state of the decision process before the actual decision is 

recorded, it is important to exclude trials in which subjects did not comply with the instruction to 

move smoothly and continuously toward the chosen option. In particular, we excluded from 

further analysis trials with reaction times (RTs) greater than two standard deviations above the 

mean RT over all subjects (2842 ms; 3% of trials; all subjects had at least one such trial). We also 

excluded trials with overly complex trajectories, defined as those in which the mouse trajectory 

crossed the y-axis more than three times (mean 7% of trials per subject; 35 of 36 subjects had at 

least one such trial).   

Trajectory regression analysis. For every subject, we computed the following linear regression 

analyses of the mouse trajectory, designed to measure how the influence of immediate and 

delayed payments on mouse positions changed over the course of the decision. A separate 

regression was estimated at each 10 ms time bin of the decision process. The dependent variable 

was the angle of the cursor trajectory at each time bin, which provides a measure of the direction 

of movement, with -45o always representing a direct movement towards the left option, 0o always 
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indicating a movement straight upwards, and +45o always indicates a direct movement towards 

the right option.  The independent variables were a constant, the relative value of the immediate 

payments, given by 𝑆𝑆𝑁𝑁𝑁𝑅 − 𝑆𝑆𝑁𝑁𝑁𝐿 , and the relative value of the delayed payments, given by 

𝑆𝑆𝐷𝐷𝐷𝑅 − 𝑆𝑆𝐷𝐷𝐷𝐿 , with R and L denoting the right and left locations. For the reasons described in the 

main text, these values were computed for each trial using the mean k and α best fitting parameters 

in the group. Pooling the results from these regressions, we get a time-course of how the influence 

of immediate and delayed rewards on the mouse trajectories. Figure 4A shows the mean and SE 

of these paths over all subjects. Importantly, because reaction times varied within and between 

subjects, there was significant attrition of trials at late time points. For this reason, regressions 

were estimated for a subject from the first time point to the point at which fewer than 10 trials 

were still available for estimation. 

Computation of NDTs. The results from the regressions could also be used to estimate the time at 

which each of the two attributes (immediate and delayed rewards) began to have a significant 

influence on the mouse trajectories, and remained so until the end of the trial. We refer to these 

times as NDTI, which stands for non-decision time for immediate rewards, and NDTD, which 

stands for non-decision time for delayed rewards. 

A simple way of computing these measures would be to carry out a one-sided t-test against zero 

in each time bin, using the distribution of regression coefficients in the group. Unfortunately, 

these measure can exhibit substantial biases when (as is the case in this data, see Figure 4A), the 

time-course of coefficients reaches a different plateau for each type of reward.  

To side-step this problem, we computed the NDT measures using the method developed in 

Sullivan et al. (2015), which does not exhibit this problem. The measures are constructed 

separately for each subject and reward type as follows. First, we identify the plateau reached by 

the time-course of the estimates; call it by 𝛽𝑚𝑚𝑚. Since the regression estimates of late time bins 

can be erratic, due the fact that only a small number of trials last that long, we set this value equal 

to 70% of the maximum estimated 𝛽 over all time bins. Second, for each value in 0.1𝛽 to 0.99𝛽 

(in 1% intervals), we identify the earliest time at which the time-course reaches that level and 

stays above it for the rest of the time. Each of these estimates defines a point in 2-dimensional 

space, as depicted in Figure 4B for a typical subject. Third, in order to take out estimation noise, 

we fit a cubic polynomial to the set of estimates (fit R2 for NDTI mean = .900, SD=.141; for 
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NDTD mean = .903, SD=.085). The intercept of this cubic model with the y-axis is used as the 

measure of the NDT for that attribute. Figure 4C summarizes the computation of both NDTs in 

the entire group. 

3.3 Results 

Subjects made a series of binary choices between a constant off-screen reference option paid $25 on 

the day of the experiment, and an on-screen combination offer involving two monetary rewards, one 

delivered that day, and another delivered at a the future date (Fig. 1A, see Methods for details). 

Response options (“Yes” for the combo offer, “No” for $25 today) were displayed in white boxes at 

the upper left and right sides of the screen, with their location randomized across trials. Subjects 

were asked to indicate their choices by moving the location of the computer mouse from the 

bottom-center of the screen into the box surrounding their preferred option.  

3.3.1 Behavioral data and paradigm validation 

Estimated temporal discounting parameters. We used maximum likelihood to estimate subject-

specific parameters in a hyperbolic discounting model that has been widely used to explain 

intertemporal choice (Ainslie, 1992; Laibson, 1997; Mazur, 1987; O'Donoghue & Rabin, 1999; 

Pine et al., 2009). A key element of this model is the discounting parameter k, which measures the 

strength with which later rewards are discounted. The distribution of estimated k values (Fig. 1B; 

mean=0.012, SD= .022) are similar to those found in previous studies (Chabris, Laibson, Morris, 

Schuldt, & Taubinsky, 2008; Frederick, Loewenstein, & O'Donoghue, 2002; Kable & Glimcher, 

2007; O'Donoghue & Rabin, 1999). An alternative measure of patience is given by the fraction of 

trials in which subjects chose the patient option involving the combo offer (mean = 52.1%, SD = 

.09, max = 70%, min= 38%). Since the two measures were highly correlated (linear regression: 

slope =-0.04, p=5.1e-07, R2=0.59), we use them interchangeably in the analyses below. Note also 

that both measures exhibit substantial variation across subjects, which is important for investigating 

the speed of attribute processing in individual differences. 
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Figure 1. Mouse tracking choice task and behavior. (A) The figure 
shows an example trial in this task, in which participants used the 
computer mouse to choose between a fixed reference of $25 that 
day, or a combination offer displayed on the screen in each trial. 
This combination offer always featured one payment delivered 
that day, and another payment delivered in the future. (B) 
Distribution of the individual temporal discounting parameter k. 
(C) Average choice curve showing that as the relative value of the 
combination offer increased, so did its selection frequency. The 
line and shading represent the average and standard error of the 
fitted logistic function, and dots and their error bars represent 
average data and standard error. (D) Mean reaction times as a 
function of the difference in value between the choice options. 
The line and shading represent the average data and its standard 
error. 

Basic psychometrics. For every subject and trial, we can compute the subjective value of the 

reference and combo options (SVToday and SVCombo) using the individually estimated discount 

parameters (see Methods for details). Using these value measures, we constructed the psychometric 

choice and reaction time (RT) curves shown, respectively, in Figures 1C and 1D. Both curves 

exhibit standard properties for this type of data: choices were a logistic function of SV differences 

(mixed effects logistic regression: slope = 46.97, p=1.9x10-5), and RTs increased with choice 

difficulty, as measured by the SV of the best option minus the SV of the worse option (mixed 
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effects linear regression of RT on difficulty: slope=-0.0006, p=1.2x10-8). Mean reaction time was 

2161 ms (SD = 352), which is also similar to those found in the literature (e.g., Hare et al., 2014; 

Kable & Glimcher, 2007; Weber et al., 2007). Together, these results show that the task exhibited 

standard psychometric properties, despite the use of mouse-tracking to indicate the responses. 

Properties of mouse trajectories. As in previous mouse-tracking studies (Dale et al., 2007; 

Dshemuchadse et al., 2013; McKinstry et al., 2008; Scherbaum et al., 2010; Spivey et al., 2005; 

Sullivan et al., 2015) subjects were instructed to indicate their choices by moving the computer 

mouse continuously towards their chosen option once the trial starts. This is an important part of the 

design because we used the mouse position of the cursor as a proxy measure for the state of the 

choice process prior to the final decision, which allow us to investigate the time at which immediate 

and delayed reward information begin influencing the choice process.  

The validity of this proxy measure would be reduced if, for example, subjects simply moved the 

mouse quickly to start the trial, paused there while making the choice, and only moved the cursor in 

a direct path toward their choice once a choice was made. Clearly, in this case the mouse trajectory 

would not reflect much of the choice process. Fortunately, visual inspection of cursor paths 

suggested that this was not the case, as illustrated in the sample and mean trajectories depicted in 

Figure 2. In addition, for each subject we carried out a one-sided t-test at each time point within the 

trial to test if cursor velocity was greater significantly greater than zero at all times. Because 

reaction times varied widely between and within subjects, we carried this analysis using normalized 

time, constructed by interpolating movement in each trial to 100 equal time bins. For 94% of 

subjects, mouse movement was significantly greater than zero from t=1 to t=99 (p<0.05). For the 

remaining two subjects, cursor velocity was significantly greater than zero in, respectively, 97% and 

94% of the time bins. Together, these results indicate that subjects generally complied with the 

request to move the mouse continuously to indicate their choice, and provide support for the use of 

cursor movements as a proxy for changes of the choice of the state process.  
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Figure 2. Example mouse trajectories. Two trials for the same 
subject are shown in the left panel, both featuring a selection of 
the left-hand choice. The path depicted with the dotted line 
featured a change of mind, and the path depicted with a solid line 
exhibited a direct movement toward the chosen option. Mean 
paths for the same subject are shown in the right panel with solid 
lines. Error bands denote standard error in both the x and y 
directions. 

3.3.2 Theory 

Before analyzing the mouse trajectories to address the main questions of the study, it is useful to 

look in more detail at a simple example of the class of sequential integrator frameworks that 

motivate this experiment. In these models, decisions are made by dynamically integrating 

instantaneous noisy samples of the true relative value different between the two options. In 

particular, consider the following simple extension of the Drift Diffusion Model (DDM) 

(Milosavljevic et al., 2010; Ratcliff & McKoon, 1989, 2008; Ratcliff & Rouder, 1998; Ratcliff & 

Smith, 2004; Ratcliff & Tuerlinckx, 2002). Decisions are made by computing a relative value 

signal (RVS) that estimates the relative value of the options associated with the left and right 

response boxes. A choice is made the first time the RDS crosses one of two pre-established 

barriers: one at +B associated with the left choice, and one at –B associated with the right choice. 

The RVS starts every trial at zero and then it changes in discrete time as follows: 

𝑅𝑆𝑆𝑡 = 𝑅𝑆𝑆𝑡−1 + 𝛿𝑁𝑁𝑁(𝑆𝑆𝑁𝑁𝑁𝐿 − 𝑆𝑆𝑁𝑁𝑁𝑅 ) + 𝛿𝐷𝐷𝐷�𝑆𝑆𝐷𝐷𝐷𝑅 − 𝑆𝑆𝐷𝐷𝐷𝐿 � + 𝜀𝑡 

where 𝜀𝑡 denotes i.i.d. white Gaussian noise with a constant SD of σ, 𝑆𝑆𝑁𝑁𝑁𝐿  and 𝑆𝑆𝑁𝑁𝑁𝑅  denote 

the subjective associated with the immediate payment for the left and right options, 𝑆𝑆𝐷𝐷𝐷𝐿  and 
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𝑆𝑆𝐷𝐷𝐷𝑅  denote the subjective value associated with the delayed payments for the left and right 

options, and 𝛿𝑁𝑁𝑁 and 𝛿𝐷𝐷𝐷 are positive weights that modulate the contribution of immediate and 

delayed rewards to the RDS.  

In simple versions of the DDM, the weights 𝛿𝑁𝑁𝑁 and 𝛿𝐷𝐷𝐷 do not differ by attribute type, which 

implies that controlling for their magnitude, the immediate and delayed components of value have 

an identical impact in the decision process. Relaxing this assumption has profound implications 

for intertemporal choice, measured discount rates, and individual differences. In particular, 

suppose that 𝛿𝑁𝑁𝑁 changes over the course of the decision, so that it equals zero for the first 

NDTI ms, and it equals a constant value d afterwards. Similarly, suppose that 𝛿𝐷𝐷𝐷 changes over 

the course of the decision, so that it equals zero for the first NDTD ms, and it equals the same 

constant value d afterwards. Here, NDTI refers to non-decision time for the immediate rewards, 

and NDTD refers to non-decision time for the delayed rewards. Then, the probability of making a 

patient choice increases as NDTI increases, and decreases with as NDTD decreases (see the 

figure legend for details). 

The intuition for this result is easily illustrated using a simple but robust set of simulations, 

depicted in Figure 3. All of the simulations assume that d = 0.01, σ = 0.01, and B = 1. These 

parameters are similar to those identified in previous work which has fitted the DDM to a variety 

of tasks with similar psychometric properties (e.g. Ratcliff, 1980). In each trial, subjects choose 

between an immediate option with a constant value subjective value of 1, and an option involving 

only a delayed payment, with a subjective value between 0 and 2.  Each potential choice was 

simulated 1000 times for each combination of parameters. 

Fig. 3A depicts a first of simulations in which NDTD was fixed to 500 ms and NDTI ranged from 

0 to 1500 ms. The impact of delaying the processing of immediate rewards (i.e., increasing NDTI) 

is clear cut: the choice curve shifts to the left and individuals become more likely to choose the 

combo option and delay gratification. The forces at work are quite intuitive. Information about 

immediate reward favors the immediate option versus the combo, which includes a delayed 

payment. As NDTI increases, less information about immediate payoffs is integrated into the RVS, 

which decreases their influence on choices. The impact of changing NDTI on RTs was more 

complex. 
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Fig. 3B depicts the results of the opposite exercise: NDTI was fixed to 500 ms and NDTD 

ranged from 0 to 1500 ms. The results show that increasing NDTD has the opposite effect: it shifts 

the choice curve to the right, so that individuals become less likely to choose the combo option and 

delay gratification. Again, the changes on RTs were more complex.  

The results of these two simulations provide a theoretical foundation for the hypotheses tested 

below; namely, that slower processing of immediate rewards and faster processing of delayed 

rewards increase the likelihood of making a patient choice. Interestingly, since the variation in 

NDTs explored in the simulation is a small fraction of the mean RTs, the simulations also show that 

small changes in NDTs can have a very sizable impact on intertemporal choices.  

Importantly, since the underlying discount rate used to compute the subjective values is not 

changing across conditions, the simulations also show that the increases in NDTI lower the 

estimated discounting parameter, and that increases in NDTD increase the estimated discount rate. 

As a result, the subject looks more impulsive or myopic, not because the valuation system is 

increasing the rate at which it discount future rewards, but because this changes the relative weight 

that the two types of rewards received in the DDM algorithm.  

At first sight, the results depicted in Figure 3 also suggest that changes in NDTI shift the 

psychometric choice curve, whereas changes in NDTD rotate it. This particular difference is an 

artifact of the simulation details, and can be easily changed by changing the simulation parameters. 
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Figure 3. Simulated influence of non-decision time on choice. (A) 
Choices were simulated using a modified Drift Diffusion Model 
that varied the immediate value non-decision time (NDTI). 
Delayed value non-decision time (NDTD) was fixed to 500 ms. 
The left panel displays a psychometric curve for the simulated 
choices as a function of the difference in the today and delayed 
values. The right panel shows the influence of changing 
immediate value processing speed on reaction time. The color bar 
denotes NDTI values. (B) Choices simulated while varying 
NDTD and fixing NDTI to 500 ms. The color bar denotes NDTD 
values. 

3.3.3 Average processing speed for immediate and delayed rewards 

We next carried out several analyses of the mouse-tracking data to address the questions of the 

study. The first set of analyses where design to test if, on average, immediate rewards are processed 

faster than delayed ones. 

To do this, we needed to measure how the influence of immediate and delayed values on the cursor 

trajectories changes over the course of the trial. In particular, we are interested in identifying the 

earliest time at which immediate and delayed reward information begins to affect the choice 

process, as captured by changes in the mouse trajectories. For example, if delayed rewards affect 



 

 

44 
the trajectories from time T until the final choice was made, but not earlier, this would provide 

evidence that this type of value information is not processed by the decision making circuitry before 

this time. This method was developed in a previous study, were we used it to show that the relative 

times at which taste and health begin to influence the choice process explain a large amount of 

individual variation in dietary self-control (Sullivan et al., 2015). (See also Dshemuchadse et al., 

2013; Scherbaum et al., 2010; Scherbaum et al., 2013 for related approaches) 

The analysis was carried out in two steps (see Methods for details). First, for every subject, we 

estimated a series of linear regressions, one for each 10 ms time bin, designed to investigate how the 

influence of immediate and delayed rewards on mouse trajectories evolves over the course of a 

decision. In each regression, the dependent variable was the angle of the cursor trajectory at each 

time bin, which provides a measure of the direction of movement, with -45o always representing a 

direct movement towards the left option, 0o always indicating a movement straight upwards, and 

+45o always indicates a direct movement towards the right option.  The independent variables 

were a constant, the relative value of the immediate payments, given by 𝑆𝑆𝑁𝑁𝑁𝑅 − 𝑆𝑆𝑁𝑁𝑁𝐿 , and the 

relative value of the delayed payments, given by 𝑆𝑆𝐷𝐷𝐷𝑅 − 𝑆𝑆𝐷𝐷𝐷𝐿 , with R and L denoting the right 

and left locations. Critically, the SVs used in these regressions were computed using the mean k 

and α best fitting parameters in the group, and thus any differences in the trajectories across 

subjects or trials cannot be attributed to differences in how the SVs are computed. Figure 4A 

depicts the time courses of the mean estimated coefficients, and their SE across subjects. Note that 

these paths suggest that neither type of reward has a significant effect on the mouse trajectory 

before 700 – 800 ms into the decision. 

Second, we used the estimated coefficients from these regressions to compute subject specific 

measures of the earliest time at which immediate and delayed payoffs exhibit a significant influence 

on the mouse trajectories that lasted until the end of the trial. We refer to these measures as non-

decision time (NDT), and estimate one for immediate rewards (NDTI) and one for delayed 

rewards (NDTD) for each subject. See the Methods and Figures 4B-C for a description of how the 

NDTs are computed. Figure 4D depicts the difference between these coefficients in the group: the 

two NDTs are not significantly different (NDTI: mean = 779, SD = 625; NDTD: mean = 847, SD = 

564; difference: mean = -68, SD = 516; t(30)=-0.74, p=0.46), that the two decision times are highly 

correlated (linear regression: R2= .39, slope=.57, p=1.7e-4), and that there are sizable differences 

across subjects.  
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Together, these results suggest that on average immediate and delayed rewards are processed at 

similar speeds. This result is important because, as shown in the theory above, it implies that the 

fact that the average discount factor in the population is positive and sizable cannot be attributed, at 

least in part, to a systematic difference in the speed with which both attributes are processed by the 

comparator system implementing DDM type algorithms. 

 

Figure 4. Effect of immediate and delayed value on mouse 
trajectories. (A) At each individual time sample, a linear 
regression was used to predict mouse angle using the relative (left 
– right) value of immediate and delayed subjective value. The 
coefficients of these attributes for each time point are displayed on 
the y-axis, and time is displayed on the x-axis from time point 
zero to a cut-off of 2250 ms. Error bands denote standard errors. 
(B) Each dot represents the time, on the y-axis, at which each 
attribute’s estimated coefficient reaches a certain percentage of its 
maximum effect, on the x-axis. Solid lines represent the fitted 
cubic regression. The y-axis intercept of this line is used as an 
estimate of when an attribute begins to accumulate a proportion of 
its maximum value. (C) The time, on the y axis, at which each 
attribute’s influence on mouse angle had accumulated a 
proportion of its maximum value. Solid lines represent the 
average fitted cubic function, and shading is their standard error. 
The y-axis dots indicate the average intercept of this function, and 
error bands are their standard error. (D) Delayed and immediate 
value significance times plotted against each other. The dotted 
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line represents a perfect correlation line, and solid line represents 
a linear regression fit line. 

Differences across subjects. The second set of analyses was designed to test if some of the sizable 

individual differences in discount rates can be attributed, at least in part, to differences in the speed 

with which individuals process immediate and delayed rewards. To do this, we estimated a linear 

regression of the percentage of patience subjects on the NDTI and NDTD measures, and found that 

it could explain 26% of the individual differences. Interestingly, most of the effect was driven by 

differences in the processing speed of the delayed rewards (NDTD: slope = -0.0001, p=0.015; 

NDTI: slope = 7.1e-6, p=0.81; see also Figure 5, which depicts the univariate correlations and 

regression results).  Together, these results suggest that about a quarter of individual differences in 

discount rates can be explained by differences on the speed at which the delayed rewards are 

processed. 

 

Figure 5. Effect of immediate and delayed value NDTs on choice. 
A) Delayed value significance time plotted against the percentage 
of patient combination offer choices by each subject. The solid 
line represents a least squares linear regression fit. B) Immediate 
value significance time plotted against the percentage of patient 
combination offer choices by each subject. The solid line 
represents a least squares linear regression fit. 

Differences across trials. Finally, we investigated if random fluctuations of the relative speed at 

which immediate and delayed rewards are computed could induce changes in the ability to postpone 

gratification within subjects. To test this, we compare the distribution of NDTs in trials with patient 

and immediate choices. As shown in Figure 6, the processing speeds differed substantially across 

both types of trials. On patient trials, delayed rewards were computed substantially faster than 
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immediate rewards (NDTD: mean = 826, SD = 463; NDTI: mean = 1658, SD = 339; difference: 

mean = 832, SD = 545; t(29)=8.37, p=3e-9), whereas the opposite pattern was observed in 

impulsive trials (NDTD: mean = 2079, SD = 116; NDTI: mean =  1187, SD = 667; difference: 

mean = -892, SD = 684; t(30)=-7.26, p=4e-8). In addition, the average NDT for patient trials (1242 

ms) was significantly earlier than the average NDT of impatient trials (1633 ms; t(29)=-4.45, 

p=0.0001). Interestingly, the fluctuation in NDTDs was much larger than the fluctuation of NDTIs 

(1254 ms vs. 499 ms; t(29)=4.03, p=0.0004). As in the previous analysis, this suggests that 

fluctuations in NDTDs might have a more profound impact on the ability to postpone gratification 

than fluctuations in NDTIs.   

 

Figure 6. Trial-by-trial variation in significance time. Immediate 
and delayed value significance times by subject choice. Error bars 
denote standard errors. 

3.4 Discussion 

We have found supporting evidence for the hypothesis that changes in the speed with which 

immediate and delayed rewards are processed by the decision-making circuitry have a sizable 

impact in the ability to postpone gratification. First, we found that the average processing speed 

of both types of rewards in a canonical intertemporal monetary choice task was about 800 ms, 

and not significantly different between types. This result is important because it suggests that the 

fact that delayed rewards are almost always discounted cannot be attributed to a slower 

processing speed on average. Second, we found that about 25% of the individual differences in 
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discounting could be explained by differences on the speed with which delayed rewards were 

processed. Contrary to our priors, we did not find a similar effect for immediate rewards. Third, 

we found sizable differences on the relative processing speed of immediate and delayed rewards 

across trials: subjects processed delayed rewards about 800 ms faster than immediate rewards 

when they made patient choices, but the opposite was observed during trials that resulted in 

impulsive choices. Together, these results show that a sizable fraction of variation in the ability to 

postpone gratification might be attributable to individual variables that affect the speed at which 

different types of rewards are processed, and not to differences in deep preference parameters like 

the temporal discount rate used by the brain’s valuation systems. 

Several aspects of the results are worth highlighting.  

First, since multiple alternative mechanisms are likely to affect the ability to delay gratification, 

we were surprised by the sizable amount of variation explained the differences in processing 

speeds. To put these results in perspective, previous studies have found that personality traits such 

as impulsivity or IQ only explain around 13% and 5%, respectively, of individual differences in 

self-control (de Wit et al.; Shamosh & Gray, 2008; Steinberg et al., 2009). Understanding the 

relationship between individual traits like impulsivity and IQ is an important open question for 

future research. However, it is important to emphasize that these types of variables cannot 

entirely account for our results even if they were highly correlated with processing speeds, 

because they explain a much smaller fraction of the individual differences and because they 

cannot account for within-subject changes across trials. 

Second, the comparison of processing speeds across trials suggests that they can change rapidly, 

often by a factor of 100%. Although our design cannot address the source of these fluctuations, it 

is natural to speculate that they result from fluctuations on how relative attention or cognitive 

effort change across trials. Identifying these sources is an important open question for future 

research. Regarding the exact mechanisms at work, our data suggests that processing speeds 

might be highly responsive to changes in contextual variables, such as how information is 

presented, which suggests that it might be possible to increase self-control using simple “nudge” 

style interventions (Camerer, Issacharoff, Loewenstein, O'donoghue, & Rabin, 2003; Harris et al., 

2013; Thaler & Benartzi, 2004; Thaler & Sunstein, 2003). These interventions would affect self-

control by changing the speed at which delayed information is processed, for example by re-
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directing attention to these types of rewards (T. A. Hare et al., 2011). In fact, the association 

between attention and contextual effects has also been used to explain preference reversals 

(Busemeyer & Townsend, 1993; Kim, Seligman, & Kable, 2012; Roe et al., 2001), and context 

effects in risky choice (Johnson, Schulte-Mecklenbeck, & Willemsen, 2008). 

Third, the results suggest that changes in the processing speed of delayed rewards are more much 

more important than changes in the processing speed for immediate rewards. Consistent with this, 

the processing speed of delayed rewards fluctuate across trials about 250% more than for 

immediate rewards.  We were surprised by this finding since the simple versions of the DDM that 

motivated our hypothesis predict that the processing speed of both types of rewards should affect 

self-control: delaying the processing of future rewards hurts, whereas delaying the processing of 

immediate rewards helps. A potential post hoc explanation is based on the work of Liberman and 

Trope (2008), which has argued that more abstract rewards are more difficult to process. Based 

on this, if immediate rewards are easier to process than delayed rewards, they might be less 

sensitive to changes in processing speed and duration than immediate rewards. Adding this force 

to the theoretical framework proposed here would then produce the observed asymmetry. We 

emphasize, however, that this is a post hoc and untested explanation. 

Fourth, the mechanism proposed here follows directly from adding differences in processing 

speeds to any of the sequential integrator algorithmic models of choice that are popular in the 

literature, such as such as the Drift-Diffusion Model (Ratcliff, 1978, 1980; Ratcliff et al., 2003; 

Ratcliff & McKoon, 1982; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff & Smith, 

2004; Ratcliff & Tuerlinckx, 2002), the attentional Drift Diffusion-Model (Krajbich et al., 2010; 

Krajbich et al., 2012; Krajbich & Rangel, 2011), the leaky-accumulator model (Usher & 

McClelland, 2001), and Decision Field Theory (Busemeyer & Diederich, 2002; Busemeyer & 

Townsend, 1993; Roe et al., 2001). This is important because their plausibility as an algorithmic 

description of the choice process is supported by a large and rapidly growing body of behavioral 

and neural data (Basten, Biele, Heekeren, & Fiebach, 2010; Britten, Shadlen, Newsome, & 

Movshon, 1993; Gold & Shadlen, 2000; Hare, Schultz, Camerer, O'Doherty, & Rangel, 2011; 

Jocham, Hunt, Near, & Behrens, 2012; Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 

2012; Park, Kahnt, Rieskamp, & Heekeren, 2011; Ratcliff et al., 2003). All of these models could 

make a similar qualitative prediction: slowing down the speed at which an attribute is processed 

reduces its influence in the choice that is made. This idea has been previously used to explain 
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why the speed of information retrieval can vary by information type (Ratcliff & McKoon, 

1989) and to explain differences in the ability to exercise dietary self-control (Sullivan et al., 

2015). The main contribution of this study is to show that this mechanism plays a sizable role in 

basic intertemporal choice, and thus is possibly at work in all of the domains in which individuals 

have to choose between sooner-smaller and later-larger rewards. 

Fifth, the mechanism identified here is connected to several other mechanisms that have been 

shown to influence self-control. Weber et al. (2007) proposed that some of the asymmetric 

treatment of immediate and delayed rewards is due to biases that make memories associated with 

immediate rewards easy to process (Peters & Buchel, 2010). Although our study is silent on this 

point, these memory biases could be responsible for some of the differences in processing speeds. 

Both the attentional DDM  (Krajbich et al., 2010; Krajbich et al., 2012; Krajbich & Rangel, 2011) 

and Decision Field Theory (Busemeyer & Diederich, 2002; Busemeyer & Townsend, 1993; Roe 

et al., 2001) predict that increasing the relative amount of time devoted to processing delayed 

rewards would increase patience. This is connected to the mechanism studied here since 

increasing the amount of time that it takes to begin processing the delayed rewards affects the 

overall share of attention that they receive. The key difference with this previous work is that 

here, all of the variation in processing time comes at the beginning of the trial, whereas in those 

previous studies it results from fluctuations in attention at any point in the decision process, such 

as those resulting from changes in which attribute is fixated on at any given point. Cognitive 

effort and cognitive load have been shown to be powerful modulators of self-control (Baumeister 

& Vohs, 2004; Muraven & Baumeister, 2000). These effects might operate, at least in part, by 

changing the speed at which the delayed rewards are processed. Consistent with this, several 

recent studies have shown that the extent to which the stimulus value signals in the ventromedial 

prefrontal cortex, which are widely thought to guide choices (Bartra, McGuire, & Kable, 2013; 

Clithero & Rangel, 2014), reflects self-control is modulated by activity on areas of dorsolateral 

pre-frontal cortex that are known to be involved in cognitive control (Figner et al., 2010; T. Hare 

et al., 2009; Hare et al., 2014; Harris et al., 2013). 

Finally, in order to test the type of hypotheses proposed here, it is critical to have a sufficiently 

good measure of how the decision process evolves before a choice is made. To do this, we 

borrow heavily from the pioneering mouse-tracking literature (Dale et al., 2007; Lohse & 

Johnson, 1996; McKinstry et al., 2008; Scherbaum et al., 2010), which has been used to study 
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visual search (Song & Nakayama, 2008), stereotyping (Freeman & Ambady, 2009), 

psycholinguistics (Spivey et al., 2005), and other related applications on intertemporal choice 

(Dshemuchadse et al., 2013). However, to accomplish our goals we used the mouse-tracking data 

in a different way, originally developed in Sullivan et al. (2015). Whereas most mouse-tracking 

studies focus on comparisons between the average paths generated by various experimental 

conditions, we use regression analyses to identify the time at which different stimulus attributes 

begin influencing choice. It is natural to speculate that the large individual and contextual 

differences observed in many other canonical problems, such as risky or altruistic choice, might 

also be partly attributable to variation in the processing speed of the associated attributes. For 

example, more risk averse individuals might process information about risk and/or losses faster 

than their less risk averse counterparts. Applying the conceptual framework and methods 

developed here to these other domains is an exciting avenue for future research.  
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C h a p t e r  4  

NEURAL CHANGES ACROSS THE LIFESPAN ARE ASSOCIATED WITH DECREASED 
TEMPORAL DISCOUNTING4 

4.1 Introduction 

Extensive research suggests that individuals discount the value of future rewards as a function of 

their delay. Moreover, increasing evidence suggests that these deficits in self-control have large, 

long-term consequences for both the individual and for society (Boyle et al., 2013; Forstmeier et al., 

2011; Mischel et al., 1988). Given the importance of such decisions, there is great interest in 

understanding the sources underlying an individual’s ability to delay gratification.  

Several tasks are often used to study trade-offs between immediate and larger future rewards. One 

classic paradigm is intertemporal choice, in which subjects must decide between a smaller amount 

of money now, and a larger amount later (Ainslie, 1975; Berns et al., 2007; Green et al., 1994; 

Kable & Glimcher, 2007; Laibson, 1997; Loewenstein & Prelec, 1992). Another commonly used 

paradigm to assess decision making during delayed gratification is dietary choice. For example, 

choosing between a snack of ice cream and celery presents a trade-off between eating something 

delicious now and having better health in the future.   

Studies using these paradigms suggest that a concerted valuation system, including the 

ventromedial prefrontal cortex (vmPFC) and ventral striatum (vStr), appear to encode the value of 

choice options. For example, in intertemporal choice, the vmPFC and vStr increase in response in 

accordance with increased in the value of the delayed option (Kable & Glimcher, 2007).  In dietary 

choice, the vmPFC encodes the tastiness of food options in good and poor dieters alike (T. Hare et 

al., 2009). This valuation system appears to extend to a wide range of other decision contexts as 

well (Bartra et al., 2013; Clithero & Rangel, 2014), and may translate different value types into a 

“common currency” to facilitate their comparison (Kahnt, Heinzle, Park, & Haynes, 2011; 

McNamee et al., 2013). 

                                                 
4 In collaboration with Mara Mather, Adriana Galvan, and Antonio Rangel. 
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In intertemporal choice, self-control is required to bring one’s valuations more in line with larger 

future, rather than smaller immediate, rewards. Converging evidence from many studies suggests 

that the left dorsolateral prefrontal cortex (L DLPFC) enables long-term focused choices by 

modulating the value of choice options, making them more reflective of long-term benefits. In one 

experiment, in which subjects were choosing between smaller, sooner monetary rewards and larger 

later ones, the L DLPFC increased in effective connectivity to the vmPFC at the time of choice. Its 

connectivity further increased when a delayed choice was made (Hare et al., 2014).  Additionally, 

individuals with better dietary self-control exhibited connectivity between the L DLPFC and 

vmPFC when self-control was required to, for example, say no to a tempting food option in favor of 

a helathier one. Worse dieters did not (T. Hare et al., 2009). Evidence further suggests that 

connectivity between the vmPFC and L DLPFC can be modified; simply instructing participants to 

focus on the health of foods encouraged increased effective connectivity between these regions (T. 

A. Hare et al., 2011). This is also a causal link between the L DLPFC and impulsivity in 

intertemporal choice; inhibition of this region using transcranial magnetic stimulation results in 

more impatient choices (Figner et al., 2010). Together, this research suggests a concerted system in 

which the L DLPFC enables the vmPFC to encode not only the value of immediate, but also more 

long-term consequences of a choice.  

To pinpoint the contribution of this system to self-control behavior, it is useful to measure how 

changes in this system’s structure, function, and connectivity are associated with changes in self-

control.  Conveniently, one important phenomenon surrounding self-control is that the incidence of 

many pathological behaviors related to self-control deficits decrease with age (Arnett, 1992; Green 

et al., 1994; Gullone & Moore, 2000; National Institute on Alcohol Abuse and Alcoholism, 2008; 

Read & Read, 2004; Sangrock, 2002; Spear, 2009). In this study, we capitalize on this phenomenon 

to estimate how changes in the brain’s valuation and control systems change to allow for better 

choices. 

Throughout the lifespan, distinct, systematic changes occur in the regions of the brain previously 

associated with reward and successful self-control discussed above (Samanez-Larkin & Knutson, 

2015). For example, vStr response to monetary reward dramatically decreases from adolescence 

into adulthood (Galvan et al., 2006). Similarly, stimulus value signals in the amygdala are down-

modulated with age (Mather et al., 2004). Increased effective connectivity between the vmPFC and 

DLPFC has been seen from younger to older children, and is related to increased ability to resist 
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temptation (Steinbeis, Haushofer, Fehr, & Singer, 2014). Dramatic changes in the structural 

composition of the brain also occur from childhood through old age; the frontal lobe isn’t fully 

developed until adulthood, and lateral brain regions including the DLPFC are particularly 

compromised in elder years (Sowell et al., 2003). 

Together, this research demonstrates that behavioral and neural changes occur in tandem throughout 

the lifecycle, suggesting improvements in the brain’s self-regulation network. These age-related 

neural changes lead to a better assignment of value to tempting options by representing long-term 

goals more strongly, leading to more patient choices. We test this hypothesis by measuring brain 

activity while subjects from 13 to 70 make choices between smaller-sooner and larger-later rewards 

in an intertemporal choice task. In doing so, we hope to pinpoint the changes in information 

processing responsible for the improvements in self-control with age. 

Specifically, we expect hypersensitivity to reward in our adolescent subjects’ valuation system, 

which we expect to decrease considerably with age. This decreased value sensitivity may be related 

to a decreased need to exert control, resulting in more patient choices. We also predict increases in 

effective connectivity between valuation and control regions with age to further enable the 

evidenced increased ability to delay gratification. 

4.2 Methods 

Subjects. Fifty-one subjects spanning three age groups were recruited for this study.  The adolescent 

age group included 13-16 year olds (mean 14.9 years old, N=18), the middle group included 30-44 

year olds (mean 35.0 years old, N=20), and the older group included 65-70 years olds (mean 66.4 

years old, N=13). Adolescent subjects were recruited through co-author Adriana Galvan’s UCLA 

adolescent subject database. Middle group subjects were recruited through co-author Mara Mather’s 

USC Healthy Minds subject database and Caltech’s BrainScience recruitment website. Older 

subjects were recruited through the USC Healthy Minds recruitment website. Seven subjects are not 

included in the total subject count due to excessive head movement, inability to estimate discount 

parameters, early withdraw, or equipment failure. 

Screening. All subjects were screened for MRI contraindications, psychiatric medication use, 

neurological conditions, and brain injury. Participants in the older group were screened for 

cognitive impairment and dementia using the Telephone Interview of Cognitive Status (de Jager, 
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Budge, & Clarke, 2003), which has been validated to have high sensitivity and specificity even in 

educationally and ethnically diverse populations (Manly et al., 2011). Adolescents were screened 

for impulsivity and developmental disorders. 

Task 1: Discount parameter estimation task. Participants’ hyperbolic discounting parameters were 

estimated using a Bayesian adaptive design (see “Behavioral data analysis” for details on the 

hyperbolic model). Participants made a series of choices between receiving one amount within a 

certain number of days, and another amount some time later. Amounts varied between $5 and $100 

in $5 increments, and delays varied between 0 and 200 days in 4 day increments. The two options 

were presented on the left and right sides of the screen, with the more delayed choice randomly on 

the right or left. Participants responded using the keyboard. The program began with a flat prior 

across discounting parameters (k, α, and ω), and updated with each response. The task ended when 

estimated parameters confidence exceeded 85%, or when 15 minutes had expired. The discount 

parameter k estimated from this procedure was highly correlated with the parameter estimated using 

fMRI task choice data collected using the task described below (r=0.87, p=1.8e-19). 

Task 2: Intertemporal choice task. In the scanner, participants made 300 binary choices between 

$25 the day of the experiment and another amount some time later (Fig. 1A). Amount and delay 

pairs ranged from $25 to $54, and 7 to 200 days. The pre-estimated discount parameters were used 

to generate a choice set in which the subject was likely to accept the delayed offer to 100 questions 

and the today offer to 100 questions. The remaining 100 questions were within $1 of the subject’s 

point of indifference. Since the immediate reference option was constant, only the delayed choice 

option was displayed on the screen. Participants had three seconds to responded “yes” or “no” to the 

delayed option using their index and middle fingers. After responding, participants saw a .5 s 

reflection of their choice (“yes” or “no”) in white. A red “x” was displayed if no response was 

received.  Subjects then saw a white fixation cross of jittered duration (2 to 6 s, uniform random). 

Any difference in reaction time and the three-second choice time limit was added to the fixation 

cross display time. The 300 trials were randomly ordered and spread over three EPI runs. To avoid 

confounds related to the hour of testing, which might affect the age groups differently, half of each 

group was randomly assigned to either a morning or an afternoon fMRI session. 

After the task, participants were paid $40 per hour and a $50 travel honorarium in cash. One trial 

was randomly selected for an additional payment, which was sent via PayPal either that day or in 
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the future, depending on participant choice. Participants unfamiliar with PayPal were guided 

through signing up, accepting, and retrieving funds and received a detailed instruction sheet to take 

home that included the delivery date and amount to be delivered.  

Behavioral data analysis. Each subject’s choices were fit to a hyperbolic model of discounting. 

This model assumes that subjects have linearly additive preferences over prizes received at different 

dates, and that the value of each such prize is given by   

𝑆𝑆 =
𝑋𝛼

1 + 𝑘𝑘
 

where X denotes the size of the prize, D represents the delay in days, k is a hyperbolic discounting 

parameter, and α represents the curvature of the utility function. Note that the SV of the constant 

reference point, denoted by SVT, equals $25α. 

As is standard in the literature (Chabris et al., 2009; Pawitan, 2001; Rodriguez et al., 2014), the 

model also assumes that subjects make probabilistic choices, with the probability of choosing the 

on-screen option given by 

 
𝑒𝜔𝑆𝑆𝐷

𝑒𝜔𝑆𝑆𝐷 + 𝑒𝜔𝑆𝑆𝑇
 

where ω is a non-negative parameter determining the influence of the SVs on the choices. 

For each subject, we estimated α, k, and ω parameters that best fitted the choice data by maximizing 

the likelihood function calculated using this model. 

In a further step, we calculated a measure of the area under the discounting curve (AUC), which has 

been suggested to be free of bias associated with imposing a hyperbolic model (Myerson, Green, & 

Warusawitharana, 2001). To calculate the AUC, we normalized the delay and subjective value for 

each data point and each subject. These values were plotted as x and y coordinates, and the area 

under the resulting curve was calculated and used as a secondary measure of delayed discounting. 

Image acquisition. Data were collected using a Siemens 3.0 Tesla Trio MRI scanner and a 32 

channel, phased array head coil. 285 echoplanar (EPI) volumes with blood oxygenation level-



 

 

57 
dependent (BOLD) contrast were collected during the task with 2500 ms TR, 30 ms TE, 85º flip 

angle, 192 mm FOV, in-plane resolution of 3 mm x 3 mm, and 47 3 mm slices with a 0.3 mm gap 

using ascending acquisition were acquired. High-resolution T1-weighted anatomical images were 

also collected and co-registered with the EPI images to facilitate anatomical localizations. Phase 

and magnitude fieldmaps (3mm isotropic) were collected in-between EPI sessions. 

Image pre-processing. Image data were pre-processed using FSL (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012). The T1 structural image was skull-stripped to facilitate registration to 

functional data, and was non-linearly registered to the Montreal Neurological Institute (MNI) 

template. Because the scanner began recording volumes after five TRs, only the first two recorded 

EPI volumes thereafter were deleted to account for saturation effects. Phase and magnitude 

fieldmaps were used to correct for distortions in the EPI data. Data were corrected for motion and 

realigned to the mean image. Realignments and motion outliers were collected and used as 

confounds in later analyses. EPI data were slice-time corrected, intensity normalized, spatially 

normalized to the MNI template, and spatially smoothed using a Gaussian kernel (FWHM = 6 mm) 

to reduce noise. Data were also temporally filtered using a filter width of 100 s to remove low 

frequency trends. 

fMRI statistical analyses. All fMRI analyses presented here were performed using FSL (Jenkinson 

et al., 2012). GLM 1 estimated BOLD response from trial onset until a choice was made. There 

were two parametric modulators to this model: first, the demeaned subject-specific subjective value 

of the delayed option, and then an indicator for delayed choice (1 when a delayed choice is made, 0 

otherwise). The delayed choice modulator was orthogonalized with respect to the SV modulator. 

GLM 2 was identical to GLM 1 except that SVs were calculated using fixed discounting and utility 

parameters for each subject. GLM 3 was identical to GLM 2, but separated trials into “hard” trials, 

which are within $1 of the subject’s indifference point, and all other trials. 

Psychophysiological interaction 1 (PPI 1) used the significant L DLPFC cluster (p<.001 threshold) 

from the delayed choice indicator in GLM 1 as its region of interest (ROI).  The ROI time course 

was extracted and used as the ROI seed. A subjective value modulator (calculate using fixed 

parameters) and an indicator for delayed choice were added to this model. Reported analyses are 

generated from the interaction between delayed choice and the physiological variable. We then ran 

an additional PPI model (PPI 2) to estimate regions with greater connectivity during delayed choice 
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when self-control was required to select the delayed option. We separated trials in to hard and 

easy according to the procedure for GLM 3. Otherwise, this PPI was identical to PPI 1. 

Volume segmentation and voxel-based morphology. We used FAST (Zhang, Brady, & Smith, 

2001) to segment T1 images into white matter, grey matter, and cerebrospinal fluid while correcting 

for bias field inhomogeneities. The resulting partial-volume estimates were nonlinearly warped to 

MNI space to facilitate cross-subject comparison, and then both whole-brain and ROI estimates of 

tissue composition were extracted. 

Self-report and IQ measures. Subjects were administered the two-subtest Wechsler Abbreviated 

Scales of Intelligence (Wechsler, 2011) which took about 15 minutes. Subjects also filled out 

demographic and personality questionnaires: the Cornell Medical Index (Brodman et al., 1951), 

Beck Depression Inventory (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961), BIS/BAS (Carver 

& White, 1994), PANAS (Thompson, 2007), STAI (Spielberger, Gorssuch, Lushene, Vagg, & 

Jacobs, 1983), and Peterson’s Pubertal Development Scale (adolescents only; Petersen, Crockett, 

Richards, & Boxer, 1988) 

4.3 Results 

In this study (Fig 1A), we asked how age-related brain changes allow an individual increased ability 

to exert self-control. In doing so, we hope to understand how brain changes can facilitate older 

subjects’ ability to bring valuations more in line with larger long-term, rather than short-term, 

rewards. To answer this question, we presented adolescent, adult, and older subjects with 

intertemporal choices between $25 that day, and another larger amount in the future, while 

recording their brain activity with fMRI. 

4.3.1 Behavioral Results 

Estimated Model Parameters. We estimated subject-specific discounting parameters using the 

widely used hyperbolic model (see Methods for estimation procedure), which captures two 

phenomena seen in human behavior: discounting of future rewards and decreased discounting with 

increased reward size (Ainslie, 1992; Laibson, 1997; Mazur, 1987; Pine et al., 2009). This model 

has been experimentally validated in a number of studies (Frederick et al., 2002; Green & Myerson, 

2004; McKerchar et al., 2009). A key element of this model is the discounting parameter k, which 
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provides a measure of the present bias in subject’s choices, with larger values indicating a 

stronger tendency to discount the future. The estimated discount parameters (k=0.011, SD=0.01; 

α=0.687, SD=0.10) were similar to those found in previous studies (e.g., Chabris, Laibson, Morris, 

Schuldt, & Taubinsky, 2008; Frederick et al., 2002; Kable & Glimcher, 2007). Later analyses will 

use log(k) as a measure of individual differences in discounting (mean=-4.9, SD=1.57), which was 

approximately normally distributed (Fig. 1B). 

 

Figure 1. A) Stimuli in fMRI task. B) Distribution of discounting 
log(k) C) log(k) differs by age. 

We compared changes with age, both with in discounting and other variables, in two ways. First, we 

use the ANOVA to measure mean differences between age groups. Next, to additionally capture 

changes within each age group, we also model linear changes in activation using linear least squares 

regressions with chronological age. 

Discounting parameter log(k) decreases with age group, suggesting more patience with age (Fig 1C; 

ANOVA F=9.87, p=0.0002; R2=0.26 β=-6.61 p=0.0001). However, the direction of change in 

temporal discounting with age is debated in the literature (Chao, Szrek, Pereira, & Pauly, 2009; 

Green, Myerson, Lichtman, Rosen, & Fry, 1996; Halfmann, Hedgcock, & Denburg, 2013; Read & 
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Read, 2004; Samanez-Larkin et al., 2011). Because of this, we validated our finding with an 

additional estimate of discounting by calculating the area under the discounting function (AUC; see 

Methods for calculation procedure). This is advantageous because it is free from some of the 

potential error in estimating parameters based on a hyperbolic discount function  (Myerson et al., 

2001). Using this AUC measure, we confirm that discounting decreases with age (ANOVA F=9.98, 

p=0.0002; R2=0.25 β=42.02 p=0.0002). Additionally, AUC is highly correlated with the 

discounting parameter k (r=-0.88 p=1.3e-17), which justifies using this hyperbolic parameter in 

subsequent analyses. 

Basic Psychometrics. Using the hyperbolic discounting function and each subject’s fitted 

parameters (see Methods) we can estimate the subjective value (SV) of each option in each choice. 

Figure 2A illustrates that SVs reflect choice behavior (logistic slope greater than zero, mixed-effects 

T=5.07, p=5.6e-06). There were no differences between age groups in the curve’s logistic slope 

(often seen as a metric of how noisy choices are) (ANOVA F=1.41, p=0.25; R2=0.03 β=3.25 

p=0.22). Similarly, reaction times were greatest when the today and delayed options were equal 

(Fig. 2B; mean 1284 ms, SD=204 ms; mixed effects T=-11.36, p=1.4e-15). There were no 

differences between age groups in value difference’s influence on reaction time (ANOVA F=0.35, 

p=0.71; R2=0.02 β=-281.11 p=0.35).  

 

Figure 2. Choice data. A) Psychometric choice curve displaying 
the frequency of delayed choice selection as a function of the 
difference in subjective value between the today and delayed 
options. The “x” marks the frequency of .5 that corresponds to a 
value difference of 0. B) Reaction time plotted as a function of the 
difference in subjective value between the today and delayed 
options. 
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Demographic and IQ measures. Demographic and questionnaire measures were not related to 

self-control. Discount parameter log(k) was not related to gender (T=1.45, p=.15), household 

income (ANOVA F=1.26, p=0.30; R2=0.05 β=0.0001 p=0.22), individual income (excluding 

adolescents who don’t have full time jobs; ANOVA F=1.63, p=0.21; R2=0.02 β=0.0001 p=0.46), or 

belief about household financial security (ANOVA F=2.75, p=0.07; R2=0.07 β=8.5046 p=0.08). In 

fact, in controlling for these factors age alone remains predictive of discounting parameter log(k) 

(p=.04). 

In this study, higher IQs are related to less discounting (R2=0.22 β=-0.04 p=0.006), replicating 

previous results (Shamosh & Gray, 2008). IQ was related to age (ANOVA F=2.15, p=0.13; R2=0.15 

β=0.32 p=0.03) which has also been shown in the literature (Fry & Hale, 1996). Using mediation 

analysis, IQ reduces age’s prediction of log(k) by 45.1%. A model with both age and IQ (R2
adj=.24, 

p=.006) explains the same amount of variance in individual log(k) values as a model with only age 

(R2
adj=.24, p=.00001), and more than one with IQ alone (R2

adj =.19 p=.006). 

4.3.2 fMRI Results  

Localizing valuation regions. The goal of this study was to assess how the decision circuitry 

associated with valuation and self-control changed with age to facilitate improved choices. Based 

on overwhelming evidence from an extensive literature, we had a strong prior hypothesis that 

activity in the ventromedial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), and 

ventral striatum (vStr) would positively correlate with increases in subjective value (Bartra et al., 

2013; Clithero & Rangel, 2014). 

To test this in our data, we estimated a GLM with two parametric modulators: first, the demeaned 

SV of the delayed option, and then an indicator for delayed choice (GLM 1; see Methods for 

details). Because, in this analysis, we were interested specifically in localizing regions that 

increased in activity accordance with individual perceived value of the rewards offered, the SV 

modulator was calculated using each individual’s estimated k and α parameters. 

Pooling across age groups, activity in regions commonly associated with subjective value  

(including the vmPFC and vStr) were significantly correlated with value in our task (circled; Fig. 

3A). Although the vmPFC cluster does not pass whole-volume cluster correction at a p<.05 

threshold, based on our strong initial hypothesis we felt justified in using an ROI-based test of 
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significance. Doing so, we found that this region survives small volume correction (p<.05 

threshold). Although this region is more anterior than the one many studies on mPFC response to 

value, it is actually very well in line with studies specifically on monetary decision making 

(Clithero & Rangel, 2014; Kable & Glimcher, 2007). 

These results suggest that, across subjects, activity in regions previously associated with subjective 

value are also related to subjective value in our task, even in a subject pool that spans from ages 13 

to 70. 

Localizing regions active during delayed choice. Based on previous findings discussed in the 

introduction, across both intertemporal and dietary choice studies we expected that subjects would 

recruit the L DLPFC when choosing the more patient option. We investigated this by estimating 

activity related to the delayed choice indicator in GLM 1, pooling across all subjects. After 

controlling for subjective value modulation, the L DLPFC was more active when choosing the 

delayed option (Fig. 3B). This region overlaps with the L DLPFC region found when successfully 

executing dietary self-control (T. Hare et al., 2009), and survives small volume correction (p<.05). 
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Figure 3. Whole brain results of GLM 1 pooled across age groups. 
A) Group-level response to subjective value in the brain. vmPFC, 
PCC, and vStr regions, commonly associated with encoding 
value, are circled in green. B) Group-level response to delayed 
choice, with the L DLPFC region previously found to be active 
when self-control is being exerted (circled). For illustration 
purposes only, these images are shown at a p<.001 threshold 
uncorrected. The background anatomical image is the mean 
structural from this study. 

Effective connectivity between control and valuation regions. Previous work has found increased 

connectivity between the L DLPFC and vmPFC during value-based choices requiring self-control 

(T. Hare et al., 2009; Hare et al., 2014; T. A. Hare et al., 2011; Steinbeis et al., 2014). Therefore, we 

expected to find greater connectivity between the L DLPFC and vmPFC during delayed choice in 

our task. To estimate this in our data, we first created a region of interest (ROI) based on activation 

during delayed choice in GLM 1 at the p<.001 threshold. We then estimated a psychophysiological 

interaction (PPI) model using this L DLPFC ROI as the seed region to measure connectivity when 

the delayed choice was made (PPI 1; see Methods for details). 

At the whole brain level, and pooling across subjects, the vmPFC and ACC are positively 

effectively connected to the L DLPFC when the delayed choice is made (Fig. 4A). Next we 
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specifically estimated the connectivity between L DLPFC and our value-related regions of 

interest, the vmPFC and vStr, using a ROIs created from the group-level subjective value 

modulation from GLM 1 at a p<.001 threshold. We find that both the vmPFC and vStr are 

significantly effectively connected to the L DLPFC when a delayed choice is made (T=1.97, 

p=0.03; vStr T=1.78, p=0.04). 

Next, we estimate L DLPFC connectivity, specifically when self-control is required. To understand 

why not all delayed item choices require self-control, imagine that an individual is deciding 

between $25 today and a very large payment to be delivered after a very short wait (e.g., $500 in 1 

day). In this extreme case, selecting the delayed offer is not an accurate representation of a self-

control process for most individuals. To measure L DLPFC activity specifically during choices in 

which self-control was required to select the delayed option, we next estimated L DLPFC 

connectivity only when the delayed and today options were similar in subjective value for that 

individual, i.e., near their point of indifference (PPI 2; see Methods for details). Figure 4B displays 

regions with greater positive connectivity to the L DLPFC specifically in hard trials across all 

subjects, which included ACC and the hippocampus (Fig. 4B). Neither vmPFC nor vStr are 

significantly connected to the L DLPFC in this case (p>.09). 

 

Figure 4. Whole brain estimates of positive connectivity to the L 
DLPFC during delayed choice. A) Connectivity to L DLPFC 
when delayed choice is made (PPI 1). B) Connectivity to L 
DLPFC when the delayed choice is made, in hard, relative to all 
other, trials (PPI 2). Results shown at p<.001 corrected for 
multiple comparisons at p<.05. The background anatomical image 
is the mean structural from this study. 
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Response to value changes with age. Next, we measure changes in value response across the 

lifespan. To compare response to value across age groups, we estimated a GLM identical to the one 

above, but with one important difference. We calculated subjective values using the group-level 

mean discounting and utility function parameters (GLM 2, see Methods for details; k=0.011, 

SD=0.01; α=0.687, SD=0.10). This is important because it facilitates comparisons across ages by 

putting all delayed values (which differ with age due to decreasing impulsivity) on a common scale. 

Importantly, by using SVs calculated with constant parameters, we still capture the shape of the 

value function. We used the vmPFC, vStr, and L DLPFC ROIs created for the previous analyses. 

Across ages, vmPFC value response is preserved with age (Fig 5A; ANOVA F=0.28, p=0.76; 

R2=0.02 β=-0.0009 p=0.32).  However, value response in the vStr significantly decreased with age 

(Fig. 5B; ANOVA F=3.70, p=0.03; R2=0.13 β=-0.002 p=0.01), suggesting that the vStr response 

becomes more “patient” with age. This differential change with age in vmPFC versus vStr value 

modulation occurs despite similar decreases in grey matter density with age in both regions 

(vmPFC: ANOVA F=19.11, p=7.9e-07; R2=0.42 β=-0.003 p=2.3e-07; vStr: ANOVA F=5.24, 

p=0.01; R2=0.09 β=-0.0009 p=0.03). The relationship between vStr value response and age holds 

when controlling for percentage of Vstr grey matter, which is not a significant predictor of this 

relationship (R2=0.13; age β=-0.0022, p=.02, vStr grey matter β=.04, p=.89). This confirms 

previous findings that vStr, but not vmPFC, response to value decreases in younger individuals 

(Galvan et al., 2006), and extends this relationship to an older demographic.  

Next we assessed whether specifically vStr value response change with age was a significant driver 

of impulsivity. First, we found that vStr value response is significantly related to log(k) even when 

controlling for decreases in vStr grey matter (R2
adj=0.21 β=0.04 p=0.0009). We next performed a 

mediation analysis. vStr value response was as significant mediator of age’s prediction of log(k) 

value response, reducing age’s prediction of log(k) by 25.6%. This suggests that vStr response to 

value may be the driver of age-related changes in impulsivity.  
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Figure 5. Change in value response with age (GLM 2). A) vmPFC 
value modulation by age. B) Striatal response to value with age. 
Bars represent the average response, with error bars representing 
standard error. Dots represent individual values for subjects (Red 
= adolescent, blue = middle, grey = older). 

L DLPFC activity during delayed choice changes with age. We next investigated age-related 

changes in L DLPFC response during delayed choice. Previous work has suggested that individuals 

with better self-control exhibit increased L DLPFC activity during patient choice (Hare et al., 2009). 

If the increased ability to exert self-control with age is enabled by greater L DLPFC activity, we 

would expect greater activity in this region with age. 

We were surprised to find a significant u-shaped relationship between L DLPFC response and age 

using GLM 2 (Fig. 6A; ANOVA F=4.89, p=0.01), in which L DLPFC response decreases the 

further the subject gets from the middle age group. To test this, we estimated a linear regression 

using absolute difference from the median age to predict L DLPFC response during delayed choice. 

We found that absolute difference from median age explained 18% of the variance in L DLPFC 

response during delayed choice (R2=0.18 β=-0.003 p=0.002). 

We hypothesized that decreased L DLPFC function in our older subject group results from their 

decreased vStr value response with age, shown in the previous section. Conversely, increased vStr 

sensitivity to value may result in more need for L DLPFC response. To test this, in a post hoc 

analysis we estimated the relationship between vStr value response and L DLPFC activity during 

delayed choice using GLM 2. We found that L DLPFC activity during delayed choice was 

positively correlated with vStr response to value (Fig. 6B; R2=0.14 β=0.48 p=0.01). This 
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relationship remains significant when controlling for age, grey matter density, and log(k) (R2=.17, 

p=.01). To verify that this relationship is specific to the vStr, we then estimated the same 

relationship with the vmPFC ROI, which was not significant (p=.08). These results suggest why our 

older subjects, who have much less vStr sensitivity to value, do not have strong L DLPFC response 

during delayed choice. 

Next, we specifically look at L DLPFC activity during delayed choices where self-control was 

required, when the immediate and delayed payments were of similar subjective values (GLM 3). 

We found that although L DLPFC activity increased in the older group in hard versus easy trials, 

but this was not significant (Fig. 6C; ANOVA F=0.34, p=0.72; R2=0.003 β=0.0004 p=0.71).  

 

Figure 6. L DLPFC during delayed choice by age and value 
response. A) L DLPFC response during delayed choice. (GLM 2). 
B) L DLPFC activity during delayed choice as a function of vStr 
value response (GLM 2). C) L DLPFC response during delayed 
choice in hard, relative to all other, trials (GLM 3). Bars represent 
the average response, with error bars representing standard error. 
Dots represent individual values for subjects (Red = adolescent, 
blue = middle, grey = older). 
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L DLPFC connectivity changes with age. At the outset of this study, we hypothesized that age-

related improvements in self-control could be linked to increased connectivity between the L 

DLPFC and the vmPFC. To test this in our study, we used PPI 1 to estimate changes in delayed-

choice related connectivity across our age groups. Across all trials, we find that DLPFC-vmPFC 

connectivity slightly decreases with age (Fig 7A; ANOVA F=2.24, p=0.12; R2=0.09 β=-0.0028 

p=0.03). However, DLPFC-vStr connectivity does not change with age (Fig 7B; ANOVA F=1.88, 

p=0.16; R2=0.06 β=-0.0019 p=0.08). 

Next we investigated how connectivity changes with age during delayed choice, specifically in hard 

trials using PPI 2. We find that, in contrast to connectivity in all trials, DLPFC-vmPFC connectivity 

increases with age (Fig. 7C; ANOVA F=2.41, p=0.10; R2=0.08 β=0.0039 p=0.04). There were no 

changes in L DLPFC-vStr connectivity with age (Fig; 7D; ANOVA F=1.88, p=0.16; R2=0.06 β=-

0.002 p=0.08).  
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Figure 7. L DLPFC connectivity changes with age (PPI 2). A) 
Connectivity between L DLPFC and vmPFC during delayed 
choice by age B) Connectivity between L DLPFC and vStr during 
delayed choice by age C) L DLPFC-vmPFC connectivity during 
delayed choice in hard, relative to all other, trials by age. D) L 
DLPFC-vStr connectivity during delayed choice in hard, relative 
to all other, trials by age. Bars represent the average response, 
with error bars representing standard error. Dots represent 
individual values for subjects (Red = adolescent, blue = middle, 
grey = older). 

4.4 Discussion 

In this study, we set out to understand the sources underlying improvements in the ability to 

successfully exert self-control using an intertemporal choice task. To examine the neural 

underpinnings of self-control, we capitalized on a population-wide phenomenon of improvements 

in self-control: healthy human development and aging. By recording a proxy of brain activity, 

BOLD response in fMRI, while subjects made choices between a small amount of money today and 

a larger amount in the future, we attempted to assess whether specific neural substrates were linked 
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to improvements in self-control while controlling for environmental influences that also change 

with age. Specifically, we hypothesized that changes in the function and connectivity of value and 

control related regions would be linked to increases in the ability to delay gratification with age. 

We found that discounting is tightly related to age in this task, even when controlling for 

demographic variables like financial security. Moreover, choice-related variables such as response 

times, and how strongly choices were predicted by preference (i.e., how noisy choices were), did 

not change with age. This allows us to propose that underlying neural variables, rather than 

environmental factors, may be an underlying source of lifespan changes in self-control. 

Our behavioral results inform the on-going debate concerning the relationship between temporal 

discounting and ageing. For example, previous studies have found no change after 30 (Green et al., 

1996), a curvilinear relationship between discounting and age (Read & Read, 2004), increased 

impulsivity (Green, Myerson, & Ostaszewski, 1999), no age-related change (Chao et al., 2009; 

Samanez-Larkin et al., 2011). Here, we echo other recent findings (Halfmann et al., 2013) that only 

when controlling for cognitive impairments such as dementia does temporal discounting decreases 

through the lifespan. This helps bring experimental results more in line with real-world evidence 

that pathological behaviors related to self-control deficits, such as gambling and alcoholism, 

decrease across the lifecycle (Gullone & Moore, 2000; National Institute on Alcohol Abuse and 

Alcoholism, 2008). 

Because previous findings show that vStr, not vmPFC, changes from childhood through 

adolescence (Galvan et al., 2006), we hypothesized that there would be a similar pattern when 

looking from adolescence through senior years. We confirmed that sensitivity to value in the vStr, 

and not the vmPFC, decreased with age, despite significant grey matter decreases in both regions. 

Using mediation analysis, we showed that this decreased vStr value response seemed to mediate 

age-related decreases in discounting in our population, and the relationship between impulsivity and 

value response held even controlling for grey matter density in this region. 

Neither adolescents nor adults showed increased L DLPFC activity when self-control was required 

to select the delayed option. The older group, however, had increased (but not significant) L 

DLPFC activity during these hard choices. Moreover, when self-control was required to select the 

delayed option, we found that connectivity between the L DLPFC and vmPFC increased with age, 

despite overall decreased connectivity with age in all trials. This suggests that older individuals may 
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be better able to identify cases in which regulation is required, and L DLPFC responds selectively 

to increase neural efficiency. We propose that this selective deployment of L DLPFC during very 

difficult trials, in addition to decreased response of vStr to reward, may underpin increases in self-

control across the lifespan. 

Here, we assume that self-control improvements arise from changes in brain composition and 

connectivity that occur as a natural part of the aging process. However, one could imagine instead 

that repeated, successful execution of self-control alters the connectivity and composition of the 

brain. Certainly we know that neural connectivity changes with experience (e.g., Hebbian learning, 

Hebb, 1949). Because experience is correlated with age, and because individuals with better 

monetary self-control have lower mortality rates (Boyle et al., 2013) and are therefore more likely 

to be part of our experimental sample, the observed experimental outcome of this scenario is the 

same as the result from our study. This question of causality is difficult to address with cross-

sectional research. Longitudinal studies, or pre-post studies following a population that is learning 

or being trained to exert self-control over a period of time, may be able to address this question. 

Temporal discounting is of great importance for well-being. Increased temporal discounting is 

related to decreased well-being (Forstmeier et al., 2011), poor academic performance (Mischel et 

al., 1988), and gambling and drug addiction (Reynolds, 2006). This study contributes to our 

growing understanding of how individual differences in brain structure and function improve one’s 

ability to exert self-control, which is a necessary step toward developing interventions to improve 

choices. 
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C h a p t e r  5  

CONCLUSION 

At the outset of this manuscript, I discussed some basic questions about how and when different 

types of value information are constructed, and about our struggle as humans to execute self-control 

using the value of long-term, rather than short-term, rewards. The big-picture question I attempted 

to address was: what features of the decision process allow individuals to down-regulate the value 

of tempting options in order to forgo them in favor of greater future reward? I presented converging 

evidence from both monetary and dietary choice domains and used fMRI, simulated data, and a new 

behavioral technique to answer this question. Below, I summarize my findings, discuss their 

significance, and pose some questions for the future of the field. 

Do some types of attribute values take longer to process?  We proposed that different kinds of value 

may vary in the ease with which they are calculated by the brain’s decision circuitry, and therefore 

may be available to enter the decision process at different times. Evidence from the studies 

presented in Chapters 2 and 3 suggests that this depends on how different those attributes are. For 

example, the choice-relevant attributes in Chapter 2, tastiness and healthfulness, are distinctly 

different. One is visceral and easy to represent – for example, even very young children intuitively 

know how tasty foods are to them. Healthfulness, instead, is a fairly abstract, complex attribute that 

involves many pieces of information such as calorie, fat, and carbohydrate content. As predicted 

based on the different nature of these value types, we found that taste and health processing speeds 

were quite different and that, as discussed below, these times influence behavior. This has 

implications for accumulator models of choice which, until now, have assumed a unitary value. 

In the experiment described in Chapter 3, individuals chose between different amounts of money 

delivered after varying delays. Evidence from that study suggests that value processing speeds for 

immediate and delayed monetary rewards were statistically indistinguishable at the group level. 

This similarity in processing speeds suggests that the brain constructs the subjective value of 

monetary rewards at similar times, perhaps even using the same process, regardless of their delay 

interval. 
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Together, the findings from the studies presented in Chapters 2 and 3 suggest that processing 

speeds do differ when the attributes are sufficiently distinct in their basic nature. Further 

investigation of this timing property promises to be a fruitful line of research. 

Do earlier-processed attribute values have a larger weight in choice? Do faster overall processing 

speeds lead to a better reflection of lower-weighted attribute values? The accumulator models of 

choice introduced in Chapter 1 are the theoretical foundation for our hypothesis that earlier-

processed values will have a larger influence on final choice than later-processed ones (see Chapter 

1, Figure 2 for an illustration of this prediction). In Chapter 2, we termed this the “computational 

advantage” that the earlier-processed attribute has in the decision process. In that study, taste was 

processed earlier than health on average, and there was a substantial amount of individual variation 

in health vs. taste processing times for each individual. This allowed us to determine whether or not 

earlier processed values have a larger weight in choice using our experimental data. We find that 

earlier taste, relative to health, processing speeds led subjects to select the tastier, less healthy food 

more often. The strength of this timing property’s prediction of dietary self-control was large; as 

much as thirty-nine percent of individual variance in self-control was explained by the 

computational advantage of the earlier-processed attribute alone.  

As previously noted, the time it took participants to process the value of rewards delivered 

immediately and at a delay did not systematically differ. That made investigating the influence of 

processing speeds on monetary intertemporal choice a challenge to address using the same 

techniques as those used in dietary choice where these speeds differed widely. Instead, I paired our 

task’s experimental data with simulated choices generated using the DDM, and found evidence that 

even slightly earlier processing times influence choice in favor of the earlier-processed attribute. I 

extend this question to find that earlier monetary subjective value processing speeds in general 

(rather than separated by immediate and delayed rewards) influence temporal discounting behavior. 

I propose that earlier value processing provides more time for delayed value information (weaker-

represented, due to discounting) to accumulate, resulting in more patient choices. Conversely, very 

late value calculations result in noisier choices that more strongly reflect the more heavily-weighted 

attribute (typically immediate reward, due to impatience). Moreover, I found distinct trial-to-trial 

variability in processing speeds that result in uncharacteristic choices. When the immediate 

reward’s subjective value is processed unusually early for a relatively patient subject, she often 

makes the more impulsive choice. Conversely, when an impatient subject processes delayed reward 
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value uncharacteristically early in a trial, that subject is enabled to succeed at self-control by 

selecting the larger, delayed reward. I propose that trial-to-trial changes in processing speeds could 

be due to momentary shifts in attentional focus or choice framing, and further investigation of this 

phenomenon could help us understand how to influence choice behavior. 

Together, the results from both dietary and monetary intertemporal choice provide strong evidence 

for the theory I proposed in Chapter 1: attribute value processing speeds have a large influence on 

choice behavior. Earlier processing can allow information about an attribute we may weigh less 

heavily in choice (e.g. health information, because we discount its benefits for our future health) to 

contribute proportionally more to the value signal, and therefore to final choice. Several 

implications of this finding are worth future study. One particularly interesting extension of this 

work would develop interventions based on this theory to bring choices more in line with long-term 

goals. Several possibilities are suggested later in this conclusion. 

This finding is a natural extension of accumulator models of choice discussed in the introduction 

and in more detail in Chapters 2 and 3 (e.g., Busemeyer & Townsend, 1993; Ratcliff, 1980; Ratcliff 

& McKoon, 2008; Ratcliff & Rouder, 1998; Usher & McClelland, 2001). The time it takes the 

decision circuitry to process value, parameterized in the DDM by the non-decision time (NDT), 

which has not been given much attention in the literature. However, this thesis provides evidence 

from both experimental and modeling methodologies that it has a large influence on choice, and 

further focus on it has great promise for providing additional insight into the dynamics of choice. 

Are there neural markers for improvements in self-control? The focus of this thesis is the decision 

process underlying self-control successes and failures. To examine the neural underpinnings of self-

control, we capitalized on a population-wide phenomenon of improvements in self-control: healthy 

human development and aging. By recording a proxy of brain activity, BOLD response in fMRI, 

while subjects made choices between a small amount of money today and a larger amount in the 

future, I hoped to discover what neural substrates are linked to improvements in self-control while 

controlling for environmental influences that also change with age.  I found that age is a strong 

predictor of impulsivity in this task; even when controlling for income, patience increased from our 

adolescents to adult samples, and more improvements were seen into senior years. Moreover, I 

found that although grey matter decreased with age, connectivity between brain regions associated 

with valuation, reward, impulse control, and future-thinking actually increased with age. These 
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findings contribute to our growing understanding of how self-regulation occurs, and how it can 

improve. 

A great number of unresolved questions arise from the findings reported in this manuscript. One 

question plagues the self-control research at large: how can researchers disentangle preference from 

self-control? It would be quite easy to argue that some individuals with what appears to be poor 

self-control could simply have different second order preferences, i.e., ideas about the kind of 

person they want to be. For example, an individual who always selects the chocolate chip cookie, or 

the smaller immediate monetary reward, may simply not desire more money or a healthier life. The 

research reported here imposes the assumption that our subjects have second order preferences for a 

healthier, wealthier life. That simply may not be the case. This question can partially be investigated 

in the future by developing and using techniques that can impose or measure and control for such 

preferences. Directly querying individuals on their second-order preferences and goals is 

problematic (Bowling, 2005; Presser & Stinson, 1998; Schwarz & Hippler, 1995) but may be a 

place to start. 

Accumulator models of choice are incredibly useful for understanding a variety of simple binary 

choice problems, and a great deal of work has been done to understand their influence on choice. 

Although this thesis proposes an amendment to these models by including different attribute values, 

further improvements are required to bring these models more in line with the real cognitive 

process, which could improve their explanatory power. One open question, for example, is whether 

there are any inhibitory elements that enter the decision process. In dietary choice, we have shown 

evidence that health is processed later for most people. However, once health is processed, our 

model assumes that the value of taste continues to accumulate at the same rate. This may not be the 

case; it is equally possible that health contributes some additional inhibitory influence on the rate of 

taste value accumulation once it is processed. Indeed, Ratcliff (1980) proposed a model in which 

rate of value accumulation changes during the decision process. Alternatively, taste inhibition could 

be an entirely separate parameter that enters the relative value signal independent of other value 

types. The value construction process itself requires further work, for example to understand 

whether various elements of taste (sweetness, saltiness, etc.) and health (calories, fat, etc.) are 

calculated independently and then integrated into one taste or health value, which seems likely. The 

new technique reported in this manuscript has great promise to investigate these questions. 
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In Chapter 4, I provide evidence that age-related neural changes are associated with 

improvements in self-control. However, it is difficult to pinpoint the originator of this change. One 

could imagine that the natural changes that occur as the body ages include changes to the structure 

of the brain, including composition and connectivity, and that the changes we see in self-control 

arise from these natural brain changes. Here, I implicitly assume this is the case. However, one 

could imagine instead that repeated, successful execution of self-control changes the connectivity 

and composition of the brain, resulting in the effect we find. Certainly we know that neural 

connectivity changes with experience (e.g. Hebbian learning, Hebb, 1949). Because experience is 

correlated with age, and because individuals with better monetary self-control have lower mortality 

rates (Boyle et al., 2013) and are therefore more likely to be part of our experimental sample, the 

observed experimental outcome of this scenario is the same as the result from our study. Of course, 

the true answer may be some combination of the two, and this dilemma boils down to a classic 

chicken-or-the-egg question of causality that is difficult to address with cross-sectional research. 

Longitudinal studies, or pre-post studies following a population that is learning or being trained to 

exert self-control over a period of time, may be able to address this question. 

Investigating discrete, one-trial-counts, binary choice to understand the decision process is very 

common and incredibly useful in the decision sciences. However, it does not reflect our day-to-day 

lives. For example, it may be quite easy for an individual to decline a delicious bowl of chocolate 

ice cream in the moment during one of our experiments. However, over the course of several hours, 

or even several days, the knowledge of ice cream (in addition to tens of other tempting items) sitting 

in the freezer, with easy access and few short-term negative consequences, presents constant 

demand on the decision circuitry required for self-control. That is the real world we live in, and 

developing research methodologies to bring our experimental paradigms more in-line with the 

constant demands required to live a healthy life would be extremely useful. 

This body of work contributes to our understanding of why some people succeed, and others fail, at 

self-control. A natural extension of this research would be to develop interventions that actually 

improve an individual’s self-control either in the moment, or gradually over time. In dietary choice, 

it is possible that with education, practice, more prominent health information, or simply better 

attentional focus, an individual could shift the time at which health information is processed; there 

is certainly no evidence to suggest that value processing speeds are fixed. One easily-implemented 

intervention that springs directly from our processing speed findings would be to allow a waiting 
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period before choice. This would, theoretically, give lower-weighted value information longer to 

contribute to the decision process. Indeed, some evidence already exists suggesting that extending 

decision time results in less impulsive choice (Dai & Fishbach, 2013). Further, there no evidence 

that the brain’s reward responsivity or connectivity are set in stone even despite one’s age; 

developing techniques to down-regulating one’s response to reward, e.g. harnessing the power of 

psychological distancing (e.g., Wang, Lin, Huang, & Yeh, 2012) could have great promise for 

improving self-control. A large sector of the population struggles with self-control daily, and 

understanding the mechanisms underlying self-control is a crucial step toward developing 

interventions that could greatly improve quality of life for many. 
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