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Abstract

The implications of string theory for the dimension of spacetime are investigated
by two methods. First, a new potential class of string theories is studied, which

have critical dimensions 3, 4 and 6. In particular, the partition functions of these
q

theories are derived and interpreted using a generalized GSO projection. The possible
uniqueness of field assignments, as well as the bosonization of the K = 4 model

are also addressed. Second, using recent ideas in string cosmology, a new model is
proposed to explain why three spatial dimensions grew large. Unlike the original
work of Brandenberger and Vafa, this paradigm uses the theory of random walks. A
simple computer model is developed to test the implications of this new approach. It
is found that a four-dimensional spacetime can be explained by the proper choice of

initial conditions.
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1. Introduction: Explaining the Dimension of Spacetime

The advent of string theory heralded a new era in particle physics. For the first
time, there were good prospects to unify all the forces in a consistent quantum theory.
Gravity, which had long resisted a quantum treatment, was naturally incorporated
and even required by string theory. Furthermore, unlike standard particle theory,
which is all but guaranteed to break down at energies near the Planck scale, string
theory is likely to be valid at all energies.

String theory is also the first theory to address the dimension of spacetime. While
all other theories are content to input this most fundamental quantity by hand, string
theory promises to predict it. Indeed, string theory quickly produced a naive pre-
diction for the dimension of spacetime. Demanding cancellation of the conformal
anomaly for mathematical consistency, the bosonic and supersymmetric theories pre-
dicted critical dimensions of 26 and 10 respectively. Fortunately, the critical dimen-
sion need not be the observed dimension of spacetime. Anomaly cancellation only
requires that the underlying conformal field theory have a particular central charge.
Some of the fields contributing the charge can be internal degrees of freedom, rather
than coordinate bosons. Furthermore, there may exist spacetime dimensions which
are compactified near the Planck scale, where no terrestrial experiments have ever
probed. Thus, one can construct a string theory with three large spatial dimensions,
thereby maintaining the viability of the theory. However, the observed dimension of
spacetime seems to be once again reduced to a parameter put in by hand.

This thesis is an attempt to explore how string theory can fulfill its original
promise of predicting the dimension of spacetime. The first half of the dissertation
examines recent proposals for variations of string theory that have different critical
dimensions. In spite of the above discussion that the critical dimension is not required
to be the dimension of spacetime, it is still the most “natural” dimension. A theory
with a critical dimension of four would be an intriguing development. The second
half of the thesis asks whether superstring theory, without modification, can predict
three large dimensions. Modifying a previously proposed model of string cosmology,

it tests whether such a model can be expected to reliably predict the spacetime we



live in.

2. Introduction to Conformal Field Theory.

2.1 Basic Definitions.

As explained in the introduction, the physical motivation for the new string
models studied in the next chapter 1s to achieve a more realistic critical dimension.
The models also have a simple mathematical motivation, which is best understood in
the context of Kac-Moody algebras in conformal field theory.

Conformal field theory (CFT) is quite fundamental for any string theory. The

simplest string action,M

1 .
=3 / dodr /G0, X" 0,X,, (2.1.1)

leads us inexorably to a CFT. As desired, this action is invariant under general co-
ordinate transformations. When this freedom is gauged away, a residual invariance
remains, namely the Weyl rescaling of the metric. Indeed, eq. (2.1.1) is manifestly
invariant under any transformation that rescales the metric g. In two dimensions, as
is appropriate for the string worldsheet, the group of transformations that rescales
the metric and thus the remaining symmetry group of the action, is the conformal
group. As a result, the field theory appropriate for string theory is conformal field
theory.?)

In order to discuss CFT, one must introduce primary fields. Parameterizing
the worldsheet by complex coordinates z = 7 — i0 and z = 7 + i0, a conformal
transformation is simply one where z — f(2) and # — f(2). Under a conformal

transformation, a primary field, ¢(z, ), is defined to transform as,

o9 6.9 = () (2) atso, 500 (2.12)

where (h,h) is the conformal weight of ¢. It is often instructive to consider an
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infinitesimal holomorphic transformation, *

z — 2+ €(z). (2.1.3)

Then, a primary field ¢(z) transforms as

¢(z) = ¢(2) + 6.8(2) (2.1.4)

where?
6.8(z) = [T., p(w)] = (hOe + €0) ¢(2). (2.1.5)

Here, T, is the conserved charge associated with symmetry (2.1.3),

dz
T = f %6(2)1“(,2) (2.1.6)

which also generates that symmetry, as required by Noether’s theorem.
In the above expression for T, T'(z) is the zz component of the energy-momentum
tensor. Energy-momentum conservation and conformal invariance imply that 7, =

T,, =0, while T,, and T, are conserved currents:

T, =0 (2.1.7a)
aT,, = 0. (2.1.7b)

Thus, €(2)T,, and &z)7T;; form an infinite set of conserved currents, to which cor-
respond the conserved charges, ¢ -é%e(z)T(z). To find what transformations these

generate, one can check how they act on 0.X.

§(8X) = [T,,0X] = 7{ é(%e(z)T(z)BX(z). (2.1.8)

Inserting the operator product expansion for T'(z)0X (w) and evaluating the integral,

we find
6(0X)=(0c+€d)0X =0X (z+¢€)— X (z).

IThe antiholomorphic case is similar. Simply take the complex conjugate of what follows and
replace h by h.

29— 08 5= 8
6=aza 8z

I



4

Thus, T, generates the conformal transformation, z — z + €, as claimed.
The energy-momentum tensor can be expanded in modes®

T(z)=» 2L, (2.1.9)

i

where the L, are the Virasoro generators. They generate conformal transformations

with €(z) = 2"*1. The L, satisfy the Virasoro algebra,

(2.1.10)

n+m

(s L] = 5n(n = 1)(n + 1), + (0 = m)L

where ¢ is called the conformal anomaly.
Using eq. (2.1.2), we see that under a dilatation, z — Az, ¢ — M+*é. Since a
dilatation by A is equivalent to a translation 7 — 7 +1In A, Ly + L, can be seen to

play the role of the Hamiltonian. Indeed, we can write,
= 1
H=Lo+ Lo=5(pi +pR) + N+ Np—1—1. (2.1.11)

Similarly, a rotation, z — e~z gives ¢ — e '*=R¥¢ 5o that h — k is defined as
conformal spin. Since the above transformation is also a ¢ translation, we identify

Ly — Ly as the momentum.
With the Virasoro generators, we can describe physical states in our CFT. If

the vacuum is [0), a state |¢) is defined by |¢) = lim,_, 4(2)|0). A state is called a
highest weight state with weight & if it satisfies,

Lo|¢) = hl¢) (2.1.12a)
L.,|¢) =0, n>0. (2.1.12b)
In string theory, such a state with k equal to the intercept is called a physical state.

Since the L_,, (n > 0) act as raising operators, one can build “descendant states” by

applying them to |¢). |¢) and the set of all its descendant states form a representation

of the Virasoro algebra called the Verma module:

!¢n1 ...... nk> — L—nl ...... L—nkl¢> n; > 0. (2113)

3The exponent of z is —n — 2 rather than —n because we expand T on a plane instead of a cylinder

and the conformal weight of T is 2.



2.2 Extended Algebras

The Virasoro algebra is by no means the only important algebra in string theory.
To incorporate fermions into string theory, one introduces supersymmetry to the

theory, arriving at the following action in light cone gauge:"

S = 217r/d2o—{8 XO_X +i(hy 0t +v_0,9_)}. (2.2.1)

The fermion i is the superpartner of the coordinate boson. Along with the energy

momentum tensor, we now have a supercurrent, Ty. These take the following forms,

respectively:
1
T,y = 58 X0, X + zbiai@b (2.2.2a)
1

Taking G,* to be the modes of T}, (analogous to L, ), it is straightforward, though

tedious, to derive the superconformal algebra:

L, ,L)=(m-n)L, n—}-i m® — 2am)é, . 2.2.3a
+ 12 +

[Lm’ Gr] = (? - T)Gm-{-T (223b)

G,,G) =2L,,, + §(7~2 ~ g)(sm. (2.2.3¢)

The fractional superstring is partly based on a generalization of this algebra.

Another algebra of profound importance to conformal field theory and string
theory is the Kaé-Moody (KM) algebra.l®l A classical KM algebra is easily constructed
from its associated Lie algebra. Consider a Lie group G with generators T, and
Lie algebra, [T,,T,] = if**T,. The modes of T,(z) are defined in the usual way,
T,(2)=>%, T2z, or

)

Te = j{ A2 ne1gpa(y). (2.2.4)

The KM algebra is simply the algebra of the modes T,

[T T3] = i f*T 5 (2.2.5)

4y € 7 +a where a is the intercept.



When dealing with quantum mechanical operators, rather than classical generators,
one must include a central extension, d2, ;k’ on the right of eq. (2.2.5). For irreducible

unitary representations of the KM algebra of a simple, compact group, the extension

simplifies to yield,

(T2, TR = if*Ts ., + Kmé®6,,, ., (2.2.6)

where K must be a positive integer.® K is called the level of the algebra.

These algebras have physical relevance whenever there is a conserved current in
the adjoint representation of a Lie group. Such a current can be expanded in modes,
which satisfy a KM algebra. Furthermore, one can use purely algebraic means to
determine the energy-momentum tensor and thus the JJ and T'J operator product
expansions can be found as well. With an expression for T', one can calculate the OPE

of T' with itself and find that the central charge is ¢ = g;g‘i‘g where ¢, = 2(4mE 1) Tt

must be emphasized that the central charge is determined knowing only the symmetry

group of the theory. The action need not be known. G = SU(2) will be especially

3K
K+2-°

important in what follows, in which case ¢ =

One also often wants to consider coset representations. Given a group G, with
subgroup H, and energy-momentum tensors T and Ty respectively, it can be shown
that the coset G/H has energy-momentum tensor Te/g = T — Ty. Furthermore,

¢e/n = ¢g — ¢g- The coset upon which the first half of this dissertation is based is

Lsg%)))& with central charge I?fz —-1= 21{5:22.

The coset %)—)2 deserves special attention. Its conformal charge of -;— indicates
that it contains a fermion as a primary field. Indeed the (SU(2)), primary fields
can be factored as ®J (z) = @I (2)exp (%g@(z)) where exp (%g@(z)) is a bosonic
representation of U(1) with the boson, ¢, compactified at radius /2. ¢ = ¢9 acting
on the vacuum gives a fermion. For general K, the boson radius becomes /K and
a subset of the ¢/, produce parafermions. Then j and m are restricted by 0 < 7,

lm| < lz‘:,j,me Zandj—m=0 (modl).

Sexcluding G = U(1).
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Note that the primary fields satisfy the identities:!!
) . K_ .
O = bnsx =) - (2.2.7)

The conformal dimension of these fields is, h(¢7,) = JJAJ——El — mrz At a given level K

the fusion rules are,
,
%1 ® Z’%z = Z ¢an+m2 (2.2.8)
j=|j1 “jzl

where r = min(j; + j,, X — j; — j,). Note that the subset of primary fields

(b =¢0=¢") 0, s 0Si<K -1} (2.2.9)
(ngI = ¢y _;) with conformal dimensions h(¢;) = i(I;fi) form, under fusion, a closed

subalgebra possessing a Zy Abelian symmetry:

$;® ¢; = ¢;y; (mod K). (2.2.10)
These fields are called Z parafermions.

2.3 Partition Functions.

When studying any theory, it is very natural to ask about the spectrum of the
theory. We will find that the partition function can reveal a great deal of informa-
tion about the spectrum of the fractional superstring, and is also relatively easy to
determine. Thus, a few words should be said about general partition functions.

The most natural way to define the partition function is simply as a generating
function that encodes the number of states at each level. For example, consider the
Verma module for a primary field ¢ with “level” meaning conformal dimension (not

to be confused with Ka¢-Moody level). The distinct states are listed in table 2.1:



Table 2.1: The Verma module of a primary field.

level dimension field

0 h ¢

1 h+1 L_,¢

2 h+2 L_,¢,L?,¢

3 h+3 L_sé, L_L_,¢, L3¢
n h+mn P(n) fields

The number of states at each level n is the number of partitions of n into positive
integers. A proper generating function for P(n) is ([[o= (1 —¢™))t = > 22, P(n)q™.
The partition function for a Verma module is called a character, since it corresponds
to the trace of the corresponding representation matrix. More generally, we define

the partition function to be

7 = trg % qz"cyl = ¢ 2 g trglogho (2.3.1)

where the latter expression is defined on the complex plane. Using the identifications

of H and P made after eq. (2.1.10), we can write,

Z(1,7) = tre?mmbe-2mnH (2.3.2)

where ¢ = €™ and 7 = 7, + i7,. ldentifying imaginary time with the inverse
temperature, 3, we see how the partition function goes as tre~?H as one would expect.
The term involving the momentum can be interpreted as twisting the cylinder before
gluing its ends together to form a torus. This form leads one to suspect that the
partition function in string theory plays a critical role in the string amplitude. Indeed,

a careful computation of the one-loop vacuum amplitude gives,

d*r _
A:L(TZ)QZ(T,T). (2.3.3)

F is the fundamental region given by the union of {—1 < Rer < 0, |7]* > 1} and

{0 <Ret < 3, |7|* > 1}. F is shown in figure 2.1 of appendix A. The above relation-
ship between the partition function and amplitude will put a number of constraints

on the partition function, as will be seen below.



Real fermions provide an excellent example of the computation of characters.
Majorana fermions only have two possible boundary conditions; they are either peri-

odic (P) or antiperiodic (AP). On a cylinder,
= Z#’ne"""’ (2.3.4)

where n € Z + % for AP fermions and n € Z for P fermions. The one-loop partition

o
[
—
/4]
&
o4
e
q}
ot

ulated on a torus, which has two non-contractible loops. Thus, four
independent sets of boundary conditions can be chosen. By convention, the “space”
loop boundary condition determines the modding. Twisting in the “time” direction
is implemented by the fermion number operator, (—1)¥, which anticommutes with

the fermion. Thus, the associated characters for one chirality are listed in table 2.2:

Table 2.2: Fermion Characters

X(AP, AP) = L0+ ) = /=
X(AP, P) = (- ) = /2
X(P, AP) = HeF L0 +a) = Jz
x(P, P) = e [[2,(1-q") = o

The last equality defines the Jacobi theta functions. 7 is the Dedekind eta-function,

o0

p =g/ [0 - ). (2.3.5)

n=1

The partition function for a consistent theory must contain suitable combinations of
all the above characters.

Similarly, the bosonic partition function is

1 o0
:?Z::

_m_
R

wp.a
W=
[ %)
a5
|
3
3
W

(2.3.6)

QI

The characters for one chirality of SU(2), primary fields, ¢  are expressed by’

Z(7) = n(7)c () (2.3.7)
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where ¢ (1) is a “string function”®! defined by
; 1 - -

== > sign(z)g” HIVK (2.3.8a)

n*(r) £~
h2n+—}— 1 - r+s r(r+1)/2+s(s+1)/2+47rs(K+1)
=q HEF2) — (_1 q X
773 r,Es_z:O )

{qr(j+m)+s(j—m) — qK+1—2j+r(1s"+1—j—m)+s(K+1—J'+m)} (2.3.8b)

hﬁﬁ‘ﬂ%am(l 4+

(2.3.8¢)

where in (2.3.8a) the conditions
L —le| <y <z,
2. either z = 5(113:—i2) (mod 1) or (} — ) = 5(11—(4'1—2) (mod 1); and
3. eithery = f% (mod 1) or (3 4+y) =7 (mod 1)
must be met simultaneously.”l A7 = h(¢?) and ¢(SU(2)y) = —I\,—?i_%, above. These

string functions obey the same equivalences as their associated primary fields ¢? :

27 27 _ K-25 [

== \
Com = c2m+2[\" - c2m—K - \2.3.9&)

For the string functions, but not for the primary fields, one has also
=M (2.3.9b)

Since the partition function is essentially the integrand of the one-loop ampli-
tude, it must satisfy stringent constraints. The amplitude is found by summing over
all distinct Riemann surfaces, in this case parameterized by 7. However, there is
an infinite degeneracy, with each distinct surface corresponding to an infinite set of
distinct 7. Thus, the integral must be restricted to a “fundamental region.” The
conventional choice is shown in figure 2.1. Of course, restricting the range of integra-
tion is insufficient; the integrand (i.e., the partition function) must be invariant under
changes in 7 that do not change the underlying Riemann surface. Said differently, the
partition function must be invariant under all conformal transformations, including
those that are not continuously connected to the identity.

These considerations can be made more precise by studying the set of inequiva-

lent tori. Note that a conformally distinct torus can be uniquely specified by a lattice
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of identified points, which without loss of generality can be rotated to be parallel
to the Re 7 axis. Since we have invariance under rescaling, the distance between
adjacent points along the Re 7 axis can be set to one. As shown in figure 2.2, the
complex parameter 7 now completely defines the lattice. It is easy to see that the
transformation T: 7 — 7 + 1 defines the same lattice and thus the same worldsheet.
A less obvious symmetry transformation is S: 7 — —%. These two transformations
generate the modular group, SL(2,Z)/Z, which has the general form,

ar + b
et +d

T —

(2.3.10)

where a, b, c and d € Z and ad — bc = 1.

It is easy to physically interpret the S and T transformations. To do this, observe
that the torus has two non-contractible cycles. Imagine cutting one of them, twisting
one end by 27 and gluing the torus back together. This operation, called a Dehn twist,
clearly leaves the torus invariant and corresponds to a T transformation. Another
independent generator can be taken to correspond to cutting and twisting along the
other cycle. However, it is more conventional to choose for the second independent
generator the S transformation, which corresponds to interchanging the two loops
(i-e., relabeling what is considered worldsheet space and time). Clearly, the labeling
is arbitrary, so this is a symmetry.®

The modular transformations of the boson, fermion and SU(2); characters are

well known. They are

S (1) = V—=itn(7) (2.3.11a)

T:q(r)— 6%7](7‘) (2.3.11b)
S : x(AP,AP) — x(AP, AP)
X(AP, P) — x(P, AP)

X(P,AP) — x(AP, P) (2.3.12a)

6Note how the S and 7' transformation require that contributions from all fermion boundary

conditions be included in the partition function.



T : x(AP,AP) — e% x(AP, P)

X(AP, P) — ¢ % x(AP, AP)

X(P,AP) — % y(P, AP) (2.3.12b)
1 )
S:c — b(l,n, ', n')cl, (2.3.13a)
Vit \/I‘ Z0 n/=_zz<+21
U_nlg2
T:c — e27riH5'cln (2.3.13b)

where ¢!, is the character for the SU(2)y primary field qﬁil//zz, H! = Z'{(i;\if% "2, and

b(l,n,',n') = exp { g’ } sin {ﬂﬁ%?ﬂl} The mixing of terms under S transfor-
mation makes the construction of modular invariant partition functions with SU(2)x
fields highly non-trivial.

Everything discussed to this point assumed that the worldsheet was a smooth
manifold. Often, it is preferable to consider manifolds which are modded out by
discrete groups. The simplest such “orbifold” is S'/Z,, where all the points are
identified under reflection, # ~ gz = —z, g € Z,. The effect of such an identification
in the spectrum is twofold. First, states in the original S! spectrum that are not
invariant under Z, are projected out. Secondly, new sectors of states are added to the
theory, which have twisted boundary conditions. For S/Z, the resulting partition
function is,

Zuro(R) = 5 (Zago(R) + 12208l 1aal 1050
2 Ul 07 Ul

where Z . is the bosonic partition function, eq. (2.3.6).

) (2.3.14)

circ
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3. The Fractional Superstring.

3.1 Introduction.

At first glance, the fractional superstringl”) appears to be a modest general-
ization of the usual superstring. Rather than using (SU(2)), primary fields, these
models employ SU(2) primary fields of general level K. They replace the standard
c= % fermionic superpartner of the holomorphic (and likewise for antiholomorphic)
worldsheet scalar X(z) with the “energy operator,” ¢ =

o, | of the Z,- parafermion

conformal field theory. € has conformal dimension (spin) Note that for K # 2,

Ix+2
the conformal dimension (spin) is “fractional” (i.e., neither integral nor half-integral)

which explains the name of these models. The central charge of each ¢ — X pair is

_ 3K
Cc = m
The supercurrent must be modified in an analogous manner. The naive gen-
eralization to €(z)dzx proves to be inadequate. Instead, the proposed “fractional

supercurrent” (FSC) is

Jrsc(2) = €(2)0z(2)+ : ec: (2) (3.1.1)

where : ec : denotes the first descendant of ¢ (which vanishes for K = 2.) Jpgo(2)
suggests a local “fractional” worldsheet supersymmetry between €(z) and X(z), ex-
tending the Virasoro algebra of the stress-energy tensor T'(z). This local current of
spin h(Jpgc) = 1 + K 5 has fractional powers of ——{U— in the OPE with itself, pro-
ducing cuts on the Worldsheet and implying a non-local worldsheet interaction. The

corresponding “fractional superconformal algebra”[® is,

) o EC_, 2(w) .

T(z)T(w) = oy + = w)? + .. (3.1.2a)
_ hdpsc(w) | 9Jpgc(w)

(2)Jpsc(w) = (z —w) (z — w) + ... (3.1.2b)

"Note that ¢ is not in the Zg Abelian subgroup, and thus is not a Z parafermion, except for the

degenerate K = 2 superstring case where ¢} = ¢9.
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_ 1 %@T(w) Ak (o) Jrsc(w) %)‘K(Co)aJFSC(w)
Irsc(2)Ipsc(w) = (z — w)?* | (z — w)2h-2 + (z — w)* + (z — w)h-1

(3.1.2¢)

where h = %%, ¢ = Dcy, D is the critical dimension and ¢, is the central charge
for one dimension as above. Note that no mention has been made of an action.
The worldsheet action for these models is simply unknown. However, a great deal of
information about these theories can still be extracted. While it is impossible to find
the partition function rigorously from first principles, a physically plausible partition
function has been proposed, using the characters from eq. (2.3.7).

The one-loop partition function for the Type II fractional superstring can be
found by requiring the existence of a massless graviton while excluding tachyons.
Since each dimension corresponds to a boson and parafermion, which have characters
% and 7ncl, respectively, each dimension contributes one factor of a string function,
cl . If we only consider the holomorphic part of the partition function, in light cone
gauge, each term of the partition function must be made of D — 2 string functions.
Consider the lowest possible mass term, (c3)P~2, corresponding to D — 2 factors of

—(D-2)K

#3. Using eq. (2.3.8b), it has leading order mass, m? = SR 19) and is tachyonic

for D > 2. Thus, we exclude (c3)P~? from the partition function. The next lowest

D-3¢2 with leading order mass, m? = 2= — L=2K \ye get

acceptable® term is (c3) 43— S(RiY

the mass to zero so that it can produce a massless graviton. Solving the previous

equation yields, for K > 1,

16
D=2+, 1.
+ 3 (3.1.3)

We see that for an integral critical dimension, we can only consider K = 2, 4, 8 and
16, yielding critical dimensions 10, 6, 4, and 3, respectively. Requiring (c3)P~3c2 to
be in the partition function, one can try to add terms as needed to produce a modular
invariant partition function. Computerized searches demonstrated that for each K
listed above, there is a unique partition function that satisfies the above constraints.

They are as follows:

8 Acceptable means providing a massless spin 1 particle in the open string spectrum.m A better

argument is given in the main body of the dissertation.
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D=10 (K=2) Z = |A,|?, where

Ay = 8(cg)"(€d) + 56(c5)*(c5)” + 56(c5)”(5)” + 8(ca) ()" — 8(e1)®
1

= Ly a- o (3.9
D=6 (K=4): Z = |A,* + 3| B,|?, where
Ay = 4(cg +c0)*(cd) — 4(c5)" — 4(e3)* + 32(e3) ()’ (3.1.5a)

B, = 8(cq + c5)(c3)(c2)” + 4(cg + ¢5)*(3)(cz) —4(c)*(e3)”  (3.1.5b)

D=4 (K =28) Z = |Ag|* + | Bg)* + 2|Cg)?, where
Ag = 2(c + ) (¢ + ) — 2(c5)* —2(c3)* + 8(cficy) (3.1.6a)
Bg = 4(c) + ¢5)(c§) + 4(ct + §)(}) ~ 4(cyeh) (3.1.6Db)
Co = 4+ E)(S + &) — A(ch)? (3.1.60)
D=3 (K=16): Z = |Ag)* +|Cigl?, where
Ag=ct+ct =8 - & +2e (3.1.7a)
Cie =c+cit— ¢} . (3.1.7b)
For convenience, a factor of 72_(D~2)/ ? was omitted, where 7, is the imaginary part of

the modular parameter.
How to interpret these partition functions is not immediately obvious. The

exception is, of course, the K = 2 superstring for which it is well known that the
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terms with m = 0 are due to spacetime bosons, while the term with m = % = 1 results
from spacetime fermionic states. By analogy, it is argued!] that for general K, terms
with m = 0 are bosonic, while m = % terms are fermionic. This gives an acceptable
interpretation of the A sectors, which contain the graviton, the gravitino and indeed
all the massless particles in these models. The B and C sectors have no analog in
the superstring and are less transparent. Tye et al., claim!” that they represent spin
% and -é— particles respectively. Thus, if one wishes to maintain Lorentz invariance,
compactification of one (two) dimension(s) is required for D = 4, (6) respectively.

Thus, while the K = 4 and 8 models may have D_; = 6 and 4, respectively, they

have “natural” dimensions of 4 and 3. The K = 16 model has D ; = D, 0al = 3
since anyons are allowed in three dimensions.
It is also interesting to observe that all the sectors are individually numerically

Zero,

Ay=Ay=Ag= A= B, =By = Cy = Cp = 0. (3.1.8)

This is necessary for N = 1 SUSY, but is by no means a sufficient condition.

Another issue is whether the fractional superstring partition functions are mod-
ular invariant at all loops. One-loop modular invariance is equivalent to invariance
under S and T transformations. However, modular invariance at higher orders re-
quires an additional invariance under U transformations: Dehn twists mixing loops
of neighboring tori of ¢ > 1 Riemann surfaces. To date, U invariance has not been
demonstrated, though it is expected to hold.!®!

The following five sections examine many aspects of the fractional superstring.
The next section shows that the proposed partition functions have a simple origin
and are not merely the arbitrary result of a computer search. Section three follows
with an improved spacetime interpretation of the K = 4 partition function, based on
a generalization of the GSO projection. Next, a more satisfactory argument is given
for the critical dimension, and by similar means, the possibility of additional theories
at other Ka¢-Moody levels is restricted. Section five considers the bosonization of the
K = 4 theory and derives new identities, similar to theta function identities. The last

section states some conclusions. Throughout the following chapters, a comparison of
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the superstring to the fractional superstring is made whenever appropriate, with the
belief that much can be learned about the superstring in the current, more general

context.

3.2 A New Derivation of the Partition Functions
3.2.1 Preliminaries

As is often the case with computer generated results, the partition functions are
not presented in the most natural or suggestive form. By using the string function
identities, one can recast the partition function in many forms. To decide which
to use, one notes that S invariant expressions containing string functions with only
even superscripts, as presented in the introduction, must only consist of symmetric
combinations of the ¢!, namely, 1(c!, + c&7!). For K € 4Z and [ even, we see that
replacing ¢/, by %(cﬁn + ¢&~!) maintains T invariance. Thus one must be able to

symmetrize the new partition functions while preserving modular invariance. Re-

expressing the partition functions solely in terms of these symmetric combinations,

one arrives at the following expressions:

D=10 (K=2): Z = |A,]*, where

{(e)7e5 + 7(c0)*(ed)* + 7(c0)°(¢5)® + () Fyouom — (€} rmion (3:2:1)
D=6 (K =4): Z = |A)* + 3|B,|?, where

Ay = {(Co +¢g)*( (03)4}

+4{(c3+ 02)3 — ()"} (3.2.2a)
B, = {( +cg)(co)(cy +¢3)% — (03)2(03)2}

(¢

+4 { &+ )3 + ) - (03)2(63)2} (3.2.2b)
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D=4 (K =8): Z = |Ag|* + | Bg|* + 2|Cg)?, where
Ag= 2{(Q+ SN2+ &) — (h)?)
+2{(cf + D) + ) — (c1)*} (3.2.3a)
Bs= 2{(c)+c)(c +c5) — (cach)}
+2{(cf + )+ c§) — (cich)} (3.2.3b)
Cs= 2{(G+ &)+ ) - ()}
+2{(c} + G) (3 + ) — (c3)?} (3.2.3¢)

D=3 (K = 16): Z = |A;l* + |Cgl?, where

A= {(cﬁ—}—c}f _CO}

Cig = {(CZ + C<114 - c4}

)
+ {(ck + c5*) — &} (3.2.4a)
)
+{(d+a") -

A (3.2.4b)

The above form has many advantages. First, it reinforces the claim that these
models have spacetime supersymmetry, if one assigns spacetime statistics in the A
sector according to subscripts on the string functions. For K > 4, the first bracket,
with subscript zero, contains terms corresponding to spacetime bosons and the second
bracket uniformly has the subscript %’, which leads one to identify it with spacetime
fermions. We see that the presumed bosonic and fermionic sectors have exactly
the same form, with only the subscripts changed. This makes manifest a one-to-

one cancellation of bosons with fermions, necessary to give SUSY.® Perhaps more

90f course, this correspondence of bosonic and fermionic string functions in the partition function

1s neither necessary, nor sufficient for spacetime supersymmetry, as seen by the K = 2 case.
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interestingly, the partition functions now hint that the B and C sectors may be
simply related to the physically motivated A sectors, rather than computer generated
artifacts. In fact, if one removes the subscripts from every term in the partition
function, we see that all sectors become identical, apart from an integer coefficient.
Indeed, the partition functions allow a simple analytic derivation. The key to
this approach is the factorization theorem proved by Gepner and Qiu.l¥] As we have
already seen, the parafermion partition function for a single coordinate has the general

form

Z =Y Nirachts., (3.2.5a)

Gepner and Qiu show that this can be written as,

1 =
Z =Y sLyM, .c\e, (3.2.5b)

=25

nesm = 0 unless | —n € 27 since ¢/, = 0 for j —m & Z. The Lyrand M, ,

where ¢

are defined as coefficients of the following partition functions:

«
W= Lipa(r)xl(7) (3.2.6)

1,i=0

and

K
Z Mn,ﬁﬁn,fx’gﬁ,l{‘ (3.2.7)

n,a=-K+1

V' is a U(1) partition function written in terms of the Jacobi theta function, ¥

which is defined as

n, K

Dor(r) = D 2o (3.2.8)

P€l+

X;(7) is the character of the spin-1! representation of SU(2), which can be written

in terms of the theta functions,

191+1,K+2(7') - 19—1-1,K+2(T)
191,2(7') - 19—1,2(7)

xi(1) = (3.2.9)
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Note that the SU(2) characters and the theta functions provide the defining relation

for the string functions,'®

K

\) = 3 d)x(r). (3.2.10)

n=—K+1
With the preceding definitions in hand, one can state the factorization result simply

as eq. (3.2.5a) is modular invariant if and only if
1
Nipin = _Q'Ll,l_Mm,ma (3.2.11)

where L;; and M, . are chosen such that eqs. (3.2.6) and (3.2.7) are both modular
invariant. Note that this result can be generalized to twisted tensor products of single

factor partition functions. The corresponding tensors are denoted L and M.

3.2.2 The Affine Partition Function, “W?”

In the last section, we discussed removing the subscripts from the string functions
in the partition functions. This operation (which will be denoted by arm-nzf) is equivalent
to replacing each ¢!, with the affine character ;. As seen below, a unique afline

partition function, ignoring overall factors, results for each K:

D=6 (K =4):

affine affine _
A, By = A4m = (xo + XK)3XI(/2 - (XK/2)4 (3.2.12a)

affine affine __
As, Bg, Cy = Asﬂin = (Xo + X )Xo + Xx_2) — (XK/Q)2 (3.2.12b)

10The associated relationship between the level-K SU (2) primary fields ® and the parafermionic

¢{n is

J
o = Z ¢{n : exp {z%w}

m=-—j

where ¢ is the U(1) boson field of the SU(2) theory.
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D=3 (K =16):

affine affine
A16a C’16 = Aléﬁ = (X2 + XK__Q) - XK/2 - (3.2.120)

If we denote the above affine terms as A3, then the affine factor in each parafermion
partition function is:
z2fine () — | Adffine|2 (3.2.13)

where the general form of A3fine jg 11

A5 = (xo + xx)P 2 (X + XK 22) — (XK/2)D_2 : (3.2.14)

(Note that the modular invariance of W requires that A" transforms back into
itself under S.)

The set of partition functions (3.2.13) is indeed modular invariant and satisfies
special physical requirements. This is easiest to show for the K = 16 model. The
SU(2);6 MIPE’s for D = 3 are trivial to classify since for this level the A-D-FE clas-
sification forms a complete basis set of modular invariants. The only free parameters

in K = 16 affine partition function W (K = 16) are integers a, b, and ¢ where
W(K =16)=ax Z(A;;) +bx Z(Dyy) +e¢x Z(E;) . (3.2.15)

The specific choice of coefficients results from imposing physical constraints.
Demanding that neither a left- nor a right-moving tachyonic state be in the Hilbert

space of states of the X' = 16 fractional superstring, when the intercept v, defined by
Ly|physical) = v|physical) , (3.2.16)

is positive, removes these degrees of freedom and requires ¢ = —(b+ ¢) = 0, indepen-

dent of the possible (n,7) partition functions. These specific values for a, b, and ¢

give us (3.2.13) for this level:

W (K =16) = Z(Dy) - Z(E,) = |Ajg"™ [, (3.2.17)

HU¥or K = 4, only one factor of X2 1s intended.
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which is exactly the form found by previous authors.[1]

Though not quite as straightforward a process, one can also derive the affine
partition functions W(K) for the remaining levels.!'! The affine factors in the
K =4 and 8 partition functions involve twisting by a non-simple current.'? These
cases correspond to theories that are the difference between a 1§2 Dgz_(_ +o tensor

factors

product model and a §2 Dg +2 tensor product model twisted by the affine current

factors

taffine _raf\D-zxi/:0\D-2 PPN
Y non—simple, K = (¥ * J v w) . (J.Z.ZU)
The equivalent parafermionic twist current is*®
. K
parafermion a\D-271/70\D=-3
Jnon—simple,l( - (¢0 ) ¢0(¢0) . (3221)

12 A simple current, J,, is a primary field of a CFT which, when fused with any other primary field

(including itself), ®;, in the CFT produces only a single primary field as a product state:
J@®, =2,. (3.2.18)

A non-simple current J,,, when fused with at least one other primary field (possibly itself),

produces more than one term:

T @O = &y (3.2.19)
Il

13Spacetime indices are left off of most of the following currents and fields. All currents are written in
light-cone gauge, so only indices for transverse modes are implied. The D—2 transverse dimensions
are assigned indices in the range 1 to D — 2 (and are generically represented by lowercase Greek
superscripts.) When spacetime indices are suppressed, the fields and their corresponding partition
functions acting along directions 1 to I2—2 are ordered from left to right, respectively, for both the
holomorphic and antiholomorphic sectors separately. Often, the notation will be more compressed
and r identical factors of ¢J, along consecutive directions (when these directions are either all
compactified or uncompactified) will be expressed as (¢7,)". Thus, eq. (3.2.21) for K = 8 should
be read as

K=, parafermion = (ga/)H=1(ph 1) =HSE)T1(85)7
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3.2.3 The Theta Partition Function, “V,” and the Twist Operator

Now consider the theta function factors of the fractional superstring partition
functions which are labeled by the indices (n,7), where n represents ¥, ;- defined in
(3.2.8). Since all Ay, By, Cy sectors in the level K fractional superstring partition
function and even the boson and fermion subsectors in A contain the same affine
factor, it is clearly the choice (or lack thereof after elimination of tachyons) of the
theta function factor which determines the spacetime Lorentz properties as well as
the level of spacetime supersymmetry of the fractional superstring theories. That is,
the spacetime spin of particles in the Hilbert space of states depends upon the M’s
that are allowed in tensored versions of eq. (3.2.7). In a situation when a single factor

is sufficient, invariance of (3.2.7) under S implies that the components M, . must be

related by

K
Z Mn’ﬁei””n'/f"’eimﬁl/l" . (3.2.22a)

na=—K+1

1
jk[ 't mr =
e 2K

T invariance provides a much simpler constraint,

n? — @2

——cZl, if M _#£0. .2.22b
i €L, Mg # (3 )
At every level K there is a unique modular invariant function corresponding to each
factorization!'?, o 8 = K, where o, 8 € Z. Denoting the matrix elements of M*#

by Ms’g, they are given by'*

1
36

M.z = 9 Z Ozt ynaz—py - (3.2.23)

IGZQﬁ
y€lny

Thus, for K = 4 the two distinct choices for the matrix M*# are M'* and M?2?; for

K = 8, we have M'® and M?*; and for K = 16, the three alternatives are M6

1By eq. (3.2.23), M,‘fy,g = Mffﬁ Hence, choosing & > 8 or # > « results in equivalent fractional
superstring partition functions. To avoid this redundancy, o < 3 is required.

Throughout this subsection n is taken to represent, simultaneously, the holomorphic Vo K
characters for U(1) theories and, when appropriate, the holomorphic string functions, ¢, for
parafermions. (7 represents the antiholomorphic equivalent.) However, this does not imply that

!

the string functions can actually be factored into ¢} ® ¢ =¢l. In the case of the primary fields,

7., the factorization is, indeed, valid: qﬁé ® 92, = ¢i. (for integer j, m).
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M?3, and M**. In general, M"® produces the level K diagonal partition function,
where n = 7. For D > 3 there is more than one transverse dimension, so that a
single “V” partition function is insufficient. The most naive generalization is to simple
tensor products. Unfortunately, such tensor products of these M®# matrices do not
produce fractional superstrings with spacetime SUSY. One can show that twisting by
a special simple current is required to achieve this. Of the potential choices for the
U(1) modular invariant partition functions (MIPF’s), V(level K), the following are

the only ones that produce numerically zero fractional superstring partition functions:

D=6 (K =4):

The M = M?? x M22 x M%? x M?? model twisted by the simple current!®

Jy = ‘15%"/4 (}(/4¢%'/4¢%’/4§$g¢38$g¢_58 (3.2.24)

results in the following (n,n) partition function:'¢

VK=4)=[0+4*O0+4*+(2+2)*2+2)*
+ (04 4)%(2+2)*(0 + 4)%(2 + 2)?

+ (24 2)%(0+4)*(2 + 2)%(0 + 4)*]untwisted

15Recall that the parafermion primary fields #2, have simple fusion rules,

G ® 60 = 6% 1 (mod K)

and form a Zx closed subalgebra. This fusion rule, likewise, holds for the U(1) fields : exp{iZp}:.
This isomorphism makes it clear that any simple current, Jy, in this subsection that contains only
integer m can be expressed equivalently either in terms of these parafermion fields or in terms
of U(1) fields. Note that one must take n = 2m even since ¢9, = 0 for half-integer m. In this
section, all of the simple twist currents, Jj, will be defined in terms of the parafermion fields.
16The string function identities are used to simplify between (3.2.25a) and (3.2.25b) where in the

first equation n ~ ¢8. The same is done for the partition functions which follow.
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+ 2+ 20+ + (0+4)*'(2+2)*
+(2+2)2(0+4)*(0+4)*(2+2)
+(0+ 4224 2)%(2 4+ 2)°(0 + 4)* ewistea

~ () + ()17, + 1(c0)*(€2)* + ()" (<o)}

(By)'

The M = M*? « M*? model twisted by the simple current

Ix /4 ¢Ix /4 ¢0 ¢o

results in:
V(K =8)=[(0+8)(0+8)+ (4 + 44+ )]inuwistea
+[(246)(2+6) + (2 +6)(2 + 6)intwistea

+[(4+ 404 8) + (04 8)(% + D] igtea

+ (6 +2)(2 +6) + (6 + 2)(2 + 6)]viseea

~ () + ()72, + () + (D, + ISP,

D=3 (K =16):

The M = M** model twisted by the simple current

Ji6 = ¢?</453

produces:

Z(K=16)=|(04+16)+ (S +8)>+ (4 +12) + (4 + 12)]?

+ 4|c§)?

~ ICO+CBI2 (16)"

(A1¢)

(3.2.25a)

(3.2.25b)

(3.2.26)

(3.2.27a)

. (3.2.27b)

(3.2.28)

(3.2.29)

(3.2.29b)
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In this case the twisting is trivial since J is in the initial untwisted model.
The partition function for the standard D = 10 superstring can also be factored

into affine and theta-function (n,7) parts:

D=10 K=2

7

A S (3 o = ) (3.2.300)

S - Y
T ouau =1

The accompanying (n, ) factor is
V(K =2)=[0%+1% 1% +25)? (3.2.30b)

which originates from the M = M?! x M?%1 x M?1 x M2 x M?! x M2! x« M2! « M2!
model twisted by the (simple) current

J, = (7 = 11111111, » = 00000000). (3.2.31)
The difference between this factorization and those for K > 2 is that here we cannot
8
define the (n,7) twist current as (¢%-/4> since qﬁ?{/[l =0 for K =2.

All of the above simple twist currents are of the general form
Jr = (650" ($)P 2 for K > 2. (3.2.32)

It is likely that this specific class of twist currents is the key to spacetime super-
symmetry in the parafermion models. Its twisting effect is essential in producing
numerically zero fractional superstring MIPF’s in three, four, and six dimensions,
which are necessary conditions for spacetime SUSY. This twisting also reveals much
about the necessity of non-Ay sectors. Terms from the twisted and untwisted sectors

of these models become equally mixed in the |Af

2 |Bg)?, and |Ck)? contributions
to the level K partition function. Further, this twisting keeps the string functions
with n # 0, K/2 (mod K) from mixing with those with n = 0,K/2 (mod K).
The importance of this will be seen later when the states in the C sectors are inter-

preted as spacetime anyons (i.e., states with non-half-integral spin), while the other
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sectors contain only bosons and fermions. Mixing the sectors would require spacetime
anyons, destroying Lorentz invariance for D > 3 and could yield spacetime fractional
SUSY, rather than normal SUSY.

To understand the effect of the twist fields, one first observes that the new
partition functions differ from the superstring partition function in a significant way.
For the superstring, all terms corresponding to spacetime bosons enter with a positive
sign, while all fermionic terms are negative. In contrast for K > 2, spacetime bosonic
and fermionic fields contribute terms with both signs. Calling the fields that enter
with the expected sign “common” and the fields that enter with unexpected sign

?

“uncommon,” one can divide the A sectors into two classes. For example, consider

A,, which can be written!”

A4 = AZOSOH _ Affrmion , (3.2.33&)

where
A= {8+ () - () (32:3%)
Aiermion =4 {(cg)‘l . (C(g) + 03)3(63)} . (3233C)

Here, the bosonic common fields are (¢3 + ¢3)3(¢¢) and the bosonic uncommon field
is (¢g)*. Similarly, the fermionic common field is (¢;)*, while the uncommon fields
are (63 + 81)°(81).

It has also been shown[!? that when Ay sector is written as ABson — Afermion g
done above for K = 4, the g-expansions of both A2?%°® and Afermion are all positive.
With the uncommon terms added one arrives at,

2 gt (9)°\ 7
P AR = (D - 2) (T;?-) :  (3:2.34a)
Eq. (3.2.34a) is the standard theta function expression for D —2 Ramond/Majorana-
Wey! fermions on the worldsheet. Further,

D2
9 4 9.) 8
,,7D-2A})<oson — (D . 2) <(_3~)_1_6;7_4(__ﬁ4)_) . (3234b)

"Note that in the antiholomorphic sector J x acts as the identity, so that one need only consider

the holomorphic sector in what follows.
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With the preceding division in mind, one can state perhaps the most important
property of the twist operator: it transforms bosonic (fermionic) common fields into
fermionic (bosonic) uncommon fields and vice versa. As a result, it often permits one
to separate terms that represent spacetime bosons and fermions. Consider how this
may be used to understand the By sectors. For I = 4 and 8 the operator (¢%/,)"~
transforms the primary fields corresponding to the partition function terms in the
first set of brackets on the RHS of egs. (3.2.2b,3.2.3b) into the fields represented by
the partition function terms in the second set. For example, in the K = 4 (D = 6)

case

(B4 @+ 60 TLLT (84 6)(81)(8R + 49)? (3.235a)

4)D—z

@y LT gy (3.2.35D)

Making an analogy with what occurs in the Ay sector, one can suggest that
(6% /4)D ~2 transforms bosonic (fermionic) common fields into fermionic (bosonic) un-
common fields and vice-versa in the By sector as well. Thus, use of the twist current

Ji allows for bosonic and fermionic interpretation of these fields:

B4 = B};oson _ Biermion , (3236&)

where
B (S DS + P — (@A) (230
Biermion =4 {(63)2(63)2 — (cg 4+ C%)(C%)(Cg + 03)2} . (32360)

What appears as the uncommon term, (¢)?(c3)?, for the proposed bosonic part acts

as the common term for the fermionic half when the subscripts are reversed. One
interpretation is that this implies a compactification of two transverse dimensions.!'®
The spin-statistics of the physical states of the D = 6 model, as observed in four-

dimensional uncompactified spacetime, would then be determined by the (matching) n

18This was also suggested in ref. [4] by a different argument.
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subscripts of the first two string functions'® (corresponding to the two uncompactified
transverse dimensions) in each term of four string functions, el cif, cif, . The By terms
can be interpreted similarly when one dimension is compactified.

Unfortunately, the Cg sectors are harder to interpret. Under ( ‘;{/4)["2 twisting,

string functions with K /4 subscripts are invariant. Thus, following the pattern of Ay

and By we would end up writing, for example, C,4 as

Cre = Cle Cfe (3.2.37a)

where,
o= (2 +c") -} (3.2.37b)
Cho=c— (2 +c*). (3.2.37¢)

The transformations of the corresponding primary fields under the twist operator
are not quite as trivial, though. (&3 + ¢7) is transformed into its conjugate field
(¢7, + #,) and likewise @3 into ¢*,, suggesting that C% and C?¢ are the partition
functions for conjugate fields. Remember, however, that Ci; = 0. Even though we
may interpret this sector as containing two conjugate spacetime fields, this means that
the partition function for each is identically zero. This effect in the Cy sector will
be referred to as “self-cancellation.” One interpretation is that there are no states in
the Cg sector of the Hilbert space that survive all of the internal projections. If this
is correct, a question may arise as to the consistency of the K = 8 and 16 theories.
Alternatively, perhaps anyon statistics allow two fields of either identical fractional
spacetime spins §; = s, = 21%‘—, or spacetime spins related by s; = 22 = 1 — s,,
where in both cases 0 < m < %: (mod 1), to cancel each others contribution to the
partition function.

In general, how can one assign spacetime spin to a state, simply by looking at

the corresponding primary field? As discussed in the introduction, it appears that

19Using the subscripts n’ of last two string functions to define spin-statistics in D = 4 uncompactified
spacetime corresponds to interchanging the definitions of BY°*°® and B™°" and reversing the

common and uncommon labels.
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one wants to associate a distinct spacetime spin with each class of m values of the
primary field. Using the ¢/ = ﬁn K = E:JA equivalences at level K € 4Z, a
parafermion CFT with m € Z has K/2 distinct cfa,sses of integer m values. Assuming
that m and —m yield identical assignments, since (¢2)! = ¢2,., the number of spin
classes is reduced to & + 1. Since m = 0 (m = &) is associated with spacetime
bosons (fermions), it is most natural to say that general m correspond to particles of
spacetime spin Z* £ 22. (Perhaps spin(m) € Z + 22 for 0 <m < K/4 (mod K/2)
and spin(m) € ZT — 22 for —K/4 < m < 0 (mod K/2).) This is one of the
few spin assignment rules that maintains the equivalences of the fields ¢/ under
K

(7, m) — (1;- —J,m— %) = (J, m+ K) transformations. According to this rule,

the fields in the C sectors have quarter spins (statistics), which agrees with prior
claims,[13:14,10]

In order for the previous assignments to apply to the By sectors, some dimen-
sions must be compactified. = Otherwise, by the interpretation of m values above,
Lorentz invariance in uncompactified spacetime would be lost. In particular, Lorentz
invariance requires that either all or none of the transverse modes in uncompactified
spacetime be fermionic spinors. Further, B sector particles cannot correspond to
fractional spacetime spin particles for a consistent theory. Thus, the D = 6 (4) model
must have two (one) of its dimensions compactified.?

Note that the By sector of the D = 4 model may be necessary for the consistency
of the theory. By the above spacetime spin assignments, this model suggests massive
spin-quarter states or anyons in the C sectors, which presumably cannot exist in
D > 3 uncompactified dimensions. However, the B sector, by forcing compactification
to three dimensions where anyons are allowed, would save the model, making it self-
consistent. Of course, anyons in the X' = 16 theory with D_,, = 3 are physically
acceptable. (Indeed, no B sector is needed and none exists, which would otherwise

reduce the theory to zero transverse dimensions.) Thus, K = 8 and K = 16 models

are probably both allowed solutions for three uncompactified spacetime dimensional

20This implies the D = 6, 4 partition functions are incomplete. Momentum and winding factors for

the two compactified dimensions would have to be added (with modular invariance maintained).
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models. If this interpretation is correct then it is the B sector for K = 8 which, rather
than making the theory nonsensical, makes the theory consistent.

An alternative, less restrictive, assignment of spacetime spin is possible. Another
view is that the m quantum number is not fundamental for determining spacetime
spin. Instead, the transformation of states under qﬁfx /4 Can be considered to be what
divides the set of states into spacetime bosonic and fermionic classes. With this
interpretation, compactification in the B sector is no more necessary than in the A
sector. Unfortunately, it is not a priori obvious, in this approach, which group of
states is bosonic, and which fermionic. In the A sector, the assignment can be made
phenomenologically. In the B sector, we have no such guide. Of course, using the
m quantum number to determine spacetime spin does not truly tell us which states
have bosonic or fermionic statistics either, since the result depends on the arbitrary
choice of which of the two (one) transverse dimensions to compactify.

A final note of caution involves multiloop modular invariance. One-loop modular
invariance amounts to invariance under S and T transformations. However modular
invariance at higher orders requires an additional invariance under U transformations:
Dehn twists mixing loops of neighboring tori of ¢ > 1 Riemann surfaces.'®! I believe
neither this new method of generating the one-loop partition functions, nor the orig-
inal method of Argyres et al., firmly proves the multiloop modular invariance that is

required for a truly consistent theory.

3.3 A Generalized GSO Projection

In the last chapter, we have seen how the twist operator completely determines
which terms will appear in the partition function. Some combinations of fields have
their corresponding characters included, while others are conspicuously absent. We
know that the choices must be as they are in order to preserve spacetime super-
symmety and modular invariance, yet have no fundamental understanding of why a
particular state can be kept in the physical state space. From the superstring, we
know an alternate way to impose modular invariance is for the state space to be sub-

jected to the GSO projection. This chapter endeavors to achieve a similar prescription
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for accepting or rejecting states in the parafermion model.

(16]

The usual GSO projection can be stated very simply. One introduces the

F commutes with

G parity operator, (—1)F, where F is the fermion number. (—1)
Bose fields, X*, and anticommutes with Fermi fields, 1), on the string worldsheet.
The GSO projection is then simply the requirement that (—1)" = +1 for all physical
states. States that are odd under (—1)F are projected out. All of the above assumes

we are dealing with either periodic or antiperiodic worldsheet fermions,
Y(o=27) = xY(o=0) . (3.3.1)
Of course, one can consider more general fermions with complex boundary conditions,
Yo =2m) = —e™ (o =0) , (3.3.2)

where z is a rational number, denoted 2 = 7, for a, b € Z. The set of distinct
boundary conditions is the set of a, b coprime with —1 < ¢ < 1. In full generality,
the GSO projection coming from a sector where the set of worldsheet fermions {¢¢}

have boundary conditions,

P (2m) = —e™ i (0), (3.3.3a)

and acting on a physical state Iphys>g, in a sector where the same fermions have

boundary conditions
$H(27) = —e™ (0), (3.3.3b)
demands that,

{eiﬂf-ﬁ‘y — (7, :7:’)} |phys) (3.3.4)

be satisfied for states surviving the projection, where ¢ is a phase depending on
whether there are periodic spacetime fermions in sectors & and 7, as well as on the
coefficients of the partition function.'”l If a state fails (3.3.4) in any sector, it will
be absent from the partition function. From (3.3.4), we see that Neveu-Schwarz
fermions give Z, projections and Ramond fermions give Z, projections. If z = £, a

Z, projection results if a is even and a Z,, projection is obtained for a odd.
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The boundary condition information can also be encoded in (and indeed is de-
rived from) the mode expansion of the fermion field, which has the following form

for a general twist by $:

o0

1/J+(0'1v‘72) = Z[¢n—1/2—a/2b exp {—i(n — 1/2 — a/2b)(0, + 0,)}

n=1

+ 1;1/2—-71—0./217 exp{~i(1/2 —n — a/2b)(oy +0,)}] (3.3.5a)

Y7 (04,05) = Z[¢l/2-n+a/2b exp{—i(1/2 —n +a/2b)(0; + 7;)}

n=1

+ 77Zn—1/2+a/2b exp{—i(n —1/2+a/2b)(0, + 0,)}] (3.3.5b)

(where ] =4_, and ¢l =¢_,).

Pt oy + 27) = T2/ gime/b ypt(4.) (3.3.6a)

p (o) + 21) = e H D emmalb Y= (), (3.3.6b)

The specification of the fields is completed by stating the commutation relation that

the modes obey,
{vlva} = {9 %a} = 6.4 (3.3.7)

A similar analysis can be done with the e fields in the K = 4 parafermion theory.
The normal untwisted (i.e., Neveu-Schwarz) modes of € are et, and €;__ where

3 3
n € Z. That is, untwisted € = €t + ¢~ has the following normal-mode expansions:

o0

" (0y,0,) = Z[Cn_l/s exp {—i(n —1/3)(o; + 0,)}
+ &y3_n €xXp {—1(2/3 — n)(oy + 0,)}] (3.3.8a)
€ (0,03) = 2[61/3—n exp {~i(1/3 — n)(o, + 0,)}

+ €93 exp{—i(n — 2/3)(oy + 0,)}] (3.3.8b)
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(where €] = €_, and & = €_,). As before one can read off the associated boundary

conditions in this sector,

et (o, +27) = e et (o)) (3.3.9a)

¢ (o, +21) = e~ B () . (3.3.9b)

After adding a twist of ¢, € has the following mode expansion:

oo

" (0y,0,) = Z[en—l/S—a/Zb exp{—i(n —1/3 —a/2b)(o, + 0,)}

n=1

+ €/3-n—as2p eXP {—4(2/3 —n — a/20)(0, + 0,)}] (3.3.10a)

(e o]

€ (01,02) = Y _[€1/3-npaszs exP {—i(1/3 = n+ a/2b)(07 + 05)}

n=1

+E_zpa eXp {—i(n —2/3 4+ a/2b)(0, + 0,)}].  (3.3.10b)

3
The resulting boundary conditions are

et (o) + 21) = T2m(1/3) gimalb + (5 ) (3.3.11a)

€ (0y + 21) = e~/ gmimalb = (5, (3.3.11b)

Unfortunately, parafermions do not have simple commutation relations. Zamolod-
chikov and Fateev['® have derived relations that each involve an infinite number of
modes. The relations are not instructive for our purposes and are thus relegated to
the references.

Making an analogy with free-fermion models, one may suppose that in K = 4
parafermion models the presence of a sector containing twisted ¢ fields with boundary
conditions (3.3.11a) or (3.3.11b) will result in Z, or Z,, GSO projections, depending
on whether a is even or odd respectively. (We assume a and b are relative primes and
-2/3 <a/b<4/3.)

Zero modes, €,, n € Z, are obtained from the particular twist with a/b = —2/3.
One must conjecture that this twisted sector is not projected out, in order to have

spacetime fermions. As discussed in the preceding paragraph, the existence of this
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sector should result in a generalized Z; GSO projection. Likewise for the K = 8 and
16 models, one might expect Z; and Z, projections, respectively.

What could be the form of the new GSO projection? One might anticipate
that it would depend on fermion number, as is the case for K = 2. However, this
naive generalization proves to be insufficient. It is also necessary to consider the
multiplicities of the other two “physically distinguished” fields, the twist field, ¢! and
the field ¢9, which increases the m quantum number.

It is found that one can indeed uniquely select the surviving terms in the partition
function by applying a Z; projection to both the left-moving modes (LM) and right-
moving modes (RM) independently. Survival of a physical state, |phys>, in the Hilbert

space under this Z, projection requires®!

{6{”%wLM(RM)Mé)WLM(RM)(¢1*1)]} = ei”%} [phys) (3.3.12a)

or equivalently

{Qs,LM(RM) = Z Fi,LM(RM)(Qb(l)) + Z Fz‘,LM(RM)(qﬁlil) =1 (meod 3) |phys> ;

Z Z (3.3.12b)
where F.(¢? ) LM (R 18 the number operator for the field ¢7, along the i*® direction
for left-moving (right-moving) modes. Note, this projection alone does not prevent
mixing holomorphic A sector and antiholomorphic B sector terms or the complex
conjugates. This is prevented by the standard requirement M2,, = M3,,, i.e., L, =
L. Aside from this requirement, one can treat the right- and left-moving sectors
independently, so only the left-moving sector will be discussed in detail.

Prior to projection by this extended GSO operator, one considers all physical
states associated with the LM partition function terms in the expansion of (c§ + ¢l +
c5)* or (c3+c3)* to bein the A sector. Naturally, the RM physical states in the A sector

are those associated with the complex conjugates of these partition function terms. In

the B sector one begins with all the LM physical states associated with the partition

2INote that the GSO projection should be written in terms of its action on states, rather than it

action on characters.
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function terms in the expansion of (¢} + ¢3)*(c§ + ¢§ + c3)? or (¢ + 5 + c2)?(c3 + ¢3).
There is, however, a third class of states; let us call this the “D” class. This latter
class would be present in the original Hilbert space if not for an additional Z, GSO
projection. Left-moving states in D class, would have partition functions that are
terms in the expansion of (c3 + ¢g + ¢2)°(c3 + c3) or (c2 + c3)3(c3 + ¢4 + ¢2). The
thirty-two D terms in the expansions are likewise divisible into classes based on their
associated Z, charges, (J;. Twelve have charge 0 (mod 3), twelve have charge 1
(mod 3) and eight have charge 2 (mod 3). Using only the previous Z, projection it
is impossible to keep just the correct terms in the A and B sectors, and also project
away all of the D sector terms. All D terms can be eliminated, without further

projections on the A and B terms, by the Z, projection,

{E Fi,LM(RM)(¢D + ZF},LM(R]\/[)(¢2:1) = 0 mod 2} lPhyS> . (3.3.12¢)

(Note that for K = 2, ¢7 is equivalent to the vacuum and ¢9 is indistinguishable from
the usual fermion, ¢§. Thus for K = 2 there is no additional Z, GSO projection.
Unfortunately, eq. (3.3.12b) fails to generalize to the K = 2 case.)

There are many observations which should be made about the Z, charge, which
help us to understand its relation to spacetime supersymmetry. First, in all sectors,
the charge ()5 commutes with the twist operator, (¢(I’{/4)D‘2, which transforms be-
tween common and uncommon states of opposite spacetime statistics in the A and
B sectors. If this were not the case, the GSO projection would destroy SUSY, rather
than enforce it. Indeed, the preceding construction of the partition function would
then be fundamentally incompatible with the projection presented here. From Table
3.2, one also sees that the values of this charge are associated with specific mass?
(mod 1) levels. Only for the A and B sector states does mass® (mod 1) commute
with the twist operator ( ?{/4)1)‘2. This implies that only the A and B sectors can
contribute to a supersymmetric theory. Just as in the K = 2 case, the GSO projection
acts to ensure the remaining theory is supersymmetric. Consider what would happen
if the GSO projection were not applied. In that case, the mass? levels (mod 1)

of states present would be mass? = 0, Iliv 12—2, % When acting on the now al-
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lowed D sector fields, ( %-/4)13‘2 would transform mass? = = (mod 1) states into
mass® = %@ (mod 1) states. Thus, states in the D sector paired by supersymme-

try, if the theory had supersymmetry, would be required to appear in different sectors
(i.e., different mod-squared terms) of the partition function, in order to preserve T’
invariance. As a result, the paired contributions to the partition function cannot can-
cel, proving that we have a non-supersymmetric theory without the GSO projection.
One can similarly understand the necessity of this specific projection in the A and

2

B sectors. Although mass? (mod 1) commutes with (¢%,,)P~% in the A(Q, = 0),

Prcjal

A(Q; = —1), B(Q5 = 0), and B(Q; = —1) subsectors, in each of these there is either
a single bosonic state or fermionic state of lowest mass (i.e., there is no possible super-
partner of equal mass. See Table 3.1.) or the lowest mass states are tachyonic (Table
3.2). Thus, the specific GSO projection chosen in terms of the Z, charge projection
and the Z, projection once again equates to demanding spacetime supersymmetry

by restricting consideration to the () = 1 sector where supersymmetric pairing can

occur.
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Table 3.1: Masses of K = 4 Primary States (represented by their associated charac-
ters). With B sector states, it is not a priori obvious, when looking at the characters,
whether a particular term, or some permutation of it, should be used. Following the
convention in egs. (3.2.36a- 3.2.36¢), I place the squared string function to the right,
when applicable. If there is no squared term or two squared terms, both permutations
are possible and included. Note that since ¢3 and ¢3 have the same partner under

twisting, terms in the expansion of (49 + ¢3)? are considered to be squares.

A-Sector B-Sector
Survives
Boson Mass? Fermion @; GSO Boson? Mass? Fermion ?
(c5)*(cd)* 33 0 No (c5)*()® 35 (c2)*(c5)?
cd 5 (cd)?* 3 1 Yes ¢fcj(c3)?® 23 ez ¢ (cd)?
@ e (c))? 23 (e2)*(e2)? 0 No §c(c3)? 23 (c2)%cf 5
(5)*(e5)* 23 -1 No ()*()® 13 (c2)*(c3)”
(c8)?(cp)” (c§)*(c3)? (c3)?(cd)?
c§ €5 €5 ¢ ¢33 6§

et c§ (cf)? 2 cy ¢y (c3)? 1 Yes & c§ (c3)? 1% c3 ¢3¢ ch
gy (3 1% 0 No fcg(c3)? 15 c5 ¢z ()’
(€5)*(ca)” (c§)?(c3)?
(c5)*(c5)? (c3)?(cg)?
e (3)° 13 (c3)*(c2)* —=1 No () 3

(c2)*(c3)? < 5 c3 ¢ <o
(c§)*(cd)® 1 1 Yes (c§)%(d3)* 3 (c3)*(cd)?
c5 ¢ (cg)? ¢ ¢ ()
g cg (5) % () 0 No () 3
cg ¢ (cf)?
(c5)?(e3)? 5 =1 No (qg)*(3)* -3
(c5)*(c3)* (¢3)*(c5)”
¢ co () 0 (c3)*(c3)? 1 Yes
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Table 3.2: Mass Sectors as Function of Z, Charge

Columns one and seven give the lowest mass® of a state with center column Z,
charge in the appropriate sector. For the D sector states, mass? values in column
two transform into mass? values in column six of the same row and vice-versa, under

(qB%,/‘l)D‘? twistings.

Lowest M? M? mod 1 Sector Z, Charge Sector M? mod 1 Lowest M?

0 0 A @;= 1 B £ %
—13 i D Q= 0 D 5 5
_% % B Qs=-1 A 145 T4§
_1% % D Q= 1 D % %
_'1% 1% A @Q;= 0 B % %
% T75 D Qs=-1 D % ‘1;5

In the K = 4 case, unlike K = 2, we find that the Z, projection in the Ramond
sector wipes out complete spinor fields, not just some of the modes within a given
spin field. Of course, this type of projection need not occur in the Ramond sector

of the superstring since there are no fermionic states with fractional mass? values in

the D = 10 model.

3.4 The Uniqueness of ¢ and the Twist Field, qﬁgﬁ

Throughout the previous chapters, it has been assumed that the analogs of the
fermion and twist operator of the superstring are € = ¢} and gbﬁ,;i respectively. While

both these fields reduce to the proper fields for K = 2, the possible uniqueness of
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this generalization has not been properly addressed. To begin with, we note that
the choice of these fields has profound consequences. In particular, it determines the
possible levels, K, and the critical dimensions of the theory. If one assumes that the
twist operator ¢} acting on the (tachyonic) vacuum produces a massless spacetime
spinor vacuum along the direction u, and €* produces a massless spin-one state, then
for spacetime supersymmetry to be possible, (specifically N = 2 SUSY for fractional
type II theories and N =1 SUSY for fractional heterotic) h(€)/h(¢,) must equal the

number of transverse spin modes, i.e.,

h(e) = (D —2)h(¢,) (3.4.1)
Thus we can demand,
h(e)/h(¢,) € T . (3.4.2)

With the particular choice of € and ¢, made previously, one arrives at,

h() = (D — 2)h($p)1)
2 K/8
K+2 (D_?‘)K+2

. (3.4.3)

Hence,

16
=24+=—¢€Z. 4.
D=2+4 €l (3.4.4)

Thus, from this one assumption, the possible integer spacetime dimensions are de-
termined along with the possible levels K. Perhaps not coincidentally, the allowed
dimensions are precisely the ones in which minimal super Yang Mills theories are pos-
sible. This is clearly a complementary method to that in [10,14,13] for determining
D and is in ways simpler, since no knowledge of the intercept or conformal anomaly
is required.

Demanding eq. (3.4.1), guarantees spin-1 and spin-1/2 partners at

m? = m*(vacuum) + A(¢g) = m*(vacuum) + (D — 2) * h( ﬁ:ﬁ) , (3.4.5)

as seen in fig. 3.1.
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Figure 3.1

m?(spin 1) = m?(spin 1/2)

h(od) T (D —2) x h(¢))

m?(vacuum)

A priori simply demanding the ratio be integer is neither sufficient to guarantee
spacetime supersymmetry, nor that the states be massless. Of course, in the models
considered so far, we took ¢, = ¢f§j = I_{?M and € = @} for K = 4, 8, and 16, as the
generalization of ¢i;§ at K = 2. We now are prepared to ask whether there any other
pairs of parafermion operators at additional levels K that could act on the tachyonic
bosonic vacuum to yield a potential fermionic vacuum as well a spin-1 bosonic state
of equal mass. Masslessness is not yet required.

We begin by looking for generalizations of ¢,. Any potential level K candidate
¢! must satisfy the condition that

K
K +2

UG+1) —21<m? <52 < K*/4. (3.4.6)

The latter inequalities simply use |m| < j < K/2, which is required for any Kag-

Moody fields at level K. The first half of the inequality, I{Iiz [[(G+1)=2] < m?

results from the weak requirement that the conformal dimension of the candidate field
creating the fermion ground state along one spacetime direction cannot be greater
than the conformal dimension of ¢, i.e., h(¢,) < h(e).

Using equation (3.4.6), one can determine both the minimum and maximum
values of K, for a given j, independent of the value of m. These limits are K, ;, = 27
and K, = int (f%), where the latter applies only for 7 > 2. Thus, the number
of different levels K that can correspond to the field ¢ is int(%ei_:}). This number
decreases to six as j increases to 10 and equals 5 for 7 > 10. Hence, for j > 10 we can

express the possible levels K under consideration by K, = 27 + ¢, where : =0 to 4.
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Also, coupled with K ; = 27, the weak constraint on m implies that for j > 1 we

need only consider qﬁz fields.

For 7 > 10 the search reduces to finding fields qﬁj whose conformal dimensions

satisfy he) ,
K.+2
— = — € /7. (347)
Rgy)  HE -

One finds that there are no solutions to for ¢ = 0 to 4 and j > 10. Thus we have
rmionic ground states to only
¢; with 0 < j < 10. Within this range of j, a computer search reveals the following
complete set of ¢/, fields that obey equation (3.4.7), as shown in Table 3.3:
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Table 3.3: Potential Alternatives to qﬁgﬁ for Spin Fields (An asterisk marks the

models discussed in the previous sections.)

J +m K ? h(e) h(¢? ) D
1/2 1/2 P 1 1/2 1/16 10 *
3 2 2/5 1/15 8
5 4 2/7 2/35 7
1 1 3 1 2/5 1/15 8
4 P 1/3 1/12 6 *
6 4 1/4 1/12 5
3/2 3/2 9 6 2/11 1/11 4
2 2 5 1 2/7 2/35 7
6 2 1/4 1/12 5
8 4 1/5 1/10 4 *
2.5 2.5 25 20 2/27 2/27 3
3 3 9 3 2/11 1/11 4
18 12 1/10 1/10 3
4 4 16 8 1/9 1/9 3 *
6 6 18 6 1/10 1/10 3

10 10 25 5 2/27 2/27 3
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The set of distinct, physically relevant fields can be further reduced because there
is redundancy in the above list. For all but the standard qﬁﬁ:ﬁ solutions, there are
two fields at each level, with distinct values of j. However, these pairs are related by

the field equivalences (2.2.7):

8.0, = qs}m at level K =3 (3.4.8a)
45;:/12/2 = at level K =5 (3.4.8b)
¢y, = ¢§:2 at level K =6 (3.4.8¢)
$ms =% atlevel K =9 (3.4.8d)

3. =¢% atlevel K =18 (3.4.8¢)
62, = ¢19 at level K = 25. (3.4.8f)

Because ¢7, and ¢’ have identical partition functions and ¢’ = (¢2.)" we can cut
the number of possible alternative fields in half, down to six.??

If we want models with minimal super Yang-Mills Lagrangians it may be possible
to reduce the number of new possibilities to investigate. Such theories exist classically
only in Dgyey = 10, 6, 4, 3, (and 2) spacetime. With no compactification, one can
consider only those gb; in the above list that have integer conformal dimension ratios
of Dgpygy — 2 = h(qﬁé)/h(qﬁj) =8, 4, 2, and 1. This would reduce the number of new
fields to consider to just the three for D = 4, and 3 since there there are no new
choices for D = 10 or 6. Of course, compactification may be desired or required, as
previously discussed, which could allow more possibilities.

In fact, it is easy to see that demanding masslessness of the fermionic vacuum
and the spin-1 boson implies the uniqueness of the twist field for K < 500, as the
following argument demonstrates:

Assume we have a consistent closed fractional superstring theory at level K with

supersymmetry in D dimensional spacetime, (N = 2 for fractional type II theories

and N = 1 SUSY for fractional heterotic). Let the massless left- (right-) moving

22Note, we have not been distinguishing between 4 on m in any case.
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spin-1 field be (¢?,)#|vacuum >. This requires that ¢, have conformal dimension
K
8(K +2)°

where ¢, is the total central charge of the transverse dimensions. Thus, the twist field

() = en/24 = (D - 2) (3.4.9)

$, that produces the spinor vacuum along one of the D — 2 transverse dimensions

must have conformal dimension

K

h(4,) = Tk (3.4.10)

For K < 500 the only primary fields with dimension EZAATQ) are the series of ¢§;:
for K € 2Z, and the accidental solutions ¢2 for K = 48, ¢3 for K = 96, and ¢2ﬁ
for = 98. The solutions with m = 0 clearly cannot be used to generate spacetime
fermions. The K = 98 case could not be used because there is no candidate field at
that level whose conformal dimension is an integer multiple of (3.4.10) and thus no
replacement exists for € = ¢J.

The other alternatives previously considered must therefore not be consistent
string theories. They lack the massless left- and right-moving spin-1 spacetime fields,
whose tensor product is required to form a massless spin-2 graviton in closed string
theory. The physical meaning of these theories without gravity is not clear.

The above assertion that qb?fi must be the spin-% operator, does not immedi-
ately lead one to conclude that ¢} is the only possible choice for producing massless
boson fields. Table 3.4 shows alternative fields at new levels K # 2, 4, 8, or 16 whose
conformal dimension is one, two, or four times the conformal dimension of ¢II§;:
(Note that successful alternatives to ¢ would lead to a relationship between level
and spacetime dimension differing from eq. (3.4.4).) However, nearly all alternatives
are of the form ¢{”! and one would expect that modular invariant models using ¢
to create massless bosons, would very likely include tachyonic (¢})#|vacuum > states
with ¢ < j. Alternatively, we may conjecture that it is impossible to construct valid
GSO projections which would project away these tachyons while simultaneously keep-
ing the massless graviton and gravitino and preserving modular invariance. Further,
the remaining fields on the list have m # 0 (mod K). Each of these would not have

the correct fusion rules with itself, nor with <;$ﬁ,§i, to be a spacetime boson.



Table 3.4: Fields ¢, # ¢} with Conformal Dimensions in Integer Ratio with k(¢

K

A
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h(¢%,)/h(¢

12
24

36
40
48

60
80
84
96
112
120

3.5 Bosonization of the K = 4 Theory.

2
0

2
0

3
0

7
6

4
0

2
0

3
0

5
0

4
0

6
0

3
0

7
0

5
0

N N S R S -V U R

—

[N

K/4
K/4

A general parafermion theory can be bosonized using background charge. How-

ever, for K = 4, a much simpler bosonization prescription is possible. This is because

the Z, parafermion has a central charge of one, precisely the central charge of a free

boson. For ¢ = 1 the bosonization of CFT’s has been completely classified.[!®) The

three acceptable solutions correspond to a boson propagating on either (1) a torus
of radius R, (2) a Z, orbifold of radius R, or (3) a discrete orbifold space defined on
SU(2)/T;, where T'; are discrete subgroups of SU(2). The Z, parafermion CFT is

equivalent to the Z, orbifold at radius R = v/6/2 (or R = 1//6 by duality).

As discussed in the introduction, an 5'/Z, orbifold at radius R has the partition

).
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function,
1 In| Inl In|
Zow(R) = ={Z(R) + — + } (3.5.1a)
o) =3B H 10 ¥ 1oyl T Tl
1 93041 | 19,94 | 19,9,]
= —{Z(R) + 234 2 3.5.1b)
A T TR T (
where,
_ L Z (Fr 4R 2435 ~nR)? /2 (3.5.1c)
77 =00

is the partition function for a free scalar boson compactified on a circle of radius R.
For R = lé—g the generalized momentum states p = % + “—\@ can be classified into
four sectors based on the value of B; (mod 1). The classes are 1’2— =0,55,%, and 2

(mod 1). Also, it is easily seen that for a given (m,n), p = \/ﬂg—]— 1\5/—6 and p = % — “2—@

belong to the same sector. That is,

-;-(p2 —p*)=0mod 1, (3.5.2)
(as required by level matching). This will be significant below when we match
bosonized and unbosonized terms of the partition functions.

The untwisted sector of the model corresponds to the first two terms on the right-
hand side of eq. (3.5.1b) and the twisted sector the remaining two terms. The factor
of % results from a “GSO projection” requiring invariance of states under the orbifold
operation, g : X(z,Z) — —X(z,z). In the untwisted sector, this invariance leads one
to pair |m,n) and | — m, —n) into symmetric and antisymmetric combinations and
reject half of them, depending on whether the net number of oscillations acting on
them is even or odd. The second term in (3.5.1a) and (3.5.1b) corresponds to states
antiperiodic along the “time” loop and thus can only be states built from net even
numbers of a(z) and @(z)’s acting on |m =n = 0). Similarly, the surviving twisted
sector states have a net even number of o, and a,, r € Z + 1, oscillations acting
on the |m = n = 0) twisted vacuum with h = h = L. Thus the twisted states have
conformal dimensions of the form (h, k) € (ilg +7, 4 16 +2) or ( +7Z+ 5, 16 +7Z+ )

It is instructive to consider the Z, primary fields and their corresponding con-

formal dimensions and characters. These are shown in table 3.5:
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Table 3.5: The Z, primary fields, their associated conformal dimensions and

characters.
Primary Fields Conformal Dimension h Character
%5 = ¢o 0 ncq
$2y =& = ¢, = ¢} : 1¢
¢ = ¢3 = ¢, 1 1€
2 =3 = ¢; = ¢ : ney
$o =€ 3 nes
Qﬁ = ¢1—1 % 7703
<151_/12/2 11_6 neky
8175 5 nl
¢i/12/2 1% 776:-3—1
ol 2 nes

The first six primary fields listed above have representations in the untwisted

sector of the partition function and the latter four have representations in the twisted

— . . 2
sector.”® Considering the classes of conformal dimensions of these states, &

2

3,2 (mod 1) one finds the following identities for string functions:

1 ]. 4 nR)2 (I _nR)2 |'l9 19 l
Ineal” +neol* = 34 e Y qURERIgGRRE P

%QEO mod 12
11 m, 279 (22 _ 2
|’I’]C§IQ — Z q(2R+nR) /2q(2R nR)? /2
‘D,;El mod 12
1 S qURr g R

2
E-=4 mod 12

=0, L

5 120

(3.5.3a)

(3.5.3b)

(3.5.3¢)

Z3We note that independent of the choice of the affine factor in the partition functions of section

3.2, the required (n,R) partition functions effectively remove from the theory the primary fields

with half-integer j, m. The only theory which uses such fields is the K = 2 superstring. This

observation may prove significant in understanding what distinguishes the superstring from other

models.
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11 m m
e l” = 57 Y gERTRGEET(35.3d)
172—259 mod 12

1 [ |9,9,] |9,3,]
A 2+ c3_2:—{ 2Yal | Wa¥sl L
l77 1, 1| |"7 1, 1I 5 |,,712 |77|2

(3.5.3¢)

Since the above identities involve |nc2 |2 rather than just e , they do not
necessarily imply the exact equivalence, term by term, of the parafermion and orbifold
models. However, more fundamental identities for the string functions do exist. Since
none of the 7, parafermion fields connected with the twisted orbifold sector appear
in the K = 4 FSC model, we can look just at a left-moving (holomorphic) boson
compactified at R = /6 with no twisting (i.e., we can drop the terms resulting from

twisting by the orbifold).

Z(z, R =6) = % > gIRE (3.5.4a)

m=—00
If we change the summation index, using m = 6n + 4, i = 0 to 5, then the partition

function can be split into?

1 had n+1i
Z(z, R = V/6) = Yo R (3.5.4b)
im0 1o 5

which suggests the following more succinct identities:2°

1 o0
ey =g Y " (3.5.5)
TI n=—00
1 i = n2+2n
ne = 0 > Pt (3.5.5b)
1 2 = 77,2 ¥
nes = nely = 5-a’ > (3.5.5¢)
0 4 1 < 3n?
n(cy + ¢5) = ; . (3.5.5d)
24Note that m = i (mod 6) terms are equivalent to m = —i (mod 6) terms, so including a factor

of two, we need only sum over ¢ = 0 to 3.

1300

25These were verified up to ¢ using Mathematica.
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3.6 Conclusions

A viable and consistent generalization of the superstring would be a significant
development. It would add to the very small number of viable string theories and
possibly shed light on the relationship between different string theories. For example,

it has been conjectured, but not rigorously proven, that all string theories are special

cases of the bosonic string.*”) Reparameterization invariance is the one symmetry
required for all string theories, though other symmetrics can be added to arrive at

restricted subsets. This claim is hard to study as we now only have one additional
symmetry, supersymmetry, that is known to give a consistent string theory. Work on
fractional supersymmetry and W algebras may ultimately provide the framework for
addressing claims about the relationships between different string theories.

This raises the obvious question whether the fractional string is viable. While
this thesis does not provide a definitive answer, it does shown that the fractional
superstring has many intriguing features that merit further study. The partition
functions for these theories are found to have simple origins and the new massive
sectors are shown to be related to the more typical Ay sector. A possible GSO
projection is found, as well as a spacetime interpretation of the fields in the By
sectors. A form of self-cancellation was also indicated in the C sectors.

Nevertheless, fundamental questions remain about the ghost system and current
algebra, which prevent a definitive statement about whether or not this is a truly
consistent theory. The ghost system is not known, but there are indications that
1t is not free. More troubling are recent indications that the conformal charge of
the matter is not ¢ = D x 3K/(K + 2) as one would expect in a tensor product
theory. For example, when one considers the appearance of extra null states in the
spectrum, it seems that the K = 4 theory has ¢ = 10.Y1 This would imply that
the theory is fundamentally not a tensor product theory and that the algebra is not
linear. This seems to contradict strong evidence given in this dissertation that the
partition function is precisely what one would get from a simple tensor product. If
indeed the theory turns out not to result from a tensor product, it seems much effort

would be required to explain why its partition function is in tensor product form. As
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is often the case in research, answering some questions raises an entirely new set of
problems. Even if fractional superstring theories are ultimately shown to be flawed,
I believe such work will remain valuable in that it may provide new insight into the

one case we know is consistent, the ' = 2 superstring.
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4. String Cosmology

4.1 Introduction

In spite of extraordinary successes, traditional cosmology has left unanswered
a number of fundamental questions and been plagued by potential inconsistencies.
Arguably the most troubling problem is the pointlike initial singularity at the time

P I PSSy il

3 M PR, IR R LA [ R |
of the bi ly distressing is the related prediction of infinite initial

big ba Almost

ang. A
temperature. Frequently, one sidesteps the preceding problems by appealing to some
future theory of quantum gravity. A classical theory, general relativity is expected
to break down at small scales where quantum effects should dominate. Thus, the
divergences predicted by the standard Friedman-Robertson-Walker cosmology are
expected to be artifacts of using a classical theory in a quantum regime. One hopes
that a proper theory of gravity would predict a small but non-singular universe at
the time of the big bang, which would have no divergent physical quantities. Indeed,
such an outcome can be seen as a test for any candidate theory of quantum gravity.

An equally compelling, albeit less common, open question in traditional cosmol-
ogy is why we live in a four-dimensional universe. While many are content to insert
the dimension of spacetime by hand, it would be more satisfying to explain its value.

One need no longer talk about quantum gravity as a distant dream; with the
advent of string theory, we have a candidate theory of quantum gravity today and
therefore an unrivaled potential tool for understanding cosmology. Conversely, cos-
mology provides a unique arena for testing string theory’s performance as a theory
of quantum gravity. Since, string theory may make qualitatively different predictions
than point particle theories, one can hope that some of the consequences are observ-
able and will lead to the first experimental (or at least observational) tests of string
theory.

Indeed, as will be seen below, string theory completely resolves the problem of
an initial pointlike singularity. Furthermore, it goes a long way towards providing a
maximum finite temperature for the universe. Arguments are also being developed

for why there are three “large” spatial dimensions in our universe, rather than nine
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or 25, etc.. Finally, string theory may suggest solutions to many other cosmological
problems, as it naturally could provide “cosmic” strings, other sources of dark matter

and ultimately a resolution to the cosmological constant problem.

4.1.1 Duality and the Initial Singularity

String theory has already resolved the problem of an initial singularity. Using
the duality symmetry of string theory, one can immediately see that the radius of
the universe has some non-zero minimum value. Duality is easily seen by considering
the string coordinate expansion (using the bosonic string for simplicity) for a single

circular dimension:[6l

X=z+ (% +nR)(T +0) + (% —nR)(t — o) + oscillators (4.1.1)

where m, n € Z. We see that the left- and right-moving momenta are,

ﬁ_{_nR,.'ni

o7 55 — "R, (4.1.2)

(PL»PR) = (

The first term, 7%, is interpreted as one half the center of mass momentum of the
string, while the second term, +nR is the winding mode “momentum.” The corre-

sponding string mass spectrum is,

1 1. m - 1 m
“M?P=N4+ (— — 2 1 —(— 2 _1. 1.
1 +2(2R nR) +N+2(2R+nR) 1 (4.1.3)

If one lets R — 5= with m < n, the spectrum is preserved. Indeed, the scattering
amplitudes also respect “R < & duality,” and it has been shown that replacing R
with % produces an isomorphic conformal field theory.’2 With duality, a pointlike
universe is equivalent to one that is infinitely big. The smallest universe possible has
R =1 in units of the Planck length, which is exactly the minimum size one expected

to be predicted by quantum gravity!
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4.1.2 The Hagedorn Temperature

The very high temperature behavior of string theory remains a mystery. There
is still little agreement in the literature about whether string theory even provides a
maximum temperature. I would argue that duality gives stringy evidence for a finite
maximum temperature. The temperature must respect duality, so it remains finite
at R =0 (i.e., at B = 00). It could possibly diverge at R = 1, (see fig. 4.1a), but
this would give the universe an infinite total energy. The resulting infinite ener
density could not be reduced by any finite amount of expansion, so such a scenario
seems untenable. Furthermore, as will be discussed shortly, the early universe likely
oscillated about B = 1, so that a finite maximum temperature (see fig. 4.1b) is
preferred.

The existence of a distinguished temperature in dual models has long been
known. The basic idea dates back to the work of Hagedorn on hadronic “fireballs” in
1965.12°1 Such a temperature results from the exponential dependence of the density
of states on energy in the large energy limit. For an open string, the oscillator density

of states can be easily calculated as the coeflicient of ¢™ in the generating function, ¢l

o0

G(q) = trg" = Z d(n)q", (4.1.4)

n=0

where N is the relevant sum of number operators. For the bosonic string,

N = Za_nan (4.1.5a)
n=1
and for the superstring,
N => (e_,a, +nS_,S,) (4.1.5b)
n=1
where the S are Majorana fermions.  The bosonic string provides the simplest
example:
ere] e} 1 —24
N _ OOy _ —24
trw ~7£Iltrw = {E (1—q”)} = |f(q)| (4.1.6)
where f(q) = [T,2;(1 — ¢*) is the classical partition function. The degeneracy at a

given level can be extracted by a contour integral over the generating function:

d, = ~ y{ G—@dq (4.1.7)

2t J gt
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The high energy behavior of the density of states can be obtained by finding the
limiting form of f(¢q) as ¢ — 1 and doing a saddle point approximation.
For closed strings, one has left- and right-moving excitations which are only

constrained by the level matching constraint:

nR: nL—i-Zmzn,. (4:.1.8)

The corresponding density of states in the high energy limit is

S 1l syY 2223334 2

d(n) = dp(n)dy(n) ~ (20)" em(ﬁH\/%). (4.1.9)

The values of Sy and ¢ depend only on the dimension of spacetime, the worldsheet
symmetry and the string mass scale.*l In the appropriate critical dimensions, they

are shown in table 4.1:25]

Table 4.1: Parameters for the asymptotic density of states.

¢ B
Bosonic string 22—7 4o
Type II superstring 4 7V 8a/
Heterotic string = 24+ V2)rVd

Using n = %a'm2, the density of states goes as, p ~ ef#¥ in all cases. One can

see that the canonical partition function,
7 = /dEp(E)e-ﬁE (4.1.10)

will diverge unless 8 > By or T' < Ty, where TY; is the Hagedorn temperature. The
proper interpretation of this temperature is still a matter of debate. Troubled by
the divergence of the above partition function and other physical quantities, some
authors have claimed that the Hagedorn temperature is a true maximum physically
attainable temperature. Others contend that the divergence of the partition function
can be ignored, as the partition function is less fundamental than the microcanonical

ensemble. The divergence then merely signals a phase transition. The nature of such
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an alleged phase transition is also unclear. Is the Hagedorn transition analogous to
deconfinement in QCD, as its name suggests? Alternately, is some condensate formed
above T}, as the very topology of spacetime breaks down? While complete answers

to these questions cannot be given, the possibilities can be elucidated.

4.1.2a A Maximum Temperature?

The argument for a maximum temperature, using the canonical partition func-
tion, focuses on the finiteness of the energy and specific heat as one approaches the
Hagedorn temperature from below. If both quantities are finite at Ty, it is hard
to argue that this temperature cannot be exceeded. Conversely, if a divergence is
found from below, where the partition function is still well defined, it is claimed that

a maximum has been reached. The standard superstring partition function can be

1 + e Pek.a )
Z = H ( —n ) : (4.1.11)

Above, ¢, , is the energy of a string characterized by quantum numbers a =

written,

m;, N, N and uncompactified momentum k. d(n) is the density of states at level

n. Assuming we have a large D — 1 dimensional box with sides of length L, the free

energy is[?%)

ﬁ(g)D‘IZd(n) / dP1p(In(1 + ePxe) —In(1 — e~Pka)).  (4.1.12)

o

Using the asymptotic form of the density of states, valid above some cutoff m,, and

performing some standard manipulations, one can show that the free energy is,

D1
172 * dm
-3 / e PP, (4.1.13)
my T 2

The preceding expression shows that strings have what resembles a standard Boltz-

mann form, even at high temperatures provided that 7" < T. More importantly,

<E>=-ZInZ ~ (8- 0y)F . Similatly, C,, = 2 ~ (8 — By)F>. Thus, for
D > 5, fundamental physical quantities are finite at the Hagedorn temperature, so Ty

can be surpassed, even though the partition function will diverge. Oddly, for D = 4,
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the energy density is finite, but the specific heat diverges. The above has led some
authors?#?%! to conclude that for D < 3 the Hagedorn temperature is unsurpassable.
Similar work has been done in open string models??® to suggest that Ty is maximal,
even in six dimensions.

How do we interpret the divergence of the specific heat? With S denoting the
entropy?® and the specific heat given by,

2

Cy = —5‘(@)ﬂ

the partition function can be expanded about its maximum as
1 l
Z(B)=Zy | exp ———2—(E - EO) -(Cy)™" ¢ dE. (4.1.14)

If Oy diverges at T}, fluctuations in energy about the mean energy can be of ar-
bitrary size even if the partition function remains finite. As a result, one cannot
confidently use the canonical formalism arbitrarily close to the Hagedorn tempera-

27]

ture.! Also observe the importance of the sign of Cy in eq. (4.1.14).  Note,

however, that a negative specific heat is not fatal to a thermodynamic treatment of
a string gas.*®l Indeed, if conservation laws are included, the specific heat is always
negative at sufficiently high energy densities.

Of course, finiteness of the partition function is not strictly a sufficient condition
for its use. Indeed, if one assumes that there is a finite total energy in the universe, eq.
(4.1.10) will be cut off at E, , and remain finite. Nevertheless, the canonical approach
will break down, since it assumes all states that it describes have energies much less
than the total energy in the system. In this limit, one can speak of an infinite reservoir
of energy and integrate to infinity. For a finite system, integrating to the maximum
energy in the total system explicitly violates the canonical assumption. However,

the Boltzmann distribution may remain a valid description of relative probabilities,

arbitrarily close to the Hagedorn temperature, provided that the energies of the states

26The entropy can be found in the canonical ensemble in the usual way in terms of the average

energy, E by S=InZ + BE.
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considered are small compared to the total energy of the universe. After all, this is

the only assumption used in expanding the microcanonical density of states as
InQE,,, - FE)=hQ(E,.)—BE. (4.1.15)

Expressing relative probabilities as e=?F is then a purely microcanonical result, for

E << E,.

Even with the use of the microcanonical ensemble, some authors have found

o+
=
o

o9
3
+
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Brandenberger and Vafa derived the
temperature as a function of radius of the universe and found a temperature plateau
about R =1 at the Hagedorn temperature. The origin of such a temperature plateau
is easy to understand without doing the computation. Near R = 1, all string energy
levels are equally spaced and thus equally accessible. In such a high energy regime,
the exponential form of the oscillator density of states leads one to suspect that most
of the energy will be in the oscillator modes. Since these modes have absolutely no
radial dependence, one would not anticipate a significant change in the number of
states accessible to the system when the radius is increased slightly. Thus we have a
temperature plateau. However, after a sufficient increase in the radius, the momentum

modes become lighter and more significant. Having explicit dependence on radius,

these modes give the temperature a non-trivial dependence on the temperature.

4.1.2b Going Beyond the Hagedorn Temperature

Many recent papers discuss ways of probing the phase that may exist above the
Hagedorn temperature. The most straightforward way to study this regime is to
directly construct the microcanonical density of states for a string gas. The first issue

is finding the single string density of states,

fler=) be—¢,). (4.1.16)

Conserved charges, like momentum and winding number, can be accommodated by

defining f(e, ¢) = 37 6(e—¢,)8, . as the number of single particle states with energy

¢ and charge ¢.1%® Tt is often more convenient to enforce conservation by defining?!

fle, n) = tr[e?™#46(e — € ,)]. (4.1.17)
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Total charge @) can be imposed by multiplying the resulting total density of states by
e~?™#Q and integrating,
3
QE,Q) = duSQU E, p)e~ e, (4.1.18)
1
-z
The starting point for deriving the single string density of states is the energy

spectrum for one string given by equation (4.1.3). Using level matching one can

write,[28:29]
1, .2 } : m; R 2
N = g[ﬁ — k- : (“_Rl -2 znz) } (4'1‘198’)
N = _1_[62 — k% _ § (?.n_l +2R;n;)?]. (4.1.19b)
8 R, v

Then the single string density of states with uncompactified momentum between k
and k + dk, winding n; and internal momentum m; is

on
Oe’

fle,;m,n, k)dedk = dpdgermitsbtuntvm) (4.1.20)

The single string density of states is then finally obtained by integrating out every-
thing but the energy to obtain,?

dék d ) ar/N 47r\/]$
w(e, k, g, v)de ~ Vd/ — Z ECE 2rilnktuntym) € te (4.1.21)

(2m)d £~ 4 (NN)(d+1)/4
where d is the number of uncompactified dimensions and N and N have complicated
dependence on ¢, k, n;, m; given by eqs. (4.1.19a, 4.1.19b).

The single-string density of states is clearly not easy to evaluate explicitly. How-
ever, in the high energy limit where ¢ >> R, 1%“- for all ¢, one can replace the sums in

eq. (4.1.21) with integrals. In addition, one can expand the square roots and evaluate

the k integral by saddle point methods. With all radii equal, the result is29]

w(e, K, p,v) ~ Pulrmv)e (4.1.22)

ed/2+1
where

Bu(k,p,v) = By — 2w{%+(4—'/§+%§)2+(i— ﬂf} (4.1.23)
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and By is the usual Hagedorn temperature.

Next the multi-string density of states, Q(F) = >°_6(E — E,), must be con-
structed from the single string density of states. To do so, imagine breaking up
the set of states, o, into subsets ap which all have N strings in them. Defining
Qn(E) =32, 8(Ey — E,, ), we immediately can write Q(E£) = 3x_; Qy(E). Now
note that Hf\il f(€;)de; is the number of N particle states where each ¢; is between ¢,
and ¢; + de;. For classical identical particles, one simply divides this by N1. Q(FE) is
then the integral over all possible ¢; that satisfy the constraint that the total energy

is E. Thus, one inserts a delta function to arrive at!28]

O (E) / H de.f(€)6(E - e (11.21)

i=1

The Maxwell-Boltzmann density of states is then

Q(E):A;%/O Hdef SE - e). (4.1.25)

i=1

Using eq. (4.1.22), one can show that

:BH(H#J'»V)E
QE, K, p,v) ~ e—l—zﬁ—ez/dmgﬂ for d >0 (4.1.26a)
2
~ L eBatmIE o g g, (4.1.26b)
Mo

m is a low energy cutoff introduced to avoid divergences. Its origin is in the departure
from the asymptotic form of the density of states at low energy. As will be seen below,
one can easily go beyond the preceding Maxwell-Boltzmann form to the full quantum

expression. Also, note that in evaluating (4.1.24), one is led to integrating

N
/ d/2+1 S(E="¢), (4.1.27)
1 i=1

as an intermediate step. This clearly shows the tendency for one energetic string to
dominate at high energies.
In addition to the density of states, energy and number distribution functions

are of enormous value in understanding any statistical system. Define D(e; E)de as
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the average number of strings with energy between ¢ and € + de in a gas of energy
E. To find D(¢; E), insert 3N (e — ¢;)de into the definition of €y (E) to obtain
Doy O(E—E, ) 2511 6(e — ¢;)de. This expression counts the number of N particle
states that have particles with energy between € and ¢ + de and weights the result by

the number of such particles. Thus,[?®]

1 [e.e]

D(& E) = 53] ;ZaE_EaN)Za(e_ &) (4.1.28)
A i LN

Now inserting S8, 6(¢—¢;) in eq. (4.1.24) and performing the integral over ¢, yields

Poay (E—E, ) SV 8(e—¢;) = f(€)Qy_,(E—¢). Combining the last two equations

we see that

QE —¢)

D(& E) = f(e) F)

(4.1.29)

In the regime where (4.1.15) is valid, this clearly reduces to the usual canonical result,
D(e; E) = f(e)ePE,

Ironically, an extremely powerful alternate method for investigating strings above
the Hagedorn temperature uses the partition function. To see its role one begins with

the microcanonical density of states:[2°]

Q(E) = Tré(E — E,)
= /oo %Treik(E_Ea)

—oo 4T

L+ioo d
= / —ﬂ.eﬁETre"ﬁEa
L

271

i
- / ' d—ﬁ—.eﬁEZ(ﬂ) (4.1.30)
L

o 2T

where the Laplace transform can be inverted to obtain
Z(B) = / dEQ(E)e"E. (4.1.31)
0

L is a convergence factor that is inserted to allow continuation of the partition function
throughout the complex plane. Even though very close to, or above the Hagedorn

temperature, 3 loses physical meaning as an inverse temperature and Z is no longer
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directly useful for computing thermodynamic properties, Z(3) remains a well defined
analytic function. Taking the log of eq. (4.1.11) one obtains,

InZ(B) =) (fﬁ@ - (—1)TM) (4.1.32)

r

where fg and fg are defined by

o0

f5(B) dee™% f(c) (4.1.33a)

I

~n
v

fr(B) = /000 dee™" fr(€). (4.1.33b)

Inserting the above partition functions into eq. (4.1.30), we arrive at

L+ico «© r r
QE) = /L —2d—ﬂ,eﬁE exp {Z (M — (—l)rfi(ﬂ—)> } . (4.1.34)

—ico 2T - T r

Taking r = 1 with f(¢) = fg(e) + fr(€) reproduces eq.(4.1.25). Reference [30] shows
that the Maxwell-Boltzmann form is, to good approximation, sufficient.

To investigate temperatures above the Hagedorn temperature, one must study
the singularity structure of the partition function. An exhaustive analysis has been
donel?®! to obtain the microcanonical density of states, as well as the single string
energy distribution D(e, E) in a variety of different regimes.

If there are three or more uncompactified dimensions, d,

SrE

QE) ~ C(E _ O'HV)d/2+1

(4.1.35)

where o is Hagedorn energy density and V is the volume of uncompactified space.

From this one finds that
Ty

v
l_ﬁHE

T = (4.1.36)

where v = %—i— 1. We see that the temperature goes above the Hagedorn temperature.

High energy strings have the distribution,

E FE—e .
E-UHV)“_ = )]~/ (4.1.37)

D(g E) ~ e PrE=Q(E — ¢)[(

With one and two uncompactified dimensions, the situation is more complicated.
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With all spatial dimensions compactified at the Planck scale,
Q(E) = ByePPH (1 — g(E)e™") (4.1.38)

where g(E) = m—l_m(nE)zD‘le)‘l“’\o and 7 is the distance between the Hagedorn
singularity, 8, = By, and the next nearest pole, 8;; i.e., n = B, — B,. The )\, result
from a power series expansion of the regular part of the partition function. For the

heterotic string with R in units of Vo',

with B > 1. From the full density of states, one can find the formal temperature to

be
1

T ~ —(1 — L g(E)e"E). (4.1.39)
Bo o

First we see that for R < E, the correction term is very small and there is a constant
temperature plateau at the Hagedorn temperature.?” It is also interesting to note that
the temperature never exceeds the Hagedorn temperature. In principle one could use
this expression to determine at which radius the temperature plateau ends, as a
function of the total energy of the universe. Unfortunately, the unknown dependence
of Ag and A, on R prevents this. For a crude estimate, one might assume that A, ~ A,
and expand 7 for large R. In this case the temperature drops much too slowly for

any reasonable value of E so the approximation must fail.

The single string distribution function is found to have the simple form, /28]

D(E) ~ *. (4.1.40)

€

Thus, the energy distribution function, eD(e, E) is independent of energy. The energy
is spread out over all scales, rather than concentrated in a single string. One can also

find the number of strings in the universe (accounting for all but a few mp, of the

total energy) to be [ D(¢; E)de ~ In E.

2TThis agrees with the original result of Brandenberger and Vafa.
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How can we account for the unusual behavior of a string gas? Mathematically,
the heart of the matter is the exponential form of the asymptotic density of states.
As a result, the entropy is linear with energy, to leading order. Thus, the entropy
is extensive in the high energy limit, but all other thermodynamic quantities, which
depend on derivatives of the entropy, are not extensive. Subleading terms, which
are not extensive in either the string or particle cases, dominate the behavior of
the string gas, producing effects that violate our intuition built upon extensive point
particle gases.

Physically understanding these gases is more difficult. For the case where at least
three dimensions are uncompactified, it is interesting to look at the energy distribution
function eD(e; E). It is found that most of the energy is deposited in extremely high
energy strings. If one computes the average number of such strings from D(e; E), it
turns out to be of order one! Thus the original picture of Frautschi and Carlitz re-
emerges where one highly energetic string takes most of the energy. The picture one
obtains is of a gas of strings at the Hagedorn temperature surrounding one extremely

energetic string.[2829]

The Hagedorn temperature is then a physical maximum for
the gas, since additional energy simply goes into the energetic string.

Atick and Witten® develop a similar picture, but reach markedly different con-
clusions. They show that the Hagedorn temperature can be interpreted as the tem-

perature at which the first winding mode becomes massless. Compactifying the time

coordinate (radius R = 5%), they write,

1 1 N
1M2=N+§(T~73+@)2—1+N+

1l mme n
R 5(—7%—— 5)2—1 (4.1.41)

for the mass shell conditions where N and N are the oscillator contributions for the
right- and left-moving modes respectively. If one sets N = N = m = 0 and n = +1
the result is M? = -8 + ‘g; = 84 o=, At Ty = ;/15—; the first winding mode
becomes massless. The same phenomena occurs for type II and heterotic strings,
but at the proper Hagedorn temperatures for those theories. With a new massless
channel opening up at Ty, one would expect the temperature to stop increasing as

energy is deposited in the new levels. The question becomes whether the new levels
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can ever be filled; i.e., whether the phase transition can be completed. The single
high energy string described above might seem to give an infinite latent heat to the
phase transition.

Considering the preceding remarks and the appearance of a tachyon, even for
the superstring, it would seem that a maximum temperature has been reached un-
less the fundamental degrees of freedom change above the Hagedorn temperature.
Such a change is precisely what Atick and Witten claim. They argue that above
the Hagedorn temperature one would expect a genus zero contribution to the free
energy, which means that the Riemann surface interpretation of string theory is
breaking down. They conjecture that the n = 41 windings are creating tiny holes
in the worldsheet so that it is not even simply connected locally. This is claimed
to be analogous to the QCD deconfinement transition, where an effective descrip-
tion in terms of Riemann surfaces must be replaced by a simpler theory in terms of
more fundamental degrees of freedom. Thus, the thermodynamic treatment described
above which might imply that the Hagedorn temperature is a maximum temperature
would then be fundamentally flawed, since it assumes the “effective” string spectrum.
Further evidence of deconfinement is given by the vanishing of the string tension as
T — Ty However, note that even if the Hagedorn transition is completely analo-
gous to QCD deconfinement, it still could be a limiting temperature, if it corresponds
to the N — oo limit.

The QCD analogy, while appealing, may also be misleading. At extremely high
densities, it seems unnatural to expect a phase where the basic degrees of freedom
become more free. Pushing the QCD analogy too far, one might expect the high tem-
perature phase to be described by an underlying 10- or 26-dimensional field theory
which would be badly divergent. Instead one might expect a ball of strings or string

condensate to form.[30

One model explicitly makes an analogy with nucleation
models of supersaturated gases.>!) Strings are assumed to decay, split and recombine
much as droplets do. Breaking up the total energy into finite sized bins, the varia-
tion with energy density of the fraction of energy, c;, in each bin ¢ is studied. ¢, is

then fit to 1“e", where u and v are determined by the fits. Good fits can be found,
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but they must be markedly different above and below the Hagedorn temperature.
In addition, the total number of strings and the fluctuations in the total energy are
tracked and found to abruptly change at the Hagedorn temperature. It is concluded
that these phenomena indicate a first-order transition to a “liquid” string condensate
phase. Since the preceding analysis employs perturbation theory above the Hagedorn
temperature and neglects winding modes as well as gravitational effects, it is not
conclusive. Models of strings that are allowed to break and rejoin[*® have led to sim-
ilar conclusions. Other authors?4 have suggested that the Hagedorn temperature
is a multicritical point, above which phases with different spacetime dimensions are
coexisting. Dropping below 1'%, our universe had to choose one particular phase or
dimension Many more alternatives and physical analogs exist. Rather than provid-
ing an exhaustive enumeration, one must conclude as one expert in the field did?,
that “what happens when we try to increase the temperature past [the Hagedorn

temperature] is, despite much effort, merely a speculation.”

4.1.3 The Original Paradigm of Brandenberger and Vafa

The basic framework of string cosmology rests on a reversal of the usual compacti-
fication scenario. Rather than begin with D, uncompactified (i.e., large) dimensions
and posit the spontaneous compactification of D, — 4 of them, Brandenberger and
Vafa?"l adopt a view more compatible with the cosmological idea of a small universe
that expands. They assume that the universe began with all D_.,, — 1 of its spa-
tial dimensions compactified near the Planck radius. One then tries to explain why
precisely three of the dimensions became very large (“uncompactified”) in a stringy
big bang. Since the universe has not expanded infinitely since the big bang, we an-
ticipate that all of its spatial dimensions are still compactified today. Some simply
have a larger radius of compactification than others. This view allows strings to have
winding modes about all spatial dimensions.

In their seminal paper,?”] Brandenberger and Vafa suggested a tantalizing sce-

nario in which winding modes, a purely stringy phenomena, could be used to explain

the dimension of spacetime. They argued heuristically that winding modes exert
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a negative pressure on the universe, thereby slowing and ultimately reversing the
expansion. One can simply see that since their energy is linear with the radius of
compactification (i.e., the scale factor of the universe), there is a large energy cost to
expanding with winding modes present. The question becomes “in how many dimen-
sions can winding modes be expected to interact frequently enough to annihilate?” If
the universe expands in a dimension where annihilation is incomplete, the windings
will eventually force a recollapse of the universe to and possibly past R = 1, which
by duality can be interpreted as another attempt at expansion. Note that in many
ways the model is incomplete because no mechanism or even justification is given for
expansion. One could imagine that the universe sits at the Planck scale forever. This
makes the model very hard to test or constrain.

Furthermore, one might be troubled that there are many examples of cosmolog-
ical features, like the cosmological constant and domain walls, which seem to require
energy during expansion, but on closer analysis actually promote expansion. Indeed,
Einstein’s equations lead us to believe that all matter, by contributing to p, should
accelerate expansion. Brandenberger and Vafa sidestepped the issue by proclaiming
that the Einstein equations are invalid because they do not respect duality. Further-
more, it was implied that if ordinary matter accelerates expansion, windings (i.e.,
“dual matter”) should stop expansion. Fortunately, reference [35] shows more con-
vincingly that winding modes do indeed inhibit expansion by studying the low energy

expansion of the tree level gravitational-dilaton effective action:
S, = — / P o/ =Ce= 2[R + 4(06)2). (4.1.42)

Here, D is the total dimension of spacetime. Now consider a time dependent dilaton

and a metric of the special form
D-1
ds® = —di* + " al(t)da? (4.1.43)
=1

in the presence of a string gas in thermal equilibrium at temperature T' = —é— Defining

d=D—-1,a,(t) =" and v =24 — Zle A;, and truncating to zero energy modes,
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the full action becomes,

/dt\/——GOO[e“" GOOZ/V G®%%) — F(\;, Bv/=Goo)l (4.1.44)

where a term, F', has been added to include the free energy of matter. The equations
of motion are found by varying with respect to Gy, A and ¢. Rewritten in terms of

the original dilaton ¢, the equations of motion are:

- Z A2 4 (24 — Z 3)? = e¥p (4.1.45a)

X — (26 — ZA = —e ®p; (4.1.45b)
26 — Z/\ - Zv = —e . (4.1.45¢)
Above, p = £ and p;, = -L is the pressure where V = exp(}_; A;) and F and P; are
defined,
E=F +,3 ﬂ
op (4.1.46)
=2y,

In order to solve these equations, we specialize to the isotropic case where all the ),

are taken to be equal and P = —12E Then equations (4.1.45a- 4.1.45¢) reduce to

—d\? +¢? = ¢E (4.1.47a)

N —oh= %ewp (4.1.47b)
1

¢ —d\? = 56‘°E. (4.1.47¢)

These equations can now be solved once initial conditions are chosen, if E()) is known.
Unfortunately, this function is not well understood. However, a universe with much
of its energy in windings will have F ~ R so it is reasonable to assume that for

relatively large R
E(\) =e* (4.1.48)

where « is of order unity.
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The solution is easiest when « = 0, as is appropriate in the very early oscillator

dominated regime. Then the dilaton and radius vary by

2 2
e ¥ = % - % (4.1.49a)
t—2VdA/E
A=y +1n | — 22 4.1.49b
o (t+ 2\/3A/E> ( )

where A is an integration constant. We see that the even in the extreme case of

3 o~ LI | 1
a = 0, the expansion a > 0 1t has been shown

=
)
<
Q

that not only is the expansion stopped in finite time, but it is also reversed. Thus
we see that winding strings must collide and annihilate for significant and continued
expansion to occur.

In what number of spacetime dimensions can annihilation be expected? Clearly,
annihilation is easier in fewer dimensions. For example, in 141 dimensions, the wind-
ings must lie on top of each other. In 2+ 1 dimensions, they can be separated by one
coordinate, but would be expected to interact frequently. In a very large number of
dimensions, one would expect the equilibrium between winding modes to most likely
be lost, so that their number density need not fall drastically as their energy increases.
What is the maximum spacetime dimension which would allow thermal equilibrium
between winding modes and thus lead to their annihilation? Many!?"*%37 have argued
that two 2-dimensional worldsheets should generically intersect in four or fewer space-
time dimensions because 2 + 2 = 4. Even if four were a rigorously proven maximum,
the question would remain why four dimensions are favored over a smaller number,
which seems much more likely from the point of view of ease of interaction. It has
been suggested that entropy considerations would favor four dimensions.[*® However,
to my knowledge, no attempt has yet been made to demonstrate in detail how four
spacetime dimensions are dynamically favored for winding mode annihilation.

The following section proposes a new model for understanding origins of the
dimension of spacetime, that has its roots in the preceding discussion. The next
section will argue using the theory of random surfaces and walks that four is indeed
the maximum large dimension of spacetime, if the background spacetime is quasi-

static and Fuclidean. Fossible modifications for a more realistic spacetime are also
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discussed. Next, a simple computer model is described that was used to explore
qualitatively the implications of this new paradigm. The goal is to test the viability of
the model by asking if it could yield sensible results. Detailed predictions must await
a fuller understanding of string interactions and string thermodynamics at extreme
temperatures. Nevertheless, approximate limits on the magnitude of the Hubble
expansion are found which are consistent with theoretical estimates. Furthermore, it
is found that the preferred dimension of spacetime need not be two, as might have

been inferred from the original model of Brandenberger and Vafa.

4.2 A New Cosmological Model That May Yield Four Dimensions

In this section, I suggest a new argument that shows the maximum spacetime
dimension in which windings can be expected to annihilate is four. The starting
point is the observation that worldsheets are not simple planes, but instead have
many complex bends and twists. As a result, one may question the classical intuition
used above that found four to be a limiting dimension.?® Instead, one may choose
to model strings as random surfaces. This is analogous to what is commonly done
with point particle theories. Using the field theory of point particles, it is rigorously
known that correlation functions can often be bounded by the intersection properties
of two random walks.[ %l Whether or not two random walks will intersect depends of
their Hausdorf dimension, dy. Strictly, the Hausdorf dimension of a set is defined by

considering a covering of the set by boxes of size € and defining

l;,(€) = inf Z el (4.2.1)

where the infimum is over all choices of ¢; with ¢, < e. The Hausdorf dimension is

then defined implicitly by[4!

ly=Um,_yl,(e)=0 ford>d
’ o 7 (1.2.2)
= oo for d < dy

23(C. Vafa claims that winding self-interactions allow the previous interpretation.[39]
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The Hausdorf dimension is extremely difficult to determine. Thus, one typically finds
instead the capacity dimension which is defined as follows:

In N(e)

d, = limc—»OW

(4.2.3)
where N(e) = the number of boxes of side ¢ needed to cover the set.*2  In most
cases the capacity or fractal dimension are equal. Rigorously, what one knows is that
dy <d.. 421 For our purposes, we can use a more intuitive definition of dy which is
that < X2 >~ Nz for a walk of N steps. Thus, the Hausdorf dimension indicates
how the size of the walk scales, as well as indicating how “space filling” it is. Clearly,
the higher the Hausdorf dimension, the slower the size grows and the better space
is filled. It can be proved that there will be a non-trivial intersection if 2dg > D
and no intersection if 2dy < D, for walks embedded in RP. For random walks, it is
well known that the Hausdorf dimension is two, independent of the embedding space.
This analysis leads to the triviality of ¢* theory in D > 4. It turns out that in the
boundary case, D = 4, intersections just fail to occur, so that for random walks one
demands D < 4.

It is expected that string interactions can be studied by considering the intersec-
tion properties of random surfaces.[*d Of course, this conjecture, though extremely
plausible, cannot be proven without understanding string field theory. Nevertheless,
one can reasonably believe that whether two free strings will interact in D dimensions
depends on the sum of the Hausdorf dimensions of two random surfaces. Unfortu-
nately, the Hausdorf dimension of a random surface is very difficult to determine.
Some authors have claimed that it is infinite, regardless of the dimension of the em-
bedding space,[*®! while others claim a range from four to infinity, depending on D.
For embedding dimensions greater than one, the Hausdorf dimension should be at
least 8.*4 Thus, it appears that two strings should interact in at least 16 dimensions.
Ten is as good as four!

Can we believe this result? For non-winding strings, which have point particle
analogs, it is reasonable. However, for strings with winding modes about a direction

with a large or growing radius, I submit that a significant modification is necessary.
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Unlike true random surfaces, winding strings cannot move freely in all directions;
they must lie more or less parallel to the axis about which they wind. It is expected
that their Hausdorf dimension is significantly less than that corresponding to a non-
winding string.*® Of course, if winding strings have a significant number of oscilla-
tions, they can bend far away from parallel to the winding axis. However, the central
difficulty for expansion is the energy cost of expanding with windings present, so one
would expect the oscillation energy to be minimized. As shown by Tseytlin and Vafa,
matter energy tends to slow the expansion, so oscillations would not be favored in a
regime where the winding energy was significant. Said more simply, expansion should
stretch and smooth out the windings. Indeed, the exponential inflation considered
in the next section would smooth out the oscillations in the same way that inflation
smoothes density variations to solve the flatness problem. As a result, one should
treat the windings as points doing a random walk in D — 1 dimensions transverse
to the winding axis. Now we can adopt the previous results concerning the intersec-
tion properties of random walks and see that interaction is expected if and only if
D —1 <4 or D < 5! Without any fine tuning, we have a very phenomenologically
pleasing result.

While intriguing, the preceding argument is too naive to directly apply to cos-
mology. This is because random walk analyses have typically been done on a static
Euclidean background. The early universe is profoundly different. First, the existence
of true winding modes presupposes that we begin with a topologically non-trivial uni-
verse, which for simplicity we assume to be T° x R. This will naturally greatly enhance
the interaction rate. On the other hand, the universe is undergoing significant ex-
pansion, which has the opposite effect. A fully detailed model would also consider
the radial dependence of the annihilation cross section for winding strings, as well as
other winding interactions that might catalyze the annihilation process. The creation
rate of windings in the early universe and the effects of forces between the windings

could be added, as well as a host of other effects.
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4.3 Testing the Model on a Computer

Treating all these effects analytically is prohibitively difficult, since we are forced
to consider the universe near or even at the Planck scale. Without a well developed
theory of quantum gravity, one may doubt the plausibility of analytically proving
that exactly three spatial dimensions are expected to expand. Additionally, a proper
treatment of the creation rate of windings requires a knowledge of string thermody-

N S

understanding. The first difficulty, discussed

Namics wei

-y

in the introduction, is that near the Hagedorn temperature, the microcanonical en-
semble must be used, which ostensibly requires counting all the states in the universe.
Progress has been made in limiting regimes, but general results for independent radii
of any size have yet to be exhibited and are sure to be unwieldy at best. Further-
more, the inclusion of strong gravity, appropriate for the early universe, would lead
one to question the validity of even using thermodynamics. Even if a careful thermo-
dynamic treatment of winding creation in an equilibrium ensemble were possible, it
would leave unanswered the most interesting question: how does the winding creation
rate drop as equilibrium is lost? This would require understanding non-equilibrium
statistical mechanics in the early universe. Another problem is that the stability
of the very topology of spacetime has come into question at extreme temperatures.
Above the Hagedorn temperature, the conservation of winding number cannot be
guaranteed.[32:46]

In spite of the preceding difficulties, it is feasible to test whether this tantalizing
model for the expansion of the universe can work. In other words, one can ask whether
one can make reasonable phenomenological assumptions about various processes in
the early universe which in this model would lead to a strong prediction that three
dimensions expand. This would not prove that the paradigm of Brandenberger and
Vafa does work, but that it can. Furthermore, one can turn the problem around,
asking what must the early universe have been like in order to produce our four-
dimensional spacetime. Ultimately, useful constraints may be placed on the expansion
rate, the radius at which equilibrium is lost, the number of windings surviving at that

radius, interaction rates, temperature and other quantities in the early universe by
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this procedure.

In this spirit, a computer model was developed for winding string collisions in the
early universe. While one would like to follow the model from ¢ = 0, it is expected
to be much more reliable below T}, where one can more confidently use a string
description and assume that oscillations are suppressed. Thus, we begin evolving
the model soon after the temperature has dropped below Ty, in an inflationary era.
The primary goal is to better understand the evolution of the universe just after the
equilibrium of winding strings is lost.

Based on the previous discussion, the windings about each dimension are repre-
sented by points in D — 2 dimensions, where D is the total dimension of spacetime.??
For the Type II superstring, D = 10. For the heterotic string, one takes D = 10 as
well, assuming that internal degrees of freedom, not extra compactified spatial coor-
dinates, provide the extra central charge for the left moving sector. The bosonic case
1s not investigated, since we seek a phenomenologically realistic model. Dimensions
other than the critical dimension are also considered to study the effect of dimension
on various processes. Since the radius at which the temperature drops significantly
below the Hagedorn temperature and the windings drop out of equilibrium is not well
known, the appropriate starting radius for the model is not precisely known. Thus,
the initial radii of the spatial dimensions is left variable, but is typically chosen to
be a few Planck lengths. A large initial radius would invariably lead to only one
large spatial dimension.  The radii of compactification, which truly are quantum
mechanical objects, can be allowed to fluctuate, typically up to Lp, per step. Since
this effect is not considered to be very significant, it is only incorporated for some
trials. For simplicity, the fluctuations are taken to be independent of position.

A certain number of windings are presumed to remain in this epoch, but the
precise number is unknown, so the initial number of windings is also a free param-
eter. Since the total number of high energy strings in the early universe roughly

equals the log of the energy, the number of windings about each direction should not

29 «“Total” means the total number of spacetime coordinates in the theory, including both those that

stay small and those that become effectively “uncompactified.”
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be huge. If the primordial universe contained precisely the energy in our observable
universe, assuming critical density, there would only be 135 energetic strings in the
entire universe! Of course, this is an extreme lower bound. Nevertheless, since one
does not expect all the strings in the universe to be winding strings, the number of
windings about each direction can reasonably be assumed to be at most of order ten
when equilibrium is lost. Only windings of £1 about a single direction are considered.
Since we are below the Hagedorn temperature, a string with higher winding excita-
tions about a given direction can be expected to have decayed to strings with unit
winding number, as required by Boltzmann suppression. Perhaps more important is
the possibility of strings with single windings about more than one direction. While
these may have significance, they are not tracked in this first modeling attempt, since
although they may increase the overall interaction rate and thereby may alter the
quantitative results, they should not change the kinds of qualitative effects we seek
to study. Indeed, to create these strings and allow them to participate in annihilation
interactions requires two separate interactions with a correspondingly reduced net
probability. While it is true that multiple winding strings would execute walks in
effectively fewer dimensions, the enhancement is not expected to be extreme. The
net winding number is set to zero, in order to satisfy observational constraints on the

isotropy of the universe.[*7]

The windings then execute a random walk, stepping up
to Lp; in each time step.

During each step, the computer checks for annihilations of pairs of winding modes
with opposite winding number. Unlike most work in this field that assumes an ideal
gas, this analysis explicitly allows interactions. Naively, if two windings come within
Lp,, they can be expected to annihilate.?”%¢] However, as the length of the string
and thus its energy grow, oscillations cost less and less energy, compared to the total
energy of the string so that the effective thickness of the string increases. Owing
to quantum correlations, interactions are expected for windings that come within

Ve + In LH830 of each other, where L is the length of the string and ¢ is a constant

of order one or ten. Note that having the extra oscillations in no way violates our

30Unless otherwise specified, all quantities are expressed in Planckian units.
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assumption regarding the straightness of the winding strings, since the scale of the
oscillations grows slowly compared to the size of the string. The probability of in-
teraction, given a collision, may also vary with radius. Using equations (4.1.49a,
4.1.49b) one can show that the coupling remains fairly constant for small radii in the

somewhat unphysical case that o = 0 and all the radii are equal. More precisely,

R 2
P ==K (1 - (-—)ﬂ> . (4.3.1)
Ry

Above, R, is the radius at which expansion stops and K is an unknown constant.
We see that for R < R, the coupling remains constant to lowest order. For larger R,
the coupling e?* decreases with radius, ultimately dropping to zero. This agrees with
other studies that show that one expects only trivial scattering in the infinite radius
limit.B®”] One can use eq. (4.3.1) to get an indication of the importance the variation
of the dilaton, even in the current context where the radii are all independent, if
one replaces (1—%)\/J by (%)% At R = 1, the probability of annihilation, given a
collision, is taken to be one, providing the normalization to the coupling constant.
Runs are conducted assuming either a constant dilaton or a coupling varying by eq.
(4.3.1). In any case, the decrease in the coupling is not expected to be significant, at
least in ten dimensions, since the dramatic drop in the collision rate with increasing
radius will dominate any effect of the dilaton.

The universe is also allowed to expand during each time step. The proper ex-
pansion equation can be found using equations (4.1.45a- 4.1.45c), provided that one
knew how the energy of the matter varied with independent radii. The assumptions
made by [35] that all the radii are equal and that £ ~ R* clearly do not hold here.
Eq. (4.1.49b) is also inappropriate since it shows all radii tending to a fixed value. No
dimensions effectively “decompactify.” Even if F(R;) were well known, one would be
forced to solve a system of 19 coupled differential equations to get a rigorous result.
However, in order to understand the qualitative implications of the model, one only
needs to use an expansion equation that has the correct features. The Brandenberger-
Vafa framework, verified in special cases by [35], requires that the windings slow the

expansion as the radius increases and can ultimately stop or reverse it. These essential
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features are captured by the following procedure: During each time step, each radius
R, is rescaled by a function of the number of windings, n;, about that dimension and

the radius itself,
Ri(t+1) = Ri(t)(1 + e(n;(t), Ri(t))). (4.3.2)

If € were independent of time, this would give an exponential expansion, which is
a form predicted by some authors to result from string driven inflation.[*"49 This
also would give a constant Hubble parameter, H = R/ R, which is appropriate for
de Sitter inflation. In light of the previous discussion of a phase transition at the
Hagedorn temperature, we will assume that in the absence of windings, € is constant
and that it decreases with increasing radius and increasing number of windings. The

following form satisfies all requirements:

enit), Ri(0) = (1 - ) (43.3)

where H is the maximum expansion rate, as well as the Hubble constant for de
Sitter inflation and R, is the radius at which two windings will halt the expansion.
R, appeared previously in eq. (4.3.1). Clearly, R, must be less than the radius at
which GUT physics takes place, but is not otherwise well constrained. The importance
and reasonable ranges of both parameters will be determined by studying how they
effect the prediction for the dimension of spacetime. Finally, note that replacing 1+ ¢
with exp(e) so the latter physically motivated form is used in eq. (4.3.2).

This prescription yields an expansion rate that decreases to zero as R increases
with windings present and expands indefinitely about any dimension about which all
the windings have been annihilated. Dimensions do not recontract if windings remain,
instead staying compactified at 2R;/n. Though an expansion equation that allows
contraction could be constructed, it would not be useful in the model. It is of course
possible that in a given expansion attempt that no dimensions lose all their windings
and begin to “decompactify.” In that case, the dimensions are expected to recontract
and ultimately begin expansion again. However, for inflation to occur a second time,
the universe must have recontracted back into the phase above the Hagedorn tem-

perature and returned to its original symmetrical vacuum state. We cannot follow
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the windings as they enter this phase. When the universe begins expansion again,
one could begin modeling below the Hagedorn temperature as before. This would be
essentially treated as an independent attempt at expansion. Thus, the model should
be seen as following the evolution of the universe during its final and only successful
attempt at expansion. The above reasoning also shows that if some dimensions lose
all their windings, those that do not stay forever at the Planck scale. With some
dimensions large, the temperature can no longer grow high enough to restore the
universe to its original vacuum so that the inflation of the small dimensions cannot
be repeated.

Causality raises some questions about how to implement the preceding prescrip-
tion. These difficulties result from trying to incorporate the effects of a purely global
concept like winding number into local physical effects like expansion. The number
of windings about a given direction is globally defined, irrespective of position. How-
ever, the effect of those windings on local physics cannot change everywhere instan-
taneously. If a winding is annihilated at some spacetime point, X*, one would expect
the expansion rate far away to be unaffected initially to satisfy causality. Strictly,
winding annihilations would lead to bubbles of spacetime, whose walls move at the
speed of light, expanding at a faster rate. After a number of annihilations, each space-
time point would have expanded a different amount. This is very difficult to model.
Instead, a retardation is introduced so that n in eq. (4.3.3) counts windings that
either have not annihilated or have annihilated too recently for most of the universe
to know about it. Specifically, an annihilation is “counted” after a time equal to the
effective radius of the universe, R = \/Zle R?, at the time of the annihilation. Runs
are conducted both with and without the retardation to determine its importance.

The very early universe should be hot enough to create pairs of winding strings.
As discussed previously, it is highly nontrivial to compute that rate. Following ref.
[29], one could find both the number of winding states and the total number of states
for a gas of strings in the high energy limit. One first integrates out the momenta and
energy from eq. (4.1.20) to find the number of states with a particular winding and

then integrates over winding number to get the total number of states for a single
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string. Then an analog of eq. (4.1.25) is used to find these quantities for the full
system. The ratio of these numbers should constrain the creation rate in thermal
equilibrium. Ideally, one would want to relax the equilibrium assumption to get more
accurate results in the more interesting era when equilibrium is not present. Indeed,
having an equilibrium description obviates the need for computer modeling, telling
us exactly how many windings should exist at any given time. A naive argument can
show that creation of windings must cease at a very small radius. If the expansion
process is roughly adiabatic, T' ~ %. Furthermore, the energy of windings is linear
with R. Thus, the Boltzmann factor would go as e=F°. Even though deviations from
adiabaticity may occur, the suppression is strong enough that one can believe the
creation rate is negligible in the relevant regime. Thus, numerical trials are conducted

after creation has ceased.

4.4 Results of the Test and Predictions of the Model

The central result of the computer simulation is that a two-dimensional universe
need not be the most probable outcome of the model just presented. If one con-
siders the full parameter space described in the last section, the vast majority of it
corresponds to either a two- or a ten-dimensional spacetime. However, appropriate
choices of parameters can be found to make any dimension, from two to ten, the most
probable. Unfortunately, in cases when the most likely dimension is neither two nor
ten, it becomes impossible to predict the outcome with reasonable certainty.

Two dimensions result when annihilations are extremely unlikely. All dimensions
then have n; windings about them that survive so that each dimension can at most
expand to 2R,/n;. The simulation would then show a result of zero large spatial
dimensions or a one-dimensional spacetime. However, we know that given sufficient
time, annihilation must ultimately occur, since the space is no longer rapidly expand-
ing. This time may have to be integrated over several expansion attempts if it is
more likely that the universe will recollapse before such annihilations occur. In this
case the entire scenario would be repeated, presumably with the same choice of initial

parameters, since they are determined by the poorly understood physics of the Planck
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scale. Once the rare annihilation occurs that leaves a dimension without windings,
this dimension will expand without bound, forever suppressing annihilations along
other dimensions. More than one large dimension would require two rare annihila-
tions to occur almost simultaneously. If the annihilations along different dimensions
occurred at significantly different times, then the large spatial dimensions we observe
today would have undergone vastly different amounts of expansion. This is probably
ruled out by the isotropy of our universe.

A ten dimensional spacetime is achieved when the parameters are such that
annihilation is extremely efficient once equilibrium is lost. Then all winding strings
are destroyed almost immediately and all dimensions expand without constraint.

The more interesting situation occurs for a relatively narrow band of parameter
space in which winding annihilation is moderately likely. The most important variable
is the radius at which equilibrium is lost and the simulation begins. The importance
of radius can be seen by examining how the collision rate falls with the radius of
compactification in various dimensions. For walks in one spatial dimension, one would
expect the number of steps required for collision to scale as the square of the radius of

compactification. This is largely true, especially for large radii. Deviations result from

the logarithmic growth of the size of the string with radius. At small radii, ‘/Eﬁ is not
negligible, accounting for the greater deviation in small spaces. Fig. 1 in appendix B
shows how the number of steps required for a pair of windings to annihilate with at
least 98 percent probability varies with the radius of compactification. As expected,
in more dimensions the collision rate drops dramatically. In nine dimensions, roughly
180,000 steps are required to get a collision with 98 percent probability with a radius
of only three. As a result, we see that the winding creation rate must drop effectively
to zero at a very small radius, or the expansion rate must be small enough so that
hundreds of thousands of time steps lead to negligible expansion. (An expansion rate
of 107* would increase the radius by a factor of 6 x 107 in 180,000 time steps.) If not,
windings would be created at a radius where they had little chance of annihilating,

leading to a two dimensional universe.

The above raises the question about how fast the universe can expand without
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preventing winding collision and annihilation. To answer this question, trials were
conducted with the expansion rate taken to be a constant, independent of the number
of windings present. One then checked to see how large the expansion rate could be
such that two windings would collide with 98 percent probability before the radii
of compactification were clearly too large for annihilation to occur (R > 500.) In
three spatial dimensions, a very large Hubble parameter (of order one) is allowed if
equilibrium is lost at the rather improbable value, B = 1. However, if the proper
initial radius for the model is R = 4 then the maximum Hubble parameter is about
10~* in Planck units (see fig 2.) With nine spatial dimensions, as is appropriate for
the superstring, the largest possible Hubble parameter can be as low as 10~° at R = 1,
depending on the choice of other parameters. These constraints are not precise limits,
since the actual expansion rate is not constant, as assumed above, but gets reduced
in the presence of windings. Thus, the maximum expansion rate without windings
could be larger. More complicated string processes than those treated here could
also increase the annihilation rate and allow greater expansion. Nevertheless, the
preceding analysis indicates that the expected magnitude of the maximum expansion
is very small.

Are the above values reasonable? It has been shown that the size of the Hubble
parameter is bounded by observations of the cosmic microwave background radia-
tion. Abbott and Wisel®® found that a Hubble parameter during inflation greater
than 10~ would allow gravitational waves of sufficient amplitude to produce a mi-
crowave anisotropy greater than that observed by COBE. It is pleasing that the model
described here produces similar bounds.

Of course, the most direct and revealing way to determine the effect of the radius
of compactification and Hubble parameter on the expected dimension of spacetime is
to simply run many (50) trials for various values of these parameters and compute the
average dimension obtained. Typically, one finds (D) = 10 up to some R, and then
falls rapidly as a function of R up until R,, beyond which the expected dimension
is two. Unless otherwise specified, all following runs use 10 windings about each

direction, an R, (the maximum radius with two windings present) of 50 and a string
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width chosen equal to one at R = 1. If the Hubble parameter, H, is between .1 and
.01, R, is equal to one and R, is a very small 1.5. Since it is hard to believe that
the temperature could have dropped sufficiently below the Hagedorn temperature for
the windings to have fallen out of equilibrium so near to the dual radius, we again
conclude that a small expansion rate is necessary. For H = .001, the interesting
range of radii has only gone up to 1.2 to 1.6. If H = 10~*, R, and R, are 1.5 and 2.5
respectively. Plots of average dimension versus initial radius are given in figs. 3 to
6.

Another parameter upon which the final dimension of spacetime sensitively de-
pends is the effective width of a string, determined by ¢ in the expression above eq.
(4.3.1). Even with R = 1 and H = .01, one finds that (D) = 0 for ¢ ranging from -
zero to 15. The expected dimension rises rapidly as ¢ increases from 15 to 30 (see fig
7). Of course, a wider string should act equivalently to a narrower string in a smaller
space, so this behavior is not surprising.

The number of windings surviving when equilibrium is lost has a variable effect.
If the initial radius is small, it has almost no effect. For example, with R = 1.4, and
H = .1, 500 trials were conducted with either 2, 10, 50 or 100 windings about each
dimension. Even with a sensitivity of .07 in the average dimension, no statistically
significant change in the average dimension was observed when the number of wind-
ings ranged from 10 to 100. One could argue that since the initial volume of the
transverse space was only about 15, ten or more windings completely filled the space,
so that the total number is irrelevant. This might lead one to expect that almost
all of them would annihilate, as they are guaranteed to be in close proximity. In
reality, no dimensions got large, most of the time. In a larger space, the effect of the
number of windings is very significant. When the initial radius is two and H = .0001,
the average dimension of spacetime drops by over four when the number of windings
increases from 10 to 25.

Other parameters are less significant. The radius at which two windings stop
expansion, Ry, does not greatly affect the results. In many cases, varying R, from

5 to 100 has no effect, above error. If the initial radius is close enough to R,, then
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this parameter can reduce the expected dimension of spacetime by about one (see
fig. 8). This is to be expected since a larger R, allows faster expansion for a given
number of windings, resulting in less collisions and a smaller dimension. The effect
of the evolution of the dilaton was also considered. While it can sometimes drop the
expected dimension by one or two sigma, the effect is insignificant compared to other
uncertainties, so many trials are conducted with a constant dilaton. This result gives
us confidence that deviations from the approximate dilaton evolution equation being
used (4.3.1), will not significantly affect the results. The effect of radius fluctuations
was also studied. For R = 1.3 it had no effect whatsoever, so fluctuations were
subsequently ignored for other runs.

Finally, the importance of a time delay to enforce causality was determined. In
almost all cases the time delay had almost no statistically significant impact on the
results. For some trials the time delay reduced the expected dimension by up to two
sigma (i.e., by .4) for D near five. The minimal effect of the time delay indicates that
one need not be concerned with constructing a more realistic time delay algorithm.

The average dimension of spacetime is by no means the only quantity that should
be studied. The width of the expected distribution of dimensions is also critically
important. When the average dimension is one (ultimately two) or ten, the width
can be arbitrarily small. However, for intermediate values, o is is roughly 1 —1.5 (see
figs. 9-20). Thus, while it is possible to have an average dimension of spacetime of
four (see fig. 20), one cannot rule out other alternatives based on the gross initial
conditions of the universe. This lack of determinism is not pleasing.

The above analysis shows that there are a number of parameters that can be
tuned to produce any desired average dimension of spacetime. The maximum expan-
sion rate, the radius at which equilibrium is lost, the number of strings remaining at
this time and the effective width of those strings are certainly the most important.
Unfortunately, a firm prediction for the most probable dimension of spacetime is not
possible from this model because of the number of free parameters and the omission
of possibly important physical effects. Nevertheless, this work does demonstrate how

string theory can be used to make such a prediction. A more complete model, prop-
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erly incorporating as yet poorly understood physics, is clearly called for. Lastly, the
the narrow range of parameters that give a four- dimensional universe should be seen
as a blessing in disguise, rather than a fine tuning disaster. Once our knowledge of
some of the relevant parameters improves, we can use the fact that we live in a four-

dimensional world in analysis as done above to determine the values of the remaining

parameters to good accuracy.
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Figure Captions for Appendix B

Unless otherwise noted, the effective string width is /37.64 +In L, R, = 50.0 and
ten windings are initially placed about each of nine spatial dimensions.

Figure 1: Number of steps required for collision of two windings in three spacetime
dimensions vs. initial radius, with at least 98 percent probability for collision.
Figure 2: Maximum expansion rate allowing collision of two windings in four space-
time dimensions vs. initial radius, with at least 98 percent probability for collision.
Figure 3: Average dimension of spacetime vs. initial radius with H = .1.

Figure 4: Average dimension of spacetime vs. initial radius with H = .01.

Figure 5: Average dimension of spacetime vs. initial radius with A = .001.

Figure 6: Average dimension of spacetime vs. initial radius with H = .0001.

Figure 7: Average dimension of spacetime vs. ¢ where the effective string width is
Ve+InL, H=.01 and the initial radius is 1.0.

Figure 8: Average dimension of spacetime vs. R, where H = .001 and the initial
radius is 1.5.

Figure 9: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.0 and H = .001.

Figure 10: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.1 and H = .001.

Figure 11: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.2 and H = .001.

Figure 12: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.3 and H = .001.

Figure 13: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.4 and H = .001.

Figure 14: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.5 and H = .001.

Figure 15: Histogram of the dimension of spacetime for 50 trials with an initial radius

of 1.6 and H = .001.
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Figure 16: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.7 and H = .001.
Figure 17: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.8 and H = .001.
Figure 18: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 1.9 and H = .001.
Figure 19: Histogram of the dimension of spacetime for 50 trials with an initial radius
of 2.0 and H = .001.
Figure 20: Histogram of the dimension of spacetime for 50 trials with an initial radius

of 1.19 and H = .1. A four-dimensional spacetime is then the most probable outcome.
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