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Abstract

This dissertation primarily describes chemical-scale studies of nicotinic
acetylcholine receptors (nAChRs) in order to better understand ligand-receptor selectivity
and allosteric modulation influences during receptor activation. Electrophysiology
coupled with canonical and non-canonical amino acids mutagenesis is used to probe
subtle changes in receptor function.

The first half of this dissertation focuses on differential agonist selectivity of
a4p2-containing nAChRs. The a4p2 nAChR can assemble in alternative stoichiometries
as well as assemble with other accessory subunits. Chapter 2 identifies key structural
residues that dictate binding and activation of three stoichiometry-dependent o432
receptor ligands: sazetidine-A, cytisine, and NS9283. These do not follow previously
suggested hydrogen-bonding patterns of selectivity. Instead, three residues on the
complementary subunit strongly influence binding ability of a ligand and receptor
activation. Chapter 3 involves isolation of a a5a42 receptor-enriched population to test
for a potential alternative agonist binding location at the aS5-o04 interface. Results
strongly suggest that agonist occupation of this site is not necessary for receptor
activation and that the a5 subunit only incorporates at the accessory subunit location.

The second half of this dissertation seeks to identify residue interactions with
positive allosteric modulators (PAMs) of the a7 nAChR. Chapter 4 focuses on methods

development to study loss of potentiation of Type I PAMs, which indicate residues vital
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to propagation of PAM effects and/or binding. Chapter 5 investigates o7 receptor
modulation by a Type II PAM (PNU-120596). These results show that PNU-120596 does
not alter the agonist binding site, thus is relegated to influencing only the gating
component of activation. From this, we were able to map a potential network of residues
from the agonist binding site to the proposed PNU-120596 binding site that are essential

for receptor potentiation.
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Chapter 1

Introduction

1.1 Neuronal Communication

The brain is the most complex organ on earth. There are approximately 10"
neurons that can make upwards of 10* connections each, comprising a total of perhaps
10" junctions for inter-neuron communication. Neuronal signaling requires propagation
of an electrical signal between these individual nerve cells. An action potential (electrical
signal) travels through the axon of the nerve cell to the synapse, which is the junction
between two neurons. Once the electrical signal reaches the synapse, vesicles containing
small molecule neurotransmitters fuse to the cell membrane and release the chemical
signaling molecules into the synaptic cleft (space between two nerve cells).
Neurotransmitters diffuse across and bind to integral membrane proteins located on the
adjacent neuron. The binding of these molecules triggers conformational changes in
proteins that allow ions to flow across the membrane and regenerate the electrical signal
in the adjacent neuron for further signal propagation (Figure 1.1). Synaptic transmission
is the basis for neuronal cell communication, which is responsible for a wide array of
processing that varies from sensation to learning and memory. When these processes
become faulty or even fail, debilitating health disorders can arise that range from chronic

pain to neurological disease. In the Dougherty lab, we seek to understand the functional



properties of the proteins responsible for the continuation of the electrical signal at the

Synapse€.
A B
Neurotransmitter
Synapse YOS,
Nerve Cell [ttt
3 Protein receptor/
Ion Channel
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Ligand-Gated Ion Channel
o +
o + +
m m

© = Neurotransmitter

Figure 1.1 Neuronal communication through synaptic transmission. (A) A diagram of
two adjacent nerve cells with close physical contact at the synapse. (B) The synapse is
the space between neurons where neurotransmitters are released to diffuse across for
adjacent receptor activation. (C) LGICs undergo conformational rearrangement upon
neurotransmitter binding to allow ions to traverse the membrane.

1.2 Ligand Gated Ion Channels: Nicotinic Acetylcholine Receptors

One class of proteins responsible for neurotransmitter recognition is the ligand
gated ion channels (LGICs) or, more specifically for this dissertation, the Cys-loop
superfamily of LIGCs. The Cys-loop superfamily comprises receptors that are both
excitatory and inhibitory. The cation-permeable channels, nicotinic acetylcholine
receptors (nAChRs) and serotonin (5-HTs4) receptors, are excitatory and responsible for
signal propagation. In contrast are the anion-permeable channels, GABAs, GABAC,
glycine, and GluCl receptors, which are inhibitory and responsible for signal termination.
Cys-loop receptors are comprised of five subunits that can be homomeric (identical) or
heteromeric (two to four subunits). Each subunit contains a large extracellular domain,

four transmembrane o-helices (M1-M4), and a variable intracellular domain



(Figure 1.2). These arrange in a pentameric fashion for ion permeation with the M2
a-helix lining the pore. Neurotransmitters bind at the interface of two subunits and cause
a conformational rearrangement approximately 60 A away at the receptor gate. The
“gating region” comprises several residues along the M2 a-helix that are responsible for
ion permeation. This dissertation focuses mainly on the nAChRs and their
structure-function relationships.

nAChRs are aptly named for both their natural agonist (acetylcholine) and for
their sensitivity to nicotine, the main addictive component in cigarettes. These receptors
are responsible for synaptic transmission in both the peripheral and central nervous
systems (1-3). There are 17 nAChR subunits: al-a10, B1-p4, vy, 0, and €. However, a8 is

only found in avian species and the “muscle-type” nAChR (al,p1y d/¢) is relegated to

A Ligand binding site

1
Extracellular

|
e |
Gating Interface

|
Transmembran
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Heteromer Example: Homomer Example:
(a4),(B2); (@?)s

—

Figure 1.2 Structural arrangements for Cys-loop receptors. (A) A representation of a
single subunit depicting the homologous regions for the Cys-loop family. (B) Examples
of hetero- and homo-pentamer arrangements for the nAChR family. (C) Crystal structure
of the mouse SHTs4 (serotonin) receptor (PDB ID: 4PIR).



only the peripheral system and neuromuscular junctions. a2-a7, a9, al0, and $2-4
comprise the neuronal nAChR subunits and are prominent throughout the central nervous
system in varying assemblies and distributions (Figure 1.2) (2,4). Due to their vast
presence, nAChRs are crucial in memory and learning and are prominent targets in
neurological disorders such as addiction, Alzheimer’s disease and Parkinson’s disease
(2,5-10). The most abundant and widely distributed receptors are the a4p2 and a7
nAChRs (3,4). The a4fB2 receptor is a highly sought-after drug target due to its role in
nicotine addiction, as seen with Pfizer’s engineered smoking cessation drug Chantix®
(varenicline) (3,4,11,12). The o4p2 receptor has the ability to assemble into two
stoichiometries, the high sensitivity (a4p2)2(p2), and low sensitivity (a4p2).(a4). In
addition, association with other subunits, such as a5, has been seen (9,13-15). The
accessory subunit (the unpaired 5™ subunit) can provide distinct tuning of the receptor’s
physical properties. The a7 nAChR is a homopentameric channel and also widely
distributed throughout the central nervous system. It has been a constant drug target —
both in agonist and allosteric modulator development — due to its association with
neurological disorders such as schizophrenia and Alzheimer’s disease (16-23).

nAChRs are large integral membrane bound proteins, which makes them difficult
to crystallize. However, crystallographic success has increased and generated valuable
structural information over the years. First, high-resolution crystal structures of a
homologous soluble acetylcholine binding protein (AChBP) and a low-resolution
cryo-EM structure of an nAChR provide useful information (24-26). Several years later,
high-resolution structures of homologous prokaryotic and invertebrate LGICs were

obtained and allowed comparisons to be made in what is thought to be the resting



(closed) and conducting (open) form of an ion channel (27-31). In the last year, an
exciting breakthrough occurred in that the first set of high-resolution crystal structures of
vertebrate Cys-loop receptors (SHT3;4 and GABA,) were achieved (Figure 1.2) (32,33).
Although these advances have influenced our structural knowledge, proteins are
inherently dynamic, and static representations may not accurately capture motions
associated with activation. Thus, structure-function studies still provide vital information
regarding interactions necessary for ligand binding and conformational rearrangements

required for receptor activation.

1.3 Non-Canonical Amino Acid Mutagenesis

The goal of the Dougherty lab is to use physical organic chemistry to provide
chemical scale structure-function relationships. By identifying distinct non-covalent
interactions — cation-w, hydrogen bonding, van der Waals, etc. — we can elucidate
contacts that are critical for receptor function, and begin to map important properties to
ligand recognition (pharmacophore identification) or functional coupling (conformational
motions) on a large and complex protein. We can have a better understanding of
neurological diseases and compounds designed for treatment through increased
knowledge of the mechanisms associated with receptor activation.

In order to study chemical scale interactions between a ligand and a protein,
subtle perturbations must be introduced and the effects must monitored. Conventional
mutagenesis is limited to the 20 naturally occurring amino acids. These provide a good
starting point for identifying functionally relevant residues; however the structural

changes between the side chain groups are quite large and do not afford the delicate



functional distinctions that we aim to tease out. To work around these limitations, the
Dougherty lab has established a working protocol to incorporate non-canonical amino
acids that has proven to be a powerful technique in studying structure-function
relationships in LGICs (Figure 1.3) (34-38). This opens the possibility of probing
interactions through the introduction of diverse side chain configurations to study specific
interactions of a protein on a chemical scale.

The Dougherty lab has utilized and optimized a method known as in vivo
nonsense suppression to incorporate non-canonical amino acids (Figure 1.4) (35,39-43).
This technique allows for site-specific incorporation of a non-canonical amino acid in a
relatively quick timeframe. The mRNA codon of the residue to be probed is replaced
with a stop or “nonsense” codon (UAG, UGA, or UAA), which is normally used to

signify protein synthesis termination. The non-canonical amino acid is chemically
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Figure 1.3 The power of non-canonical amino acid mutagenesis. Conventional
mutagenesis of phenylalanine (Phe) is limited in structural perturbation and lacks specific
control. Non-canonical amino acid allows specific changes in order to answer questions
that pertain to steric (cyclohexylalanine) and electrostatic interactions (fluoro-Phe series).



appended to a suppressor tRNA with the appropriate “stop” anticodon. Normally, the
nonsense codon generates a truncated protein that is non-functional and is shuttled into
degradation pathways. However, in the presence of the chemically ligated suppressor
tRNA, protein synthesis continues normally until the full-length protein is generated.
Essentially, the ribosome and the remaining machinery of the cell are “hijacked” to
synthesize, fold, and post-translationally modify the desired functional protein with a
non-canonical amino acid. Xenopus laevis oocytes provide an excellent system for this
method due to the extremely large (I mm in diameter) single cells and the minimal
expression of endogenous ion channels. The oocytes are large enough to allow direct
injection of the suppressor tRNA/mRNA mixture and contain the cell machinery for
proper protein synthesis, folding, assembly, and transport to the membrane (Figure 1.5).
The physiology of the expressed ion channels is nearly identical to that of those

expressed in other cell systems or found in native neuronal environments (35).
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Figure 1.4 Depiction of nonsense suppression methodologies used for site-specific
incorporation of non-canonical amino acids.



Since evolution of a tRNA synthetase is not needed in this method, incorporation
of new non-canonical amino acids can be immediately swapped to probe a large array of
side chains. The downside to the in vivo nonsense suppression is the small amount of
protein that is actually synthesized. Theoretically, the amount of chemically ligated
suppressor tRNA injected translates to the amount of protein synthesized, if efficiency is
100%. Because of reagent limitation and inherent efficiency losses, however, only
attomoles of the protein are generated and this is not useful for studying by many of the
spectroscopic techniques available. To work around this extremely low yield of protein,
we turn to an equally sensitive technique — electrophysiology.

Electrophysiology techniques can be used to indirectly measure receptor-activated

currents. Again, the Xenopus oocyte provides an ideal system for electrophysiology
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Figure 1.5 Schematic representation of nonsense suppression methodology in Xenopus
oocytes for non-canonical amino acid incorporation into ion channels. (A) mRNA with
incorporated stop codon at site of interest. (B) Chemically appended non-canonical
amino acid on orthogonal tRNA with an appropriate anticodon. (C) Physical injection
into oocyte cell. (D) Expression of ion channels containing a non-canonical amino acid.
(E) Electrophysiology output assay.
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Figure 1.6 The ECs, experiment. (A) Increasing concentration of an agonist shifts more
channels to the open state and creates a larger correction current for the TEVC
configuration. (B) Responses are normalized to the highest response and plotted against
agonist concentration. Fitting the curve to the Hill equation generates a value used for
functional comparison of mutated receptors — the ECsy. Gain-of-function mutations are
depicted as a leftward shift, which decreases the ECsy value. Loss-of-function mutations
show the opposite trend: a rightward shift represents an increase in ECs, value.

studies because its large single cell size allows direct electrode attachments and easy
integration into an electrical circuit. The two-electrode voltage clamp (TEVC) method
allows measurements of membrane voltage changes induced from the activated receptors
(Figure 1.5 and 1.6). In this method, the voltage electrode monitors the membrane
potential and the current electrode provides current to maintain the desired membrane
potential. Upon channel opening, the membrane potential changes and requires additional
current to maintain its constant voltage. This injected current is directly related to the sum
of the currents passing through all the open ion channels on the cell membrane. The
sensitivity of this technique allows current measurements of tens of nA to uA during
whole cell recording. Electrophysiology requires only a small amount of protein for
signal responses and provides an extremely powerful tool to measure the influences of

subtle chemical perturbations on receptor function.
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1.4 Electrophysiology Assays: The ECs) and Voltage Jump Experiments

For the purpose of this dissertation, two types of electrophysiology functional
assays must be discussed — the ECsy and the voltage jump. The function of the receptor
(wild type or mutant) is assayed by applying doses containing increasing concentrations
of agonist. For simplicity, receptors are either opened or closed and remain in
equilibrium. With addition of agonist, the equilibrium is shifted towards the open state.
Thus, higher concentrations of agonist produce a larger population of open receptors and
a larger current is measured. At sufficiently high doses, saturation is reached and the
response levels off. Measurements are normalized to the max response and plotted in a
logarithmic form with agonist concentration. These data are then fit to the Hill equation,
which generates an ECsy value and a Hill coefficient (Figure 1.6). ECsy is the
concentration of agonist needed to elicit half-maximal response from the receptor and the
Hill coefficient is a measure of cooperativity. ECsy values are commonly used for
functional comparisons: increases in ECs values correspond to a loss-of-function (more
agonist is needed to open the same number of channels) and decreases in ECs, values
correspond to a gain-of-function (less agonist is needed to open the same number of
channels). The ECspis a composite measurement of the agonist binding and the channel
gating events. Mutations near the agonist binding site are assumed to influence only the
binding event, while those close to the pore are thought to mostly influence the gating
event; however there are exceptions that are discussed later in this dissertation. For most
of the experiments performed here, the ECs value provides a functional measurement for

comparison of the wild type receptor and mutant that is being introduced.
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Another electrophysiology test that provides information on receptor properties
involves the voltage jump experiment. While the ion channel is open, the negative
voltage potential across the membrane drives the flow of cations into the cell. Since we
control the membrane potential of the cell, we can vary the voltage by quickly
(ms timescale) “jumping” the voltage from large negative potentials to large positive
potentials. Switching the membrane potential from negative to positive then drives the
flow of ions in the opposite direction — out of the cell. In an idealized pore, plotting
voltage vs. current would then provide a linear relationship (Figure 1.7). However, not
all receptors act as free flowing pores, and they have a unique property of not allowing
ions to flow out of the cell, which is termed inward rectification. The degree of inward
rectification can vary between receptor types and in some cases can be used to distinguish

stoichiometries of specific subtypes (44,45).

1.5 Mutant Cycle Analyses

Proteins are comprised of an array of interactions that work in concert.
ECs values are useful in interpreting the influences mutations have on receptor function,
but they alone do not identify the strengths associated with these networks of interactions.
The mutant cycle analysis provides a quantitative measurement of the energetic coupling
of intermolecular and intramolecular interactions occurring in the protein (46). This
analysis has been employed in numerous studies of Cys-loop receptors and has provided
valuable information about strengths of interactions (47-55). Mutant cycle analyses
require three values: a functional output (in this case ECs) of the two single mutations,

and the output of the collective double mutant. If the mutations are functionally coupled,



12

mutating one of the residues will change all or most of the interaction in question and
perturbation of the second residue should not cause any additional change in function.
Thus, the sum of the functional change of the two individual mutations will be different
to the collective double mutation. If the mutations are not functionally coupled and are
independent of one another, then the collective double mutant and the sums of the
individual residues will be identical. ECsy values are used to calculate the coupling

coefficient (Q2), which is converted into a free energy value of AAG (Figure 1.8) (46).

We identify functionally coupled residues or interactions as having values of AAG greater

than 0.5 kcal/mol.
A Time (S) ——— B Time (ms) =3
I (current) Agonist Voltage (mV) +70
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/ -m
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Figure 1.7 The voltage jump experiment. (A) An example of a typical timescale and
waveform for the ECsy experiment. The voltage jump experiment utilizes the activated
equilibrium region at the peak of the agonist response. (B) Voltage is varied on the
millisecond timescale and the current is recorded for each voltage step. (C) At negative
voltages, the current-voltage relationship responds in linear fashion (blue). At positive
voltages, this trend can either continue (green) or be inhibited (red). The phenomenon of
current inhibition at positive voltages is called inward rectification. (D) A pictorial
description of the voltage jump experiment interpretation.



13

A AAG = Abs(-RTInQ)
o ECuWT * ECy Murl,2

EC, Mut1* ECy,Mut2
B
Uncoupled Coupled
2-fold 2-fold
WT 100 200 Mut2 WT 100 200 Mut2

1.5-fold 1.5-fold 1.5-fold 7.5-fold
2-fold 10-fold

Mutl 150 300 Mutl,2 Mutl 150 1500 Mut 1,2

AAG = 0.0 kcal/mol AAG = 0.9 kcal/mol

Figure 1.8 The mutant cycle analysis. (A) Equations used to generate coupling
coefficients (Q) and AAG values. (B) Examples of “uncoupled” and “coupled”
interactions. R is the ideal gas constant and room temperature (25°C) was used for T.

1.6 Orthosteric vs. Allosteric

Discussions of ion channels so far have revolved around the notion that an agonist
binds and then the channel gate opens. The location a ligand can occupy and from which
it can cause activation of the protein is termed the orthosteric site. Agonists are a class of
ligands that activate the receptor by occupying the orthosteric site, whereas antagonists
inhibit receptor function by occupying the same orthosteric site without activation.
Research involving the orthosteric site has been crucial in developing agonists and
antagonists that are selective and potent for a vast array of targets. However, another
class of ligands has been garnering more attention and resources in attempts to develop
novel compounds for diseases — allosteric modulators.

Allosteric modulators are ligands that bind at distinct locations away from the
orthosteric site in the protein and modulate function without direct activation. The
allosteric site can be adjacent to the orthosteric site or tens of angstroms away in the

protein. These molecules are analogous to agonists and antagonists in that they can
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positively modulate (increase function) or negatively modulate (decrease function) the
protein’s activity. Allosteric modulator properties are desirable as drug discovery targets
because they can have high specificity and activity while minimizing adverse side effects
from off—target interactions. Thus, more research has been directed towards the
development and understanding of both positive and negative allosteric modulators for

disease treatments, including neurological disorders.

1.7 Summary of Dissertation Work

In this dissertation, canonical and non-canonical amino acid mutagenesis was
used to study structure-function relationships associated with agonists and allosteric
modulators of nAChRs. Group methodology of nonsense suppression in Xenopus
oocytes, along with electrophysiological assays, was used to assess functional changes
associated with receptor mutations. The a4f2 and the a4p2a5 nAChRs were targeted for
agonist selectivity studies. The a7 receptor was used to probe allosteric modulator
binding and influence on receptor activation.

Chapter 2 details research investigating the interactions involved in the
stoichiometry selective compounds of o4p2 receptors: sazetidine-A, cytisine, and
NS9283. Non-canonical amino acid mutagenesis showed that the previously proposed
change in hydrogen bonding strengths were not the cause of the selectivity. Instead, the
residue composition on the complementary subunit strongly influenced agonist
occupation at the binding site. It was concluded that occupation of all primary

o4 subunits was needed for full receptor activation and that contemporary binding
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models should incorporate the influence of the complementary side for receptor
specificity.

Chapter 3 describes the work done towards producing a pure population of the
a4p2a5 receptor and subsequent tests for agonist binding at the a5-04 interface.
Generation of the a4f2a5 receptor was aided through the addition of a gain-of-function
pore mutation, which also incorporated a handle for identifying assembly through voltage
jump experiments. Mutations of the a5 aromatic box residues resulted in no change to
receptor function. This suggests agonist occupation at the aS5-o4 interface is not
necessary for activation as is seen with the a4-04 interface. In addition, this shows that
the a5 subunit does not replace a4 or B2 subunits and is relegated exclusively to the
auxiliary position.

Chapters 4 and 5 are dedicated to studying positive allosteric modulators of
a7 receptors. Chapter 4 involves assay development for functional screening of allosteric
modulators and adaption of a cooling apparatus for varied temperature control. Chapter 5
revolves around probing the global effects of PNU-120596 on the a7 receptor. It was
shown that the higher potency of acetylcholine in the presence of PNU-120596 is not due
to an altered agonist binding site. In addition, several residues were identified in the
gating interface that are vital to transmitting the effects of PNU-120596. These results
suggest a global propagation through several key residues that influence the receptor
gating equilibrium while leaving the agonist binding site unperturbed.

Short appendices are included for two additional studies. Appendix 1 involves
probing the autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) mutation

located in the 2 subunit and its effects on a4f2 and a4p2a5 nAChRs (in collaboration
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with Dr. Weston Nichols of the Lester Group). Appendix 2 comprises a LGIC screen of
synthesized physostigmine analogs (in collaboration with Dr. Lindsay Repka of the
Reisman Group and Dr. Kristina Daeffler of the Dougherty Group) for agonist or

allosteric modulator effects.
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Chapter 2

Selective Ligand Behaviors Provide New Insights into
Agonist Activation of Nicotinic Acetylcholine Receptors™

*Reproduced with permission from: (DOI: 10.1021/cb400937d) Christopher B. Marotta,
Iva Rreza, Henry A. Lester, and Dennis A. Dougherty. Selective ligand behaviors provide
new insights into agonist activation of nicotinic acetylcholine receptors. ACS Chem.
Biol., 2014, 9 (5), pp 1153-1159. Copyright 2014 American Chemical Society. The work
described in this chapter was done in collaboration with Iva Rreza.
Link to article: 10.1021/cb400937d

2.1 Abstract

Nicotinic acetylcholine receptors are a diverse set of ion channels that are
essential to everyday brain function. Contemporary research studies selective activation
of individual subtypes of receptors, with the hope of increasing our understanding of
behavioral responses and neurodegenerative diseases. Here, we aim to expand current
binding models to help explain the specificity seen among three activators of a4f2
receptors: sazetidine-A, cytisine, and NS9283. Through mutational analysis, we can
interchange the activation profiles of the stoichiometry-selective compounds sazetidine-A
and cytisine. In addition, mutations render NS9283 — currently identified as a positive
allosteric modulator — into an agonist. These results lead to two conclusions:
(1) occupation at each primary face of an o subunit is needed to activate the channel and

(2) the complementary face of the adjacent subunit dictates the binding ability of the

agonist.


http://pubs.acs.org/doi/abs/10.1021/cb400937d
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2.2 Introduction

Nicotinic acetylcholine receptors (nAChRs) are a diverse family of the larger
Cys-loop superfamily of ligand gated ion channels (LIGCs). These channels are found
throughout the brain and CNS and play vital roles in the chemical and electrical
communication between neurons, contributing to memory, learning, and other neural
functions (1-3). Because of their diverse properties and widespread distribution
throughout the brain, these LGICs are prominent targets in neurological disorders, such
as drug addiction, Alzheimer’s disease, and Parkinson’s disease (4,5).

Neuronal nAChRs have been extensively studied, and much is known about their
assembly and structure (2,6-8). There are two classes of subunits, identified as a2 — a9
and B2 — 4, which assemble into homomeric (o only) or heteromeric (o and 3) channels
consisting of five subunits in total (9). For each subunit, there is a main agonist binding
pocket, denoted as the primary (+) face, which includes four of the five residues that
make up the canonical “aromatic box” (10). The fifth aromatic box residue and other key
binding residues, including backbone contacts, are found on the complementary (—) face
of the adjacent subunit (10). The five subunits then arrange in an alternating + and —
fashion to form a functional receptor (Figure 2.1). For decades it has been assumed that
the (+) face of the agonist binding site is provided by a subunits and the (—) face by
[ subunits. However, recent evidence establishes the ability of o subunits to also
contribute to the () face.

The core pharmacophore of a cationic nitrogen and a hydrogen bond acceptor for
agonists of the nAChR was first introduced in 1970 (11). Since then, the binding model

has evolved to consist of three specific interactions that include a cation-m interaction on
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the primary subunit, along with hydrogen bonding interactions on both the primary and
complementary subunits (12,13). Based on this model, a number of studies have aimed to
explain the efficacies and selectivities of agonists to different nAChRs of varying
subunits and stoichiometries (12-14).

Here, we studied the activation profiles of a4f2 receptors and their responses to
mutations for the following compounds: sazetidine-A, cytisine, and NS9283 (Figure 2.1).
Our conclusions lead us to propose an expansion of the published structural
models (10,12,15,16). We establish that: (1) the selectivity of drug binding at subunit

interfaces is largely controlled by a pocket on the complementary subunit that is

(ad) 114 124

0l AIVKFTKVLLDYTGHITWTPPAIFKSY
02 AVTHMTKAHLFFTGTVHWVPPAIYKSS
03 OQVDDKTKALLKYTGEVTIWIPPAIFKSS
04 AVTHLTKAHLFYDGRVQWTPPAIYKSS
05 EG-ASTKTVVRYNGTVTWIQPANYKSS
06 OQVEGKTKALLKYDGVITWTPPAIFKSS

07 DATFHTNVLVNASGHCQYLPPGIFKSS
(B2) 109 119

f1 DVALDINVVVSFEGSVRWQPPGLYRSS
+ = Primary @ = High Affinity Binding Site B2 EVSFYSNAVVSYDGSIFWLPPAIYKSA
- = Complementary © = Low Affinity Binding Site B3 EGSLMTKAIVKSSGTVSWTPPASYKSS
f4 EVSVYTNVIVRSNGSIQWLPPAIYKSA

C P OH ) N<
’Hqu\/o ~7 {iN)/:ENHz \ \N\
| N/ \ / N-O CN

Sazetidine-A Cytisine NS9283

Figure 2.1 (A) View from the extracellular side of the high affinity (A2B3) and low
affinity (A3B2) a4p2 receptors. Agonist binding locations are indicated by smaller
circles at the interfaces of a4-f2 subunits and a4-o4 subunits. (B) Sequence alignment of
the rat muscle and neuronal nAChR subunits. The three residues that greatly influence

agonist affinity are highlighted in gray. (C) Structures of sazetidine-A, cytisine, and
NS9283.
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hydrophobic in some subunits and hydrophilic in others and (2) an agonist must be bound
at all o subunits in a given receptor to favor the activated channel. This expansion aids in
our understanding of subunit- and stoichiometry-selective agents and can provide

valuable insight for further development and application towards therapeutic strategies.

2.3 Results and Discussion
2.3.1 Hydrogen Bonding: Non-Canonical Amino Acid Analysis

Sazetidine-A has a unique activation profile, in that it selectively activates the
(04)2(p2); stoichiometry over the (a4)s;(p2),; these stoichiometries will be abbreviated
A2B3 and A3B2, respectively (17). Unnatural amino acids are useful tools used to parse
out specific chemical interactions between ligand and receptor. Previous structure-
function studies of cytisine, an agonist that has the opposite activation profile for a4f2
receptors, showed that the active drug-receptor combination (A3B2) favored the
hydrogen bond to the TrpB backbone CO (“donor’), while the inactive form favored the
hydrogen bond to the backbone NH on the complementary face (“acceptor”) (Table 2.1,
Figure 2.2) (12). We proposed that this difference could explain the stoichiometric
selectivity of the drug. Through unnatural amino acid incorporation, we were able to
characterize the cation-m binding, hydrogen-bond donating, and hydrogen-bond accepting
properties of sazetidine-A and compare the results to those previously measured for
cytisine. We now find, however, that the opposite hydrogen bonding pattern is not seen
for sazetidine-A and that the pattern roughly follows the one observed for cytisine: a
larger affect for the hydrogen-bonding acceptor in the A2B3 stoichiometry and a larger

affect for the hydrogen-bonding donor in the A3B2 stoichiometry (Table 2.1,
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Figure 2.2). This pattern suggests an alternative explanation is needed to identify the

properties of stoichiometry selective agonists.

Table 2.1 Agonist Binding Model Comparison

Stoichiometry Compound Wild Typeal Relative . T'rpB . H-Bon(g H-Bond .
ECsy (WM) Efficacy (%) Cation-x Donor Acceptor

[32\ ~ Acetylcholine * 4.0 [100] 69 1.1 6.8
@ B2 Cytisine * 0.066 0 31 8.8 62
{BZ@ Sazetidine-A 0.0046 80 22 5.7 10
) Acetylcholine 87 [100] 540 1.1 8.5
B2) Cytisine © 15 7 30 27 14
f@@ Sazetidine-A 0.14 0 58 11 5.0

“ See methods for wild type ECsy corrections. > Ratio of Lnay of compound divided by 1. of acetylcholine.
“ Ratio of ECsg values for 4,5,6,7-tetraflouro-Trp and Trp incorporation at a4 W154 (Fig. 24). 4 Ratio of
ECsy values for Thr-a-hydroxy and Thr incorporation at a4 T155 (Fig. 24). ° Ratio of ECsy values for
Leu a-hydroxy and Leu incorporation at B2 LI119 (Fig. 2A4). 4 Previously reported values from
Tavares et al. (12). Measured ECs, values reported in Table 2.2.

2.3.2 Sazetidine-A and the B2 Complementary Face

It has been shown that the unique hydrophobic appendage off of the pyridine ring
of sazetidine-A gives the compound its subunit and receptor selectivity, and that the
alcohol group at the end of the appendage does not play a significant role (15,18,19).
Because this aliphatic adjunct interacts mostly with the complementary side, we began by
focusing on the known differences between a4 and (2 subunits in this region (16).
Previous investigations identified an a4-o4 binding site and suggested the differences
between the “high” affinity (a4-p2) and “low” affinity (04-04) binding pockets are due
to three key residues that reside on the complementary face (20-22). The P2(-) face
residues (V109, F117, and L119) generate a hydrophobic pocket for the high affinity
case, while the aligning o4(-) face residues (H114, QI122, and TI124) create a
hydrophilic, low affinity pocket (Figure 2.1, Figure 2.2). We have evaluated the triple

mutant of the a4(—) face by swapping these three residues (H114V, Q122F, and T124L)
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A
i
TrpB
Primary Face
HO = 7 \
\N ------ cation-n interaction
> mmm hydrogen bond donor
"_ ...... hydrogen bond acceptor
i
N Leu 119
Complementary Face
B

Sazetidine-A
Analog

Primary

Complementary

Figure 2.2 Binding models of sazetidine-A and analogs. (A) Binding model for
sazetidine-A based on established interactions seen with nicotine (12). The cation-n
interaction is in purple, the hydrogen bond donor is in red, and the hydrogen bond
acceptor is in green. (B) Crystal structure showing a sazetidine-A analog bound to
Ct-AChBP (PDB: 4B5D) (15). The three key residues identified for the hydrophobic
pocket associated with the 2 subunit (V109, F117, & L119) are shown, as is the TrpB
residue from the a4 subunit. These residues were mutated into the crystal structure to
show general spatial locations (no residue minimizations calculated).
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to make them resemble the f2(—) face. We were able to generate receptor responses and
measure an ECsy curve for sazetidine-A in the A3B2 receptor, which was not possible
with the wild type a4 subunit (Table 2.3, Figure 2.3). The ECsy value for the triple
mutant was about five-fold larger than the wild type A2B3 response, a small difference
compared to having zero response in the wild type A3B2 receptor. Single mutations at
the a4 subunit did not give rise to sazetidine-A response at low uM doses (Table 2.4).
Combinations of double mutations saw some response towards low uM doses of
sazetidine-A (Table 2.4). Mutations to make the 3 subunit more like the o subunit

resulted in a large loss of function for sazetidine-A (Table 2.5).

Table 2.3 Sazetidine-A ECsy (nM) Values

Receptor ECsy (nM) Hill n Lnax (MA)
(a4)2(B2); 1.9+0.1 2.0+0.2 14 0.059-0.26
(ad4)3(B2): NR - - -
(0e4),(B2); + 10 uM NS9283 20+02 1.7+0.2 13 0.067-1.6
(a4)3(f2), + 10 pM NS9283 1.1+0.1 20+0.2 14 04-72
(a4 H114V, Q122F, T124L),(82); 48+0.3 1.8+0.2 13 0.18-1.3
(a4 H114V, Q122F, T124L);3($2), 9+1 23+0.6 14 0.71-6.2

Agonist = Sazetidine-A
NR = No Response

2.3.3 Cytisine and the B2 Complementary Face

Since these three residues had a large affect on receptor agonist selectivity and
activation for sazetidine-A, we considered cytisine in an attempt to explain its selectivity
for A3B2 over A2B3 receptors. Early chimera analysis showed that cytisine selectivity
for human 4 over 32 subunits is strongly influenced by the extracellular region (23), and
more recent analyses provide further details (24). Sequence alignment shows that of the

three residues considered here, the only difference lies in the 117 position — 2 F117 and
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4 L117 for the human subunits. For the rodent subunits considered here, 4 is Q117,
which is identical to the a4 residue at this same position (Figure 2.1). In the rodent wild
type 04p2 receptors, cytisine is a partial agonist with a biphasic response for the A3B2
receptor. No response is observed for the A2B3 receptor (Table 2.6), although signal can
be obtained in receptors with hypersensitive mutations (see 2.5 Methods). However,
with the single mutation of F117Q in the P2 subunit, cytisine generated a sizable
response for the A2B3 receptor. The mutation also raised the efficacy of the A3B2

receptor compared to the wild type response (Table 2.6).

] T
® (ad) (B2 ,"! T
(a4).(B2), e
~® -(04) ($2), + 10 M NS9283, n = 14 , f +
08 |4 (04 H114V,Q122F T124L) (b2) . n = 14 }
/
7
f
!
i
{
L f
6 0.6 f
(0] !
N '
©
£ ; {
-
(o]
£

04 I*

[Sazetidine-A] (nM)

Figure 2.3 Sazetidine-A ECsy curves. (04)3;(f2), cannot be activated by sazetidine-A.
Responses can be obtained by mutating the complementary side of the a4 subunit to
resemble the B2 subunit as seen with (a4 H114V, Q122F, T124L);(B2), receptor. Also

shown is wild type (a4);(p2), receptor exposed to a combination of sazetidine-A and
NS9283.
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2.3.4 NS9283 and the a4 Complementary Face

We next considered NS9283, which has a binding preference for the a4-o4
interface  (25). This compound has been previously characterized as a
benzodiazepine-like positive allosteric modulator (PAM) for only the A3B2
stoichiometry of receptors containing either a2 or a4 subunits (25,26). In addition, its
effects are lost when the a4(—) face is mutated to resemble the p2(—) face in the region of
the classical agonist binding site (27). Since we have molecules that selectively associate
with o4-o04 (NS9283) and a4-f2 (sazetidine-A) interfaces, co-application should
generate an A3B2 receptor response. As shown in Figures 2.3, 2.4 and Table 2.3, we
find that individual applications of NS9283 and sazetidine-A show essentially no
activation of wild type A3B2 receptors. However, co-application generates full activation
of the receptor, compared to acetylcholine. The A3B2 a4 triple mutant (H114V, Q122F,
T124L) was then exposed to similar conditions. The sazetidine-A response for the mutant
was preserved, but the effect of NS9283 was completely lost (Table 2.3, Figure 2.4).
The mutations eliminate the ability of NS9283 to bind at the a4-a4 interface and allow
sazetidine-A to replace it in binding. These data suggest that occupation of an agonist at
each o subunit is necessary for a receptor response. We generated the A3B2 B2 triple
mutant (V109H, F117Q, L119T) to test if NS9283 could alone activate the channel. A
response was seen in a dose dependent manner, suggesting the drug is a partial agonist,
albeit, not potent or highly efficacious (Figure 2.4). Because NS9283 is sparingly
soluble, a full ECso curve could not be obtained. Nevertheless, we were able to transform
a compound once designated as a PAM into an agonist, suggesting it could be binding to

the canonical aromatic binding site. Also, due to its low potency and lower receptor
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expression, the corresponding A2B3 B2 triple mutant (V109H, F117Q, L119T) was

inconclusive with regard to activation via NS9283.

A 100 uM ACh 2 nM Saz-A 10 uM NS 2nMSaz-A+10 yMNS 100 uM ACh
1 —— L/
1HA
(ad);(B2),
50s
B 3uMACh 2 nM Saz-A 10 uM NS 2 nM Saz-A + 10 yM NS 3uMACh

(a4 H114V, Q122F, T124L),(B2),

C 1000 pM ACh 10 uM NS 100 uM NS*

_ —

5pA

(04);(B2 V109H, F117Q, L119T),

50s

Figure 2.4 Sample traces of responses to acetylcholine (ACh), sazetidine-A (Saz-A), and
NS9283 (NS) to A3B2 receptors. Solid gray bars indicate drug application and dashed
bars indicate a pause where drug remains present but the buffer wash has not started.
Gaps between traces indicate buffer washes (see methods for duration of drug application
and buffer washes). (A) Activation of wild type receptor by ACh at its ECsy value, and
Saz-A and NS at the concentrations shown. (B) Activation of (a4 H144V, QI22F,
T124L)3(B2).. (C) Application of Iy, concentrations of acetylcholine and two
concentrations of NS to (04);(f2 V109H, F117Q, L119T),. The * indicates a 1% by
volume DMSO drug solution
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2.4 Conclusions

The present work confirms and expands upon recent studies on the (-),
complementary face of the agonist binding site of nAChRs. In particular, the long-held
belief that agonist binding sites are formed only at a(+)/f(-) interfaces has been
challenged by increasing evidence for a viable agonist binding site at o(+)/o(-)
interfaces. Here we use several drugs that show some subtype specificity to probe this
issue. The novel agonist sazetidine-A can only activate 042 receptors with an A2B3
stoichiometry. In the alternative A3B2 stoichiometry, an o(+)/a(—) interface exists. The
(-) face of such an interface is relatively polar, and evidently it is incompatible with the
hydrophobic side chain of sazetidine-A that is expected to project into this region (recall
that the OH group of sazetidine-A is not necessary for function). By mutating three
residues in this region to be more hydrophobic and thus more like a $2(—) face, we can
prepare A3B2 receptors that are quite responsive to sazetidine-A (Table 2.3).

In a complementary series of experiments, we considered the drug NS9283,
which binds only to a(+)/c(—) interfaces. It is unable to activate the receptor on its own,
and it is thus an allosteric modulator. We reasoned that a combination of NS9283 and
sazetidine-A would activate A3B2 receptors, with the former binding to the a(+)/a(-)
interface and the latter to the o(+)/p(—) interfaces. Indeed, a mixture of NS9283 and
sazetidine-A is quite potent at A3B2 receptors, while neither compound alone can
activate the receptor. Taking this one step further, by mutating all interfaces so they
resemble a(+)/a(-) interfaces, NS9283 becomes an agonist, rather than the allosteric

modulator it is for the wild type receptor.
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We also applied this interface concept to cytisine, which has the reverse activation
profile of sazetidine-A, in that it cannot activate the A2B3 receptor. By mutating one
residue of the 2 subunit to that of the a4 subunit, we find that cytisine can activate the
A2B3 receptor. In addition, this same mutation increased efficacy of cytisine for the
A3B2 receptor from 7% to 16% (Table 2.6).

In sum, this work shows the relevance of the a(+)/o(—) interface of nAChRs to
achieving full receptor activation. This knowledge could be of great value to efforts to

develop selective agonists for specific nAChR subtypes.

Table 2.6 Cytisine-A ECsy (WM) Values

Reepior (0 W Gl B " tated) Ly B
(a4)2(B2)s NR - - - - - —~ 0.15-2.4 -

(@4):(82); %933; 1(')?; 6.0+0.3 1&* 216 0'(2):592 T 094-33  7+0.1%
G o e o e
(Fo‘l‘;);g*)f Ob?gli 16(.)3i 33407 1(';; 3317 0'3:55 T 051-20  16+03%

Agonist = Cytisine
NR = No Response

2.5 Methods
2.5.1 Molecular Biology

Rat nAChR a4 and P2 subunits were in pAMV (unnatural mutagenesis) and
pGEMhe (natural mutagenesis) vectors. Site-directed mutagenesis was performed using
the QuikChange protocol (Stratagene). Circular DNA of o4 and B2 in pAMV was
linearized with the Notl restriction enzyme and the plasmids in pPGEMhe were linearized
with the Sbfl restriction enzyme. After purification (Qiagen), the T7 mMessage Machine

kit (Ambion) was used to in vitro transcribe mRNA from linearized DNA templates.
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QIAGEN’s RNeasy RNA purification kit was used to isolate the transcribed mRNA
product.

For unnatural amino acid incorporation, the amber (UAG) stop codon was used
for all a4 subunit incorporation and the opal (UGA) stop codon was used for the 32
subunit incorporation. 74-nucleotide THG73 tRNA (for UAG) and 74-nucleotide
TQOpS’ tRNA (for UGA) were in vitro transcribed using the MEGAshortscript T7
(Ambion) kit and isolated using Chroma Spin DEPC-H,O columns (Clontech).
Synthesized unnatural amino acids coupled to the dinucleotide dCA were enzymatically

ligated to the appropriate 74-nucleotide tRNA as previously described (13,28).

2.5.2 Oocyte Preparation and Injection

Xenopus laevis stage V and VI oocytes were harvested via standard protocols
(28). For unnatural amino acid incorporation to the o subunit, the o4 and 2 mRNAs
were mixed in a 3:1 ratio by mass to obtain the A2B3 receptor, and in a 100:1 ratio to
obtain the A3B2 receptor. Unnatural amino acid incorporation to the § subunit used o4
and B2 mRNA ratios of 1:20 and 10:1 to obtain the A2B3 and A3B2 receptors,
respectively. mRNA mixtures and deprotected (photolysis) tRNA were mixed in a 1:1
volume ratio, and 50 nL were injected into each oocyte. After injection, the oocytes were
incubated at 18° C in ND96+ medium for 24 h. For the unnatural amino acids with
reduced cation-t binding ability, a second round of injections following the same
procedure was performed followed by incubation for an additional 24 h. The reliability of
the  unnatural amino acid  incorporation  was confirmed  through

read-through/reaminoacylation tests as previously performed (12).
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For the natural mutagenesis experiments, the a4 and 2 mRNAs were mixed in
1:2 or 10:1 ratios by mass to obtain the A2B3 and A3B2 receptors, respectively (29). A
total of 50 nL were injected to each oocyte, delivering an mRNA mass total of 25 ng.

Oocytes were incubated at 18° C in ND96+ medium for 24-72 h.

2.5.3 Chemical Preparation

Acetylcholine chloride was purchased from Sigma-Aldrich and dissolved to 1 M
stock solutions in ND96 Ca*" free buffer (96 mM NaCl, 2 mM KCI, 1 mM MgCl,, 5 mM
HEPES at pH 7.5). Sazetidine-A dihydrochloride and (-)-cytisine were purchased from
Tocris Bioscience and dissolved to 10 mM stock solutions in ND96 Ca*" free buffer.

NS9283 was synthesized following a patented protocol (30). 3-pyridylamidoxime
and 3-cyanobenzoyl chloride were purchase from Sigma-Aldrich. 0.5 g of
3-pyridylamidoxime was dissolved in 5.4 mL of pyridine. Then 0.6 g of 3-cyanobenzoyl
chloride was added while stirring. The mixture was heated at reflux for 90 min and then
cooled to room temperature. 200 mL of water was added and the white powder was
filtered with two subsequent washes with water. The resulting powder was lyophilized
overnight to remove the excess water. The reaction resulted in 60% yield, and the product
was pure by LC-MS and NMR. 'H NMR (300 MHz, DMSO-ds) & 9.26 (dd, J=2.2, 0.9
Hz, 1H), 8.82 (dd, J = 4.8, 1.6 Hz, 1H), 8.64 (td, /= 1.7, 0.7 Hz, 1H), 8.50 (ddd, J = 8.0,
1.9, 1.1 Hz, 1H), 8.47 (dt, ] = 6.0, 2.1 Hz, 1H), 8.22 (dt, /J=7.9, 1.4 Hz, 1H), 7.88 (td, J =
7.9, 0.7 Hz, 1H), 7.65 (ddd, J= 7.9, 4.8, 0.9 Hz, 1H); MS (+ES-API) m/z 249 (M+H)".

The purified compound, NS9283, was then dissolved to a 10 mM stock solution

in DMSO. All drug solutions containing NS9283 were 0.1% DMSO (v/v) with the
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exception of the 100 mM dose, which had 1% DMSO (v/v). Appropriate controls of 1%
DMSO (v/v) in ND96 Ca*" free buffer only were applied to expressing cells to show no

receptor response to the higher DMSO concentration.

2.5.4 Electrophysiology

The OpusXpress 6000A (Axon Instruments) in two-electrode voltage clamp mode
was used for all electrophysiological recordings. The holding potential was set to -60 mV
and the running buffer used was ND96 Ca*" free solution for all experiments. All
acetylcholine drug applications used 1 mL of drug solution applied over 15 s followed by
a 2.5 min buffer wash at a rate of 3 mL min™. All sazetidine-A, cytisine, NS9283, and
co-applications used 1 mL of drug solution applied over 8 s with a 30 s pause before a 5
min buffer wash at a rate of 3 mL min™. Dose-response measurements utilized a series of
approximately three-fold concentration steps, spanning several orders of magnitude, for a
total of eight to eighteen doses. Data were sampled at 50 Hz and then low-pass filtered at
5 Hz. Experiments testing activity of compounds involved two to three acetylcholine
doses of either ECsy or Lnax values, followed by the test doses of compounds being
probed, followed by one to two doses of the previous acetylcholine concentrations.

Averaged and normalized data were fit to one or two Hill terms to generate ECs
and Hill coefficient (nH) values. All currents for the activity testing were normalized to
the highest acetylcholine dose applied pre-compound testing. The efficacy of compounds
was measured as the ratio of the In. of the compound divided by the In. of

acetylcholine. All acetylcholine ECsy values for the conventional mutations made in
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pGEMhe are reported in (Table 2.7). Error bars represent standard error of the mean

(SEM) values.
Table 2.7
EC50 (MM) . ECSO .
Receptor Hill [1 Hill [2 % [1 n Lyax (WA
P [1] M w2 21 %] (mA)
(04)2(B2)s 0.78+£0.02  1.1+0.02 - - _ 16 01524
(a4)3(B2). 7.2+23 07+04 10613 1.7+05 26 15 1.7-31
(0.4)2(B2); + 10 uM - B ) )
NS9283 0.48+0.02  1.1+0.05 12 0.095-72
(0.4)3(B2), + 10 uM - B ) )
NS9283 0.15+0.004 1.07+0.03 14 042-42
(04),(82 F117Q); 1.6+0.1 1.6 0.1 - - - 15 0.033-0.28
(a4);(B2 F117Q), 9+15 0.9+0.4 134422 1.6+03 25 14 1.5-15
(a4)2(B2 V109H, - B ) )
F117Q, L119T), 35+1 1.5+0.04 14 2.0-28
(a4)3(B2 V109H, - B ) )
F117Q, L119T), 180+ 10 1.6+0.1 12 0.16—6.3
(a4 H114V, Q122F, N B B ) )
T1241)p2)s 1.0£0.03  1.1£0.03 2 011-42
(a4 H114V, Q122F, N B B ) )
T124L)3(B2), 2.7+0.2 0.81+£0.03 16 0.89-18

Agonist = Acetylcholine

2.5.5 The Hypersensitive Mutation (L9°A)

In the case of unnatural amino acid incorporation and mutagenesis scanning, ECsg

values were obtained using a hypersensitive mutation in the a4 subunit (L9'A). This

mutation serves two purposes in the experimental setup: (1) the gain of function mutation

gives a larger concentration window to probe effects of introduced mutations and (2) the

pore mutation causes differences in rectification between the two stoichiometries, which

can be probed via voltage jump experiments to confirm which stoichiometry is being

observed (13,31). Since the ECsy is shifted from true wild type, a correction factor was

applied according to the procedure of Moroni ef al. to obtain the wild type ECsg value

(32).
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Chapter 3

Probing the Non-Canonical Interface for Agonist Interaction
with an a5 Containing Nicotinic Acetylcholine Receptor*

*This chapter is adapted from: Christopher B. Marotta, Crystal N. Dilworth, Henry A.
Lester, and Dennis A. Dougherty. Probing the Non-Canonical Interface for Agonist
Interaction with an a5 Containing Nicotinic  Acetylcholine = Receptor.
Neuropharmacology, 2014, 77, pages 342-349. Copyright 2013 Elsevier Ltd. The work
described in this chapter was done in collaboration with Dr. Crystal N. Dilworth.

Link to article: doi:10.1016/j.neuropharm.2013.09.028

3.1 Abstract

Nicotinic acetylcholine receptors (nAChRs) containing the o5 subunit are of
interest because genome-wide association studies and candidate gene studies have
identified polymorphisms in the a5 gene that are linked to an increased risk for nicotine
dependence, lung cancer, and/or alcohol addiction. To probe the functional impact of an
a5 subunit on nAChRs, a method to prepare a homogeneous population of a5-containing
receptors must be developed. Here we use a gain of function (9’) mutation to isolate
populations of a5-containing nAChRs for characterization by electrophysiology. We find
that the a5 subunit modulates nAChR rectification when co-assembled with a4 and 32
subunits. We also probe the a5—a4 interface for possible ligand binding interactions. We
find that mutations expected to ablate an agonist binding site involving the a5 subunit
have no impact on receptor function. The most straightforward interpretation of this
observation is that agonists do not bind at the a5—a4 interface, in contrast to what has

recently been demonstrated for the a4—04 interface in related receptors. In addition, our
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mutational results suggest that the a5 subunit does not replace the a4 or $2 subunits and

is relegated to occupying only the auxiliary position of the pentameric receptor.

3.2 Introduction

Nicotinic acetylcholine receptors (nAChRs) are widespread in the peripheral and
central nervous systems. Because these receptors can be activated by nicotine as well as
their native ligand acetylcholine, they have been associated with several health-related
phenomena. Nicotine is the major addictive component of tobacco, and chronic tobacco
use (smoking) has been implicated in many types of cancer as well as heart disease. Other
related phenomena include an inverse correlation between smoking and Parkinson’s
disease and the observation that patients with autosomal dominant nocturnal frontal lobe
epilepsy who smoke have fewer seizures (1).

nAChRs belong to the Cys-loop family of ionotropic receptors, which share a
pentameric architecture arranged around a central ion-permeable pore. Many diverse
subunit combinations can form functional receptors, and these combinations have distinct
pharmacologies concerning responses to acute applications and chronic or repeated
applications of nicotinic drugs. Neuronal nAChRs are composed of a2-all and $2-f4
subunits and assemble as a plus 3 or a-only pentamers. The neuronal 04f2 receptor
subtype is one of the two most abundant nAChRs in the central nervous system (CNS).
Two a4p2 pentameric stoichiometries are known: (a4p2).(f2) and (a4p2)2(a4), which
shall be referred to as A2B3 and A3B2, respectively (2). Subunit stoichiometry of

nAChRs is important in determining pharmacology, stability, and subcellular location.
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The A2B3 stoichiometry displays higher sensitivity to nicotine and has been proposed to
play an especially prominent role in nicotine addiction.

Several brain regions express receptors that contain an a5 subunit
(a5* receptors), including the substantia nigra pars compacta, subthalamic nucleus,
medial habenula, prefrontal cortex, and hippocampus. Receptors containing a5 play a
part in nicotine self-administration and nicotine withdrawal (3). These receptors are also
important for dopamine release and attention tasks (4-6). The a4p2a5 receptors are more
permeable to Ca®* than a4p2 receptors and have a higher sensitivity to nicotine (7). The
a5 subunit has been assumed to occupy the fifth “auxiliary” position in pentameric
receptors, and it has not previously been thought to participate in forming a functional
agonist binding site. However, recent studies have proposed that a low affinity binding
site exists in the A3B2 a4p2 receptor at the a4—a4 interface (Fig. 3.1) (8-10), in addition
to the higher affinity binding sites at the a4—p2 interface. This new binding location
utilizes an auxiliary subunit interface, leading to questions as to whether a5 can
participate in a similar motif.

Given the precise localization and unique functional properties of a5* receptors,
a5 presents itself as a valuable therapeutic target. However, currently there are no
pharmacological ligands that can functionally isolate a5* receptors. If a5 does
participate in a ligand-binding site at the a5—o4 interface, this interaction would be a

vital target for selective ligand development.
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A
@ = Agonist Binding Location
B
TrpD TyrA TrpB TyrCl TyrcC2
98 136 191 232 237

Mouse a5 NVWLK .. VLEDN .. GSWTY .. RTDSCC--WYPC
Mouse a4 NVWVK .. VLYNN .. GSWTY .. RKYECCAEIYPD
Mouse B2 NVWLT .. VLYNN .. RSWTY .. NPDDST---¥VD

Fig. 3.1 (A) View of nAChRs from the extracellular solution. The o432 receptor has two
o4 subunits, two 32 subunits, and two conventional antagonist/agonist binding sites, at
a4—B2 interfaces. The fifth subunit is the “accessory” subunit, and in this study three
possibilities are the a4, a5 or f2 subunits. The accessory subunit may also contribute to
a binding interface, shown by “?” (B) Sequence alignment of the mouse nAChR subunits
highlighting the aromatic box residue locations on loops D, A, B, and C (in sequence).
The residues shown are identical to their human sequence except the final residue (Cys)
in the mouse a5 subunit is a tyrosine (Tyr, Y) in the human subunit. Note that TrpD is on
the “complementary” face of a subunit, and so it is not expected to contribute to an
a5-04 interface.

3.3 Materials and Methods
3.3.1 Molecular Biology

Mouse nAChR a5 wt, a5-GFP, a4, and B2 subunits were in pGEMhe. The
QuikChange protocol (Stratagene) was used for site-directed mutagenesis. Circular DNA
for a5, a4, and B2 was linearized as follows: Sphl restriction enzyme for a5 plasmids
and SbfI restriction enzyme for the a4 and P2 plasmids. After purification (Qiagen),

mRNA was synthesized from linearized DNA template through run-off transcription by
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using the T7 mMessage Machine kit (Ambion). Purification of mRNA was performed

using QIAGEN’s RNeasy RNA purification Kkit.

3.3.2 Electrophysiology Studies
3.3.2.1 Xenopus Oocyte Preparation and Injection

Xenopus laevis stage V and VI oocytes were harvested via standard protocols
(11). The a5 mRNA was mixed with a4 and 2 mRNA in a 10:1:1 ratio by mass and 50
nl were injected into the oocytes delivering 40 ng of total mRNA. After injection, oocytes
were incubated at 18° C in ND96+ medium for 24-96 h. The control experiments of only
a4 and B2 mRNA with ratios of 1:1, 1:2, and 10:1 had total mRNA amounts of 6.67 ng,

20 ng and 21 ng, respectively.

3.3.2.2 Chemical Preparation

Acetylcholine chloride, (—)-nicotine tartrate, and mecamylamine hydrochloride
were purchased from Sigma-Aldrich and dissolved to 1 M and 0.25 M stock solutions in
ND96 Ca®" free buffer (96 mM NaCl, 2 mM KCI, | mM MgCl,, 5 mM HEPES at

pH 7.5), respectively.

3.3.2.3 Electrophysiological Experimental Protocols

Electrophysiological recordings were performed using the two electrode voltage
clamp mode with the OpusXpress 6000A (Axon Instruments). The holding potential was
-60 mV. All recordings involving oaS5* receptors and a4f2 receptors used the

ND96 Ca®" free solution as the running buffer. All measurements used 1 mL of drug
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solution applied during 15 s (except 25 s for current-voltage experiments) followed by a
2 min buffer wash except for nicotine application which received a 5 min buffer wash.
Dose-response measurements utilized a series of approximately three-fold concentration
steps, spanning several orders of magnitude, for a total of eight to eighteen doses. Data
were low-passed filtered at 5 Hz and digitized at 125 Hz.

Mecamylamine experiments involved three acetylcholine doses, f