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Abstract

Observational studies of our solar system’s small-body populations (asteroids and
comets) offer insight into the history of our planetary system, as these minor planets
represent the left-over building blocks from its formation. The Palomar Transient
Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to
be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory.
Though its main science program has been the discovery of high-energy extragalactic
sources (such as supernovae), during its first five years PTF has collected nearly five
million observations of over half a million unique solar system small bodies. This
thesis begins to analyze this vast data set to address key population-level science
topics, including: the detection rates of rare main-belt comets and small near-Earth
asteroids, the spin and shape properties of asteroids as inferred from their lightcurves,
the applicability of this visible light data to the interpretation of ultraviolet asteroid
observations, and a comparison of the physical properties of main-belt and Jovian
Trojan asteroids. Future sky-surveys would benefit from application of the analyti-
cal techniques presented herein, which include novel modeling methods and unique
applications of machine-learning classification. The PTF asteroid small-body data
produced in the course of this thesis work should remain a fertile source of solar

system science and discovery for years to come.
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Chapter 1

Introduction

The Palomar Transient Factory (PTF) is one of a new generation of synoptic sky-
surveys designed to produce ‘video footage’ of the sky, as compared to previous sur-
veys which only presented single ‘snapshots’ in time. This is now possible due to the
advent of robotic telescopes, efficient CCD imaging technology, and the ability to reli-
ably store and access very large amounts of raw digital data. As the name implies, its
primary intended function is to discover and study extragalactic astrophysical tran-
sients—phenomena such as supernovae, gamma-ray bursts and microlensing events
which offer glimpses of extreme conditions and aspects of our universe. Most of the
PTF team exploits the survey for this kind of science. A smaller group of individ-
uals use the data to study variable stars, which typically are only bright enough to
detect within our own galaxy, but are interesting for their own reasons, such as ac-
curately mapping the structure of the Milky Way (RR Lyrae) or serving as sources
of low-frequency gravitational waves (AM cataclysmic variable systems).

Study of solar system objects (asteroids and comets) was not a primary motivation
in the design of the PTF survey, though it was recognized at its inception that it
would still prove to be a formidable application of its data. The appeal in acquiring
serendipitous asteroid observations was noted more than two centuries ago by French
astronomer Jean Baptiste Delambre, five years after the discovery of the first asteroid

Ceres by Italian astronomer Piazzi:

We further remark that these four planets [Uranus, Ceres, Pallas, and

Juno| were found while searching for something else, and conclude that
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the real way to deserve and to encounter such accidents is to be occupied
in some grand undertaking, which in itself is of real use, and keeps us
constantly on the route to such discoveries ... for example, to work, as M.
Piazzi, to perfect and augment the stellar catalogue, observing each star
repeatedly for several days ... to evidence in the long run the planets that
could still be confused among the innumerable quantity of very faint stars
scattered in the sky.

—J.B. Delambre, 1806

While in the early 19th century there was still much appeal for the mere discovery
of new minor planets, today the field is primarily concerned with the characteri-
zation of these objects (with important exceptions being smaller members of the
near-Earth asteroid and trans-Neptunian populations). While in-situ observations
made by mission-based spacecraft offer exceptional close-up views of asteroids, they
have also made clear the fact that minor planets exhibit extreme diversity in their
shapes, size, spin properties and mineralogical compositions. Survey-based obser-
vations on the other hand facilitate population-level science (i.e., demographics) of
asteroids, allowing us to understand the extent and causes of this diversity, especially
when coupled with modern-day simulations of the formation of the solar system and
key events of its history, in which the asteroids act as key test particles.

The Palomar 48-inch Oschin Schmidt Telescope has itself undertaken many mi-
nor planet surveys since its construction in the mid 20th century. As some of the
main factors determining its sensitivity—its aperture size and optics—have not been
altered significantly since then, most of the asteroids observed by it and similar-
sized telescopes today have long-since been discovered and their orbits catalogued.
The novel temporal sampling offered by PTF however allows us to gather sufficient
number of observations per asteroid to undertake systematic searches for transient
cometary events, or to search for asteroids which are so small that they are only de-
tectable when sufficiently close to the Earth (for a relatively short window of time).

It permits the measurement of spin periods and allows us to put constraints on the
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elongation of many thousands of asteroids simultaneously—an endeavor which up
until recently individual observers would use many allocated nights of telescope time
performing targeted observations to achieve.

The content of this thesis is a compilation of five manuscripts, one of which has
been published (Chapter 2; [Waszczak et al. (2013b)]), one of which has been ac-
cepted for publication and is in press (Chapter 4; [Waszczak et al. (2015)]), and one
of which is in review (Chapter 5). The data taken into account in each chapter
vary slightly depending upon when the analysis was performed: Chapter 2 considers
PTF data collected from 2009-2012 whereas later chapters consider data collected
2009-2014.

In Chapter 2, we search the PTF survey to derive upper limits on the population
size of active main-belt comets (MBCs). Cometary activity in main-belt asteroids
probes the ice content of these objects and provides clues to the history of volatiles
in the inner solar system. From data collected March 2009 through July 2012, we
extracted ~2 million observations of ~220 thousand known main-belt objects (40%
of the known population, down to ~1-km diameter) and discovered 626 new objects
in multi-night linked detections. We formally quantify the “extendedness” of a small-
body observation, account for systematic variation in this metric (e.g., due to on-sky
motion) and evaluate this method’s robustness in identifying cometary activity using
observations of 115 comets, including two known candidate MBCs and six newly-
discovered non-main-belt comets (two of which were originally designated as asteroids
by other surveys). We demonstrate a 66% detection efficiency with respect to the
extendedness distribution of the 115 sampled comets, and a 100% detection efficiency
with respect to extendedness levels greater than or equal to those we observed in
the known candidate MBCs P/2010 R2 (La Sagra) and P/2006 VW39. Using a
log-constant prior, we infer 95% confidence upper limits of 33 and 22 active MBCs
(per million main-belt asteroids down to ~1-km diameter), for detection efficiencies
of 66% and 100%, respectively.

In Chapter 3, we describe the successful implementation of a real-time system for

near-Earth asteroid detection with PTF. Near-Earth asteroids (NEAs) in the 1-100
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meter size range are estimated to be ~1,000 times more numerous than the ~11,000
currently-catalogued NEAs, most of which are in the 0.5-10 kilometer size range.
Impacts from 10-100 meter size NEAs are not statistically life-threatening but may
cause significant regional damage, while 1-10 meter size NEAs with low velocities
relative to Earth are appealing targets for space missions. We describe the design
and initial results of a real-time NEA-discovery system specialized for the detection of
small, high angular rate (visually-streaked) NEAs in PTF images. Our real-time NEA
discovery pipeline uses a machine-learned classifier to filter a large number of false-
positive streak detections, permitting a human scanner to efficiently and remotely
identify real asteroid streaks during the night. Upon recognition of a streaked NEA
detection (typically within an hour of the discovery exposure), the scanner triggers
follow-up with the same telescope and posts the observations to the Minor Planet
Center for worldwide confirmation. We describe our ten initial confirmed discoveries,
all small NEAs that passed 0.3-15 lunar distances from Earth. Lastly, we derive useful
scaling laws for comparing streaked-NEA-detection capabilities of different surveys
as a function of their hardware and survey-pattern characteristics. This work most
directly informs estimates of the streak-detection capabilities of the Zwicky Transient
Facility (ZTF, planned to succeed PTF in 2017), which will apply PTF’s current
resolution and sensitivity over a 47-deg? field-of-view.

In Chapter 4, we fit 54,296 sparsely-sampled asteroid lightcurves in the PTF sur-
vey to a combined rotation plus phase-function model. Each lightcurve consists of
20 or more observations acquired in a single opposition. Using 805 asteroids in our
sample that have reference periods in the literature, we find the reliability of our
fitted periods is a complicated function of the period, amplitude, apparent magni-
tude and other lightcurve attributes. Using the 805-asteroid ground-truth sample,
we train an automated classifier to estimate (along with manual inspection) the va-
lidity of the remaining ~53,000 fitted periods. By this method we find 9,033 of our
lightcurves (of ~8,300 unique asteroids) have ‘reliable’ periods. Subsequent consider-
ation of asteroids with multiple lightcurve fits indicate a 4% contamination in these

‘reliable” periods. For 3,902 lightcurves with sufficient phase-angle coverage and ei-
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ther a reliably-fit period or low amplitude, we examine the distribution of several
phase-function parameters, none of which are bimodal though all correlate with the
bond albedo and with visible-band colors. Comparing the theoretical maximal spin
rate of a fluid body with our amplitude versus spin-rate distribution suggests that,
if held together only by self-gravity, most asteroids are in general less dense than
~2 g/cm?® while C types have a lower limit of between 1 and 2 g/cm®. These re-
sults are in agreement with previous density estimates. For 5-20 km diameters, S
types rotate faster and have lower amplitudes than C types. If both populations
share the same angular momentum, this may indicate the two types’ differing abil-
ity to deform under rotational stress. Lastly, we compare our absolute magnitudes
(and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal
(G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting
reduces asteroid photometric RMS scatter by a factor ~3.

In Chapter 5, we apply results from the previous chapter’s modeling to facilitate
the interpretation of ultraviolet photometry (NUV band, 180-280 nm) of 405 asteroids
observed serendipitously by the Galaxy Evolution Explorer (GALEX) from 2003-2012.
All asteroids in this sample were detected by GALEX at least twice. Unambiguous
visible-color-based taxonomic labels (C type versus S type) exist for 315 of these
asteroids; of these, thermal-infrared-based diameters are available for 245. We derive
NUV — V color using two independent models to predict the visual magnitude V' at
each NUV-detection epoch. Both V models produce NUV — V distributions in which
the S types are redder than C types with more than 8o confidence. This confirms that
the S types’ redder spectral slopes in the visible remain redder than the C types’ into
the NUV, this redness being consistent with absorption by silica-containing rocks.
The GALEX asteroid data confirm earlier results from the International Ultraviolet
Ezplorer, which two decades ago produced the only other sizeable set of UV asteroid
photometry. The GALEX -derived NUV —V data also agree with previously published
Hubble Space Telescope (HST) UV observations of asteroids 21 Lutetia and 1 Ceres.
Both the HST and GALEX data indicate that NUV band is less useful than u band

for distinguishing subgroups within the greater population of visible-color-defined C



types (notably, M types and G types).

Finally, in Chapter 6, we again apply the results of Chapter 4 by focusing on a
small subset of the PTF lightcurves: the Jovian Trojans. The orbital and physical
properties of Jupiter’s Trojan asteroids constrain models of their population’s origin,
as well as our solar system’s broader dynamical history. The Trojans’ apparent di-
vision into two compositionally-distinct taxonomic groups remains unexplained. The
redder-colored D-types are spectrally similar to comet nuclei and many outer solar
system bodies, while the less-red C-types happen to be one of the two predominant
taxonomic types found in the main asteroid belt. In a search for clues regarding the
origin and composition of these two groups, how they came to populate Jupiter’s
Lagrange points and how they have evolved over the last several billions of years,
we present an original analysis of the lightcurve-based demographics of the Trojans.
The lightcurve sample consists of data from the publicly-available online Lightcurve
Database, supplemented with over 100 new Trojan lightcurves from the Palomar
Transient Factory survey. We find that, for 40-km sized and larger objects, the Tro-
jan D types and C types are statistically indistinguishable in their spin rate and
amplitude distributions; similarly the large Trojans and main-belt C-types are also
indistinguishable in these properties. For 10-40-km sized objects, however, the Tro-
jans and main-belt C types do appear to differ significantly, possibly due to unequal
contributions from YORP torques and/or cometary outgassing, both of which have
been suggested previously by other authors. We present PTF lightcurves of six of
the WISE binary candidates, and manually identify two additional PTF lightcurves
as likely Trojan binary systems. A subset of the PTF Trojan lightcurves contain
reliable fitted phase function parameters, the distributions of which we find to be

indistinguishable (between D and C types, and Trojans and main-belt C types).



Chapter 2

Main-Belt Comets

2.1 Introduction

Though often regarded as quiescent rock- and dust-covered small bodies, asteroids
can eject material by a variety of physical mechanisms. One subgroup of these ac-
tive asteroids [Jewitt (2012)] are the main-belt comets (MBCs), which we define! as
objects in the dynamically-stable main asteroid belt that exhibit a periodic (e.g.,
near-perihelion) cometary appearance due to the sublimation of freshly collisionally-
excavated ice. Prior to collisional excavation, this ice could persist over the age of
the solar system, even in the relatively warm vicinity of ~3 AU, if buried under a suffi-
ciently — thick layer of dry  porous regolith  ([Schorghofer (2008)];
[Prialnik and Rosenberg (2009)]).

More complete knowledge of the number distribution of ice-rich asteroids as a func-
tion of orbital (e.g., semi-major axis) and physical (e.g., diameter) properties could
help constrain dynamical models of the early solar system ([Morbidelli et al. (2012)]
and refs. therein). Such models trace the evolution of primordially distributed
volatiles, including the “snow line” of HoO and other similarly stratified compounds.
Complemented by cosmochemical and geochemical evidence (e.g., [Owen (2008)];

[Albarede (2009)]; [Robert (2011)]), such models explore the possibility of late-stage

'Some controversy surrounds the definitions of “main-belt comet”, “active asteroid”
and “impacted asteroid”. ~ While the term active main-belt object ([Bauer et al. (2012)];
[Stevenson et al. (2012)]) is the most general, our particular definition and usage of main-belt comet
is intended to follow that of [Hsieh and Jewitt (2006)], i.e., periodic activity due to sublimating
volatiles.
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(post-lunar formation) accretion of Earth’s and/or Mars’ water from main-belt ob-
jects. Some dynamical simulations ([Levison et al. (2009)]; [Walsh et al. (2011)])
suggest that emplacement of outer solar system bodies into the main asteroid belt
may have occurred; these hypotheses can also be tested for consistency with a better-
characterized MBC population.

For at least the past two decades (e.g., [Luu and Jewitt (1992)]), visible band CCD
photometry has been regarded as a viable means of searching for subtle cometary
activity in asteroids—spectroscopy being an often-proposed alternative. However,
existing visible spectra of MBCs are essentially indistinguishable from those of neigh-
boring asteroids. Even with lengthy integration times, active MBC spectra in the
UV and visible lack the bright 388-nm cyanogen (CN) emission line seen in con-
ventional comets [Licandro et al. (2011)]. Near-infrared MBC spectra are compati-
ble with water ice-bearing mixtures of carbon, silicates and tholins but also suffer
very low signal-to-noise [Rousselot et al. (2011)]. The larger asteroids Themis (the
likely parent body of several MBCs) and Cybele show a 3-um absorption feature
compatible with frost-covered grains, but the mineral goethite could also produce
this feature ([Jewitt and Guilbert-Lepoutre (2012)] and refs. therein). The Herschel
Space Observatory targeted one MBC in search of far-infrared HoO-line emission, yet
only derived an upper limit for gas production [De Val-Borro et al. (2012)]. In gen-
eral, the low albedo [Bauer et al. (2012)] and small diameter of MBCs (~km-scale),
along with their low activity relative to conventional comets, makes them unfit for
spectroscopic discovery and follow-up. Imaging of their sunlight-reflecting dust and
time-monitoring of disk-integrated flux, however, are formidable alternatives which
motivate the present study.

As of April 2013 there were seven known candidate MBCs (Table 2.1) out of
~560,000 known main-belt asteroids. These seven are regarded as candidates rather
than true MBCs because they all lack direct evidence of constituent volatile species,
although two (133P and 238P) have shown recurrent activity at successive perihe-
lia. Three other active main-belt objects—P /2010 A2 (LINEAR), 596 Scheila, and
P /2012 F5 (Gibbs)—likely resulted from dry collisional events and are thus not con-
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sidered to be candidate MBCs. Four of the seven MBCs were discovered serendip-
itously by individuals or untargeted surveys. The other three were found system-
atically: the first in the Hawaii Trails Project [Hsieh (2009)], in which targeted ob-
servations of ~600 asteroids were visually inspected , and the latter two during the
Pan-STARRS 1 (PS1; [Kaiser et al. (2002)]) survey, by an automated point-spread
function analysis subroutine in the PS1 moving-object pipeline [Hsieh et al. (2012b)].
Three of the seven candidate MBCs were originally designated as asteroids, including
two of the three systematically discovered ones, which were labeled as asteroids for
more than five years following their respective discoveries by the automated NEO
surveys LINEAR [Stokes et al. (2000)] and Spacewatch ([Gehrels and Binzel (1984)];
[McMillan (2000)]).

Prior to this work, two additional untargeted MBC searches have been published.
[Gilbert and Wiegert (2010)] checked 25,240 moving objects occurring in the Canada-
France-Hawaii Telescope Legacy Survey [Jones et al. (2006)] using automated PSF
comparison against nearby field stars and visual inspection. Their sample, consisting
of both known and newly-discovered objects extending down to a limiting diameter
of ~1-km, revealed cometary activity on one new object, whose orbit is likely that
of a Jupiter-family comet. [Sonnett et al. (2011)] analyzed 924 asteroids (a mix of
known and new, down to ~0.5-km diameter) observed in the Thousand Asteroid Light
Curve Survey [Masiero et al. (2009)]. They fit stacked observations to model comae
and employed a tail-detection algorithm. While their sample did not reveal any new
MBCs, they introduced a solid statistical framework for interpreting MBC searches
of this kind, including the proper Bayesian treatment of a null-result.

In this chapter, we first describe the process of extracting observations of known
and new solar system small bodies in the PTF survey. We next establish a metric for
“extendedness” and a means of correcting for systematic (non-cometary) variation
in this metric. We then apply this metric to a screening process wherein individual
observations are inspected by eye for cometary appearance. Finally, we apply our

results to upper limit estimates of the population size of active main-belt comets.
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Figure 2.1: Distribution of PTF pointings over the first 41 months of operations
(March 2009 through July 2012), in sky coordinates relevant to small-body observa-
tions.

2.2 Raw transient data

2.2.1 Survey overview

The Palomar Transient Factory (PTF)? is a synoptic survey designed to explore
the transient and variable sky ([Law et al. (2009)]; [Rau et al. (2009)]). The PTF
camera, mounted on Palomar Observatory’s 1.2-m f/2.44 Oschin Schmidt Telescope,
uses 11 CCDs (4096 x 2048 each) to observe 7.26 deg® of the sky at a time with
a resolution of 1.01”/pixel. Most exposures use either a Mould-R or Gunn-¢’ filter
and are 60-s (a small fraction of exposures also comprise an Ha-band survey of the
sky). Science operations began in March 2009, with a nominal 2- to 5-day cadence for
supernova discovery and typically twice-per-night imaging of fields. Median seeing
is 2 with a limiting apparent magnitude R ~ 20.5 (50), while near-zenith pointings
under dark conditions routinely achieve R ~ 21.0 [Law et al. (2010)].

PTF pointings (Figure 2.1) and cadences are not deliberately selected for solar
system science. In fact, PTF’s routine sampling of high ecliptic latitudes (to avoid the
sometimes bright Moon) alleviates small-body sampling bias with respect to orbital
inclination (see Section 2.3.3).

We use data that have been reduced by the PTF photometric pipeline

Zhttp://ptf.caltech.edu
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([Grillmair et al. (2010)]; [Laher et al. (2014)]) hosted at the Infrared Processing and
Analysis Center (IPAC) at Caltech. For each image, the pipeline performs debias-
ing, flat-fielding, astrometric calibration, generation of mask images, and creation
of a catalog of point sources using the astrometric reduction software SExtractor
[Bertin and Arnouts (1996)]. Code-face parameters such as MAGERR_AUTO in this chap-
ter refer to SExtractor output quantities.

Absolute photometric calibration is described in [Ofek et al. (2012a)] and
[Ofek et al. (2012b)] and routinely achieves precision of ~0.02 mag under photomet-
ric conditions. In this chapter, we use relative (lightcurve-calibrated) photometry
(Levitan et al. in prep; for algorithm details see [Levitan et al. (2011)]), which has
systematic errors of 6-8 mmag in the bright (non-Poisson-noise-dominated) regime.
Image-level (header) data used in this study were archived and retrieved using an im-
plementation of the Large Survey Database software (LSD, [Juri¢ (2011)]), whereas

detection-level data were retrieved from the PTF photometric database.

2.2.2 Candidate-observation quality filtering

Prior to ingestion into the photometric database, individual sources are matched
against a PTF reference image (a deep co-add consisting of at least ~20 exposures,
reaching > 21.7 mag). Any detection not within 1.5” of a reference object is classi-
fied in the database as a transient. The ensemble of transients forms a raw sample
from which we seek to extract asteroid (and potential MBC) observations. As of
2012-Jul-31 there exist ~30 thousand deep reference images (unique filter-field-chip
combinations) against which ~1.6 million individual epoch images have been matched,
producing a total of ~700 million transients. Of these, we discard transients which

satisfy any of the following constraints:
e within 4” of a reference object
e outside the convex footprint of the reference image

e from an image with astrometric fit error > 1” relative to the 2MASS survey

[Skrutskie et al. (2006)] or systematic relative photometric error > 0.1 mag
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e within 6.5 arcmin of a V' < 7 Tycho-2 star [Hog et al., 2000], the approximate
halo radius of very bright stars in PTF

e within 2 arcmin of either a 7 < V' < 10 Tycho-2 star or a 7 < R < 10 PTF

reference source, a lower-order halo radius seen in fainter stars

e within 1 arcmin of a 10 < R < 13 PTF reference source; most stars in this mag-

nitude range do not have halos but do have saturation and blooming artifacts

e within 30 pixel-columns of a V' < 10 Tycho-2 star on the same image (targets

blooming columns)
e within 30 pixels of the CCD edge

e flagged by the IPAC pipeline as either an aircraft/satellite track, high dark
current pixel, noisy/hot pixel, saturated pixel, dead/bad pixel, ghost image,
dirt on the optics, CCD-bleed or bright star halo (although the above-described

bright star masks are more aggressive than these last two flags)

o flagged by SExtractor as being either photometrically unreliable due to a nearby
source, originally blended with another source, saturated, truncated or pro-

cessed during a memory overflow

e overconcentrated in flux relative to normal-PSF (stellar) objects on the im-
age (i.e. single-pixel radiation hit candidates)—true if the source’s MU MAX —
MAG_AUTO value minus the image’s median stellar MU MAX — MAG_AUTO value is

less than —1 (this criterion is further explained in Section 2.5)

Application of the above filtering criteria reduces the number of transients (moving-
object candidates) from ~700 million to ~60 million detections. While greatly re-
duced, this sample size is still too large to search (via the methods outlined in the fol-
lowing sections) given available computing resources—hence we seek to further refine
it. These non-small-body detections are likely to include random noise, difficult-to-
flag ghost features [Yang et al. (2002)], less-concentrated radiation hits, bright star
and galaxy features missed by the masking process, clouds from non-photometric

nights, and real astrophysical transients (e.g., supernova).
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Figure 2.2: Transients per image (after filtering and discarding the densest 10% of
images) versus ecliptic latitude, off the galactic equator and near-opposition longitude.
Vertical gray lines are the scatter (standard deviation) and the black line traces the
mean number of detections. Due to the large number of images, the standard error
of the mean for each bin is very small (comparable to the width of the black line).
The inferred ratio of false positive detections (image artifacts) to real small-body
detections at low ecliptic latitudes is at least of order unity.

We find that about two-thirds of the transients in this sample occur in the densest
~10% of the images (i.e. images with more than ~50 transients). These densest ~10%
of images represent over 50% of all images on the galactic equator (]b] < 20°), but
only 7% of all images on the ecliptic (|| < 20°). Hence, discarding them from our
sample should not have a significant effect on the number of small-body observations
we extract. Discarding these dense images reduces our sample of transients to ~20

million.

2.2.3 Sample quality assessment

Figure 2.2 details the distribution of transients (candidates) per image as a function of
ecliptic latitude, after applying the above filters and discarding the dense images. The
galactic signal (not shown) is still present: off-ecliptic low galactic latitude fields have
a mean of ~40 transients; this number drops roughly linearly with galactic latitude,
implying significant residual contribution from ghosts and other missed dense-field
artifacts. However, off the galactic equator a factor-of-two increase in the mean
number of detections per image is seen from || = 50° toward the ecliptic, indicating

a clear detection of the solar system’s main belt.
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2.3 Known-object extraction

Having defined our sample of candidate observations, we now seek to match it to
objects with known orbits. We first index the candidate observations into a three-
dimensional kd-tree, then match this tree against ephemeris data (predicted positions)
for all objects. The reader who wishes to skip over the details of the matching

algorithm should now go to Section 2.3.3.

2.3.1 Implementation of kd-tree indexing

A kd-tree (short for k-dimensional tree) is a data structure which facilitates efficient
cross-matching of M query points against N data points via a multi-dimensional
binary search. Whereas a brute force cross-matching involves of order M N com-
putations, a kd-tree reduces this to order M log N. [Kubica et al. (2007)] gives an
introduction to kd-trees (including some terminology we use below) and details their
increasingly common application in the moving-object processing subsystem (MOPS)
of modern sky-surveys.

Our kd-tree has the following features. Since the detections are three dimensional
points (two sky coordinates plus one time), the tree’s nodes are box volumes, each
of which is stored in memory as six double precision numbers. Before any leaf nodes
(single datum nodes) are reached, the n'® level of the tree consists of 27! nodes,
hence each level of the tree is stored in an array of size 2! x 6 or smaller.

After definition via median splitting, the bounds of each node are set to those of
the smallest volume enclosing all of its data. The splitting of nodes is a parallelized
component of the tree-construction algorithm (which is crucial given their exponential
increase in number at each successive level). Because the splitting-dimension is cycled
continuously, the algorithm will eventually attempt to split data from a single image
along the time dimension; when this occurs it simply postpones splitting until the

next level (where it is split spatially).
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2.3.2 Matching ephemerides against the kd-tree

After constructing the kd-tree of moving-object candidates, we search the tree for
known objects. For each of the ~600 thousand known solar system small bodies
we query JPL’s online ephemeris generator HORIZONS [Giorgini et al. (1996)] to
produce a one-day spaced ephemeris over the 41-month time span of our detections
(2009-Mar-01 to 2012-Jul-31). We then search this ephemeris against the kd-tree of
candidate detections. In particular, the 1,250 points (days) comprising the ephemeris
are themselves organized into a separate (and much smaller) kd-tree-like structure,
whose nodes are instead defined by splits exclusively in the time dimension and whose
leaf nodes always consist of two ephemeris points spaced one day apart.

The ephemeris tree is “pruned” as it is grown, meaning that at each successive
level all ephemeris nodes not intersecting at least one PTF tree node (at the same tree
level) are discarded from the tree. Crossing of the R.A. = 0° discontinuity is dealt
with by detecting nodes that span nearly 360° in R.A. at sufficiently high tree levels.
To account for positional uncertainty in the ephemeris, each ephemeris node is given
an 8" buffer in the spatial dimensions, increasing its volume slightly and ensuring
that the ephemeris points themselves never lie exactly on any of the node vertices.

Once the ephemeris tree is grown to only leaf nodes (which are necessarily over-
lapping some PTF transients), HORIZONS is re-queried for the small-body’s position
at all unique transient epochs found in each remaining one-day node. Since each leaf
node’s angular footprint on the sky is of order the square of the object’s daily motion
(~10 arcmin?® for main-belt objects—much less than the size of a PTF image), the
number of unique epochs is usually small, on the order of a few to tens. The PTF-
epoch-specific ephemerides are then compared directly with the handful of candidate
detections in the node, and matches within 4” are saved as confirmed small-body de-
tections. In addition to the astrometric and photometric data from the PTF pipeline,
orbital geometry data from HORIZONS are saved.

Given the candidate sample of ~20 million transients, for each known object the

search takes ~4 seconds (including the HORIZONS queries, the kd-tree search and
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Figure 2.3: The shaded gray histograms show the distributions of known objects
(normalized such that largest bin equals unity), while the red lines show the frac-
tion of objects in each bin included in the PTF dataset. The osculating orbital
elements are from the JPL Small-Body Database, (http://ssd.jpl.nasa.gov), the abso-
lute magnitudes from the Minor Planet Center (http://www.minorplanetcenter.net),
the visible albedos from fits to the WISE cryogenic data [Masiero et al. (2011)], and
the Sloan colors from the SDSSMOC 4th release [Parker et al. (2008)] supplemented
with 2008-2009 data (B. Sesar, personal communication).

saving of confirmed detections). Hence, PTF observations of the ~600 thousand
known small bodies (main-belt objects, near-Earth objects, trans-Neptunian objects,
comets, etc.) require ~4 days to harvest on an 8-core machine. This relatively quick
run time is crucial given that both the list of PTF transients and the list of known

small bodies are updated regularly, necessitating periodic re-harvesting.

2.3.3 Summary of known small bodies detected

We used the known small bodies list current as of 2012-Aug-10, consisting of 333,841
numbered objects, 245,696 unnumbered objects, and 3157 comets (including lettered
fragments and counting only the most recent-epoch orbital solution for each comet).
Our search found 2,013,279 observations of 221,402 known main-belt objects in PTF
(~40% of all known). Table 2.2 details the coverage into various other orbital sub-
populations.

Two active known candidate main-belt comets appeared in the sample: P /2010
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Figure 2.4: Distance residuals of harvested small-body observations with respect to
their predicted position. The horizontal axis intentionally extends to 4”, as this is the
matching radius we use. Significant contamination due to false-positive detections
would increase with distance; this does not appear to be the case.

R2 (La Sagra) was detected 34 times in 21 nights between 2010-Jul-06 and 2010-Oct-
29, and P /2006 VW39 was detected 5 times in 3 nights—2011-Sep-27, 2011-Oct-02
and 2011-Dec-21 (see Figure 2.13 in Section 2.2.6). In addition to these MBCs, there
were 108 known Jupiter-family comets and 65 long-period comets in this sample (see
Table 2.3).

In terms of coverage, 54% of the objects are observed five times or fewer, and 53%
of the objects are observed on three nights or fewer. Observation-specific statistics
on this data set, such as apparent magnitudes, on-sky motions, etc., appear later in
Section 2.5 (see the histograms in Figure 2.9). Lastly, a summary of orbital-coverage
statistics appears in Figure 2.15 (Section 2.7).

The orbital distribution of the PTF sample is shown in the top row of Figure
2.3. The fraction of known objects sampled appears very nearly constant at 40%
across the full main-belt ranges of the orbital elements a, ¢ and ¢. With respect to
absolute magnitude (referenced for all objects from the Minor Planet Center), the
PTF sampling fraction of 40% applies to the H ~ 17 mag bin, corresponding to
1-km diameter objects for a typical albedo of ~10%.

As shown in Figure 2.4, the distribution of astrometric residuals with respect to
the ephemeris prediction is sharply concentrated well within the matching threshold

of 4”. Were this data set significantly contaminated by randomly distributed false-
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Table 2.2: Known solar system small-body detections in PTF as of July 2012

. Trojan . TNOs &
main-belt & Hilda comets® NEOs centaurs

detections 2,013,279 50,056 2,181 6,586 790
objects 221,402 5,259 1757 1,257 75
% of known 39% 55% 3% 13% 4%

*See Table 2.5 for a more detailed breakdown by comet dynamical type.
"The count of 175 comets given here differs from the count of 115 given in the
abstract, for various reasons described in Section 2.5.4 and Table 2.5.

positives, then their number would increase with matching distance (i.e., with annular

area per unit matching radius), which evidently is not the case.

2.3.4 Overlap of PTF with the WISE and SDSS data sets

During its full-cryogenic mission in 2010, the Wide-field Infrared Survey Fxplorer
(WISE; [Wright et al. (2010)];  [Masiero et al. (2011)], [Masiero et al. (2012)];
[Mainzer et al. (2012)]), observed 94,653 asteroids whose model-derived visible albe-
dos (py) have errors of less than 0.05, and nearly half (45,321) of these were also
observed by PTF. Relative to this known-albedo sample, PTF detected 47% of the
dark (py < 0.1) and ~69% of the bright (py > 0.1) asteroids (Figure 2.3, middle
bottom).

Of the asteroids that were observed by the Sloan Digital sky-survey (SDSS;
[York et al. (2000)]) during its 1998-2009 imaging phase, 142,774 known objects have
g, r and ¢ photometry with errors of less than 0.2 mag in all three bands, and more
than half (72,556) of these objects were also observed by PTF. These data come from
the SDSS Moving Object Catalog 4th release [Parker et al. (2008)], which includes
data through March 2007, supplemented with more recent SDSS moving object data
from 2008-2009 (B. Sesar, personal communication). The principal component color
a* =0.89(g —r)+0.45(r —i) — 0.57 is useful for broad (C-type vs. S-type) taxonomic
classification ([Ivezié¢ et al. (2002)]; [Parker et al. (2008)]). Relative to this known-
color sample, PTF detected 49% of the carbonaceous-colored (a* < 0) and 52% of
the stony-colored (a* > 0) asteroids (Figure 2.3, bottom right).
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Table 2.3: Known comets observed by PTF. Number of observations and nights;
magnitude ranges, heliocentric (r) and geocentric (A) distances (in AU).

name obs. nights first date Tast date Vinin Vmax Tmin Tmax Anmin Amax
7P /Pons-Winnecke 5 3 2009-09-15 2009-09-21 20.3 21.0 3.5 3.5 2.9 2.9
9P /Tempel 1 1 1 2010-03-16 2010-03-16 20.0 20.0 2.9 2.9 2.3 2.3
19P /Borrelly 3 3 2009-05-14 2009-06-25 15.6 17.4 3.1 3.4 2.6 3.3
29P /Schwassmann-Wachmann 1 15 13 2011-01-10 2011-02-14 14.4 15.5 6.2 6.2 5.3 5.7
30P/Reinmuth 1 1 1 2010-02-26 2010-02-26 15.3 15.3 1.9 1.9 1.5 1.5
31P/Schwassmann-Wachmann 2 26 15 2009-12-17 2011-04-11 18.1 19.0 3.5 3.6 2.5 2.8
33P/Daniel 1 1 2009-03-18 2009-03-18 16.8 16.8 2.8 2.8 2.0 2.0
36P/Whipple 45 14 2011-09-05 2011-11-22 17.9 19.4 3.1 3.1 2.1 2.5
47P /Ashbrook-Jackson 4 3 2009-12-03 2009-12-11 17.3 17.6 3.3 3.3 2.3 2.4
48P /Johnson 5 3 2010-04-11 2011-06-11 16.2 21.4 2.4 3.8 1.6 2.8
49P /Arend-Rigaux 30 12 2012-01-20 2012-07-16 16.0 20.0 1.7 2.9 1.0 3.1
54P /de Vico-Swift-NEAT 3 2 2009-07-23 2009-07-29 20.1 20.7 2.4 2.4 1.4 1.4
59P /Kearns-Kwee 1 1 2010-02-17 2010-02-17 20.5 20.5 3.4 3.4 2.5 2.5
64P /Swift-Gehrels 3 3 2009-10-03 2010-02-14 15.8 18.6 1.9 2.9 1.9 2.2
65P/Gunn 9 4 2009-05-25 2012-02-05 14.0 19.7 2.9 4.1 2.5 4.4
71P/Clark 8 5 2011-01-12 2011-01-27 19.6 20.6 3.0 3.1 2.2 2.4
74P /Smirnova-Chernykh 6 3 2010-02-16 2010-02-23 16.1 16.5 3.6 3.6 3.0 3.1
77P/Longmore 74 4 2009-03-13 2009-04-06 14.2 14.7 2.4 2.4 1.4 1.5
78P /Gehrels 2 11 3 2011-11-02 2011-11-09 12.3 12.5 2.1 2.1 1.3 1.3
94P /Russell 4 5 4 2010-02-16 2010-06-03 16.2 17.5 2.8 2.3 1.3 2.1
103P /Hartley 2 18 11 2010-06-06 2010-08-03 14.6 18.3 1.5 2.1 0.7 1.5
10P/Tempel 2 6 5 2009-06-09 2010-08-10 10.6 20.0 1.5 3.4 0.7 3.3
116P/Wild 4 5 3 2009-03-27 2009-04-01 13.6 14.0 2.3 2.3 1.6 1.6
117P/Helin-Roman-Alu 1 29 13 2010-02-13 2011-12-04 18.8 19.8 4.5 5.1 4.5 4.8
118P/Shoemaker-Levy 4 3 2 2010-02-18 2010-04-08 13.6 14.7 2.0 2.1 1.3 1.9
123P /West-Hartley 1 1 2010-09-13 2010-09-13 20.3 20.3 3.0 3.0 2.9 2.9
127P /Holt-Olmstead 5 3 2009-08-13 2009-11-17 17.1 18.7 2.2 2.2 1.3 1.6
130P/McNaught-Hughes 2 2 2010-04-11 2010-04-16 20.8 21.0 3.5 3.5 2.5 2.5
131P/Mueller 2 8 2 2011-11-02 2011-11-03 18.6 19.0 2.5 2.5 1.6 1.6
142P /Ge-Wang 3 2 2010-10-03 2010-10-17 20.6 20.6 2.7 2.7 1.7 1.8
143P /Kowal-Mrkos 2 1 2010-08-24 2010-08-24 19.8 20.1 3.7 3.7 2.9 2.9
149P /Mueller 4 17 10 2010-02-16 2010-06-03 18.7 20.1 2.7 2.7 1.8 2.2
14P /Wolf 1 1 2009-11-03 2009-11-03 19.4 19.4 3.1 3.1 2.2 2.2
157P /Tritton 2 2 2009-09-10 2009-11-07 17.2 18.5 1.8 2.2 1.0 1.2
158P /Kowal-LINEAR 17 7 2012-07-22 2012-07-29 18.8 19.4 4.6 4.6 4.1 4.2
160P/LINEAR 7 2 2010-03-28 2012-07-18 18.7 19.2 2.1 5.3 1.4 4.3
162P/Siding Spring 16 10 2010-11-13 2012-03-21 18.8 20.5 2.7 4.7 3.0 3.8
163P/NEAT 3 1 2011-11-03 2011-11-03 19.9 20.2 2.4 2.4 1.5 1.5
164P /Christensen 4 3 2011-09-04 2011-09-08 17.9 18.8 1.9 1.9 2.6 2.6
167P/CINEOS 17 15 2009-06-24 2010-10-29 20.7 21.6 13.9 14.5 13.0 14.1
169P/NEAT 1 1 2009-07-07 2009-07-07 19.0 19.0 2.2 2.2 1.3 1.3
188P/LINEAR-Mueller 1 1 2010-02-19 2010-02-19 21.2 21.2 4.9 4.9 4.0 4.0
202P /Scotti 3 1 2009-03-17 2009-03-17 19.5 19.8 2.5 2.5 2.5 2.5
203P /Korlevic 3 2 2011-01-01 2011-01-08 17.6 18.4 3.6 3.6 2.9 3.0
213P/Van Ness 2 2 2012-01-04 2012-01-05 17.2 17.3 2.5 2.5 2.6 2.6
215P/NEAT 14 6 2011-11-02 2012-01-21 18.1 19.7 3.8 3.9 2.9 4.0
217P/LINEAR 18 10 2009-06-26 2010-03-28 10.4 18.8 1.2 2.5 0.6 2.4
218P/LINEAR 5 2 2009-05-25 2009-05-27 19.1 19.7 1.7 1.7 0.9 0.9
219P /LINEAR 40 12 2010-08-13 2010-11-08 17.4 19.2 2.6 2.8 1.8 2.4
220P /McNaught 3 1 2009-06-01 2009-06-01 19.9 20.5 2.3 2.3 1.4 1.4
221P/LINEAR 7 6 2009-08-13 2009-09-20 20.4 21.2 2.5 2.6 1.6 1.7
223P /Skiff 8 5 2010-08-13 2010-09-03 19.4 20.3 2.4 2.4 1.9 2.1
224P /LINEAR-NEAT 1 1 2009-09-14 2009-09-14 21.4 21.4 2.3 2.3 1.3 1.3
225P /LINEAR 2 2 2009-10-22 2009-10-22 20.2 20.6 1.5 1.5 0.9 0.9
226P /Pigott-LINEAR-Kowalski 2 2 2009-10-16 2009-10-16 19.3 19.6 2.3 2.3 2.2 2.2
228P/LINEAR 12 10 2010-12-31 2012-03-05 18.0 20.4 3.5 3.5 2.6 3.3
229P /Gibbs 4 2 2009-08-19 2009-08-23 19.7 20.2 2.4 2.4 2.1 2.1
22P /Kopff 7 4 2009-06-26 2009-08-02 11.9 12.3 1.6 1.7 0.8 0.9
230P/LINEAR 5 3 2009-12-03 2010-01-12 18.4 18.8 1.9 2.1 1.4 1.6
234P /LINEAR 1 1 2009-12-15 2009-12-15 20.6 20.6 2.9 2.9 3.1 3.1
236P/LINEAR 19 14 2010-06-17 2011-01-25 17.1 20.7 1.9 2.2 0.9 1.9
237P/LINEAR 27 15 2010-07-05 2010-10-02 19.6 21.2 2.8 3.0 2.0 2.3
240P/NEAT 7 5 2010-07-25 2010-12-08 14.5 16.6 2.1 2.2 1.3 2.6
241P /LINEAR 8 8 2010-12-28 2011-02-01 17.4 18.4 2.4 2.6 1.6 1.7
242P /Spahr 16 13 2010-08-15 2011-08-28 19.3 21.1 4.1 4.8 3.7 4.4
243P /NEAT 5 3 2011-11-03 2011-11-22 20.2 20.9 2.9 3.0 2.1 2.2
244P /Scotti 29 17 2010-09-10 2011-01-06 19.3 20.3 4.2 4.3 3.3 3.9
245P /WISE 9 6 2010-07-25 2010-09-11 19.1 20.4 2.5 2.7 1.7 1.7
246P /NEAT 14 7 2011-02-13 2011-11-23 16.5 19.1 3.6 4.3 3.4 4.1
247P /LINEAR 12 7 2010-10-08 2010-11-12 17.1 20.2 1.6 1.8 0.7 1.1
248P /Gibbs 25 15 2010-09-18 2010-12-11 18.2 19.8 2.2 2.5 1.4 1.7
250P /Larson 3 2 2010-11-03 2010-11-04 20.4 20.8 2.2 2.2 2.1 2.2
253P /PANSTARRS 4 3 2011-11-02 2011-12-08 16.9 18.0 2.0 2.0 1.3 1.6
254P /McNaught 1 1 2011-11-03 2011-11-03 17.8 17.8 3.7 3.7 3.0 3.0
260P /McNaught 9 3 2012-07-27 2012-07-30 14.2 14.7 1.6 1.6 0.9 0.9
261P /Larson 18 9 2012-06-25 2012-07-06 19.2 20.3 2.3 2.3 1.7 1.8
279P /La Sagra 6 3 2009-07-20 2009-08-02 20.1 21.4 2.2 2.2 1.3 1.4
P/2006 VW39 5 3 2011-09-27 2011-12-21 19.0 19.6 2.5 2.6 1.5 1.9
P/2009 O3 (Hill) 7 5 2009-09-20 2009-11-07 17.5 18.5 2.7 2.9 1.8 2.0
P /2009 Q1 (Hill) 5 3 2009-08-01 2010-12-31 18.4 19.9 2.8 4.5 2.0 3.7
P/2009 Q4 (Boattini) 6 4 2009-12-16 2010-03-16 13.4 17.8 1.4 1.8 0.6 0.9
P/2009 Q5 (McNaught) 2 1 2009-08-21 2009-08-21 17.0 17.1 2.9 2.9 2.2 2.2
P /2009 SKagp (Spacewatch-Hill) 5 3 2009-10-23 2009-11-09 19.8 20.4 4.2 4.2 3.2 3.3
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Table 2.3: — Continued
name obs. nights first date Tast date Vinin Vimax Tmin Tmax Ain Amax
P/2009 T2 (La Sagra) 8 6 2009-08-24 2010-03-13 16.5 20.5 1.8 2.3 1.1 1.9
P/2009 WX5; (Catalina) 6 1 2009-12-17 2009-12-17 17.4 18.0 1.1 1.1 0.2 0.2
P/2010 A3 (Hill) 3 2 2009-09-13 2010-03-25 16.1 21.3 1.6 2.7 1.8 1.9
P/2010 A5 (LINEAR) 4 3 2010-01-12 2010-02-24 16.3 17.4 1.8 2.0 1.2 1.8
P/2010 B2 (WISE) 1 1 2010-02-23 2010-02-23 20.0 20.0 1.7 1.7 1.1 1.1
P/2010 D2 (WISE) 1 1 2010-03-17 2010-03-17 19.9 19.9 3.7 3.7 3.6 3.6
P/2010 E2 (Jarnac) 5 4 2010-06-08 2010-06-28 19.1 20.2 2.5 2.5 2.0 2.3
P /2010 H2 (Vales) 11 6 2010-04-16 2010-06-01 11.8 15.1 3.1 3.1 2.1 2.4
P /2010 H5 (Scotti) 18 10 2010-05-30 2010-06-17 20.4 21.2 6.0 6.0 5.4 5.6
P/2010 N1 (WISE) 2 2 2010-03-12 2010-03-15 20.9 21.1 2.1 2.1 1.2 1.2
P/2010 P4 (WISE) 3 3 2010-09-15 2010-10-04 20.1 20.8 2.0 2.0 1.2 1.3
P/2010 R2 (La Sagra) 34 21 2010-07-06 2010-10-29 18.2 20.1 2.6 2.7 1.7 2.1
P/2010 T2 (PANSTARRS) 7 5 2010-09-05 2010-09-15 19.9 21.4 4.0 4.0 3.1 3.2
P/2010 TOgp (LINEAR-Grauer) 1 1 2010-08-24 2010-08-24 18.7 18.7 5.3 5.3 4.4 4.4
P/2010 Ul (Boattini) 62 33 2009-06-25 2010-11-13 19.1 21.4 4.9 5.0 4.0 4.9
P/2010 U2 (Hill) 34 19 2010-09-07 2010-12-13 17.6 19.9 2.6 2.6 1.6 1.9
P/2010 UHss5 (Spacewatch) 24 10 2010-10-15 2011-10-17 18.7 20.3 3.0 3.2 2.1 3.6
P/2010 WK (LINEAR) 9 5 2010-08-14 2010-09-22 18.7 20.4 1.8 1.9 1.2 1.6
P/2011 C2 (Gibbs) 28 19 2010-12-02 2012-02-01 19.7 21.1 5.4 5.6 4.7 5.3
P/2011 JB15 (Spacewatch-Boattini) 2 2 2010-06-06 2010-06-09 20.7 21.1 5.6 5.6 5.0 5.0
P/2011 NO; (Elenin) 1 1 2011-07-30 2011-07-30 19.7 19.7 2.6 2.6 1.6 1.6
P/2011 P1 (McNaught) 4 2 2011-09-08 2011-09-20 18.7 19.4 5.3 5.3 4.6 4.7
P/2011 Q3 (McNaught) 38 20 2011-07-23 2011-11-30 18.5 20.5 2.4 2.5 1.4 2.0
P/2011 R3 (Novichonok) 5 3 2011-10-08 2011-10-10 18.3 18.6 3.7 3.7 2.7 2.7
P/2011 Ul (PANSTARRS) 18 7 2011-11-24 2012-01-18 19.1 20.9 2.6 2.8 1.8 1.9
P/2011 VJ5 (Lemmon) 5 3 2012-02-04 2012-03-25 18.5 19.4 1.6 1.9 0.9 0.9
P/2012 B1 (PANSTARRS) 9 6 2011-12-11 2012-01-04 19.2 19.9 4.9 4.9 4.0 4.3
C/2002 VQg4 (LINEAR) 3 2 2009-06-09 2009-07-06 18.6 18.7 10.2 10.3 9.5 10.0
C/2005 EL173 (LONEOS) 2 1 2009-07-28 2009-07-28 19.5 20.4 8.0 8.0 7.3 7.3
C/2005 L3 (McNaught) 47 19 2009-05-12 2012-03-16 14.0 19.4 6.6 11.6 6.0 10.8
C/2006 OF2 (Broughton) 89 5 2010-01-25 2010-02-16 16.0 16.6 5.5 5.7 4.6 4.7
C/2006 Q1 (McNaught) 11 6 2009-05-13 2009-08-16 14.0 15.1 4.2 4.8 3.5 4.8
C/2006 S3 (LONEOS) 37 25 2009-06-25 2010-09-12 15.4 17.5 6.7 8.9 5.8 8.6
C/2006 U6 (Spacewatch) 4 2 2009-03-25 2010-03-16 16.2 19.7 3.9 6.6 3.0 5.7
C/2007 D1 (LINEAR) 6 3 2010-03-12 2011-03-16 17.8 18.8 10.5 11.7 9.6 10.9
C/2007 G1 (LINEAR) 7 5 2010-12-28 2011-01-23 19.0 20.1 7.5 7.7 6.7 7.1
C/2007 M1 (McNaught) 14 8 2009-07-04 2010-03-17 18.6 20.5 7.7 8.3 7.1 8.0
C/2007 N3 (Lulin) 2 1 2009-12-27 2009-12-27 16.3 16.5 4.6 4.6 3.6 3.6
C/2007 Q3 (Siding Spring) 33 20 2009-11-03 2010-07-23 11.1 14.6 2.3 3.8 2.2 3.9
C/2007 T5 (Gibbs) 7 5 2009-05-16 2009-06-29 19.9 20.5 5.0 5.2 4.5 5.1
C/2007 Ul (LINEAR) 21 13 2009-06-24 2009-09-07 16.7 17.8 4.4 4.9 3.9 4.4
C/2007 VOs53 (Spacewatch) 26 11 2011-06-24 2012-06-27 17.8 20.7 5.8 7.6 5.5 7.0
C/2008 FK75 (Lemmon-Siding Spring) 19 11 2009-06-28 2010-09-28 15.3 16.7 4.5 5.8 4.1 5.2
C/2008 N1 (Holmes) 13 7 2009-07-21 2010-06-06 16.3 18.3 2.8 3.8 2.6 3.6
C/2008 P1 (Garradd) 4 2 2009-08-23 2009-09-14 15.5 15.8 3.9 3.9 3.0 3.2
C/2008 Q1 (Maticic) 15 7 2009-05-13 2011-02-22 16.1 18.8 3.2 7.5 2.6 6.7
C/2008 Q3 (Garradd) 2 1 2010-03-26 2010-03-26 17.6 17.8 3.7 3.7 3.1 3.1
C/2008 S3 (Boattini) 33 12 2010-09-29 2010-11-06 17.4 18.4 8.1 8.2 7.2 7.3
C/2009 F1 (Larson) 2 1 2009-03-27 2009-03-27 18.7 18.8 2.1 2.1 1.2 1.2
C/2009 F2 (McNaught) 2 2 2012-06-26 2012-06-28 20.8 20.8 8.7 8.7 8.1 8.1
C/2009 K2 (Catalina) 19 10 2009-05-08 2009-08-24 17.8 19.8 3.6 4.1 3.6 3.9
C/2009 K5 (McNaught) 3 3 2010-09-27 2010-11-12 13.7 14.4 2.5 3.0 2.3 2.6
C/2009 O2 (Catalina) 4 2 2009-06-29 2009-07-21 19.8 21.3 3.7 4.0 2.7 3.2
C/2009 P1 (Garradd) 7 4 2011-07-21 2012-02-02 8.6 9.5 1.6 2.6 1.4 1.7
C/2009 P2 (Boattini) 44 26 2009-08-13 2010-09-14 18.5 19.8 6.6 6.7 5.7 6.8
C/2009 T3 (LINEAR) 1 1 2010-06-03 2010-06-03 18.9 18.9 2.8 2.8 2.9 2.9
C/2009 U3 (Hill) 20 4 2010-01-17 2010-05-04 16.2 16.7 1.5 1.7 1.3 1.4
C/2009 U5 (Grauer) 5 4 2010-12-08 2011-01-12 20.2 21.1 6.2 6.3 5.7 6.1
C/2009 UGgg (Lemmon) 61 32 2011-04-27 2012-04-29 17.0 20.2 4.1 5.7 3.6 5.2
C/2009 Y1 (Catalina) 14 8 2009-12-30 2011-09-28 15.2 19.4 3.5 4.7 2.7 4.2
C/2010 B1 (Cardinal) 5 3 2010-01-11 2010-01-25 17.8 18.0 4.7 4.7 4.0 4.1
C/2010 D4 (WISE) 32 21 2009-05-18 2010-09-18 19.8 21.3 7. 7.8 6.5 8.2
C/2010 DG5¢ (WISE) 13 9 2010-07-26  2010-09-11 18.1 20.0 1.9 2.2 1.1 1.6
C/2010 E5 (Scotti) 3 2 2010-03-19 2010-03-25 19.8 19.9 4.0 4.0 3.0 3.0
C/2010 F1 (Boattini) 11 9 2009-11-09 2010-01-17 18.5 19.5 3.6 3.6 3.0 3.7
C/2010 G2 (Hill) 10 7 2010-06-23 2012-01-15 12.4 18.9 2.5 5.0 2.1 4.5
C/2010 G3 (WISE) 37 24 2009-10-03 2011-06-26 18.6 20.4 4.9 5.9 4.7 6.3
C/2010 J1 (Boattini) 4 2 2010-06-13 2010-06-24 18.1 19.2 2.3 2.4 1.7 2.0
C/2010 J2 (McNaught) 6 4 2010-06-27 2011-06-10 16.9 20.0 3.4 4.8 2.6 4.2
C/2010 L3 (Catalina) 53 34 2009-08-03 2012-07-16 18.8 20.9 9.9 10.4 9.3 10.3
C/2010 R1 (LINEAR) 27 11 2012-06-01 2012-06-27 16.9 17.4 5.6 5.6 4.8 5.1
C/2010 S1 (LINEAR) 1 1 2010-02-18 2010-02-18 20.3 20.3 9.9 9.9 9.8 9.8
C/2010 U3 (Boattini) 6 5 2010-10-17 2011-09-04 20.0 20.6 17.1 18.4 16.6 17.5
C/2010 X1 (Elenin) 23 18 2011-01-06 2011-02-22 17.6 19.4 3.3 3.9 2.4 3.6
C/2011 A3 (Gibbs) 22 9 2011-03-04 2011-04-15 16.6 17.5 3.5 3.8 2.7 3.1
C/2011 C1 (McNaught) 1 1 2011-08-25 2011-08-25 19.7 19.7 2.3 2.3 1.7 1.7
C/2011 C3 (Gibbs) 1 1 2011-02-11 2011-02-11 20.4 20.4 1.7 1.7 1.3 1.3
C/2011 F1 (LINEAR) 27 18 2010-10-12 2012-05-24 13.4 19.7 3.3 8.2 2.9 8.6
C/2011 G1 (McNaught) 5 2 2011-11-08 2012-01-27 17.3 17.5 2.2 2.6 1.8 2.5
C/2011 J3 (LINEAR) 1 1 2011-06-23 2011-06-23 19.0 19.0 2.4 2.4 2.1 2.1
C/2011 L3 (McNaught) 18 10 2011-07-15 2011-10-01 14.9 17.6 1.9 2.0 1.0 1.9
C/2011 M1 (LINEAR) 2 1 2011-07-04 2011-07-04 15.7 16.0 1.4 1.4 1.4 1.4
C/2011 P2 (PANSTARRS) 11 8 2011-06-10 2011-08-19 19.4 20.1 6.3 6.3 5.3 5.5
C/2011 Q4 (SWAN) 4 2 2012-02-25 2012-02-26 20.3 20.7 2.5 2.5 1.8 1.8
C/2011 R1 (McNaught) 9 6 2010-10-04 2010-12-13 19.5 20.7 7.0 7.5 6.3 6.6
C/2012 A1 (PANSTARRS) 4 4 2010-10-31 2011-01-01 20.4 21.2 10.0 10.2 9.3 10.3
C/2012 A2 (LINEAR) 3 2 2011-04-07 2011-11-18 18.9 20.9 4.7 6.1 5.1 5.2
C/2012 CHy7 (MOSS) 3 2 2012-01-04 2012-01-06 19.2 20.1 3.7 3.7 3.1 3.2
C/2012 E1 (Hill) 54 26 2011-06-10 2012-05-29 19.4 20.5 7.5 7.8 6.7 7.4
C/2012 E3 (PANSTARRS) 1 1 2012-06-09 2012-06-09 20.5 20.5 5.1 5.1 4.8 4.8
C/2012 Q1 (Kowalski) 2 1 2011-10-01 2011-10-01 19.9 20.1 9.5 9.5 8.9 8.9
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Figure 2.5: As in Figure 2.2, the vertical bars show the scatter (standard deviation)
and the connected points are the mean values for the bins. Now added in red is the
distribution of transients after exclusion of the ~2 million known-object detections.
The original distribution is included, in black, for comparison.

Of the 27,326 objects that were observed by both WISE and SDSS (satisfying the
measurement error constraints mentioned above), 16,955 (62%) of these were also
observed by PTF. A total of 624 of these WISE+SDSS objects were observed at
least 10 times on at least one night in PTF, whence rotation curves can be estimated,
while 625 of these WISE+SDSS objects have PTF observations in five or more phase-
angle bins of width 3°; including opposition (0° —3°), whence phase functions can be

estimated.

2.4 Unknown-object extraction

Exclusion of the ~2 million known-object detections leaves ~18 million transients
remaining in our list of moving-object candidates. Figure 2.5 shows that the ecliptic
distribution of transients per image has flattened out substantially. However, ignoring
the scatter, the mean number of transients in the leftmost (lowest ecliptic latitude) bin
remains the highest by more than two detections per image, suggesting the presence

of significant unknown (i.e., undiscovered) small bodies in the data.
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2.4.1 Previous and ongoing PTF small-body discovery work

In [Polishook et al. (2012)], a pilot study of rotation curve analysis and new-object
discovery was undertaken using a few nights of ~20 deg® high cadence (~20-minute-
spaced) PTF data obtained in February 2010 at low ecliptic latitude (|5] < 2.5°).
Using an original moving-object detection algorithm, they extracted 684 asteroids; of
those which received provisional designations, three still qualify as PTF discoveries
as of March 2013 (2010 CUsgy7, 2010 CLgy9 and 2010 CNagy9). Though highly efficient
on high cadence data, their tracklet-finding algorithm’s limitations (e.g., single-night,
single-CCD) renders it inapplicable to the vast majority of regular- (hour-to-days-)
cadence PTF data.

A popular solution to this problem was already mentioned in Section 2.3, namely
the use of kd-trees. A recently successful such kd-tree-based, detection-couplet-
matching MOPS was used on the WISE data [Dailey et al. (2010)]. The WISE MOPS
successfully extracted ~2 million observations of ~158,000 moving objects from the
WISE data, including ~34,000 new objects. A modified version of the WISE MOPS
is under development for PTF at IPAC. As with the WISE MOPS, a key intent is
the discovery of near-Earth objects, hence the PTF MOPS will need to accommo-
date relatively fast apparent motions (at least an order of magnitude faster than
main-belt speeds). This poses considerable challenges, because PTF’s cadences and
false-positive detection rates are less accommodating than those of the space-based
WISE survey. Though far from complete, the prototype PTF MOPS has successfully
demonstrated that it can find tracklets spanning multiple nights and multiple fields
of view, including at least two near-Earth objects, one of which was unknown (J.
Bauer, personal communication).

As the PTF MOPS is still in development, for the purposes of this chapter we
implement an original moving-object detection algorithm and run it on our residual
~18 million-transient sample. The reader who wishes to skip over the details of the

discovery algorithm should now go to Section 2.4.3.
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Figure 2.6: Time interval between consecutive observations of known objects in PTF.
This distribution justifies the 48-hour upper limit we impose for tracklet finding,
which also was chosen for computational expediency.

2.4.2 A custom discovery algorithm for main-belt objects

Because our intention is solely to supplement the main-belt comet search, we restrict
apparent motions to those typical of main-belt objects (thereby easing the compu-
tational burden, but excluding faster NEOs and slower TNOs). This on-sky motion
range is taken to be between 0.1 and 1.0 arcsec/minute.

Analysis of the known-object sample (Figure 2.6) shows that about half of all
consecutive-observation pairs occur over a less than 12-hour (same night) interval,
with a sharp peak at the one-hour spacing. Of the remaining (multi-night) consecutive-
observation pairs, roughly half span less than 48 hours. Given these statistics, we
prescribe 2 days as our maximum allowable timespan (between first and last obser-
vation) for a minimum three-point tracklet. As will be explained, multiple primary
tracklets can be merged to produce a secondary tracklet greater than 2 days in total
length, but the interval between any two consecutive points in the secondary tracklet
still will not exceed 2 days. An imposed minimum time of 10 minutes between consec-
utive tracklet points ensures that the object has moved at least one arcsecond (for the
minimum allowed speed), such that stationary transients (e.g., hostless-supernovae)

are excluded.
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Having specified time and velocity limits, the problem reduces to searching a
double-cone-shaped volume, in three-dimensional time-plus-sky space surrounding
each transient, to find sufficiently collinear past and future points. We modified our
kd-tree implementation from Section 2.3 for this purpose. In particular, because PTF
data were not collected on every consecutive night of the 41-months (due to weather,
scheduling, etc.), the two-day upper limit we impose makes node-splitting along two-
day (minimum) gaps in the data more natural and practical than simply splitting at
median times, as was done in Section 2.3.1 and as is done generally for kd-trees.

An illustration of the tracklet-finding scheme (simplified to one spatial dimen-
sion) appears in Figure 2.7. For each transient, the kd-tree is used to rapidly find all
other transients within its surrounding double-cone. Then, for every candidate past-
plus-future pair of points, the two components of velocity and the distance residual
of the middle transient from the candidate pair’s predicted location (at the middle
transient’s epoch) are computed. Candidate past-plus-future pairs are then automat-
ically discarded on the basis of the middle transient’s distance residual with respect to
them. To accommodate a limited amount of constant curvature, we use an adaptive
criterion that is least stringent when the middle transient lies exactly at the midpoint
between the past and future points, and becomes linearly more stringent as the mid-
dle transient nears one endpoint (approaching zero-tolerance at an endpoint). For
candidate pairs spanning a single night or less, the maximum allowed middle-point
residual is 1”7, while multi-night candidate pairs are allowed up to a 10” offset at the
midpoint.

All remaining candidate past-plus-future pairs are then binned in two dimensions
based on their two velocity components (R.A. and Dec. rates). Since the maximum al-
lowed speed is 1 arcsec/minute, bins of 0.05 arcsec/minute between 1 arcsec/minute
are used. If any single bin contains more candidate pairs than any other bin, all tran-
sients in all pairs in that bin, plus the middle transient, are automatically assigned
a unique tracklet label. If more than one bin has the maximal number of pairs, the
pair with the smallest midpoint residual is used. If any of these transients already

has a tracklet label, all the others are instead assigned that existing label.
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Figure 2.7: Schematic of our tracklet-finding algorithm, with only one spatial dimen-
sion (rather than the actual two) for clarity. Given all transients (gray dots), a kd-tree
search rapidly finds those that are nearby in spacetime (within the blue dashed box,
of 48-hour full-width) to the central, target transient (green dot). Minimal- and
maximal-velocity bounds then define a subset of these (all dots lying in the gray
shaded regions, in this case four). All possible past + future pairs are considered (in
this case, four possible pairs). Pairs whose predicted midpoint position is sufficiently
far from the target transient are immediately rejected (red dashed lines). Pairs with a
sufficiently small residual (green dashed lines) then are binned in velocity space, and
the velocity bin containing the most pairs is chosen. In this example, however, both
non-empty velocity bins have only one pair, in which case the pair with the smallest
midpoint residual is chosen.
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Following this stage in the new-object discovery process, all tracklets found are
screened rapidly by eye to eliminate false positives. The remaining tracklets are as-
signed a preliminary orbital solution using the orbit-fitting software Find_Orb® in
batch mode. All orbital solutions are then used to re-search the transient data set for
missed observations which could further refine the object’s orbit. Because linear posi-
tion extrapolation is replaced at this point by full orbital-solution-based ephemerides,
the merging of tracklets across gaps in time longer than 48 hours is attempted in this

last step.

2.4.3 Summary of objects discovered

We found 626 new objects which had a sufficient number of observations (at least
two per night on at least two nights) to merit submission to the Minor Planet Center
(MPC), whereupon they were assigned provisional designations. Four new comets
were among the objects found by this moving-object search: 2009 KF37, 2010 LNy3s,
2012 KAjs;, and C/2012 LPys (see Table 2.4 in Section 2.6 for details). The first
is a Jupiter-family comet and the latter three are long-period comets. As of March
2013, the first three still bear provisional asteroidal designations assigned by the
MPC’s automated procedures; the fourth, C/2012 LPys (Palomar), was given its
official cometary designation after follow-up observations were made in Februrary
2013 [Waszczak et al. (2013a)]. The cometary nature of these objects was initially
noted on the basis of their orbital elements; an independent confirmation on the basis

their measured extendedness appears in Section 2.6.

3The batch (non-interactive) Linux version of Find_Orb tries combinations of the
Viisdld and Gauss orbit-determination methods on subsets of each tracklet in an attempt
to converge on an orbit solution with minimized errors. For more information, see
http://www.projectpluto.com/find_orb.htm.
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Figure 2.8: Of 622 asteroids discovered in multi-night PTF data through July 2012,
the MPC has provided orbital solutions for 470 of these. Assuming typical albedos,
the smallest (H ~ 19.5) objects correspond to ~0.5-km diameters, while the H ~ 13
Trojans correspond to ~10-km diameters.

2.5 Extended-object analysis: Approach

2.5.1 Definition of the extendedness parameter u

To quantify the extendedness of a given small-body observation, we use the ratio of the
object’s total flux, within a flexible elliptical aperture (Kron 1980), to its maximum
surface flux (i.e., the flux of the brightest pixel). Specifically, in terms of SExtractor
output quantities, for each detection we define the quantity p as MUMAX — MAG_AUTO
minus the median value of MU_MAX — MAG_AUTO for bright unsaturated stars on the
image (note that the ratio of fluxes is equivalently the difference in magnitudes).

Unlike full-width at half maximum (FWHM), which is based on a one-dimensional
symmetric (e.g., Gaussian) PSF model, p is versatile as a metric in that it does not
involve any assumption of symmetry (radial or otherwise). Note that in Section 2.2
we defined and excluded radiation hit candidates as those detections having p < —1.
A negative p means the object is more concentrated than bright stars on the image,
while a positive ;1 means it is more extended. The error in y, denoted o, is obtained
by adding in quadrature the instrumental magnitude error MAGERR_AUTO and the 16th-
to-84th percentile spread in MU MAX — MAG_AUTO for the bright stars.
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2.5.2 Systematic (non-cometary) variation in p

The p of a given small-body detection varies systematically with several known quan-
tities, meaning that “extended” as defined by pu is not synonymous with “cometary”.

Firstly, we must consider the apparent magnitude, since detections near the sur-
vey’s limiting magnitude have a known bias [Ofek et al. (2012a)] in their instrumental
magnitude (MAG_AUTO), which by definition affects the value of . [Ofek et al. (2012a)]
note that use of the aperture magnitude MAG_APER rather than the adaptive Kron mag-
nitude MAG_AUTO removes this bias, but unfortunately photometric zeropoints only
exist presently for the latter in the PTF photometric database.

Secondly, the object’s apparent motion on the sky during the 60-second exposure
time must be considered, as such motion causes streaking to occur, which alters the
flux distribution and hence also u. It turns out that in > 99% of all observations in
our sample (mostly main-belt objects), the on-sky motion is smaller than 1”/minute.
Given PTF’s 1”7 /pixel resolution, one might expect that the vast majority of objects
are not drastically affected by streaking. Nevertheless, p varies systematically with
motion, as it does for apparent magnitude (see Section 2.5.4).

Thirdly, the photometric quality of an observation’s host image, i.e., the seeing
(median FWHM) and sky brightness, must be taken into account, since the median
and spread of MU MAX — MAG_AUTO for bright stars on the image, and hence also p,
are influenced by such conditions.

A final measurable property affecting p is the distance between the object’s flux
barycenter and the center of its brightest pixel. In terms of SExtractor quantities,
this is computed as ((XPEAK_IMAGE — X_IMAGE)? + (YPEAK IMAGE — Y IMAGE)?)Y/2
In particular, if the barycenter lies near to the pixel edge (~0.5" from the pixel center),
the majority of the flux will be nearly equally shared between two adjacent pixels. If
it is near the pixel corner (~0.7" from the center), the flux will be distributed into
four pixels (assuming a reasonably symmetric PSF and non-Poisson-noise-dominated
signal). An object’s position relative to the pixel grid is random, but the resulting

spread in barycenter position does cause systematic variation in p.
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We can reasonably assume that some of these variations may be correlated.
[Jedicke et al. (2002)] discusses systematic observable correlations of this kind, in the
separate problem of debiasing sky-survey small-body data sets. Jedicke et al. also
introduces a general formalism for representing survey detection systematics, which

we now adapt in part to the specific problem of using p to identify cometary activity.

2.5.3 Formalism for interpreting u

Let the state vector ¥ contain all orbital (e.g., semi-major axis, eccentricity) and
physical (e.g., diameter, albedo) information about an asteroid. Given this Z there
exists a vector of observed quantities 6 = d(Z). Most of these observed quantities
are a function of the large number of parameters defining the sky-survey (point-
ings, exposure time, optics, observatory site, data reduction, etc.). Included in ¢
are the apparent magnitudes, on-sky motion, host-image seeing and sky brightness,
barycenter-to-max-pixel distance, and also counts of how many total detections and
how many unique nights the object is observed. In the above paragraphs we argued
qualitatively that p = u(0).

Now suppose that ¥ — ¥ + 0%, where addition of the perturbing vector 7 is
equivalent to the asteroid exhibiting a cometary feature. For instance, d& could

contain information on a mass-loss rate or the physical (3-dimensional) scale of a

coma or tail. The resulting change in the observables is

do

0— 0+ 00 where 00=—
dx

0T (2.1)

The observation-perturbing vector do could contribute to increased apparent mag-
nitudes while leaving other observables such as sky position and apparent motion
unchanged. To “model” the effect of cometary activity 02 on the observables, e.g., as
in [Sonnett et al. (2011)], is equivalent to finding (or inverting) the Jacobian dd/dz,
though this is unnecessary for the present analysis. The resulting change in the scalar

quantity p is
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i — o+ 0 where op=Vu-d§o (2.2)

Now suppose that some component of §d'is (linearly) independent of o, i.e., there
exists some unit vector 2 such that 72 - 00 = do; > 0 while 7- 0 = 0. Another way
of stating this is that there exists some observable o; (the i*® component of 3), the
value of which unambiguously discriminates whether the object is cometary or inert.
An example would be the object’s angular size on the sky. This need not be a
known quantity; e.g., in the case of angular size one would need to employ careful
PSF deconvolution to accurately measure it. The details of 0; do not matter, more

important is its ability to affect u, as described below.

Given the existence of this discriminating observable o;, we can write

5
S = Vi 66 = Opisys + 5—5502- (2.3)

where the first term on the right side, dpusys , represents systematic change in pu
due to variation in known observables such as apparent magnitude and motion, and
the second term represents a uniquely cometary contribution to u. We assume that
dp/do; # 0 in order for this reasoning to apply.

From our large sample of small-body observations, we are able to compare two
objects, 0 and ¢, that have the same apparent magnitude, motion, seeing, etc. The
computed dp = p(0) — p(0”) in such a case must have dpusys = 0, meaning a result of
op # 0 would imply one of the objects is cometary. We can then use prior knowledge,

e.g., that ¢ is an inert object, to conclude ¢’ is a cometary observation.

2.5.4 A model-i to describe inert objects

We build upon this formalism by employing prior knowledge of the apparent scarcity
of main-belt comets. That is, we hypothesize that the vast majority of known objects
in our sample are in fact inert, or mapped to an equivalently inert set of observations

o when subjected to the survey mapping ¥ — 6(Z). This allows us to construct a
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Figure 2.9: Distribution of PTF asteroid observations in the five parameters com-
prising the observable vector 0. Bottom row: Model-y values (u;-values) plotted as a
function of each parameter, while holding all other parameters constant; black bars
show the error o, ;. The red circled point is the value at which the parameter is
evaluated in the other plots. These plots only show a small slice of the much larger
(and impossible to visualize) five-dimensional gridded function ;.

gridded model of ;1 for inert objects, denoted ;.

We first bin the data in a five-dimensional o-space and then compute the error-
weighted mean of p in each bin. The ;' bin in this o-space is defined as the five-
dimensional box having corners ; and 0; + Ad. The model value y; in this j™ bin is

found by summing over all observations in that bin:

p(0)
W= D 5)2 (24)
seioiag 7n0)
0€(0;,0;+A0]
where the scatter (variance) in the j™ bin is
-1
1
2 _
O-M’j — (25)

2
5€(3;,3;+Ad) 74(0)

and the individual observation errors o, are computed as described in Section 2.5.1.
We exclude known comets from all bin computations, even though their effect on
the mean would likely be negligible given their small population relative to that of

asteroids.
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The histograms in Figure 2.9 show the range of values for the five components
of 0, each of which is sampled in 10 bins. The five-dimensional o-space considered
thus has 10° bins. However, given the centrally-concentrated distributions of each
observable, only a fraction (~40%) of these bins actually contain data points. Some
bins (~9%) only include a single data point; these data cannot be corrected using
this p; model, but their content represent < 1% of the data. Lastly, ~7% of the data
lie outside one or more of these observable ranges, and hence also cannot be tested
using the model. Most of these excluded data are either low quality (seeing > 4”) or
bright objects (> 16.5 mag). Of the 175 previously known comets (see Section 2.3)
plus 4 new (see Section 2.4) comets we found in PTF, 115 of these (64%, mostly the

dimmer ones) lie in these observable ranges and hence can be tested with the model.

2.5.5 Defining a visually-screenable sample

For each of the ~2 million small-body observations in our data set, we use the inert

model 1 to define the corrected extendedness as a “p-excess”:

Opp = . — fu (2.6)

and an uncertainty:

o=\/ok+ 0o, (2.7)

For each of the ~220,000 unique objects in our data set, we sum over all observations

of that object to define

=t > 25)

object’s
observ-
ations
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<6u>=< Z %)1/2 (2.9)

object’s
observ-
ations

These two quantities, du and (du), are useful for screening for objects which appear
cometary in most observations. If an object is observed frequently while inactive but
sparsely while active, o and (du) are less useful. As noted in Section 2.3.3, high
cadence data are uncommon in our sample, alleviating this problem (see also Figure
2.15 in Section 2.7 for commentary on orbital coverage).

To select the sample to be screened by eye for cometary activity, we use the
quantity ou — (0p). In the case of normally-distributed data, the probability that
this quantity is positive is 1 — erf(1) ~ 0.16. As shown in Figure 2.10, the fraction
of objects with du — (6i) > 0 is actually 0.007 (1,577 objects), much smaller than
the Gaussian-predicted 0.16. This likely results from overestimated (i.e., larger-than-
Gaussian) (du) values caused by outliers in the data. However, of the 115 testable
comets in our data (111 known plus 4 new—see Table 2.5 for further explanation),
76 of these (66%) have du — (6) > 0. That is, a randomly chosen known comet from
our sample is ~100 times more likely to have oy — (du) > 0 than a randomly chosen
asteroid from our sample, suggesting the criterion oy — (6) > 0 is a robust indicator
of cometary activity.

The fact that only 66% of the 115 comets in our testable sample satisfy ou —
(0p) > 0 means that, if one assumes main-belt comets share the same extendedness
distribution as all comets, then our detection method is only 66% efficient. Sufficiently
weak and or unresolved (very distant) activity inevitably causes the lower and negative
values of 6 — (61).

Given the specific goal to detect main-belt objects that are at least as active
as the known candidate MBCs, we consider the value of du — (du) for the known
candidate MBCs in our sample. P/2010 R2 (La Sagra) has oy — (du) = 0.474 (from
34 observations made on 21 nights). P/2006 VW39 has oy — (6u) = 0.231 (from 5

observations made on 3 nights). Hence, the du — (§u) > 0 criterion is more than
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Figure 2.10: For inclusion in the screening sample, an object’s mean extendedness
value, du, must exceed zero by more than one-sigma, (§u), which in this histogram
is true for all objects to the right of zero. The 111 known (and testable) comets plus
the 4 new comets (see Section 2.4.3) are plotted in red; 76 out of these 115 fall to the
right of zero, meaning our method is 76/115 = 66% efficient at detecting the known
plus new comets comprising our sample. Both of the MBCs in our sample fall to
the right of zero, implying that we are 100% efficient at detecting objects at least as
extended as these known MBCs.

sufficient (formally, 100% efficient) for detecting extendedness at the level of these
known, kilometer-scale candidate MBCs. Note however that we do not claim 100%
detection efficiency with respect to objects of similar magnitude as these candidate
MBCs; see Figure 2.11 for a consideration of efficiency as a function of apparent

magnitude.

2.6 Extended-object analysis: Results

A total of 1,949 observations (those having du — o > 0) of 1,577 known and newly
discovered objects satisfying du — (du) > 0 were inspected visually to identify either
contamination from image artifacts or true cometary features. For each detection
this involved viewing a 2’ x 2’ cutout of the image, with contrast stretched from
—0.50 to +70 relative to the median pixel value (where o = v/median). This image
was also flashed with the best available image of the same field taken on a different

night (“best” meaning dimmest limiting magnitude), to allow for rapid contaminant
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identification.

With the exception of two objects (described below), virtually all of these obser-
vations were clearly contaminated by either a faint or extended nearby background
source, CCD artifacts or optical artifacts (including ghosts and smearing effects). In
principle these observations should have been removed from the list of transients by
the filtering process described in Section 2.2.2, however some residual contamination
was inevitable.

The screening process did however reveal cometary activity on two non-main-
belt objects previously labeled as asteroids: 2010 KGys and 2011 CR42, which had
Op — (o) values of 0.2 and 1.1, respectively (Figure 2.12). Note that taking these
two objects into account improves our efficiency slightly to (76 4+2)/(115+2) = 67%.

In addition to the two known candidate MBCs (Figure 2.13)—which were among
the 76 comets already noted to have passed the screening procedure—this process also
confirmed the extendedness of three of the four comets discovered in PTF as moving-
objects (2009 KF37, 2010 LNy35, and 2012 KAj;) as described in Section 2.4. These
comets had du — (dp) values of 0.33, 0.29, and 0.58, respectively. The procedure did
not identify the fourth new comet discovery, C/2012 LPys (Palomar), as an extended

object, suggesting that it was unresolved.

2.6.1 A new quasi-Hilda comet: 2011 CRy

The object 2011 CRy2, discovered on 2011-Feb-10 by the Catalina sky-survey
[Drake et al. (2009)], has an uncommon orbit (a = 3.51 AU, e = 0.28 and i = 8.46°).
Six PTF ¢-band observations made between 2011-Mar-05 and Mar-06
[Waszczak et al. (2011)] all show a coma-like appearance but no tail. The object was
2.92 AU from the Sun and approaching perihelion (¢ = 2.53 AU on 2011-Nov-29).
Based on its orbit and using IAU phase-function parameters [Bowell et al. (1989)]
H =13.0 and G = 0.15, 2011 CR4s should have been easily observed at heliocentric
distances 3.8 AU and 3.1 AU in 2010-Feb and 2010-Dec PTF data, with predicted

magnitudes of 19.2 and 18.8 mag, respectively. Upon inspection of these earlier im-
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Figure 2.11: Like Figure 2.10, but now with each object’s median apparent mag-
nitude plotted as well. All small bodies in the sample are represented in the 2D
histogram (normalized with respect to each magnitude bin), while the known comets
are overplotted as red-white circles, the two MBCs as blue squares. Again, about
two-thirds (66%) of the comets lie above zero. This plot suggests that the complete-
ness is expressible as a function of apparent magnitude. That is, C' > 66% for bright
comets and C' < 66% for dim comets (approaching zero for > 21 mag), while on

average C' = 66%. The exact magnitude dependence is sensitive to bin size and is
not explored quantitatively here.
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ages, no object was found within 200" of the predicted position. Its absence in these
images further suggests cometary activity.

Like the MBCs and unlike most Jupiter-family comets, 2011 CRyo’s Tisserand
parameter [Murray and Dermott (1999)] with respect to Jupiter (Ty,, = 3.042) is
greater than 3. While the criterion Tjy,, > 3 is often used to discriminate MBCs
from other comets, we note that MBCs more precisely have Ty,, > 3.1. About
half of the ~20 quasi-Hilda comets (QHCs, [Toth (2006)] and refs. therein) have
3 < Tyyp < 3.1, as does 2011 CRye. Three-body (Sun + Jupiter) interactions tend
to keep Ty,, approximately constant (this is akin to energy conservation). Such
interactions nonetheless can chaotically evolve the orbits of QHCs. Their orbits may
settle in the stable 3:2 mean-motion (Hilda) resonance with Jupiter at 4 AU, wander
to a high-eccentricity Encke-type orbit, or scatter out to (or in from) the outer Solar
System. Main-belt orbits, however, are inaccessible to these comets under these 77,p-
conserving three-body interactions.

To verify this behavior, we used the hybrid symplectic integrator MERCURY
[Chambers (1999)] to evolve 2011 CRys’s orbit forward and backward in time to an
extent of 10* years. For initial conditions we tested all combinations of 2011 CRu4s’s
known orbital elements plus or minus the reported error in each (a total of 3¢ = 729
runs in each direction of time). We did not include non-gravitational (cometary)
forces in these integrations, as it was assumed that this object’s relatively large peri-
helion distance would render these forces negligible. In ~25% of the runs, the object
scattered out to (or in from) the outer solar System in less than the 10? year duration
of the run. In the remainder of the runs, its orbit tended to osculate about the stable
3:2 mean motion Jupiter resonance at 4 AU. These results strongly suggest that 2011
CRuy2 is associated with the Hilda family of objects belonging to this resonance, and

thus likely is a quasi-Hilda comet.
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Figure 2.12: Known asteroidally-designated objects whose cometary activity was dis-
covered in PTF in the course of this work. Each image is 2’ x 2’ (pixel scale 1.01").
Left: 2011 CRys in ¢’-band on 2011-03-06. No tail is discernible, but the object’s
FWHM is twice that of nearby stars. Right: 2010 KG,3 in R-band on 2010-09-08. A
~1'-long tail is discernible extending toward the lower left corner of the image.

Figure 2.13: Known candidate main-belt comets in PTF. Each image is 2" x 2’ (pixel
scale 1.01”). Left: P/2010 R2 (La Sagra) in R-band (R ~ 18.5 mag) on 2010-08-19,
with its tail extending towards the top left. Right: P/2006 VW39 in ¢’-band (¢' ~ 20
mag) on 2011-12-21, with its two oppositely oriented tails barely discernible by eye.

Table 2.5: Summary of the PTF comet sample. JF = Jupiter-family; LP = long-
period; MB = main-belt. “Observed” means found by the search algorithms of Sec-
tions 3 or 4; “model-u tested” means it lies in the observable ranges shown in Figure
2.9 (e.g., excludes bright comets), and op — (6) > 0 means positively detected as ex-
tended. Objects 2010 KGys and 2011 CR4s are counted in all rows as PTF-discovered
JFCs, even though they were not included in the 76/115 = 66% efficiency calculation
of Section 2.5.5 (since they were not discovered until Section 2.6).

previously known PTF discovered

JF LP MB JF LP MB total

observed 108 65 2 3 3 0 181
model-y tested 71 38 2 3 3 0 117
op— (6p) >0 44 27 2 3 2 0 78
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2.7 Statistical interpretation

2.7.1 Bayesian formalism

Following the approach of [Sonnett et al. (2011)] and borrowing some of their nota-
tion, we apply a Bayesian formalism to our survey results to estimate an upper limit
for the fraction f of objects (having D > 1 km) which are active MBCs at the time
of observation. The prior probability distribution on f is chosen to be a log-constant

function:

1
f logf min

This prior is justified since we know f is “small”, but not to order-of-magnitude

P(f) = for fom < f <1 (2.10)

precision. The minimum value f;, > 0 is allowed to be arbitrarily small, since the

integral of P(f) is always unity:

/1Hﬁ#:1 (2.11)

f min

Let N be the number of objects in a given sample, n the number of active MBCs
positively detected in that sample, and C' the completeness or efficiency of our MBC-
detection scheme. In Section 2.5.5 we discussed how C' = 0.66 if defining completeness
with respect to the extendedness distribution of the 115 known comets on which we
tested our detection method. Relative to objects at least as extended as the two
known candidate MBCs we tested, however, we can take C' = 1 (100% efficiency),
since both of the MBCs observed were robustly flagged by our screening process.
The likelihood probability distribution function for a general sample .S is formally
a binomial distribution, but because the samples we will be considering are very large

(N > 1), the likelihood function is well-approximated as a Poisson distribution:

P(SIf) = o (CF) (L - O

T nl(N = n)
_ ey

n!

(2.12)
exp(—NCf)
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Bayes” Theorem then gives the formula for the posterior probability distribution on

f given our results:

P(f1S) = - LEWNPW) et N (2.13)

[l P(SIHP(f) df

The constant of proportionality (not shown) involves incomplete gamma functions?,

and is well-defined and finite (including in the limit fy,;, — 0).
Finally, we can compute the 95% confidence upper limit fy5 by solving the implicit

equation

/f% P(F1S) df = 0.95 (2.14)

2.7.2 Active MBCs in the entire main-belt

We first take the sample S to be representative of all main-belt asteroids, which in
our survey amounted to N = 2.2 x 10® observed objects and n = 2 detected MBCs.
Equation (2.14) yields 95% confidence upper limits for f of 33 x 1075 and 22x 1075, for
efficiency values of C' of 0.66 and 1.0, respectively. Figure 2.14 depicts the probability
distributions for each case.

We note that although these results are based on the positive detection of only
two candidate MBCs, the reader need not be skeptical on the basis of “small number
statistics”, since the Possionian posterior (Equation 2.13 and Figure 2.14) formally
accounts for “small number statistics” through its functional dependence on n. Even
if we had detected no MBCs at all—in which case n would be zero (as was the case in
[Sonnett et al. (2011)])—the posterior would still be well-defined; the 95%-confident
upper limit would naturally be larger to reflect the greater uncertainty.

Our discussion has so far only considered the fraction of active MBCs, rather than

4The incomplete gamma function is defined as

o0

I'(n,N) = /N t"Lexp(—t) dt



43

1.0
> . posterior (C = 0.66)
% os8f ~ posterior (C = 1)
° | prior
=06
o
@®
8
504
[)]
=
©0.2
o
0.0 —

10 20 30 40 50
MBCs per 10° asteroids of D > 1km

Figure 2.14: Probability distributions for estimating the fraction of main-belt comets,
based on the results of our sample screening. The C' = 0.66 case reflects our efficiency
with respect to the extendedness distribution of all known comets, while the C' = 1
case applies to extendedness levels at least as high as the two known candidate MBCs
in our sample. In this plot fmi, was set to 4 x 107°, to facilitate visual comparison of
the normalized prior with the normalized posteriors.

their total number. This is because an estimate of the total underlying number of
main-belt objects (down to D ~ 1 km) must first be quoted from a properly-debiased
survey. A widely-cited example is [Jedicke and Metcalfe (1998)], who applied a de-
biasing analysis to the Spacewatch survey and concluded that there are of order 10°
main-belt asteroids (down to D ~ 1 km)®. Since the MBC-fraction estimates in the
above paragraphs are conveniently given in units of per million main-belt asteroids,
we directly estimate the upper limit on the total number of active MBCs in the true
underlying D > 1 km population (again to 95% confidence) to be between 33 and 22,
depending on the efficiency factor C' (0.66 or 1.0).

2.7.3 Active MBCs in the outer main-belt

Of the seven candidate MBCs listed in Table 2.1, all except 259P /Garradd have semi-
major axes between 3.0 AU and 3.3 AU, corresponding approximately to the 9:4 and

2:1 Jupiter resonances (Kirkwood gaps). This semi-major axis constraint is satisfied

by 123,366 (~20%) of the known objects as of August 2012, of which 47,450 (38%)

SMore recent survey results will eventually test/verify this result, e.g. the WISE sample has
already produced a raw size-frequency distribution [Masiero et al. (2011)], the debiased form of
which will be of great value.
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are included in the PTF sample.

Reapplying equations (10)—(14) except now using N = 47,450 (while n = 2
remains unchanged), we find 95%-confidence upper limits of 160 and 110 active MBCs
per million outer main-belt asteroids with 3.0 < (a/AU) < 3.3 and D > 1 km, for
detection efficiencies of C' = 0.66 and C' = 1.0, respectively.

Although only ~20% of the known main-belt asteroids lie in this orbital range,
the debiased semi-major axis distribution presented in [Jedicke and Metcalfe (1998)]
predicts that ~30% of all main-belt objects (of D > 1 km) lie in this outer region.
The discrepancy is due to the fact that these objects are more difficult to detect,
since they are further away and tend to have lower albedos (this lower detection
efficiency is evident for instance in the WISE sample shown in Figure 2.3). Assuming
300,000 objects actually comprise this debiased outer main-belt region, the inferred

95% confidence upper limit on the total number of active MBCs existing in this region

is ~50 (for C' = 0.66) and ~30 (for C' = 1.0).

2.7.4 Active MBCs in the low-inclination outer main-belt

Four out of the seven candidate MBCs in Table 2.1 have orbital inclinations of ¢ < 5°.
Combined with the semi-major-axis constraint 3.0 < (a/AU) < 3.3, this associates
them with (or close to) the Themis asteroid family. There are 25,069 objects in the
small-body list we used which satisfy this combined constraint on a and i (~4% of
the known main-belt), of which 8,451 (34%) are included in the PTF sample.

Again reapplying equations (10)—(14), we now use N = 8,451 and n = 1, where
the new value for n reflects the fact that P/2006 VW39 satisfies this i-criterion while
P/2010 R2 (La Sagra) does not. We find 95%-confidence upper limits of 540 and
360 active MBCs per million low-inclination, outer main-belt asteroids, for detection
efficiencies of C' = 0.66 and C' = 1.0, respectively.

Once again, [Jedicke and Metcalfe (1998)] offer estimates of the debiased number
of objects in the underlying population of interest: for outer main-belt asteroids,

they found that ~20% of the debiased objects had 7 < 5°. Hence, assuming there are
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60,000 objects (of D > 1 km) in the actual low-i outer main-belt population satisfying

these a and 7 constraints, the resulting upper limit estimates for the total number of

active MBCs it contains is ~30 (for C'= 0.66) and ~20 (for C' = 1.0).

2.7.5 Active MBCs among low-i; outer main-belt objects ob-

served near perihelion (—45° < v < 45°)

Of the 8,451 low-inclination outer main-belt objects observed by PTF (see Section
2.7.4), 5,202 were observed in the orbital quadrant centered on perihelion (in terms of
true orbital anomaly v, this quadrant is —45° < v < 45°). We consider this constraint
given that all known candidate MBCs (Table 2.1) have shown activity near perihelion.
Now using N = 5,202 and n = 1 (here again n = 1 represents P /2006 VW39), we find
95%-confidence upper limits of 880 and 570 active MBCs per million low-inclination,
outer main-belt asteroids observed by PTF near perihelion, for detection efficiencies
of C'=0.66 and C' = 1.0, respectively.

We caution that, unlike the previous subsets (which were defined solely by orbital
elements), the population to which these statistics apply is less well-defined. In
particular, the bias for detection near perihelion (Figure 2.15), due in part to the
(rA)~2 dependence in the reflected sunlight, is more pronounced for smaller, lower-
albedo, higher eccentricity objects. Hence, naively imposing a constraint on true
anomaly v implictly introduces selection biases in D, py and e. Moreover, these
implicit biases depend on the sensitivity of the PTF survey in a more nuanced manner,
invalidating the simple D 2 1-km lower limit we have quoted generally in this chapter.
Nonetheless, these parameters (D and py) are important enough to merit individual

treatment, as detailed below.

2.7.6 Active MBCs in the sub-5 km diameter population

Yet another constraint that well-encompasses the known MBC candidates of Table
2.1 is a diameter D < 5 km (corresponding to approximately H > 15 mag for albedo

pv = 0.07). Applying this constraint decreases the number of PTF-sampled objects N
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by 28%, 45% and 41% for the entire main-belt, outer main-belt, and low-i outer main-
belt, respectively. These smaller sample sizes result in slightly higher 95%-confidence
upper limits for the fraction of active MBCs: 30-45, 180-280, and 610-920 per 10°
objects having 5 > (D/km) > 1 in the entire main-belt, outer main-belt, and low-
i outer main-belt, respectively (the ranges corresponding to the two values of the
efficiency factor C).

[Jedicke and Metcalfe (1998)] found that the debiased differential number distri-
bution as a function of absolute magnitude H is ~10%, where o ~ 0.35. The
resulting cumulative number distribution (i.e., the number of asteroids brighter than
absolute magnitude H) is ~10* /o In(10). Using H = 17 in this expression gives the
predicted 10¢ asteroids having D > 1 km. The fraction of these objects in the range
15 < H < 17 is therefore 1 — 10*15717) ~ 80%. Scaling the debiased populations
discussed above by this factor and using the new limits from the preceding paragraph
gives new upper limits on the total number of active MBCs existing in the three
regions: ~24-36, ~40-70, and ~30-45 in the entire main-belt, outer main-belt, and

low-i outer main-belt, respectively.

2.7.7 Active MBCs among low-albedo (WISE-sampled) ob-

jects

[Bauer et al. (2012)] analyzed WISE observations of five of the active-main-belt ob-
jects listed in Table 2.1. By fitting thermal models to the observations, they found
that all of these objects had visible albedos of py < 0.1. As shown in Figure 2.3 and
described in Section 2.3.4, about half of the asteroids which were observed by WISE
also appear in the PTF sample; in particular there were N = 32,452 low-albedo
(py < 0.1) objects observed by both surveys. Included in the [Bauer et al. (2012)]
sample was PTF-observed candidate MBC P /2010 R2 (La Sagra), whose fitted albedo
of py = 0.01 £ 0.01 implies we can take n = 1 (one positive active MBC-detection)
in the low-albedo WISE/PTF sample.

Following the 95% confidence upper limit computation method of the previous
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sections, we derive upper limits of 90-140 active MBCs per 10° low-albedo (py < 0.1)
asteroids. As mentioned earlier, the full-debiasing of the WISE albedo distribution
[Masiero et al. (2011)] will eventually allow us to convert this upper limit on the
fraction of active MBCs among low-albedo asteroids into an upper limit on their
total number, just as [Jedicke and Metcalfe (1998)] has allowed us to do for orbital

and size distributions.

2.7.8 Active MBCs among C-type (SDSS-sampled) objects

The MBC candidate P/2006 VW39 was observed serendipitously by SDSS on two
nights in September 2000. While one of the nights was not photometric in g-band,
the other night provided reliable g,r,7 multi-color data on this object, yielding a
principal component color a* = —0.14 4+ 0.05. Because it has a* < 0, this suggests
P /2006 VW34 is a carbonaceous (C-type) objectS.

Figure 2.3 depicts the overlap of the SDSS-observed sample with PTF, which
includes N = 24,631 C-type (a* < 0) objects. Taking n = 1, we derive 95% confident
upper-limits of 120190 active MBCs per 10¢ C-type asteroids (where again the range
corresponds to C' = 0.66-1.0).

2.8 Conclusion

2.8.1 Summary

Using original kd-tree-based software and stringent quality filters, we have harvested
observations of ~40% (~220,000) of the known solar system small bodies and 626
new objects (622 asteroids and 4 comets) from the first 41 months of PTF survey
data (March 2009 through July 2012). This sample is untargeted with respect to
the orbital elements of known small bodies (but not necessarily the true underlying

population), down to ~1-km diameter-sized objects. Most (~90%) of the objects are

6This taxonomic classification for P/2006 VW39 has been confirmed spectroscopically by
[Hsieh et al. (2012b)] and [Licandro et al. (2013)].
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Figure 2.15: Summary of true-anomaly and heliocentric distance coverage of known
small bodies in PTF (see Figure 2.3 for other orbital statistics of this sample), from
March 2009 through July 2012. Most (~90%) of objects have only been sampled
in at most two 30°-wide true anomaly bins, i.e., less than 1/6 of the orbit. In the
left histogram objects are only counted once, but in the rose diagram (middle), each
object is counted once for each bin it in which it is sampled (hence the fraction values
reported for all twelve bins sum to more than 100%). Although all objects spend more
time around aphelion, most only fall above the survey detection limit near perihelion,
hence there is a slightly larger fraction of objects observed near perihelion.

observed on less than ~10 distinct nights, and ~90% are observed over less than 1/6
of their orbit, allowing us to characterize this sample predominantly as a “snapshot”
of objects in select regions of their orbits.

We have introduced a metric for quantifying the extendedness of a small-body
in an image, and have corrected this metric, on a per-observation basis, for system-
atic variation due to observables such as apparent magnitude, on-sky motion and
pixel-grid alignment. In this metric, an extendedness of zero describes stellar-like
(asteroidal) objects, whereas a positive value indicates potentially cometary extend-
edness.

We defined a sample for visual screening consisting of all objects whose mean
extendedness value is greater than zero by at least one-sigma. This screening sample
consisted of ~1,500 unique objects, 76 (out of 115) comets, and two known candidate
active MBCs, P/2010 R2 (La Sagra) and P/2006 VW39, which upon inspection
appear active and visibly extended in the images. Of the ~1,500 objects screened,
we found evidence for activity on two known (non-main-belt) asteroidally-designated

objects, 2010 KGy3 and 2011 CR4s, and confirmed activity on the three out of the
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four (non-main-belt) comets that our moving-object algorithm discovered.

Given these results, using a log-constant prior we infer with 95% confidence an
upper limit of < 33 active MBCs per 10° main-belt asteroids for a C' = 0.66 detection
efficiency with respect to the extendedness distribution of known comets, and < 22
active MBCs per 10° main-belt asteroids for a 100% efficiency with respect to objects

at least as extended as the known candidate active MBCs in our sample.

2.8.2 Comparison to previous work

Our inferred 95% confidence upper limit of at most ~30 active MBCs per 10 main-
belt asteroids of D > 1 km is comparable but slightly lower than that of
[Gilbert and Wiegert (2010)], who estimated 40 + 18 active MBCs per 10° main-
belt asteroids, also for D > 1 km, from visual inspection of a similarly untargeted
sample of ~25,000 objects from the Canada-France-Hawaii Telescope Legacy Survey
([Gilbert and Wiegert (2010)]). That result was based on the detection of a single
unknown comet in their sample, which was never actually confirmed to be a main-
belt object due to lack of follow-up observations. Even before taking into account our
order-of-magnitude larger sample size, we note that, in contrast to their results, our
limits are based on positive MBC detections and use detection efficiencies estimated
from observations of ~100 known comets.

The result of [Sonnett et al. (2011)] was a much larger upper limit of ~3,000
MBCs per 10° main-belt asteroids (to 90% confidence), albeit applicable to the smaller
limiting diameter of ~0.5 km. Their smaller sample size of 924 objects is certainly the
cause for their much larger uncertainty. While their detection methods were proven
robust with respect to known candidate MBCs, we note that their sample included
no unambiguously cometary objects. Hence, it is difficult to compare our result to
theirs, but the possibility of a steeply increasing number distribution for MBCs below
the ~1-km level is not ruled out. Indeed, two known candidate MBCs, 238P/Read
and 259P/Garradd, have measured sub-kilometer diameters ([Hsich et al. (2009b)];
[MacLennan and Hsieh (2012)]).
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2.8.3 Future work: Photometric (absolute magnitude) vari-

ation as a function of orbital anomaly

As suggested by this article’s title, extended-object analysis is only the first kind of
cometary-detection method to which we intend on subjecting the PTF small-body
data set. We hope future works will analyze the time- (and mean-anomaly-) vary-
ing absolute magnitude of small bodies over orbital-period baselines, which could
potentially reveal even unresolved cometary activity.

Preliminary analysis of PTF photometry of main-belt comet P/2010 R2 (La
Sagra), which include pre-discovery observations, shows a time-resolved ~1.5-mag
increase in absolute magnitude and a corresponding factor ~5 increase in the dust-to-
nucleus cross-section ratio, A;/Ay. These results suggest PTF is capable of detecting
intrinsic disk-integrated flux variation at the level of known candidate MBCs. Up-
coming analyses of other known comets in our sample should confirm this robustness.

As shown in Figure 2.15, the orbital-coverage of PTF-observed known objects is
far from complete. The orbital period of main-belt objects varies from about three
to six years; a desirable prerequisite to orbital variation analysis is a comparable
survey duration (especially to alleviate the bias against longer-period outer main-belt
objects). The use of only two visible-band filters” gives PTF an advantage over other
ongoing surveys®, since conversion between wavelength bands introduces uncertainty
when object colors are unknown. Thus, multi-filter data makes absolute magnitude
comparison between epochs (already complicated by uncertainties in spin amplitudes
and phase functions) even more difficult. Finally, a photometric variation analysis
would benefit from the inclusion of null-detections, which are not currently a product
of our kd-tree harvesting method, but should be implementable with a reasonable

amount of modification.

"In fact mostly just one: 87% of the ~2 million small-body observations in this work are in
Mould-R-band, 13% in ¢’-band.

8To illustrate this point by comparison, of the ~3 million small-body observations reported to
the Minor Planet Center by Pan-STARRS 1 (PS1) as of mid-2012, ~40% are w-band (a wide-band
filter covering most of the visible), while g-, - and i-bands each represent ~20% of the PS1 data.
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Chapter 3

Small Near-Earth Asteroids

3.1 Introduction

A near-Earth asteroid (NEA) is by definition any asteroid with perihelion ¢ < 1.3 AU
and aphelion @ > 0.983 AU. From the largest NEA (of diameter D ~ 30 km) down
to D & 0.5 km in size—for which the known population is largely complete—the cu-
mulative size-frequency distribution (Figure 3.1) goes roughly as N (D) oc D~2, where
N(0.5 km) ~ 10*. Harris ([Harris (2008)], [Harris (2013)]) presents these statistics,
and describes how the original ‘Spaceguard’ goal to catalog 90% of all D > 1 km
NEAs was achieved by the mid-2000s, while the current goal is to find 90% of all
D > 140 m NEAs by 2020.

The incrementally-decreasing target size in the NEA census has been mostly mo-
tivated by risk mitigation. Over the quarter-century that began with our realization
of an asteroid’s role in the dinosaurs’ extinction (e.g., [Alvarez et al. (1980)]) through
to our fulfillment of the 1-km Spaceguard goal, the estimated risk of an individual’s
death from asteroid impact—initially believed comparable to that of a commercial
airplane accident—dropped by an order of magnitude. Surveying to the currently-
recommended D > 140 m can decrease this risk by yet another order of magnitude
[Harris (2008)].

Hence, discovery of D < 100 m NEAs is likely irrelevant to any further reduction in
the risk to human lives. However, the size-frequency distribution informing these esti-

mates is uncertain across orders of magnitude in impactor size, and constrained on the
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small end (D < 10 m) by infrasound detections of bolide fluxes ([Silber et al. (2009)]).
Events like the Tunguska and Chelyabinsk airbursts [Brown et al. (2013)], which did
not result in deaths but caused environmental or municipal damage, suggest impacts
from 10-100 m objects qualify as ‘natural disasters’ that merit advance warning, and
possibly prevention via space-based manipulation of hazardous NEAs.

Besides impact mitigation (e.g., [Ahrens and Harris (1992)]; [Lu and Love (2005)]),
other space-based activities benefiting from small NEA discoveries include in-situ
compositional studies [Mueller et al. (2011)] and resource utilization [Elvis (2014)].
NEAs have also been declared a major component of NASA’s manned spaceflight
program [Obama (2010)]. NEA rendezvous feasibility depends critically on mis-
sion duration and fuel requirements, these in turn are functions of the NEA’s or-
bit and relative velocity (Av) with respect to Earth ([Shoemaker & Helin (1978)];
[Elvis et al. (2011)]). Robotic missions may facilitate or complement the manned pro-
gram, e.g., via the proposed Asteroid Retrieval Mission (ARM; [Brophy et al. (2012)]),
though the selection criteria for ARM targets are highly-specific as well!. Natu-
ral temporary capture of meter-scale NEAs into Earth-centric orbits, if confirmed
via the discovery of ‘mini-moons’ ([Grav et al. (2012))]; [Bolin et al. (2014)]), would
present another appealing class of targets.

Cleary, discovery of 1-100 m sized NEAs is motivated by different (and more di-
verse) applications than those which have driven the census of larger NEAs. The
discovery method often likewise differs. Most large NEAs were found via the ‘track-
let” method of linking several serendipitously-observed positions within a night or
across several nights. This is the basis of ‘MOPS’-like detection software (e.g.,
[Denneau et al. (2013)]), which in its present state is most efficient at detecting NEAs
moving slower than ~5 deg/day [Jedicke et al. (2013)]. Below this rate, an NEA’s
individual detections are nearly point-like for typical survey exposure times (e.g., 30—
60s), and sufficiently localized on the sky given typical intra-night pointing cadences

(e.g., 15-45 minutes). Hazardous NEAs occupy a range of orbits with moderate

!Generally, a suitable ARM target has D ~ 7 m, orbital semi-major axis 0.7 AU < a < 1.45
AU, eccentricity e < 0.2 and inclination ¢ < 8°, corresponding to a relative velocity Av < 6 km/s
[Jedicke et al. (2013)].
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eccentricities, and so spend most of their time far from the Earth and Sun, where
their sufficiently slow apparent motions allow them to be easily detected with this
technique.

In contrast, the method of streak detection enables discovery of much smaller and
closer (i.e., brighter and faster-moving) NEAs. Whereas slower-moving NEAs can
be mistaken for main-belt asteroids, streaked objects are nearly 100% certain to be
NEAs. Unlike the tracklet method, discovery via streak detection is possible on the
basis of a single exposure via recognition of the streak morphology, meaning repeat
visits to the same patch of sky are unnecessary and more area can be searched. Streak
detection extends the NEA-discovery lifetime of a survey telescope whose aperture
size renders it no longer competitive in the area of tracklet-based discovery. Lastly,
streaked NEAs are typically 2 to 3 magnitudes brighter than those found by the
tracklet method, making them far more convenient for non-sidereally-tracked follow-
up from dedicated (including amateur-class) facilities.

Survey-scale application of the streak-detection method for NEA discovery was
pioneered by [Helin and Shoemaker (1979)] using photographic plates on the Palomar
18-inch Schmidt telescope in the 1970s. [Rabinowitz (1991)] was the first to apply this
method with CCD detectors in near real-time with the Spacewatch survey. Combining
Spacewatch’s streaked NEA detections (e.g., [Scotti et al. (1991)]) with its tracklet-
detected NEAs [Jedicke (1995)] produced a debiased NEA number-size distribution
[Rabinowitz et al. (2000)] spanning four orders of magnitude in size (10 km > D >
1 m).

Figure 3.2 breaks down the number of streaked NEA discoveries as a function of
time and survey, from 1991 through 2014-Oct. Here ‘streaked’ is taken to mean any
detection wherein the length of the imaged streak is greater than 10 seeing widths.
The counts in Figure 3.2 were compiled by first retrieving all NEA discovery obser-
vations from the Minor Planet Center (MPC) database and then using JPL’s HORI-
ZONS service [Giorgini et al. (1996)] to compute the on-sky motion at the discov-
ery epoch. These rates were then converted into streak lengths in units of seeing

widths, where the continental surveys all have assumed seeing 2” and Pan-STARRS
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Figure 3.1: Cumulative NEA population distribution models compared to discovered
objects. Plot adapted from a figure in [Ruprecht et al. (2014)].
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Figure 3.2: Number of streaked NEA discoveries as a function of time (bins include
1990-2014) and survey, where ‘streaked’ is here defined as any discovered streak
greater than 10 seeing-widths in length (see text for details).
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Figure 3.3: Some known small NEAs serendipitously detected by PTF. These ob-
servations were retrieved solely by computing these known objects’ positions at the
epochs of archival PTF images and visually verifying the streak’s presence. All images
are 200” x 200” with linear contrast scaling from —0.50 to 7o.

has assumed 1” seeing. The assumed exposure times come mostly from a table in
[Larson (2007)], except for PTF and Pan-STARRS, which have assumed exposure
times of 60s and 45s, respectively.

Before 2005, Spacewatch was the only contributor of significantly streaked NEA
discoveries, and it is also the most prolific streaked-NEA discoverer overall. There are
two likely reasons for this: (1) Spacewatch’s relatively long 120s exposure time, and
(2) the active role of a human screener (‘observer’) during data collection, as docu-
mented by [Rabinowitz (1991)]. The Catalina sky-survey also has a dedicated human
operator to scan candidates and conduct same-night follow-up [Larson (2007)], which
explains its similarly consistent contribution of streaked discoveries. Some major NEA
surveys of the past two decades not contributing to the streaked discoveries in Figure
3.2 include LINEAR [Stokes et al. (2000)]—likely because of its short 8s exposures,
as well as NEAT [Pravdo et al. (1999)] and LONEOS [Stokes et al. (2002)]—which
to our knowledge lacked real-time human interaction with their respective data flows.

The years 2013 and 2014 marked a clear upturn in the discovery of streaked NEAs.
The purpose of this chapeter is to document a new streak-discovery pipeline which

has contributed in part to this increased discovery rate.
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3.2 Overview of the PTF survey

3.2.1 Technical and operational characteristics

The Palomar Transient Factory? (PTF) is a synoptic survey designed primarily to
discover extragalactic transients ([Law et al. (2009)]; [Rau et al. (2009)]). The PTF
camera, mounted on Palomar Observatory’s 1.2-m Oschin Schmidt Telescope, uses 11
CCDs (each 2K x 4K) to image 7.3 deg? of sky at a time (at 1.0”/pixel resolution).
Most exposures (~85%) use a Mould-R filter® (hereafter “R”) with a 60-second in-
tegration time. Science operations began in March 2009, with a nominal 1- to 5-day
cadence for supernova discovery and typical twice-per-night imaging of fields. Median
seeing is 2” with a limiting magnitude R & 20.5 (for 50 point-source detections), while
dark conditions routinely yield R ~ 21.0 [Law et al. (2010)]. About 15% of nights
(near full moon) are devoted to an Ha-band imaging survey of the full Northern Sky.

In January 2013 the PTF project formally entered a second phase called the
intermediate PTF (1PTF’; [Kulkarni (2013)]). For most of this chapter we simply use
‘PTF’ to mean the entire survey, from 2009 to the time of writing (late 2014), though
we note that PTF’s NEA-discovery capabilities were conceived, funded, developed and
commissioned entirely in this post-2012 ‘iPTF’ period. This is partly because iPTF
accommodates more varied ‘sub-surveys’ as opposed to a predominantly extragalactic
program, including variable star and solar system science.

As will be detailed later (e.g., Figure 3.15), typical PTF pointings tend to avoid
the ecliptic (and hence opposition) in accordance with its primarily non-solar system
science objectives. In recent summer seasons, PTF has also spent the majority of its
observing time imaging the dense galactic plane; many such galactic fields contain
very high source densities and were not capable of being processed with the streak

detection pipeline described below.

Zhttp://ptf.caltech.edu
3The Mould-R filter is very similar to the SDSS-r filter; see [Ofek et al. (2012a)] for its trans-
mission curve.
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3.2.2 Previous solar system science with PTF

The present chapter discusses the first NEA-related (and first real-time) work with
PTF solar system data; previous PTF solar system work analyzed archival observa-
tions of main-belt asteroids. [Polishook et al. (2012)] and later [Chang et al. (2014a)]
used high-cadence data (which is uncommon in PTF) for ‘pilot studies’ of asteroid
rotation lightcurves spanning consecutive nights. [Waszczak et al. (2013b)] mined
PTF for all observations of known asteroids and then searched this data set for ac-
tivity characteristic of ‘main-belt comets’ [Hsieh and Jewitt (2006)]. We used this
database of known-object observations to extract detections of known streaking NEAs
in PTF (Section 3.2.4). [Waszczak et al. (2013b)] also developed an original MOPS-
like tracklet-finding routine which was later implemented in the real-time IPAC

pipeline discussed below, but is otherwise unrelated to the streak-detection pipeline.

3.2.3 Real-time data reduction at IPAC

Since the survey’s start, PTF has employed two separate data reduction pipelines
serving distinct purposes. A real-time image-subtraction pipeline hosted at the Na-
tional Energy Research Scientific Computing Center at Berkeley Lab (Nugent et al.
in prep.) forms the basis of the extragalactic transient discovery program. A sepa-
rate, archival-grade image-processing pipeline hosted at the Infrared Processing and
Analysis Center (IPAC) at Caltech [Laher et al. (2014)] runs during the day and per-
forms flat-fielding, bias-subtraction, source catalog generation, and astrometric and
absolute-photometric calibration.

In early 2013, a real-time version of the IPAC image-processing pipeline was put
into regular nightly operation. This initial version included daily automated batch
submission of main-belt (and slow-moving near-Earth) asteroid observations to the
MPC (both known objects and new discoveries). In addition to the above-mentioned
image reduction features detailed by [Laher et al. (2014)], the real-time processing
includes an original module for image subtraction [Masci (2013)], which uses a deep

co-add of ~20 previous PTF images that reaches V' ~ 22 (i.e., a ‘reference’ or ‘tem-
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plate’ image). The reference image is convolved with the new image’s PSF kernel
prior to subtraction, as described by [Masci (2013)]. The creation of this real-time
IPAC pipeline precipitated the development of the streak-detection system discussed
in this chapter.

3.2.4 Detections of known streaking NEAs

Early in the development of our streak detection system, we sought to extract all ob-
servations of known fast-moving NEAs from existing PTF data. We used the table of
all predicted PTF sightings of all known asteroids compiled by [Waszczak et al. (2013b)],
updated to include data through early 2014.

There are a total 539 predicted sightings (of 158 unique objects) for which the pre-
dicted motion was faster than 10” /minute and the predicted magnitude was brighter
than V' = 20. For objects having predicted positional uncertainties greater than 10",
the images were visually inspected around the predicted location for the presence of a
streak. Because the V' < 20 brightness criterion is based upon HORIZONS-predicted
magnitudes, which have a typical accuracy of ~ 0.5 mag, in certain cases the actual
magnitude was almost certainly fainter than V' = 20. These particular predicted
sightings (having good positional localization but are possibly too faint for detection)
are still included as long as the predicted (point-source) magnitude is brighter than
V = 20.

Figure 3.3 shows some examples of visually-confirmed PTF streak detections from
this set of predicted sightings. Qualitative variations in morphology due to a differ-
ences in magnitude, streak length and seeing are apparent.

As described below, these 539 serendipitous sightings constituted the initial test
bed for development of our streak detection algorithm. As of this writing (late 2014),
PTF has acquired ~90 new additional detections include unconfirmed PTF discover-
ies, confirmed PTF discoveries, and PTF-observed discoveries from other surveys in

2014.
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3.3 Streak-detection process

The principal steps of the streak-detection process are:

1. Image processing and subtraction of a reference image to produce a differenced

image

2. Detection of candidate streaks as regions of contiguous pixels on the differenced

image
3. Measurement of a set of morphological features describing each candidate streak
4. Filtering of likely non-real detections on the basis of their computed features

5. Human recognition of real streaks by reviewing images of the filtered candidates

The above five steps comprise the discovery phase and entail the creation of the
data products labeled (A) through (G) in Figure 3.4. Upon discovery of a real streak,
data products (H) through (J) are created as part of the follow-up phase, which we
discuss later (Section 3.4).

Initial image processing and reference-image subtraction (first of the above-enumerated
steps) are described by [Laher et al. (2014)] and [Masci (2013)], respectively. Step 2
involves identifying the pixels on the differenced-image belonging to candidate streaks.
Whereas pixel-level data for point-source transients (e.g., supernovae or slow-moving
asteroids) can be efficiently extracted with commonly used software such as Source Fz-
tractor [Bertin and Arnouts (1996)], streaked detections require a distinct approach
as their image footprints contain many more pixels, often with much lower signal to
noise per pixel. To meet this need we developed an original piece of software called

findStreaks.

3.3.1 Object detection with findStreaks
3.3.1.1 Algorithm

The findStreaks software is derived from code originally created for the IPAC pro-

cessing pipeline to identify and mask very long tracks in PTF exposures due to
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satellites and aircraft [Laher et al. (2014)]. findStreaks was developed in the C
programming language to maximize computing speed. The software first thresholds
the image pixels above a local background noise level, then groups contiguous pixels
into objects or ‘blobs’ (i.e., candidate streaks), and lastly computes morphological
features for each object.

The differenced-image’s local median background values are computed on a coarse
grid with 64-pixel grid spacings and 129-pixel windows, with bilinear interpolation
used to fill in the pixel values between the grid points. These median values are used
to threshold the positive difference image at 1o above the local median. All below-
threshold pixels are discarded, and only above-threshold data are considered further
(e.g., Figure 3.4 item C). Image-edge pixels are ignored (to avoid artifacts along CCD
edges).

The findStreaks module arranges all contiguous blobs of pixels, each blob in
one or more segments of computer memory, where adjacent pixels in the cardinal
and diagonal positions are considered to be connected. For efficient memory manage-
ment, the module is configured to handle up to 1 million memory segments, and up to
1000 pixels per segment. The sky-background-subtracted blob flux and instrumental
magnitude are computed, along with their respective uncertainties. The median and
dispersion of the pixel-blob intensity data are computed and subsequent morphologi-
cal analysis is done only on pixels with intensities that are within +30 of the median,
where ¢ is given by half the difference between the 84th and 16th percentiles. A line
is fit to all pixel positions in each blob, and the slope and y-intercept are obtained,
as well as the linear correlation coefficient:

- > _ z)(yi — y) __ (3.1)
V(@i = 2)°) (v — 9)?)
Perpendicular distances from the linear model to constituent pixels are used to

find the blob half-width, defined as half the difference between the 84th and 16th

percentiles of these distances. With size and shape parameters now in hand, several

hard filters are used to eliminate blobs that are not considered to be streaks. Blobs



Table 3.1: Morphological and other features saved for streak candidates.
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feature  description
pixels  number of pixels associated with detected object
length long axis length
hwidth  half-width
dMax perp. distance of maximum-flux pixel from longest axis
angle proper angle (in RA, Dec coords)
median  median pixel flux
scale lo variation in pixel flux
slope slope (dy/dx in image coordinates) of fitted line
correl  correlation coefficient of fitted line
flux total flux of object
refDist distance from midpoint to nearest object in reference image
refMag magnitude of nearest object in reference image
epoch epoch (modified julian date)
ra right ascension of object midpoint
dec declination of object midpoint
(A) real asteroid streaks (B) synthetic streaks (C) synthetic streaks (completeness map)
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Figure 3.5: Successful detections (green) and failed detections (red) for both real
asteroids and synthetic streaks. Here a ‘successful detection’” means an object was
found by findStreaks at the predicted location having a measured length within
four streak-widths of the predicted length. In the real data (leftmost plots), multiple
detections of unique objects are often very close to one another in the 2D spaces
plotted here, such that the total number of points discernible on the plot may appear

less than actual.
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Figure 3.6: Distribution of false positive detections from findStreaks. The largest
concentration of these ‘bogus’ detections are in the short and faint regime. Structure
as a function of orientation angle (bottom) is due to a combination of the correlation
sensitivity (see text) and pixel effects, wherein diagonal (£45°-oriented) blobs are less
likely to exist as their flux is diluted across more pixels.

containing more than 400,000 pixels, having long axes shorter than 9 pixels (i.e., 3.6
deg/day motion), or having half-widths larger than 16 pixels are discarded. Blobs for
which the absolute value of the linear correlation coefficient is less than 0.5 are also
discarded.

The findStreaks module outputs a table of streak metadata, where each table
row corresponds to a streak detection. The real-time pipeline augments this table with
additional columns including the proximity of the candidate to the nearest reference-
image (stationary) object, as well as the brightness of this nearest reference-image
object. Table 3.1 lists the 15 features currently retained for each candidate, and used
in the classification stage that follows. This list of features will be updated to include
additional morphological metrics in future versions of this software, but the results

of this chapter only include analysis of the above-described 15 features.
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3.3.1.2 Completeness and contamination

To ascertain findStreaks’s completeness and the number and nature of false positives
it detects, we tested the software on a set of images containing both known real
asteroid streaks (the 539 predicted sightings described in Section 3.2.4) and a large
number of injected synthetic (simulated) streaks.

To generate each synthetic streak ‘stamp’, we first considered a 2D-Gaussian point-

spread function of flux f, full-width at half-maximum (FWHM) 6, and center at

(w0, Yo):

PSF(JJ, Y, Zo, Yo, fa 6) =
o o (3.2)
41n2 (_(l’ )"+ =% 2)

02
In terms of Eq. (1), a simulated asteroid streak of length L oriented at angle ¢ is
given by

Streak(z,y, zo, vo, f,0, L, ) =

1 t=L (33)
z/ PSF(xz — tcos ¢,y — tsin @, xg, yo, f,0) dt
t=0

[Veres et al. (2012)] presents a similar streak model albeit with a slightly different
analytical expression.

We evaluate the integral in Eq. (2) numerically over a grid with spacings Ax =
Ay = 0.05". Assuming the physical units of  and y are PTF-image pixels (= 1.0”),
and assuming a typical PTF seeing value of § =~ 2" (though we randomly vary 6 along
with other parameters, see below), the 0.05” grid spacing ensures the simulated streak
is initially oversampled (by a factor of several tens) relative to the final (coarsened)
image of the streak.

For each synthetic streak, the various model parameters in Eq. (2) are randomly

drawn from flat distributions on the following intervals:
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True Positive Detections Contaminated or False Negative Detections False Positive Detections
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Figure 3.7: Examples of streak detections in PTF images. The third column, ”as-
signed pixels”, shows the pixels mapped to the object by findStreaks, wherein
unique objects are distinctly colored. (I) Splitting due to saturated star (undefined
pixels on difference image). (J) Splitting due to faintness. (K) Splitting due to bad
column in difference image. (L) Extraneous pixels from nearby bright star halo. (M)
Missed detection due to near-vertical orientation. (N) Missed detection due to near-
horizontal orientation. (O) Missed detection due to large variation in background
levels (star halo). (P) Missed detection due to faintness. (Q) Poorly-subtracted star
false-positive. (R) Linear radiation hit. (S) Non-linear radiation hit. (T) False posi-
tive due to background noise. (U) Isolated segment of longer faint streak (e.g., due to
a satellite). (V) Portion of optical ghost artifact. (W) Diffraction spike false positive.
(X) Poorly-subtracted galaxy false-positive.



66

O<axy <1 O<y<1
14" <0 <3 10" < L < 60" (3.4)

0° < ¢ < 180° 1800 counts < f < 7200 counts.

A synthetic streak’s flux f relates to its apparent magnitude m according to m =
mo—2.51og,, f, where my is the zeropoint of the streak’s host image. As the insertion
of synthetic streaks into host PTF images is random (see below), it follows that
the apparent magnitude m is not sampled from a uniform distribution, unlike the
parameters f, 6, ¢ and L. The counts for f prescribed above roughly simulate 15
mag < V < 21 mag for typical PTF zeropoints (given normal variations in sky
background, extinction, etc.).

To coarsen each synthetic streak (prior to injection into an image), we evaluate the
mean flux value in each 1” x 1” bin, equivalent to downsampling the initial simulated
image by a factor 20. We round the counts in each resulting pixel to the nearest
integer, and crop the streak image to a rectangular ‘stamp’ including all non-zero
pixels. Lastly, to simulate shot noise, we replace the value of each non-zero pixel with
a random integer sampled from a Poisson distribution whose mean is equal to the
original pixel value.

We generated a set of 5,000 synthetic-streak image stamps following the above pro-
cess, and then inserted these at random locations into the 539 PTF images containing
each of the 539 predicted known streak sightings (Section 3.2.4). In particular, for
each image the number of streaks injected was determined by drawing from a Poisson
distribution with mean equal to 5. A set of that number of synthetic streaks was then
randomly drawn (with replacement) from the pool of 5,000 and stamped into the im-
age at randomly-chosen (x,y) coordinates. The total number of injected streaks was
2,631. We then processed each image with an offline version of the IPAC real-time
image-differencing pipeline (Section 3.2.3) and ran findStreaks on the differenced
images.

In the real-time streak detection pipeline, the output of findStreaks is subse-
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quently subjected to machine-learned classification and human vetting. However, in
the interest of initially assessing the completeness and reliability of findStreaks as
an isolated module, we here simply (albeit arbitrarily) define a ‘successful detection’
(i.e. a true positive detection) as any case wherein findStreaks found an object
whose measured center lies within a 15” radius of the streak’s true center, and the
measured length minus the true length is less than four times the streak’s measured
width. The successful and failed detections according to these criteria are plotted in
Figure 3.5.

Two trends evident from the synthetic streaks are limiting magnitude-vs.-length
(Figure 3.5 top row) and lack of sensitivity to near-vertical or near-horizontal streaks
(Figure 3.5 bottom row). In general the completeness drops sharply at a certain
limiting magnitude; this limiting magnitude brightens from ~19 mag at 20 pixels
to ~18 mag at 60 pixels. Streaks oriented very near to either 0° = 180° or 90°
are much less reliably detected by findStreaks (at all magnitudes)—this is due the
imposed hard limit on correlation (|| > 0.5), a criterion which both near-vertical and
near-horizontal streaks fail to satisfy.

The total number of candidate streaks returned by findStreaks in this test was
21,783, or an average of ~40 per image, most being false positive detections (also
referred to as ‘bogus’ detections later in this chapter). Figure 3.6 details the distribu-
tion of false positives in magnitude, length and orientation space. These plots indicate
that the most common type of false-positive detections are faint and short, consistent
with these contaminants being mostly star/galaxy subtraction artifacts and segments
of extended, low-surface brightness objects like optical ghosts, space debris trails and
bright-star halos. Figure 3.7 presents a gallery of examples of successful, failed, and
contaminant detections.

Among the 539 predicted sightings of real streaking asteroids (see section 3.2.4)
in the test images, a total of 240 were successfully detected by findStreaks. The
left-side plots of Figure 3.5 show successful and failed detections in the same feature
subspaces in which the synthetics are also plotted in Figure 3.5. A distinction be-

tween the y-axis-plotted ‘magnitude’ for the reals and that of the synthetics is that
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Figure 3.8: Correlation matrix for the 15 features (descriptions given in Table 3.1)
used in the classification process. White squares indicate positive correlation, black
indicate negative (anti-) correlation, and the area of each square indicates the mag-
nitude of the correlation.

the magnitude of the reals is again the predicted brightness, accurate to ~0.5 mag,
whereas the synthetic magnitudes are more precisely known (even for the non-detected

synthetics, as they still have a known flux and well-defined image zeropoint).

3.3.2 Machine-learned classification

3.3.2.1 Overview

As described above, a typical PTF image (single CCD) may contain several tens of
false positive streak candidates, so that a full night of PTF observations—consisting
of several thousand such images—may typically produce of order 10° raw candidate
objects. This is far too many to screen manually by eye. Imposing simple filters on
the measured morphological features (Table 3.1) can eliminate large subsets of false
positives, but these hard cuts generally come at the cost of decreased completeness.
A good example is the filter on the linear correlation coefficient condition (|r| > 0.5)
discussed above, and the resulting insensitivity to near-vertical and near-horizontal

streaks.
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Figure 3.9: Importance of each of the 15 features (descriptions given in Table 3.1)
used in the classification process. This number represents the fraction of training
samples in which each feature contributes more by virtue of being at an earlier node
splitting in the decision tree.
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plot in true-positive versus false-positive space is commonly referred to as a receiver
operating characteristic (ROC') curve.



70

To address this issue we have trained and implemented a machine-learned classifier
to discriminate real streaks from false positives. We adopt a supervised ensemble-
method approach for classification, originally popularized by [Breiman et al. (1984)],
specifically the random forest (RF) method [Breiman (2001)]. RF classification has
extensive and diverse applications in many fields (e.g., economics, bioinformatics, so-
ciology). Within astronomy in particular RF classification is one of the more widely-
employed methods of machine-learning, though many alternatives exist. For example,
[Masiero et al. (2014)] use the RF method for variable-star lightcurve classification,
while others have approached this problem via the use of, e.g., support vector ma-
chines [Wozniak et al. (2004)], Kohonen self-organizing maps [Brett et al. (2004)],
Bayesian networks and mixture-models [Mahabal et al. (2008)], principle component
analysis [Deb & Singh (2009)], multivariate Bayesian and Gaussian mixture models
[Blomme et al. (2011)], and thick-pen transform methods [Park et al. (2013)].

For general descriptions of RF training and classification, we refer the reader
to [Breiman (2001)], [Breiman & Cutler (2004)], and the many references cited by
[Masiero et al. (2014)]. Our use of a RF classifier is particularly motivated by its
already-proven application to the discovery and classification of astrophysical tran-
sients in the same PTF survey data [Bloom et al. (2012)].

Streak candidates in PTF images are cast into a vector of quantitative morpholog-
ical and contextual features, namely the 15 features listed in Table 3.1. Given a large
set of such candidates, these metrics define a multi-dimensional space, which can be
hierarchically divided into subspaces called nodes. The smallest node—also known as
a leaf—is simply an individual candidate. Given a set of leaves with class labels, i.e.,
a training set—one can build an ensemble of trees (called a forest), each tree repre-
senting a different, randomly-generated partitioning of the feature space with respect
to a subset of the total training sample (and a subset of the total list of features).
The forest allows one to assign a probability that a given vector of features belongs to
a given class. For the PTF candidates, were are interested in a binary classification,
i.e., whether the candidate is real or ‘bogus’. [Bloom et al. (2012)] coined the term

realBogus to describe this binary classification probability. In the present work we
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are essentially adapting Bloom et al.’s realBogus concept to the problem of streaking

asteroid discovery.

3.3.2.2 Implementation and training

We employ a Python-based Random Forest classifier included as a part of the
scikit-learn Python package®. Specifically, we use the ExtraTreesClassifier
class in the sklearn.ensemble module. This particular code is an implementation
of the ‘extremely randomized trees’ method [Geurts et al. (2006)], a variant of the
Random Forest method containing an added layer of randomness in the way node-
splitting is performed. Specifically, ExtraTrees chooses thresholds randomly for each
feature and picks the best of those as the splitting rule, as opposed to the standard
RF which picks thresholds that appear most discriminative. The additional random-
ization tends to improve generalization over the standard RF algorithm, this was
verified empirically for our streak data.

Our training data consists of all candidate streak detections from the 539-image
synthetic-injection test described in Section 3.3.1.2. This includes 240 real detections
(out of the 539 predicted sightings from Section 3.2.4), 1,285 synthetic detections (out
of the 2,631 total injected) and 20,072 bogus detections. Various examples of these
bogus (false-positive) detections are shown in the right column of Figure 3.7, while
their distributions in magnitude-vs.-length and magnitude-vs.-orientation space are
shown in Figure 3.6.

Among the 15 features (Table 3.1) describing the streak candidates, several of the
features exhibit some level of correlation, as shown in Figure 3.8. Most correlations are
reasonable as they express the relationship between geometrically-similar quantities:
the length of a streak is generally correlated with the number of pixels, and the fitted
linear slope correlates with the proper angle. A strong correlation between median
and scale (measures of flux signal and noise, respectively) is simply a expression of
the Poisson noise associated with photon counting. Assessing the correlation between

features aids in the interpretation of relative feature importances (Figure 3.9) derived

4http:/ /scikit-learn.org
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Figure 3.11: In the top row (findStreaks only), detection is again defined as the
presence of an object whose length is within four streak widths of the true length, as
in Section 3.3.2.1. In the bottom row (findStreaks plus the classifier), detection is
defined as the presence of an object of length within four streak widths of the true
length and a classification score of p > 0.4.
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Figure 3.12: Loss in detection completeness due to the machine classifier—i.e., like
Figure 3.10 except considering only those candidates that were first positively detected
by findStreaks).
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during the training process (described below). In particular, among the top four most
discriminative features (according to Figure 3.9), three are significantly correlated
(pixels, hwidth and length).

The classifier training consists of a 10-fold cross-validation (i.e., bootstrapping)
process, wherein we split the data (reals, synthetics and boguses) into 10 disjoint sets
using stratified random sampling. Then, in each cross-validation fold, we train using
9 of the sets and test on the remaining one—however, we exclude the synthetics from
this test sample. In each of the ten cross-validation trials, the classifier outputs a
classification probability for each object in the test sample, and we track the true
positive rate (TPR; fraction of real streaks accurately classified as reals) as a function
of the false-positive rate (FPR; fraction of bogus streaks inaccurately classified as
reals). In astrostatisics TPR is also commonly called completeness while FPR is
equivalently one minus the reliability. The results of the separate trials, as well as
the averaged result, are shown in Figure 3.10. By tuning the minimum classification
probability (i.e., the realBogus score) used to threshold the classifier’s output, one
effectively moves along the hyperbola-shaped locus of points in TPR-vs.-FPR space
seen in the plot.

Several parameters can be adjusted or tuned when working with a random forest
classifier. First is the number of decision trees generated during the learning stage.
Classification accuracy typically increases with the number of trees and eventually
plateaus. Most applications employ hundreds to thousands of trees; here we found
that 300 trees provide sufficient performance. Another tunable parameter is the num-
ber of randomly-selected features (out of the 15 total here considered) with respect
to which nodes are split in building the decision trees. [Breiman (2001)] recommends
using the square root of the number of features; however, here we found optimal ac-
curacy when splitting with respect to all 15 features. Other parameters that can be
tweaked are the maximum depth of a tree, the minimum number of samples per leaf,
the minimum number of samples used in a split, and the maximum number of leaf
nodes. We do not constrain any of these parameters, meaning we allow: trees of any

depth, with any number of leaf nodes, leaf nodes consisting of a single sample, and
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original image stamp
appears asteroid-like

—

original image stamp
appears asteroid-like

larger field of view larger field of view
shows optical ghost shows successive glints

Figure 3.13: Example false positive detections in which the original 200” x 200” image
stamp looks like a real asteroid streak, but the larger field of view clearly indicates
the nature of the bogus detection. Left: Filament of an optical ghost. Right: Glint
segment, e.g., from a fast-moving rapidly-rotating piece of space debris. If additional
candidates from these larger false-positive objects also appear on the scanning page,
their common exposure timestamp implies their stamps will appear adjacent to one
another, facilitating their identification as bogus detections.

splits based on the minimum of 2 samples.

3.3.2.3 Post-training performance

In addition to tracking the classifier’s performance during the training cross-validation
trials, after training we subjected the classifier to a new sample of ~400 synthetics.
These newly-generated synthetics were injected into the same 539 test images using
the same procedure described in section 3.3.1.2. Given the distinct random numbers
used in this run, these synthetics are distinct from those that were used in training,

and appear at different locations on the PTF images.
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As was done in cross-validation, the purpose of this post-training trial was to
ascertain the detection completeness, though this time using synthetics (which were
used previously for training but not testing). Another difference is that we now
consider completeness for a fixed classification probability threshold (p > 0.4) and do
so as a function of magnitude and length (similar to the analysis done for findStreaks
in Section 3.3.1.2).

The top plots of Figure 3.11 show the same information as was shown in Figure 3.5,
albeit for this new sample of synthetics (and at slightly coarser resolution). Namely,
we first examine the completeness delivered by findStreaks alone, and again see
the limiting magnitude versus length trend. In the bottom plots of Figure 3.11, we
show detection completeness for the same sample only this time for the combined
findStreaks plus machine classifier system. In other words, all the blue data points
in the lower left Figure 3.11 plot were both successfully detected by findStreaks and
were subsequently classified as real with a probability p > 0.4.

In Figure 3.12, we again show data from the same synthetics sample, this time
plotting the loss in absolute detection completeness due solely to the application
of the machine classifier. In the top plot of Figure 3.12, green data points were
successfully detected by findStreaks but did not score high enough (p > 0.4) in
the classification stage. The 2D histogram below it shows that the most significant
loss in completeness occurs for short faint streaks. Likely not coincidentally, this
region suffers from the largest number of bogus findStreaks detections, as indicated
by Figure 3.6. Integrating over all bins in this magnitude-vs.-length histogram, we
observe an average completeness drop of ~0.15, consistent with Figure 3.10 for a true

positive rate of ~85% accompanying a false-positive rate of ~5%.

3.3.3 Web-based screening interface

The final component of the discovery portion of the PTF streak-detection pipeline
consists of a webpage for human vetting of image stamps of streak candidates to

which the classifier has assigned a high probability of being real. Figure 3.4 includes
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a screenshot of this webpage. Given the ~5% false-positive rate quoted in the pre-
ceding paragraph and the ~10° detected candidates accumulated in a typical night
(cf. Section 3.3.2.1), this webpage displays on average several thousand candidates
per night.

Including operations on Palomar Mountain, the data transfer from Palomar to
Caltech, and the IPAC real-time processing pipeline (Section 3.2.3) a typical lag-time
of ~30 minutes (approx. +10 minutes) elapses between the acquisition of exposures
with the PTF camera and the posting of streak candidates from said exposure to
the scanning webpage. The image stamps have fields of view of 200” x 200" with
linear contrast scaling from —0.5¢ to 7o (as in Figure 3.3). Undifferenced images are
reviewed as opposed to the differenced images, to better provide context to the scanner
and enable him /her to visually assess the observing conditions (i.e. the density and
image quality of background stars).

The kinds of false positives commonly encountered on the scanning webpage in-
clude all of those shown on the right-hand side of Figure 3.7. Image stamps are
viewed in chronological order, so that candidates from a common image appear con-
secutively on the scanning page. This enables rapid recognition of false positives of a
common origin. For example, multiple segments of a long satellite trail, large optical
ghost, or artifacts from a poorly-subtracted or high stellar density image will appear
together and are thus easily dismissed. Artifacts that do not appear in groups, such
as cosmic ray hits, background sky noise and poorly-subtracted galaxies, are rapidly
visually dismissed as well. A full night’s set of candidates (several thousand) can be
reliably reviewed by a trained scanner in 5-10 minutes, though the reviewing time is
distributed over the during observing session, as the webpage is refreshed every 20-30
minutes.

Clicking on the image stamp of a candidate streak presents another webpage with
more detailed information including astrometry, photometry, realBogus score, image
stamps of the differenced and reference images, and a larger field of view around
the detection. Certain types of false positives are more easily identified using this

additional information, including portions of optical ghosts and periodically-glinting
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space debris. This summary page also contains information for real-time follow-up,

as discussed in the next section.

3.4 Follow-up and reporting of discoveries

Once a real streak is discovered in PTF via the steps outlined in the previous section,
we trigger real-time follow-up with the same telescope. Its wide field of view (Section
3.2.1) makes the PTF camera particularly well-suited for recovering fast-moving NEAs
within a few hours of an initial detection. As described below, the follow-up process
effectively interrupts the nominal robotic survey by injecting high-priority exposure
requests into the queue. The final step involves reporting observations to the Minor

Planet Center to facilitate subsequent confirmation and follow-up worldwide.

3.4.1 Target-of-opportunity (ToO) requests

The sequence of PTF fields observed on any given night is determined in real-time
by a robotic scheduler: the P48 Observatory Control System (OCS) described by
[Law et al. (2009)]. The robot takes as input a list of fields, generally prescribed by a
human operator per lunation, and attempts to optimize exposure conditions (distance
from moon, airmass, etc.) while also maintaining a specific cadence—predominantly
two or three exposures per field per night separated by ~40 minutes (optimal for
supernova discovery). As noted in Section 3.2.1, in recent years (during the iPTF
phase), fields and cadences have often been allocated to distinct experiments, though
all exposures still adhere to a fixed tiling of fields, with 60-second integrations in
either R- or g-band.

All PTF exposures are processed by the streak detection pipeline if they have a
reference image available (required for image differencing, see Section 3.2.3). Upon
recognition of a single detection of a likely real NEA streak on the scanning webpage,
the human reviewer immediately checks the webpage for additional serendipitous

detections in other PTF exposures acquired that night. If a second detection of the
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same streak is found, the observations are immediately sent to the MPC’s Near-Earth
Object Confirmation Page (NEOCP)®.

Lacking a second detection, the reviewer uses tools integrated into the scanning
webpage to trigger target-of-opportunity (ToO) exposures to secure additional detec-
tions. Figure 3.4 shows a screenshot of the webpage’s streak position estimation tool,
which uses a linear (great-circle) extrapolation assuming motion in either direction,
overlaid on the PTF tile grid. A PHP script redraws the plot to the current time
when refreshed by the user.

Once a list of fields potentially containing the streak has been identified (typically
between one and a few fields), a text-based email sent to the telescope robot inserts
the fields into the queue with very high weight. This email may additionally prescribe
repeat exposures of the fields with some specified cadence, filter, or maximum air-
mass. The ToO exposures typically are acquired within 5-10 minutes of the request,
depending on factors such as slew time and the need to change filters. The email-
based ToO-system for PTF was originally designed for (and proven on) the discovery
of optical afterglows of gamma-ray bursts [Singer et al. (2013)].

Apart from having been manually triggered, the ToO exposures are otherwise
identical to routine PTF survey images in that they are sidereally tracked, 60-second
R- or g-band images aligned to a fixed tile grid of the sky (as opposed to, e.g., being
centered on the NEA’s predicted position). Having acquired the ToO exposures, any
additional detections of the streak are automatically extracted with the same streak-
detection pipeline and will appear on the scanning webpage along with the rest of the
night’s candidates. Observations are sent to the MPC once two or more detections

have been secured.

3.4.2 Initial NEA discoveries

The full streak-discovery system, incorporating the IPAC real-time data products,

findStreaks and the trained machine classifier, began real-time operations 2014-

Shttp://www.minorplanetcenter.net /iau/NEO/toconfirm_tabular.html
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Figure 3.14: Discovery images of the first five streaked NEAs found by PTF.

Table 3.3: iPTF sub-surveys containing streaked-NEA discovery exposures.
sub-survey in which degrees from

fatne NEA was discovered filter opposition
2014 WS;  Permanent Local Galaxies R 28
2014 WK~ TILU K2 Campaign g 73
2014 ULy TILU Fall 2014 g 47
2014 STa3  Opposition NEA search g 18
2014 SCyys RR Lyrae R 32
2014 SE RR Lyrae R 21
2014 RJ TILU Fall 2014 g 35
2014 LLog Star-forming low-cadence R 9
2014 KD TILU Spring 2014 R 49
2014 JGss iPTF14yb follow-up R 34
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Figure 3.15: Distribution of PTF exposures (left: in sky coordinates, right: with re-
spect to opposition) and streaked NEA detections (right: with respect to opposition)
from 2014-May-01 through 2014-Dec-01. The grayscale scalebar maps the density
of PTF exposures in both plots. Exposures for which realtime streak-detection was
not performed are not included (e.g., fields lacking reference images or with too high
source density on the galactic plane).
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May-01. About a week later, the first PTF streaking NEA discovery was made (2014
JGs5). Passing at one-third of a lunar distance, this object is also the smallest and
closest-approaching NEA yet discovered by PTF.

The largest streaking NEA discovered by PTF to date is 2014 WK, at H = 22.4
mag (D ~ 166 m), while the PTF discovery having an orbit most suitable for ARM
(see the [Jedicke et al. (2013)] criteria in Footnote 1) is 2014 ST43, though this object
is probably too large for ARM.

Table 3.2 details the ten total streaking-NEA discoveries made by PTF as of
2014-Dec-01. Nearly all of these (the one exception being 2014 Llsg) were followed
up and confirmed by multiple observatories within 24 hours. A total of 25 different
observatories have provided follow-up observations within 24 hours of at least one of
the NEA discoveries listed in Table 3.2. After the sun has risen in California, most
short-term follow-up of PTF discoveries occurs from Japan and Europe (occasionally
Australia), as most longitudes west of Palomar fall in the Pacific.

Figure 3.15 shows the discovery position of the ten NEAs in Table 3.1 relative to
opposition. Most of the objects were found within 40° of opposition. An outlier is
2014 WK5, which was discovered 73° from opposition (phase angle 71°), though this
NEA is also an outlier in the sample in terms of its size.

Table 3.3 lists the various sub-surveys (also known as ‘iPTF experiments’, see
Section 3.2.1) to which the NEA discovery exposures belong. Here ‘TILU’ stands
for Transients in the Local Universe’. A key point here is that nearly all of PTF’s
streaked NEA discoveries to date have been made in images originally purposed for
non-solar system science. A dedicated iPTF experiment designed to maximize the
area covered around opposition was carried out for several nights in Fall 2014, though
only one exposure from said program produced a discovery (2014 STas3, which, as
mentioned above, is the most ARM-like PTF discovery to date).

All follow-up was unsolicited apart from having posted the discoveries on the
NEOCP, and attests to the dedication of the worldwide NEA follow-up community.
We note however that, while they are on the NEOCP, PTF-discovered streaking NEAs

are consistently the brightest on the list—all were V' < 19 mag—whereas most of the
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50+ objects typically found on the NEOCP have V > 20 mag. It is therefore not
surprising that more follow-up facilities are able and willing to recover these bright

objects as compared to the typical faint and slow NEOCP candidates.

3.4.3 Blind real-time recovery of known NEAs

There are several options for querying a given R.A., Dec., and time to search for
a match (within some radius) to an asteroid with a known orbit; these include
MPChecker®, JPL’s HORIZONS”, and PyMPChecker [Klein et al. (2009)]. However,
those scanning the PTF streak candidates in real-time are discouraged from checking
if a detected streak is a known object prior to obtaining ToO follow-up and submit-
ting the observations to the NEOCP. One reason is that the above mentioned query
tools are not necessarily reliable for fast-moving objects, and will not always return
a match even if the object has a well-determined orbit. Another reason is that the
ToO-submitting procedure, while simple and straightforward, requires efficiency and
efficacy on the part of the scanner and so should be practiced as often as possible.
Lastly, the MPC encourages submission of unidentified known objects as it allows
them to directly assess our program’s detection capabilities (e.g., our astrometric
accuracy ).

As of 2014-Dec-01, a total of four previously-discovered NEAs have been blindly
detected by PTF as streaks and submitted to the NEOCP: 2014 HLjy9 (May-02);
2010 JO33 (May-08); 2014 WF1ps (May-27; to date the only ‘potentially hazardous
asteroid’ blindly detected as a streak by PTF in real-time); and 2014 SE;45 (Sep-23).

3.4.4 Unconfirmed discoveries

A total of five PTF objects posted to the NEOCP (between May-01 and Dec-01)
did not receive external follow-up, meaning they never obtained confident orbit solu-

tions and thus were not assigned provisional designations by the MPC (Table 3.4 and

Shttp://www.minorplanetcenter.net /cgi-bin /checkmp.cgi
"http://ssd.jpl.nasa.gov/sbfind.cgi
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Table 3.4: Unconfirmed PTF streak discoveries (from 2014-May-01 to 2014-Dec-01)

NEOCP  date num. speed V notes
name found  obs. (”/min) (mag)
PTF5i5 May-04 2 46.8 19.5
PTF9i2  Jul-08 2 36.9 17.9  85% moon, near dawn
PTF3k8  Sep-23 2 64.9 18.0 likely satellite
PTF8k2  Sep-25 3 27.6 18.9
PTFT7I3  Oct-25 2 30.1 17.5
PTF5i5 PTF9i2 PTF3k8 PTF8k2 PTF713

Figure 3.16: PTF streak discoveries that were posted to the NEOCP but never re-
ceived external follow-up.

Figure 3.16). For four of these unconfirmed objects, PTF had submitted only two ob-
servations to the NEOCP. We note that 4 out of the 10 confirmed objects (Table 3.2)
also were reported with only two observations, from which we naively conclude that a
two-observation discovery has only a 50% probability of being successfully followed-
up (for three- and four-observation discoveries the recovered fraction increases to 66%
and 100%, respectively).

While in reality the recovery probability depends also on the temporal spacing of
the observations, the object’s speed and magnitude, and the availability of follow-up
resources (e.g., less facilities operate around full-moon), the number of observations
alone seems to be a useful indicator of the recovery likelihood. Users of the PTF
real-time scanning and ToO system attempt to obtain at least three observations for
discoveries, though this is not always possible, e.g., for discoveries made early in the
night in the western sky, or just before dawn. Occasional technical issues with the

real-time processing and/or ToO system also can hinder PTF self-follow-up.
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Titan llIC transtage unidentified satellite
rocket body (900DC57)

THEMIS A spacecraft

Figure 3.17: Artificial satellites detected as streaks by PTF (identifications provided
by the MPC).

3.4.5 Artificial satellites

Many distant Earth-orbiting artificial satellites can, at certain parts of their orbit,
appear consistent with an Earth-approaching NEA. Our streak-recognition pipeline
has on several occasions detected such satellites. Figure 3.17 shows some exam-
ples, including one of the THEMIS mission spacecraft studying the Earth’s magneto-
sphere [Angelopoulos (2008)] and a Titan IIIC rocket body. The MPC’s automated
observation-ingestion processes outputs known artificial satellite matches to NEOCP
submissions (as was the case for the three in Figure 3.17), though in some cases the
object will be posted to the NEOCP and remain on the list for some time prior to
its recognition as artificial. Three examples of the latter were PTF7i2, PTF8i6, and
PTFOn2.

While we see the same value in blind reporting of artificial satellites as we do
blind reporting of known NEAs (Section 3.4.3), some high-orbit satellites have geosyn-
chronous orbits and can therefore appear in the same area of sky for many consecutive
nights. An example is the THEMIS spacecraft, whose apogee was coincident with
opposition, causing it to be repeatedly observed by PTF in autumn 2014. For routine
identification of known satellites, we have therefore adopted the useful software tool

sat_id by Project Pluto®.

8http://www.projectpluto.com/sat_id.htm
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Figure 3.18: Normalized distributions of PTF images and streaked NEA detections
with respect to opposition. The 19 NEAs included here consist of new discoveries,
blind recoveries and the five unconfirmed discoveries. See Figure 3.15 for the two-
dimensional distribution.
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Figure 3.19: Estimates of the number of streaked NEAs detectable by P48 as a
function of distance from opposition. Computed using the data in Figure 3.18 and
Equation (3.5).

3.5 De-biased detection rate

The right panel of Figure 3.15 shows the distribution of streaked NEA detections
(including confirmed and unconfirmed discoveries as well blind recoveries). In this
section we use this sample of detections and the distribution of PTF exposures with
respect to opposition to derive the de-biased streaked-NEA detection rate as a func-
tion of radial distance from opposition. Figure 3.18 shows the same data as in Figure
3.15, removing the azimuthal information to only show the one-dimensional radial
distributions.

We seek to estimate the frequency f of streaked NEA detections per unit area
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of sky per unit time (equivalently, per survey image). The posterior probability
distribution of f (assuming a constant prior) is given by an appropriately-normalized

Poisson distribution:

(NC)+!

e

frexp(=NCYf) (3.5)

where N is the total number of images searched for streaked NEAs, n is the number of
detected streaked NEAs, C' is the completeness (true positive rate) of the PTF streak
detection system as a whole, and I'(...) is the gamma function (which contributes to
the normalization of the distribution).

Figures 5 and 11 indicate that the completeness C' depends on which volume in
magnitude, length, and orientation space under consideration, as well as the separate
efficincies of sub-components like findStreaks and the machine classifier. For sim-
plicity, in the following analysis we evaluate two separate values for C' (0.5 and 0.7)
but the most accurate values for C' would in principle come from direct application
of the completeness data in Figures 5, 11 and 12.

We apply Equation (3.5) to the image count N and streak count n within each of
the thirteen bins in Figure 3.18. In particular, by numerical integration we compute
the 16th and 84th percentiles of the resulting Poisson distributions, and plot these 1o
bounds as a function of distance from opposition in Figure 3.19. The estimates are
1-3 streaked NEA detections per 10* deg? of sky near opposition, dropping to about
1 or less beyond 40-50 deg from opposition. The images acquired by PTF from 2014-
May-01 through 2014-Dec-01 represent 191,435 deg?, and a total of 19 streaked NEAs
(10 confirmed, 4 blindly recovered, 5 unconfirmed) were detected in these data. If the
areal density of the streaks were independent of distance from opposition, this would
correspond to a coarse estimate of ~1 detected streak per 10* deg?, in agreement
with the radially-binned rates multiplied by the actualy radial distribution of images

(which are mostly 40 deg or more from opposition).
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3.6 Scaling laws for streaked asteroid detection

We here derive a quantitative ‘figure of merit’ (FoM) proportional to the average
number of streaked asteroids detectable per unit time by a survey. The FoM will

depend on a number of survey specifications including the:

e field of view € in deg?,

e seeing width fpgr in arcseconds,

lim

pnt» Which is related to other parameters

e limiting magnitude of a point source m

such as:
o exposure time 7 in seconds,
o telescope aperture A in meters,

o sky background flux B (counts/second/arcsec?),

e total duty cycle time 74 per exposure, including integration, readout, and slew

time.

Assume that the density of asteroids and their velocity distribution is independent
of distance. The volumne of streaked asteroids detectable at any given time goes as
ng’trk, where dg., 1S the maximum distance at which an asteroid can be detected as
a streak. The figure of merit (asteroids detectable per unit time) therefore scales as

Qd?
FoM oc —Stzk (3.6)

Ttot
The maximum streaking distance dg, is defined for some signal-to-noise ratio
(SNR), typically SNR = 5, at which the object will be detected with an apparent
magnitude mim . When detected at this threshold SNR, the streaking object’s dis-
tance dg,x must be closer than the distance d,, of a point source observed with the
same SNR but fainter magnitude

i = 510830 (dpn /do) (3.7)

pnt
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where dj is a parameter encoding the asteroid’s intrinsic flux (dependent on its size,
albedo). Assume that d,, is much less than 1 AU, so that heliocentric distance does
not factor into dy. Also assume that the survey observes mostly around opposition,
so that phase angle effects need not factor significantly into d,.

Let F' be the asteroid’s flux and B the background flux. For a point source the
SNR is

F/(4nd?,,)

SNR i = T"nt X /T (3.8)

An asteroid’s apparent angular rate 0 relates to its distance and perpendicular velocity

component by 0=v 1 /dstr. We thus define the streak-time

Tpsr = Opsr /0 = Opsrdiu/vL (3.9)

For streaking to occur, the exposure time 7 must be significantly longer, i.e.,
T > 71psr. The signal-to-noise in each segment of length fpgp along the streak’s extent
receives flux from the asteroid only for a duration 7psp, but the noise accumulates
for the entire exposure 7. In terms of this quantity, the signal-to-noise in a streak

segment of length Opgp is

F/(AndZ,,) o TPSE
VB VT

The streak’s total SNR is found by adding in quadrature the individual SNRs of the

SNRseg = (fOI' T > TPSF) (310)

7/7Tpsr such segments comprising it:

1/2
T/TPSF /

SNRyw = | Y SNR?
i=1

seg,t

3.11
= SNRueg X 4/ —— (3:11)
TPSF
F/(47Td§trk)

= T X A/ TPSF (fOI‘ T > TPSF)
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A useful approximation for the general case of any 7, with the appropriate limiting

and intermediate behavior, is:

 F/(4nd% ) T V2
SNRyk = NG “\ 10 T (3.12)

Setting SNR,nt = SNR,k using Equations (8) and (12),

Bone 1+ — (3.13)
A TpSF '

Hence, the limiting magnitude for a streak, in terms of the limiting magnitude for a

point source with the same SNR, is

lim lim 2 2
Mgty = mpnt —2.5 1OglO(dl:)nt/dstﬂ()

. (3.14)
=mim _ 195 log,o(1 + 7/7psF)

pnt
Equation (3.14) approximates the detection efficiency drop-off (limiting magnitude
vs. length) seen in Figures 5 and 11.
If we once again consider the ‘significantly-streaked’ limit (7 > 7psp) and use
Equations (7), (9), and (13), we find
 dyfpsr

i, = o 107755 (for 7> Tpsr) (3.15)
L

Again assuming that the asteroids’ size and albedo (represented by dy) and velocities
(v,) are constant with geocentric distance, the figure of merit (Equation 3.6) for
comparing surveys then takes the form

Q@ im

ZUPSE s 1008mpn: (3.16)

Ttot T

FoM

Approximate FoM values are listed in Table 3.5 relative to PTF. Any other

survey’s FoM can be computed by normalizing its limiting magnitude as mgﬁ —

lim
pnt

m = — 17.15 and then applying Equation 3.16.
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Table 3.5: Figure of merit comparison for surveys

survey Q QPSF T Ttot pnt FoM
(deg?) (arcsec) (min) (min) ~ "™  wor.t. PTF
ZTF 47 2 0.5 0.75 204 37
PS1 or PS2 7 1.1 0.5 1 21.8 30
ATLAS 60 2.6 0.5 0.6 19.7 21
BlackGEM 22 1 1 1.2 20.7 4.7
Catalina 19 2.5 0.5 0.75 19.5 3.6

PTF 7.25 2.0 1 1.5 202 1
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Chapter 4

Asteroid Lightcurves

4.1 Introduction

In this work we model an asteroid’s apparent visual magnitude V' (log flux) as

V =H+ 9+ 5log,(rA) — 2.51log,y[6()], (4.1)

where H is the absolute magnitude (a constant), § is a periodic variability term due to
rotation (e.g., if the object is spinning and has some asymmetry in shape or albedo), r
and A are the heliocentric and geocentric distances (in AU), and ¢ = ¢(«) is the phase
function, which varies with the solar phase angle o (the Sun-asteroid-Earth angle).
When a = 0 (i.e., at opposition), ¢ = 1 by definition, while in general 0 < ¢ < 1 for
a > 0 (with ¢ decreasing as « increases).

A key feature of our approach is the simultaneous fitting of both the phase function
¢ and the rotation term ¢. The detailed forms of ¢ and 9, as well as the algorithm
underlying our fitting procedure, are motivated by a variety of prior work in this area,

as described in the following sections.

4.1.1 Asteroid rotation

Building upon the work of [Kaasalainen et al. (2001)], [Hanus & Durech (2012))] dis-
cuss the inversion of asteroid lightcurve data taken over several oppositions to obtain

a 3D shape solution. The form of § (cf. Equation [4.1]) in this case consists of
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a large number of free parameters (several tens to hundreds). Results from inver-
sion agree well with those from stellar occultations, adaptive optics imaging, and
in-situ spacecraft imagery [Hanus et al. (2013))]. Knowledge of the detailed irreg-
ular shapes of asteroids improves our ability to constrain models of their internal
structure, as well the magnitude and timescale of spin and orbital evolution due to
solar-radiation and thermal emission, including the Yarkovsky and YORP effects (see
[Bottke et al. (2006)] and references therein).

A simpler model for )—suitable for fitting to data sparser than that required for
most inversion methods—is a Jacobi ellipsoid [Chandrasekhar (1969)] in its principal-
axis spin state. The lightcurve of such an ellipsoid is a double-peaked sinusoid, given
by a simple expression depending solely (assuming constant surface albedo) on the
axes ratio, and angle between the line of sight and spin axis. The fitted amplitude
thus yields a lower-bound elongation estimate for the asteroid.

The predicted distribution of the rotation frequencies of a collisionally-equilibrated
system of particles has long been claimed to be a Maxwellian function [Salo (1987)],
which—as reviewed by [Pravec et al. (2002)]—very well approximates the observed
distribution of several hundred of the brightest (~40-km or larger) asteroids, but
breaks down for smaller objects, among which an excess of slow and fast rotators
appear to exist. [Steinberg & Sari (2015)] more recently argue that collision instead
leads to a Lévy distribution, and that a significant primordial spin component remains
in the present observed population. Some studies that have examined the spin dis-
tribution of small objects are [Pravec et al. (2008)], [Polishook & Brosch (2009)], the
Thousand Asteroid Lightcurve Survey [Masiero et al. (2009)], and two brief observing
runs conducted within the PTF survey ([Polishook et al. (2012)]; [Chang et al. (2014a)]).

[Warner et al. (2009)] describe the Lightcurve Database (LCDB), which compiles
several thousand densely-sampled lightcurves of asteroids targeted by dedicated ob-

serving teams. Lightcurves in the LCDB have the following features:

1. LCDB lightcurves’ dense sampling generally permits fitting of Fourier series

with many harmonic terms,
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2. LCDB lightcurves are often sampled over the shortest time window necessary
to measure the period, and therefore generally do not require large or uncertain

corrections due to phase angle effects,

3. LCDB lightcurves’ fitted periods are assigned integer quality codes by a human

reviewer (from 1 = poor to 3 = confident).

All three of the above features are either impractical or infeasible when the set
of lightcurves is very large and the data sparsely sampled, as is the case for PTF. In

this work we adopt the following modified approaches when fitting lightcurves:

1. We truncate the rotation curve’s Fourier-series fit after the 2nd harmonic, a
simplification broadly justified by [Harris et al. (2014)] and the assumption of
an ellipsoidal shape (cf. Section 4.3.1.2),

2. We simultaneously fit a phase-function model with the rotational part,

3. We use a machine-learned classifier to objectively aid in estimating the valid-
ity of each fitted period. The classifier is trained using all fitted lightcurves
that have previously (and confidently) measured LCDB periods and takes into
account the accuracy with which the true period was retrieved along with 20
lightcurve metrics (fitted period, amplitude, ratio of peaks, x? per degree of

freedom of fit, number of data points, and more).

Use of a machine classifier in asteroid lightcurve period quality assessment is en-
tirely novel and inspired in part by work done by PTF collaborators in extragalactic
transient science [Bloom et al. (2012)] and variable star science ([Masci et al. (2014)];
[Miller et al. (2014)]), as well as Waszczak et al. (in prep)’s work on detection tech-
niques for streaking NEOs. Among the advantages of using a machine-classified
quality score is that, via cross-validation with the known-period sample, one esti-
mates the completeness and contamination, i.e., the true-positive and false-positive
rates with respect to identifying an accurately-fit period, as a function of, e.g., the
period, amplitude, etc. The resulting true- and false-positive rates may then be used

to de-bias the classifier-filtered period distribution.
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1.6 : :
0

5 10 15
solar phase angle o (deg)
Symbol Asteroid Reference
O 588 Achilles Shevchenko et al. 2012
D «x 884 Priamus Shevchenko et al. 2012
= 1143 Odysseus  Shevchenko et al. 2012
O 24 Themis Harris et al. 1989a
C « 165 Loreley Harris et al. 1992
= 211 Isolda Harris & Young 1989
S O 20 Massalia Gehrels 1956
< 249 Amphitrite Lupishko et al. 1981
E O 44 Nysa Harris et al. 1989b
X 64 Angelina Harris et al. 1989b

Figure 4.1: Phase curves (from the literature) containing densely-sampled, rotation-
corrected photometry of asteroids in four taxonomic classes. Colored lines are our
original fits to the data using various single-parameter ¢ models (cf. Section 4.3.2).
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4.1.2 Asteroid phase functions

The analytic phase function of an ideal Lambertian-scattering sphere fits well to
featureless, atmospheric planets like Venus, but quite poorly to airless bodies (see
Figure 3.9 of [Seager (2010)] for a comparison). In later sections we describe several
¢ models that have been derived for (or empirically fit to) asteroids. Qualitatively,
asteroids show an approximately linearly decreasing ¢ out to a ~ 100 deg, modified
by a surge (increase in slope) at low phase angles (a < 5 deg), known as the opposition
effect (see Figure 4.1).

Early work (e.g. [Bowell et al. (1989)] and refs. therein) on a small sample of well-
observed asteroids, suggested that different asteroid spectral types display distinct
behavior in ¢. Figure 4.1 compares example phase curve data for D, C, S and E
types!, incorporating photometry from various sources. We emphasize the fact that
all of the data points in Figure 4.1 have been corrected for rotational modulation
(the 0 in Equation [4.1]) through dense sampling of each asteroid’s lightcurve at each
phase angle (equivalently, each epoch).

Using a large corpus of low-precision photometry from the MPC?, Oszkiewicz et al.
([Oszkiewicz et al. (2011)], [Oszkiewicz et al. (2012)]) showed that a fitted parameter
of one particular ¢ model correlates well with an asteroid’s SDSS visible color. While
they were unable to correct for rotational variation (d-term in Equation [4.1]), the
Oszkiewicz et al. work nevertheless demonstrates a solid trend between ¢ and a
compositional attribute (color).

These prior works motivate several defining aspects of this work’s phase-function

analysis:

1. We fit multiple phase function models to each lightcurve, both for compatibility

with the literature and to explore how the fitted parameters are related,

2. We simultaneously fit the rotational component with the phase-function part,

![Bus et al. (2002)] review these and other asteroid taxonomic classes, which are defined on the
basis of low-resolution (R =~ 100) visible reflectance spectra.
2IAU Minor Planet Center, http://minorplanetcenter.nethttp://minorplanetcenter.net
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Figure 4.2: Comparison of predicted asteroid sightings against positive and ‘reliable’
asteroid detections. We define a ‘reliable’ detection as any positive detection which
(1) lacks any catalogued background sources within a 4” radius, (2) has a calibrated
magnitude uncertainty of less than 0.1 mag, (3) lacks any processing warning flags.
As suggested by the middle and right column of plots, this definition of 'reliable’ still
contains some small contamination (at the <1% level) from uncatalogued background
sources and/or noise, as indicated by detections with distance residuals greater than
~1 arcsecond or magnitude residuals of greater than ~1 mag. In panel D, the less
than 100% completeness at the bright end reflects the non-negligible probability that
any asteroid will fall within 4” of a catalogued background source (regardless of the

magnitude of either the asteroid or the background source).
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3. We introduce a single colorimetric index for quantifying C-type vs. S-type
taxonomic classification, based on the compilation of several visible-band-color
asteroid datasets (see Appendix), and examine the variation in phase-function

parameters as a function of this color index.

4.2 QObservations

4.2.1 Overview of the PTF survey

The Palomar Transient Factory® (PTF) is a synoptic survey designed primarily to
discover extragalactic transients ([Law et al. (2009)]; [Rau et al. (2009)]). The PTF
camera, mounted on Palomar Observatory’s 1.2-m Oschin Schmidt Telescope, uses 11
CCDs (each 2K x 4K) to image 7.3 deg? of sky at a time at 1.0” /pixel resolution. Most
exposures (~85%) use a Mould-R filter* (hereafter “R”). The remaining broadband
images acquired use a Gunn g-band filter. Nearly all broadband PTF images are
60-second integrations, regardless of filter. About 15% of nights (near full moon) are
devoted to a narrowband (Ha) imaging survey of the full Northern Sky.

Science operations began in March 2009, with a nominal one- to five-day cadence
for supernova discovery and typical twice-per-night imaging of fields. Median seeing
is 2" with a limiting magnitude R ~ 20.5 (for 50 point-source detections), while dark
conditions routinely yield R ~ 21.0 [Law et al. (2010)].

The PTF survey is ongoing and expected to continue through mid-2016. In Jan-
uary 2013 the PTF project formally entered a second phase called the intermediate
PTF (iPTF’; [Kulkarni (2013)]). In this chapter we simply use ‘PTF’ to mean the
entire survey, from 2009 through the present (2015). The iPTF program accommo-
dates more varied ‘sub-surveys’ as opposed to a predominantly extragalactic program,
including variable star and solar system science. Images are still acquired with the

same telescope/camera/filters with 60s exposures, and are processed by the same

3http://ptf.caltech.eduhttp: //ptf.caltech.edu
4The Mould-R filter is very similar to the SDSS-r filter; see [Ofek et al. (2012a)] for its trans-
mission curve.
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reduction pipeline.

[Laher et al. (2014)] describe the PTF data reduction and archiving pipelines,
hosted at the Infrared Processing and Analysis Center (IPAC) at Caltech. Process-
ing at IPAC includes bias and flat-field corrections, astrometric calibration against
UCAC3  [Zacharias (2010)], astrometric  verification  against =~ 2MASS
[Skrutskie et al. (2006)], creation of source catalogs with Source Extractor
[Bertin and Arnouts (1996)], and production of reference images (stacks of ~20-30
PTF images that reach V = 22).

Ofek et al. ([Ofek et al. (2012a)], [Ofek et al. (2012b)]) describe the PTF sur-
vey’s absolute photometric calibration method, which relies on source matching with
SDSS DR7 [Abazajian et al. (2009)], and thus requires at least partial overlap of
PTF with SDSS each night. A separate, relative photometric calibration (based on
lightcurves of non-variable field stars) also exists for PTF data and is described by
[Levitan et al. (2011)] and in the appendix of [Ofek et al. (2011)]. In this work we
utilize all R-band and g-band PTF data accumulated from the survey’s start (March
2009) through July 2014. The asteroid magnitudes reported in this work use relative
photometric zeropoints when available (which as of this writing applies to ~85% of
PTF images) and absolute photometric zeropoints otherwise.

The PTEF’s robotic survey program and processing pipeline, as well as our data
aggregation and analysis in this work, make use of many functions from the MATLAB

package for astronomy and astrophysics [Ofek et al. (2014)].

4.2.2 This work’s data set

[Waszczak et al. (2013b)] used a custom spatial indexing algorithm to search the
set of all PTF single-epoch transient detections (through July 2012) for detections
of all asteroids with orbits known as of August 2012. That search procedure first
generated uniformly-spaced ephemerides for each asteroid using JPL’s online service
(HORIZONS; [Giorgini et al. (1996)]). Each asteroid’s ephemeris defines a 3D-curve

(two sky coordinates plus one time); the intersection of each curve with the 3D kd-
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tree of transient detections was then computed and positive detections within a 4"
matching radius saved.

In this work we use a modified version of the [Waszczak et al. (2013b)] algorithm.
The updates/changes are as follows.

Firstly, in terms of content, we now search all PTF (R and g-band) data from
01-March-2009 through 18-July-2014 for all numbered asteroids as of 12-July-2014
(401,810 objects). We now exclude unnumbered objects as the positional uncertainty
of these objects can be very large, and as they tend to be very faint their lightcurves
will not in general be of high quality.

Secondly, in place of a single-step matching of a 3D transient-detection kd-tree
against 3D ephemeris curves, we now divide the search into two main steps. We first
perform a 2D spatial matching that exploits the natural indexing of PTF exposures
into tiles (i.e., the grid of evenly spaced boresights or ‘fields’ on the sky). Each 2D
ephemeris curve’s intersection with the 2D PTF survey footprint is computed, the
object’s position cubically-interpolated to all epochs of exposures possibly contain-
ing the object, and the object’s precisely-computed positon is then compared to the
precise image boundaries of candidate exposures. Matching of predicted positions
against actual detections takes place subsequently as source catalogs are then loaded
into memory (as needed and in parallel). This method is faster than the original
[Waszczak et al. (2013b)] method and enables separate logging of predicted and pos-
itive detections.

The results of the known-asteroid search, as well as the derived lightcurve data
(described later) are stored in a relational database, the size and contents of which are
summarized in Table 4.1. Out of ~18 million predicted single-epoch asteroid sightings
(including predicted magnitudes as dim as V' & 23, well below PTF’s sensitivity),
there were 8.8 million positive detections (within a 4” radius). Of these, we define
4.3 million detections as ‘reliable’ as they (1) lack any catalogued background sources
within the 4” radius, (2) have a calibrated magnitude uncertainty of less than 0.1
mag, (3) lack any processing flags indicative of contamination. Figure 4.2 compares

predicted, positive and ‘reliable’ detections; the middle and right panels of Figure 4.2
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show that our definition of ‘reliable’ seems to include a small fraction of likely bad
observations (<1% contamination, note the vertical log scale), namely those which
have distance residuals greater than ~1” or magnitude residuals greater than ~1
mag. Because these reliable detections are the subset of observations which we input
into our lightcurve fitting model (Section 4.3.4), the fitting algorithm includes logic
designed to remove isolated data points that have very large residuals, either with

respect to the median lightcurve value or relative to their uncertainty.

4.3 Lightcurve model

Equation (4.1) presents the overall form and notation of our asteroid lightcurve model.
In this section we describe the detailed parameterization and assumptions of the

model.

4.3.1 Rotation component
4.3.1.1 Intra-opposition constraint

The most important parameter in the rotation component (the ¢ in Equation [4.1])

is the synodic spin period P, a constant which satisfies

§(t) = 0(T +nP), (4.2)

where 7 =t — A/c is the light-time-corrected observation timestamp, A = A(t) is the

asteroid’s geocentric distance, c is the speed of light, and n is any integer satisfying

|n| < Pom/ P, (4.3)

where P, is the synodic orbital period,

—1
1 1\ 1 M,

Porb i = | — — ¢ 2 ) (44)
yr Torb yr 271'&3/2

orb
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where Ty, is the asteroid’s sidereal orbital period and ae,y, is its orbital semi-major
axis (related by Kepler’s third law). P,y is the time elapsed between the asteroid’s
consecutive oppositions. Pursuant to this restriction, we constrain each ¢ solution
using observations from within the same opposition—i.e., for most asteroids, within
a 1.1- to 1.6-year interval centered on the date of locally minimally observed «.

The intra-opposition restriction is important given that our data set (described in
the next section) spans ~5 years. For an asteroid with a zero inclination circular orbit
and spin axis perpendicular to its orbital plane, we can relax Equation (4.3) to allow
n to be any integer, in which case § can be constrained using observations spanning
many years. In general however, Equation (4.2) must be modified to accommodate a

varying viewing geometry with respect to the spin axis:

5(r) = F(1)3(r +nP), (4.5)

where F' is some unknown periodic function satisfying F'(t) = F(t + mTyyw,), where
m is any integer and T, is the sidereal orbital period. Provided the amplitude of F
is not large relative to that of §, and provided the spin vector is not changing with
respect to the orbital plane (i.e., precessing®) on a timescale comparable to Py, we

are justified in assuming Equation (4.2) (with the Equation [4.3] restriction) applies.

4.3.1.2 Second-order Fourier series

Any 0 satisfying Equation (4.2) can be approximated to arbitrary precision using a
Fourier series. [Harris et al. (2014)] discuss why, from a geometric standpoint, the
second harmonic tends to dominate an asteroid’s fitted d. As noted earlier (section
4.1.1), most large asteroids approximately resemble triaxial prolate ellipsoids (e.g.,
Jacobi ellipsoids), having equatorial axis ratios of at most ~3:1 (corresponding to
& Omax — Omin amplitude of ~1.2 mag). For less extreme axis ratios (specifically,
those producing a ~0.4 mag or smaller second-harmonic amplitude), other harmonics

related to shape or albedo asymmetries may contribute comparable coefficients to the

SPrincipal-axis rotation (a stable equilibrium state) is assumed for most planetary bodies.
[Burns & Safronov (1973)] discuss the relevant timescales of spin evolution.
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Fourier approximation of 4.

The PTF survey program has—on a few rare occasions—conducted high-cadence
(~10-minute spaced) observations of low ecliptic latitude fields. These runs produced
a set of ~1,000 densely-sampled main-belt asteroid rotation curves, which have al-
ready been analyzed and published ([Polishook et al. (2012)]; [Chang et al. (2014a)]).
These high-cadence “pilot studies” are relevant to our present work in that they
demonstrate (1) the quality of the PTF survey’s photometric calibration for asteroids
with unambiguously valid § solutions, and (2) the above-described prevalence of a
dominant second-harmonic in most of the objects sampled.

Following these pilot studies, we adopt a second-order Fourier series model:

§= Z Aj g sin (27;57) + Ay cos (272{#) , (4.6)

k=1,2

where 7 is the light-time corrected epoch (cf. Equation [4.2]). In the pilot studies,
most of the fitted ¢ solutions qualitatively resemble a simple sine or cosine function.

Such a solution can be represented by either a:

1. first harmonic with period P = P, (with A;; # 0 and A;, =0), or

2. second harmonic of period P = %Pl (with A;; =0 and A;5 # 0).

Given the prolate ellipsoid model, choice (2) is more realistic and hence preferred.
However, again recognizing that other harmonics can have a non-negligible contribu-
tion, in fitting 0 to our lightcurve sample we allow the first-harmonic coefficients A, ;
to be non-zero, but introduce logic into the fitting algorithm (cf. Section 4.4) which

checks for double-period solutions satisfying certain criteria and iterates accordingly.

4.3.2 Phase-function component

In this work we simultaneously fit each lightcurve’s phase function ¢ along with its
rotation curve ¢ (cf. Equation [4.1]). This approach is intermediate in complexity

between some of the simpler, two-parameter (d-neglecting) models that have been
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applied to very large data sets (e.g., [Williams (2012)]; [Oszkiewicz et al. (2012)]),
and the more complex, shape plus pole-orientation models ([Kaasalainen (2004)];
[Cellino et al. (2009)]; [Hanus & Durech (2012))]) which can involve tens of parame-
ters and require data spanning multiple oppositions.

Regarding the former class of models, we note that there is a formal statistical
problem associated with neglecting 6 when fitting ¢. If modeling the observations M
by V' =V —§ = H + 5log,(rA) — 2.51log,(¢), then the distribution of residuals
M — V" is not Gaussian. Assuming ¢ is a sinusoid with amplitude A, for observations
M sampling the lightcurve at random times, the residual probability density function
p =p(M — V') has a local minimum value py, at M — V' = 0 and maximum value
Pmax Near M — V' = +A. Thus p is bimodal and roughly bowl-shaped—mnot at all
Gaussian-shaped. The uncertainty in ¢ produced by a standard x? minimization—
which assumes Gaussian-distributed errors—is thus inaccurate. However, since p is
symmetric about M — V' = 0, for densely-sampled data the fitted phase function ¢
remains unaffected by neglecting d; in such a case the only effect is an underestimated
uncertainty.

We obtain three separate fits for each lightcurve, each using a different phase-
function (¢) and allowing for unique solutions for H and § in Equation (4.1). The

three phase-function models are:
1. the two-parameter model of [Shevchenko (1997)],
2. the one-parameter G model [Bowell et al. (1989)],
3. the one-parameter G5 model [Muinonen et al. (2010))].

In this section we review and motivate the application of each of these ¢ models.

4.3.2.1 Two-parameter Shevchenko model

[Shevchenko (1997)] introduced a phase function dependent on two parameters; in

terms of Equation (4.1) the model is®

6In Shevchenko’s original notation, 3 is denoted b and C' is denoted a. Moreover, in the original
notation, ¢(0) = —a; we here added a constant term +a to make ¢(0) = 1, following convention
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«

—2.5logyg[é(a)] = Ba — O,

(4.7)

where /3 has units of mag/deg and C'is the amplitude of the opposition surge (units of
mag). This model was  subsequently considered in-depth by
[Belskaya & Shevchenko (2000)], hereafter B&S, who compiled the most complete (to
date) set of high-precision, targeted phase curve observations of main-belt asteroids
from various data sets spanning several decades.

Though in practice Shevchenko’s model is the least commonly used phase function
out of the three we consider, it is by far the simplest to express mathematically, and
is the only model for ¢ whose parameters have linear dependence in Equation (4.1).

Furthermore, this model’s parameters are the most straightforward to associate
with physical asteroid properties. B&S highlighted a robust relationship between an
asteroid’s (3, C) phase-function parameters and its geometric albedo”. As we later
explore a similar relationship in the present work, we here review the basis of this
observation.

The geometric albedo py is formally defined in terms of the phase function ¢:

Avona ([T 7 _ Avon
py = b2 d </0 ¢(a) sin(a) da) = bq d (4.8)

where Apong is the (visible) bond albedo, defined as the total visible light energy
reflected or scattered by the asteroid (in all directions) divided by the total visible
light energy incident upon the asteroid (from the Sun). We also here define the phase
integral q.

B&S showed that, in the range of 8 observed from S-type to C-type asteroids, [
and C' are empirically correlated, in a relation that we approximate here as

C =~ (0.9 mag) — (17 deg)s for 0.03 < mL < 0.05. (4.9)

ag/deg

Using Equation (4.9) to substitute for C' in Equation (4.7), inserting the result into

with other phase functions.
7Also known as the visible albedo or the physical albedo.
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Equation (4.8) and numerically evaluating the integral gives

2.23
mag/deg

B

—— < 0.05. 4.10
mag/deg (4.10)

Pv R Apond <0-4 — ) for 0.03 <

B&S saw a negative correlation between py and 3 in the data®, consistent with
Equation (4.10) only if either Aponq is assumed constant among different asteroid
types (not a reasonable assumption) or if Aponq negatively correlates with 3, which
B&S did not explicitly show.

The bond albedo Aygnq can be thought of as an intrinsic, bulk-compositional char-
acteristic of an asteroid’s surface®, much like an asteroid’s color, whereas 8 and C
relate (in part) to the textural, particulate, and macroscopic roughness of the aster-
oid’s surface. B&S and other authors separately associate § with the shadow-hiding
effect and C with the coherent backscatter effect. Both of these physical phenomena
are understood from a theoretical standpoint (e.g., [Helfenstein & Veverka (1989)];
[Hapke (2012))]) to be functions of Aypong, with 5 negatively related to Apong and C
positively related. This is consistent with Equation (4.9), and renders Equation (4.10)
consistent with B&S’s noted py-vs.-3 correlation. Other properties such as particle
size, particle geometry and regolith porosity also have predicted (and laboratory-
measured) contributions to the observed phase function ([Hapke (2012))] and refs.
therein); these properties can conceivably vary independently of Apnq.

In short, our interpretation of the S-type and C-type asteroid data reviewed by
B&S is that a compositional indicator (Apenq) correlates with indicators of two inde-
pendent phenomena (3 and C') that contribute to how light scatters from an asteroid’s
surface. This statement intentionally makes no mention of py, since Equation (4.8)
tells us py by definition varies with § (in a non-obvious way) and with Apqng, the
latter being a more basic compositional attribute.

As stated above, the phase function can be related to properties other than Apgng,

8B&S actually stated the correlation in terms of log py vs. 3, though the range in §3 is sufficiently
small that py vs. [ is essentially valid as well.

9More accurately, the single-scattering albedo w, which is the analog of Aygnq for a “point-source”
particle, more fundamentally embodies this bulk-compositional attribute. [Hapke (2012))] details
how Aponq is solely a function of w for an asteroid whose surface consists of isotropic scatterers; we
here use Apong as a proxy for w.
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such as regolith porosity. Many of these other properties in theory and experiment
contribute to effects involving multiply-scattered light, and therefore do not alter the
effect of shadow-hiding (S-term in Equation [4.7]), which is dominated by singly-
scattered light [Hapke (2012))]. In contrast, the coherent backscatter effect (C-term)
does involve multiply-scattered light. B&S saw non-monotonic behavior in C' as a
function of py when including the rarer, high-py E-type asteroids in the same plot as
C and S types. E types do conform however to the same negative monotonic trend
in py-vs.-f satisfied by the C and S types, consistent with the hypothesis that g is
adequately expressed as a function of Ay,,q alone, yet E types have a lower-than-
predicted C' value based on extrapolation of Equation (4.9).

One possibility is that Equation (4.9) is not valid for all asteroids, but must be
replaced by some unknown non-monotonic relationship, possibly because C' depends
non-monotonically on Ap.,g and/or has comparable dependence on other properties
(e.g., porosity or grain size). Assuming Equation (4.7) is a sufficiently general model
for ¢, and lacking knowledge of a good model for C| it follows that g and C should
in practice always be fit separately. Another possibility is that Equation (4.7) is an
incorrect or incomplete model, however B&S described no instances wherein their
model was unable to adequately fit the data for a particular asteroid or class of

asteroids.

4.3.2.2 Lumme-Bowell G model

The next phase function model we consider is the Lumme-Bowell model

[Bowell et al. (1989)], also known as the (H,G) or IAU phase function:

o= (1—G)pr + G
¢ = exp(—3.33 tan’%[a/2)) (4.11)
¢y = exp(—1.87tan"*[a/2])

Like Shevchenko’s model, this model includes two terms (the basis functions ¢,

and ¢,) representing two physically-distinct contributions to the observed ¢. As
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detailed in [Bowell et al. (1989)], this model is semi-empirical in that it was derived
from basic principles of radiative transfer theory with certain assumptions, and at
various stages tailored to match existing laboratory and astronomical observations.
That the two basis functions’ coefficients are related to a single parameter G bears
resemblance to the 8-vs.-C' correlation described by Equation (4.9).

[Marsden (1986)] marked the IAU’s adoption of this phase function as a stan-
dard model for predicting an asteroid’s brightness. Since then this model has seen
widespread application, and is often used with the assumption G = 0.15 (e.g., in the
ephemeris computation services offered by the MPC and JPL). [Harris & Young (1988)]
present mean values of G for several of the major asteroid taxonomic classes (based
on a sample of ~80 asteroids), with G = 0.15 being an average between the C types
(G =~ 0.08) and the S types (G ~ 0.23). The G-model fails to accurately fit the
rarer D types (which have linear phase curves) and E types (which have very sharp
opposition spikes), whereas the Shevchenko model can properly accommodate these
rarer types.

Use of the Lumme-Bowell ¢ in our lightcurve model (Equation [4.1]) introduces a
second non-linear parameter (G) into the model, the period P being the other non-
linear parameter. This complicates the fitting algorithm somewhat, as described in

Section 4.4.

4.3.2.3 Muinonen et al. GG;; model

The third phase function model we consider, introduced by [Muinonen et al. (2010))],
bears resemblance to the G-model but includes a second free parameter and a third

basis function:

¢ = G191+ Gapa + (1 — Gy — Go) 3 (4.12)

As opposed to the analytic trigonometric basis functions of the G-model, here
¢1, ¢ and ¢3 (all functions of « alone) are defined in terms of cubic splines (see

[Muinonen et al. (2010))] for the exact numerical definitions). Assuming the coeffi-
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cients G; and G are constrained independently, these basis functions were designed to
provide the most accurate fits to the phase functions of all major asteroid taxonomic
types, including the rarer D types and E types.
For situations where fitting G; and Gy separately is infeasible,
[Muinonen et al. (2010))] specialized their above model to make it a function of a

single parameter, (G, which parameterizes G; and G5 using piecewise functions:

0.7527G15 + 0.06164 if G152 < 0.2;
0.9529G15 + 0.02162 otherwise;
(4.13)

2 pu—
—0.6125G15 + 0.5572 otherwise;

In this work we use this single-parameter GG15 form of the Muinonen et al. model,
making it analogous to the G-model in terms of implementation, including the com-

plication associated with a non-linear parameter.

4.3.2.4 Multi-parameter Hapke model

Just as we commented on the more rigorous means of fitting a rotation curve via 3D
shape modeling with multi-opposition data, for completeness we note that a more
rigorous model (than the three presented above) exists for phase functions. Given
better-sampled lightcurves and more computational power, future modeling of large
photometric datasets would benefit from applying the more theoretically-motivated

model of [Hapke (2012))], an abbreviated form of which is

6= BcK
bv

K%(Bsg — 1)+ M) h+ —rgml (4.14)

Here w is the single-scattering albedo (cf. Footnote 9), of which ry is solely a
function. The remaining factors all are functions of phase angle («). Each opposition-
surge term (Bg and B¢) has two free parameters (width and amplitude). K depends

on the mean topographic roughness (a function of one free parameter); g is the single-
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scattering angular distribution function (typically includes one parameter); h is a
function of « only; and ¢, is the phase function of an ideal Lambertian-scattering
sphere (a simple function of «).
With its ¢ o pj;' dependence, the Hapke model (Equation [4.14]) can conveniently
eliminate both py and H from the modeling process. Inserting Equation (4.14) into

Equation (4.1), and using the common relation'®

Dy/pv
H = -51 — 4.1
where H is the absolute visual magnitude, D is the asteroid’s effective diameter and
1329 km is a constant (set by the arbitrarily-defined magnitude of the Sun), produces

a model with many physically meaningful parameters and free of both H and py .

4.4 Lightcurve-fitting algorithm

We solve Equation (4.1) using a custom linear least squares (LLSq) method. A
basic review of LLSq can be found in [Hogg et al. (2010))]. Each fitted asteroid
lightcurve contains N, > 20 observations, with measured apparent magnitudes
m; and measurement uncertainties o;. All instrumental magnitudes are elliptical
aperture [Kron (1980)] measurements (SExtractor’s MAG_AUTO) calibrated with a lo-
cal zeropoint (i.e., the ‘ZPVM’ correction of [Ofek et al. (2012a)]). The uncertainties
contain a Poisson-noise component (SExtractor’s MAGERR_AUTO) as well as systematic
error from the calibration. For images lacking a relative photometric solution, the
relevant systematic error is the APBSRMS parameter in the PTF database; for images
having a relative photometric solution, the systematic error is a combination of the

sysErr and zeroPointErr database quantities (added in quadrature).

10Rather that attributing it to any specific author(s), we note that Equation (4.15) may be derived
directly using Equation (4.8) and the following definition of the bond albedo, which we stated in
words immediately after Equation (4.8):

foﬂ 10~V (2)/2.5 sin(a)da
(10_JWSun/2'5/47TAU2) X 7T(D/2)2

Apond =

where V(a) = H — 2.51log;o ¢(a) is Equation (4.1) evaluated at 6 =0 and r = A =1 AU.
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In all cases, our model (Equation [4.1]) is non-linear in at least one parameter
(the period P, or equivalently the frequency f = 1/P). We test N, evenly-spaced
frequencies between f = 0 (infinite rotation period) and f = 12 day™?, i.e., up to the
~2-hour spin barrier.

Asteroids rotating faster than the ~2-hour spin barrier are likely monolithic ob-
jects and—particularly if larger than ~150 m—are interesting in their own right (cf.
the discussion in [Pravec et al. (2002)]). However, given the apparent observed rarity
of such super-fast rotators (SFRs) and the large interval in frequency space that must
be searched to discover them; we impose 2 hours = 12 cycles per day as our upper
limit on fitted frequency in order to make computational time reasonable without
sacrificing sensitivity to the majority of asteroids’ spin rates. [Chang et al. (2014a)]
presents preliminary results of an independent, ongoing effort to use PTF data (or at
least specific subsets thereof) to search for SFRs, with at least one SFR having been
discovered and confirmed [Chang et al. (2014b)].

We use a frequency spacing Af = 1/(4At), where At is the time interval between
the first and last observation in the lightcurve. Formally At can be as long as 1.1 to
1.6 yr for most asteroids (cf. Section 4.3.1.1); however the median value of At (among
lightcurves that ultimately acquired fits) is ~45 days, with 16'" and 84" percentiles
of 13 and 106 days, respectively.

In addition to the non-linear parameter f, the lightcurve model in general has

Ny, linear parameters. We seek to solve the following tensor equation for X:

i=1,2, ..., Nope
mi = ZLZJkXJk j = 17 27 "'7Nfrq (416)
N
’ k=12, ..., N

where m; is the i*" observation, L is the ‘design matrix’ (a 3D array of size Nops X
Niq X Nin) and X is the linear-parameter matrix (Ngq X Ny, ) containing the linear-

parameter solutions as a function of frequency.



4.4.1 Linear phase-function parameters

112

For the particular case wherein we use Shevchenko’s model (Equation [4.7]) for the

phase function ¢, the design matrix is

Q;

a; /(1 + )

(4.17)

where the k-index has been omitted with the convention that & = 1 is the 15* row

of the above column vector, k = 2 is the second row, etc. Here 7; and «; are the

time and phase angle of the i*" observation, f; is the j™ frequency, etc. Likewise, the

linear-parameter matrix X in this case is

where H; is the fitted absolute magnitude for the j™ frequency, etc.
The general LLSq solution to Equation (4.16) is

Xji =Y SipeLnje(B™ ) npmy,

£n,p

where B~! is the inverse of the data-covariance matrix B:

H;
(A1)
(Az,1)
(A12);
(A2,2)
Bj

J

2)j

C;

(4.18)

(4.19)



o? 0 0
0 o2 0
B = . , (4.20)
o 0 --- 0-]2Vobs
and Sji, is the parameter-covariance matrix, given by
Sike = [(55) ™ ke (4.21)

where in the above definition we invert each of the Njq matrices s;, these being

defined by

(5:0ke = Y Loji(B™ upLje- (4.22)
n7p

The elements of the parameter-covariance matrix S are the variances and covariances
of the fitted parameters (as a function of frequency). The fit’s residuals (as a function

of frequency) are:

Rij =m; — Z Liijjk7 (423)
k

and the fit’s chi-squared (as a function of frequency) is:

(X*); =Y Rej(B™) R (4.24)
In

The frequency-dependent chi-squared (x?); is also known as the periodogram. For-
mally, the best-fit rotation frequency corresponds to the minimal value of (x?);, but
this may differ from the preferred frequency solution if the lightcurve is contaminated
by other systematic periodic signals, if the data suffer from underestimated mea-
surement uncertainties, or if the best-fit frequency corresponds to a dominant first
harmonic (as opposed to a preferred dominant second harmonic, cf. Section 4.3.1.2).

Figure 4.3 details our iterative lightcurve-fitting algorithm’s logic. Fitting com-
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Figure 4.3: Diagram detailing the logic of this work’s data reduction and analysis.
Includes mining the survey for known-asteroid observations, aggregation of the data
into lightcurves, vetting of the lightcurves and an application wherein phase functions
are compared to color-derived asteroid taxonomy. See text for details.
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mences as long as 20 or more ‘reliable’ data points (cf. Section 4.2.2 and Figure 4.2)
are associated with a lightcurve. Irrevocably-bad data points are discarded in the
first round of iterations, these include detections with 7o or greater residuals from
the initial solution. Examples of detections with such high residuals include contam-
ination from background sources missing in the reference catalog, bad detector pixels
that were not flagged by the pipeline, or spurious zeropoint solutions.

In the next stage of iterations, the fit’s x? per degree of freedom is reduced to ~1
(formally, it is reduced until it is less than 3, cf. Figure 4.3) by gradually inflating
the observations’ errorbars through addition of a ‘cosmic error’, so-named because it
encompasses contamination from possible errors (in all the ‘cosmos’). In general the
cosmic error represents the same diverse contaminating phenomena responsible for
the >70 deviations seen in the initial iterations (cf. previous paragraph) just to a
lesser extent.

Separately, this errorbar inflation compensates for our model’s inability to fit each
asteroid’s precise periodic structure using only two harmonic terms in the Fourier se-
ries. In the limit of infinite observations and sufficiently many Fourier terms, we
would ideally expect our data’s errorbars to reflect true Gaussian variance. However,
by truncating the series at two harmonics and using sufficiently precisely-calibrated
photometry, we are in effect choosing to sacrifice (downsample) some of our photo-
metric precision to obtain a formally better fit at the coarser resolution limit of the
model.

To illustrate use of the cosmic error, consider the example of an eclipsing binary
lightcurve, i.e., a rotation curve which is effectively sinusoidal ezcept for a small
interval around the phase of minimum flux, when it dips to a lower-than-predicted
brightness. Examples from our dataset appear in Figure 4.10. Observations acquired
during such eclipses will have systematic negative deviations greater in absolute value
than would be explained by Gaussian variance alone. Increasing the errorbars of
these observations will decrease the fits’ x? without altering the value of the fitted
frequency. The fitted parameters’ uncertainties (both for frequency and the linear

parameters) are accordingly inflated as a penalty, and the fitted amplitude will be
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underestimated. As detailed in Figure 4.3, the initial cosmic error used is 0.002 mag,
and each iteration it is multiplied by a factor 1.5 until the y? is sufficiently low.
If the cosmic error exceeds 0.1 mag, the fitting is aborted. If the x? (per degree
of freedom) drops below 3 while the cosmic error is still below 0.1 mag, the fitting
process concludes ‘successfully’ (see Figure 4.3).

Concurrently, each iteration includes a test for the presence of double peaks in the
folded rotation curve (only if the fitted amplitude is at least 0.1 mag). In particular,
if there exist two maxima and two minima in the folded lightcurve, we demand that
the ratio of these peaks be greater than 0.2. Such a solution is preferred (cf. Section
4.3.1.2) given our ellipsoidal shape assumption, as described by [Harris et al. (2014)].

Denote as fyest global the frequency yielding the absolute minimum x? per degree
of freedom value, denoted X2, yopar (after the cosmic error has been tuned). If the
folded lightcurve is single-peaked (or has only a relatively small secondary peak),
then another deep minimum usually exists at the harmonic frequency fpest_harmonic =
0.5 X fhest_global, the local minimum y? value of which we denote X2, 1.rmonic)- FOT
cases Wherein X7, narmonic < Ximin._global T 11V-X>-¢df(0.95, 7), where inv-x?-cdf(p, N) is
the inverse of the y? cumulative distribution function for N free parameters evaluated
at p, then we instead choose fpest harmonic Tather than fies global. The 1o uncertainty
interval for the best-fit frequency is then found by computing the upper and lower
intersections between 2. + inv-x?-cdf(0.68,7) and the periodogram in the vicinity
of frest- Note that we used N = 7 free parameters in this case, i.e., the number of

elements of X; (Equation 4.18).

4.4.2 Nonlinear phase-function parameters

Modeling the phase function ¢ with either the G or G5 model (Equations [11] and
[12]), introduces a second non-linear parameter (after the frequency f) and so we
must modify the equations of the previous section accordingly. We sample Npp, =
200 evenly-spaced phase-function parameter values. In particular, for G we test the

interval —0.3 < G < 0.7 in steps of AG = 0.005, and for G1o we test the interval
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0 S G12 S 1in steps of AGlg = 0.005.
Our approach is to modify the left-hand side of Equation (4.16) by defining a new

matrix m;, which contains all possible phase-function-corrected observed magnitudes:

;

i=1,2, ..., Nops
i =1,2,..., Ny
mi, =m; — &y = Z Liji X kg J fra (4.25)
j7k; k: 1,27...,Nhn
L q = 1,27”~;Npha

where, e.g., for the case of the G-model (Equation [4.11]),

D, = —2.510g10[<l5(a¢, Gq)]

—2.510g;o[(1 — Gy)d1 (i) + Gypa(ai)]

The linear-parameter-solution array X now has an extra index ¢, reflecting the

(4.26)

fact that we are now solving for each linear parameter as a function of the two non-

linear parameters. The design matrix has the same number of indices as before (but

fewer rows):

( )

Lij =1 cos(2nfm) | (4.27)
in( )
( )

while the linear-parameter matrix X is now

£>

(4.28)

=

(
Xjg = | ( )
(A12)jq
(Az2)

Jq

The appeal in adopting the above approach is that the general solution is only
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slightly modified:

Xjkq = Z SjkELnﬂ(Bil)npm;qa (429)

n,p
where the only difference between equations (19) and (29) are the ¢ indices appended
to X and m (and the latter being redefined as m’).
The fit’s residuals R are now a function of frequency and phase-function param-

eter:

Rijqg = mi, — Z Liji X kg, (4.30)
k
as is the fit’s chi-squared:
(XQ)jq = Z Rqu(Bil)fanjq- (4.31)
In

As a function of any of the linear parameters, the fit’s y? varies precisely quadrat-
ically, whereas as a function of frequency it has an intricate spectral structure with
many local minima. As a function of a non-linear phase parameter (G or G3), the
x? tends to have a single minimum (on the range we evaluate): in this sense G and
(G12 are more similar to the linear parameters than they are to frequency. However,
the generally asymmetric shape of the phase parameter’ y? dependence necessitates
its grid-based numerical treatment—particularly to ensure accurate estimation of the
phase parameter’s uncertainty.

The two-dimensional x? surface given by Equation (4.31), which is defined on a
Nreq X Npha grid, can be reduced to a one-dimensional x? function by choosing, for
each frequency index j, the phase-parameter index ¢ that minimizes the x?. The result
is a one-dimensional periodogram, as in Equation (4.24). Once the fitted frequency
is identified, we compute the uncertainty in the fitted f by the method described in
the previous section using the inv-y?-cdf() function. We then likewise numerically
compute the uncertainty in the phase parameter by again collapsing (x?);, to a one-

dimensional vector, this time as a function of the phase parameter with the frequency
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Figure 4.4: Examples of lightcurves having both well-sampled rotation and phase-
function components. Each row corresponds to a different asteroid. These example
asteroids are sorted vertically by their physical diameter (assuming 7% albedo); the
top object is ~45 km and the bottom object is ~2 km. Column A shows the phase
curve (corrected for rotation); Column B shows the rotation curve (corrected for
phase-function); Column C shows the periodogram; Column D shows the distribution
of the observations in rotational phase vs. solar phase angle. Above each plot is
additional information depending on the column: (A) the asteroid number, followed
by (in square brackets) the opposition year (most are 2013) and filter (in all cases
‘r’) followed by the fitted Gy parameter; (B) the fitted absolute magnitude and
amplitude; (C) the fitted period (in hours); (D) the number of data points included
(and shown) in the fit.
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fixed at the fitted value (j-index), and use the inv-y?-cdf() function to estimate the
uncertainty in the phase parameter.

As noted in Table 4.1, a total of 587,466 lightcurves exist in PTF, where each
lightcurve by definition consists of all reliable observations of a unique asteroid ob-
served in a single opposition in a single photometric band. Of these, only ~10%
(59,072 lightcurves) have at least 20 observations and therefore qualified for fitting
with our algorithm. A total of 54,296 lightcurves actually produced a fit—the re-
maining ~5,000 lightcurves failed to produce a fit either because some observations
were discarded and the total fell below 20 data points, or because the fitted cosmic
error grew to exceed (.1 mag.

Figure 4.4 shows several examples of lightcurves fitted with the algorithm de-
scribed in this section. In the third column (column C) of Figure 4.4, we show the
periodograms of each lightcurve. Note that although the periodogram’s horizontal
axes are labeled with the period (for easier interpretation), the chi-squared (per de-
gree of freedom) values are actually plotted linearly with respect to frequency. This
is because, as described earlier, our sampling is uniform with respect to frequency,
and the harmonics are more easily seen with constant frequency spacing. Column
(D) shows the data sampling in rotational phase versus solar phase angle, a useful
plot to ensure there is no obvious correlation between the two (which could lead to

an erroneous fit, e.g., for long periods, large amplitudes and/or few data points).

4.4.3 Comments on implementation

Each iteration in the fitting of each asteroid lightcurve involves evaluating the ar-
rays and tensor-products in either Equation (4.19) or (4.29). This includes inverting
the data-covariance matrix B (Equation [4.20]) and inverting the Ng, matrices s;
(Equation [4.22]). The arrays L, m/, X and R can have a relatively large number of
elements, making them and their relevant products potentially taxing with respect to
computational memory.

Our particular implementation of this algorithm leverages the efficient array-
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manipulation capabilities of MATLAB, especially its ability to perform fast ma-
trix multiplication and matrix inversion utilizing BLAS calls'! and OpenMP multi-
threaded C loop code'?. Given typical numbers of observations and frequency sam-
pling, each of our lightcurve fits (including the multiple iterations) takes on average
several tens of seconds to run on an eight-core machine (multi-threading enabled), and
typically consumes less than ~4 GB of memory using single-precision computation.

In the online supplementary material we provide our custom MATLAB function
used for fitting the G-parameter version of the lightcurve model (asteroid_lc_fit_G.m).
Analogous versions exist for the Shevchenko and (G15 models. This function takes as
input an asteroid’s apparent magnitudes, magnitude uncertainties, observed epochs,
phase angles, geocentric and heliocentric distances. Its outputs include the linear-
parameter-solution array (Equation 4.28), residuals (Equation 4.30), chi-squared ar-
ray (Equation 4.31), and additional information about each lightcurve solution such

as the amplitude and peak ratios.

4.5 Reliability of fitted rotation periods

A primary concern in the quality assessment of our fitted lightcurve parameters is the
validity of our derived rotation periods. In this section we describe several methods
of estimating the reliability of these periods, beginning with comparison to a ground-
truth subsample of known-period asteroids and followed by a full vetting of our entire
sample using a combination of machine-learning and manual classification.

The fitted period may differ (slightly or significantly) between the fits using the
different phase function models. In this section for simplicity we consider only the pe-
riod value obtained when fitting with the G2 phase-function model (Section 4.3.2.3).

In subsequent sections we will again consider all three ¢ models.

Uhttp: / /www.netlib.org/blashttp: / /www.netlib.org/blas
2http:/ /openmp.orghttp://openmp.org
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Figure 4.5: For the 927 lightcurves (805 unique asteroids) having a quality code 3
period in the Lightcurve Database of [Warner et al. (2009)] and an original fit in this
work, we plot the distribution of the relative error in our fitted rotation frequencies
with respect to the literature-referenced frequencies. The distribution is bimodal, with
the left-hand mode corresponding to those fits having better than ~3% agreement.

4.5.1 Known-period subsample

A total of 927 (~2%) of our fitted lightcurves belong to 805 unique asteroids having a
previously-measured period listed in the Lightcurve Database (LCBD) of
[Warner et al. (2009)]. This includes only asteroids having a quality code of 3 (high-
est quality) in the LCDB.

Figure 4.5 shows that the distribution of relative errors on our fitted frequencies
is bimodal, with the left mode corresponding to periods having better than ~3%
agreement with the reference period, and the right mode corresponding to periods
in disagreement with the reference period. These disagreeing fits include lightcurves
which differ from the reference value by a harmonic (half