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Abstract

Observational studies of our solar system’s small-body populations (asteroids and

comets) offer insight into the history of our planetary system, as these minor planets

represent the left-over building blocks from its formation. The Palomar Transient

Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to

be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory.

Though its main science program has been the discovery of high-energy extragalactic

sources (such as supernovae), during its first five years PTF has collected nearly five

million observations of over half a million unique solar system small bodies. This

thesis begins to analyze this vast data set to address key population-level science

topics, including: the detection rates of rare main-belt comets and small near-Earth

asteroids, the spin and shape properties of asteroids as inferred from their lightcurves,

the applicability of this visible light data to the interpretation of ultraviolet asteroid

observations, and a comparison of the physical properties of main-belt and Jovian

Trojan asteroids. Future sky-surveys would benefit from application of the analyti-

cal techniques presented herein, which include novel modeling methods and unique

applications of machine-learning classification. The PTF asteroid small-body data

produced in the course of this thesis work should remain a fertile source of solar

system science and discovery for years to come.
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3.6 Distribution of false positive detections from findStreaks. The largest

concentration of these ‘bogus’ detections are in the short and faint

regime. Structure as a function of orientation angle (bottom) is due

to a combination of the correlation sensitivity (see text) and pixel ef-

fects, wherein diagonal (±45◦-oriented) blobs are less likely to exist as

their flux is diluted across more pixels. . . . . . . . . . . . . . . . . . . 63
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3.7 Examples of streak detections in PTF images. The third column, ”as-

signed pixels”, shows the pixels mapped to the object by findStreaks,

wherein unique objects are distinctly colored. (I) Splitting due to sat-

urated star (undefined pixels on difference image). (J) Splitting due to

faintness. (K) Splitting due to bad column in difference image. (L) Ex-

traneous pixels from nearby bright star halo. (M) Missed detection due

to near-vertical orientation. (N) Missed detection due to near-horizontal

orientation. (O) Missed detection due to large variation in background

levels (star halo). (P) Missed detection due to faintness. (Q) Poorly-

subtracted star false-positive. (R) Linear radiation hit. (S) Non-linear

radiation hit. (T) False positive due to background noise. (U) Isolated

segment of longer faint streak (e.g., due to a satellite). (V) Portion of

optical ghost artifact. (W) Diffraction spike false positive. (X) Poorly-

subtracted galaxy false-positive. . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Correlation matrix for the 15 features (descriptions given in Table 3.1)

used in the classification process. White squares indicate positive corre-

lation, black indicate negative (anti-) correlation, and the area of each

square indicates the magnitude of the correlation. . . . . . . . . . . . . 68

3.9 Importance of each of the 15 features (descriptions given in Table 3.1)

used in the classification process. This number represents the fraction

of training samples in which each feature contributes more by virtue of

being at an earlier node splitting in the decision tree. . . . . . . . . . . 69

3.10 Classifier performance for each of the ten cross-validation trials. A plot

in true-positive versus false-positive space is commonly referred to as a

receiver operating characteristic (ROC ) curve. . . . . . . . . . . . . . . 69
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3.11 In the top row (findStreaks only), detection is again defined as the

presence of an object whose length is within four streak widths of the

true length, as in Section 3.3.2.1. In the bottom row (findStreaks plus

the classifier), detection is defined as the presence of an object of length

within four streak widths of the true length and a classification score of

p > 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Loss in detection completeness due to the machine classifier—i.e., like

Figure 3.10 except considering only those candidates that were first pos-

itively detected by findStreaks). . . . . . . . . . . . . . . . . . . . . . 72

3.13 Example false positive detections in which the original 200′′ × 200′′ im-

age stamp looks like a real asteroid streak, but the larger field of view

clearly indicates the nature of the bogus detection. Left : Filament of an

optical ghost. Right : Glint segment, e.g., from a fast-moving rapidly-

rotating piece of space debris. If additional candidates from these larger

false-positive objects also appear on the scanning page, their common

exposure timestamp implies their stamps will appear adjacent to one

another, facilitating their identification as bogus detections. . . . . . . 74

3.14 Discovery images of the first five streaked NEAs found by PTF. . . . . 80

3.15 Distribution of PTF exposures (left : in sky coordinates, right : with

respect to opposition) and streaked NEA detections (right : with respect

to opposition) from 2014-May-01 through 2014-Dec-01. The grayscale

scalebar maps the density of PTF exposures in both plots. Exposures

for which realtime streak-detection was not performed are not included

(e.g., fields lacking reference images or with too high source density on

the galactic plane). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.16 PTF streak discoveries that were posted to the NEOCP but never re-

ceived external follow-up. . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.17 Artificial satellites detected as streaks by PTF (identifications provided

by the MPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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3.18 Normalized distributions of PTF images and streaked NEA detections

with respect to opposition. The 19 NEAs included here consist of new

discoveries, blind recoveries and the five unconfirmed discoveries. See

Figure 3.15 for the two-dimensional distribution. . . . . . . . . . . . . 85

3.19 Estimates of the number of streaked NEAs detectable by P48 as a func-

tion of distance from opposition. Computed using the data in Figure

3.18 and Equation (3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Phase curves (from the literature) containing densely-sampled, rotation-

corrected photometry of asteroids in four taxonomic classes. Colored

lines are our original fits to the data using various single-parameter φ

models (cf. Section 4.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Comparison of predicted asteroid sightings against positive and ‘reli-

able’ asteroid detections. We define a ‘reliable’ detection as any positive

detection which (1) lacks any catalogued background sources within a

4′′ radius, (2) has a calibrated magnitude uncertainty of less than 0.1

mag, (3) lacks any processing warning flags. As suggested by the middle

and right column of plots, this definition of ’reliable’ still contains some

small contamination (at the <1% level) from uncatalogued background

sources and/or noise, as indicated by detections with distance residuals

greater than ∼1 arcsecond or magnitude residuals of greater than ∼1

mag. In panel D, the less than 100% completeness at the bright end

reflects the non-negligible probability that any asteroid will fall within

4′′ of a catalogued background source (regardless of the magnitude of

either the asteroid or the background source). . . . . . . . . . . . . . . 96

4.3 Diagram detailing the logic of this work’s data reduction and analysis.

Includes mining the survey for known-asteroid observations, aggregation

of the data into lightcurves, vetting of the lightcurves and an application

wherein phase functions are compared to color-derived asteroid taxon-

omy. See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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4.4 Examples of lightcurves having both well-sampled rotation and phase-

function components. Each row corresponds to a different asteroid.

These example asteroids are sorted vertically by their physical diam-

eter (assuming 7% albedo); the top object is ∼45 km and the bottom

object is ∼2 km. Column A shows the phase curve (corrected for rota-

tion); Column B shows the rotation curve (corrected for phase-function);

Column C shows the periodogram; Column D shows the distribution of

the observations in rotational phase vs. solar phase angle. Above each

plot is additional information depending on the column: (A) the aster-

oid number, followed by (in square brackets) the opposition year (most

are 2013) and filter (in all cases ‘r’) followed by the fitted G12 parameter;

(B) the fitted absolute magnitude and amplitude; (C) the fitted period

(in hours); (D) the number of data points included (and shown) in the fit.119

4.5 For the 927 lightcurves (805 unique asteroids) having a quality code

3 period in the Lightcurve Database of [Warner et al. (2009)] and an

original fit in this work, we plot the distribution of the relative error in

our fitted rotation frequencies with respect to the literature-referenced

frequencies. The distribution is bimodal, with the left-hand mode cor-

responding to those fits having better than ∼3% agreement. . . . . . . 122

4.6 Examples of lightcurves whose fitted frequency differs from the reference

frequency by more than 3%, so that they fall in the right mode in the

histogram shown in Figure 4.5 and are formally defined as inaccurate

fits. Row 1 : Low-amplitude rotator. Row 2 : Incorrect period (too few

observations?). Row 3 : A fitted frequency that differs from the reference

frequency by 12%. Row 4 : period that differs by a non-integer multiple,

despite looking reasonable. Row 5 : Folded lightcurve appears to be

fitting noise in the data. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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4.7 Top row : The 927-lightcurve known-period sample (black), divided into

the accurately-fitted (green) and inaccurately-fitted (red) subgroups.

Middle row : Ratio of the green to black histograms. Bottom row : Re-

sults of cross-validation of the machine-classifier (see Section 4.5.2.2). . 124

4.8 Top row : The 927-lightcurve known-period sample (black), divided into

the accurately-fitted (green) and inaccurately-fitted (red) subgroups.

Middle row : Ratio of the green to black histograms. Bottom row : Re-

sults of cross-validation of the machine-classifier (see Section 4.5.2.2). . 125

4.9 Correlation matrices (Spearman’s ρ coefficient) for the 20 lightcurve

features (Table 4.2) in the training sample (left) and in the full data set

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.10 Examples of reliable lightcurves whose folded rotation curve include

cusp-like minima (systematic negative deviation from the 2nd-order Fourier

fit at minimum brightness), suggestive of a binary system. Many more

examples exist in our lightcurves, however in this work we have not

specifically flagged such lightcurves. Future works will more carefully

label and analyze this particular class of objects. . . . . . . . . . . . . 130

4.11 Definitions of true vs. false and positive vs. negative labels. True-

positive rate (TPR) is sometimes called the completeness or sensitivity,

while false-positive rate (FPR) is otherwise known as the false-alarm

rate, one minus the reliability, or one minus the specificity. . . . . . . . 133
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4.12 True-positive versus false-positive rates for the cross-validation trials.

Such as plot is sometimes referred to as a receiver operating character-

istic (ROC ) curve. Each trial trains the classifier using a randomly-

chosen 80% of the known accurate fits and 80% of the known inaccurate

fits among the 927-lightcurves that have reference periods. The 20%

remaining lightcurves serve as the test sample. Moving along the hyper-

bolic locus of points in this plot is equivalent to tuning the classification

probability threshold from zero (lower left of the plot) to one (upper

right of the plot). The errorbars represent the scatter in the 1,000 cross-

validation trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.13 Varying the number of features that are randomly split per node in

the decision-tree-building process affects both the TPR and FPR. The

values plotted here correspond to the p > 0.5 classification threshold;

each point was generated by the exact same process for which the results

in Figure 4.12 were generated, only varying the number of features with

respect to which nodes are split. In the left plot, the first four points

are labeled with the number of features for that trial (for n > 4 we omit

the label). In our actual implemented model (Figure 4.12) we chose

n = 4 features, the value after which the TPR/FPR ratio plateaus at

approximately 2, and also the value [Breiman (2001)] recommends, i.e.,

the square-root of the total number of features (in our case,
√

20 ≈ 4). 135

4.14 Distributions of PTF-fitted lightcurves (and various subsets thereof) in

select features/parameters. These plots are histograms with the same

binning as the top rows of Figures 7 and 8. For better readability we here

use line-connected bin points (rather than the stair-plot format used in,

e.g., Figure 4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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4.15 Example lightcurves for which the machine-based and human-based

reliability scores differ. Row 1 : Human approved, machine rejected

(p = 0.32). Row 2 : Human rejected, machine approved (p = 0.66). Row

3 : Human approved, machine rejected. For this object, the fitted pe-

riod differs from the known reference period of 392 hours by 7%, hence

the machine rejects it by definition. Row 4 : Human rejected, machine

approved (p = 0.70). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.16 For the 654 unique asteroids having more than one reliable lightcurve fit

(either multiple oppositions and/or both R and g band data) we plot the

log of the relative frequency error, defined as the range of the asteroid’s

fitted periods divided by the geometric mean of its fitted periods. Com-

parison with Figure 4.5 suggests that we can deem all cases with error

.3% as consistently recovered periods, and those with greater than 3%

error as inconsistent fits. . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.17 Panel A: Distribution of spin rate and amplitude as functions of infrared-

derived diameters (see appendix for diameter data sources), including

data for 4,040 of our lightcurves. The two-dimensional histograms (left

side plots) are column-normalized (see text for details). Panel B : Com-

parison of the period versus amplitude distribution (regular 2D his-

togram, not column normalized) with max-spin-rate versus amplitude

for a uniform density ellipsoid held together solely by self-gravity . . . 165

4.18 Various fitted phase-function parameters plotted against color index and

bold albedo (two-dimensional histograms; the total number of lightcurves

in each plot is stated above it as N = . . .). In the right column of

plots, one-dimensional distributions with the color-index classified ob-

jects plotted separately. In the right column of 1D histograms, C and S

types are defined as objects with color indices less than 0.25 and greater

than 0.75, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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4.19 Left : We perform the same clustering analysis used in defining the color

index (see appendix), this time on the G12 versus Abond distribution,

which contains 1,631 PTF lightcurves all of which have IR-derived diam-

eters and reliable phase functions. The output of this clustering analysis

is the photometric index, which analogous to the color index is a number

between 0 (C type) and 1 (S type) quantifying to the class membership

of each constituent asteroid data point. Right : Correlation between the

color index and our photometric index, a comparison which can be made

for 361 objects. Note that most data are in the lower left and upper right

corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.20 For the 92 asteroids with both R-band and g-band lightcurve fits from

the same opposition, we use the resulting difference in the absolute mag-
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robust (top right). We detect no significant difference in the G12 and/or

β parameters between the two bands, both in the sample as a whole,

and as a function of the Hg −HR color. . . . . . . . . . . . . . . . . . 168

4.21 Added completeness from supplementing the color index with the pho-

tometric index among asteroids having PTF lightcurves. Both indices

are a proxy for the taxonomic type. The left- and right-hand plots apply
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4.23 Left : Transformations between MPC V band and the PTF R and g

bands for asteroids, based on the difference between MPC-fitted and

PTF-fitted H magnitudes for asteroids whose PTF-fitted G values are in
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color and/or photometric indices (again using the <0.25 and >0.75 index
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5.1 GALEX UV and SDSS visible filter response curves (colored lines) con-

volved with the spectrum of a G2 V type star (black line). The spectrum

is from the library of [Pickles (1998)]. The vertical scale is in AB mag-

nitude units per unit wavelength, offset by an arbitrary constant. Note

wavelength is plotted on a log scale. . . . . . . . . . . . . . . . . . . . 175

5.2 Characteristics of positive asteroid detections from the two GALEX sur-

veys (distinguished by exposure time) shown separately in black and green.178

5.3 We compute VPTF model magnitudes by first assigning fixed Abond and

G12 values to each GALEX -observed asteroid depending on its color

class; we then use D to compute H, and finally use the assumed G12

value to predict V . The fixed values of Abond and G12 are medians from

the color-albedo-G12 data in [Waszczak et al. (2015)], 2D histograms of

which are shown here. Above each plot is the sample size (N = . . .). A

total of 642 asteroids have color data and G12 values in the PTF data;

355 of these also have diameters available (required to compute Abond).

Panel D shows that WISE W1 geometric albedos correlate with the

PTF bond albedo; we thus use the WISE pW1 data to assign C types

either a low (Abond ≈ 0.01) or high (Abond ≈ 0.04) bond albedo. . . . . 181

5.4 Distribution of the NUV−V color for GALEX -observed asteroids using

the H,G model with MPC data to predict V . Plots B and C define

C types and S types as objects with color indices of <0.25 and >0.75,

respectively. Plots C–F include only the subset with a diameter estimate

available; this subset is precisely the same sample considered in Figure

5.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.5 Flowchart visualizing the steps in the GALEX -observed asteroid sample

selection process. Each box is a subset of the box pointing to it. . . . . 185

5.6 Distribution of the NUV−V color for GALEX -observed asteroids using

the D,Abond,G12 model with PTF data, infrared data, and color data to

to predict V . See Table 5.2 for the definitions of the S, Clow, and Chigh

groups in plots B, C, E, and F. . . . . . . . . . . . . . . . . . . . . . . 187
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5.7 Various checks for systematic differences in the predicted V magnitudes

output by the two different photometric models. Bottom row : Investi-

gation of phase-angle-dependence on the NUV− V color. . . . . . . . . 189

5.8 Top: Relative albedo (each type’s r-band albedo normalized to unity)

versus wavelength for C types and S types. The leftmost (NUV) points

are computed from this work’s data, the remaining albedos (SDSS bands)

are taken directly from [Ivezić et al. (2001)]. Bottom: Bandpass re-

sponse functions (colored lines) convolved with the solar spectrum (black

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.9 Top: GALEX, SDSS, and ECAS C-type data from Figure 5.8 compared

to HST -derived albedos for 1 Ceres and 21 Lutetia. Note the red color

here has a different meaning than it does in Figure 5.8. . . . . . . . . 194

5.10 Visible color/albedo distributions of Tholen-classified [Tholen (1989)]

and Bus/Binzel-classified [Bus & Binzel (2002)] C-type subgroups among

this work’s sample of GALEX -observed C-type asteroids. See text for

further information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.11 NUV − V color distributions of Tholen-classified [Tholen (1989)] and

Bus/Binzel-classified [Bus & Binzel (2002)] C-type subgroups among this

work’s sample of GALEX -observed C-type asteroids. See text for fur-

ther information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.1 Panel A: Color distributions for six surveys (diagonal, with blue = C

type and orange = D type), and correlations (off diagonal) of FCM-

clustering-derived classifications between all pairs of surveys (all pairs

of data sets share at least three Trojans). Compare to Figure 5.26 of

[Waszczak et al. (2015)]. Panel B : Differential number size distribution

of Trojans, with subsets relevant to this work. Diameters assume a

visible geometric albedo of 0.06 for all Trojans. . . . . . . . . . . . . . 217



xxvii

6.2 A small selection of example Trojan PTF lightcurves. Each row corre-

sponds to a different asteroid. Column A shows the phase curve (cor-

rected for rotation); Column B shows the rotation curve (corrected for

phase-function); Column C shows the periodogram; Column D shows

the distribution of the observations in rotational phase vs. solar phase

angle. Above each plot is additional information depending on the col-

umn: (A) the asteroid number, followed by (in square brackets) the

opposition year (most are 2013) and filter (in all cases ‘r’) followed by

the fitted G12 parameter; (B) the fitted absolute magnitude and ampli-

tude; (C) the fitted period (in hours); (D) the number of data points

included (and shown) in the fit. . . . . . . . . . . . . . . . . . . . . . . 218

6.3 Distributions of rotation frequency and amplitude for this work’s sample

of Trojans (combined PTF and literature-referenced data). Diameters

assume albedo pV = 0.06; C-type and D-type labels are assigned based

on the taxonomic metric (color index) described in Section 5.2. Lines in

the bottom row’s plots (period-vs.-amplitude) represent the maximum

deformation states for fluid bodies of various bulk densities. . . . . . . 219

6.4 Same data as Figure 6.2, except showing only the geocentric mean and

16th–84th percentile (1σ) running statistics as functions of diameter. . 220

6.5 Spin frequency and amplitude distributions (not normalized per datum,

as is often done) of large Trojans and main-belt C types. None of the

six KS tests noted in this figure represented a statistically significant

discrepancy between a pair of distributions. . . . . . . . . . . . . . . . 221
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6.6 Distributions of rotation frequency and amplitude for small i.e., 10 <

(D/km) < 40 size Trojans and main-belt C types. These KS tests do

indicate that their observed distributions differ at least at the 3σ sig-

nificance level. Trojans would probably begin to show effects of YORP

in their spin statistics below ∼20 km assuming that main belt C types

do around ∼40 km. There could therefore be many sub-20-km Trojans

spinning with faster than ∼5 hour periods, simply beyond the diameter

limit of this sample. Or, if ∼5 hours is itself the spin limit for Trojans,

their observed excess in small slow rotators could also be explained by

YORP at these sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.7 PTF lightcurves of six Trojans which were identified as candidate bina-

ries in WISE (there were 34 such candidates found by [Sonnett et al. (2015)]).

See Figure 6.2 for a description of the plot-labeling format used here.

Note the first asteroid (13323) has two lightcurves in PTF, from different

oppositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.8 PTF lightcurves of two Trojans identified visually, in the course of this

work, as likely binary systems. The second object, asteroid 9430, has

three different lightcurves: two from the 2012 opposition (R and g band)

and one from the 2013 opposition (R band). Note that none of the WISE

candidates (Figure 6.8) unambiguously show the deep cusp-like minima

of the kind seen in the above Trojans. . . . . . . . . . . . . . . . . . . 224

6.9 Phase function parameter distributions of PTF-observed Trojans and

main-belt C-type asteroids. Only the 23 Trojans included here had
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Chapter 1

Introduction

The Palomar Transient Factory (PTF) is one of a new generation of synoptic sky-

surveys designed to produce ‘video footage’ of the sky, as compared to previous sur-

veys which only presented single ‘snapshots’ in time. This is now possible due to the

advent of robotic telescopes, efficient CCD imaging technology, and the ability to reli-

ably store and access very large amounts of raw digital data. As the name implies, its

primary intended function is to discover and study extragalactic astrophysical tran-

sients—phenomena such as supernovae, gamma-ray bursts and microlensing events

which offer glimpses of extreme conditions and aspects of our universe. Most of the

PTF team exploits the survey for this kind of science. A smaller group of individ-

uals use the data to study variable stars, which typically are only bright enough to

detect within our own galaxy, but are interesting for their own reasons, such as ac-

curately mapping the structure of the Milky Way (RR Lyrae) or serving as sources

of low-frequency gravitational waves (AM cataclysmic variable systems).

Study of solar system objects (asteroids and comets) was not a primary motivation

in the design of the PTF survey, though it was recognized at its inception that it

would still prove to be a formidable application of its data. The appeal in acquiring

serendipitous asteroid observations was noted more than two centuries ago by French

astronomer Jean Baptiste Delambre, five years after the discovery of the first asteroid

Ceres by Italian astronomer Piazzi:

We further remark that these four planets [Uranus, Ceres, Pallas, and

Juno] were found while searching for something else, and conclude that
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the real way to deserve and to encounter such accidents is to be occupied

in some grand undertaking, which in itself is of real use, and keeps us

constantly on the route to such discoveries ... for example, to work, as M.

Piazzi, to perfect and augment the stellar catalogue, observing each star

repeatedly for several days ... to evidence in the long run the planets that

could still be confused among the innumerable quantity of very faint stars

scattered in the sky.

—J.B. Delambre, 1806

While in the early 19th century there was still much appeal for the mere discovery

of new minor planets, today the field is primarily concerned with the characteri-

zation of these objects (with important exceptions being smaller members of the

near-Earth asteroid and trans-Neptunian populations). While in-situ observations

made by mission-based spacecraft offer exceptional close-up views of asteroids, they

have also made clear the fact that minor planets exhibit extreme diversity in their

shapes, size, spin properties and mineralogical compositions. Survey-based obser-

vations on the other hand facilitate population-level science (i.e., demographics) of

asteroids, allowing us to understand the extent and causes of this diversity, especially

when coupled with modern-day simulations of the formation of the solar system and

key events of its history, in which the asteroids act as key test particles.

The Palomar 48-inch Oschin Schmidt Telescope has itself undertaken many mi-

nor planet surveys since its construction in the mid 20th century. As some of the

main factors determining its sensitivity—its aperture size and optics—have not been

altered significantly since then, most of the asteroids observed by it and similar-

sized telescopes today have long-since been discovered and their orbits catalogued.

The novel temporal sampling offered by PTF however allows us to gather sufficient

number of observations per asteroid to undertake systematic searches for transient

cometary events, or to search for asteroids which are so small that they are only de-

tectable when sufficiently close to the Earth (for a relatively short window of time).

It permits the measurement of spin periods and allows us to put constraints on the
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elongation of many thousands of asteroids simultaneously—an endeavor which up

until recently individual observers would use many allocated nights of telescope time

performing targeted observations to achieve.

The content of this thesis is a compilation of five manuscripts, one of which has

been published (Chapter 2; [Waszczak et al. (2013b)]), one of which has been ac-

cepted for publication and is in press (Chapter 4; [Waszczak et al. (2015)]), and one

of which is in review (Chapter 5). The data taken into account in each chapter

vary slightly depending upon when the analysis was performed: Chapter 2 considers

PTF data collected from 2009–2012 whereas later chapters consider data collected

2009–2014.

In Chapter 2, we search the PTF survey to derive upper limits on the population

size of active main-belt comets (MBCs). Cometary activity in main-belt asteroids

probes the ice content of these objects and provides clues to the history of volatiles

in the inner solar system. From data collected March 2009 through July 2012, we

extracted ∼2 million observations of ∼220 thousand known main-belt objects (40%

of the known population, down to ∼1-km diameter) and discovered 626 new objects

in multi-night linked detections. We formally quantify the “extendedness” of a small-

body observation, account for systematic variation in this metric (e.g., due to on-sky

motion) and evaluate this method’s robustness in identifying cometary activity using

observations of 115 comets, including two known candidate MBCs and six newly-

discovered non-main-belt comets (two of which were originally designated as asteroids

by other surveys). We demonstrate a 66% detection efficiency with respect to the

extendedness distribution of the 115 sampled comets, and a 100% detection efficiency

with respect to extendedness levels greater than or equal to those we observed in

the known candidate MBCs P/2010 R2 (La Sagra) and P/2006 VW139. Using a

log-constant prior, we infer 95% confidence upper limits of 33 and 22 active MBCs

(per million main-belt asteroids down to ∼1-km diameter), for detection efficiencies

of 66% and 100%, respectively.

In Chapter 3, we describe the successful implementation of a real-time system for

near-Earth asteroid detection with PTF. Near-Earth asteroids (NEAs) in the 1–100
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meter size range are estimated to be ∼1,000 times more numerous than the ∼11,000

currently-catalogued NEAs, most of which are in the 0.5–10 kilometer size range.

Impacts from 10–100 meter size NEAs are not statistically life-threatening but may

cause significant regional damage, while 1–10 meter size NEAs with low velocities

relative to Earth are appealing targets for space missions. We describe the design

and initial results of a real-time NEA-discovery system specialized for the detection of

small, high angular rate (visually-streaked) NEAs in PTF images. Our real-time NEA

discovery pipeline uses a machine-learned classifier to filter a large number of false-

positive streak detections, permitting a human scanner to efficiently and remotely

identify real asteroid streaks during the night. Upon recognition of a streaked NEA

detection (typically within an hour of the discovery exposure), the scanner triggers

follow-up with the same telescope and posts the observations to the Minor Planet

Center for worldwide confirmation. We describe our ten initial confirmed discoveries,

all small NEAs that passed 0.3–15 lunar distances from Earth. Lastly, we derive useful

scaling laws for comparing streaked-NEA-detection capabilities of different surveys

as a function of their hardware and survey-pattern characteristics. This work most

directly informs estimates of the streak-detection capabilities of the Zwicky Transient

Facility (ZTF, planned to succeed PTF in 2017), which will apply PTF’s current

resolution and sensitivity over a 47-deg2 field-of-view.

In Chapter 4, we fit 54,296 sparsely-sampled asteroid lightcurves in the PTF sur-

vey to a combined rotation plus phase-function model. Each lightcurve consists of

20 or more observations acquired in a single opposition. Using 805 asteroids in our

sample that have reference periods in the literature, we find the reliability of our

fitted periods is a complicated function of the period, amplitude, apparent magni-

tude and other lightcurve attributes. Using the 805-asteroid ground-truth sample,

we train an automated classifier to estimate (along with manual inspection) the va-

lidity of the remaining ∼53,000 fitted periods. By this method we find 9,033 of our

lightcurves (of ∼8,300 unique asteroids) have ‘reliable’ periods. Subsequent consider-

ation of asteroids with multiple lightcurve fits indicate a 4% contamination in these

‘reliable’ periods. For 3,902 lightcurves with sufficient phase-angle coverage and ei-
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ther a reliably-fit period or low amplitude, we examine the distribution of several

phase-function parameters, none of which are bimodal though all correlate with the

bond albedo and with visible-band colors. Comparing the theoretical maximal spin

rate of a fluid body with our amplitude versus spin-rate distribution suggests that,

if held together only by self-gravity, most asteroids are in general less dense than

∼2 g/cm3, while C types have a lower limit of between 1 and 2 g/cm3. These re-

sults are in agreement with previous density estimates. For 5–20 km diameters, S

types rotate faster and have lower amplitudes than C types. If both populations

share the same angular momentum, this may indicate the two types’ differing abil-

ity to deform under rotational stress. Lastly, we compare our absolute magnitudes

(and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal

(G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting

reduces asteroid photometric RMS scatter by a factor ∼3.

In Chapter 5, we apply results from the previous chapter’s modeling to facilitate

the interpretation of ultraviolet photometry (NUV band, 180–280 nm) of 405 asteroids

observed serendipitously by the Galaxy Evolution Explorer (GALEX) from 2003–2012.

All asteroids in this sample were detected by GALEX at least twice. Unambiguous

visible-color-based taxonomic labels (C type versus S type) exist for 315 of these

asteroids; of these, thermal-infrared-based diameters are available for 245. We derive

NUV− V color using two independent models to predict the visual magnitude V at

each NUV-detection epoch. Both V models produce NUV−V distributions in which

the S types are redder than C types with more than 8σ confidence. This confirms that

the S types’ redder spectral slopes in the visible remain redder than the C types’ into

the NUV, this redness being consistent with absorption by silica-containing rocks.

The GALEX asteroid data confirm earlier results from the International Ultraviolet

Explorer, which two decades ago produced the only other sizeable set of UV asteroid

photometry. The GALEX -derived NUV−V data also agree with previously published

Hubble Space Telescope (HST ) UV observations of asteroids 21 Lutetia and 1 Ceres.

Both the HST and GALEX data indicate that NUV band is less useful than u band

for distinguishing subgroups within the greater population of visible-color-defined C
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types (notably, M types and G types).

Finally, in Chapter 6, we again apply the results of Chapter 4 by focusing on a

small subset of the PTF lightcurves: the Jovian Trojans. The orbital and physical

properties of Jupiter’s Trojan asteroids constrain models of their population’s origin,

as well as our solar system’s broader dynamical history. The Trojans’ apparent di-

vision into two compositionally-distinct taxonomic groups remains unexplained. The

redder-colored D-types are spectrally similar to comet nuclei and many outer solar

system bodies, while the less-red C-types happen to be one of the two predominant

taxonomic types found in the main asteroid belt. In a search for clues regarding the

origin and composition of these two groups, how they came to populate Jupiter’s

Lagrange points and how they have evolved over the last several billions of years,

we present an original analysis of the lightcurve-based demographics of the Trojans.

The lightcurve sample consists of data from the publicly-available online Lightcurve

Database, supplemented with over 100 new Trojan lightcurves from the Palomar

Transient Factory survey. We find that, for 40-km sized and larger objects, the Tro-

jan D types and C types are statistically indistinguishable in their spin rate and

amplitude distributions; similarly the large Trojans and main-belt C-types are also

indistinguishable in these properties. For 10–40-km sized objects, however, the Tro-

jans and main-belt C types do appear to differ significantly, possibly due to unequal

contributions from YORP torques and/or cometary outgassing, both of which have

been suggested previously by other authors. We present PTF lightcurves of six of

the WISE binary candidates, and manually identify two additional PTF lightcurves

as likely Trojan binary systems. A subset of the PTF Trojan lightcurves contain

reliable fitted phase function parameters, the distributions of which we find to be

indistinguishable (between D and C types, and Trojans and main-belt C types).
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Chapter 2

Main-Belt Comets

2.1 Introduction

Though often regarded as quiescent rock- and dust-covered small bodies, asteroids

can eject material by a variety of physical mechanisms. One subgroup of these ac-

tive asteroids [Jewitt (2012)] are the main-belt comets (MBCs), which we define1 as

objects in the dynamically-stable main asteroid belt that exhibit a periodic (e.g.,

near-perihelion) cometary appearance due to the sublimation of freshly collisionally-

excavated ice. Prior to collisional excavation, this ice could persist over the age of

the solar system, even in the relatively warm vicinity of ∼3 AU, if buried under a suffi-

ciently thick layer of dry porous regolith ([Schorghofer (2008)];

[Prialnik and Rosenberg (2009)]).

More complete knowledge of the number distribution of ice-rich asteroids as a func-

tion of orbital (e.g., semi-major axis) and physical (e.g., diameter) properties could

help constrain dynamical models of the early solar system ([Morbidelli et al. (2012)]

and refs. therein). Such models trace the evolution of primordially distributed

volatiles, including the “snow line” of H2O and other similarly stratified compounds.

Complemented by cosmochemical and geochemical evidence (e.g., [Owen (2008)];

[Albarède (2009)]; [Robert (2011)]), such models explore the possibility of late-stage

1Some controversy surrounds the definitions of “main-belt comet”, “active asteroid”
and “impacted asteroid”. While the term active main-belt object ([Bauer et al. (2012)];
[Stevenson et al. (2012)]) is the most general, our particular definition and usage of main-belt comet
is intended to follow that of [Hsieh and Jewitt (2006)], i.e., periodic activity due to sublimating
volatiles.
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ić
+

’1
2
;

J
ew

it
t+

’1
2

P
/2

01
2

T
1

(P
A

N
S

T
A

R
R

S
)

3
.0

4
7

0
.2

1
1
1
.4

∼
2

’1
2

H
si

eh
+

’1
2
c

im
p

ac
te

d
as

te
ro

id
s

P
/2

01
0

A
2

(L
IN

E
A

R
)

2
.2

9
1

0
.1

2
5
.3

∼
0
.1

2
B

ir
tw

h
is

tl
e+

’1
0
;

J
ew

it
t+

’1
0
;

S
n

o
d

g
ra

ss
+

’1
0

S
ch

ei
la

59
6

2
.9

2
7

0
.1

7
1
4
.7

1
1
3
±

2
L

a
rs

o
n

’1
0
;

J
ew

it
t+

’1
1
;

B
o
d

ew
it

ts
+

’1
1

P
/2

01
2

F
5

G
ib

b
s

3
.0

0
4

0
.0

4
9
.7

<
2
.1

G
ib

b
s+

’1
2
;

S
te

ve
n

so
n

+
’1

2
;

M
o
re

n
o
+

’1
2



9

(post-lunar formation) accretion of Earth’s and/or Mars’ water from main-belt ob-

jects. Some dynamical simulations ([Levison et al. (2009)]; [Walsh et al. (2011)])

suggest that emplacement of outer solar system bodies into the main asteroid belt

may have occurred; these hypotheses can also be tested for consistency with a better-

characterized MBC population.

For at least the past two decades (e.g., [Luu and Jewitt (1992)]), visible band CCD

photometry has been regarded as a viable means of searching for subtle cometary

activity in asteroids—spectroscopy being an often-proposed alternative. However,

existing visible spectra of MBCs are essentially indistinguishable from those of neigh-

boring asteroids. Even with lengthy integration times, active MBC spectra in the

UV and visible lack the bright 388-nm cyanogen (CN) emission line seen in con-

ventional comets [Licandro et al. (2011)]. Near-infrared MBC spectra are compati-

ble with water ice-bearing mixtures of carbon, silicates and tholins but also suffer

very low signal-to-noise [Rousselot et al. (2011)]. The larger asteroids Themis (the

likely parent body of several MBCs) and Cybele show a 3-µm absorption feature

compatible with frost-covered grains, but the mineral goethite could also produce

this feature ([Jewitt and Guilbert-Lepoutre (2012)] and refs. therein). The Herschel

Space Observatory targeted one MBC in search of far-infrared H2O-line emission, yet

only derived an upper limit for gas production [De Val-Borro et al. (2012)]. In gen-

eral, the low albedo [Bauer et al. (2012)] and small diameter of MBCs (∼km-scale),

along with their low activity relative to conventional comets, makes them unfit for

spectroscopic discovery and follow-up. Imaging of their sunlight-reflecting dust and

time-monitoring of disk-integrated flux, however, are formidable alternatives which

motivate the present study.

As of April 2013 there were seven known candidate MBCs (Table 2.1) out of

∼560,000 known main-belt asteroids. These seven are regarded as candidates rather

than true MBCs because they all lack direct evidence of constituent volatile species,

although two (133P and 238P) have shown recurrent activity at successive perihe-

lia. Three other active main-belt objects—P/2010 A2 (LINEAR), 596 Scheila, and

P/2012 F5 (Gibbs)—likely resulted from dry collisional events and are thus not con-
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sidered to be candidate MBCs. Four of the seven MBCs were discovered serendip-

itously by individuals or untargeted surveys. The other three were found system-

atically: the first in the Hawaii Trails Project [Hsieh (2009)], in which targeted ob-

servations of ∼600 asteroids were visually inspected , and the latter two during the

Pan-STARRS 1 (PS1; [Kaiser et al. (2002)]) survey, by an automated point-spread

function analysis subroutine in the PS1 moving-object pipeline [Hsieh et al. (2012b)].

Three of the seven candidate MBCs were originally designated as asteroids, including

two of the three systematically discovered ones, which were labeled as asteroids for

more than five years following their respective discoveries by the automated NEO

surveys LINEAR [Stokes et al. (2000)] and Spacewatch ([Gehrels and Binzel (1984)];

[McMillan (2000)]).

Prior to this work, two additional untargeted MBC searches have been published.

[Gilbert and Wiegert (2010)] checked 25,240 moving objects occurring in the Canada-

France-Hawaii Telescope Legacy Survey [Jones et al. (2006)] using automated PSF

comparison against nearby field stars and visual inspection. Their sample, consisting

of both known and newly-discovered objects extending down to a limiting diameter

of ∼1-km, revealed cometary activity on one new object, whose orbit is likely that

of a Jupiter-family comet. [Sonnett et al. (2011)] analyzed 924 asteroids (a mix of

known and new, down to ∼0.5-km diameter) observed in the Thousand Asteroid Light

Curve Survey [Masiero et al. (2009)]. They fit stacked observations to model comae

and employed a tail-detection algorithm. While their sample did not reveal any new

MBCs, they introduced a solid statistical framework for interpreting MBC searches

of this kind, including the proper Bayesian treatment of a null-result.

In this chapter, we first describe the process of extracting observations of known

and new solar system small bodies in the PTF survey. We next establish a metric for

“extendedness” and a means of correcting for systematic (non-cometary) variation

in this metric. We then apply this metric to a screening process wherein individual

observations are inspected by eye for cometary appearance. Finally, we apply our

results to upper limit estimates of the population size of active main-belt comets.
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Figure 2.1: Distribution of PTF pointings over the first 41 months of operations
(March 2009 through July 2012), in sky coordinates relevant to small-body observa-
tions.

2.2 Raw transient data

2.2.1 Survey overview

The Palomar Transient Factory (PTF)2 is a synoptic survey designed to explore

the transient and variable sky ([Law et al. (2009)]; [Rau et al. (2009)]). The PTF

camera, mounted on Palomar Observatory’s 1.2-m f/2.44 Oschin Schmidt Telescope,

uses 11 CCDs (4096 × 2048 each) to observe 7.26 deg2 of the sky at a time with

a resolution of 1.01′′/pixel. Most exposures use either a Mould-R or Gunn-g′ filter

and are 60-s (a small fraction of exposures also comprise an Hα-band survey of the

sky). Science operations began in March 2009, with a nominal 2- to 5-day cadence for

supernova discovery and typically twice-per-night imaging of fields. Median seeing

is 2′′ with a limiting apparent magnitude R ∼ 20.5 (5σ), while near-zenith pointings

under dark conditions routinely achieve R ∼ 21.0 [Law et al. (2010)].

PTF pointings (Figure 2.1) and cadences are not deliberately selected for solar

system science. In fact, PTF’s routine sampling of high ecliptic latitudes (to avoid the

sometimes bright Moon) alleviates small-body sampling bias with respect to orbital

inclination (see Section 2.3.3).

We use data that have been reduced by the PTF photometric pipeline

2http://ptf.caltech.edu
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([Grillmair et al. (2010)]; [Laher et al. (2014)]) hosted at the Infrared Processing and

Analysis Center (IPAC) at Caltech. For each image, the pipeline performs debias-

ing, flat-fielding, astrometric calibration, generation of mask images, and creation

of a catalog of point sources using the astrometric reduction software SExtractor

[Bertin and Arnouts (1996)]. Code-face parameters such as MAGERR AUTO in this chap-

ter refer to SExtractor output quantities.

Absolute photometric calibration is described in [Ofek et al. (2012a)] and

[Ofek et al. (2012b)] and routinely achieves precision of ∼0.02 mag under photomet-

ric conditions. In this chapter, we use relative (lightcurve-calibrated) photometry

(Levitan et al. in prep; for algorithm details see [Levitan et al. (2011)]), which has

systematic errors of 6–8 mmag in the bright (non-Poisson-noise-dominated) regime.

Image-level (header) data used in this study were archived and retrieved using an im-

plementation of the Large Survey Database software (LSD, [Jurić (2011)]), whereas

detection-level data were retrieved from the PTF photometric database.

2.2.2 Candidate-observation quality filtering

Prior to ingestion into the photometric database, individual sources are matched

against a PTF reference image (a deep co-add consisting of at least ∼20 exposures,

reaching ≥ 21.7 mag). Any detection not within 1.5′′ of a reference object is classi-

fied in the database as a transient. The ensemble of transients forms a raw sample

from which we seek to extract asteroid (and potential MBC) observations. As of

2012-Jul-31 there exist ∼30 thousand deep reference images (unique filter-field-chip

combinations) against which∼1.6 million individual epoch images have been matched,

producing a total of ∼700 million transients. Of these, we discard transients which

satisfy any of the following constraints:

• within 4′′ of a reference object

• outside the convex footprint of the reference image

• from an image with astrometric fit error > 1′′ relative to the 2MASS survey

[Skrutskie et al. (2006)] or systematic relative photometric error > 0.1 mag
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• within 6.5 arcmin of a V < 7 Tycho-2 star [Høg et al., 2000], the approximate

halo radius of very bright stars in PTF

• within 2 arcmin of either a 7 < V < 10 Tycho-2 star or a 7 < R < 10 PTF

reference source, a lower-order halo radius seen in fainter stars

• within 1 arcmin of a 10 < R < 13 PTF reference source; most stars in this mag-

nitude range do not have halos but do have saturation and blooming artifacts

• within 30 pixel-columns of a V < 10 Tycho-2 star on the same image (targets

blooming columns)

• within 30 pixels of the CCD edge

• flagged by the IPAC pipeline as either an aircraft/satellite track, high dark

current pixel, noisy/hot pixel, saturated pixel, dead/bad pixel, ghost image,

dirt on the optics, CCD-bleed or bright star halo (although the above-described

bright star masks are more aggressive than these last two flags)

• flagged by SExtractor as being either photometrically unreliable due to a nearby

source, originally blended with another source, saturated, truncated or pro-

cessed during a memory overflow

• overconcentrated in flux relative to normal-PSF (stellar) objects on the im-

age (i.e. single-pixel radiation hit candidates)—true if the source’s MU MAX −

MAG AUTO value minus the image’s median stellar MU MAX − MAG AUTO value is

less than −1 (this criterion is further explained in Section 2.5)

Application of the above filtering criteria reduces the number of transients (moving-

object candidates) from ∼700 million to ∼60 million detections. While greatly re-

duced, this sample size is still too large to search (via the methods outlined in the fol-

lowing sections) given available computing resources—hence we seek to further refine

it. These non-small-body detections are likely to include random noise, difficult-to-

flag ghost features [Yang et al. (2002)], less-concentrated radiation hits, bright star

and galaxy features missed by the masking process, clouds from non-photometric

nights, and real astrophysical transients (e.g., supernova).
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Figure 2.2: Transients per image (after filtering and discarding the densest 10% of
images) versus ecliptic latitude, off the galactic equator and near-opposition longitude.
Vertical gray lines are the scatter (standard deviation) and the black line traces the
mean number of detections. Due to the large number of images, the standard error
of the mean for each bin is very small (comparable to the width of the black line).
The inferred ratio of false positive detections (image artifacts) to real small-body
detections at low ecliptic latitudes is at least of order unity.

We find that about two-thirds of the transients in this sample occur in the densest

∼10% of the images (i.e. images with more than∼50 transients). These densest∼10%

of images represent over 50% of all images on the galactic equator (|b| < 20◦), but

only 7% of all images on the ecliptic (|β| < 20◦). Hence, discarding them from our

sample should not have a significant effect on the number of small-body observations

we extract. Discarding these dense images reduces our sample of transients to ∼20

million.

2.2.3 Sample quality assessment

Figure 2.2 details the distribution of transients (candidates) per image as a function of

ecliptic latitude, after applying the above filters and discarding the dense images. The

galactic signal (not shown) is still present: off-ecliptic low galactic latitude fields have

a mean of ∼40 transients; this number drops roughly linearly with galactic latitude,

implying significant residual contribution from ghosts and other missed dense-field

artifacts. However, off the galactic equator a factor-of-two increase in the mean

number of detections per image is seen from |β| = 50◦ toward the ecliptic, indicating

a clear detection of the solar system’s main belt.
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2.3 Known-object extraction

Having defined our sample of candidate observations, we now seek to match it to

objects with known orbits. We first index the candidate observations into a three-

dimensional kd-tree, then match this tree against ephemeris data (predicted positions)

for all objects. The reader who wishes to skip over the details of the matching

algorithm should now go to Section 2.3.3.

2.3.1 Implementation of kd-tree indexing

A kd-tree (short for k-dimensional tree) is a data structure which facilitates efficient

cross-matching of M query points against N data points via a multi-dimensional

binary search. Whereas a brute force cross-matching involves of order MN com-

putations, a kd-tree reduces this to order M logN . [Kubica et al. (2007)] gives an

introduction to kd-trees (including some terminology we use below) and details their

increasingly common application in the moving-object processing subsystem (MOPS)

of modern sky-surveys.

Our kd-tree has the following features. Since the detections are three dimensional

points (two sky coordinates plus one time), the tree’s nodes are box volumes, each

of which is stored in memory as six double precision numbers. Before any leaf nodes

(single datum nodes) are reached, the nth level of the tree consists of 2n−1 nodes,

hence each level of the tree is stored in an array of size 2n−1 × 6 or smaller.

After definition via median splitting, the bounds of each node are set to those of

the smallest volume enclosing all of its data. The splitting of nodes is a parallelized

component of the tree-construction algorithm (which is crucial given their exponential

increase in number at each successive level). Because the splitting-dimension is cycled

continuously, the algorithm will eventually attempt to split data from a single image

along the time dimension; when this occurs it simply postpones splitting until the

next level (where it is split spatially).
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2.3.2 Matching ephemerides against the kd-tree

After constructing the kd-tree of moving-object candidates, we search the tree for

known objects. For each of the ∼600 thousand known solar system small bodies

we query JPL’s online ephemeris generator HORIZONS [Giorgini et al. (1996)] to

produce a one-day spaced ephemeris over the 41-month time span of our detections

(2009-Mar-01 to 2012-Jul-31). We then search this ephemeris against the kd-tree of

candidate detections. In particular, the 1,250 points (days) comprising the ephemeris

are themselves organized into a separate (and much smaller) kd-tree-like structure,

whose nodes are instead defined by splits exclusively in the time dimension and whose

leaf nodes always consist of two ephemeris points spaced one day apart.

The ephemeris tree is “pruned” as it is grown, meaning that at each successive

level all ephemeris nodes not intersecting at least one PTF tree node (at the same tree

level) are discarded from the tree. Crossing of the R.A. = 0◦ discontinuity is dealt

with by detecting nodes that span nearly 360◦ in R.A. at sufficiently high tree levels.

To account for positional uncertainty in the ephemeris, each ephemeris node is given

an 8′′ buffer in the spatial dimensions, increasing its volume slightly and ensuring

that the ephemeris points themselves never lie exactly on any of the node vertices.

Once the ephemeris tree is grown to only leaf nodes (which are necessarily over-

lapping some PTF transients), HORIZONS is re-queried for the small-body’s position

at all unique transient epochs found in each remaining one-day node. Since each leaf

node’s angular footprint on the sky is of order the square of the object’s daily motion

(∼10 arcmin2 for main-belt objects—much less than the size of a PTF image), the

number of unique epochs is usually small, on the order of a few to tens. The PTF-

epoch-specific ephemerides are then compared directly with the handful of candidate

detections in the node, and matches within 4′′ are saved as confirmed small-body de-

tections. In addition to the astrometric and photometric data from the PTF pipeline,

orbital geometry data from HORIZONS are saved.

Given the candidate sample of ∼20 million transients, for each known object the

search takes ∼4 seconds (including the HORIZONS queries, the kd-tree search and
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Figure 2.3: The shaded gray histograms show the distributions of known objects
(normalized such that largest bin equals unity), while the red lines show the frac-
tion of objects in each bin included in the PTF dataset. The osculating orbital
elements are from the JPL Small-Body Database, (http://ssd.jpl.nasa.gov), the abso-
lute magnitudes from the Minor Planet Center (http://www.minorplanetcenter.net),
the visible albedos from fits to the WISE cryogenic data [Masiero et al. (2011)], and
the Sloan colors from the SDSSMOC 4th release [Parker et al. (2008)] supplemented
with 2008–2009 data (B. Sesar, personal communication).

saving of confirmed detections). Hence, PTF observations of the ∼600 thousand

known small bodies (main-belt objects, near-Earth objects, trans-Neptunian objects,

comets, etc.) require ∼4 days to harvest on an 8-core machine. This relatively quick

run time is crucial given that both the list of PTF transients and the list of known

small bodies are updated regularly, necessitating periodic re-harvesting.

2.3.3 Summary of known small bodies detected

We used the known small bodies list current as of 2012-Aug-10, consisting of 333,841

numbered objects, 245,696 unnumbered objects, and 3157 comets (including lettered

fragments and counting only the most recent-epoch orbital solution for each comet).

Our search found 2,013,279 observations of 221,402 known main-belt objects in PTF

(∼40% of all known). Table 2.2 details the coverage into various other orbital sub-

populations.

Two active known candidate main-belt comets appeared in the sample: P/2010
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Figure 2.4: Distance residuals of harvested small-body observations with respect to
their predicted position. The horizontal axis intentionally extends to 4′′, as this is the
matching radius we use. Significant contamination due to false-positive detections
would increase with distance; this does not appear to be the case.

R2 (La Sagra) was detected 34 times in 21 nights between 2010-Jul-06 and 2010-Oct-

29, and P/2006 VW139 was detected 5 times in 3 nights—2011-Sep-27, 2011-Oct-02

and 2011-Dec-21 (see Figure 2.13 in Section 2.2.6). In addition to these MBCs, there

were 108 known Jupiter-family comets and 65 long-period comets in this sample (see

Table 2.3).

In terms of coverage, 54% of the objects are observed five times or fewer, and 53%

of the objects are observed on three nights or fewer. Observation-specific statistics

on this data set, such as apparent magnitudes, on-sky motions, etc., appear later in

Section 2.5 (see the histograms in Figure 2.9). Lastly, a summary of orbital-coverage

statistics appears in Figure 2.15 (Section 2.7).

The orbital distribution of the PTF sample is shown in the top row of Figure

2.3. The fraction of known objects sampled appears very nearly constant at 40%

across the full main-belt ranges of the orbital elements a, e and i. With respect to

absolute magnitude (referenced for all objects from the Minor Planet Center), the

PTF sampling fraction of 40% applies to the H ∼ 17 mag bin, corresponding to

1-km diameter objects for a typical albedo of ∼10%.

As shown in Figure 2.4, the distribution of astrometric residuals with respect to

the ephemeris prediction is sharply concentrated well within the matching threshold

of 4′′. Were this data set significantly contaminated by randomly distributed false-
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Table 2.2: Known solar system small-body detections in PTF as of July 2012

main-belt
Trojan

comets∗ NEOs
TNOs &

& Hilda centaurs

detections 2,013,279 50,056 2,181 6,586 790

objects 221,402 5,259 175† 1,257 75

% of known 39% 55% 3% 13% 4%
∗See Table 2.5 for a more detailed breakdown by comet dynamical type.

†The count of 175 comets given here differs from the count of 115 given in the
abstract, for various reasons described in Section 2.5.4 and Table 2.5.

positives, then their number would increase with matching distance (i.e., with annular

area per unit matching radius), which evidently is not the case.

2.3.4 Overlap of PTF with the WISE and SDSS data sets

During its full-cryogenic mission in 2010, the Wide-field Infrared Survey Explorer

(WISE; [Wright et al. (2010)]; [Masiero et al. (2011)], [Masiero et al. (2012)];

[Mainzer et al. (2012)]), observed 94,653 asteroids whose model-derived visible albe-

dos (pV ) have errors of less than 0.05, and nearly half (45,321) of these were also

observed by PTF. Relative to this known-albedo sample, PTF detected 47% of the

dark (pV < 0.1) and ∼69% of the bright (pV > 0.1) asteroids (Figure 2.3, middle

bottom).

Of the asteroids that were observed by the Sloan Digital sky-survey (SDSS;

[York et al. (2000)]) during its 1998–2009 imaging phase, 142,774 known objects have

g, r and i photometry with errors of less than 0.2 mag in all three bands, and more

than half (72,556) of these objects were also observed by PTF. These data come from

the SDSS Moving Object Catalog 4th release [Parker et al. (2008)], which includes

data through March 2007, supplemented with more recent SDSS moving object data

from 2008–2009 (B. Sesar, personal communication). The principal component color

a∗ = 0.89(g− r) + 0.45(r− i)−0.57 is useful for broad (C-type vs. S-type) taxonomic

classification ([Ivezić et al. (2002)]; [Parker et al. (2008)]). Relative to this known-

color sample, PTF detected 49% of the carbonaceous-colored (a∗ < 0) and 52% of

the stony-colored (a∗ > 0) asteroids (Figure 2.3, bottom right).
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Table 2.3: Known comets observed by PTF. Number of observations and nights;
magnitude ranges, heliocentric (r) and geocentric (∆) distances (in AU).

name obs. nights first date last date Vmin Vmax rmin rmax ∆min ∆max

7P/Pons-Winnecke 5 3 2009-09-15 2009-09-21 20.3 21.0 3.5 3.5 2.9 2.9
9P/Tempel 1 1 1 2010-03-16 2010-03-16 20.0 20.0 2.9 2.9 2.3 2.3
19P/Borrelly 3 3 2009-05-14 2009-06-25 15.6 17.4 3.1 3.4 2.6 3.3
29P/Schwassmann-Wachmann 1 15 13 2011-01-10 2011-02-14 14.4 15.5 6.2 6.2 5.3 5.7
30P/Reinmuth 1 1 1 2010-02-26 2010-02-26 15.3 15.3 1.9 1.9 1.5 1.5
31P/Schwassmann-Wachmann 2 26 15 2009-12-17 2011-04-11 18.1 19.0 3.5 3.6 2.5 2.8
33P/Daniel 1 1 2009-03-18 2009-03-18 16.8 16.8 2.8 2.8 2.0 2.0
36P/Whipple 45 14 2011-09-05 2011-11-22 17.9 19.4 3.1 3.1 2.1 2.5
47P/Ashbrook-Jackson 4 3 2009-12-03 2009-12-11 17.3 17.6 3.3 3.3 2.3 2.4
48P/Johnson 5 3 2010-04-11 2011-06-11 16.2 21.4 2.4 3.8 1.6 2.8
49P/Arend-Rigaux 30 12 2012-01-20 2012-07-16 16.0 20.0 1.7 2.9 1.0 3.1
54P/de Vico-Swift-NEAT 3 2 2009-07-23 2009-07-29 20.1 20.7 2.4 2.4 1.4 1.4
59P/Kearns-Kwee 1 1 2010-02-17 2010-02-17 20.5 20.5 3.4 3.4 2.5 2.5
64P/Swift-Gehrels 3 3 2009-10-03 2010-02-14 15.8 18.6 1.9 2.9 1.9 2.2
65P/Gunn 9 4 2009-05-25 2012-02-05 14.0 19.7 2.9 4.1 2.5 4.4
71P/Clark 8 5 2011-01-12 2011-01-27 19.6 20.6 3.0 3.1 2.2 2.4
74P/Smirnova-Chernykh 6 3 2010-02-16 2010-02-23 16.1 16.5 3.6 3.6 3.0 3.1
77P/Longmore 74 4 2009-03-13 2009-04-06 14.2 14.7 2.4 2.4 1.4 1.5
78P/Gehrels 2 11 3 2011-11-02 2011-11-09 12.3 12.5 2.1 2.1 1.3 1.3
94P/Russell 4 5 4 2010-02-16 2010-06-03 16.2 17.5 2.3 2.3 1.3 2.1
103P/Hartley 2 18 11 2010-06-06 2010-08-03 14.6 18.3 1.5 2.1 0.7 1.5
10P/Tempel 2 6 5 2009-06-09 2010-08-10 10.6 20.0 1.5 3.4 0.7 3.3
116P/Wild 4 5 3 2009-03-27 2009-04-01 13.6 14.0 2.3 2.3 1.6 1.6
117P/Helin-Roman-Alu 1 29 13 2010-02-13 2011-12-04 18.8 19.8 4.5 5.1 4.5 4.8
118P/Shoemaker-Levy 4 3 2 2010-02-18 2010-04-08 13.6 14.7 2.0 2.1 1.3 1.9
123P/West-Hartley 1 1 2010-09-13 2010-09-13 20.3 20.3 3.0 3.0 2.9 2.9
127P/Holt-Olmstead 5 3 2009-08-13 2009-11-17 17.1 18.7 2.2 2.2 1.3 1.6
130P/McNaught-Hughes 2 2 2010-04-11 2010-04-16 20.8 21.0 3.5 3.5 2.5 2.5
131P/Mueller 2 8 2 2011-11-02 2011-11-03 18.6 19.0 2.5 2.5 1.6 1.6
142P/Ge-Wang 3 2 2010-10-03 2010-10-17 20.6 20.6 2.7 2.7 1.7 1.8
143P/Kowal-Mrkos 2 1 2010-08-24 2010-08-24 19.8 20.1 3.7 3.7 2.9 2.9
149P/Mueller 4 17 10 2010-02-16 2010-06-03 18.7 20.1 2.7 2.7 1.8 2.2
14P/Wolf 1 1 2009-11-03 2009-11-03 19.4 19.4 3.1 3.1 2.2 2.2
157P/Tritton 2 2 2009-09-10 2009-11-07 17.2 18.5 1.8 2.2 1.0 1.2
158P/Kowal-LINEAR 17 7 2012-07-22 2012-07-29 18.8 19.4 4.6 4.6 4.1 4.2
160P/LINEAR 7 2 2010-03-28 2012-07-18 18.7 19.2 2.1 5.3 1.4 4.3
162P/Siding Spring 16 10 2010-11-13 2012-03-21 18.8 20.5 2.7 4.7 3.0 3.8
163P/NEAT 3 1 2011-11-03 2011-11-03 19.9 20.2 2.4 2.4 1.5 1.5
164P/Christensen 4 3 2011-09-04 2011-09-08 17.9 18.8 1.9 1.9 2.6 2.6
167P/CINEOS 17 15 2009-06-24 2010-10-29 20.7 21.6 13.9 14.5 13.0 14.1
169P/NEAT 1 1 2009-07-07 2009-07-07 19.0 19.0 2.2 2.2 1.3 1.3
188P/LINEAR-Mueller 1 1 2010-02-19 2010-02-19 21.2 21.2 4.9 4.9 4.0 4.0
202P/Scotti 3 1 2009-03-17 2009-03-17 19.5 19.8 2.5 2.5 2.5 2.5
203P/Korlevic 3 2 2011-01-01 2011-01-08 17.6 18.4 3.6 3.6 2.9 3.0
213P/Van Ness 2 2 2012-01-04 2012-01-05 17.2 17.3 2.5 2.5 2.6 2.6
215P/NEAT 14 6 2011-11-02 2012-01-21 18.1 19.7 3.8 3.9 2.9 4.0
217P/LINEAR 18 10 2009-06-26 2010-03-28 10.4 18.8 1.2 2.5 0.6 2.4
218P/LINEAR 5 2 2009-05-25 2009-05-27 19.1 19.7 1.7 1.7 0.9 0.9
219P/LINEAR 40 12 2010-08-13 2010-11-08 17.4 19.2 2.6 2.8 1.8 2.4
220P/McNaught 3 1 2009-06-01 2009-06-01 19.9 20.5 2.3 2.3 1.4 1.4
221P/LINEAR 7 6 2009-08-13 2009-09-20 20.4 21.2 2.5 2.6 1.6 1.7
223P/Skiff 8 5 2010-08-13 2010-09-03 19.4 20.3 2.4 2.4 1.9 2.1
224P/LINEAR-NEAT 1 1 2009-09-14 2009-09-14 21.4 21.4 2.3 2.3 1.3 1.3
225P/LINEAR 2 2 2009-10-22 2009-10-22 20.2 20.6 1.5 1.5 0.9 0.9
226P/Pigott-LINEAR-Kowalski 2 2 2009-10-16 2009-10-16 19.3 19.6 2.3 2.3 2.2 2.2
228P/LINEAR 12 10 2010-12-31 2012-03-05 18.0 20.4 3.5 3.5 2.6 3.3
229P/Gibbs 4 2 2009-08-19 2009-08-23 19.7 20.2 2.4 2.4 2.1 2.1
22P/Kopff 7 4 2009-06-26 2009-08-02 11.9 12.3 1.6 1.7 0.8 0.9
230P/LINEAR 5 3 2009-12-03 2010-01-12 18.4 18.8 1.9 2.1 1.4 1.6
234P/LINEAR 1 1 2009-12-15 2009-12-15 20.6 20.6 2.9 2.9 3.1 3.1
236P/LINEAR 19 14 2010-06-17 2011-01-25 17.1 20.7 1.9 2.2 0.9 1.9
237P/LINEAR 27 15 2010-07-05 2010-10-02 19.6 21.2 2.8 3.0 2.0 2.3
240P/NEAT 7 5 2010-07-25 2010-12-08 14.5 16.6 2.1 2.2 1.3 2.6
241P/LINEAR 8 8 2010-12-28 2011-02-01 17.4 18.4 2.4 2.6 1.6 1.7
242P/Spahr 16 13 2010-08-15 2011-08-28 19.3 21.1 4.1 4.8 3.7 4.4
243P/NEAT 5 3 2011-11-03 2011-11-22 20.2 20.9 2.9 3.0 2.1 2.2
244P/Scotti 29 17 2010-09-10 2011-01-06 19.3 20.3 4.2 4.3 3.3 3.9
245P/WISE 9 6 2010-07-25 2010-09-11 19.1 20.4 2.5 2.7 1.7 1.7
246P/NEAT 14 7 2011-02-13 2011-11-23 16.5 19.1 3.6 4.3 3.4 4.1
247P/LINEAR 12 7 2010-10-08 2010-11-12 17.1 20.2 1.6 1.8 0.7 1.1
248P/Gibbs 25 15 2010-09-18 2010-12-11 18.2 19.8 2.2 2.5 1.4 1.7
250P/Larson 3 2 2010-11-03 2010-11-04 20.4 20.8 2.2 2.2 2.1 2.2
253P/PANSTARRS 4 3 2011-11-02 2011-12-08 16.9 18.0 2.0 2.0 1.3 1.6
254P/McNaught 1 1 2011-11-03 2011-11-03 17.8 17.8 3.7 3.7 3.0 3.0
260P/McNaught 9 3 2012-07-27 2012-07-30 14.2 14.7 1.6 1.6 0.9 0.9
261P/Larson 18 9 2012-06-25 2012-07-06 19.2 20.3 2.3 2.3 1.7 1.8
279P/La Sagra 6 3 2009-07-20 2009-08-02 20.1 21.4 2.2 2.2 1.3 1.4
P/2006 VW139 5 3 2011-09-27 2011-12-21 19.0 19.6 2.5 2.6 1.5 1.9
P/2009 O3 (Hill) 7 5 2009-09-20 2009-11-07 17.5 18.5 2.7 2.9 1.8 2.0
P/2009 Q1 (Hill) 5 3 2009-08-01 2010-12-31 18.4 19.9 2.8 4.5 2.0 3.7
P/2009 Q4 (Boattini) 6 4 2009-12-16 2010-03-16 13.4 17.8 1.4 1.8 0.6 0.9
P/2009 Q5 (McNaught) 2 1 2009-08-21 2009-08-21 17.0 17.1 2.9 2.9 2.2 2.2
P/2009 SK280 (Spacewatch-Hill) 5 3 2009-10-23 2009-11-09 19.8 20.4 4.2 4.2 3.2 3.3
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Table 2.3: — Continued
name obs. nights first date last date Vmin Vmax rmin rmax ∆min ∆max

P/2009 T2 (La Sagra) 8 6 2009-08-24 2010-03-13 16.5 20.5 1.8 2.3 1.1 1.9
P/2009 WX51 (Catalina) 6 1 2009-12-17 2009-12-17 17.4 18.0 1.1 1.1 0.2 0.2
P/2010 A3 (Hill) 3 2 2009-09-13 2010-03-25 16.1 21.3 1.6 2.7 1.8 1.9
P/2010 A5 (LINEAR) 4 3 2010-01-12 2010-02-24 16.3 17.4 1.8 2.0 1.2 1.8
P/2010 B2 (WISE) 1 1 2010-02-23 2010-02-23 20.0 20.0 1.7 1.7 1.1 1.1
P/2010 D2 (WISE) 1 1 2010-03-17 2010-03-17 19.9 19.9 3.7 3.7 3.6 3.6
P/2010 E2 (Jarnac) 5 4 2010-06-08 2010-06-28 19.1 20.2 2.5 2.5 2.0 2.3
P/2010 H2 (Vales) 11 6 2010-04-16 2010-06-01 11.8 15.1 3.1 3.1 2.1 2.4
P/2010 H5 (Scotti) 18 10 2010-05-30 2010-06-17 20.4 21.2 6.0 6.0 5.4 5.6
P/2010 N1 (WISE) 2 2 2010-03-12 2010-03-15 20.9 21.1 2.1 2.1 1.2 1.2
P/2010 P4 (WISE) 3 3 2010-09-15 2010-10-04 20.1 20.8 2.0 2.0 1.2 1.3
P/2010 R2 (La Sagra) 34 21 2010-07-06 2010-10-29 18.2 20.1 2.6 2.7 1.7 2.1
P/2010 T2 (PANSTARRS) 7 5 2010-09-05 2010-09-15 19.9 21.4 4.0 4.0 3.1 3.2
P/2010 TO20 (LINEAR-Grauer) 1 1 2010-08-24 2010-08-24 18.7 18.7 5.3 5.3 4.4 4.4
P/2010 U1 (Boattini) 62 33 2009-06-25 2010-11-13 19.1 21.4 4.9 5.0 4.0 4.9
P/2010 U2 (Hill) 34 19 2010-09-07 2010-12-13 17.6 19.9 2.6 2.6 1.6 1.9
P/2010 UH55 (Spacewatch) 24 10 2010-10-15 2011-10-17 18.7 20.3 3.0 3.2 2.1 3.6
P/2010 WK (LINEAR) 9 5 2010-08-14 2010-09-22 18.7 20.4 1.8 1.9 1.2 1.6
P/2011 C2 (Gibbs) 28 19 2010-12-02 2012-02-01 19.7 21.1 5.4 5.6 4.7 5.3
P/2011 JB15 (Spacewatch-Boattini) 2 2 2010-06-06 2010-06-09 20.7 21.1 5.6 5.6 5.0 5.0
P/2011 NO1 (Elenin) 1 1 2011-07-30 2011-07-30 19.7 19.7 2.6 2.6 1.6 1.6
P/2011 P1 (McNaught) 4 2 2011-09-08 2011-09-20 18.7 19.4 5.3 5.3 4.6 4.7
P/2011 Q3 (McNaught) 38 20 2011-07-23 2011-11-30 18.5 20.5 2.4 2.5 1.4 2.0
P/2011 R3 (Novichonok) 5 3 2011-10-08 2011-10-10 18.3 18.6 3.7 3.7 2.7 2.7
P/2011 U1 (PANSTARRS) 18 7 2011-11-24 2012-01-18 19.1 20.9 2.6 2.8 1.8 1.9
P/2011 VJ5 (Lemmon) 5 3 2012-02-04 2012-03-25 18.5 19.4 1.6 1.9 0.9 0.9
P/2012 B1 (PANSTARRS) 9 6 2011-12-11 2012-01-04 19.2 19.9 4.9 4.9 4.0 4.3
C/2002 VQ94 (LINEAR) 3 2 2009-06-09 2009-07-06 18.6 18.7 10.2 10.3 9.5 10.0
C/2005 EL173 (LONEOS) 2 1 2009-07-28 2009-07-28 19.5 20.4 8.0 8.0 7.3 7.3
C/2005 L3 (McNaught) 47 19 2009-05-12 2012-03-16 14.0 19.4 6.6 11.6 6.0 10.8
C/2006 OF2 (Broughton) 89 5 2010-01-25 2010-02-16 16.0 16.6 5.5 5.7 4.6 4.7
C/2006 Q1 (McNaught) 11 6 2009-05-13 2009-08-16 14.0 15.1 4.2 4.8 3.5 4.8
C/2006 S3 (LONEOS) 37 25 2009-06-25 2010-09-12 15.4 17.5 6.7 8.9 5.8 8.6
C/2006 U6 (Spacewatch) 4 2 2009-03-25 2010-03-16 16.2 19.7 3.9 6.6 3.0 5.7
C/2007 D1 (LINEAR) 6 3 2010-03-12 2011-03-16 17.8 18.8 10.5 11.7 9.6 10.9
C/2007 G1 (LINEAR) 7 5 2010-12-28 2011-01-23 19.0 20.1 7.5 7.7 6.7 7.1
C/2007 M1 (McNaught) 14 8 2009-07-04 2010-03-17 18.6 20.5 7.7 8.3 7.1 8.0
C/2007 N3 (Lulin) 2 1 2009-12-27 2009-12-27 16.3 16.5 4.6 4.6 3.6 3.6
C/2007 Q3 (Siding Spring) 33 20 2009-11-03 2010-07-23 11.1 14.6 2.3 3.8 2.2 3.9
C/2007 T5 (Gibbs) 7 5 2009-05-16 2009-06-29 19.9 20.5 5.0 5.2 4.5 5.1
C/2007 U1 (LINEAR) 21 13 2009-06-24 2009-09-07 16.7 17.8 4.4 4.9 3.9 4.4
C/2007 VO53 (Spacewatch) 26 11 2011-06-24 2012-06-27 17.8 20.7 5.8 7.6 5.5 7.0
C/2008 FK75 (Lemmon-Siding Spring) 19 11 2009-06-28 2010-09-28 15.3 16.7 4.5 5.8 4.1 5.2
C/2008 N1 (Holmes) 13 7 2009-07-21 2010-06-06 16.3 18.3 2.8 3.8 2.6 3.6
C/2008 P1 (Garradd) 4 2 2009-08-23 2009-09-14 15.5 15.8 3.9 3.9 3.0 3.2
C/2008 Q1 (Maticic) 15 7 2009-05-13 2011-02-22 16.1 18.8 3.2 7.5 2.6 6.7
C/2008 Q3 (Garradd) 2 1 2010-03-26 2010-03-26 17.6 17.8 3.7 3.7 3.1 3.1
C/2008 S3 (Boattini) 33 12 2010-09-29 2010-11-06 17.4 18.4 8.1 8.2 7.2 7.3
C/2009 F1 (Larson) 2 1 2009-03-27 2009-03-27 18.7 18.8 2.1 2.1 1.2 1.2
C/2009 F2 (McNaught) 2 2 2012-06-26 2012-06-28 20.8 20.8 8.7 8.7 8.1 8.1
C/2009 K2 (Catalina) 19 10 2009-05-08 2009-08-24 17.8 19.8 3.6 4.1 3.6 3.9
C/2009 K5 (McNaught) 3 3 2010-09-27 2010-11-12 13.7 14.4 2.5 3.0 2.3 2.6
C/2009 O2 (Catalina) 4 2 2009-06-29 2009-07-21 19.8 21.3 3.7 4.0 2.7 3.2
C/2009 P1 (Garradd) 7 4 2011-07-21 2012-02-02 8.6 9.5 1.6 2.6 1.4 1.7
C/2009 P2 (Boattini) 44 26 2009-08-13 2010-09-14 18.5 19.8 6.6 6.7 5.7 6.8
C/2009 T3 (LINEAR) 1 1 2010-06-03 2010-06-03 18.9 18.9 2.8 2.8 2.9 2.9
C/2009 U3 (Hill) 20 4 2010-01-17 2010-05-04 16.2 16.7 1.5 1.7 1.3 1.4
C/2009 U5 (Grauer) 5 4 2010-12-08 2011-01-12 20.2 21.1 6.2 6.3 5.7 6.1
C/2009 UG89 (Lemmon) 61 32 2011-04-27 2012-04-29 17.0 20.2 4.1 5.7 3.6 5.2
C/2009 Y1 (Catalina) 14 8 2009-12-30 2011-09-28 15.2 19.4 3.5 4.7 2.7 4.2
C/2010 B1 (Cardinal) 5 3 2010-01-11 2010-01-25 17.8 18.0 4.7 4.7 4.0 4.1
C/2010 D4 (WISE) 32 21 2009-05-18 2010-09-18 19.8 21.3 7.2 7.8 6.5 8.2
C/2010 DG56 (WISE) 13 9 2010-07-26 2010-09-11 18.1 20.0 1.9 2.2 1.1 1.6
C/2010 E5 (Scotti) 3 2 2010-03-19 2010-03-25 19.8 19.9 4.0 4.0 3.0 3.0
C/2010 F1 (Boattini) 11 9 2009-11-09 2010-01-17 18.5 19.5 3.6 3.6 3.0 3.7
C/2010 G2 (Hill) 10 7 2010-06-23 2012-01-15 12.4 18.9 2.5 5.0 2.1 4.5
C/2010 G3 (WISE) 37 24 2009-10-03 2011-06-26 18.6 20.4 4.9 5.9 4.7 6.3
C/2010 J1 (Boattini) 4 2 2010-06-13 2010-06-24 18.1 19.2 2.3 2.4 1.7 2.0
C/2010 J2 (McNaught) 6 4 2010-06-27 2011-06-10 16.9 20.0 3.4 4.8 2.6 4.2
C/2010 L3 (Catalina) 53 34 2009-08-03 2012-07-16 18.8 20.9 9.9 10.4 9.3 10.3
C/2010 R1 (LINEAR) 27 11 2012-06-01 2012-06-27 16.9 17.4 5.6 5.6 4.8 5.1
C/2010 S1 (LINEAR) 1 1 2010-02-18 2010-02-18 20.3 20.3 9.9 9.9 9.8 9.8
C/2010 U3 (Boattini) 6 5 2010-10-17 2011-09-04 20.0 20.6 17.1 18.4 16.6 17.5
C/2010 X1 (Elenin) 23 18 2011-01-06 2011-02-22 17.6 19.4 3.3 3.9 2.4 3.6
C/2011 A3 (Gibbs) 22 9 2011-03-04 2011-04-15 16.6 17.5 3.5 3.8 2.7 3.1
C/2011 C1 (McNaught) 1 1 2011-08-25 2011-08-25 19.7 19.7 2.3 2.3 1.7 1.7
C/2011 C3 (Gibbs) 1 1 2011-02-11 2011-02-11 20.4 20.4 1.7 1.7 1.3 1.3
C/2011 F1 (LINEAR) 27 18 2010-10-12 2012-05-24 13.4 19.7 3.3 8.2 2.9 8.6
C/2011 G1 (McNaught) 5 2 2011-11-08 2012-01-27 17.3 17.5 2.2 2.6 1.8 2.5
C/2011 J3 (LINEAR) 1 1 2011-06-23 2011-06-23 19.0 19.0 2.4 2.4 2.1 2.1
C/2011 L3 (McNaught) 18 10 2011-07-15 2011-10-01 14.9 17.6 1.9 2.0 1.0 1.9
C/2011 M1 (LINEAR) 2 1 2011-07-04 2011-07-04 15.7 16.0 1.4 1.4 1.4 1.4
C/2011 P2 (PANSTARRS) 11 8 2011-06-10 2011-08-19 19.4 20.1 6.3 6.3 5.3 5.5
C/2011 Q4 (SWAN) 4 2 2012-02-25 2012-02-26 20.3 20.7 2.5 2.5 1.8 1.8
C/2011 R1 (McNaught) 9 6 2010-10-04 2010-12-13 19.5 20.7 7.0 7.5 6.3 6.6
C/2012 A1 (PANSTARRS) 4 4 2010-10-31 2011-01-01 20.4 21.2 10.0 10.2 9.3 10.3
C/2012 A2 (LINEAR) 3 2 2011-04-07 2011-11-18 18.9 20.9 4.7 6.1 5.1 5.2
C/2012 CH17 (MOSS) 3 2 2012-01-04 2012-01-06 19.2 20.1 3.7 3.7 3.1 3.2
C/2012 E1 (Hill) 54 26 2011-06-10 2012-05-29 19.4 20.5 7.5 7.8 6.7 7.4
C/2012 E3 (PANSTARRS) 1 1 2012-06-09 2012-06-09 20.5 20.5 5.1 5.1 4.8 4.8
C/2012 Q1 (Kowalski) 2 1 2011-10-01 2011-10-01 19.9 20.1 9.5 9.5 8.9 8.9
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Figure 2.5: As in Figure 2.2, the vertical bars show the scatter (standard deviation)
and the connected points are the mean values for the bins. Now added in red is the
distribution of transients after exclusion of the ∼2 million known-object detections.
The original distribution is included, in black, for comparison.

Of the 27,326 objects that were observed by both WISE and SDSS (satisfying the

measurement error constraints mentioned above), 16,955 (62%) of these were also

observed by PTF. A total of 624 of these WISE+SDSS objects were observed at

least 10 times on at least one night in PTF, whence rotation curves can be estimated,

while 625 of these WISE+SDSS objects have PTF observations in five or more phase-

angle bins of width 3◦, including opposition (0◦ –3◦), whence phase functions can be

estimated.

2.4 Unknown-object extraction

Exclusion of the ∼2 million known-object detections leaves ∼18 million transients

remaining in our list of moving-object candidates. Figure 2.5 shows that the ecliptic

distribution of transients per image has flattened out substantially. However, ignoring

the scatter, the mean number of transients in the leftmost (lowest ecliptic latitude) bin

remains the highest by more than two detections per image, suggesting the presence

of significant unknown (i.e., undiscovered) small bodies in the data.
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2.4.1 Previous and ongoing PTF small-body discovery work

In [Polishook et al. (2012)], a pilot study of rotation curve analysis and new-object

discovery was undertaken using a few nights of ∼20 deg2 high cadence (∼20-minute-

spaced) PTF data obtained in February 2010 at low ecliptic latitude (|β| < 2.5◦).

Using an original moving-object detection algorithm, they extracted 684 asteroids; of

those which received provisional designations, three still qualify as PTF discoveries

as of March 2013 (2010 CU247, 2010 CL249 and 2010 CN249). Though highly efficient

on high cadence data, their tracklet-finding algorithm’s limitations (e.g., single-night,

single-CCD) renders it inapplicable to the vast majority of regular- (hour-to-days-)

cadence PTF data.

A popular solution to this problem was already mentioned in Section 2.3, namely

the use of kd-trees. A recently successful such kd-tree-based, detection-couplet-

matching MOPS was used on the WISE data [Dailey et al. (2010)]. The WISE MOPS

successfully extracted ∼2 million observations of ∼158,000 moving objects from the

WISE data, including ∼34,000 new objects. A modified version of the WISE MOPS

is under development for PTF at IPAC. As with the WISE MOPS, a key intent is

the discovery of near-Earth objects, hence the PTF MOPS will need to accommo-

date relatively fast apparent motions (at least an order of magnitude faster than

main-belt speeds). This poses considerable challenges, because PTF’s cadences and

false-positive detection rates are less accommodating than those of the space-based

WISE survey. Though far from complete, the prototype PTF MOPS has successfully

demonstrated that it can find tracklets spanning multiple nights and multiple fields

of view, including at least two near-Earth objects, one of which was unknown (J.

Bauer, personal communication).

As the PTF MOPS is still in development, for the purposes of this chapter we

implement an original moving-object detection algorithm and run it on our residual

∼18 million-transient sample. The reader who wishes to skip over the details of the

discovery algorithm should now go to Section 2.4.3.
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Figure 2.6: Time interval between consecutive observations of known objects in PTF.
This distribution justifies the 48-hour upper limit we impose for tracklet finding,
which also was chosen for computational expediency.

2.4.2 A custom discovery algorithm for main-belt objects

Because our intention is solely to supplement the main-belt comet search, we restrict

apparent motions to those typical of main-belt objects (thereby easing the compu-

tational burden, but excluding faster NEOs and slower TNOs). This on-sky motion

range is taken to be between 0.1 and 1.0 arcsec/minute.

Analysis of the known-object sample (Figure 2.6) shows that about half of all

consecutive-observation pairs occur over a less than 12-hour (same night) interval,

with a sharp peak at the one-hour spacing. Of the remaining (multi-night) consecutive-

observation pairs, roughly half span less than 48 hours. Given these statistics, we

prescribe 2 days as our maximum allowable timespan (between first and last obser-

vation) for a minimum three-point tracklet. As will be explained, multiple primary

tracklets can be merged to produce a secondary tracklet greater than 2 days in total

length, but the interval between any two consecutive points in the secondary tracklet

still will not exceed 2 days. An imposed minimum time of 10 minutes between consec-

utive tracklet points ensures that the object has moved at least one arcsecond (for the

minimum allowed speed), such that stationary transients (e.g., hostless-supernovae)

are excluded.
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Having specified time and velocity limits, the problem reduces to searching a

double-cone-shaped volume, in three-dimensional time-plus-sky space surrounding

each transient, to find sufficiently collinear past and future points. We modified our

kd-tree implementation from Section 2.3 for this purpose. In particular, because PTF

data were not collected on every consecutive night of the 41-months (due to weather,

scheduling, etc.), the two-day upper limit we impose makes node-splitting along two-

day (minimum) gaps in the data more natural and practical than simply splitting at

median times, as was done in Section 2.3.1 and as is done generally for kd-trees.

An illustration of the tracklet-finding scheme (simplified to one spatial dimen-

sion) appears in Figure 2.7. For each transient, the kd-tree is used to rapidly find all

other transients within its surrounding double-cone. Then, for every candidate past-

plus-future pair of points, the two components of velocity and the distance residual

of the middle transient from the candidate pair’s predicted location (at the middle

transient’s epoch) are computed. Candidate past-plus-future pairs are then automat-

ically discarded on the basis of the middle transient’s distance residual with respect to

them. To accommodate a limited amount of constant curvature, we use an adaptive

criterion that is least stringent when the middle transient lies exactly at the midpoint

between the past and future points, and becomes linearly more stringent as the mid-

dle transient nears one endpoint (approaching zero-tolerance at an endpoint). For

candidate pairs spanning a single night or less, the maximum allowed middle-point

residual is 1′′, while multi-night candidate pairs are allowed up to a 10′′ offset at the

midpoint.

All remaining candidate past-plus-future pairs are then binned in two dimensions

based on their two velocity components (R.A. and Dec. rates). Since the maximum al-

lowed speed is 1 arcsec/minute, bins of 0.05 arcsec/minute between ±1 arcsec/minute

are used. If any single bin contains more candidate pairs than any other bin, all tran-

sients in all pairs in that bin, plus the middle transient, are automatically assigned

a unique tracklet label. If more than one bin has the maximal number of pairs, the

pair with the smallest midpoint residual is used. If any of these transients already

has a tracklet label, all the others are instead assigned that existing label.
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Figure 2.7: Schematic of our tracklet-finding algorithm, with only one spatial dimen-
sion (rather than the actual two) for clarity. Given all transients (gray dots), a kd-tree
search rapidly finds those that are nearby in spacetime (within the blue dashed box,
of 48-hour full-width) to the central, target transient (green dot). Minimal- and
maximal-velocity bounds then define a subset of these (all dots lying in the gray
shaded regions, in this case four). All possible past + future pairs are considered (in
this case, four possible pairs). Pairs whose predicted midpoint position is sufficiently
far from the target transient are immediately rejected (red dashed lines). Pairs with a
sufficiently small residual (green dashed lines) then are binned in velocity space, and
the velocity bin containing the most pairs is chosen. In this example, however, both
non-empty velocity bins have only one pair, in which case the pair with the smallest
midpoint residual is chosen.
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Following this stage in the new-object discovery process, all tracklets found are

screened rapidly by eye to eliminate false positives. The remaining tracklets are as-

signed a preliminary orbital solution using the orbit-fitting software Find Orb3 in

batch mode. All orbital solutions are then used to re-search the transient data set for

missed observations which could further refine the object’s orbit. Because linear posi-

tion extrapolation is replaced at this point by full orbital-solution-based ephemerides,

the merging of tracklets across gaps in time longer than 48 hours is attempted in this

last step.

2.4.3 Summary of objects discovered

We found 626 new objects which had a sufficient number of observations (at least

two per night on at least two nights) to merit submission to the Minor Planet Center

(MPC), whereupon they were assigned provisional designations. Four new comets

were among the objects found by this moving-object search: 2009 KF37, 2010 LN135,

2012 KA51, and C/2012 LP26 (see Table 2.4 in Section 2.6 for details). The first

is a Jupiter-family comet and the latter three are long-period comets. As of March

2013, the first three still bear provisional asteroidal designations assigned by the

MPC’s automated procedures; the fourth, C/2012 LP26 (Palomar), was given its

official cometary designation after follow-up observations were made in Februrary

2013 [Waszczak et al. (2013a)]. The cometary nature of these objects was initially

noted on the basis of their orbital elements; an independent confirmation on the basis

their measured extendedness appears in Section 2.6.

3The batch (non-interactive) Linux version of Find Orb tries combinations of the
Väisälä and Gauss orbit-determination methods on subsets of each tracklet in an attempt
to converge on an orbit solution with minimized errors. For more information, see
http://www.projectpluto.com/find orb.htm.
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Figure 2.8: Of 622 asteroids discovered in multi-night PTF data through July 2012,
the MPC has provided orbital solutions for 470 of these. Assuming typical albedos,
the smallest (H ∼ 19.5) objects correspond to ∼0.5-km diameters, while the H ∼ 13
Trojans correspond to ∼10-km diameters.

2.5 Extended-object analysis: Approach

2.5.1 Definition of the extendedness parameter µ

To quantify the extendedness of a given small-body observation, we use the ratio of the

object’s total flux, within a flexible elliptical aperture (Kron 1980), to its maximum

surface flux (i.e., the flux of the brightest pixel). Specifically, in terms of SExtractor

output quantities, for each detection we define the quantity µ as MU MAX − MAG AUTO

minus the median value of MU MAX − MAG AUTO for bright unsaturated stars on the

image (note that the ratio of fluxes is equivalently the difference in magnitudes).

Unlike full-width at half maximum (FWHM), which is based on a one-dimensional

symmetric (e.g., Gaussian) PSF model, µ is versatile as a metric in that it does not

involve any assumption of symmetry (radial or otherwise). Note that in Section 2.2

we defined and excluded radiation hit candidates as those detections having µ < −1.

A negative µ means the object is more concentrated than bright stars on the image,

while a positive µ means it is more extended. The error in µ, denoted σµ, is obtained

by adding in quadrature the instrumental magnitude error MAGERR AUTO and the 16th-

to-84th percentile spread in MU MAX − MAG AUTO for the bright stars.
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2.5.2 Systematic (non-cometary) variation in µ

The µ of a given small-body detection varies systematically with several known quan-

tities, meaning that “extended” as defined by µ is not synonymous with “cometary”.

Firstly, we must consider the apparent magnitude, since detections near the sur-

vey’s limiting magnitude have a known bias [Ofek et al. (2012a)] in their instrumental

magnitude (MAG AUTO), which by definition affects the value of µ. [Ofek et al. (2012a)]

note that use of the aperture magnitude MAG APER rather than the adaptive Kron mag-

nitude MAG AUTO removes this bias, but unfortunately photometric zeropoints only

exist presently for the latter in the PTF photometric database.

Secondly, the object’s apparent motion on the sky during the 60-second exposure

time must be considered, as such motion causes streaking to occur, which alters the

flux distribution and hence also µ. It turns out that in > 99% of all observations in

our sample (mostly main-belt objects), the on-sky motion is smaller than 1′′/minute.

Given PTF’s 1′′/pixel resolution, one might expect that the vast majority of objects

are not drastically affected by streaking. Nevertheless, µ varies systematically with

motion, as it does for apparent magnitude (see Section 2.5.4).

Thirdly, the photometric quality of an observation’s host image, i.e., the seeing

(median FWHM) and sky brightness, must be taken into account, since the median

and spread of MU MAX − MAG AUTO for bright stars on the image, and hence also µ,

are influenced by such conditions.

A final measurable property affecting µ is the distance between the object’s flux

barycenter and the center of its brightest pixel. In terms of SExtractor quantities,

this is computed as ((XPEAK IMAGE − X IMAGE)2 + (YPEAK IMAGE − Y IMAGE)2)1/2.

In particular, if the barycenter lies near to the pixel edge (∼0.5′′ from the pixel center),

the majority of the flux will be nearly equally shared between two adjacent pixels. If

it is near the pixel corner (∼0.7′′ from the center), the flux will be distributed into

four pixels (assuming a reasonably symmetric PSF and non-Poisson-noise-dominated

signal). An object’s position relative to the pixel grid is random, but the resulting

spread in barycenter position does cause systematic variation in µ.
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We can reasonably assume that some of these variations may be correlated.

[Jedicke et al. (2002)] discusses systematic observable correlations of this kind, in the

separate problem of debiasing sky-survey small-body data sets. Jedicke et al. also

introduces a general formalism for representing survey detection systematics, which

we now adapt in part to the specific problem of using µ to identify cometary activity.

2.5.3 Formalism for interpreting µ

Let the state vector ~x contain all orbital (e.g., semi-major axis, eccentricity) and

physical (e.g., diameter, albedo) information about an asteroid. Given this ~x there

exists a vector of observed quantities ~o = ~o(~x). Most of these observed quantities

are a function of the large number of parameters defining the sky-survey (point-

ings, exposure time, optics, observatory site, data reduction, etc.). Included in ~o

are the apparent magnitudes, on-sky motion, host-image seeing and sky brightness,

barycenter-to-max-pixel distance, and also counts of how many total detections and

how many unique nights the object is observed. In the above paragraphs we argued

qualitatively that µ = µ(~o).

Now suppose that ~x → ~x + δ~x, where addition of the perturbing vector δ~x is

equivalent to the asteroid exhibiting a cometary feature. For instance, δ~x could

contain information on a mass-loss rate or the physical (3-dimensional) scale of a

coma or tail. The resulting change in the observables is

~o→ ~o+ δ~o where δ~o =
d~o

d~x
· δ~x (2.1)

The observation-perturbing vector δ~o could contribute to increased apparent mag-

nitudes while leaving other observables such as sky position and apparent motion

unchanged. To “model” the effect of cometary activity δ~x on the observables, e.g., as

in [Sonnett et al. (2011)], is equivalent to finding (or inverting) the Jacobian d~o/d~x,

though this is unnecessary for the present analysis. The resulting change in the scalar

quantity µ is
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µ→ µ+ δµ where δµ = ∇µ · δ~o (2.2)

Now suppose that some component of δ~o is (linearly) independent of ~o, i.e., there

exists some unit vector ı̂ such that ı̂ · δ~o = δoi > 0 while ı̂ · ~o = 0. Another way

of stating this is that there exists some observable oi (the ith component of ~o), the

value of which unambiguously discriminates whether the object is cometary or inert.

An example would be the object’s angular size on the sky. This need not be a

known quantity; e.g., in the case of angular size one would need to employ careful

PSF deconvolution to accurately measure it. The details of oi do not matter, more

important is its ability to affect µ, as described below.

Given the existence of this discriminating observable oi, we can write

δµ = ∇µ · δ~o = δµsys +
δµ

δoi
δoi (2.3)

where the first term on the right side, δµsys , represents systematic change in µ

due to variation in known observables such as apparent magnitude and motion, and

the second term represents a uniquely cometary contribution to µ. We assume that

δµ/δoi 6= 0 in order for this reasoning to apply.

From our large sample of small-body observations, we are able to compare two

objects, ~o and ~o ′, that have the same apparent magnitude, motion, seeing, etc. The

computed δµ = µ(~o)− µ(~o ′) in such a case must have δµsys = 0, meaning a result of

δµ 6= 0 would imply one of the objects is cometary. We can then use prior knowledge,

e.g., that ~o is an inert object, to conclude ~o ′ is a cometary observation.

2.5.4 A model-µ to describe inert objects

We build upon this formalism by employing prior knowledge of the apparent scarcity

of main-belt comets. That is, we hypothesize that the vast majority of known objects

in our sample are in fact inert, or mapped to an equivalently inert set of observations

~o when subjected to the survey mapping ~x → ~o(~x). This allows us to construct a
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Figure 2.9: Distribution of PTF asteroid observations in the five parameters com-
prising the observable vector ~o. Bottom row: Model-µ values (µj-values) plotted as a
function of each parameter, while holding all other parameters constant; black bars
show the error σµ,j. The red circled point is the value at which the parameter is
evaluated in the other plots. These plots only show a small slice of the much larger
(and impossible to visualize) five-dimensional gridded function µj.

gridded model of µ for inert objects, denoted µj.

We first bin the data in a five-dimensional ~o-space and then compute the error-

weighted mean of µ in each bin. The jth bin in this ~o-space is defined as the five-

dimensional box having corners ~oj and ~oj + ∆~o. The model value µj in this jth bin is

found by summing over all observations in that bin:

µj = σ2
µ,j

∑
~o∈[~oj ,~oj+∆~o]

µ(~o)

σµ(~o)2
(2.4)

where the scatter (variance) in the jth bin is

σ2
µ,j =

 ∑
~o∈[~oj ,~oj+∆~o]

1

σµ(~o)2

−1

(2.5)

and the individual observation errors σµ are computed as described in Section 2.5.1.

We exclude known comets from all bin computations, even though their effect on

the mean would likely be negligible given their small population relative to that of

asteroids.
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The histograms in Figure 2.9 show the range of values for the five components

of ~o, each of which is sampled in 10 bins. The five-dimensional ~o-space considered

thus has 105 bins. However, given the centrally-concentrated distributions of each

observable, only a fraction (∼40%) of these bins actually contain data points. Some

bins (∼9%) only include a single data point; these data cannot be corrected using

this µj model, but their content represent < 1% of the data. Lastly, ∼7% of the data

lie outside one or more of these observable ranges, and hence also cannot be tested

using the model. Most of these excluded data are either low quality (seeing > 4′′) or

bright objects (> 16.5 mag). Of the 175 previously known comets (see Section 2.3)

plus 4 new (see Section 2.4) comets we found in PTF, 115 of these (64%, mostly the

dimmer ones) lie in these observable ranges and hence can be tested with the model.

2.5.5 Defining a visually-screenable sample

For each of the ∼2 million small-body observations in our data set, we use the inert

model µj to define the corrected extendedness as a “µ-excess”:

δµ = µ− µj (2.6)

and an uncertainty:

σ =
√
σ2
µ + σ2

µ,j (2.7)

For each of the ∼220,000 unique objects in our data set, we sum over all observations

of that object to define

δµ = 〈δµ〉2
∑
object’s
observ-
ations

δµ

σ2
(2.8)
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〈δµ〉 =

( ∑
object’s
observ-
ations

1

σ2

)−1/2

(2.9)

These two quantities, δµ and 〈δµ〉, are useful for screening for objects which appear

cometary in most observations. If an object is observed frequently while inactive but

sparsely while active, δµ and 〈δµ〉 are less useful. As noted in Section 2.3.3, high

cadence data are uncommon in our sample, alleviating this problem (see also Figure

2.15 in Section 2.7 for commentary on orbital coverage).

To select the sample to be screened by eye for cometary activity, we use the

quantity δµ − 〈δµ〉. In the case of normally-distributed data, the probability that

this quantity is positive is 1 − erf(1) ≈ 0.16. As shown in Figure 2.10, the fraction

of objects with δµ − 〈δµ〉 > 0 is actually 0.007 (1,577 objects), much smaller than

the Gaussian-predicted 0.16. This likely results from overestimated (i.e., larger-than-

Gaussian) 〈δµ〉 values caused by outliers in the data. However, of the 115 testable

comets in our data (111 known plus 4 new—see Table 2.5 for further explanation),

76 of these (66%) have δµ−〈δµ〉 > 0. That is, a randomly chosen known comet from

our sample is ∼100 times more likely to have δµ− 〈δµ〉 > 0 than a randomly chosen

asteroid from our sample, suggesting the criterion δµ−〈δµ〉 > 0 is a robust indicator

of cometary activity.

The fact that only 66% of the 115 comets in our testable sample satisfy δµ −

〈δµ〉 > 0 means that, if one assumes main-belt comets share the same extendedness

distribution as all comets, then our detection method is only 66% efficient. Sufficiently

weak and or unresolved (very distant) activity inevitably causes the lower and negative

values of δµ− 〈δµ〉.

Given the specific goal to detect main-belt objects that are at least as active

as the known candidate MBCs, we consider the value of δµ − 〈δµ〉 for the known

candidate MBCs in our sample. P/2010 R2 (La Sagra) has δµ− 〈δµ〉 = 0.474 (from

34 observations made on 21 nights). P/2006 VW139 has δµ − 〈δµ〉 = 0.231 (from 5

observations made on 3 nights). Hence, the δµ − 〈δµ〉 > 0 criterion is more than
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Figure 2.10: For inclusion in the screening sample, an object’s mean extendedness
value, δµ, must exceed zero by more than one-sigma, 〈δµ〉, which in this histogram
is true for all objects to the right of zero. The 111 known (and testable) comets plus
the 4 new comets (see Section 2.4.3) are plotted in red; 76 out of these 115 fall to the
right of zero, meaning our method is 76/115 = 66% efficient at detecting the known
plus new comets comprising our sample. Both of the MBCs in our sample fall to
the right of zero, implying that we are 100% efficient at detecting objects at least as
extended as these known MBCs.

sufficient (formally, 100% efficient) for detecting extendedness at the level of these

known, kilometer-scale candidate MBCs. Note however that we do not claim 100%

detection efficiency with respect to objects of similar magnitude as these candidate

MBCs; see Figure 2.11 for a consideration of efficiency as a function of apparent

magnitude.

2.6 Extended-object analysis: Results

A total of 1,949 observations (those having δµ − σ > 0) of 1,577 known and newly

discovered objects satisfying δµ− 〈δµ〉 > 0 were inspected visually to identify either

contamination from image artifacts or true cometary features. For each detection

this involved viewing a 2′ × 2′ cutout of the image, with contrast stretched from

−0.5σ to +7σ relative to the median pixel value (where σ =
√

median). This image

was also flashed with the best available image of the same field taken on a different

night (“best” meaning dimmest limiting magnitude), to allow for rapid contaminant
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identification.

With the exception of two objects (described below), virtually all of these obser-

vations were clearly contaminated by either a faint or extended nearby background

source, CCD artifacts or optical artifacts (including ghosts and smearing effects). In

principle these observations should have been removed from the list of transients by

the filtering process described in Section 2.2.2, however some residual contamination

was inevitable.

The screening process did however reveal cometary activity on two non-main-

belt objects previously labeled as asteroids: 2010 KG43 and 2011 CR42, which had

δµ − 〈δµ〉 values of 0.2 and 1.1, respectively (Figure 2.12). Note that taking these

two objects into account improves our efficiency slightly to (76 + 2)/(115 + 2) = 67%.

In addition to the two known candidate MBCs (Figure 2.13)—which were among

the 76 comets already noted to have passed the screening procedure—this process also

confirmed the extendedness of three of the four comets discovered in PTF as moving-

objects (2009 KF37, 2010 LN135, and 2012 KA51) as described in Section 2.4. These

comets had δµ− 〈δµ〉 values of 0.33, 0.29, and 0.58, respectively. The procedure did

not identify the fourth new comet discovery, C/2012 LP26 (Palomar), as an extended

object, suggesting that it was unresolved.

2.6.1 A new quasi-Hilda comet: 2011 CR42

The object 2011 CR42, discovered on 2011-Feb-10 by the Catalina sky-survey

[Drake et al. (2009)], has an uncommon orbit (a = 3.51 AU, e = 0.28 and i = 8.46◦).

Six PTF g′-band observations made between 2011-Mar-05 and Mar-06

[Waszczak et al. (2011)] all show a coma-like appearance but no tail. The object was

2.92 AU from the Sun and approaching perihelion (q = 2.53 AU on 2011-Nov-29).

Based on its orbit and using IAU phase-function parameters [Bowell et al. (1989)]

H = 13.0 and G = 0.15, 2011 CR42 should have been easily observed at heliocentric

distances 3.8 AU and 3.1 AU in 2010-Feb and 2010-Dec PTF data, with predicted

magnitudes of 19.2 and 18.8 mag, respectively. Upon inspection of these earlier im-
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Figure 2.11: Like Figure 2.10, but now with each object’s median apparent mag-
nitude plotted as well. All small bodies in the sample are represented in the 2D
histogram (normalized with respect to each magnitude bin), while the known comets
are overplotted as red-white circles, the two MBCs as blue squares. Again, about
two-thirds (66%) of the comets lie above zero. This plot suggests that the complete-
ness is expressible as a function of apparent magnitude. That is, C > 66% for bright
comets and C < 66% for dim comets (approaching zero for > 21 mag), while on
average C = 66%. The exact magnitude dependence is sensitive to bin size and is
not explored quantitatively here.
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ages, no object was found within 200′′ of the predicted position. Its absence in these

images further suggests cometary activity.

Like the MBCs and unlike most Jupiter-family comets, 2011 CR42’s Tisserand

parameter [Murray and Dermott (1999)] with respect to Jupiter (TJup = 3.042) is

greater than 3. While the criterion TJup > 3 is often used to discriminate MBCs

from other comets, we note that MBCs more precisely have TJup > 3.1. About

half of the ∼20 quasi-Hilda comets (QHCs, [Toth (2006)] and refs. therein) have

3 < TJup < 3.1, as does 2011 CR42. Three-body (Sun + Jupiter) interactions tend

to keep TJup approximately constant (this is akin to energy conservation). Such

interactions nonetheless can chaotically evolve the orbits of QHCs. Their orbits may

settle in the stable 3:2 mean-motion (Hilda) resonance with Jupiter at 4 AU, wander

to a high-eccentricity Encke-type orbit, or scatter out to (or in from) the outer Solar

System. Main-belt orbits, however, are inaccessible to these comets under these TJup-

conserving three-body interactions.

To verify this behavior, we used the hybrid symplectic integrator MERCURY

[Chambers (1999)] to evolve 2011 CR42’s orbit forward and backward in time to an

extent of 104 years. For initial conditions we tested all combinations of 2011 CR42’s

known orbital elements plus or minus the reported error in each (a total of 36 = 729

runs in each direction of time). We did not include non-gravitational (cometary)

forces in these integrations, as it was assumed that this object’s relatively large peri-

helion distance would render these forces negligible. In ∼25% of the runs, the object

scattered out to (or in from) the outer solar System in less than the 104 year duration

of the run. In the remainder of the runs, its orbit tended to osculate about the stable

3:2 mean motion Jupiter resonance at 4 AU. These results strongly suggest that 2011

CR42 is associated with the Hilda family of objects belonging to this resonance, and

thus likely is a quasi-Hilda comet.
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Figure 2.12: Known asteroidally-designated objects whose cometary activity was dis-
covered in PTF in the course of this work. Each image is 2′ × 2′ (pixel scale 1.01′′).
Left: 2011 CR42 in g′-band on 2011-03-06. No tail is discernible, but the object’s
FWHM is twice that of nearby stars. Right: 2010 KG43 in R-band on 2010-09-08. A
∼1′-long tail is discernible extending toward the lower left corner of the image.

Figure 2.13: Known candidate main-belt comets in PTF. Each image is 2′× 2′ (pixel
scale 1.01′′). Left: P/2010 R2 (La Sagra) in R-band (R ∼ 18.5 mag) on 2010-08-19,
with its tail extending towards the top left. Right: P/2006 VW139 in g′-band (g′ ∼ 20
mag) on 2011-12-21, with its two oppositely oriented tails barely discernible by eye.

Table 2.5: Summary of the PTF comet sample. JF = Jupiter-family; LP = long-
period; MB = main-belt. “Observed” means found by the search algorithms of Sec-
tions 3 or 4; “model-µ tested” means it lies in the observable ranges shown in Figure
2.9 (e.g., excludes bright comets), and δµ−〈δµ〉 > 0 means positively detected as ex-
tended. Objects 2010 KG43 and 2011 CR42 are counted in all rows as PTF-discovered
JFCs, even though they were not included in the 76/115 = 66% efficiency calculation
of Section 2.5.5 (since they were not discovered until Section 2.6).

previously known PTF discovered

JF LP MB JF LP MB total

observed 108 65 2 3 3 0 181
model-µ tested 71 38 2 3 3 0 117
δµ− 〈δµ〉 > 0 44 27 2 3 2 0 78
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2.7 Statistical interpretation

2.7.1 Bayesian formalism

Following the approach of [Sonnett et al. (2011)] and borrowing some of their nota-

tion, we apply a Bayesian formalism to our survey results to estimate an upper limit

for the fraction f of objects (having D > 1 km) which are active MBCs at the time

of observation. The prior probability distribution on f is chosen to be a log-constant

function:

P (f) = − 1

f logfmin

for fmin < f < 1 (2.10)

This prior is justified since we know f is “small”, but not to order-of-magnitude

precision. The minimum value fmin > 0 is allowed to be arbitrarily small, since the

integral of P (f) is always unity:

∫ 1

fmin

P (f) df = 1 (2.11)

Let N be the number of objects in a given sample, n the number of active MBCs

positively detected in that sample, and C the completeness or efficiency of our MBC-

detection scheme. In Section 2.5.5 we discussed how C = 0.66 if defining completeness

with respect to the extendedness distribution of the 115 known comets on which we

tested our detection method. Relative to objects at least as extended as the two

known candidate MBCs we tested, however, we can take C = 1 (100% efficiency),

since both of the MBCs observed were robustly flagged by our screening process.

The likelihood probability distribution function for a general sample S is formally

a binomial distribution, but because the samples we will be considering are very large

(N � 1), the likelihood function is well-approximated as a Poisson distribution:

P (S|f) =
N !

n!(N − n)!
(Cf)n(1− Cf)N−n

≈ (NCf)n

n!
exp(−NCf)

(2.12)
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Bayes’ Theorem then gives the formula for the posterior probability distribution on

f given our results:

P (f |S) =
P (S|f)P (f)∫ 1

fmin
P (S|f)P (f) df

∝ fn−1 exp(−NCf) (2.13)

The constant of proportionality (not shown) involves incomplete gamma functions4,

and is well-defined and finite (including in the limit fmin → 0).

Finally, we can compute the 95% confidence upper limit f95 by solving the implicit

equation

∫ f95

0

P (f |S) df = 0.95 (2.14)

2.7.2 Active MBCs in the entire main-belt

We first take the sample S to be representative of all main-belt asteroids, which in

our survey amounted to N = 2.2 × 105 observed objects and n = 2 detected MBCs.

Equation (2.14) yields 95% confidence upper limits for f of 33×10−6 and 22×10−6, for

efficiency values of C of 0.66 and 1.0, respectively. Figure 2.14 depicts the probability

distributions for each case.

We note that although these results are based on the positive detection of only

two candidate MBCs, the reader need not be skeptical on the basis of “small number

statistics”, since the Possionian posterior (Equation 2.13 and Figure 2.14) formally

accounts for “small number statistics” through its functional dependence on n. Even

if we had detected no MBCs at all—in which case n would be zero (as was the case in

[Sonnett et al. (2011)])—the posterior would still be well-defined; the 95%-confident

upper limit would naturally be larger to reflect the greater uncertainty.

Our discussion has so far only considered the fraction of active MBCs, rather than

4The incomplete gamma function is defined as

Γ(n,N) =

∫ ∞
N

tn−1 exp(−t) dt
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Figure 2.14: Probability distributions for estimating the fraction of main-belt comets,
based on the results of our sample screening. The C = 0.66 case reflects our efficiency
with respect to the extendedness distribution of all known comets, while the C = 1
case applies to extendedness levels at least as high as the two known candidate MBCs
in our sample. In this plot fmin was set to 4× 10−6, to facilitate visual comparison of
the normalized prior with the normalized posteriors.

their total number. This is because an estimate of the total underlying number of

main-belt objects (down to D ∼ 1 km) must first be quoted from a properly-debiased

survey. A widely-cited example is [Jedicke and Metcalfe (1998)], who applied a de-

biasing analysis to the Spacewatch survey and concluded that there are of order 106

main-belt asteroids (down to D ∼ 1 km)5. Since the MBC-fraction estimates in the

above paragraphs are conveniently given in units of per million main-belt asteroids,

we directly estimate the upper limit on the total number of active MBCs in the true

underlying D > 1 km population (again to 95% confidence) to be between 33 and 22,

depending on the efficiency factor C (0.66 or 1.0).

2.7.3 Active MBCs in the outer main-belt

Of the seven candidate MBCs listed in Table 2.1, all except 259P/Garradd have semi-

major axes between 3.0 AU and 3.3 AU, corresponding approximately to the 9:4 and

2:1 Jupiter resonances (Kirkwood gaps). This semi-major axis constraint is satisfied

by 123,366 (∼20%) of the known objects as of August 2012, of which 47,450 (38%)

5More recent survey results will eventually test/verify this result, e.g. the WISE sample has
already produced a raw size-frequency distribution [Masiero et al. (2011)], the debiased form of
which will be of great value.
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are included in the PTF sample.

Reapplying equations (10)–(14) except now using N = 47, 450 (while n = 2

remains unchanged), we find 95%-confidence upper limits of 160 and 110 active MBCs

per million outer main-belt asteroids with 3.0 < (a/AU) < 3.3 and D > 1 km, for

detection efficiencies of C = 0.66 and C = 1.0, respectively.

Although only ∼20% of the known main-belt asteroids lie in this orbital range,

the debiased semi-major axis distribution presented in [Jedicke and Metcalfe (1998)]

predicts that ∼30% of all main-belt objects (of D > 1 km) lie in this outer region.

The discrepancy is due to the fact that these objects are more difficult to detect,

since they are further away and tend to have lower albedos (this lower detection

efficiency is evident for instance in the WISE sample shown in Figure 2.3). Assuming

300,000 objects actually comprise this debiased outer main-belt region, the inferred

95% confidence upper limit on the total number of active MBCs existing in this region

is ∼50 (for C = 0.66) and ∼30 (for C = 1.0).

2.7.4 Active MBCs in the low-inclination outer main-belt

Four out of the seven candidate MBCs in Table 2.1 have orbital inclinations of i < 5◦.

Combined with the semi-major-axis constraint 3.0 < (a/AU) < 3.3, this associates

them with (or close to) the Themis asteroid family. There are 25,069 objects in the

small-body list we used which satisfy this combined constraint on a and i (∼4% of

the known main-belt), of which 8,451 (34%) are included in the PTF sample.

Again reapplying equations (10)–(14), we now use N = 8, 451 and n = 1, where

the new value for n reflects the fact that P/2006 VW139 satisfies this i-criterion while

P/2010 R2 (La Sagra) does not. We find 95%-confidence upper limits of 540 and

360 active MBCs per million low-inclination, outer main-belt asteroids, for detection

efficiencies of C = 0.66 and C = 1.0, respectively.

Once again, [Jedicke and Metcalfe (1998)] offer estimates of the debiased number

of objects in the underlying population of interest: for outer main-belt asteroids,

they found that ∼20% of the debiased objects had i < 5◦. Hence, assuming there are
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60,000 objects (of D > 1 km) in the actual low-i outer main-belt population satisfying

these a and i constraints, the resulting upper limit estimates for the total number of

active MBCs it contains is ∼30 (for C = 0.66) and ∼20 (for C = 1.0).

2.7.5 Active MBCs among low-i outer main-belt objects ob-

served near perihelion (−45◦ < ν < 45◦)

Of the 8,451 low-inclination outer main-belt objects observed by PTF (see Section

2.7.4), 5,202 were observed in the orbital quadrant centered on perihelion (in terms of

true orbital anomaly ν, this quadrant is −45◦ < ν < 45◦). We consider this constraint

given that all known candidate MBCs (Table 2.1) have shown activity near perihelion.

Now using N = 5, 202 and n = 1 (here again n = 1 represents P/2006 VW139), we find

95%-confidence upper limits of 880 and 570 active MBCs per million low-inclination,

outer main-belt asteroids observed by PTF near perihelion, for detection efficiencies

of C = 0.66 and C = 1.0, respectively.

We caution that, unlike the previous subsets (which were defined solely by orbital

elements), the population to which these statistics apply is less well-defined. In

particular, the bias for detection near perihelion (Figure 2.15), due in part to the

(r∆)−2 dependence in the reflected sunlight, is more pronounced for smaller, lower-

albedo, higher eccentricity objects. Hence, naively imposing a constraint on true

anomaly ν implictly introduces selection biases in D, pV and e. Moreover, these

implicit biases depend on the sensitivity of the PTF survey in a more nuanced manner,

invalidating the simple D & 1-km lower limit we have quoted generally in this chapter.

Nonetheless, these parameters (D and pV ) are important enough to merit individual

treatment, as detailed below.

2.7.6 Active MBCs in the sub-5 km diameter population

Yet another constraint that well-encompasses the known MBC candidates of Table

2.1 is a diameter D < 5 km (corresponding to approximately H > 15 mag for albedo

pV = 0.07). Applying this constraint decreases the number of PTF-sampled objects N
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by 28%, 45% and 41% for the entire main-belt, outer main-belt, and low-i outer main-

belt, respectively. These smaller sample sizes result in slightly higher 95%-confidence

upper limits for the fraction of active MBCs: 30–45, 180–280, and 610–920 per 106

objects having 5 > (D/km) > 1 in the entire main-belt, outer main-belt, and low-

i outer main-belt, respectively (the ranges corresponding to the two values of the

efficiency factor C).

[Jedicke and Metcalfe (1998)] found that the debiased differential number distri-

bution as a function of absolute magnitude H is ∼10αH , where α ≈ 0.35. The

resulting cumulative number distribution (i.e., the number of asteroids brighter than

absolute magnitude H) is ∼10αH/α ln(10). Using H = 17 in this expression gives the

predicted 106 asteroids having D > 1 km. The fraction of these objects in the range

15 < H < 17 is therefore 1 − 10α(15−17) ≈ 80%. Scaling the debiased populations

discussed above by this factor and using the new limits from the preceding paragraph

gives new upper limits on the total number of active MBCs existing in the three

regions: ∼24–36, ∼40–70, and ∼30–45 in the entire main-belt, outer main-belt, and

low-i outer main-belt, respectively.

2.7.7 Active MBCs among low-albedo (WISE-sampled) ob-

jects

[Bauer et al. (2012)] analyzed WISE observations of five of the active-main-belt ob-

jects listed in Table 2.1. By fitting thermal models to the observations, they found

that all of these objects had visible albedos of pV < 0.1. As shown in Figure 2.3 and

described in Section 2.3.4, about half of the asteroids which were observed by WISE

also appear in the PTF sample; in particular there were N = 32, 452 low-albedo

(pV < 0.1) objects observed by both surveys. Included in the [Bauer et al. (2012)]

sample was PTF-observed candidate MBC P/2010 R2 (La Sagra), whose fitted albedo

of pV = 0.01 ± 0.01 implies we can take n = 1 (one positive active MBC-detection)

in the low-albedo WISE/PTF sample.

Following the 95% confidence upper limit computation method of the previous
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sections, we derive upper limits of 90–140 active MBCs per 106 low-albedo (pV < 0.1)

asteroids. As mentioned earlier, the full-debiasing of the WISE albedo distribution

[Masiero et al. (2011)] will eventually allow us to convert this upper limit on the

fraction of active MBCs among low-albedo asteroids into an upper limit on their

total number, just as [Jedicke and Metcalfe (1998)] has allowed us to do for orbital

and size distributions.

2.7.8 Active MBCs among C-type (SDSS-sampled) objects

The MBC candidate P/2006 VW139 was observed serendipitously by SDSS on two

nights in September 2000. While one of the nights was not photometric in g-band,

the other night provided reliable g, r, i multi-color data on this object, yielding a

principal component color a∗ = −0.14 ± 0.05. Because it has a∗ < 0, this suggests

P/2006 VW139 is a carbonaceous (C-type) object6.

Figure 2.3 depicts the overlap of the SDSS-observed sample with PTF, which

includes N = 24, 631 C-type (a∗ < 0) objects. Taking n = 1, we derive 95% confident

upper-limits of 120–190 active MBCs per 106 C-type asteroids (where again the range

corresponds to C = 0.66–1.0).

2.8 Conclusion

2.8.1 Summary

Using original kd-tree-based software and stringent quality filters, we have harvested

observations of ∼40% (∼220,000) of the known solar system small bodies and 626

new objects (622 asteroids and 4 comets) from the first 41 months of PTF survey

data (March 2009 through July 2012). This sample is untargeted with respect to

the orbital elements of known small bodies (but not necessarily the true underlying

population), down to ∼1-km diameter-sized objects. Most (∼90%) of the objects are

6This taxonomic classification for P/2006 VW139 has been confirmed spectroscopically by
[Hsieh et al. (2012b)] and [Licandro et al. (2013)].
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Figure 2.15: Summary of true-anomaly and heliocentric distance coverage of known
small bodies in PTF (see Figure 2.3 for other orbital statistics of this sample), from
March 2009 through July 2012. Most (∼90%) of objects have only been sampled
in at most two 30◦-wide true anomaly bins, i.e., less than 1/6 of the orbit. In the
left histogram objects are only counted once, but in the rose diagram (middle), each
object is counted once for each bin it in which it is sampled (hence the fraction values
reported for all twelve bins sum to more than 100%). Although all objects spend more
time around aphelion, most only fall above the survey detection limit near perihelion,
hence there is a slightly larger fraction of objects observed near perihelion.

observed on less than ∼10 distinct nights, and ∼90% are observed over less than 1/6

of their orbit, allowing us to characterize this sample predominantly as a “snapshot”

of objects in select regions of their orbits.

We have introduced a metric for quantifying the extendedness of a small-body

in an image, and have corrected this metric, on a per-observation basis, for system-

atic variation due to observables such as apparent magnitude, on-sky motion and

pixel-grid alignment. In this metric, an extendedness of zero describes stellar-like

(asteroidal) objects, whereas a positive value indicates potentially cometary extend-

edness.

We defined a sample for visual screening consisting of all objects whose mean

extendedness value is greater than zero by at least one-sigma. This screening sample

consisted of ∼1,500 unique objects, 76 (out of 115) comets, and two known candidate

active MBCs, P/2010 R2 (La Sagra) and P/2006 VW139, which upon inspection

appear active and visibly extended in the images. Of the ∼1,500 objects screened,

we found evidence for activity on two known (non-main-belt) asteroidally-designated

objects, 2010 KG43 and 2011 CR42, and confirmed activity on the three out of the
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four (non-main-belt) comets that our moving-object algorithm discovered.

Given these results, using a log-constant prior we infer with 95% confidence an

upper limit of < 33 active MBCs per 106 main-belt asteroids for a C = 0.66 detection

efficiency with respect to the extendedness distribution of known comets, and < 22

active MBCs per 106 main-belt asteroids for a 100% efficiency with respect to objects

at least as extended as the known candidate active MBCs in our sample.

2.8.2 Comparison to previous work

Our inferred 95% confidence upper limit of at most ∼30 active MBCs per 106 main-

belt asteroids of D > 1 km is comparable but slightly lower than that of

[Gilbert and Wiegert (2010)], who estimated 40 ± 18 active MBCs per 106 main-

belt asteroids, also for D > 1 km, from visual inspection of a similarly untargeted

sample of ∼25,000 objects from the Canada-France-Hawaii Telescope Legacy Survey

([Gilbert and Wiegert (2010)]). That result was based on the detection of a single

unknown comet in their sample, which was never actually confirmed to be a main-

belt object due to lack of follow-up observations. Even before taking into account our

order-of-magnitude larger sample size, we note that, in contrast to their results, our

limits are based on positive MBC detections and use detection efficiencies estimated

from observations of ∼100 known comets.

The result of [Sonnett et al. (2011)] was a much larger upper limit of ∼3,000

MBCs per 106 main-belt asteroids (to 90% confidence), albeit applicable to the smaller

limiting diameter of ∼0.5 km. Their smaller sample size of 924 objects is certainly the

cause for their much larger uncertainty. While their detection methods were proven

robust with respect to known candidate MBCs, we note that their sample included

no unambiguously cometary objects. Hence, it is difficult to compare our result to

theirs, but the possibility of a steeply increasing number distribution for MBCs below

the ∼1-km level is not ruled out. Indeed, two known candidate MBCs, 238P/Read

and 259P/Garradd, have measured sub-kilometer diameters ([Hsieh et al. (2009b)];

[MacLennan and Hsieh (2012)]).
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2.8.3 Future work: Photometric (absolute magnitude) vari-

ation as a function of orbital anomaly

As suggested by this article’s title, extended-object analysis is only the first kind of

cometary-detection method to which we intend on subjecting the PTF small-body

data set. We hope future works will analyze the time- (and mean-anomaly-) vary-

ing absolute magnitude of small bodies over orbital-period baselines, which could

potentially reveal even unresolved cometary activity.

Preliminary analysis of PTF photometry of main-belt comet P/2010 R2 (La

Sagra), which include pre-discovery observations, shows a time-resolved ∼1.5-mag

increase in absolute magnitude and a corresponding factor ∼5 increase in the dust-to-

nucleus cross-section ratio, Ad/AN . These results suggest PTF is capable of detecting

intrinsic disk-integrated flux variation at the level of known candidate MBCs. Up-

coming analyses of other known comets in our sample should confirm this robustness.

As shown in Figure 2.15, the orbital-coverage of PTF-observed known objects is

far from complete. The orbital period of main-belt objects varies from about three

to six years; a desirable prerequisite to orbital variation analysis is a comparable

survey duration (especially to alleviate the bias against longer-period outer main-belt

objects). The use of only two visible-band filters7 gives PTF an advantage over other

ongoing surveys8, since conversion between wavelength bands introduces uncertainty

when object colors are unknown. Thus, multi-filter data makes absolute magnitude

comparison between epochs (already complicated by uncertainties in spin amplitudes

and phase functions) even more difficult. Finally, a photometric variation analysis

would benefit from the inclusion of null-detections, which are not currently a product

of our kd-tree harvesting method, but should be implementable with a reasonable

amount of modification.

7In fact mostly just one: 87% of the ∼2 million small-body observations in this work are in
Mould-R-band, 13% in g′-band.

8To illustrate this point by comparison, of the ∼3 million small-body observations reported to
the Minor Planet Center by Pan-STARRS 1 (PS1) as of mid-2012, ∼40% are w-band (a wide-band
filter covering most of the visible), while g-, r- and i-bands each represent ∼20% of the PS1 data.
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Chapter 3

Small Near-Earth Asteroids

3.1 Introduction

A near-Earth asteroid (NEA) is by definition any asteroid with perihelion q < 1.3 AU

and aphelion Q > 0.983 AU. From the largest NEA (of diameter D ≈ 30 km) down

to D ≈ 0.5 km in size—for which the known population is largely complete—the cu-

mulative size-frequency distribution (Figure 3.1) goes roughly as N(D) ∝ D−2, where

N(0.5 km) ≈ 104. Harris ([Harris (2008)], [Harris (2013)]) presents these statistics,

and describes how the original ‘Spaceguard’ goal to catalog 90% of all D > 1 km

NEAs was achieved by the mid-2000s, while the current goal is to find 90% of all

D > 140 m NEAs by 2020.

The incrementally-decreasing target size in the NEA census has been mostly mo-

tivated by risk mitigation. Over the quarter-century that began with our realization

of an asteroid’s role in the dinosaurs’ extinction (e.g., [Alvarez et al. (1980)]) through

to our fulfillment of the 1-km Spaceguard goal, the estimated risk of an individual’s

death from asteroid impact—initially believed comparable to that of a commercial

airplane accident—dropped by an order of magnitude. Surveying to the currently-

recommended D > 140 m can decrease this risk by yet another order of magnitude

[Harris (2008)].

Hence, discovery of D < 100 m NEAs is likely irrelevant to any further reduction in

the risk to human lives. However, the size-frequency distribution informing these esti-

mates is uncertain across orders of magnitude in impactor size, and constrained on the



52

small end (D . 10 m) by infrasound detections of bolide fluxes ([Silber et al. (2009)]).

Events like the Tunguska and Chelyabinsk airbursts [Brown et al. (2013)], which did

not result in deaths but caused environmental or municipal damage, suggest impacts

from 10–100 m objects qualify as ‘natural disasters’ that merit advance warning, and

possibly prevention via space-based manipulation of hazardous NEAs.

Besides impact mitigation (e.g., [Ahrens and Harris (1992)]; [Lu and Love (2005)]),

other space-based activities benefiting from small NEA discoveries include in-situ

compositional studies [Mueller et al. (2011)] and resource utilization [Elvis (2014)].

NEAs have also been declared a major component of NASA’s manned spaceflight

program [Obama (2010)]. NEA rendezvous feasibility depends critically on mis-

sion duration and fuel requirements, these in turn are functions of the NEA’s or-

bit and relative velocity (∆v) with respect to Earth ([Shoemaker & Helin (1978)];

[Elvis et al. (2011)]). Robotic missions may facilitate or complement the manned pro-

gram, e.g., via the proposed Asteroid Retrieval Mission (ARM; [Brophy et al. (2012)]),

though the selection criteria for ARM targets are highly-specific as well1. Natu-

ral temporary capture of meter-scale NEAs into Earth-centric orbits, if confirmed

via the discovery of ‘mini-moons’ ([Grav et al. (2012))]; [Bolin et al. (2014)]), would

present another appealing class of targets.

Cleary, discovery of 1–100 m sized NEAs is motivated by different (and more di-

verse) applications than those which have driven the census of larger NEAs. The

discovery method often likewise differs. Most large NEAs were found via the ‘track-

let’ method of linking several serendipitously-observed positions within a night or

across several nights. This is the basis of ‘MOPS’-like detection software (e.g.,

[Denneau et al. (2013)]), which in its present state is most efficient at detecting NEAs

moving slower than ∼5 deg/day [Jedicke et al. (2013)]. Below this rate, an NEA’s

individual detections are nearly point-like for typical survey exposure times (e.g., 30–

60s), and sufficiently localized on the sky given typical intra-night pointing cadences

(e.g., 15–45 minutes). Hazardous NEAs occupy a range of orbits with moderate

1Generally, a suitable ARM target has D ≈ 7 m, orbital semi-major axis 0.7 AU < a < 1.45
AU, eccentricity e < 0.2 and inclination i < 8◦, corresponding to a relative velocity ∆v . 6 km/s
[Jedicke et al. (2013)].
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eccentricities, and so spend most of their time far from the Earth and Sun, where

their sufficiently slow apparent motions allow them to be easily detected with this

technique.

In contrast, the method of streak detection enables discovery of much smaller and

closer (i.e., brighter and faster-moving) NEAs. Whereas slower-moving NEAs can

be mistaken for main-belt asteroids, streaked objects are nearly 100% certain to be

NEAs. Unlike the tracklet method, discovery via streak detection is possible on the

basis of a single exposure via recognition of the streak morphology, meaning repeat

visits to the same patch of sky are unnecessary and more area can be searched. Streak

detection extends the NEA-discovery lifetime of a survey telescope whose aperture

size renders it no longer competitive in the area of tracklet-based discovery. Lastly,

streaked NEAs are typically 2 to 3 magnitudes brighter than those found by the

tracklet method, making them far more convenient for non-sidereally-tracked follow-

up from dedicated (including amateur-class) facilities.

Survey-scale application of the streak-detection method for NEA discovery was

pioneered by [Helin and Shoemaker (1979)] using photographic plates on the Palomar

18-inch Schmidt telescope in the 1970s. [Rabinowitz (1991)] was the first to apply this

method with CCD detectors in near real-time with the Spacewatch survey. Combining

Spacewatch’s streaked NEA detections (e.g., [Scotti et al. (1991)]) with its tracklet-

detected NEAs [Jedicke (1995)] produced a debiased NEA number-size distribution

[Rabinowitz et al. (2000)] spanning four orders of magnitude in size (10 km > D >

1 m).

Figure 3.2 breaks down the number of streaked NEA discoveries as a function of

time and survey, from 1991 through 2014-Oct. Here ‘streaked’ is taken to mean any

detection wherein the length of the imaged streak is greater than 10 seeing widths.

The counts in Figure 3.2 were compiled by first retrieving all NEA discovery obser-

vations from the Minor Planet Center (MPC) database and then using JPL’s HORI-

ZONS service [Giorgini et al. (1996)] to compute the on-sky motion at the discov-

ery epoch. These rates were then converted into streak lengths in units of seeing

widths, where the continental surveys all have assumed seeing 2′′ and Pan-STARRS
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Figure 3.1: Cumulative NEA population distribution models compared to discovered
objects. Plot adapted from a figure in [Ruprecht et al. (2014)].
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2010 UC72009 HK73 (277475) 2005 WK4 2013 SU24
V~18.5  length=32’’  FWHM=2.6’’V~17.5  length=24’’  FWHM=2.1‘’ V~14.3 length=34’’  FWHM=2.4’’ V~16.6  length=36’’  FWHM=5.0’’

Figure 3.3: Some known small NEAs serendipitously detected by PTF. These ob-
servations were retrieved solely by computing these known objects’ positions at the
epochs of archival PTF images and visually verifying the streak’s presence. All images
are 200′′ × 200′′ with linear contrast scaling from −0.5σ to 7σ.

has assumed 1′′ seeing. The assumed exposure times come mostly from a table in

[Larson (2007)], except for PTF and Pan-STARRS, which have assumed exposure

times of 60s and 45s, respectively.

Before 2005, Spacewatch was the only contributor of significantly streaked NEA

discoveries, and it is also the most prolific streaked-NEA discoverer overall. There are

two likely reasons for this: (1) Spacewatch’s relatively long 120s exposure time, and

(2) the active role of a human screener (‘observer’) during data collection, as docu-

mented by [Rabinowitz (1991)]. The Catalina sky-survey also has a dedicated human

operator to scan candidates and conduct same-night follow-up [Larson (2007)], which

explains its similarly consistent contribution of streaked discoveries. Some major NEA

surveys of the past two decades not contributing to the streaked discoveries in Figure

3.2 include LINEAR [Stokes et al. (2000)]—likely because of its short 8s exposures,

as well as NEAT [Pravdo et al. (1999)] and LONEOS [Stokes et al. (2002)]—which

to our knowledge lacked real-time human interaction with their respective data flows.

The years 2013 and 2014 marked a clear upturn in the discovery of streaked NEAs.

The purpose of this chapeter is to document a new streak-discovery pipeline which

has contributed in part to this increased discovery rate.
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3.2 Overview of the PTF survey

3.2.1 Technical and operational characteristics

The Palomar Transient Factory2 (PTF) is a synoptic survey designed primarily to

discover extragalactic transients ([Law et al. (2009)]; [Rau et al. (2009)]). The PTF

camera, mounted on Palomar Observatory’s 1.2-m Oschin Schmidt Telescope, uses 11

CCDs (each 2K × 4K) to image 7.3 deg2 of sky at a time (at 1.0′′/pixel resolution).

Most exposures (∼85%) use a Mould-R filter3 (hereafter “R”) with a 60-second in-

tegration time. Science operations began in March 2009, with a nominal 1- to 5-day

cadence for supernova discovery and typical twice-per-night imaging of fields. Median

seeing is 2′′ with a limiting magnitude R ≈ 20.5 (for 5σ point-source detections), while

dark conditions routinely yield R ≈ 21.0 [Law et al. (2010)]. About 15% of nights

(near full moon) are devoted to an Hα-band imaging survey of the full Northern Sky.

In January 2013 the PTF project formally entered a second phase called the

intermediate PTF (‘iPTF’; [Kulkarni (2013)]). For most of this chapter we simply use

‘PTF’ to mean the entire survey, from 2009 to the time of writing (late 2014), though

we note that PTF’s NEA-discovery capabilities were conceived, funded, developed and

commissioned entirely in this post-2012 ‘iPTF’ period. This is partly because iPTF

accommodates more varied ‘sub-surveys’ as opposed to a predominantly extragalactic

program, including variable star and solar system science.

As will be detailed later (e.g., Figure 3.15), typical PTF pointings tend to avoid

the ecliptic (and hence opposition) in accordance with its primarily non-solar system

science objectives. In recent summer seasons, PTF has also spent the majority of its

observing time imaging the dense galactic plane; many such galactic fields contain

very high source densities and were not capable of being processed with the streak

detection pipeline described below.

2http://ptf.caltech.edu
3The Mould-R filter is very similar to the SDSS-r filter; see [Ofek et al. (2012a)] for its trans-

mission curve.
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3.2.2 Previous solar system science with PTF

The present chapter discusses the first NEA-related (and first real-time) work with

PTF solar system data; previous PTF solar system work analyzed archival observa-

tions of main-belt asteroids. [Polishook et al. (2012)] and later [Chang et al. (2014a)]

used high-cadence data (which is uncommon in PTF) for ‘pilot studies’ of asteroid

rotation lightcurves spanning consecutive nights. [Waszczak et al. (2013b)] mined

PTF for all observations of known asteroids and then searched this data set for ac-

tivity characteristic of ‘main-belt comets’ [Hsieh and Jewitt (2006)]. We used this

database of known-object observations to extract detections of known streaking NEAs

in PTF (Section 3.2.4). [Waszczak et al. (2013b)] also developed an original MOPS-

like tracklet-finding routine which was later implemented in the real-time IPAC

pipeline discussed below, but is otherwise unrelated to the streak-detection pipeline.

3.2.3 Real-time data reduction at IPAC

Since the survey’s start, PTF has employed two separate data reduction pipelines

serving distinct purposes. A real-time image-subtraction pipeline hosted at the Na-

tional Energy Research Scientific Computing Center at Berkeley Lab (Nugent et al.

in prep.) forms the basis of the extragalactic transient discovery program. A sepa-

rate, archival-grade image-processing pipeline hosted at the Infrared Processing and

Analysis Center (IPAC) at Caltech [Laher et al. (2014)] runs during the day and per-

forms flat-fielding, bias-subtraction, source catalog generation, and astrometric and

absolute-photometric calibration.

In early 2013, a real-time version of the IPAC image-processing pipeline was put

into regular nightly operation. This initial version included daily automated batch

submission of main-belt (and slow-moving near-Earth) asteroid observations to the

MPC (both known objects and new discoveries). In addition to the above-mentioned

image reduction features detailed by [Laher et al. (2014)], the real-time processing

includes an original module for image subtraction [Masci (2013)], which uses a deep

co-add of ∼20 previous PTF images that reaches V ≈ 22 (i.e., a ‘reference’ or ‘tem-
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plate’ image). The reference image is convolved with the new image’s PSF kernel

prior to subtraction, as described by [Masci (2013)]. The creation of this real-time

IPAC pipeline precipitated the development of the streak-detection system discussed

in this chapter.

3.2.4 Detections of known streaking NEAs

Early in the development of our streak detection system, we sought to extract all ob-

servations of known fast-moving NEAs from existing PTF data. We used the table of

all predicted PTF sightings of all known asteroids compiled by [Waszczak et al. (2013b)],

updated to include data through early 2014.

There are a total 539 predicted sightings (of 158 unique objects) for which the pre-

dicted motion was faster than 10′′/minute and the predicted magnitude was brighter

than V = 20. For objects having predicted positional uncertainties greater than 10′′,

the images were visually inspected around the predicted location for the presence of a

streak. Because the V < 20 brightness criterion is based upon HORIZONS-predicted

magnitudes, which have a typical accuracy of ∼ 0.5 mag, in certain cases the actual

magnitude was almost certainly fainter than V = 20. These particular predicted

sightings (having good positional localization but are possibly too faint for detection)

are still included as long as the predicted (point-source) magnitude is brighter than

V = 20.

Figure 3.3 shows some examples of visually-confirmed PTF streak detections from

this set of predicted sightings. Qualitative variations in morphology due to a differ-

ences in magnitude, streak length and seeing are apparent.

As described below, these 539 serendipitous sightings constituted the initial test

bed for development of our streak detection algorithm. As of this writing (late 2014),

PTF has acquired ∼90 new additional detections include unconfirmed PTF discover-

ies, confirmed PTF discoveries, and PTF-observed discoveries from other surveys in

2014.
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Figure 3.4: Flowchart depicting the PTF streaking-NEA discovery pipeline.
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3.3 Streak-detection process

The principal steps of the streak-detection process are:

1. Image processing and subtraction of a reference image to produce a differenced

image

2. Detection of candidate streaks as regions of contiguous pixels on the differenced

image

3. Measurement of a set of morphological features describing each candidate streak

4. Filtering of likely non-real detections on the basis of their computed features

5. Human recognition of real streaks by reviewing images of the filtered candidates

The above five steps comprise the discovery phase and entail the creation of the

data products labeled (A) through (G) in Figure 3.4. Upon discovery of a real streak,

data products (H) through (J) are created as part of the follow-up phase, which we

discuss later (Section 3.4).

Initial image processing and reference-image subtraction (first of the above-enumerated

steps) are described by [Laher et al. (2014)] and [Masci (2013)], respectively. Step 2

involves identifying the pixels on the differenced-image belonging to candidate streaks.

Whereas pixel-level data for point-source transients (e.g., supernovae or slow-moving

asteroids) can be efficiently extracted with commonly used software such as Source Ex-

tractor [Bertin and Arnouts (1996)], streaked detections require a distinct approach

as their image footprints contain many more pixels, often with much lower signal to

noise per pixel. To meet this need we developed an original piece of software called

findStreaks.

3.3.1 Object detection with findStreaks

3.3.1.1 Algorithm

The findStreaks software is derived from code originally created for the IPAC pro-

cessing pipeline to identify and mask very long tracks in PTF exposures due to
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satellites and aircraft [Laher et al. (2014)]. findStreaks was developed in the C

programming language to maximize computing speed. The software first thresholds

the image pixels above a local background noise level, then groups contiguous pixels

into objects or ‘blobs’ (i.e., candidate streaks), and lastly computes morphological

features for each object.

The differenced-image’s local median background values are computed on a coarse

grid with 64-pixel grid spacings and 129-pixel windows, with bilinear interpolation

used to fill in the pixel values between the grid points. These median values are used

to threshold the positive difference image at 1σ above the local median. All below-

threshold pixels are discarded, and only above-threshold data are considered further

(e.g., Figure 3.4 item C). Image-edge pixels are ignored (to avoid artifacts along CCD

edges).

The findStreaks module arranges all contiguous blobs of pixels, each blob in

one or more segments of computer memory, where adjacent pixels in the cardinal

and diagonal positions are considered to be connected. For efficient memory manage-

ment, the module is configured to handle up to 1 million memory segments, and up to

1000 pixels per segment. The sky-background-subtracted blob flux and instrumental

magnitude are computed, along with their respective uncertainties. The median and

dispersion of the pixel-blob intensity data are computed and subsequent morphologi-

cal analysis is done only on pixels with intensities that are within ±3σ of the median,

where σ is given by half the difference between the 84th and 16th percentiles. A line

is fit to all pixel positions in each blob, and the slope and y-intercept are obtained,

as well as the linear correlation coefficient:

r =

∑
i(xi − x̄)(yi − ȳ)√

(
∑

i(xi − x̄)2)(
∑

i(yi − ȳ)2)
. (3.1)

Perpendicular distances from the linear model to constituent pixels are used to

find the blob half-width, defined as half the difference between the 84th and 16th

percentiles of these distances. With size and shape parameters now in hand, several

hard filters are used to eliminate blobs that are not considered to be streaks. Blobs
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Table 3.1: Morphological and other features saved for streak candidates.
feature description
pixels number of pixels associated with detected object
length long axis length
hwidth half-width
dMax perp. distance of maximum-flux pixel from longest axis
angle proper angle (in RA, Dec coords)
median median pixel flux
scale 1σ variation in pixel flux
slope slope (dy/dx in image coordinates) of fitted line
correl correlation coefficient of fitted line
flux total flux of object
refDist distance from midpoint to nearest object in reference image
refMag magnitude of nearest object in reference image
epoch epoch (modified julian date)
ra right ascension of object midpoint
dec declination of object midpoint
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Figure 3.5: Successful detections (green) and failed detections (red) for both real
asteroids and synthetic streaks. Here a ‘successful detection’ means an object was
found by findStreaks at the predicted location having a measured length within
four streak-widths of the predicted length. In the real data (leftmost plots), multiple
detections of unique objects are often very close to one another in the 2D spaces
plotted here, such that the total number of points discernible on the plot may appear
less than actual.
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Figure 3.6: Distribution of false positive detections from findStreaks. The largest
concentration of these ‘bogus’ detections are in the short and faint regime. Structure
as a function of orientation angle (bottom) is due to a combination of the correlation
sensitivity (see text) and pixel effects, wherein diagonal (±45◦-oriented) blobs are less
likely to exist as their flux is diluted across more pixels.

containing more than 400,000 pixels, having long axes shorter than 9 pixels (i.e., 3.6

deg/day motion), or having half-widths larger than 16 pixels are discarded. Blobs for

which the absolute value of the linear correlation coefficient is less than 0.5 are also

discarded.

The findStreaks module outputs a table of streak metadata, where each table

row corresponds to a streak detection. The real-time pipeline augments this table with

additional columns including the proximity of the candidate to the nearest reference-

image (stationary) object, as well as the brightness of this nearest reference-image

object. Table 3.1 lists the 15 features currently retained for each candidate, and used

in the classification stage that follows. This list of features will be updated to include

additional morphological metrics in future versions of this software, but the results

of this chapter only include analysis of the above-described 15 features.
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3.3.1.2 Completeness and contamination

To ascertain findStreaks’s completeness and the number and nature of false positives

it detects, we tested the software on a set of images containing both known real

asteroid streaks (the 539 predicted sightings described in Section 3.2.4) and a large

number of injected synthetic (simulated) streaks.

To generate each synthetic streak ‘stamp’, we first considered a 2D-Gaussian point-

spread function of flux f , full-width at half-maximum (FWHM) θ, and center at

(x0, y0):

PSF(x, y, x0, y0, f, θ) =

f × 4 ln 2

πθ2
× exp

(
−(x− x0)2 + (y − y0)2

θ2
× 4 ln 2

) (3.2)

In terms of Eq. (1), a simulated asteroid streak of length L oriented at angle φ is

given by

Streak(x, y, x0, y0, f, θ, L, φ) =

1

L

∫ t=L

t=0

PSF(x− t cosφ, y − t sinφ, x0, y0, f, θ) dt
(3.3)

[Vereš et al. (2012)] presents a similar streak model albeit with a slightly different

analytical expression.

We evaluate the integral in Eq. (2) numerically over a grid with spacings ∆x =

∆y = 0.05′′. Assuming the physical units of x and y are PTF-image pixels (= 1.0′′),

and assuming a typical PTF seeing value of θ ≈ 2′′ (though we randomly vary θ along

with other parameters, see below), the 0.05′′ grid spacing ensures the simulated streak

is initially oversampled (by a factor of several tens) relative to the final (coarsened)

image of the streak.

For each synthetic streak, the various model parameters in Eq. (2) are randomly

drawn from flat distributions on the following intervals:
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Figure 3.7: Examples of streak detections in PTF images. The third column, ”as-
signed pixels”, shows the pixels mapped to the object by findStreaks, wherein
unique objects are distinctly colored. (I) Splitting due to saturated star (undefined
pixels on difference image). (J) Splitting due to faintness. (K) Splitting due to bad
column in difference image. (L) Extraneous pixels from nearby bright star halo. (M)
Missed detection due to near-vertical orientation. (N) Missed detection due to near-
horizontal orientation. (O) Missed detection due to large variation in background
levels (star halo). (P) Missed detection due to faintness. (Q) Poorly-subtracted star
false-positive. (R) Linear radiation hit. (S) Non-linear radiation hit. (T) False posi-
tive due to background noise. (U) Isolated segment of longer faint streak (e.g., due to
a satellite). (V) Portion of optical ghost artifact. (W) Diffraction spike false positive.
(X) Poorly-subtracted galaxy false-positive.
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0 < x0 < 1 0 < y0 < 1

1.4′′ < θ < 3′′ 10′′ < L < 60′′

0◦ < φ < 180◦ 1800 counts < f < 7200 counts.

(3.4)

A synthetic streak’s flux f relates to its apparent magnitude m according to m =

m0−2.5 log10 f , where m0 is the zeropoint of the streak’s host image. As the insertion

of synthetic streaks into host PTF images is random (see below), it follows that

the apparent magnitude m is not sampled from a uniform distribution, unlike the

parameters f , θ, φ and L. The counts for f prescribed above roughly simulate 15

mag < V < 21 mag for typical PTF zeropoints (given normal variations in sky

background, extinction, etc.).

To coarsen each synthetic streak (prior to injection into an image), we evaluate the

mean flux value in each 1′′× 1′′ bin, equivalent to downsampling the initial simulated

image by a factor 20. We round the counts in each resulting pixel to the nearest

integer, and crop the streak image to a rectangular ‘stamp’ including all non-zero

pixels. Lastly, to simulate shot noise, we replace the value of each non-zero pixel with

a random integer sampled from a Poisson distribution whose mean is equal to the

original pixel value.

We generated a set of 5,000 synthetic-streak image stamps following the above pro-

cess, and then inserted these at random locations into the 539 PTF images containing

each of the 539 predicted known streak sightings (Section 3.2.4). In particular, for

each image the number of streaks injected was determined by drawing from a Poisson

distribution with mean equal to 5. A set of that number of synthetic streaks was then

randomly drawn (with replacement) from the pool of 5,000 and stamped into the im-

age at randomly-chosen (x, y) coordinates. The total number of injected streaks was

2,631. We then processed each image with an offline version of the IPAC real-time

image-differencing pipeline (Section 3.2.3) and ran findStreaks on the differenced

images.

In the real-time streak detection pipeline, the output of findStreaks is subse-
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quently subjected to machine-learned classification and human vetting. However, in

the interest of initially assessing the completeness and reliability of findStreaks as

an isolated module, we here simply (albeit arbitrarily) define a ‘successful detection’

(i.e. a true positive detection) as any case wherein findStreaks found an object

whose measured center lies within a 15′′ radius of the streak’s true center, and the

measured length minus the true length is less than four times the streak’s measured

width. The successful and failed detections according to these criteria are plotted in

Figure 3.5.

Two trends evident from the synthetic streaks are limiting magnitude-vs.-length

(Figure 3.5 top row) and lack of sensitivity to near-vertical or near-horizontal streaks

(Figure 3.5 bottom row). In general the completeness drops sharply at a certain

limiting magnitude; this limiting magnitude brightens from ∼19 mag at 20 pixels

to ∼18 mag at 60 pixels. Streaks oriented very near to either 0◦ = 180◦ or 90◦

are much less reliably detected by findStreaks (at all magnitudes)—this is due the

imposed hard limit on correlation (|r| > 0.5), a criterion which both near-vertical and

near-horizontal streaks fail to satisfy.

The total number of candidate streaks returned by findStreaks in this test was

21,783, or an average of ∼40 per image, most being false positive detections (also

referred to as ‘bogus’ detections later in this chapter). Figure 3.6 details the distribu-

tion of false positives in magnitude, length and orientation space. These plots indicate

that the most common type of false-positive detections are faint and short, consistent

with these contaminants being mostly star/galaxy subtraction artifacts and segments

of extended, low-surface brightness objects like optical ghosts, space debris trails and

bright-star halos. Figure 3.7 presents a gallery of examples of successful, failed, and

contaminant detections.

Among the 539 predicted sightings of real streaking asteroids (see section 3.2.4)

in the test images, a total of 240 were successfully detected by findStreaks. The

left-side plots of Figure 3.5 show successful and failed detections in the same feature

subspaces in which the synthetics are also plotted in Figure 3.5. A distinction be-

tween the y-axis-plotted ‘magnitude’ for the reals and that of the synthetics is that
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Figure 3.8: Correlation matrix for the 15 features (descriptions given in Table 3.1)
used in the classification process. White squares indicate positive correlation, black
indicate negative (anti-) correlation, and the area of each square indicates the mag-
nitude of the correlation.

the magnitude of the reals is again the predicted brightness, accurate to ∼0.5 mag,

whereas the synthetic magnitudes are more precisely known (even for the non-detected

synthetics, as they still have a known flux and well-defined image zeropoint).

3.3.2 Machine-learned classification

3.3.2.1 Overview

As described above, a typical PTF image (single CCD) may contain several tens of

false positive streak candidates, so that a full night of PTF observations—consisting

of several thousand such images—may typically produce of order 105 raw candidate

objects. This is far too many to screen manually by eye. Imposing simple filters on

the measured morphological features (Table 3.1) can eliminate large subsets of false

positives, but these hard cuts generally come at the cost of decreased completeness.

A good example is the filter on the linear correlation coefficient condition (|r| > 0.5)

discussed above, and the resulting insensitivity to near-vertical and near-horizontal

streaks.
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Figure 3.9: Importance of each of the 15 features (descriptions given in Table 3.1)
used in the classification process. This number represents the fraction of training
samples in which each feature contributes more by virtue of being at an earlier node
splitting in the decision tree.
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operating characteristic (ROC ) curve.
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To address this issue we have trained and implemented a machine-learned classifier

to discriminate real streaks from false positives. We adopt a supervised ensemble-

method approach for classification, originally popularized by [Breiman et al. (1984)],

specifically the random forest (RF) method [Breiman (2001)]. RF classification has

extensive and diverse applications in many fields (e.g., economics, bioinformatics, so-

ciology). Within astronomy in particular RF classification is one of the more widely-

employed methods of machine-learning, though many alternatives exist. For example,

[Masiero et al. (2014)] use the RF method for variable-star lightcurve classification,

while others have approached this problem via the use of, e.g., support vector ma-

chines [Woźniak et al. (2004)], Kohonen self-organizing maps [Brett et al. (2004)],

Bayesian networks and mixture-models [Mahabal et al. (2008)], principle component

analysis [Deb & Singh (2009)], multivariate Bayesian and Gaussian mixture models

[Blomme et al. (2011)], and thick-pen transform methods [Park et al. (2013)].

For general descriptions of RF training and classification, we refer the reader

to [Breiman (2001)], [Breiman & Cutler (2004)], and the many references cited by

[Masiero et al. (2014)]. Our use of a RF classifier is particularly motivated by its

already-proven application to the discovery and classification of astrophysical tran-

sients in the same PTF survey data [Bloom et al. (2012)].

Streak candidates in PTF images are cast into a vector of quantitative morpholog-

ical and contextual features, namely the 15 features listed in Table 3.1. Given a large

set of such candidates, these metrics define a multi-dimensional space, which can be

hierarchically divided into subspaces called nodes. The smallest node—also known as

a leaf —is simply an individual candidate. Given a set of leaves with class labels, i.e.,

a training set—one can build an ensemble of trees (called a forest), each tree repre-

senting a different, randomly-generated partitioning of the feature space with respect

to a subset of the total training sample (and a subset of the total list of features).

The forest allows one to assign a probability that a given vector of features belongs to

a given class. For the PTF candidates, were are interested in a binary classification,

i.e., whether the candidate is real or ‘bogus’. [Bloom et al. (2012)] coined the term

realBogus to describe this binary classification probability. In the present work we
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are essentially adapting Bloom et al.’s realBogus concept to the problem of streaking

asteroid discovery.

3.3.2.2 Implementation and training

We employ a Python-based Random Forest classifier included as a part of the

scikit-learn Python package4. Specifically, we use the ExtraTreesClassifier

class in the sklearn.ensemble module. This particular code is an implementation

of the ‘extremely randomized trees’ method [Geurts et al. (2006)], a variant of the

Random Forest method containing an added layer of randomness in the way node-

splitting is performed. Specifically, ExtraTrees chooses thresholds randomly for each

feature and picks the best of those as the splitting rule, as opposed to the standard

RF which picks thresholds that appear most discriminative. The additional random-

ization tends to improve generalization over the standard RF algorithm, this was

verified empirically for our streak data.

Our training data consists of all candidate streak detections from the 539-image

synthetic-injection test described in Section 3.3.1.2. This includes 240 real detections

(out of the 539 predicted sightings from Section 3.2.4), 1,285 synthetic detections (out

of the 2,631 total injected) and 20,072 bogus detections. Various examples of these

bogus (false-positive) detections are shown in the right column of Figure 3.7, while

their distributions in magnitude-vs.-length and magnitude-vs.-orientation space are

shown in Figure 3.6.

Among the 15 features (Table 3.1) describing the streak candidates, several of the

features exhibit some level of correlation, as shown in Figure 3.8. Most correlations are

reasonable as they express the relationship between geometrically-similar quantities:

the length of a streak is generally correlated with the number of pixels, and the fitted

linear slope correlates with the proper angle. A strong correlation between median

and scale (measures of flux signal and noise, respectively) is simply a expression of

the Poisson noise associated with photon counting. Assessing the correlation between

features aids in the interpretation of relative feature importances (Figure 3.9) derived

4http://scikit-learn.org
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Figure 3.11: In the top row (findStreaks only), detection is again defined as the
presence of an object whose length is within four streak widths of the true length, as
in Section 3.3.2.1. In the bottom row (findStreaks plus the classifier), detection is
defined as the presence of an object of length within four streak widths of the true
length and a classification score of p > 0.4.
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Figure 3.10 except considering only those candidates that were first positively detected
by findStreaks).
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during the training process (described below). In particular, among the top four most

discriminative features (according to Figure 3.9), three are significantly correlated

(pixels, hwidth and length).

The classifier training consists of a 10-fold cross-validation (i.e., bootstrapping)

process, wherein we split the data (reals, synthetics and boguses) into 10 disjoint sets

using stratified random sampling. Then, in each cross-validation fold, we train using

9 of the sets and test on the remaining one—however, we exclude the synthetics from

this test sample. In each of the ten cross-validation trials, the classifier outputs a

classification probability for each object in the test sample, and we track the true

positive rate (TPR; fraction of real streaks accurately classified as reals) as a function

of the false-positive rate (FPR; fraction of bogus streaks inaccurately classified as

reals). In astrostatisics TPR is also commonly called completeness while FPR is

equivalently one minus the reliability. The results of the separate trials, as well as

the averaged result, are shown in Figure 3.10. By tuning the minimum classification

probability (i.e., the realBogus score) used to threshold the classifier’s output, one

effectively moves along the hyperbola-shaped locus of points in TPR-vs.-FPR space

seen in the plot.

Several parameters can be adjusted or tuned when working with a random forest

classifier. First is the number of decision trees generated during the learning stage.

Classification accuracy typically increases with the number of trees and eventually

plateaus. Most applications employ hundreds to thousands of trees; here we found

that 300 trees provide sufficient performance. Another tunable parameter is the num-

ber of randomly-selected features (out of the 15 total here considered) with respect

to which nodes are split in building the decision trees. [Breiman (2001)] recommends

using the square root of the number of features; however, here we found optimal ac-

curacy when splitting with respect to all 15 features. Other parameters that can be

tweaked are the maximum depth of a tree, the minimum number of samples per leaf,

the minimum number of samples used in a split, and the maximum number of leaf

nodes. We do not constrain any of these parameters, meaning we allow: trees of any

depth, with any number of leaf nodes, leaf nodes consisting of a single sample, and
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larger �eld of view
shows optical ghost

larger �eld of view
shows successive glints

original image stamp 
appears asteroid-like

original image stamp 
appears asteroid-like

Figure 3.13: Example false positive detections in which the original 200′′×200′′ image
stamp looks like a real asteroid streak, but the larger field of view clearly indicates
the nature of the bogus detection. Left : Filament of an optical ghost. Right : Glint
segment, e.g., from a fast-moving rapidly-rotating piece of space debris. If additional
candidates from these larger false-positive objects also appear on the scanning page,
their common exposure timestamp implies their stamps will appear adjacent to one
another, facilitating their identification as bogus detections.

splits based on the minimum of 2 samples.

3.3.2.3 Post-training performance

In addition to tracking the classifier’s performance during the training cross-validation

trials, after training we subjected the classifier to a new sample of ∼400 synthetics.

These newly-generated synthetics were injected into the same 539 test images using

the same procedure described in section 3.3.1.2. Given the distinct random numbers

used in this run, these synthetics are distinct from those that were used in training,

and appear at different locations on the PTF images.
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As was done in cross-validation, the purpose of this post-training trial was to

ascertain the detection completeness, though this time using synthetics (which were

used previously for training but not testing). Another difference is that we now

consider completeness for a fixed classification probability threshold (p > 0.4) and do

so as a function of magnitude and length (similar to the analysis done for findStreaks

in Section 3.3.1.2).

The top plots of Figure 3.11 show the same information as was shown in Figure 3.5,

albeit for this new sample of synthetics (and at slightly coarser resolution). Namely,

we first examine the completeness delivered by findStreaks alone, and again see

the limiting magnitude versus length trend. In the bottom plots of Figure 3.11, we

show detection completeness for the same sample only this time for the combined

findStreaks plus machine classifier system. In other words, all the blue data points

in the lower left Figure 3.11 plot were both successfully detected by findStreaks and

were subsequently classified as real with a probability p > 0.4.

In Figure 3.12, we again show data from the same synthetics sample, this time

plotting the loss in absolute detection completeness due solely to the application

of the machine classifier. In the top plot of Figure 3.12, green data points were

successfully detected by findStreaks but did not score high enough (p > 0.4) in

the classification stage. The 2D histogram below it shows that the most significant

loss in completeness occurs for short faint streaks. Likely not coincidentally, this

region suffers from the largest number of bogus findStreaks detections, as indicated

by Figure 3.6. Integrating over all bins in this magnitude-vs.-length histogram, we

observe an average completeness drop of ∼0.15, consistent with Figure 3.10 for a true

positive rate of ∼85% accompanying a false-positive rate of ∼5%.

3.3.3 Web-based screening interface

The final component of the discovery portion of the PTF streak-detection pipeline

consists of a webpage for human vetting of image stamps of streak candidates to

which the classifier has assigned a high probability of being real. Figure 3.4 includes
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a screenshot of this webpage. Given the ∼5% false-positive rate quoted in the pre-

ceding paragraph and the ∼105 detected candidates accumulated in a typical night

(cf. Section 3.3.2.1), this webpage displays on average several thousand candidates

per night.

Including operations on Palomar Mountain, the data transfer from Palomar to

Caltech, and the IPAC real-time processing pipeline (Section 3.2.3) a typical lag-time

of ∼30 minutes (approx. ±10 minutes) elapses between the acquisition of exposures

with the PTF camera and the posting of streak candidates from said exposure to

the scanning webpage. The image stamps have fields of view of 200′′ × 200′′ with

linear contrast scaling from −0.5σ to 7σ (as in Figure 3.3). Undifferenced images are

reviewed as opposed to the differenced images, to better provide context to the scanner

and enable him/her to visually assess the observing conditions (i.e. the density and

image quality of background stars).

The kinds of false positives commonly encountered on the scanning webpage in-

clude all of those shown on the right-hand side of Figure 3.7. Image stamps are

viewed in chronological order, so that candidates from a common image appear con-

secutively on the scanning page. This enables rapid recognition of false positives of a

common origin. For example, multiple segments of a long satellite trail, large optical

ghost, or artifacts from a poorly-subtracted or high stellar density image will appear

together and are thus easily dismissed. Artifacts that do not appear in groups, such

as cosmic ray hits, background sky noise and poorly-subtracted galaxies, are rapidly

visually dismissed as well. A full night’s set of candidates (several thousand) can be

reliably reviewed by a trained scanner in 5–10 minutes, though the reviewing time is

distributed over the during observing session, as the webpage is refreshed every 20–30

minutes.

Clicking on the image stamp of a candidate streak presents another webpage with

more detailed information including astrometry, photometry, realBogus score, image

stamps of the differenced and reference images, and a larger field of view around

the detection. Certain types of false positives are more easily identified using this

additional information, including portions of optical ghosts and periodically-glinting
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space debris. This summary page also contains information for real-time follow-up,

as discussed in the next section.

3.4 Follow-up and reporting of discoveries

Once a real streak is discovered in PTF via the steps outlined in the previous section,

we trigger real-time follow-up with the same telescope. Its wide field of view (Section

3.2.1) makes the PTF camera particularly well-suited for recovering fast-moving NEAs

within a few hours of an initial detection. As described below, the follow-up process

effectively interrupts the nominal robotic survey by injecting high-priority exposure

requests into the queue. The final step involves reporting observations to the Minor

Planet Center to facilitate subsequent confirmation and follow-up worldwide.

3.4.1 Target-of-opportunity (ToO) requests

The sequence of PTF fields observed on any given night is determined in real-time

by a robotic scheduler: the P48 Observatory Control System (OCS) described by

[Law et al. (2009)]. The robot takes as input a list of fields, generally prescribed by a

human operator per lunation, and attempts to optimize exposure conditions (distance

from moon, airmass, etc.) while also maintaining a specific cadence—predominantly

two or three exposures per field per night separated by ∼40 minutes (optimal for

supernova discovery). As noted in Section 3.2.1, in recent years (during the iPTF

phase), fields and cadences have often been allocated to distinct experiments, though

all exposures still adhere to a fixed tiling of fields, with 60-second integrations in

either R- or g-band.

All PTF exposures are processed by the streak detection pipeline if they have a

reference image available (required for image differencing, see Section 3.2.3). Upon

recognition of a single detection of a likely real NEA streak on the scanning webpage,

the human reviewer immediately checks the webpage for additional serendipitous

detections in other PTF exposures acquired that night. If a second detection of the
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same streak is found, the observations are immediately sent to the MPC’s Near-Earth

Object Confirmation Page (NEOCP)5.

Lacking a second detection, the reviewer uses tools integrated into the scanning

webpage to trigger target-of-opportunity (ToO) exposures to secure additional detec-

tions. Figure 3.4 shows a screenshot of the webpage’s streak position estimation tool,

which uses a linear (great-circle) extrapolation assuming motion in either direction,

overlaid on the PTF tile grid. A PHP script redraws the plot to the current time

when refreshed by the user.

Once a list of fields potentially containing the streak has been identified (typically

between one and a few fields), a text-based email sent to the telescope robot inserts

the fields into the queue with very high weight. This email may additionally prescribe

repeat exposures of the fields with some specified cadence, filter, or maximum air-

mass. The ToO exposures typically are acquired within 5–10 minutes of the request,

depending on factors such as slew time and the need to change filters. The email-

based ToO-system for PTF was originally designed for (and proven on) the discovery

of optical afterglows of gamma-ray bursts [Singer et al. (2013)].

Apart from having been manually triggered, the ToO exposures are otherwise

identical to routine PTF survey images in that they are sidereally tracked, 60-second

R- or g-band images aligned to a fixed tile grid of the sky (as opposed to, e.g., being

centered on the NEA’s predicted position). Having acquired the ToO exposures, any

additional detections of the streak are automatically extracted with the same streak-

detection pipeline and will appear on the scanning webpage along with the rest of the

night’s candidates. Observations are sent to the MPC once two or more detections

have been secured.

3.4.2 Initial NEA discoveries

The full streak-discovery system, incorporating the IPAC real-time data products,

findStreaks and the trained machine classifier, began real-time operations 2014-

5http://www.minorplanetcenter.net/iau/NEO/toconfirm tabular.html
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2014 JG55 2014 KD 2014 LL26 2014 RJ 2014 SE

Figure 3.14: Discovery images of the first five streaked NEAs found by PTF.

Table 3.3: iPTF sub-surveys containing streaked-NEA discovery exposures.

name
sub-survey in which

filter
degrees from

NEA was discovered opposition
2014 WS7 Permanent Local Galaxies R 28
2014 WK7 TILU K2 Campaign g 73
2014 UL191 TILU Fall 2014 g 47
2014 ST223 Opposition NEA search g 18
2014 SC145 RR Lyrae R 32
2014 SE RR Lyrae R 21
2014 RJ TILU Fall 2014 g 35
2014 LL26 Star-forming low-cadence R 9
2014 KD TILU Spring 2014 R 49
2014 JG55 iPTF14yb follow-up R 34
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Figure 3.15: Distribution of PTF exposures (left : in sky coordinates, right : with re-
spect to opposition) and streaked NEA detections (right : with respect to opposition)
from 2014-May-01 through 2014-Dec-01. The grayscale scalebar maps the density
of PTF exposures in both plots. Exposures for which realtime streak-detection was
not performed are not included (e.g., fields lacking reference images or with too high
source density on the galactic plane).
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May-01. About a week later, the first PTF streaking NEA discovery was made (2014

JG55). Passing at one-third of a lunar distance, this object is also the smallest and

closest-approaching NEA yet discovered by PTF.

The largest streaking NEA discovered by PTF to date is 2014 WK7, at H = 22.4

mag (D ≈ 166 m), while the PTF discovery having an orbit most suitable for ARM

(see the [Jedicke et al. (2013)] criteria in Footnote 1) is 2014 ST223, though this object

is probably too large for ARM.

Table 3.2 details the ten total streaking-NEA discoveries made by PTF as of

2014-Dec-01. Nearly all of these (the one exception being 2014 LL26) were followed

up and confirmed by multiple observatories within 24 hours. A total of 25 different

observatories have provided follow-up observations within 24 hours of at least one of

the NEA discoveries listed in Table 3.2. After the sun has risen in California, most

short-term follow-up of PTF discoveries occurs from Japan and Europe (occasionally

Australia), as most longitudes west of Palomar fall in the Pacific.

Figure 3.15 shows the discovery position of the ten NEAs in Table 3.1 relative to

opposition. Most of the objects were found within 40◦ of opposition. An outlier is

2014 WK7, which was discovered 73◦ from opposition (phase angle 71◦), though this

NEA is also an outlier in the sample in terms of its size.

Table 3.3 lists the various sub-surveys (also known as ‘iPTF experiments’, see

Section 3.2.1) to which the NEA discovery exposures belong. Here ‘TILU’ stands

for Transients in the Local Universe’. A key point here is that nearly all of PTF’s

streaked NEA discoveries to date have been made in images originally purposed for

non-solar system science. A dedicated iPTF experiment designed to maximize the

area covered around opposition was carried out for several nights in Fall 2014, though

only one exposure from said program produced a discovery (2014 ST223, which, as

mentioned above, is the most ARM-like PTF discovery to date).

All follow-up was unsolicited apart from having posted the discoveries on the

NEOCP, and attests to the dedication of the worldwide NEA follow-up community.

We note however that, while they are on the NEOCP, PTF-discovered streaking NEAs

are consistently the brightest on the list—all were V ≤ 19 mag—whereas most of the
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50+ objects typically found on the NEOCP have V ≥ 20 mag. It is therefore not

surprising that more follow-up facilities are able and willing to recover these bright

objects as compared to the typical faint and slow NEOCP candidates.

3.4.3 Blind real-time recovery of known NEAs

There are several options for querying a given R.A., Dec., and time to search for

a match (within some radius) to an asteroid with a known orbit; these include

MPChecker6, JPL’s HORIZONS7, and PyMPChecker [Klein et al. (2009)]. However,

those scanning the PTF streak candidates in real-time are discouraged from checking

if a detected streak is a known object prior to obtaining ToO follow-up and submit-

ting the observations to the NEOCP. One reason is that the above mentioned query

tools are not necessarily reliable for fast-moving objects, and will not always return

a match even if the object has a well-determined orbit. Another reason is that the

ToO-submitting procedure, while simple and straightforward, requires efficiency and

efficacy on the part of the scanner and so should be practiced as often as possible.

Lastly, the MPC encourages submission of unidentified known objects as it allows

them to directly assess our program’s detection capabilities (e.g., our astrometric

accuracy).

As of 2014-Dec-01, a total of four previously-discovered NEAs have been blindly

detected by PTF as streaks and submitted to the NEOCP: 2014 HL129 (May-02);

2010 JO33 (May-08); 2014 WF108 (May-27; to date the only ‘potentially hazardous

asteroid’ blindly detected as a streak by PTF in real-time); and 2014 SE145 (Sep-23).

3.4.4 Unconfirmed discoveries

A total of five PTF objects posted to the NEOCP (between May-01 and Dec-01)

did not receive external follow-up, meaning they never obtained confident orbit solu-

tions and thus were not assigned provisional designations by the MPC (Table 3.4 and

6http://www.minorplanetcenter.net/cgi-bin/checkmp.cgi
7http://ssd.jpl.nasa.gov/sbfind.cgi



83

Table 3.4: Unconfirmed PTF streak discoveries (from 2014-May-01 to 2014-Dec-01)
NEOCP date num. speed V notes
name found obs. (′′/min) (mag)
PTF5i5 May-04 2 46.8 19.5
PTF9i2 Jul-08 2 36.9 17.9 85% moon, near dawn
PTF3k8 Sep-23 2 64.9 18.0 likely satellite
PTF8k2 Sep-25 3 27.6 18.9
PTF7l3 Oct-25 2 30.1 17.5

PTF5i5 PTF9i2 PTF3k8 PTF8k2 PTF7l3

Figure 3.16: PTF streak discoveries that were posted to the NEOCP but never re-
ceived external follow-up.

Figure 3.16). For four of these unconfirmed objects, PTF had submitted only two ob-

servations to the NEOCP. We note that 4 out of the 10 confirmed objects (Table 3.2)

also were reported with only two observations, from which we naively conclude that a

two-observation discovery has only a 50% probability of being successfully followed-

up (for three- and four-observation discoveries the recovered fraction increases to 66%

and 100%, respectively).

While in reality the recovery probability depends also on the temporal spacing of

the observations, the object’s speed and magnitude, and the availability of follow-up

resources (e.g., less facilities operate around full-moon), the number of observations

alone seems to be a useful indicator of the recovery likelihood. Users of the PTF

real-time scanning and ToO system attempt to obtain at least three observations for

discoveries, though this is not always possible, e.g., for discoveries made early in the

night in the western sky, or just before dawn. Occasional technical issues with the

real-time processing and/or ToO system also can hinder PTF self-follow-up.
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THEMIS A spacecraft Titan IIIC transtage
rocket body

unidenti�ed satellite
(9O0DC57)

Figure 3.17: Artificial satellites detected as streaks by PTF (identifications provided
by the MPC).

3.4.5 Artificial satellites

Many distant Earth-orbiting artificial satellites can, at certain parts of their orbit,

appear consistent with an Earth-approaching NEA. Our streak-recognition pipeline

has on several occasions detected such satellites. Figure 3.17 shows some exam-

ples, including one of the THEMIS mission spacecraft studying the Earth’s magneto-

sphere [Angelopoulos (2008)] and a Titan IIIC rocket body. The MPC’s automated

observation-ingestion processes outputs known artificial satellite matches to NEOCP

submissions (as was the case for the three in Figure 3.17), though in some cases the

object will be posted to the NEOCP and remain on the list for some time prior to

its recognition as artificial. Three examples of the latter were PTF7i2, PTF8i6, and

PTF0n2.

While we see the same value in blind reporting of artificial satellites as we do

blind reporting of known NEAs (Section 3.4.3), some high-orbit satellites have geosyn-

chronous orbits and can therefore appear in the same area of sky for many consecutive

nights. An example is the THEMIS spacecraft, whose apogee was coincident with

opposition, causing it to be repeatedly observed by PTF in autumn 2014. For routine

identification of known satellites, we have therefore adopted the useful software tool

sat id by Project Pluto8.

8http://www.projectpluto.com/sat id.htm
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Figure 3.18: Normalized distributions of PTF images and streaked NEA detections
with respect to opposition. The 19 NEAs included here consist of new discoveries,
blind recoveries and the five unconfirmed discoveries. See Figure 3.15 for the two-
dimensional distribution.
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Figure 3.19: Estimates of the number of streaked NEAs detectable by P48 as a
function of distance from opposition. Computed using the data in Figure 3.18 and
Equation (3.5).

3.5 De-biased detection rate

The right panel of Figure 3.15 shows the distribution of streaked NEA detections

(including confirmed and unconfirmed discoveries as well blind recoveries). In this

section we use this sample of detections and the distribution of PTF exposures with

respect to opposition to derive the de-biased streaked-NEA detection rate as a func-

tion of radial distance from opposition. Figure 3.18 shows the same data as in Figure

3.15, removing the azimuthal information to only show the one-dimensional radial

distributions.

We seek to estimate the frequency f of streaked NEA detections per unit area
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of sky per unit time (equivalently, per survey image). The posterior probability

distribution of f (assuming a constant prior) is given by an appropriately-normalized

Poisson distribution:

P (f) =
(NC)n+1

Γ(n+ 1)
fn exp(−NCf) (3.5)

where N is the total number of images searched for streaked NEAs, n is the number of

detected streaked NEAs, C is the completeness (true positive rate) of the PTF streak

detection system as a whole, and Γ(. . .) is the gamma function (which contributes to

the normalization of the distribution).

Figures 5 and 11 indicate that the completeness C depends on which volume in

magnitude, length, and orientation space under consideration, as well as the separate

efficincies of sub-components like findStreaks and the machine classifier. For sim-

plicity, in the following analysis we evaluate two separate values for C (0.5 and 0.7)

but the most accurate values for C would in principle come from direct application

of the completeness data in Figures 5, 11 and 12.

We apply Equation (3.5) to the image count N and streak count n within each of

the thirteen bins in Figure 3.18. In particular, by numerical integration we compute

the 16th and 84th percentiles of the resulting Poisson distributions, and plot these 1σ

bounds as a function of distance from opposition in Figure 3.19. The estimates are

1–3 streaked NEA detections per 104 deg2 of sky near opposition, dropping to about

1 or less beyond 40–50 deg from opposition. The images acquired by PTF from 2014-

May-01 through 2014-Dec-01 represent 191,435 deg2, and a total of 19 streaked NEAs

(10 confirmed, 4 blindly recovered, 5 unconfirmed) were detected in these data. If the

areal density of the streaks were independent of distance from opposition, this would

correspond to a coarse estimate of ∼1 detected streak per 104 deg2, in agreement

with the radially-binned rates multiplied by the actualy radial distribution of images

(which are mostly 40 deg or more from opposition).
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3.6 Scaling laws for streaked asteroid detection

We here derive a quantitative ‘figure of merit’ (FoM) proportional to the average

number of streaked asteroids detectable per unit time by a survey. The FoM will

depend on a number of survey specifications including the:

• field of view Ω in deg2,

• seeing width θPSF in arcseconds,

• limiting magnitude of a point source mlim
pnt, which is related to other parameters

such as:

◦ exposure time τ in seconds,

◦ telescope aperture Atel in meters,

◦ sky background flux B (counts/second/arcsec2),

• total duty cycle time τtot per exposure, including integration, readout, and slew

time.

Assume that the density of asteroids and their velocity distribution is independent

of distance. The volumne of streaked asteroids detectable at any given time goes as

Ωd3
strk, where dstrk is the maximum distance at which an asteroid can be detected as

a streak. The figure of merit (asteroids detectable per unit time) therefore scales as

FoM ∝ Ωd3
strk

τtot

(3.6)

The maximum streaking distance dstrk is defined for some signal-to-noise ratio

(SNR), typically SNR = 5, at which the object will be detected with an apparent

magnitude mlim
strk. When detected at this threshold SNR, the streaking object’s dis-

tance dstrk must be closer than the distance dpnt of a point source observed with the

same SNR but fainter magnitude

mlim
pnt = 5 log10(dpnt/d0) (3.7)
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where d0 is a parameter encoding the asteroid’s intrinsic flux (dependent on its size,

albedo). Assume that dpnt is much less than 1 AU, so that heliocentric distance does

not factor into d0. Also assume that the survey observes mostly around opposition,

so that phase angle effects need not factor significantly into d0.

Let F be the asteroid’s flux and B the background flux. For a point source the

SNR is

SNRpnt =
F/(4πd2

pnt)√
B

×
√
τ (3.8)

An asteroid’s apparent angular rate θ̇ relates to its distance and perpendicular velocity

component by θ̇ = v⊥/dstrk. We thus define the streak-time

τPSF ≡ θPSF/θ̇ = θPSFdstrk/v⊥ (3.9)

For streaking to occur, the exposure time τ must be significantly longer, i.e.,

τ � τPSF. The signal-to-noise in each segment of length θPSF along the streak’s extent

receives flux from the asteroid only for a duration τPSF, but the noise accumulates

for the entire exposure τ . In terms of this quantity, the signal-to-noise in a streak

segment of length θPSF is

SNRseg =
F/(4πd2

strk)√
B

× τPSF√
τ

(for τ � τPSF) (3.10)

The streak’s total SNR is found by adding in quadrature the individual SNRs of the

τ/τPSF such segments comprising it:

SNRstrk =

τ/τPSF∑
i=1

SNR2
seg,i

1/2

= SNRseg ×
√

τ

τPSF

=
F/(4πd2

strk)√
B

×
√
τPSF (for τ � τPSF)

(3.11)
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A useful approximation for the general case of any τ , with the appropriate limiting

and intermediate behavior, is:

SNRstrk =
F/(4πd2

strk)√
B

×
(

τ

1 + τ/τPSF

)1/2

(3.12)

Setting SNRpnt = SNRstrk using Equations (8) and (12),

d2
pnt

d2
strk

=

√
1 +

τ

τPSF

(3.13)

Hence, the limiting magnitude for a streak, in terms of the limiting magnitude for a

point source with the same SNR, is

mlim
strk = mlim

pnt − 2.5 log10(d2
pnt/d

2
strk)

= mlim
pnt − 1.25 log10(1 + τ/τPSF)

(3.14)

Equation (3.14) approximates the detection efficiency drop-off (limiting magnitude

vs. length) seen in Figures 5 and 11.

If we once again consider the ‘significantly-streaked’ limit (τ � τPSF) and use

Equations (7), (9), and (13), we find

d3
strk =

d4
0θPSF

v⊥τ
× 100.8mlim

pnt (for τ � τPSF) (3.15)

Again assuming that the asteroids’ size and albedo (represented by d0) and velocities

(v⊥) are constant with geocentric distance, the figure of merit (Equation 3.6) for

comparing surveys then takes the form

FoM ∝ ΩθPSF

τtotτ
× 100.8mlim

pnt (3.16)

Approximate FoM values are listed in Table 3.5 relative to PTF. Any other

survey’s FoM can be computed by normalizing its limiting magnitude as mlim
pnt →

mlim
pnt − 17.15 and then applying Equation 3.16.
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Table 3.5: Figure of merit comparison for surveys

survey
Ω θPSF τ τtot mpnt

lim

FoM
(deg2) (arcsec) (min) (min) w.r.t. PTF

ZTF 47 2 0.5 0.75 20.4 37
PS1 or PS2 7 1.1 0.5 1 21.8 30
ATLAS 60 2.6 0.5 0.6 19.7 21
BlackGEM 22 1 1 1.2 20.7 4.7
Catalina 19 2.5 0.5 0.75 19.5 3.6
PTF 7.25 2.0 1 1.5 20.2 1



91

Chapter 4

Asteroid Lightcurves

4.1 Introduction

In this work we model an asteroid’s apparent visual magnitude V (log flux) as

V = H + δ + 5 log10(r∆)− 2.5 log10[φ(α)], (4.1)

where H is the absolute magnitude (a constant), δ is a periodic variability term due to

rotation (e.g., if the object is spinning and has some asymmetry in shape or albedo), r

and ∆ are the heliocentric and geocentric distances (in AU), and φ = φ(α) is the phase

function, which varies with the solar phase angle α (the Sun-asteroid-Earth angle).

When α = 0 (i.e., at opposition), φ = 1 by definition, while in general 0 < φ < 1 for

α > 0 (with φ decreasing as α increases).

A key feature of our approach is the simultaneous fitting of both the phase function

φ and the rotation term δ. The detailed forms of φ and δ, as well as the algorithm

underlying our fitting procedure, are motivated by a variety of prior work in this area,

as described in the following sections.

4.1.1 Asteroid rotation

Building upon the work of [Kaasalainen et al. (2001)], [Hanuš & Ďurech (2012))] dis-

cuss the inversion of asteroid lightcurve data taken over several oppositions to obtain

a 3D shape solution. The form of δ (cf. Equation [4.1]) in this case consists of
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a large number of free parameters (several tens to hundreds). Results from inver-

sion agree well with those from stellar occultations, adaptive optics imaging, and

in-situ spacecraft imagery [Hanuš et al. (2013))]. Knowledge of the detailed irreg-

ular shapes of asteroids improves our ability to constrain models of their internal

structure, as well the magnitude and timescale of spin and orbital evolution due to

solar-radiation and thermal emission, including the Yarkovsky and YORP effects (see

[Bottke et al. (2006)] and references therein).

A simpler model for δ—suitable for fitting to data sparser than that required for

most inversion methods—is a Jacobi ellipsoid [Chandrasekhar (1969)] in its principal-

axis spin state. The lightcurve of such an ellipsoid is a double-peaked sinusoid, given

by a simple expression depending solely (assuming constant surface albedo) on the

axes ratio, and angle between the line of sight and spin axis. The fitted amplitude

thus yields a lower-bound elongation estimate for the asteroid.

The predicted distribution of the rotation frequencies of a collisionally-equilibrated

system of particles has long been claimed to be a Maxwellian function [Salo (1987)],

which—as reviewed by [Pravec et al. (2002)]—very well approximates the observed

distribution of several hundred of the brightest (∼40-km or larger) asteroids, but

breaks down for smaller objects, among which an excess of slow and fast rotators

appear to exist. [Steinberg & Sari (2015)] more recently argue that collision instead

leads to a Lévy distribution, and that a significant primordial spin component remains

in the present observed population. Some studies that have examined the spin dis-

tribution of small objects are [Pravec et al. (2008)], [Polishook & Brosch (2009)], the

Thousand Asteroid Lightcurve Survey [Masiero et al. (2009)], and two brief observing

runs conducted within the PTF survey ([Polishook et al. (2012)]; [Chang et al. (2014a)]).

[Warner et al. (2009)] describe the Lightcurve Database (LCDB), which compiles

several thousand densely-sampled lightcurves of asteroids targeted by dedicated ob-

serving teams. Lightcurves in the LCDB have the following features:

1. LCDB lightcurves’ dense sampling generally permits fitting of Fourier series

with many harmonic terms,
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2. LCDB lightcurves are often sampled over the shortest time window necessary

to measure the period, and therefore generally do not require large or uncertain

corrections due to phase angle effects,

3. LCDB lightcurves’ fitted periods are assigned integer quality codes by a human

reviewer (from 1 = poor to 3 = confident).

All three of the above features are either impractical or infeasible when the set

of lightcurves is very large and the data sparsely sampled, as is the case for PTF. In

this work we adopt the following modified approaches when fitting lightcurves:

1. We truncate the rotation curve’s Fourier-series fit after the 2nd harmonic, a

simplification broadly justified by [Harris et al. (2014)] and the assumption of

an ellipsoidal shape (cf. Section 4.3.1.2),

2. We simultaneously fit a phase-function model with the rotational part,

3. We use a machine-learned classifier to objectively aid in estimating the valid-

ity of each fitted period. The classifier is trained using all fitted lightcurves

that have previously (and confidently) measured LCDB periods and takes into

account the accuracy with which the true period was retrieved along with 20

lightcurve metrics (fitted period, amplitude, ratio of peaks, χ2 per degree of

freedom of fit, number of data points, and more).

Use of a machine classifier in asteroid lightcurve period quality assessment is en-

tirely novel and inspired in part by work done by PTF collaborators in extragalactic

transient science [Bloom et al. (2012)] and variable star science ([Masci et al. (2014)];

[Miller et al. (2014)]), as well as Waszczak et al. (in prep)’s work on detection tech-

niques for streaking NEOs. Among the advantages of using a machine-classified

quality score is that, via cross-validation with the known-period sample, one esti-

mates the completeness and contamination, i.e., the true-positive and false-positive

rates with respect to identifying an accurately-fit period, as a function of, e.g., the

period, amplitude, etc. The resulting true- and false-positive rates may then be used

to de-bias the classifier-filtered period distribution.
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Symbol Asteroid Reference

 588 Achil les Shevchenko et al. 2012
 884 Priamus Shevchenko et al. 2012

1143 Odysseus Shevchenko et al. 2012
 24 Themis Harris et al. 1989a
 165 Loreley Harris et al. 1992

211 Isolda Harris & Young 1989
 20 Massalia Gehrels 1956

249 Amphitrite Lupishko et al. 1981
 44 Nysa  Harris et al. 1989b

64 Angelina Harris et al. 1989b
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Figure 4.1: Phase curves (from the literature) containing densely-sampled, rotation-
corrected photometry of asteroids in four taxonomic classes. Colored lines are our
original fits to the data using various single-parameter φ models (cf. Section 4.3.2).
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4.1.2 Asteroid phase functions

The analytic phase function of an ideal Lambertian-scattering sphere fits well to

featureless, atmospheric planets like Venus, but quite poorly to airless bodies (see

Figure 3.9 of [Seager (2010)] for a comparison). In later sections we describe several

φ models that have been derived for (or empirically fit to) asteroids. Qualitatively,

asteroids show an approximately linearly decreasing φ out to α ≈ 100 deg, modified

by a surge (increase in slope) at low phase angles (α . 5 deg), known as the opposition

effect (see Figure 4.1).

Early work (e.g. [Bowell et al. (1989)] and refs. therein) on a small sample of well-

observed asteroids, suggested that different asteroid spectral types display distinct

behavior in φ. Figure 4.1 compares example phase curve data for D, C, S and E

types1, incorporating photometry from various sources. We emphasize the fact that

all of the data points in Figure 4.1 have been corrected for rotational modulation

(the δ in Equation [4.1]) through dense sampling of each asteroid’s lightcurve at each

phase angle (equivalently, each epoch).

Using a large corpus of low-precision photometry from the MPC2, Oszkiewicz et al.

([Oszkiewicz et al. (2011)], [Oszkiewicz et al. (2012)]) showed that a fitted parameter

of one particular φ model correlates well with an asteroid’s SDSS visible color. While

they were unable to correct for rotational variation (δ-term in Equation [4.1]), the

Oszkiewicz et al. work nevertheless demonstrates a solid trend between φ and a

compositional attribute (color).

These prior works motivate several defining aspects of this work’s phase-function

analysis:

1. We fit multiple phase function models to each lightcurve, both for compatibility

with the literature and to explore how the fitted parameters are related,

2. We simultaneously fit the rotational component with the phase-function part,

1[Bus et al. (2002)] review these and other asteroid taxonomic classes, which are defined on the
basis of low-resolution (R ≈ 100) visible reflectance spectra.

2IAU Minor Planet Center, http://minorplanetcenter.nethttp://minorplanetcenter.net
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Figure 4.2: Comparison of predicted asteroid sightings against positive and ‘reliable’
asteroid detections. We define a ‘reliable’ detection as any positive detection which
(1) lacks any catalogued background sources within a 4′′ radius, (2) has a calibrated
magnitude uncertainty of less than 0.1 mag, (3) lacks any processing warning flags.
As suggested by the middle and right column of plots, this definition of ’reliable’ still
contains some small contamination (at the <1% level) from uncatalogued background
sources and/or noise, as indicated by detections with distance residuals greater than
∼1 arcsecond or magnitude residuals of greater than ∼1 mag. In panel D, the less
than 100% completeness at the bright end reflects the non-negligible probability that
any asteroid will fall within 4′′ of a catalogued background source (regardless of the
magnitude of either the asteroid or the background source).
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3. We introduce a single colorimetric index for quantifying C-type vs. S-type

taxonomic classification, based on the compilation of several visible-band-color

asteroid datasets (see Appendix), and examine the variation in phase-function

parameters as a function of this color index.

4.2 Observations

4.2.1 Overview of the PTF survey

The Palomar Transient Factory3 (PTF) is a synoptic survey designed primarily to

discover extragalactic transients ([Law et al. (2009)]; [Rau et al. (2009)]). The PTF

camera, mounted on Palomar Observatory’s 1.2-m Oschin Schmidt Telescope, uses 11

CCDs (each 2K× 4K) to image 7.3 deg2 of sky at a time at 1.0′′/pixel resolution. Most

exposures (∼85%) use a Mould-R filter4 (hereafter “R”). The remaining broadband

images acquired use a Gunn g-band filter. Nearly all broadband PTF images are

60-second integrations, regardless of filter. About 15% of nights (near full moon) are

devoted to a narrowband (Hα) imaging survey of the full Northern Sky.

Science operations began in March 2009, with a nominal one- to five-day cadence

for supernova discovery and typical twice-per-night imaging of fields. Median seeing

is 2′′ with a limiting magnitude R ≈ 20.5 (for 5σ point-source detections), while dark

conditions routinely yield R ≈ 21.0 [Law et al. (2010)].

The PTF survey is ongoing and expected to continue through mid-2016. In Jan-

uary 2013 the PTF project formally entered a second phase called the intermediate

PTF (‘iPTF’; [Kulkarni (2013)]). In this chapter we simply use ‘PTF’ to mean the

entire survey, from 2009 through the present (2015). The iPTF program accommo-

dates more varied ‘sub-surveys’ as opposed to a predominantly extragalactic program,

including variable star and solar system science. Images are still acquired with the

same telescope/camera/filters with 60s exposures, and are processed by the same

3http://ptf.caltech.eduhttp://ptf.caltech.edu
4The Mould-R filter is very similar to the SDSS-r filter; see [Ofek et al. (2012a)] for its trans-

mission curve.
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reduction pipeline.

[Laher et al. (2014)] describe the PTF data reduction and archiving pipelines,

hosted at the Infrared Processing and Analysis Center (IPAC) at Caltech. Process-

ing at IPAC includes bias and flat-field corrections, astrometric calibration against

UCAC3 [Zacharias (2010)], astrometric verification against 2MASS

[Skrutskie et al. (2006)], creation of source catalogs with Source Extractor

[Bertin and Arnouts (1996)], and production of reference images (stacks of ∼20–30

PTF images that reach V ≈ 22).

Ofek et al. ([Ofek et al. (2012a)], [Ofek et al. (2012b)]) describe the PTF sur-

vey’s absolute photometric calibration method, which relies on source matching with

SDSS DR7 [Abazajian et al. (2009)], and thus requires at least partial overlap of

PTF with SDSS each night. A separate, relative photometric calibration (based on

lightcurves of non-variable field stars) also exists for PTF data and is described by

[Levitan et al. (2011)] and in the appendix of [Ofek et al. (2011)]. In this work we

utilize all R-band and g-band PTF data accumulated from the survey’s start (March

2009) through July 2014. The asteroid magnitudes reported in this work use relative

photometric zeropoints when available (which as of this writing applies to ∼85% of

PTF images) and absolute photometric zeropoints otherwise.

The PTF’s robotic survey program and processing pipeline, as well as our data

aggregation and analysis in this work, make use of many functions from the MATLAB

package for astronomy and astrophysics [Ofek et al. (2014)].

4.2.2 This work’s data set

[Waszczak et al. (2013b)] used a custom spatial indexing algorithm to search the

set of all PTF single-epoch transient detections (through July 2012) for detections

of all asteroids with orbits known as of August 2012. That search procedure first

generated uniformly-spaced ephemerides for each asteroid using JPL’s online service

(HORIZONS; [Giorgini et al. (1996)]). Each asteroid’s ephemeris defines a 3D-curve

(two sky coordinates plus one time); the intersection of each curve with the 3D kd-
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tree of transient detections was then computed and positive detections within a 4′′

matching radius saved.

In this work we use a modified version of the [Waszczak et al. (2013b)] algorithm.

The updates/changes are as follows.

Firstly, in terms of content, we now search all PTF (R and g-band) data from

01-March-2009 through 18-July-2014 for all numbered asteroids as of 12-July-2014

(401,810 objects). We now exclude unnumbered objects as the positional uncertainty

of these objects can be very large, and as they tend to be very faint their lightcurves

will not in general be of high quality.

Secondly, in place of a single-step matching of a 3D transient-detection kd-tree

against 3D ephemeris curves, we now divide the search into two main steps. We first

perform a 2D spatial matching that exploits the natural indexing of PTF exposures

into tiles (i.e., the grid of evenly spaced boresights or ‘fields’ on the sky). Each 2D

ephemeris curve’s intersection with the 2D PTF survey footprint is computed, the

object’s position cubically-interpolated to all epochs of exposures possibly contain-

ing the object, and the object’s precisely-computed positon is then compared to the

precise image boundaries of candidate exposures. Matching of predicted positions

against actual detections takes place subsequently as source catalogs are then loaded

into memory (as needed and in parallel). This method is faster than the original

[Waszczak et al. (2013b)] method and enables separate logging of predicted and pos-

itive detections.

The results of the known-asteroid search, as well as the derived lightcurve data

(described later) are stored in a relational database, the size and contents of which are

summarized in Table 4.1. Out of ∼18 million predicted single-epoch asteroid sightings

(including predicted magnitudes as dim as V ≈ 23, well below PTF’s sensitivity),

there were 8.8 million positive detections (within a 4′′ radius). Of these, we define

4.3 million detections as ‘reliable’ as they (1) lack any catalogued background sources

within the 4′′ radius, (2) have a calibrated magnitude uncertainty of less than 0.1

mag, (3) lack any processing flags indicative of contamination. Figure 4.2 compares

predicted, positive and ‘reliable’ detections; the middle and right panels of Figure 4.2
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show that our definition of ‘reliable’ seems to include a small fraction of likely bad

observations (<1% contamination, note the vertical log scale), namely those which

have distance residuals greater than ∼1′′ or magnitude residuals greater than ∼1

mag. Because these reliable detections are the subset of observations which we input

into our lightcurve fitting model (Section 4.3.4), the fitting algorithm includes logic

designed to remove isolated data points that have very large residuals, either with

respect to the median lightcurve value or relative to their uncertainty.

4.3 Lightcurve model

Equation (4.1) presents the overall form and notation of our asteroid lightcurve model.

In this section we describe the detailed parameterization and assumptions of the

model.

4.3.1 Rotation component

4.3.1.1 Intra-opposition constraint

The most important parameter in the rotation component (the δ in Equation [4.1])

is the synodic spin period P , a constant which satisfies

δ(τ) = δ(τ + nP ), (4.2)

where τ ≡ t−∆/c is the light-time-corrected observation timestamp, ∆ = ∆(t) is the

asteroid’s geocentric distance, c is the speed of light, and n is any integer satisfying

|n| � Porb/P, (4.3)

where Porb is the synodic orbital period,

Porb =

(
1

yr
− 1

Torb

)−1

=

(
1

yr
−
√
GM�

2πa
3/2
orb

)−1

, (4.4)
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where Torb is the asteroid’s sidereal orbital period and aorb is its orbital semi-major

axis (related by Kepler’s third law). Porb is the time elapsed between the asteroid’s

consecutive oppositions. Pursuant to this restriction, we constrain each δ solution

using observations from within the same opposition—i.e., for most asteroids, within

a 1.1- to 1.6-year interval centered on the date of locally minimally observed α.

The intra-opposition restriction is important given that our data set (described in

the next section) spans ∼5 years. For an asteroid with a zero inclination circular orbit

and spin axis perpendicular to its orbital plane, we can relax Equation (4.3) to allow

n to be any integer, in which case δ can be constrained using observations spanning

many years. In general however, Equation (4.2) must be modified to accommodate a

varying viewing geometry with respect to the spin axis:

δ(τ) = F (τ)δ(τ + nP ), (4.5)

where F is some unknown periodic function satisfying F (t) = F (t + mTorb), where

m is any integer and Torb is the sidereal orbital period. Provided the amplitude of F

is not large relative to that of δ, and provided the spin vector is not changing with

respect to the orbital plane (i.e., precessing5) on a timescale comparable to Porb, we

are justified in assuming Equation (4.2) (with the Equation [4.3] restriction) applies.

4.3.1.2 Second-order Fourier series

Any δ satisfying Equation (4.2) can be approximated to arbitrary precision using a

Fourier series. [Harris et al. (2014)] discuss why, from a geometric standpoint, the

second harmonic tends to dominate an asteroid’s fitted δ. As noted earlier (section

4.1.1), most large asteroids approximately resemble triaxial prolate ellipsoids (e.g.,

Jacobi ellipsoids), having equatorial axis ratios of at most ∼3:1 (corresponding to

a δmax − δmin amplitude of ∼1.2 mag). For less extreme axis ratios (specifically,

those producing a ∼0.4 mag or smaller second-harmonic amplitude), other harmonics

related to shape or albedo asymmetries may contribute comparable coefficients to the

5Principal-axis rotation (a stable equilibrium state) is assumed for most planetary bodies.
[Burns & Safronov (1973)] discuss the relevant timescales of spin evolution.
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Fourier approximation of δ.

The PTF survey program has—on a few rare occasions—conducted high-cadence

(∼10-minute spaced) observations of low ecliptic latitude fields. These runs produced

a set of ∼1,000 densely-sampled main-belt asteroid rotation curves, which have al-

ready been analyzed and published ([Polishook et al. (2012)]; [Chang et al. (2014a)]).

These high-cadence “pilot studies” are relevant to our present work in that they

demonstrate (1) the quality of the PTF survey’s photometric calibration for asteroids

with unambiguously valid δ solutions, and (2) the above-described prevalence of a

dominant second-harmonic in most of the objects sampled.

Following these pilot studies, we adopt a second-order Fourier series model:

δ ≡
∑
k=1,2

A1,k sin

(
2πkτ

P

)
+ A2,k cos

(
2πkτ

P

)
, (4.6)

where τ is the light-time corrected epoch (cf. Equation [4.2]). In the pilot studies,

most of the fitted δ solutions qualitatively resemble a simple sine or cosine function.

Such a solution can be represented by either a:

1. first harmonic with period P = P1 (with Ai,1 6= 0 and Ai,2 = 0), or

2. second harmonic of period P = 1
2
P1 (with Ai,1 = 0 and Ai,2 6= 0).

Given the prolate ellipsoid model, choice (2) is more realistic and hence preferred.

However, again recognizing that other harmonics can have a non-negligible contribu-

tion, in fitting δ to our lightcurve sample we allow the first-harmonic coefficients Ai,1

to be non-zero, but introduce logic into the fitting algorithm (cf. Section 4.4) which

checks for double-period solutions satisfying certain criteria and iterates accordingly.

4.3.2 Phase-function component

In this work we simultaneously fit each lightcurve’s phase function φ along with its

rotation curve δ (cf. Equation [4.1]). This approach is intermediate in complexity

between some of the simpler, two-parameter (δ-neglecting) models that have been



104

applied to very large data sets (e.g., [Williams (2012)]; [Oszkiewicz et al. (2012)]),

and the more complex, shape plus pole-orientation models ([Kaasalainen (2004)];

[Cellino et al. (2009)]; [Hanuš & Ďurech (2012))]) which can involve tens of parame-

ters and require data spanning multiple oppositions.

Regarding the former class of models, we note that there is a formal statistical

problem associated with neglecting δ when fitting φ. If modeling the observations M

by V ′ ≡ V − δ = H + 5 log10(r∆) − 2.5 log10(φ), then the distribution of residuals

M −V ′ is not Gaussian. Assuming δ is a sinusoid with amplitude A, for observations

M sampling the lightcurve at random times, the residual probability density function

p = p(M − V ′) has a local minimum value pmin at M − V ′ = 0 and maximum value

pmax near M − V ′ = ±A. Thus p is bimodal and roughly bowl-shaped—not at all

Gaussian-shaped. The uncertainty in φ produced by a standard χ2 minimization—

which assumes Gaussian-distributed errors—is thus inaccurate. However, since p is

symmetric about M − V ′ = 0, for densely-sampled data the fitted phase function φ

remains unaffected by neglecting δ; in such a case the only effect is an underestimated

uncertainty.

We obtain three separate fits for each lightcurve, each using a different phase-

function (φ) and allowing for unique solutions for H and δ in Equation (4.1). The

three phase-function models are:

1. the two-parameter model of [Shevchenko (1997)],

2. the one-parameter G model [Bowell et al. (1989)],

3. the one-parameter G12 model [Muinonen et al. (2010))].

In this section we review and motivate the application of each of these φ models.

4.3.2.1 Two-parameter Shevchenko model

[Shevchenko (1997)] introduced a phase function dependent on two parameters; in

terms of Equation (4.1) the model is6

6In Shevchenko’s original notation, β is denoted b and C is denoted a. Moreover, in the original
notation, φ(0) = −a; we here added a constant term +a to make φ(0) = 1, following convention
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−2.5 log10[φ(α)] ≡ βα− C α

1 + α
, (4.7)

where β has units of mag/deg and C is the amplitude of the opposition surge (units of

mag). This model was subsequently considered in-depth by

[Belskaya & Shevchenko (2000)], hereafter B&S, who compiled the most complete (to

date) set of high-precision, targeted phase curve observations of main-belt asteroids

from various data sets spanning several decades.

Though in practice Shevchenko’s model is the least commonly used phase function

out of the three we consider, it is by far the simplest to express mathematically, and

is the only model for φ whose parameters have linear dependence in Equation (4.1).

Furthermore, this model’s parameters are the most straightforward to associate

with physical asteroid properties. B&S highlighted a robust relationship between an

asteroid’s (β, C) phase-function parameters and its geometric albedo7. As we later

explore a similar relationship in the present work, we here review the basis of this

observation.

The geometric albedo pV is formally defined in terms of the phase function φ:

pV ≡
Abond

2

(∫ π

0

φ(α) sin(α) dα

)−1

≡ Abond

q
, (4.8)

where Abond is the (visible) bond albedo, defined as the total visible light energy

reflected or scattered by the asteroid (in all directions) divided by the total visible

light energy incident upon the asteroid (from the Sun). We also here define the phase

integral q.

B&S showed that, in the range of β observed from S-type to C-type asteroids, β

and C are empirically correlated, in a relation that we approximate here as

C ≈ (0.9 mag)− (17 deg)β for 0.03 <
β

mag/deg
< 0.05. (4.9)

Using Equation (4.9) to substitute for C in Equation (4.7), inserting the result into

with other phase functions.
7Also known as the visible albedo or the physical albedo.
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Equation (4.8) and numerically evaluating the integral gives

pV ≈ Abond

(
0.4− 2.2β

mag/deg

)
for 0.03 <

β

mag/deg
< 0.05. (4.10)

B&S saw a negative correlation between pV and β in the data8, consistent with

Equation (4.10) only if either Abond is assumed constant among different asteroid

types (not a reasonable assumption) or if Abond negatively correlates with β, which

B&S did not explicitly show.

The bond albedo Abond can be thought of as an intrinsic, bulk-compositional char-

acteristic of an asteroid’s surface9, much like an asteroid’s color, whereas β and C

relate (in part) to the textural, particulate, and macroscopic roughness of the aster-

oid’s surface. B&S and other authors separately associate β with the shadow-hiding

effect and C with the coherent backscatter effect. Both of these physical phenomena

are understood from a theoretical standpoint (e.g., [Helfenstein & Veverka (1989)];

[Hapke (2012))]) to be functions of Abond, with β negatively related to Abond and C

positively related. This is consistent with Equation (4.9), and renders Equation (4.10)

consistent with B&S’s noted pV -vs.-β correlation. Other properties such as particle

size, particle geometry and regolith porosity also have predicted (and laboratory-

measured) contributions to the observed phase function ([Hapke (2012))] and refs.

therein); these properties can conceivably vary independently of Abond.

In short, our interpretation of the S-type and C-type asteroid data reviewed by

B&S is that a compositional indicator (Abond) correlates with indicators of two inde-

pendent phenomena (β and C) that contribute to how light scatters from an asteroid’s

surface. This statement intentionally makes no mention of pV , since Equation (4.8)

tells us pV by definition varies with β (in a non-obvious way) and with Abond, the

latter being a more basic compositional attribute.

As stated above, the phase function can be related to properties other than Abond,

8B&S actually stated the correlation in terms of log pV vs. β, though the range in β is sufficiently
small that pV vs. β is essentially valid as well.

9More accurately, the single-scattering albedo w, which is the analog of Abond for a “point-source”
particle, more fundamentally embodies this bulk-compositional attribute. [Hapke (2012))] details
how Abond is solely a function of w for an asteroid whose surface consists of isotropic scatterers; we
here use Abond as a proxy for w.
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such as regolith porosity. Many of these other properties in theory and experiment

contribute to effects involving multiply-scattered light, and therefore do not alter the

effect of shadow-hiding (β-term in Equation [4.7]), which is dominated by singly-

scattered light [Hapke (2012))]. In contrast, the coherent backscatter effect (C-term)

does involve multiply-scattered light. B&S saw non-monotonic behavior in C as a

function of pV when including the rarer, high-pV E-type asteroids in the same plot as

C and S types. E types do conform however to the same negative monotonic trend

in pV -vs.-β satisfied by the C and S types, consistent with the hypothesis that β is

adequately expressed as a function of Abond alone, yet E types have a lower-than-

predicted C value based on extrapolation of Equation (4.9).

One possibility is that Equation (4.9) is not valid for all asteroids, but must be

replaced by some unknown non-monotonic relationship, possibly because C depends

non-monotonically on Abond and/or has comparable dependence on other properties

(e.g., porosity or grain size). Assuming Equation (4.7) is a sufficiently general model

for φ, and lacking knowledge of a good model for C, it follows that β and C should

in practice always be fit separately. Another possibility is that Equation (4.7) is an

incorrect or incomplete model, however B&S described no instances wherein their

model was unable to adequately fit the data for a particular asteroid or class of

asteroids.

4.3.2.2 Lumme-Bowell G model

The next phase function model we consider is the Lumme-Bowell model

[Bowell et al. (1989)], also known as the (H,G) or IAU phase function:


φ ≡ (1−G)φ1 +Gφ2

φ1 ≡ exp(−3.33 tan0.63[α/2])

φ2 ≡ exp(−1.87 tan1.22[α/2])

(4.11)

Like Shevchenko’s model, this model includes two terms (the basis functions φ1

and φ2) representing two physically-distinct contributions to the observed φ. As
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detailed in [Bowell et al. (1989)], this model is semi -empirical in that it was derived

from basic principles of radiative transfer theory with certain assumptions, and at

various stages tailored to match existing laboratory and astronomical observations.

That the two basis functions’ coefficients are related to a single parameter G bears

resemblance to the β-vs.-C correlation described by Equation (4.9).

[Marsden (1986)] marked the IAU’s adoption of this phase function as a stan-

dard model for predicting an asteroid’s brightness. Since then this model has seen

widespread application, and is often used with the assumption G = 0.15 (e.g., in the

ephemeris computation services offered by the MPC and JPL). [Harris & Young (1988)]

present mean values of G for several of the major asteroid taxonomic classes (based

on a sample of ∼80 asteroids), with G = 0.15 being an average between the C types

(G ≈ 0.08) and the S types (G ≈ 0.23). The G-model fails to accurately fit the

rarer D types (which have linear phase curves) and E types (which have very sharp

opposition spikes), whereas the Shevchenko model can properly accommodate these

rarer types.

Use of the Lumme-Bowell φ in our lightcurve model (Equation [4.1]) introduces a

second non-linear parameter (G) into the model, the period P being the other non-

linear parameter. This complicates the fitting algorithm somewhat, as described in

Section 4.4.

4.3.2.3 Muinonen et al. G12 model

The third phase function model we consider, introduced by [Muinonen et al. (2010))],

bears resemblance to the G-model but includes a second free parameter and a third

basis function:

φ ≡ G1φ1 +G2φ2 + (1−G1 −G2)φ3 (4.12)

As opposed to the analytic trigonometric basis functions of the G-model, here

φ1, φ2 and φ3 (all functions of α alone) are defined in terms of cubic splines (see

[Muinonen et al. (2010))] for the exact numerical definitions). Assuming the coeffi-
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cients G1 and G2 are constrained independently, these basis functions were designed to

provide the most accurate fits to the phase functions of all major asteroid taxonomic

types, including the rarer D types and E types.

For situations where fitting G1 and G2 separately is infeasible,

[Muinonen et al. (2010))] specialized their above model to make it a function of a

single parameter, G12, which parameterizes G1 and G2 using piecewise functions:

G1 =

 0.7527G12 + 0.06164 if G12 < 0.2;

0.9529G12 + 0.02162 otherwise;

G2 =

 − 0.9612G12 + 0.6270 if G12 < 0.2;

− 0.6125G12 + 0.5572 otherwise;

(4.13)

In this work we use this single-parameter G12 form of the Muinonen et al. model,

making it analogous to the G-model in terms of implementation, including the com-

plication associated with a non-linear parameter.

4.3.2.4 Multi-parameter Hapke model

Just as we commented on the more rigorous means of fitting a rotation curve via 3D

shape modeling with multi-opposition data, for completeness we note that a more

rigorous model (than the three presented above) exists for phase functions. Given

better-sampled lightcurves and more computational power, future modeling of large

photometric datasets would benefit from applying the more theoretically-motivated

model of [Hapke (2012))], an abbreviated form of which is

φ =
BCK

pV

[(
w

8
(BSg − 1) +

r0 − r2
0

2

)
h+

2

3
r2

0φL

]
(4.14)

Here w is the single-scattering albedo (cf. Footnote 9), of which r0 is solely a

function. The remaining factors all are functions of phase angle (α). Each opposition-

surge term (BS and BC) has two free parameters (width and amplitude). K depends

on the mean topographic roughness (a function of one free parameter); g is the single-
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scattering angular distribution function (typically includes one parameter); h is a

function of α only; and φL is the phase function of an ideal Lambertian-scattering

sphere (a simple function of α).

With its φ ∝ p−1
V dependence, the Hapke model (Equation [4.14]) can conveniently

eliminate both pV and H from the modeling process. Inserting Equation (4.14) into

Equation (4.1), and using the common relation10

H = −5 log10

(
D
√
pV

1329 km

)
, (4.15)

where H is the absolute visual magnitude, D is the asteroid’s effective diameter and

1329 km is a constant (set by the arbitrarily-defined magnitude of the Sun), produces

a model with many physically meaningful parameters and free of both H and pV .

4.4 Lightcurve-fitting algorithm

We solve Equation (4.1) using a custom linear least squares (LLSq) method. A

basic review of LLSq can be found in [Hogg et al. (2010))]. Each fitted asteroid

lightcurve contains Nobs ≥ 20 observations, with measured apparent magnitudes

mi and measurement uncertainties σi. All instrumental magnitudes are elliptical

aperture [Kron (1980)] measurements (SExtractor’s MAG AUTO) calibrated with a lo-

cal zeropoint (i.e., the ‘ZPVM’ correction of [Ofek et al. (2012a)]). The uncertainties

contain a Poisson-noise component (SExtractor’s MAGERR AUTO) as well as systematic

error from the calibration. For images lacking a relative photometric solution, the

relevant systematic error is the APBSRMS parameter in the PTF database; for images

having a relative photometric solution, the systematic error is a combination of the

sysErr and zeroPointErr database quantities (added in quadrature).

10Rather that attributing it to any specific author(s), we note that Equation (4.15) may be derived
directly using Equation (4.8) and the following definition of the bond albedo, which we stated in
words immediately after Equation (4.8):

Abond ≡
∫ π
0

10−V (α)/2.5 sin(α)dα

(10−MSun/2.5/4πAU2)× π(D/2)2

where V (α) = H − 2.5 log10 φ(α) is Equation (4.1) evaluated at δ = 0 and r = ∆ = 1 AU.
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In all cases, our model (Equation [4.1]) is non-linear in at least one parameter

(the period P , or equivalently the frequency f = 1/P ). We test Nfrq evenly-spaced

frequencies between f = 0 (infinite rotation period) and f = 12 day−1, i.e., up to the

∼2-hour spin barrier.

Asteroids rotating faster than the ∼2-hour spin barrier are likely monolithic ob-

jects and—particularly if larger than ∼150 m—are interesting in their own right (cf.

the discussion in [Pravec et al. (2002)]). However, given the apparent observed rarity

of such super-fast rotators (SFRs) and the large interval in frequency space that must

be searched to discover them; we impose 2 hours = 12 cycles per day as our upper

limit on fitted frequency in order to make computational time reasonable without

sacrificing sensitivity to the majority of asteroids’ spin rates. [Chang et al. (2014a)]

presents preliminary results of an independent, ongoing effort to use PTF data (or at

least specific subsets thereof) to search for SFRs, with at least one SFR having been

discovered and confirmed [Chang et al. (2014b)].

We use a frequency spacing ∆f = 1/(4∆t), where ∆t is the time interval between

the first and last observation in the lightcurve. Formally ∆t can be as long as 1.1 to

1.6 yr for most asteroids (cf. Section 4.3.1.1); however the median value of ∆t (among

lightcurves that ultimately acquired fits) is ∼45 days, with 16th and 84th percentiles

of 13 and 106 days, respectively.

In addition to the non-linear parameter f , the lightcurve model in general has

Nlin linear parameters. We seek to solve the following tensor equation for X:

mi =
∑
j,k

LijkXjk


i = 1, 2, ..., Nobs

j = 1, 2, ..., Nfrq

k = 1, 2, ..., Nlin

(4.16)

where mi is the ith observation, L is the ‘design matrix’ (a 3D array of size Nobs ×

Nfrq ×Nlin) and X is the linear-parameter matrix (Nfrq ×Nlin) containing the linear-

parameter solutions as a function of frequency.
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4.4.1 Linear phase-function parameters

For the particular case wherein we use Shevchenko’s model (Equation [4.7]) for the

phase function φ, the design matrix is

Lij =



1

sin(2πfjτi)

cos(2πfjτi)

sin(4πfjτi)

cos(4πfjτi)

αi

αi/(1 + αi)


(4.17)

where the k-index has been omitted with the convention that k = 1 is the 1st row

of the above column vector, k = 2 is the second row, etc. Here τi and αi are the

time and phase angle of the ith observation, fj is the jth frequency, etc. Likewise, the

linear-parameter matrix X in this case is

Xj =



Hj

(A1,1)j

(A2,1)j

(A1,2)j

(A2,2)j

βj

Cj


(4.18)

where Hj is the fitted absolute magnitude for the jth frequency, etc.

The general LLSq solution to Equation (4.16) is

Xjk =
∑
`,n,p

Sjk`Lnj`(B
−1)npmp, (4.19)

where B−1 is the inverse of the data-covariance matrix B:
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B =


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
Nobs

 , (4.20)

and Sjk` is the parameter-covariance matrix, given by

Sjk` = [(sj)
−1]k`, (4.21)

where in the above definition we invert each of the Nfrq matrices sj, these being

defined by

(sj)k` ≡
∑
n,p

Lnjk(B
−1)npLpj`. (4.22)

The elements of the parameter-covariance matrix S are the variances and covariances

of the fitted parameters (as a function of frequency). The fit’s residuals (as a function

of frequency) are:

Rij = mi −
∑
k

LijkXjk, (4.23)

and the fit’s chi-squared (as a function of frequency) is:

(χ2)j =
∑
`,n

R`j(B
−1)`nRnj. (4.24)

The frequency-dependent chi-squared (χ2)j is also known as the periodogram. For-

mally, the best-fit rotation frequency corresponds to the minimal value of (χ2)j, but

this may differ from the preferred frequency solution if the lightcurve is contaminated

by other systematic periodic signals, if the data suffer from underestimated mea-

surement uncertainties, or if the best-fit frequency corresponds to a dominant first

harmonic (as opposed to a preferred dominant second harmonic, cf. Section 4.3.1.2).

Figure 4.3 details our iterative lightcurve-fitting algorithm’s logic. Fitting com-
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Figure 4.3: Diagram detailing the logic of this work’s data reduction and analysis.
Includes mining the survey for known-asteroid observations, aggregation of the data
into lightcurves, vetting of the lightcurves and an application wherein phase functions
are compared to color-derived asteroid taxonomy. See text for details.
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mences as long as 20 or more ‘reliable’ data points (cf. Section 4.2.2 and Figure 4.2)

are associated with a lightcurve. Irrevocably-bad data points are discarded in the

first round of iterations, these include detections with 7σ or greater residuals from

the initial solution. Examples of detections with such high residuals include contam-

ination from background sources missing in the reference catalog, bad detector pixels

that were not flagged by the pipeline, or spurious zeropoint solutions.

In the next stage of iterations, the fit’s χ2 per degree of freedom is reduced to ∼1

(formally, it is reduced until it is less than 3, cf. Figure 4.3) by gradually inflating

the observations’ errorbars through addition of a ‘cosmic error’, so-named because it

encompasses contamination from possible errors (in all the ‘cosmos’). In general the

cosmic error represents the same diverse contaminating phenomena responsible for

the >7σ deviations seen in the initial iterations (cf. previous paragraph) just to a

lesser extent.

Separately, this errorbar inflation compensates for our model’s inability to fit each

asteroid’s precise periodic structure using only two harmonic terms in the Fourier se-

ries. In the limit of infinite observations and sufficiently many Fourier terms, we

would ideally expect our data’s errorbars to reflect true Gaussian variance. However,

by truncating the series at two harmonics and using sufficiently precisely-calibrated

photometry, we are in effect choosing to sacrifice (downsample) some of our photo-

metric precision to obtain a formally better fit at the coarser resolution limit of the

model.

To illustrate use of the cosmic error, consider the example of an eclipsing binary

lightcurve, i.e., a rotation curve which is effectively sinusoidal except for a small

interval around the phase of minimum flux, when it dips to a lower-than-predicted

brightness. Examples from our dataset appear in Figure 4.10. Observations acquired

during such eclipses will have systematic negative deviations greater in absolute value

than would be explained by Gaussian variance alone. Increasing the errorbars of

these observations will decrease the fits’ χ2 without altering the value of the fitted

frequency. The fitted parameters’ uncertainties (both for frequency and the linear

parameters) are accordingly inflated as a penalty, and the fitted amplitude will be
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underestimated. As detailed in Figure 4.3, the initial cosmic error used is 0.002 mag,

and each iteration it is multiplied by a factor 1.5 until the χ2 is sufficiently low.

If the cosmic error exceeds 0.1 mag, the fitting is aborted. If the χ2 (per degree

of freedom) drops below 3 while the cosmic error is still below 0.1 mag, the fitting

process concludes ‘successfully’ (see Figure 4.3).

Concurrently, each iteration includes a test for the presence of double peaks in the

folded rotation curve (only if the fitted amplitude is at least 0.1 mag). In particular,

if there exist two maxima and two minima in the folded lightcurve, we demand that

the ratio of these peaks be greater than 0.2. Such a solution is preferred (cf. Section

4.3.1.2) given our ellipsoidal shape assumption, as described by [Harris et al. (2014)].

Denote as fbest global the frequency yielding the absolute minimum χ2 per degree

of freedom value, denoted χ2
min global (after the cosmic error has been tuned). If the

folded lightcurve is single-peaked (or has only a relatively small secondary peak),

then another deep minimum usually exists at the harmonic frequency fbest harmonic =

0.5 × fbest global, the local minimum χ2 value of which we denote χ2
min harmonic). For

cases wherein χ2
min harmonic < χ2

min global + inv-χ2-cdf(0.95, 7), where inv-χ2-cdf(p,N) is

the inverse of the χ2 cumulative distribution function for N free parameters evaluated

at p, then we instead choose fbest harmonic rather than fbest global. The 1σ uncertainty

interval for the best-fit frequency is then found by computing the upper and lower

intersections between χ2
min + inv-χ2-cdf(0.68, 7) and the periodogram in the vicinity

of fbest. Note that we used N = 7 free parameters in this case, i.e., the number of

elements of Xj (Equation 4.18).

4.4.2 Nonlinear phase-function parameters

Modeling the phase function φ with either the G or G12 model (Equations [11] and

[12]), introduces a second non-linear parameter (after the frequency f) and so we

must modify the equations of the previous section accordingly. We sample Npha =

200 evenly-spaced phase-function parameter values. In particular, for G we test the

interval −0.3 ≤ G ≤ 0.7 in steps of ∆G = 0.005, and for G12 we test the interval
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0 ≤ G12 ≤ 1 in steps of ∆G12 = 0.005.

Our approach is to modify the left-hand side of Equation (4.16) by defining a new

matrix m′iq which contains all possible phase-function-corrected observed magnitudes:

m′iq ≡ mi − Φiq =
∑
j,k

LijkXjkq



i = 1, 2, ..., Nobs

j = 1, 2, ..., Nfrq

k = 1, 2, ..., Nlin

q = 1, 2, ..., Npha

(4.25)

where, e.g., for the case of the G-model (Equation [4.11]),

Φiq ≡ −2.5 log10[φ(αi, Gq)]

= −2.5 log10[(1−Gq)φ1(αi) +Gqφ2(αi)]
(4.26)

The linear-parameter-solution array X now has an extra index q, reflecting the

fact that we are now solving for each linear parameter as a function of the two non-

linear parameters. The design matrix has the same number of indices as before (but

fewer rows):

Lij =



1

sin(2πfjτi)

cos(2πfjτi)

sin(4πfjτi)

cos(4πfjτi)


, (4.27)

while the linear-parameter matrix X is now

Xjq =



Hjq

(A1,1)jq

(A2,1)jq

(A1,2)jq

(A2,2)jq


. (4.28)

The appeal in adopting the above approach is that the general solution is only
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slightly modified:

Xjkq =
∑
`,n,p

Sjk`Lnj`(B
−1)npm

′
pq, (4.29)

where the only difference between equations (19) and (29) are the q indices appended

to X and m (and the latter being redefined as m′).

The fit’s residuals R are now a function of frequency and phase-function param-

eter:

Rijq = m′iq −
∑
k

LijkXjkq, (4.30)

as is the fit’s chi-squared:

(χ2)jq =
∑
`,n

R`jq(B
−1)`nRnjq. (4.31)

As a function of any of the linear parameters, the fit’s χ2 varies precisely quadrat-

ically, whereas as a function of frequency it has an intricate spectral structure with

many local minima. As a function of a non-linear phase parameter (G or G12), the

χ2 tends to have a single minimum (on the range we evaluate): in this sense G and

G12 are more similar to the linear parameters than they are to frequency. However,

the generally asymmetric shape of the phase parameter’ χ2 dependence necessitates

its grid-based numerical treatment—particularly to ensure accurate estimation of the

phase parameter’s uncertainty.

The two-dimensional χ2 surface given by Equation (4.31), which is defined on a

Nfreq × Npha grid, can be reduced to a one-dimensional χ2 function by choosing, for

each frequency index j, the phase-parameter index q that minimizes the χ2. The result

is a one-dimensional periodogram, as in Equation (4.24). Once the fitted frequency

is identified, we compute the uncertainty in the fitted f by the method described in

the previous section using the inv-χ2-cdf() function. We then likewise numerically

compute the uncertainty in the phase parameter by again collapsing (χ2)jq to a one-

dimensional vector, this time as a function of the phase parameter with the frequency
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Figure 4.4: Examples of lightcurves having both well-sampled rotation and phase-
function components. Each row corresponds to a different asteroid. These example
asteroids are sorted vertically by their physical diameter (assuming 7% albedo); the
top object is ∼45 km and the bottom object is ∼2 km. Column A shows the phase
curve (corrected for rotation); Column B shows the rotation curve (corrected for
phase-function); Column C shows the periodogram; Column D shows the distribution
of the observations in rotational phase vs. solar phase angle. Above each plot is
additional information depending on the column: (A) the asteroid number, followed
by (in square brackets) the opposition year (most are 2013) and filter (in all cases
‘r’) followed by the fitted G12 parameter; (B) the fitted absolute magnitude and
amplitude; (C) the fitted period (in hours); (D) the number of data points included
(and shown) in the fit.
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fixed at the fitted value (j-index), and use the inv-χ2-cdf() function to estimate the

uncertainty in the phase parameter.

As noted in Table 4.1, a total of 587,466 lightcurves exist in PTF, where each

lightcurve by definition consists of all reliable observations of a unique asteroid ob-

served in a single opposition in a single photometric band. Of these, only ∼10%

(59,072 lightcurves) have at least 20 observations and therefore qualified for fitting

with our algorithm. A total of 54,296 lightcurves actually produced a fit—the re-

maining ∼5,000 lightcurves failed to produce a fit either because some observations

were discarded and the total fell below 20 data points, or because the fitted cosmic

error grew to exceed 0.1 mag.

Figure 4.4 shows several examples of lightcurves fitted with the algorithm de-

scribed in this section. In the third column (column C) of Figure 4.4, we show the

periodograms of each lightcurve. Note that although the periodogram’s horizontal

axes are labeled with the period (for easier interpretation), the chi-squared (per de-

gree of freedom) values are actually plotted linearly with respect to frequency. This

is because, as described earlier, our sampling is uniform with respect to frequency,

and the harmonics are more easily seen with constant frequency spacing. Column

(D) shows the data sampling in rotational phase versus solar phase angle, a useful

plot to ensure there is no obvious correlation between the two (which could lead to

an erroneous fit, e.g., for long periods, large amplitudes and/or few data points).

4.4.3 Comments on implementation

Each iteration in the fitting of each asteroid lightcurve involves evaluating the ar-

rays and tensor-products in either Equation (4.19) or (4.29). This includes inverting

the data-covariance matrix B (Equation [4.20]) and inverting the Nfrq matrices sj

(Equation [4.22]). The arrays L, m′, X and R can have a relatively large number of

elements, making them and their relevant products potentially taxing with respect to

computational memory.

Our particular implementation of this algorithm leverages the efficient array-
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manipulation capabilities of MATLAB, especially its ability to perform fast ma-

trix multiplication and matrix inversion utilizing BLAS calls11 and OpenMP multi-

threaded C loop code12. Given typical numbers of observations and frequency sam-

pling, each of our lightcurve fits (including the multiple iterations) takes on average

several tens of seconds to run on an eight-core machine (multi-threading enabled), and

typically consumes less than ∼4 GB of memory using single-precision computation.

In the online supplementary material we provide our custom MATLAB function

used for fitting theG-parameter version of the lightcurve model (asteroid lc fit G.m).

Analogous versions exist for the Shevchenko and G12 models. This function takes as

input an asteroid’s apparent magnitudes, magnitude uncertainties, observed epochs,

phase angles, geocentric and heliocentric distances. Its outputs include the linear-

parameter-solution array (Equation 4.28), residuals (Equation 4.30), chi-squared ar-

ray (Equation 4.31), and additional information about each lightcurve solution such

as the amplitude and peak ratios.

4.5 Reliability of fitted rotation periods

A primary concern in the quality assessment of our fitted lightcurve parameters is the

validity of our derived rotation periods. In this section we describe several methods

of estimating the reliability of these periods, beginning with comparison to a ground-

truth subsample of known-period asteroids and followed by a full vetting of our entire

sample using a combination of machine-learning and manual classification.

The fitted period may differ (slightly or significantly) between the fits using the

different phase function models. In this section for simplicity we consider only the pe-

riod value obtained when fitting with the G12 phase-function model (Section 4.3.2.3).

In subsequent sections we will again consider all three φ models.

11http://www.netlib.org/blashttp://www.netlib.org/blas
12http://openmp.orghttp://openmp.org
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Figure 4.5: For the 927 lightcurves (805 unique asteroids) having a quality code 3
period in the Lightcurve Database of [Warner et al. (2009)] and an original fit in this
work, we plot the distribution of the relative error in our fitted rotation frequencies
with respect to the literature-referenced frequencies. The distribution is bimodal, with
the left-hand mode corresponding to those fits having better than ∼3% agreement.

4.5.1 Known-period subsample

A total of 927 (∼2%) of our fitted lightcurves belong to 805 unique asteroids having a

previously-measured period listed in the Lightcurve Database (LCBD) of

[Warner et al. (2009)]. This includes only asteroids having a quality code of 3 (high-

est quality) in the LCDB.

Figure 4.5 shows that the distribution of relative errors on our fitted frequencies

is bimodal, with the left mode corresponding to periods having better than ∼3%

agreement with the reference period, and the right mode corresponding to periods

in disagreement with the reference period. These disagreeing fits include lightcurves

which differ from the reference value by a harmonic (half = relative error 0.5, double

= relative error 1.0), as well as frequencies that do not differ by a factor of two or any

integer multiple. About 1/3 of the lightcurves in Figure 4.5 fall into the right mode

and are thus considered disagreeing fits.

Figure 4.6 shows some examples of these disagreeing fits. Row 1 shows an apparent

low-amplitude rotator, whose fitted period of 15.7 hr differs from the reference value

of 9.7 hr. Row 2 is an object whose periodogram contains a great deal of noise,

divided into two broad forests of frequency minima. The left forest appears to have
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Figure 4.6: Examples of lightcurves whose fitted frequency differs from the reference
frequency by more than 3%, so that they fall in the right mode in the histogram shown
in Figure 4.5 and are formally defined as inaccurate fits. Row 1 : Low-amplitude
rotator. Row 2 : Incorrect period (too few observations?). Row 3 : A fitted frequency
that differs from the reference frequency by 12%. Row 4 : period that differs by a
non-integer multiple, despite looking reasonable. Row 5 : Folded lightcurve appears
to be fitting noise in the data.
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Figure 4.7: Top row : The 927-lightcurve known-period sample (black), divided into
the accurately-fitted (green) and inaccurately-fitted (red) subgroups. Middle row :
Ratio of the green to black histograms. Bottom row : Results of cross-validation of
the machine-classifier (see Section 4.5.2.2).

been selected by our fitting algorithm while the right forest seems associated with the

true period of ∼2.7 hr. Row 3 contains an object whose 12% relative frequency error

exceeds the 3%-accuracy threshold we have defined, and so despite appearing to be

a good fit it is formally categorized as inaccurate. Row 4 also looks like a reasonable

fit at 6.4 hr, but disagrees with the reference period of 11.0 hr (though the latter

does have a perceptible local minimum in the periodogram). Finally, Row 5 includes

a likely example of the algorithm fitting noise in the photometry of a faint asteroid.

In Figures 7 and 8 (top and middle rows) we detail the distribution of the accurately-

recovered-period and inaccurately-recovered-period subgroups in terms of eight dif-

ferent lightcurve parameters. Some basic observations from these histograms are:

1. fitted periods are far less reliable if longer than ∼1 day or shorter than ∼2.7

hours,
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Figure 4.8: Top row : The 927-lightcurve known-period sample (black), divided into
the accurately-fitted (green) and inaccurately-fitted (red) subgroups. Middle row :
Ratio of the green to black histograms. Bottom row : Results of cross-validation of
the machine-classifier (see Section 4.5.2.2).
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2. fitted amplitudes of less than 0.1 mag correspond to the least reliably fit periods,

3. lightcurves consisting of observations dimmer than ∼18.5 mag are much less

reliable than brighter lightcurves (though they are also far less numerous in the

known-period sample),

4. fit χ2 (per degree of freedom) values of less than ∼1.7 correlate with less reliable

periods (though they are also far less numerous in the known-period sample).

Note that, in the fitting process, growth of the cosmic error term ceased once

the χ2 (per degree of freedom) fell below 3 (cf. Figure 4.3).

5. the number of observations in a lightcurve is not directly correlated to the

reliability of the fitted period,

6. the ratio of the folded lightcurve’s two peaks, the signal-to-noise ratio of the

periodogram’s chosen minimum, and the uncertainty in the absolute magnitude

parameter are all strong indicators of the reliability of the fitted period.

The above comments reflect consideration of the one-dimensional distributions

in Figure 4.7 and 8; however we can easily imagine there are correlations in more

dimensions not evident from these plots alone. An obvious example would be the

two-dimensional distribution in amplitude versus median magnitude: reliability is

presumably greater for bright asteroids having amplitudes <0.1 mag than it is for

dim asteroids having amplitudes <0.1 mag. Period versus amplitude is also likely an

insightful distribution (and was considered for example by [Masiero et al. (2009)]).

The number of observations possibly does correlate with reliability if we were to

restrict another parameter or parameters to some specific interval.

Rather than manually examining the period-fitting reliability as a function of all

possible multi-dimensional combinations of the eight lightcurve parameters detailed

in Figures 7 and 8, we can take a more general approach of considering the relia-

bility to be a single function defined on the multi-dimensional parameter space in

which all of the lightcurves reside. We hypothesize that accurately-fit lightcurves and

inaccurately-fit lightcurves occupy distinct regions in this multi-dimensional volume.
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As these volumes can overlap to some extent, we can at least estimate the proba-

bility that a lightcurve with that particular vector of parameters corresponds to an

accurately-recovered (or inaccurately-recovered) period when obtained by the fitting

algorithm of Section 4.4.

There are two general ways of accomplishing this goal. One way is to produce

a large number of synthetic lightcurves filling out the multidimensional lightcurve-

parameter space, subject these synthetic lightcurves to our fitting algorithm, and

thereby map out e.g., by binning and interpolation, the fit reliability throughout the

multi-dimensional volume. This method requires us to accurately simulate all sorts of

varying sampling cadence as well as measurement uncertainties, including contribu-

tions from both systematics and noise, and it requires significant extra computing time

to actually subject the synthetic data to our fitting procedure. The second method—

the approach we take in this work—uses a ground-truth sample (the known-period

lightcurves already described in this section) to train a machine classifier to discrimi-

nate reliable versus unreliable fits within the multi-dimensional lightcurve-parameter

space.

4.5.2 Machine learning

We adopt a supervised ensemble-method approach for classification, originally popu-

larized by [Breiman et al. (1984)], specifically the random forest (RF) method

[Breiman (2001)]. RF classification has extensive and diverse applications in many

fields (e.g., economics, bioinformatics, sociology). Within astronomy in particular RF

classification is one of the more widely-employed methods of machine-learning, though

many alternatives exist. For example, [Masci et al. (2014)] use the RF method for

variable-star lightcurve classification, while others have approached this problem

via the use of, e.g., support vector machines [Woźniak et al. (2004)], Kohonen self-

organizing maps [Brett et al. (2004)], Bayesian networks and mixture-models

[Mahabal et al. (2008)], principle component analysis [Deb & Singh (2009)], multi-

variate Bayesian and Gaussian mixture models [Blomme et al. (2011)], and thick-pen
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Figure 4.9: Correlation matrices (Spearman’s ρ coefficient) for the 20 lightcurve fea-
tures (Table 4.2) in the training sample (left) and in the full data set (right).

transform methods [Park et al. (2013)].

For general descriptions of RF training and classification, we refer the reader

to [Breiman (2001)], [Breiman & Cutler (2004)], and the many references cited by

[Masci et al. (2014)]. Our use of a RF classifier is particularly motivated by its

already-proven application to the discovery and classification of astrophysical tran-

sients in the same PTF survey data [Bloom et al. (2012)], as well as streaking near-

Earth asteroid discovery in PTF data (Waszczak et al. in prep.).

Machine-learning application generally consists of three stages: training, cross-

validation, and classification. In the training stage of building a machine classifier,

the multi-dimensional parameter space is hierarchically divided into subspaces called

nodes, these nodes collectively comprise a decision tree. The smallest node—also

known as a leaf —is simply an individual datapoint (in our case, a single lightcurve).

Given a set of leaves with class labels, one can build an ensemble of trees (called a

forest), each tree representing a unique partitioning of the feature space, wherein the
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Figure 4.10: Examples of reliable lightcurves whose folded rotation curve include
cusp-like minima (systematic negative deviation from the 2nd-order Fourier fit at
minimum brightness), suggestive of a binary system. Many more examples exist in
our lightcurves, however in this work we have not specifically flagged such lightcurves.
Future works will more carefully label and analyze this particular class of objects.
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nodes are split with respect to different randomly-chosen subsets of the parameter

list. Each node splitting attempts to maximize the separation of classes between the

sub-nodes. Serving as a model, in the subsequent classification stage the forest allows

one to assign a probability that a given vector of features belongs to a given class.

During cross validation (an essential early stage in this process), the training and

classification steps are repeated many times, each time using different subsamples (of

labeled data) as the training data and testing data. Cross validation evaluates the

classifier’s performance and ensures it is not overfitting the training data.

For our lightcurves, we are interested in a binary classification, i.e., whether the

fitted period is accurate (‘real’) or inaccurate (‘bogus’). [Bloom et al. (2012)] coined

the term realBogus to describe this binary classification probability in the context

of extragalactic transient identification. In the present work we are essentially adapt-

ing Bloom et al.’s realBogus concept to the problem of lightcurve-period reliability

assessment.

We employ a MATLAB-based Random Forest classifier13 which is a port of the

original RF software (originally implemented in R). This software includes two main

functions, which perform the training and classification steps separately.

4.5.2.1 Classifier training

Our training data consist of the known-period lightcurves (cf. the previous section)

belonging to the two classes under consideration: 618 lightcurves having accurately-

fit rotation periods and 309 lightcurves having inaccurately-fit periods. Membership

in one class versus the other depends on our arguably arbitrary 3% relative accuracy

threshold, though we claim the clearly bimodal shape of the distribution in Figure 4.5

justifies this 3% criterion. We note also that the classifier ultimately only provides a

probability that a given lightcurve belongs to one class or the other, so that objects

very near to the 3% cutoff may conceivably correspond to classification probabilities

close to 0.5.

13https://code.google.com/p/randomforest-matlabhttps://code.google.com/p/randomforest-
matlab
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An important point is that the ‘ground-truth’ reference periods we have taken

from the database of [Warner et al. (2009)] may include some number of inaccurate

periods. Such periods may be the product of erroneous fitting on the part of any

one of its many different contributors, each of whom may employ a different fitting

procedure and/or adhere to different confidence criteria. For the sake of this work

however we consider all quality code 3 periods to be accurate—any actual inaccuracy

will contribute to decreased classifier performance.

Besides ground-truth periods that are simply inaccurate, we also in principle risk

contamination from reference periods that are no-longer accurate. We assume that

the majority of asteroids’ periods are not changing with time, at least not at lev-

els measureable with our data. For instance, direct measurement of the YORP

mechanism in at least one asteroid [Lowry et al. (2007)] reveal a relative rotation

period change of several parts per million over several years. Any measureable pe-

riod changes would likely be due to recent collisional events. The case of asteroid

596 Scheila [Bodewitts et al. (2011)] demonstrates that detectable collisional events

among main-belt asteroids do occur on a relatively regular basis, though even this

robustly-detected collision imparted no measurable change in the asteroid’s spin rate

[Shevchenko et al. (2013)].

Although Figures 7 and 8 detail the period-fitting reliability as a function of only

eight lightcurve parameters, we construct our classifier using 12 additional parame-

ters, for a total of twenty lightcurve parameters. In the context of machine-learning

these parameters are known as features. The twenty features we use were chosen on

the basis of their availability (most are output directly by the fitting process and do

not require additional computation) as well as their actual importance (as computed

during the cross-validation tests described in the next section).

Our twenty lightcurve features are listed in Table 4.2, in order of decreasing im-

portance. Most of these quantities we have discussed already in previous sections

in the context of our model and fitting procedure. The list also includes two fea-

tures characterizing the magnitude distribution of the folded lightcurve: (1) Stetson’s

K-index, a measure of the kurtosis borrowed from variable star lightcurve analy-
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Figure 4.11: Definitions of true vs. false and positive vs. negative labels. True-
positive rate (TPR) is sometimes called the completeness or sensitivity, while false-
positive rate (FPR) is otherwise known as the false-alarm rate, one minus the relia-
bility, or one minus the specificity.

sis [Stetson (1996)], and (2) a ‘cusp index’ which quantifies the extent to which the

dimmest 10% of the data points in the folded lightcurve deviate from the best fit rel-

ative to the other 90% of the data points. We designed the cusp index to potentially

identify eclipsing systems which are poorly fit by the two-term Fourier approximation

but nonetheless may have accurately-fit periods (examples of lightcurves with such

cusp-like minima appear in Figure 4.10). Eclipsing binaries would be most properly

treated with a different model entirely, as would tumbling asteroids (which we also

did not systematically try to identify in the data, and probably lack reliable lightcurve

solutions when subjected to this work’s algorithm).

Figure 4.9 visualizes the two-dimensional correlation coefficients for all possible

pairs of the 20 lightcurve features. Overall, the correlation structure of the training

sample qualitatively resembles that of the full data set, implying the training set fairly

well represents the overall data set in terms of its feature-space structure. On the other

hand, the distributions (e.g., median value, range of values) of individual features in

the training set do not necessarily match the distributions in the full data set: this

is evident for the several features plotted in Figure 4.14. An obvious example is that

the full data set contains far more faint asteroids than does the training sample, even

though in both cases the median magnitude (medMag) is positively correlated with

quantities like rmsFit (due to Poisson noise) and hMagRef (since larger asteroids
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Figure 4.12: True-positive versus false-positive rates for the cross-validation trials.
Such as plot is sometimes referred to as a receiver operating characteristic (ROC )
curve. Each trial trains the classifier using a randomly-chosen 80% of the known
accurate fits and 80% of the known inaccurate fits among the 927-lightcurves that
have reference periods. The 20% remaining lightcurves serve as the test sample.
Moving along the hyperbolic locus of points in this plot is equivalent to tuning the
classification probability threshold from zero (lower left of the plot) to one (upper
right of the plot). The errorbars represent the scatter in the 1,000 cross-validation
trials.
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correspond to the p > 0.5 classification threshold; each point was generated by the
exact same process for which the results in Figure 4.12 were generated, only varying
the number of features with respect to which nodes are split. In the left plot, the
first four points are labeled with the number of features for that trial (for n > 4
we omit the label). In our actual implemented model (Figure 4.12) we chose n = 4
features, the value after which the TPR/FPR ratio plateaus at approximately 2, and
also the value [Breiman (2001)] recommends, i.e., the square-root of the total number
of features (in our case,

√
20 ≈ 4).

tend to be brighter).

4.5.2.2 Classifier cross-validation

To ascertain the trained classifier’s capabilities, and to ensure that the classifier is

not overfitting the training data, we perform a series of 1,000 cross-validation trials.

In each trial we split each class (accurate fits and inaccurate fits) into a training

subsample (a randomly chosen14 80% of the class) and a test subsample (the remaining

20% of the class). We then train a classifier using the combined training subsamples

and subsequently employ the classifier on the combined test subsamples. In each of

the trials, the classifier outputs a classification probability (score) for each object in

the test sample, and we track the true positive rate (TPR; fraction of accurate period

fits that are correctly classified above some threshold probability) as a function of

the false-positive rate (FPR; fraction of inaccurate period fits that are incorrectly

14Another standard, slightly different approach is to evenly split the training data into k disjoint
sets (a process called k-folding). Also, our choice to separately partition the two classes into training
and test subsamples could be omitted.
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classified above said threshold probability). See Figure 4.11 for a summary of these

terms.

The results of the cross-validation are shown in Figure 4.12. By tuning the mini-

mum classification probability used to threshold the classifier’s output, one effectively

moves along the hyperbola-shaped locus of points in TPR-vs.-FPR space seen in the

plot. Several points have labels (p = ...) indicating the corresponding threshold prob-

ability (adjacent points being separated by ∆p = 0.05). The errorbars in Figure 4.12

represent the standard deviation of the location of each point over all 1,000 trials,

while the point centers are the average locations.

A classification threshold of p > 0.5 is conventionally used when quoting single

false-positive and true positive rates. In our case, this gives FPR = 0.45± 0.07 with

TPR = 0.89±0.03. The contamination of positively-classified lightcurves in the cross-

validation trials depends also on the actual class ratios in the sample being classified.

In particular, since ∼1/3 of our known-period lightcurves are inaccurate fits (Figure

4.5), it follows that among all lightcurves the classifier labels as accurate fits, the

contaminated fraction is (0.45 × 1/3)/(0.89 × 2/3 + 0.45 × 1/3) ≈ 1/5. If instead

of using the classifier we just randomly labeled some fraction of the lightcurves as

accurate and the rest as inaccurate, the resulting contamination would be 1/3 (i.e.,

worse than the 1/5 afforded by the classifier, as expected).

Several parameters can be adjusted or tuned when training a random forest clas-

sifier. First is the number of decision trees generated during the training stage.

Classification accuracy typically increases with the number of trees and eventually

plateaus. Most applications employ hundreds to thousands of trees; we here use 1,000

trees. Another tunable parameter is the number of randomly-selected features (out

of the 20 total here considered) with respect to which nodes are split in building the

decision trees. [Breiman (2001)] recommends using the square root of the number

of features. We ran the cross-validation for all possible numbers of features with

respect to which the nodes can be split (i.e., all numbers between 1 and 20). The

results are in Figure 4.13. We chose n = 4 as the number of features to split, both

because the classifier’s performance plateaus after that value and because it follow’s
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the recommendation of [Breiman (2001)] (4 ≈
√

20) features.

Other parameters that can be tweaked are the maximum depth of a tree, the

minimum number of samples per leaf, the minimum number of samples used in a

split, and the maximum number of leaf nodes. We do not constrain any of these

parameters, meaning we allow: trees of any depth, with any number of leaf nodes,

leaf nodes consisting of a single sample, and splits based on the minimum of 2 samples.

We note that as a result our model optimization is not comprehensive and it is possible

a better classifier could be trained. However, the relatively small training sample size

here is likely the limiting factor; additional data is necessary to substantially improve

the classifier performance.

In the bottom rows of Figure 4.7 and 4.8, we detail the dependence of the TPR

and FPR on various lightcurve parameters. Averaging (marginalizing) over any of

the x-axis quantities in these bottom-row plots (while also weighting each bin by

the number of lightcurves it contains, cf. the top row of plots in Figures 7 and 8),

produces precisely the TPR and FPR values of the p = 0.5 data point in Figure 4.12.

In addition to the TPR and FPR estimates, cross-validation allows us to quantify

the relative importance of the features by computing the average depth in the trees at

which a split was performed with respect to each feature. Those features with respect

to which the training sample is consistently divided early in the building of each tree

are deemed more important (i.e., more discriminating) than those features which are

split later, as the tree-building process tries to maximize the separation of the classes

as early as possible by splitting features in an optimal sequence. Both Table 4.2 and

Figure 4.9 list the features in order of importance.

Note that we had manually guessed several of the most important features—

namely, peakRatio, freqSNR and hMagErr—prior to any machine-learning work via

inspection of the plots in Figure 4.8. The numerical importance values thus agree

with these initial observations, and also quantify the significance of features which

would be difficult to ascertain manually. For instance, numObsFit appears (in Figure

4.8) not to be related to the fitting accuracy while medMag (Figure 4.7) does appear

related to accuracy (fainter lightcurves being less accurate), yet these two features



138

evidently have equal importance in the classification process (cf. Table 4.2). Figure

4.9 indicates that numObsFit and medMag have quite different correlation relationships

with respect to more important features. Hence, it would not be surprising if their

one-dimensional distributions (in Figures 7 and 8) bear no resemblance to the multi-

dimensional distributions on which the decision trees are defined and in which these

two parameters apparently carry comparable weight.

4.5.2.3 Machine-vetted lightcurves

Having trained the machine classifier as described in Section 4.5.2.1, we use it to

predict the validity of our remaining ∼53,000 fitted periods (of ∼48,000 unique as-

teroids) which lack quality code 3 reference periods in [Warner et al. (2009)]. The

automated classifier assigned positive reliability scores (p ≥ 0.5) to 19,112 of the

lightcurves (35% of the total data set). Figure 4.14 details the distribution of the

lightcurves (raw-fitted, machine-vetted, and other subsets) with respect to some of

the most important lightcurve features.

With respect to rotation period (Figure 4.14 panel A), the classifier rejects the

largest fractions of lightcurves in the long-period (&1 day) and short-period (.2.7

hours) bins. From Figure 4.7 (bottom row, leftmost column), we know that the

classifier’s completeness does not drop significantly for these long- and short-period

objects, nor is the false positive rate higher among them. Hence we have reason to

trust the classifier’s heavy rejection of periods in these bins, and therefore conclude

that our fitting algorithm (Section 4.4) is prone to erroneously fitting periods in these

period extremes (as was also suggested in the known period sample in Figure 4.7).

Panel C shows that the mode of the apparent-magnitude (medMag) distribution for

machine-approved lightcurves is ∼19 mag, as compared to the predominantly V . 17

mag known-period training sample. Comparing this to Figure 4.2 panel A shows

that the limiting magnitude of reliable lightcurves is comparable to that of individual

detections.

Panel E of Figure 4.14 shows that the raw output of our fitting process contains

peak-ratio values that are uniformly-distributed above 0.2, this particular value being



139

a hard-coded threshold that double-peaked lightcurves (at least those with amplitudes

>0.1 mag) output by our fitting algorithm must satisfy (see Figure 4.3 and Section

4.4.1). The classifier’s output clearly indicates that reliability is linearly related to

the peak ratio, as was also prominently seen in Figure 4.8. Because Figure 4.8 also

indicates that the classifier’s true-positive and false-positive rates also relate linearly

with peakRatio, we conclude that the slope of the peakRatio distribution for the

machine-vetted lightcurves is likely an upper limit for the true slope.

4.5.3 Manual screening

In addition to machine-based vetting, we manually inspected all 54,296 of the lightcurves

that were output by our fitting process. A human screener first studies the ground-

truth known period examples (Section 4.5.1) in an effort to learn to distinguish be-

tween accurate and inaccurate fits. Only the G12 fit is considered (as was the case

with the automated classifier), and for each lightcurve the screener inspects precisely

the amount of information included for example in Figures 4.4, 4.6 and 4.10 of this

chapter. Specifically, for each lightcurve the screener views a row of four plots: (1)

the rotation-corrected phase curve, (2) the phase-function-corrected folded rotation

curve, (3) the periodogram, i.e., the reduced χ2 plotted linearly against frequency

(labeled however with the corresponding period), and (4) the rotational-phase vs.

phase-angle plot. A single screener is presented with these plots through a plain-

formatted webpage, allowing for efficient scrolling through the lightcurves and rapid

recording of either a ‘reliable’ or ‘unreliable’ rating for each fitted period. In addition,

all lightcurves in the known-period sample were reinserted into the screening list, with

their reference periods removed. These were thus blindly assessed by the screener,

independent of their formal (3%-accuracy) classification status.

The black lines in Figure 4.14 plot the results of the manual screening, in which a

total of 10,059 lightcurves (19% of the total set) were deemed ‘reliable’. With respect

to the machine-approved sample, the human-rated sample is in all cases between

roughly a factor of ∼1 to 2 smaller in each bin relative to the features examined in
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Figure 4.14. In general the shapes of the machine-approved and human-approved dis-

tributions match fairly closely. Figure 4.15 shows examples of lightcurves for which

the machine- and human-based classifiers differed in their rating (we focus on very

short and very long fitted periods in Figure 4.15, but many examples exist for inter-

mediate periods as well).

4.5.4 Asteroids with multiple fitted periods

A total of 654 unique asteroids have more than one PTF lightcurve whose fitted period

was labeled as reliable by the vetting process described in the previous sections. These

654 asteroids collectively have 1,413 fits (so that the average multiplicity is ∼2.2

fits per asteroid) and include objects either observed in multiple oppositions and/or

in both filters during one or more oppositions. Figure 4.16 plots the distribution

of the relative error in the fitted frequencies of all such multiply-fit asteroids, this

error being defined as the range of the asteroid’s fitted frequencies divided by the

geometric mean of its fitted frequencies. Just as in Figure 4.5 (when we compared to

literature-referenced frequencies), we see a prominent mode in the histogram peaking

at ∼0.1% relative error, with some excess for errors greater than ∼3% error. There

are 63 asteroids in particular with relative errors greater than 3%, of these only four

asteroids have more than two fits. If we assume that, in the remaining 59 pairs of

disagreeing periods, one of the periods is correct, then the contamination fraction of

lightcurves based on the sample of multiply-fit asteroids is ∼30/1413 = 4%.

4.6 Preliminary lightcurve-based demographics

In this section we perform a preliminary analysis and interpretation of the demo-

graphic trends evident in this work’s fitted lightcurve parameters. Forthcoming works

and papers will more closely examine the population distributions of both rotation

and phase-function parameters.

Throughout this section we repeatedly examine variation of lightcurve-derived pa-

rameters as functions of color index and infrared-derived diameters. In the appendix
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we describe the aggregation and characteristics of these two custom data sets (com-

piled from external sources). The color index quantifies an asteroid’s probability of

membership in the C-type (p = 0) versus S-type (p = 1) color-based clusters. Objects

which in fact belong to neither C nor S groups (e.g., V types, D types) will have color

indices near p = 0.5 provided they are in fact separated from both the C-type and

S-type clusters in the 2D color spaces considered (see appendix).

There are many interesting demographic questions addressable with these lightcurve

data which—in the interest of space—we do not treat in this work. For example,

one could examine relationships between lightcurve parameters and orbital elements

and/or family membership, proximity to resonances, and so on. We are making all

of these lightcurve data available electronically (Tables 4 and 5, cf. Section 4.9.3) so

that the community may use these data to help explore such science questions.

4.6.1 Disclaimer regarding de-biasing

The preliminary demographic analyses that follow do not take into account fully de-

biased distributions of, e.g., spin rates, amplitudes, or phase-function parameters.

The true-positive and false-positive rates given in the bottom row of plots in Figure

4.7 and 4.8 (also, the blue and violet lines in Figure 4.14), constitute some of the

necessary ingredients for producing a fully de-biased data set, however in this work

we do not attempt to compute the de-biased distributions.

4.6.2 Rotation rates and amplitudes

In Figure 4.17 we reproduce several of the plots appearing in [Pravec et al. (2002)]

and references therein, using this work’s much larger data set (characterized by at

least an order of magnitude larger sample of small objects). Both spin rate and ampli-

tude are examined for the 4,040 objects having diameter data from infrared surveys.

Unlike [Pravec et al. (2002)], we are not able to individually plot each lightcurve’s

data (the ∼4,000 points would make the plot difficult to render, as well as difficult to

read); hence we plot these (and other relationships later in this section) using two-
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dimensional histograms where the intensity of each pixel corresponds to the number

of objects in that bin (darker means more, with linear scaling). Additionally, 2D

histograms for which the diameter is plotted on the horizontal axis have their pixel

values column-normalized, i.e., all pixels in each column of the histogram sum to the

same value. This facilitates the visual interpretation of period and amplitude vari-

ation with diameter, as the left-hand side (small-diameter end) of the plots would

otherwise saturate the plot.

Following [Pravec et al. (2002)], we include the geometric mean rotation frequency

as computed from a running bin centered on each object. The half-width of the bin

centered on each object is either 250 (data points) or the object’s distance from the

top or bottom of the sorted diameter list, whichever is smallest. This ensures the

geometric mean is not contaminated at the edges of the plot by the interior values,

though it also means more noise exists in these edge statistics. The geometric mean

is the more intuitive statistic for the rotation period as compared to the arithmetic

mean, since the rotation periods tend to span several orders of magnitude. In addition

to the geometric mean, we plot the 16th and 84th percentile values from each running

bin.

The basic observed trend regarding rotation rate is that smaller-diameter aster-

oids rotate faster on average. A slight increase in the rotation rate also appears for

objects larger than ∼80 km. Binning the data into a coarser set of three diameter

bins and normalizing each object’s spin rate by the local geometric-mean rate, we see

a progression from a near-Maxwellian distribution to a progressively non-Maxwellian

distribution for smaller objects. The rotation rates of a collisionally-equilibrated pop-

ulation of rotating particles is known to approach that of a Maxwellian distribution

(e.g., [Salo (1987)]), which for a population of N objects as a function of rotation

frequency f is:

n(N, f, fpeak) =
4Nf 2

√
πf 3

peak

exp

(
− f 2

f 2
peak

)
, (4.32)

where n(N, f, fpeak)df is the number of objects in the interval (f, f + df) and fpeak is
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the peak frequency (i.e. the frequency corresponding to the distribution’s maximum).

One way of testing how well a Maxwellian actually fits the data is the two-sided

Kolmogorov-Smirnov (KS) test [Massey (1951))]. This test compares an empirical dis-

tribution to a reference distribution (e.g., Gaussian, Maxwellian, or another empirical

sample) via a bootstrap method. In particular it computes a statistic quantifying the

extent to which the cumulative distribution function differs in the two distributions

being compared. In our case, we use Equation (4.32) to simulate a large sample (105)

randomly drawn from an ideal Maxwellian distribution and compare this simulated

sample against the 99-asteroid sample (of D > 40 km) frequencies. Interestingly, this

test indicates our 99 large-asteroid normalized frequencies differ from a Maxwellian

at nearly the 10σ confidence level, though this could be due in part to the lack of a

proper de-biasing of the distribution (cf. Section 4.6.1)

All of these trends—including the qualitative resemblance of a Maxwellian but its

formal disagreement—were noted previously by [Pravec et al. (2002)]. At the time

their D < 10 km size bin contained data on only 231 objects, as opposed to our

sample of 2,844 asteroids with D < 10 km. Conversely, our D > 40 km bin contains

only 99 objects as compared to the ∼400 large asteroids they took into consideration

in comparing to a Maxwellian.

[Steinberg & Sari (2015)] recently described how collisional evolution of large as-

teroids should actually lead to a Lévy distribution, which has a significantly longer

tail than a Maxwellian distribution having the same peak. They compared their the-

ory to spin rates of D ≥ 10 km asteroids from the LCDB and found in general that

the Lévy distribution fails to fit the spin distribution of large asteroids, suggesting

that there may be a significant primordial component to the spin distribution. Po-

tential primordial contributions to the angular momentum of asteroids were explored

by [Harris & Burns (1979)] and later authors; we will return to this topic in a later

section.

Our amplitude distribution contains an obvious observational bias (cf. Section

4.6.1) in that amplitudes less than ∼0.1–0.2 mag are generally ill-fit by our modeling

procedure (cf. Figure 4.7) and thus significantly underrepresented in our sample of
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reliable lightcurves considered here. Nonetheless, we see a clear trend of smaller

asteroids exhibiting larger rotational amplitudes, consistent with the idea that larger

bodies have sufficient surface gravity to redistribute any loose mass to a more spherical

shape.

As we have done for the normalized frequency distribution, we plot diameter-

binned normalized amplitudes against a Maxwellian distribution, this time merely

to guide the eye as opposed to validating any hypothetical physical interpretation.

The fact that the normalized amplitude distributions do not deviate too drastically

from the Maxwellian shape at smaller diameters indicates that the spread in the

amplitude distribution is proportional to its mean value, a basic property of the

Maxwellian distribution, hence the good agreement. [Carbognani (2010)] provides a

recent analysis of asteroid rotation amplitudes, and highlighted a similar increase in

both the amplitude’s mean and spread with decreasing diameter.

Panel B of Figure 4.17 shows the distribution in period-vs.-amplitude space, in

which we can plot all 9,033 lightcurves, including those lacking a diameter estimate.

Contours representing the maximal spin rate of a body held-together solely by self-

gravity of certain uniform densities are overplotted. Our data as a whole do not

appear to populate the region beyond the ∼2 g/cm3 contour. Later in this section

we will re-examine this behavior separately for the two major taxonomic classes.

4.6.3 Phase-functions and bond albedos

We consider any of the 54,296 fitted PTF lightcurves to have a reliably-fit phase

function if both of the following conditions are satisfied:

1. The lightcurve is one of the 9,033 having a reliable period fit, or its fitted

amplitude (for the G12 model) is less than 0.1 mag (the latter is true for 1,939

lightcurves, only 39 of which have reliable periods)

2. The lightcurve is fit using data from at least five phase-angle bins of width

∆α = 3 deg. These five bins need not be contiguous, and they need not include
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phase angles in the region where opposition surges are typically measured (i.e.,

α . 10 deg)

The above two criteria are met by 3,902 out of the 54,296 PTF lightcurves. Of these,

1,648 have an infrared-based diameter available, 651 have a color index available, and

361 have both a diameter and color index.

Figure 4.18 details the distributions of the fitted phase parameters G12, G, β

and C against the color index, bond albedo, and in 1D histograms with color-based

taxonomic subsets. Though the phase parameters are all correlated with color index

and with bond albedo, none of the 1D phase-parameter distributions (right column

of plots) exhibit bimodality alone, whereas the bond albedo (bottom right plot) does

show significant bimodality. The red and blue histograms consist of all asteroids

having color metric either less than 0.25 (C types) or greater than 0.75 (S types).

The G and (β, C) phase parameters are only plotted for those lightcurves which also

have a G12 solution. Not every lightcurve produced a solution for all three of the

phase-function models, hence the sample sizes for the G and (β, C) models include a

slightly reduced number of data points.

We reiterate our statement from Section 4.3.2.1 that the bond albedo Abond is a

more fundamental (i.e., intensive rather than extensive) property than is the geometric

albedo pV , hence our focus on Abond here. The bond albedo is computed using

Equation (4.8) together with Equation (4.15), and makes use of our PTF-derived

absolute magnitudes—H from the G12 fit in particular—as well as the phase integral

q of Equation (4.8), also computed directly from the G12 fit for φ. In particular,

q(G12) =

 0.2707− 0.236G12 if G12 < 0.2;

0.2344− 0.054G12 otherwise.
(4.33)

4.6.3.1 Taxonomy from lightcurve data

We use the distribution of bond albedo versus G12 to define another taxonomic metric

analogous to the color index. In particular, we apply the same clustering analysis to

this distribution as we did for the seven 2D color distributions in the appendix.
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This procedure assigns to every object in the Abond-vs.-G12 diagram a probability of

membership in each of two clusters (color coded blue and orange in Figure 4.19). The

cluster centers are fit by the algorithm, and the output class probability of a given data

point relates to its distance from these cluster centers. Probabilities near 0 represent

likely C-type class membership, while probabilities near 1 represent likely S-type

membership. We refer to this new metric as the photometric index ; it complements

the color index as another proxy for taxonomy. There are 361 asteroids with both a

photometric index and color index available (Figure 4.19 right plot); the two indices

are clearly correlated (ρSpearman = 0.73, >10σ significance). Note that asteroids only

have a defined photometric index if they have an infrared-derived diameter available,

so that Abond is defined.

4.6.3.2 Wavelength dependence

Observational evidence for the reddening of asteroid colors with increasing phase

angle is discussed by [Sanchez et al. (2012)] and references therein. Color variation

with phase angle can be equivalently stated as variation of the phase function with

wavelength. Asteroids which have PTF lightcurves in both of the survey’s filters

(R and g band) allow us to investigate this phenomenon. We note however that

[Sanchez et al. (2012)] describe phase reddening as being more pronounced at longer

wavelengths (>0.9 µm) and larger phase angles (α > 30 deg), such that a priori we

should not expect a very pronounced effect (if any) in the visible band PTF data.

Similar to the complication associated with comparing spin amplitudes from mul-

tiple oppositions (Section 4.3.1.1), an asteroid’s mean color can potentially change

if the spin axis varies with respect to our line-of-sight from year to year. Hence, we

choose not to compare R-band and g-band phase-function fits from different opposi-

tions. Aside from this constraint, we adopt the same two reliability selection criteria

stated in Section 4.6.3, with a slight modification of requirement #2: here we allow

four or more phase-angle bins of width ∆α = 3 deg, as opposed to the previous

sections’ five-bin requirement, because of the small sample size.

There are 92 asteroids with both R-band and g-band phase-function fits acquired
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during the same opposition that meet the above criteria. For each asteroid we differ-

ence the R-band G12 value from the g-band G12 value. The mean of this difference

is −0.004+0.19
−0.14, indicating (for the whole sample) no significant non-zero difference

between the two bands’ G12 values. Likewise, for β, we compute a difference of

0.002+0.008
−0.003, also consistent with zero difference between the bands.

Since these fits provide absolute magnitudes in each band (i.e., Hg and HR) we

compute the color Hg − HR for the 92-asteroid sample. Figure 4.20 shows that the

distribution of this color is bimodal, suggesting it is a viable proxy for taxonomy. This

is further supported by the strong correlation between Hg −HR and the R-band G12

value. No correlation is seen however between Hg − HR and the difference between

the two bands’ G12 value or β values.

4.6.4 Spins and amplitudes vs. taxonomy

The union of the color-index data (see appendix) and photometric-index data (Sec-

tion 4.6.3.1) provides significantly better taxonomic coverage of the PTF lightcurves

(Figure 4.21). With this composite taxonomic information in hand, we can repeat

the spin-amplitude analyses of Section 4.6.2 (Figure 4.17), this time considering the

C-type and S-type groups separately. We define objects with one or both of the

indices less than 0.25 as C type and greater than 0.75 as S type. We detail the re-

sulting 1,795-object taxonomically-classified sample in Figure 4.22. There were 20

asteroids with conflicting color-based and photometric-based classifications that are

not included in this 1,795-object sample.

The one-dimensional histogram in Figure 4.22 indicates that S-type asteroids dom-

inate the smallest objects with data in PTF while C type dominate the largest. This

reflects the fact that the survey’s upper and lower sensitivity limits are defined in

terms of absolute magnitude H (affected by albedo) rather than physical diameter,

i.e., S-type asteroids larger than ∼50 km will tend to saturate the PTF detector,

while C-type asteroids fainter than ∼5 km will usually fall below the detection limit.

Adding to this effect is the fact that S-types mostly occupy the inner main-belt,
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where they are brighter by virtue of smaller heliocentric and geocentric distances, as

compared to the usually more distant C types. While the two classes have similar

representation in the sample (882 S types versus 913 C types), their true population

ratio also affects the relative numbers.

The right-hand side plots in Figure 4.22 show rotation rate and amplitude ver-

sus diameter separately for the two taxonomic groups. Rather than plot a two-

dimensional histogram as was done in Figure 4.17, for readability we here just plot the

geometric mean and percentiles, computed by exactly the same running-bin method

described in Section 4.6.2. The most prominent trend is that among 5 . (D/km) . 20

asteroids, C types appear to rotate slower than S-types and have larger amplitudes

than S types. Assuming both asteroid groups share the same mean angular momen-

tum, the discrepancy could reflect the C types’ ability to more efficiently redistribute

material away from their spin axis, thereby increasing their moment of inertia (am-

plitude) while decreasing their angular rotation rate (i.e., a simple manifestation of

conservation of angular momentum).

The above-stated assumption of a common mean angular momentum between C

and S types is a merely a simple case and is neither unique nor rigorously motivated.

More careful consideration of, e.g., plausible ranges of internal tensile strengths of the

two types could easily lead to more diverse scenarios wherein the two groups actually

have different angular momenta and the observed spin-amplitude trends. As noted

earlier (Section 4.6.2), large asteroids in general appear to have retained a significant

primordial component in their spin distribution [Steinberg & Sari (2015)]; it is there-

fore important that differences in the origin of C types and S types (accretionary,

temporal and/or spatial) be taken into account along with differences in collisional

evolution and differing contributions from radiative forces like YORP. Simulations of

the main belt’s origin, such as the Grand Tack family of models [Walsh et al. (2011)],

should ultimately be modified to track particle spin evolution as well as orbits.

We also reproduce the period-vs.-amplitude plot first shown in Figure 4.17, this

time plotting separately the two taxonomic groups. The S types show a clearer cutoff

at the 2 g/cm3 contour line, suggesting they may in general be of greater bulk density
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than the C types, which show a softer boundary in this period-vs.-amplitude space,

the precise location of which appears to be somewhere between 1 and 2 g/cm3. Note

that comparison to these density contours is only valid if the asteroids in consideration

are held together mostly by self-gravity and approximated as fluids (as opposed to

having significant internal cohesive or frictional resistance). These results are in gen-

eral agreement with existing asteroid density estimates ([Carry (2012)] and references

therein). Results from an independent analysis of a smaller, more densely-sampled

set of PTF asteroid lightcurves (Chang et al. in review; a study that follows closely

the approach of [Chang et al. (2014a)]) agree with the C type vs. S type rotation

rate discrepancy discussed here.

4.7 Comparison to MPC-generated magnitudes

Absolute magnitudes available through the Minor Planet Center (MPC) and JPL So-

lar System Dynamics15 websites are fit using all available survey/observer-contributed

photometry. These H magnitudes are used in various online ephemeris tools to com-

pute predicted V magnitudes to accompany astrometric predictions. Their model as-

sumes no rotational modulation, uses the Lumme-Bowell G-model (Section 4.3.2.2),

and—with the exception of ∼100 large objects (nearly all with D > 30 km)—assumes

a constant G = 0.15 for all asteroids. Our results (Figure 4.18 second row of plots)

show that the G = 0.15 approximation does indeed agree well with the peak of the

distribution of fitted G values. The PTF-fitted G values obviously however show

some spread and variation with taxonomy. In this section we explore the resulting

differences in the absolute magnitudes H and in predicted magnitudes.

4.7.1 Filter transformations

In order to compare the MPC-listed (HMPC) magnitudes, which are in V band,

with PTF’s absolute magnitudes (HPTF, corresponding to the G-model fit) which

15http://ssd.jpl.nasa.govhttp://ssd.jpl.nasa.gov
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are in either R and g bands, we must first compute an approximate transforma-

tion from V -band to each PTF band. While some transformations are given by

[Ofek et al. (2012a)], we here prefer to empirically estimate these using actual aster-

oid photometry from both PTF and the MPC, rather than generating them from the

more general transformations of [Ofek et al. (2012a)].

Figure 4.23 plots HPTF − HMPC for asteroids whose PTF-derived GPTF is in the

range 0.1 < GPTF < 0.2. By restricting the comparison to objects with fitted GPTF

values close to 0.15, we in principle select HMPC magnitudes for which the MPC’s

GMPC = 0.15 assumption is actually valid (none of the asteroids in Figure 4.23 have

MPC-listed G values other than the default 0.15). Furthermore, we only consider (in

Figure 4.23) asteroids with PTF data in at least three phase angle bins of ∆α = 3

deg and either a reliable period or fitted amplitude less than 0.1 mag.

Comparing the HMPC and HPTF magnitudes for this specific subset of asteroids, we

obtain approximate transformations R = V +(0.00±0.10) and g = V +(0.55±0.16).

The 1σ uncertainties of 0.10 and 0.16 mag plausibly include a combination of the

photometric calibration uncertainties of both the MPC data (coming from a variety

of surveys/observers), variation in H magnitude of a given asteroid between differ-

ent oppositions (the MPC fits combine data possibly acquired at different viewing

geometries), as well as the range of GPTF used in selecting the asteroids in this sam-

ple. Consideration of a range of GPTF values is equivalent to considering a range of

asteroid colors (cf. the color-vs.-G correlation seen in Figure 4.18). Hence the uncer-

tainties in these transformations also encompass the variation which might otherwise

be formally fit in a color term for the transformations. Such a color term for R to V

would almost certainly be less significant than that of g to V , as the former trans-

formation is already zero within uncertainties. The larger uncertainty in the g to V

transformation is likely attributable to both the smaller sample size and the fact that

the V bandcenter is further displaced from g than from R, such that color variation

has a more pronounced effect.

Given the above-computed transformations, and the fact that 89% of our fitted

lightcurves are in R band, we proceed using only R-band lightcurve fits, which we
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compare directly against MPC magnitudes (or formally, after applying the trans-

formation of zero). A detail of the color dependence of the R to V transformation

appears in the right plot of Figure 4.23; the mean transformation differs slightly

between S and C types but not at a level comparable to the uncertainty in either.

4.7.2 Absolute magnitudes

In Figure 4.24 we show the relative error in the MPC absolute magnitudes as com-

pared to the PTF magnitudes, for all 1,630 lightcurves with sufficient phase angle

coverage in PTF (with the five-bin phase-angle criterion). These errors should re-

flect not only any discrepancy due the different phase function models (PTF’s G12

versus MPC’s G), but also variation in absolute photometric calibrations (within the

MPC data internally and/or between the MPC and PTF data sets). The 0.1-mag

uncertainty in the R to V band transformation has a prominent contribution to the

errors shown here (the mean and 84th percentile of the errors expected from the 0.1-

mag transformation uncertainty alone are shown as yellow dashed lines, and assume

pV = 0.07). The green line (computed mean) and upper red line (84th percentile)

indicate the errors are ∼1% greater than those expected from the transformation

uncertainty alone, though this increases slightly for the largest (D > 30 km) objects.

Note that many of these largest asteroids are more frequently observed by programs

other than the major sky-surveys; these smaller facilities tend to use smaller aperture

telescopes and different absolute calibration standards, which would contribute to the

error.

4.7.3 Predicted apparent magnitudes

Instead of comparing just the fitted H magnitudes, for every lightcurve with a reliable

PTF-fitted phase function we also compare the root-mean-square residual of all PTF

data in that lightcurve with respect to both our G12-fit-predicted R magnitude and

the MPC (G = 0.15) predicted V magnitude. Our fit includes more fitted parameters

and obviously should result in smaller residuals; Figure 4.25 shows that we see a
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factor ∼3 smaller residuals in particular using the PTF fit. Note that if the 0.1-

mag R-to-V transformation uncertainty were the only significant contributor to the

MPC residuals then their peak would instead be at ∼0.07 mag rather than ∼0.25

mag. Ignored rotational modulation and inaccurate phase functions move the MPC

residuals distribution to higher RMS values.

The lower RMS residuals afforded by the PTF lightcurve model permit a more sen-

sitive search for low-level transient activity (e.g., collisional events, cometary bright-

ening) in these asteroids. For example, [Cikota et al. (2014)] perform a search for

active main-belt asteroids using photometric residuals of all MPC data taken with

respect to the MPC-predicted apparent V magnitudes. We currently are pursuing a

similar analysis using these PTF lightcurves, as a follow-up to the morphology-based

search already completed with PTF [Waszczak et al. (2013b)]. A hybrid approach,

wherein morphological measurements are made on stacked images of asteroids which

have reliable lightcurve fits, could further reveal this kind of subtle activity.

4.8 Summary

From five years of PTF survey data we have extracted over 4 million serendipitous

detections of asteroids with known orbits. We fit a photometric model to ∼54,000

lightcurves, each consisting of at least 20 observations acquired within a given op-

position in a single filter. We adopt a second order (four-term) Fourier series for

the rotation component and fit three distinct phase-function models. We assess the

reliability of our retrieved rotation periods by subjecting them to both an automated

classifier and manual review. Both vetting processes are trained on a sample of ∼800

asteroids with previously measured spin periods that also occur in our sample. We

consider the intersection of the two screened samples for subsequent analysis.

Preliminary analysis (on distributions that are not de-biased) of the rotation pe-

riod versus diameter confirms the previous finding that asteroids smaller than ∼ 40

km do not conform to a Maxwellian distribution in their normalized spin frequencies.

Phase-function parameters are shown to correlate strongly with the bond albedo.
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None of the phase function parameters display bimodality in their measured distri-

butions however. Together with the bond albedo, we use the phase function data

to define a new taxonomic metric based solely on single-band lightcurve properties

together with infrared-derived diameters (G12 and Abond). This metric complements

the color-based index established previously by many visible-color and spectroscopic

surveys. Combining these color- and photometry-based taxonomic indices allows us

to separately examine the spin and amplitude distributions of the C-type and S-type

asteroids with the largest possible sample sizes. Doing so reveals that, among small

objects (5 km < D < 20 km) the C types show larger amplitudes and slower spin rates.

If the two populations shared a common angular momentum distribution, this could

be interpreted as the two compositional types’ differing tendencies to redistribute

mass away from their spin axes. Comparison of the spin-amplitude distribution with

contours of maximal spin rates for cohesionless bodies suggests that almost all aster-

oids are less dense than ∼2 g/cm3, with C types displaying a potentially less dense

upper limit of between 1–2 g/cm3.

Finally, our fitted absolute magnitudes differ from those generated by the Minor

Planet Center’s automated fitting procedures, though the precise discrepancy is dif-

ficult to ascertain given uncertainty in the transformation between PTF R-band and

the MPC’s V -band. The utility in using our model to predict asteroid apparent mag-

nitudes is seen in the three-fold reduction in RMS scatter about our model relative

to the fiducial G = 0.15 model that neglects rotation. This reduced scatter is an es-

sential prerequisite for sensitive searches for cometary, collisional, and other transient

activity in what would otherwise be regarded as quiescent asteroids—potentially even

bright objects.
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4.9 Appendix

4.9.1 Multi-survey visible-band color index

The purpose of this appendix section is to introduce a one-dimensional color metric,

based upon data from seven different colorimetric asteroid surveys, which quantifies

an asteroid’s first-order visible-band color-based taxonomy as a number between 0

(C-type endmember) and 1 (S-type endmember). Our primary motivation for doing

this is to enable a uniform comparison of PTF-lightcurve-derived parameters with

color spanning from the brightest/largest objects (H ≈ 8–9 mag, or D ≈ 125–80 km

diameters) down to PTF’s detection limit for main-belt asteroids (H ≈ 16 mag, or

D ≈ 2–4 km). Figure 4.26 panel A shows that the fraction of PTF lightcurves with

color information increases by a factor of ∼3 among large asteroids when all seven sur-

veys are considered, whereas for smaller objects the Sloan Digital sky-survey’s (SDSS;

[York et al. (2000)]; [Ivezić et al. (2002)]; [Parker et al. (2008)]) moving-object cat-

alog provides essentially all of the color information.

The seven surveys we use are described in Table 4.3. All of these surveys contain at

least two independent color measurements, and when plotting their data in these two

dimensional spaces (or 2D subspaces defined by properly-chosen principal components

or spectral slope parameters), the first-order C-type and S-type clusters are in all

cases prominently seen (Figure 4.26 panel B). To each such 2D color distribution we

apply a two-dimensional fuzzy c-means (FCM) clustering algorithm ([Bezdec (1981)];

[Chiu (1994)]). For each survey data set, FCM iteratively solves for a specified number

of cluster centers (in our case, two) in N dimensions (in our case one dimension) by

minimizing an objective function which adaptively weights each datum according

to the robustness of its membership in a given cluster. The FCM output includes

computed cluster centers and, for each datum, the probability that the datum belongs

to each cluster (this being related to the datum’s distance from each cluster center).

In the color-distribution plots of Figure 4.26 panel B (the plots with black back-

grounds arranged diagonally), each pixel/bin is colorized according to the average

cluster-membership probability of asteroids in that pixel. Blue indicates high prob-
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ability of membership in cluster 1 while orange represents high probability of mem-

bership in cluster 2.

Our color index provides a more quantitative label than that offered by popular

letter-based taxonomic systems (e.g., [Bus et al. (2002)] and refs. therein). Several

such letter-based nomenclatures were in fact defined on the basis of one or more of

these seven surveys, oftentimes using a method similar to the clustering technique

we use here. We identify our blue cluster with C-type asteroids and our orange

cluster with S-type asteroids, though we make this association purely for connec-

tion/compatibility with the literature. This is because our computed clusters have

their own unique identity/definition, formally distinct from that given in any other

work. Our clusters’ definitions are nonetheless completely specified/reproducible by

the FCM algorithm we used to compute them.

In reducing the taxonomic classification to a single number defined by the two

most prominent groups (C and S types), we lose the ability to distinguish secondary

classes like V types, D types, and so on. If such a sub-group is separated from both

of the two main clusters, its members will be assigned membership scores of close to

0.5. For example, in the SDSS a∗ vs. i − z complex, the clearly-seen V-type ‘tail’

protruding down from the S-type cluster appears mostly green in color, reflecting its

intermediate classification. Likewise for the less-clearly seen D types, which in the

SDSS plot lie above the S types and to the right of the C types (again in a green-

colored region). The orders of magnitude lower numbers of such secondary types

make them mostly irrelevant for the purpose of this analysis.

We compute the numerical uncertainty (variance) of a given asteroid’s cluster-

membership score in a particular survey by performing many bootstrapped trials

wherein we first randomly perturb all data points by random numbers drawn from

Gaussian distributions whose width are the quoted 1σ measurement (i.e., photomet-

ric) uncertainties in each of the two dimensions, and then repeat the FCM analysis

on the perturbed data. The variance in each object’s reported cluster probability is

then computed after a large number of bootstrap trials.

Some asteroids appear in only one of the seven surveys; for such objects the color
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index is simply its cluster-membership score in that particular survey. For asteroids

appearing in multiple surveys, we take the variance-weighted average of the multiple

membership scores (and compute that composite score’s variance by summing the

component variances in inverse quadrature, as usual).

The many off-diagonal plots in Figure 4.26 panel B compare the cluster-membership

scores of all asteroids appearing in all possible survey intersections. The number of

asteroids in each survey (and in the intersection of each survey pair) appears above

each plot (N = . . .). The survey-pair distributions are 2D-histograms where higher

densities of data points correspond to black pixels/bins and low density or lack of data

points is white. Evidently all possible survey combinations contain at least some as-

teroids (several share hundreds), and in all cases the individual taxonomic indices (on

the horizontal and vertical axes) correlate strongly, confirming the consistency of the

cluster membership between surveys.

In Figure 4.27 we illustrate some useful applications of this color index by com-

paring it with various asteroid surface observations. One of these quantities (SDSS

a∗ color) was used in computing the color index, so its correlation with the clustering

index is expected and thus confirmed.

In the leftmost plot of Figure 4.27, asteroid photometry from GALEX 16 (NUV

band), compiled by Waszczak et al. (in prep), is normalized by the nominal G =

0.15 phase-model (Section 4.3.2.2) predicted brightness at the time of the GALEX

observations, and the resulting NUV − V color evidently correlates with the visible

color index. This indicates that asteroid reflectance slopes in the visible persist into

the UV.

Figure 4.27 also plots our color index against the W1-band geometric albedo

derived from WISE 17 observations obtained during its fully cryogenic mission. We

16The Galaxy Evolution Explorer (GALEX) is a NASA Small Explorer-class space telescope which
from 2003–2012 conducted an imaging survey in a far-UV band (FUV, 130–190 nm) and a near-
UV band (NUV, 180–280 nm). [Martin et al. (2005))] discuss the extragalactic science program;
Morissey et al. (2005, 2007) discuss the on-orbit performance, survey calibration and data prod-
ucts. The Waszczak et al (in prep) NUV data shown here are derived from data available at
http://galex.stsci.eduhttp://galex.stsci.edu.

17The Wide-field Infrared Survey Explorer (WISE) is a NASA Medium Explorer-class space tele-
scope which in 2010 conducted a cryogenic IR imaging survey in four bands: W1,W2,W3, and W4,
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only include asteroids which were detected in both of the thermal bands (W3 and

W4) and which therefore have a reliable diameter estimate. Use of this diameter in

Equation (4.15) then permits estimation of the albedo, where the W1-band albedos

uses the corresponding WISE photometry (H in Equation [4.15] being replaced with

the appropriate W1-band absolute magnitude).

The rightmost plot in Figure 4.27 shows our color index’s relationship to a near-

infrared color from the ground-based 2MASS survey [Skrutskie et al. (2006)]. Serendip-

itous asteroid detections were extracted from 2MASS by Sykes ([Sykes et al. (2000)],

[Sykes et al. (2010)]) and include fluxes in J band (1.25 µm), H band (1.65 µm—not

to be confused with the absolute visible magnitude H, used elsewhere in this work),

and K band (2.17 µm).

4.9.2 Compilation of IR-derived diameters

Similar to how we combined several surveys’ colorimetric data in the previous sec-

tion, here we compile thermal-infrared-derived diameter estimates from four surveys.

Our aim is again to provide the largest possible sample for comparison with PTF-

derived lightcurve data. Just as SDSS is the main contributor of colorimetry overall

but suffers from incompleteness for large/bright asteroids, analogously WISE pro-

vides the vast majority of IR-based diameter measurements but levels off at ∼80%

completeness at the bright end (Figure 4.28). We thus supplement WISE with di-

ameter data from the Infrared Astronomical Satellite (IRAS ; [Matson et al. (1986))],

[Tedesco et al. (2002a)]), the Mid-Course Space Experiment (MSX ;

[Tedesco et al. (2002b)]), and AKARI [Usui et al. (2011)]. [Usui et al. (2014)] com-

pares several of these different data sets in terms of coverage and accuracy. As we did

when defining the color index, asteroids occurring in multiple IR surveys are assigned

the variance-weighted average diameter.

Regarding the WISE data in particular, we again use only those diameters which

resulted from a thermal fit constrained by fluxes in all four WISE bands during

centered at 3.4, 4.6, 12, and 22µm, respectively. [Wright et al. (2010)] details mission/performance;
[Masiero et al. (2011)] and refs. therein present preliminary asteroid data.
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the cryogenic mission. Furthermore, we use the latest (revised) diameter estimates

published by [Masiero et al. (2014)], which adopted an improved thermal modeling

technique first discussed by [Grav et al. (2012))].

4.9.3 Lightcurve data tables

The online version of this article includes two electronic tables containing the derived

lightcurve parameters and the individual photometric observations in each lightcurve.

Tables 4 and 5 describe the columns and formatting of these tables, which include

data on all reliable-period lightcurves as well as those having amplitudes less than 0.1

mag and sampling in five or more 3-deg-wide phase-angle bins (which have reliable

G12 fits). Using these tables one can produce plots of the PTF lightcurves we have

analyzed in this work.
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Table 4.4: Parameters describing PTF lightcurves with a reliable period or phase
function. Byte-by-byte Description of file: ptf asteroid lc parameters.txt

Bytes Format Units Label Explanations
1- 4 I4 — Lightcurve ID number1

6- 11 I6 — Asteroid number (IAU designation)
13- 14 I2 yr Last two digits of opposition year
16 I1 — Photometric band: 1 = Gunn-g, 2 = Mould-R
18- 20 I3 — Number of observations in the lightcurve
22- 26 F5.2 mag Median apparent magnitude
28- 37 F10.5 day tmin Time (MJD) of first observation
39- 48 F10.5 day tmax Time (MJD) of final observation
50- 54 F5.2 deg αmin Minimum-observed phase angle
56- 60 F5.2 deg αmax Maximum-observed phase angle
62- 63 I2 — Number of sampled phase-angle bins of 3-deg width
65- 68 F4.2 — p Reliability score from machine classifier: 0=bad, 1=good
70 I1 — Manually-assigned reliability flag: 0=bad, 1=good
72 I1 — Period reliability flag: 0=bad, 1=good (product of two previous columns)
74- 79 F6.3 mag H Absolute magnitude from G12 fit
81- 85 F5.3 mag Uncertainty in absolute magnitude from G12 fit
87- 91 F5.3 — G12 Phase-function parameter G12

92- 98 F6.3 — Uncertainty in G12
2

100-105 F6.3 — G Phase-function parameter G
107-113 F7.4 mag/deg β Phase-function parameter β
115-119 F6.3 mag C Phase-function parameter C
121-124 F4.2 mag Amplitude from G12 fit (max − min)
126-134 F9.4 hr P Period from G12 fit
136-144 F9.4 hr Period uncertainty from G12 fi
146-152 F7.4 mag A11 Fourier coefficient A1,1 from G12 fit
154-160 F7.4 mag A12 Fourier coefficient A1,2 from G12 fit
162-168 F7.4 mag A21 Fourier coefficient A2,1 from G12 fit
170-176 F7.4 mag A22 Fourier coefficient A2,2 from G12 fit
178-181 F4.2 — Ratio of the two peak heights in folded rotation curve3

183-186 F4.2 — χ2
red Reduced chi-squared of the fit

188-192 F5.3 mag ”Cosmic error” (see Section 4.4.1)
194-198 F5.3 mag Root-mean-square residual of observations w.r.t the fit
200-206 F7.3 hr Reference period (from http://sbn.psi.edu/pds/resource/lc)
208-213 F6.2 km D Diameter derived from thermal IR data4

215-218 F4.2 km Uncertainty in diameter
220-224 F5.3 — Abond Bond albedo5

226-231 F6.4 — Uncertainty in bond albedo
233-236 F4.2 — Color-based taxonomic index: 0=C-type, 1=S-type
238-241 F4.2 — Photometry-based taxonomic index: 0=C-type, 1=S-type

1ID number labels individual observations in Table 4.5.
2Set to −1 if larger than the interval tested in grid search

3Set to 0 if there is only one maximum in the folded lightcurve
4References for the IR diameters are given in the text (appendix)

5Bond albedo only computed for objects with reliable G12 and available diameter
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Table 4.5: Parameters describing PTF lightcurves with a reliable period or phase
function. Byte-by-byte Description of file: ptf asteroid lc observations.txt
Bytes Format Units Label Explanations

1- 4 I4 Lightcurve ID number1

6- 15 F10.5 day τ Light-time-corrected observation epoch
17- 26 F10.7 AU r Heliocentric distance
28- 37 F10.7 AU ∆ Geocentric distance
39- 43 F5.2 deg α Solar phase angle
45- 50 F6.3 mag R or g Apparent magnitude2

52- 56 F5.3 mag Uncertainty in apparent magnitude
58- 62 F5.3 mag Uncertainty in apparent magnitude with cosmic-error
64- 69 F6.3 mag Magnitude corrected for distance and G12 phase function
71- 76 F6.3 mag Magnitude corrected for distance and rotation (G12 fit)
78- 83 F6.3 mag Residual with respect to the G12 fit
85- 89 F4.1 Rotational phase from 0 to 1 (G12 fit)

1ID number also corresponds to the line number in Table 4.4.
2Filter/band is specified in Table 4.4.
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select features/parameters. These plots are histograms with the same binning as the
top rows of Figures 7 and 8. For better readability we here use line-connected bin
points (rather than the stair-plot format used in, e.g., Figure 4.5).
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Figure 4.15: Example lightcurves for which the machine-based and human-based
reliability scores differ. Row 1 : Human approved, machine rejected (p = 0.32). Row
2 : Human rejected, machine approved (p = 0.66). Row 3 : Human approved, machine
rejected. For this object, the fitted period differs from the known reference period of
392 hours by 7%, hence the machine rejects it by definition. Row 4 : Human rejected,
machine approved (p = 0.70).
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Figure 4.16: For the 654 unique asteroids having more than one reliable lightcurve fit
(either multiple oppositions and/or both R and g band data) we plot the log of the
relative frequency error, defined as the range of the asteroid’s fitted periods divided
by the geometric mean of its fitted periods. Comparison with Figure 4.5 suggests that
we can deem all cases with error .3% as consistently recovered periods, and those
with greater than 3% error as inconsistent fits.
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Figure 4.22: Taxonomic dependence on spin rate and amplitude, also versus diameter,
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Chapter 5

Asteroids in GALEX

5.1 Introduction

As in visible wavelengths, ultraviolet flux from asteroids is entirely reflected sunlight.

However, the steep drop in the solar spectrum shortward of ∼300 nm (Figure 5.1)

makes asteroids orders of magnitude fainter in the UV than in the visible. For this

reason—as well as the strong UV absorption by atmospheric ozone—UV observations

of asteroids typically employ the Hubble Space Telescope (HST) or specialized instru-

ments on a space-mission payload physically closer to the asteroid. These constraints

have generally prohibited large-sample demographic studies of asteroids in the UV.

Predating HST, the International Ultraviolet Explorer (IUE) targeted 45 asteroids

from 1978–1992, producing what remains to date the largest published sample of

near-UV asteroid spectra [Roettger and Buratti (1994)], specifically in the range of

230–325 nm. The IUE data show evidence of clustering, principally with respect to

geometric UV albedo. This clustering becomes further evident when coarsely-defined

visible spectral type is included as a categorical parameter for each object (C, S and M

types being the classes considered in the original work). Comparing the IUE-derived

geometric UV albedos for each class with the geometric visible albedos demonstrated

that the S types, which are redder-colored in the visible (specifically, 400–800 nm),

remain redder than C types into the NUV. This is consistent with the observed

spectral reflectance slope in this entire wavelength range (200–800 nm) being a broad

absorption feature common to silica-bearing rocks (e.g., [Wagner et al. (1987)]).
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In this work we aim to verify this result with a new and larger sample of UV

asteroid data from the Galaxy Evolution Explorer (GALEX), a NASA Small Explorer-

class space telescope mission which from 2003–2012 conducted a UV imaging survey

in a far-UV band (FUV, 130–190 nm) and a near-UV band (NUV, 180–280 nm).

Approximately 2/3 of the sky was covered, with avoidance of bright stars and low

galactic latitudes. [Martin et al. (2005))] discuss the extragalactic science program,

while Morissey et al. (2005, 2007) discuss the on-orbit performance, survey calibration

and data products. GALEX has a 50 cm2 effective area, 1.25 degree diameter circular

field of view, and FWHM resolution of 4.5′′ in the NUV. Programs within the GALEX

mission included an all-sky-survey (AIS, with ∼100 s exposures) and a medium-

depth survey (MIS, with ∼1500 s exposures), and also a spectroscopic (grism) survey.

Figure 5.1 shows the photometric response functions of the two GALEX bandpasses

convolved with the solar spectrum, with comparison to the ugriz visible bandpasses.

Detection of asteroids in the FUV is extremely unlikely (nonetheless, as described

below we searched for both NUV and FUV asteroid detections).

Our approach in analyzing GALEX asteroid observations differs somewhat from

Roettger and Buratti’s treatment of the IUE data. First, instead of referencing

taxonomic class labels (e.g., ‘C type’,‘S type’,‘M type’, etc.) assigned to individ-
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ual asteroids by previous authors, we define classes using a color index derived

from a clustering analysis performed on a compilation of seven visible-color sur-

veys [Waszczak et al. (2015)]. The brightest asteroids typically were targeted in

one or more spectroscopic surveys—e.g., the Eight Color Asteroid Survey (ECAS,

[Zellner et al. (1985)]) or the Small Main-Belt Asteroid Spectroscopic Surveys (SMASS;

[Xu et al. (1995)], [Bus & Binzel (2002)]). Dimmer objects however often only have

color information from the Sloan Digital sky-survey (SDSS; [York et al. (2000)],

[Ivezić et al. (2001)], [Parker et al. (2008)]). The color index of [Waszczak et al. (2015)]

puts asteroids of all sizes on a single, quantitative color scale (a proxy for spectral

slope), the endmembers of which we identify with the C-type and S-type complexes.

We use the terms ‘C types’ and ‘S types’ purely for compatibility with the literature,

noting that our color index combined with the classification thresholds we apply to

it represent original definitions of these two groups.

Use of a one-dimensional color metric sacrifices sensitivity to secondary taxonomic

groups such as M types, D types and V types. While our purpose is mainly to examine

the first-order taxonomic variation, in certain cases we divide our color-defined ‘C

types’ into two classes (Chigh and Clow) on the basis of visible and near-infrared

albedo (as detailed in Section 5.3.2). At the end of this work we also examine well-

established C-complex subgroups from both the Tholen and Bus/Binzel taxonomies

(Section 5.6), showing how these known subgroups (e.g., M types and G types) are

distributed in this work’s color-albedo space and highlighting these subgroups’ unique

UV properties.

A second distinction between this work’s approach and [Roettger and Buratti (1994)]

is that, rather than comparing the geometric albedo in the UV with that of the vis-

ible band, we focus on the difference in apparent magnitudes between the UV and

visible. One motivation for doing this is we need not make any assumptions about

the phase function of asteroids in the UV. The challenge however is that we must

accurately estimate the visible flux at the time of the UV observations. As discussed

in Section 5.3, we adopt (and compare) two distinct methods for predicting the visual
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Figure 5.2: Characteristics of positive asteroid detections from the two GALEX sur-
veys (distinguished by exposure time) shown separately in black and green.

magnitude. The first method simply adopts the widely-used MPC1 predicted mag-

nitudes; the second method applies color-dependent phase-function and bond-albedo

estimates adapted from the [Waszczak et al. (2015)] study of lightcurves from the

Palomar Transient Factory survey2 (PTF; [Law et al. (2009)]; [Rau et al. (2009)]).

5.2 GALEX asteroid observations

Extracting detections of known asteroids from a survey involves a three-dimensional

(R.A., Dec., time) cross-matching of the ephemeris of all asteroids against the sur-

vey’s time-stamped image boundaries. We modified software originally used to search

for asteroids in PTF ([Waszczak et al. (2013b)], [Waszczak et al. (2015)]) to instead

search for asteroids in GALEX.

We first retrieved the metadata of all GALEX images, available from the Space

Telescope Science Institute via command-line queries with the CasJobs tool

[Li and Thakar (2008)]. We then indexed all image centers with respect to (R.A,

Dec.) into uniformly-spaced sky cells of 3-degree radius. For all ∼380,000 numbered

1IAU Minor Planet Center, http://minorplanetcenter.net
2http://ptf.caltech.edu
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asteroids, we queried JPL’s online service HORIZONS [Giorgini et al. (1996)] to gen-

erate a 1-day-spaced ephemeris spanning 2003–2012. Using an object-specific search

radius equal to 3 degrees (cell radius) plus 0.75 degrees (FOV radius) plus the object’s

maximum 1-day motion (∼10 arcminutes for most main-belt objects), we matched

the ephemeris points against the sky cells. For each matched cell, we filtered out

all images in that cell not within the epoch range of the matched ephemeris points,

then for each surviving image we re-queried HORIZONS for the precise location at

each observed epoch. We next performed a 1.25-degree-radial match of these precise

positions against the relevant GALEX image centers.

We found ∼850,000 predicted detections of numbered asteroids (with no limit on

apparent magnitude) in GALEX using this method. For each predicted detection,

using CasJobs we queried the GALEX single-visit source list (as opposed to the co-

added source list). Multiple matches near the same point occurring more than 6 hours

apart were excluded, as were all matches further than 2′′ from the predicted location.

Additionally, to ensure the inclusion of greater than (approximately) 5σ detections,

we discarded all matches with NUV > 21 mag in the shorter exposures (AIS program),

and discarded all matches with NUV > 22.7 mag in the longer exposures (MIS pro-

gram), following the limiting magnitudes quoted by [Morissey et al. (2007))].

Following the above procedure and criteria, we extracted a total of 1,342 positive

NUV detections of 405 unique asteroids which were detected by GALEX at least

twice (and no FUV detections, as expected). These detections are listed in Table 5.1;

several histograms detailing these detections appear in Figure 5.2.

5.3 Modeling visible magnitudes

In this section we consider two distinct methods of estimating the visible magnitudes

corresponding to all GALEX NUV detections; this in turn provides the distribution

of the asteroids’ NUV−V color. The general model for an asteroid’s apparent visual

magnitude V (log flux) is
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V = H + δ + 5 log10(r∆)− 2.5 log10[φ(α)], (5.1)

where H is the absolute magnitude (a constant), δ is a periodic variability term due to

rotation (e.g., if the object is spinning and has some asymmetry in shape or albedo), r

and ∆ are the heliocentric and geocentric distances (in AU), and φ = φ(α) is the phase

function, which varies with the solar phase angle α (the Sun-asteroid-Earth angle).

When α = 0 (i.e., at opposition), φ = 1 by definition, while in general 0 < φ < 1 for

α > 0 (with φ decreasing as α increases).

All asteroids for which we have extracted GALEX observations have known orbits,

meaning r, ∆, and α are accurately and precisely known at all observed epochs. Our

two methods for estimating V differ in their assumptions regarding (and observational

data used to constrain) H and φ. In both cases we do not attempt to model the

rotational term δ, but rather incorporate δ into the uncertainty of V using lightcurve

amplitude estimates from the literature. In particular, 388 of the 405 GALEX -

observed asteroids have an amplitude lower-limit estimate available in the Lightcurve

Database ([Warner et al. (2009)], [Harris et al. (2012)]).

In the following sections we refer to two different albedo quantities. The visible-

band geometric albedo pV relates to the visible-band bond albedo Abond and the phase

function φ (of Equation [5.1]) according to

pV ≡
Abond

2

(∫ π

0

φ(α) sin(α) dα

)−1

≡ Abond

q
, (5.2)

The above equation also defines the phase integral q. The bond albedo Abond is

defined as the total visible light energy reflected or scattered by the asteroid (in all

directions) divided by the total visible light energy incident upon the asteroid (from

the Sun). Assuming the asteroid has a circular cross-section of diameter D, this can

be expressed as

Abond ≡
∫ π

0
f(α) sin(α)dα

(fSun/4πAU2)× π(D/2)2
, (5.3)
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Figure 5.3: We compute VPTF model magnitudes by first assigning fixed Abond and G12
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Abond andG12 are medians from the color-albedo-G12 data in [Waszczak et al. (2015)],
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also have diameters available (required to compute Abond). Panel D shows that WISE
W1 geometric albedos correlate with the PTF bond albedo; we thus use the WISE
pW1 data to assign C types either a low (Abond ≈ 0.01) or high (Abond ≈ 0.04) bond
albedo.

where f(α) = 10−V (α)/2.5 is the asteroid’s flux as a function of phase angle, with

V (α) = H − 2.5 log10 φ(α) being Equation (5.1) evaluated at δ = 0 and r = ∆ = 1

AU (similarly, fSun = 10−VSun/2.5).

5.3.1 (H,G) from MPC data

The first method for estimating V adopts the Minor Planet Center’s computed abso-

lute magnitudes (HMPC), which are regularly updated by the MPC’s automated pro-

cesses and utilize the Lumme-Bowell G-parameter model for φ [Bowell et al. (1989)].

This same (H,G) model then predicts the apparent magnitude VMPC as a function of

solar phase angle.

TheHMPC values are fit to photometry provided by a variety of surveys/individuals,

many of whom may use slightly different absolute calibration standards or filters with

slightly different specifications. A small fraction of asteroids have fitted G values;

[Harris & Young (1988)] present mean G values for several major taxonomic classes,

with G = 0.15 being an average between the C types (G ≈ 0.08) and the S types

(G ≈ 0.23). For the majority of asteroids the MPC uses an assumed G = 0.15 with
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this model. [Waszczak et al. (2015)] compares the HMPC values with H magnitudes

derived from a model that includes rotation and the more modern (H,G12) phase

function of [Muinonen et al. (2010))]. Among bright asteroids the relative difference

is typically between 0.3% to 3%, corresponding to (on average) an ∼0.07 mag dis-

crepancy.

Though HMPC values are available for all 405 GALEX -observed asteroids, we

only consider the subset of 315 asteroids having visible-band color indices of either

less than 0.25 (‘C types’) or greater than 0.75 (‘S types’). Of these, 41 asteroids have

GMPC 6= 0.15.

5.3.2 (D,Abond,G12) from PTF, infrared, and color data

Our second means of estimating visual magnitudes applies only to asteroids hav-

ing both a color index and a diameter estimate constrained from thermal fluxes

in an infrared survey3. In this approach we use the G12-parameter model for φ

[Muinonen et al. (2010))], and we replace H with its equivalent expression4 in terms

of the diameter D, bond albedo Abond, and phase integral q:

H = −5 log10

(
D
√
Abond/q

1329 km

)
, (5.4)

where the phase integral q is a linear function of G12:

q(G12) =

 0.2707− 0.236G12 if G12 < 0.2;

0.2344− 0.054G12 otherwise.
(5.5)

We again define ‘C types’ as all asteroids with color indices less than 0.25 and

‘S types’ as all with color indices greater than 0.75. For S types we then consider

3Similar to the color data, the diameter data set we use is a compilation of products
from several surveys and described in the appendix of [Waszczak et al. (2015)]. The source IR
surveys are WISE ([Wright et al. (2010)], [Masiero et al. (2011)], [Masiero et al. (2014)]), IRAS
([Matson et al. (1986))], [Tedesco et al. (2002a)]), MSX [Tedesco et al. (2002b)], and AKARI
[Usui et al. (2011)].

4Equation (5.4) follows directly from combining Equations (1)–(3). The constant 1329 km de-
pends on somewhat arbitrarily-defined quantities such as the Sun’s visual magnitude and the ratio
of an AU to a kilometer.
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Table 5.2: Abond and G12 (based on PTF data) of color-defined taxonomic groups.

class color WISE Abond Abond G12 G12

name index pW1 median scatter∗ median scatter∗

S > 0.75 N.A. 0.056 0.016 0.36 0.16
Chigh < 0.25 > 0.125 0.038 0.022 0.42 0.20
Clow < 0.25 < 0.125 0.010 0.003 0.84 0.16

∗Scatter is here defined as 0.5× (84th percentile −16th percentile)

diameters derived from any of four infrared surveys (see Footnote 3), while for C

types we specifically require that the asteroid have been observed in the WISE 4-

band cryogenic survey ([Wright et al. (2010)], [Masiero et al. (2014)] and references

therein). Both the WISE W1-band geometric albedo pW1 and the PTF-derived bond

albedo5 Abond show evidence of bimodality among objects with color indices less

than 0.25 (Figure 5.3 panel D). Thus, we divide the C types into low-bond-albedo

(Clow) and high-bond-albedo (Chigh) subgroups based on their pW1 as reported by

[Masiero et al. (2014)]. In Section 5.6 we show that the Chigh types most closely

correspond to what other authors have called M types.

[Waszczak et al. (2015)] computedAbond andG12 values for∼1,600 asteroid lightcurves

in the PTF survey. Using that work’s data (Figure 5.3) we compute median Abond and

G12 values (and associated scatter) for the S, Clow and Chigh taxonomic groups. Table

5.2 summarizes the definitions and assumed Abond and G12 values of these groups.

There are 245 GALEX -observed asteroids (out of the 405 in Table 5.1) which have

color and diameter data available, allowing them to be modeled by this method. To

each GALEX -observed asteroid we assign the appropriate Abond and G12 value based

on its class membership, then use its diameter to compute a model absolute magni-

tude (HPTF) using Equation (5.4). Together with the assumed G12 value, this HPTF

then predicts the apparent magnitude VPTF at each GALEX -observed solar phase

angle.

5The visible bond albedo Abond uses the same WISE diameter used by [Masiero et al. (2014)] in
computing the W1-band geometric albedo pW1.
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5.3.3 Rotational uncertainty in V

Both the VMPC and VPTF model magnitudes discussed here lack an estimate of the

rotational term (δ in Equation [5.1]). We account for this by incorporating a term

for rotational modulation into the reported uncertainty of V . Of the 315 aster-

oids with VMPC values, 302 have an amplitude lower limit listed in the Lightcurve

Database ([Warner et al. (2009)], [Harris et al. (2012)]) , while for the 245 asteroids

with VPTF predictions there are 239 with reported amplitudes. As shown for instance

by [Waszczak et al. (2015)], asteroids in the relevant size range typically have ampli-

tudes less than ∼0.4 mag. For the few objects in our sample lacking an amplitude

limit, we assume a value of 0.2 mag.

Assuming an asteroid’s rotational phase ϕ to be random at the time of a GALEX

detection (i.e., with a probability distribution of the form P (ϕ) ∝ constant), then the

probability distribution of a basic sinusoidal δ (i.e., one of the form δ = δ0 sinϕ) can

be shown to have the form

P (δ) ∝ 1√
δ2

0 − δ2
, (5.6)

where δ0 is the amplitude. We use Equation (5.6) as a probability density function to

generate, for each modeled V , a set of 104 simulated δ values. These simulated δ are

added to an equal number of model V magnitudes computed by random (Gaussian

distribution) sampling of the component terms: in the case of VMPC we just assume a

fixed HMPC uncertainty of 0.1 mag, whereas for the VPTF values we randomly sample

all three of Abond, G12, and D, using the scatter values in Table 5.2 for the first two and

the literature-reported diameter uncertainty for D. The 16th to 84th percentile spread

in the distribution of combined δ+V values then becomes the quoted uncertainty for

V .
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Detected by GALEX at least twice
(405 asteroids)

Has visible color index
(339 asteroids)

S type: color > 0.75
(80 asteroids)

C type: color < 0.25
(235 asteroids)MPC (H,G)

data

Has color index < 0.25 or > 0.75  (315 asteroids)

NUV – VMPC
uncertainty < 0.5 mag

(297 asteroids)

NUV – VPTF
uncertainty < 0.5 mag

(223 asteroids)

Has infrared diameter
and thus AMPC 
(223 asteroids)

PTF/WISE-based
Abond & G12
assumptions

S type: any IR survey
(78 asteroids)

C type: WISE only
(167 asteroids)

Has infrared diameter (245 asteroids)

Clow type: pW1 < 0.125
(133 asteroids)

Chigh type: pW1 > 0.125
(34 asteroids)

Figure 5.5: Flowchart visualizing the steps in the GALEX -observed asteroid sample
selection process. Each box is a subset of the box pointing to it.
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Table 5.3: NUV − V color (mag. units) of GALEX -observed asteroids and sample
sizes

class NUV− VMPC NUV− VPTF NMPC NPTFname median scatter∗ median scatter∗

S 6.52 0.25 6.71 0.21 72 69
C 5.90 0.19 6.03 0.22 225 154

Chigh – – 6.14 0.33 – 29
Clow – – 6.02 0.19 – 125

∗Scatter is here defined as 0.5× (84th percentile −16th percentile)

5.4 NUV− V color distribution

Having computed the model V magnitudes, we obtain the NUV − V color for each

GALEX asteroid detection and the corresponding uncertainty. The latter contains

an additional rotational uncertainty component (now associated with the NUV obser-

vation), again determined by repeated sampling of Equation (5.4) as described above.

Since all the asteroids we consider have more than one GALEX NUV detection, we

compute the variance-weighted average NUV− V color for each asteroid (plotted in

Figures 4 and 6); the uncertainty in this average is the inverse quadrature sum of the

individual uncertainties.

In Figures 4 and 6 (and the accompanying analysis) we have omitted all asteroids

with NUV − V uncertainties of greater than 0.5 mag. As a result, the sample size

of asteroids with NUV − VMPC estimates is 297 (out of the 315 quoted in Section

5.3.1), while the sample with NUV− VPTF estimates is 223 (out of the 245 quoted in

Section 5.3.2). Figure 5.5 graphically summarizes the sample selection criteria in a

flowchart. In Figures 4, 6 and 7, the errorbars on the color indices were computed by

a bootstrapping process described in the appendix of [Waszczak et al. (2015)].

Both the VMPC and VPTF model magnitudes produce a bimodal NUV − V color

distribution, with the S types having the redder NUV− V color (panels A and B of

both Figures 4 and 6). Median and scatter of NUV−V for the various classes appear

in Table 5.3. To formally ascertain the inequality of the two distributions, we use

the two-sided Kolmogorov-Smirnov (KS) test [Massey (1951))], which compares two
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and F.

empirical distributions via a bootstrap method. In particular this test computes a

statistic quantifying the extent to which the cumulative distribution function differs

in the two distributions being compared. For the VMPC model we find the C-type

NUV − V color distribution differs from that of the S-type distribution at an 11.6σ

significance level (Figure 5.4 panel B). For the VPTF model (Figure 5.6 panel B) we

find the C types (Clow and Chigh combined) differ from the S types at an 8.1σ level,

while the Clow and Chigh types only differ at a 1.9σ level (this difference is thus not

statistically significant).

An important characteristic of our sample is that the C types outnumber the S

types by a ratio of 3:1 in the VMPC sample and a ratio of 2:1 in the VPTF sample (cf.

panel C of Figures 4 and 6). This ratio indirectly reflects both an inherent difference

in the populations of the two types as well as a detection bias due to S types typically

having smaller orbital distances and thus typically brighter apparent magnitudes for

a given size.
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In panels C–F of Figure 5.4 the sample size decreases from N = 297 down to

N = 223 asteroids as we consider only those objects in the VMPC sample that also

have available diameters (this is equivalently the VPTF sample considered in Figure

5.6). We compute the MPC-based visible bond albedo AMPC using Equation (5.2)

together with the asteroid’s HMPC and GMPC values. In particular, there are 38

asteroids (out of the 223 with diameters) with a measured GMPC 6= 0.15; for the

remainder we assume GMPC = 0.15 for consistency with the manner in which the

VMPC are computed. Analogous to Equation (5.5), the phase integral for the G-model

(required for computation of AMPC via Equation [5.4]) is

q(G) = 0.290 + 0.684G, (5.7)

as given by [Bowell et al. (1989)]. With the GMPC = 0.15 assumption for the majority

of the asteroids in our sample, the AMPC values are not expected to be as accurate as

the Abond values computed for instance by [Waszczak et al. (2015)], wherein distinct

q values were fitted to each object on the basis of a lightcurve. Nonetheless, it is

instructive to compute AMPC, e.g., to check for consistency with the class-median

Abond values, and to exploit as a second taxonomic metric in addition to visible color.

Figure 5.4 panel E shows that NUV− V correlates with AMPC (ρSpearman = 0.698,

>10σ significance), similar to how NUV−V correlates with the color index in panel A

(ρSpearman = 0.491, >10σ significance). Unlike the color index however, the separation

between the Clow and Chigh subgroups is qualitatively evident in this plot. Figure 5.4

panel F combines all three parameters; note the axes are the same as Figure 5.3 panel

B, with AMPC replacing Abond and the data consisting of GALEX -observed asteroids

rather than PTF-observed asteroids.

Figure 5.6 panel F confirms (independently of Figure 5.3 panel D) the validity of

using WISE W1-band geometric albedo as a proxy for visible bond albedo to separate

Clow from Chigh—the two classes robustly differ in their AMPC distributions (9.5σ KS-

test significance). However, the class-median AMPC values of the Clow, Chigh, and

S types are 100%, 67%, and 63% greater than their class-median PTF-based Abond
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Figure 5.7: Various checks for systematic differences in the predicted V magnitudes
output by the two different photometric models. Bottom row : Investigation of phase-
angle-dependence on the NUV− V color.

values in Table 5.2. This reflects the differing values of H and q produced by the G

and G12 models, as well as the fact that we apply class-specific G12 values, whereas

GMPC = 0.15 is assumed for the majority of asteroids, regardless of their class.

Consideration of both the VMPC and VPTF model magnitudes provides two inde-

pendent means of computing NUV − V ; this helps rule out the effect of potential

systematic errors unique to either one of the V models, as well as possible biases in

the distinct observational data sets upon which each V is based. In Figure 5.7 panels

A–C we examine the distribution of VMPC− VPTF for all 223 asteroids having both V

estimates. The median of VMPC − VPTF is 0.13 mag (scatter of 0.25 mag), indicating

the MPC-based model consistently produces brighter V estimates. For C types the

median VMPC − VPTF is 0.14 mag and for S types it is 0.12 mag; the two groups’

VMPC − VPTF distributions differ with less than 0.1σ significance in a KS-test.

In Section 5.1 we motivated our choice to examine the difference in apparent

magnitude between UV and visible (as opposed to the difference in albedo in UV

and visible) by noting that little is known of asteroid phase functions in the UV,
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rendering difficult the estimation of UV absolute magnitudes (and hence UV albedos).

A potential issue with this approach which we have heretofore ignored is that, if the

phase function does differ significantly in the UV from the visible, then the NUV−V

color will vary with phase angle. Figure 5.7 panels D–F attempt to ascertain whether

such a trend exists by considering the median phase angle at which each asteroid was

detected by GALEX.

C types are observed at a median median phase angle of 7.2 deg compared to the

S types’ median median phase angle of 9.0 deg. This is explained by the fact that

C types on average have larger semi-major axes, which geometrically correspond to

lower observed phase angles from Earth. Within the C-type group, median phase

angle correlates with NUV − VMPC at ρSpearman = −0.1 (1.5σ significance) and with

NUV − VPTF at ρSpearman = 0.01 (0.1σ significance). Among S types, median phase

angle correlates with NUV − VMPC at ρSpearman = 0.01 (0.1σ significance) and with

NUV − VPTF at ρSpearman = 0.07 (0.5σ significance). We therefore cannot claim any

phase angle dependence for NUV−V , regardless of the taxonomic group or V -model

being considered.

Various works (e.g., [Sanchez et al. (2012)] and references therein) discuss the phe-

nomenon of asteroid phase reddening, i.e. an observed reddening of visible color with

increasing phase angle. Very few survey-scale samples have been used to test for the

presence of this effect. [Szabó et al. (2007)] computed slightly different phase-angle

dependences for the g− r and r− i colors of Trojans in SDSS, though these relations

were not separately computed for the Trojans’ two taxonomic groups.

[Waszczak et al. (2015)] did not detect any statistically significant difference between

G12 fits to r-band PTF lightcurves and g-band PTF lightcurves (among asteroids that

had data in both bands). The extent to which a phase-function dependence on wave-

length exists between the UV and visible remains unclear. Future UV surveys such

as ULTRASAT [Sagiv et al. (2014)] offer the most promising means of testing this

hypothesis, especially because (unlike GALEX ) they will obtain sufficient numbers of

observations to adequately sample UV lightcurves, thereby providing the best possible

data set for fitting UV phase functions.
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5.5 Albedo vs. wavelength

If we assume that the phase function does not differ significantly between the UV and

visible (or take Figure 5.7 panels E and F as justification of this statement), then we

can compare the relative bond albedo versus wavelength for the different taxonomic

groups using measured colors, filter response functions and the solar spectrum. If the

phase function does in fact vary significantly with wavelength, then this approach

only provides the relative geometric albedo versus wavelength (see Equations [2] and

[3]).

Assume photometry from two filters (1 and 2) produce the color measurement

m1 −m2. This color relates to the solar flux distribution S(λ), the albedos in each

band (A1 and A2) and the filter responses F1(λ) and F2(λ) according to

10(m1−m2)/2.5 =

∫
F1(λ)λ−2dλ

∫
S(λ)F2(λ)A2dλ∫

S(λ)F1(λ)A1dλ
∫
F2(λ)λ−2dλ

(5.8)

which we adapted from a similar equation in [Pickles (1998)].

Using NUV as band 1 and V as band 2 in Equation 5.6, we use the colors in Table

5.3 (specifically, the VPTF-based colors) to obtain the albedo ratio ANUV/AV , with

uncertainties coming from the associated scatter in the colors. In Figure 5.7 we plot

these albedo ratios for the C types and S types, incorporating an additional uncer-

tainty component from the transformation from r to V (see [Waszczak et al. (2015)]

for a discussion of this transformation in the context of asteroids). The end-computed

values are (ANUV/Ar)C = 0.63+0.14
−0.12 and (ANUV/Ar)S = 0.33+0.07

−0.06. The relative albedo

values in the SDSS bands included for comparison in Figure 5.8 are taken directly

from a figure in [Ivezić et al. (2001)]; likewise the ECAS data are taken directly from

a figure in [Zellner et al. (1985)].

Note that Figures 8 and 9 ignore the fact that the S types’ and C types’ absolute

albedo in r-band differs. In other words, these plot could be converted into ones with

absolute albedo on the vertical scale by multiplying the blue and red lines by their

respective absolute r-band albedos, which would be similar to those listed in Table

5.2 for V band.



192

Both C and S types show a continued trend of decreasing albedo at shorter wave-

lengths. Whereas for S types this behavior was already well-established in the 300–800

nm region, for C types the u− g color had previously represented a significant devi-

ation from the shallower slope observed from 400–800 nm. The C-type NUV albedo

in Figure 5.8 confirms the presence of a marked drop in albedo somewhere in the

200–400 nm range. Given the resolution of Figure 5.8 and the uncertainties in the

data points, we cannot judge whether the C-type albedo levels off between NUV and

u band, or whether the slope between u and g bands persists into these shorter wave-

lengths. The IUE spectra from [Roettger and Buratti (1994)] indicate C-type albedo

is constant at least in the range 240–300 nm (as does the Lutetia data described

below), so that the former interpretation may be more accurate.

5.6 Comparison to HST data

5.6.1 Lutetia

[Weaver et al. (2010)] obtained HST photometry of asteroid 21 Lutetia in UV and

visible bands. Lutetia has been classified by various authors as an M-type asteroid;

in the context of this work its color index is 0.05 (making it a C type) and its

AMPC = 0.06 suggest it to be a Chigh type in particular, though in this work’s system

we formally would require a WISE pW1 measurement to classify it as such. In the

following section we show that M types (a group in the Tholen taxonomic system)

and our Chigh types are largely the same population.

The HST Lutetia photometry revealed a steep drop in albedo around ∼300 nm

and nearly constant albedo in the 200–300 nm region at a factor ∼0.6 times the visible

(r-band-equivalent) albedo. The HST observations of Lutetia thus generally agree

with the C-type albedo trend (Figure 5.9), the main difference being the location of

the UV albedo drop-off (the bluest two ECAS bands also demonstrate this difference

between M types and C types, e.g., see Figure 5.2 of [Bus et al. (2002)]).. The Rosetta

spacecraft’s flyby of Lutetia enabled FUV observations with the on-board Alice UV
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imaging spectrograph [Stern et al. (2011)]; the longest wavelengths of the FUV data

(∼190 nm) yield an albedo consistent with the constant value measured in the 200–

300 nm range by HST.

5.6.2 Ceres

HST photometry of asteroid 1 Ceres has also been obtained in the UV and visible

([Parker et al. (2002)], [Li et al. (2006)]). With a color index of 0.01, Ceres is also

a C type in our classification scheme, though its AMPC = 0.033 makes its placement

in our Clow vs. Chigh groups ambiguous (see Figure 5.6 panel F). Like Lutetia, Ceres

lacks a reported pW1 so that we cannot formally classify it as either Clow or Chigh.

Ceres was observed by GALEX and thus is included in our MPC-data-based

analysis; our measured NUV−VMPC = 6.45±0.19 for Ceres make it a clear outlier from

the C-type NUV− VMPC distribution (Figure 5.4 panel B). In the Tholen taxonomic

system Ceres is classified as a G type; in the following section we show that other G
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types exhibit similarly high NUV− VMPC values but less anomalous NUV− VPTF.

The [Parker et al. (2002)] HST data show that around ∼300 nm Ceres’ albedo

drops to as low as ∼0.3 times the visible-band albedo—compared to the factor of ∼0.6

seen for GALEX C types and the Lutetia data—but that around ∼200 nm it appears

to rise again to a more typical C-type UV albedo. [Roettger and Buratti (1994)] did

not observe this unusually deep absorption feature near 300 nm in their IUE spectrum

of Ceres; if real this feature could partially explain the anomalous NUV − VMPC we

observe for G types in GALEX. Figure 5.9 shows Ceres data in the three HST bands

observed by [Li et al. (2006)], none of which sample the 300-nm region containing the

putative absorption band, though these three bands do generally match the GALEX

C-type data.

5.7 C-type subgroups

C types deserve further consideration for several reasons: (1) C types outnumber S

types in the GALEX samples by a factor of several, (2) our division of C types into

Clow and Chigh merits interpretation in more conventional taxonomic systems, and (3)

both of the HST -observed asteroids in the previous section are known members of

C-type subgroups, the UV properties of which are worth confirming with additional

group members.

Figures 10 and 11 detail the distribution of GALEX -observed asteroids belonging

to six classes each from the Tholen and Bus/Binzel taxonomic systems ([Tholen (1989)];

[Bus & Binzel (2002)]), the latter is sometimes referred to as the SMASSII system af-

ter the survey data with which it was derived. These two classification systems were

created on the basis of different visible-band color data; a comparison of their group

definitions is given in Table 5.1 of [Bus et al. (2002)]. We consider only the subset of

GALEX -observed asteroids having both VMPC and VPTF model magnitudes and omit

subgroups containing less than three objects. In the following subsections we briefly

comment on these subgroups.

One key interpretation of these data—supported also by the HST data in Figure
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Figure 5.10: Visible color/albedo distributions of Tholen-classified [Tholen (1989)]
and Bus/Binzel-classified [Bus & Binzel (2002)] C-type subgroups among this work’s
sample of GALEX -observed C-type asteroids. See text for further information.
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Figure 5.11: NUV − V color distributions of Tholen-classified [Tholen (1989)] and
Bus/Binzel-classified [Bus & Binzel (2002)] C-type subgroups among this work’s sam-
ple of GALEX -observed C-type asteroids. See text for further information.
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5.9—is that NUV-band albedo is not very useful for discriminating C-type subgroups,

e.g., M types versus G types, whereas u band appears to be more diagnostic in this

regard. The u-band discrepancy between these subgroups was remarked most notably

by [Zellner et al. (1985)] in the ECAS data, but it was unknown at that time (indeed,

up until now) whether the discrepancy in UV albedo became more or less pronounced

shortward of ∼300 nm. The NUV data indicate that the discrepancy lessens in the

NUV, as M types do in fact exhibit a step-down in albedo (between NUV and u

bands), similar to the step down the G types exhibit within u band.

5.7.1 X complex

The Tholen system’s X-type group includes asteroids with relatively flat visible color,

including no substantial absorption in the blue (in contrast to, e.g., the u-band drop-

off seen in G types). The subgroups within the X group include M, P and E types

and are distinguishable only by albedo.

The twelve M types in our sample all have AMPC > 0.03 and pW1 > 0.125, the

latter formally makes them all Chigh types in this work’s classification system. The M

types have NUV−VMPC = 5.89±0.15 and NUV−VPTF = 6.12±0.21, neither of which

significantly differ from the C-type averages given in Table 5.3. This is consistent with

the above-noted observation that M-type Lutetia’s NUV−V is similar to that of the

GALEX C types, despite an obvious difference in u-band (Figure 5.9). Assuming all

29 of the Chigh types in the GALEX sample are in fact M types, then the Chigh types’

slightly higher NUV − VPTF = 6.14 ± 0.33 (compared to NUV − VPTF = 6.03 ± 0.22

for the whole C type group) agrees well with the M types’ slightly higher average.

Complementary to the M types, the eleven P types in our sample all have AMPC <

0.03 and pW1 < 0.125, the latter formally makes them all Clow types. The P types

have NUV−VMPC = 5.74±0.17 and NUV−VPTF = 5.91±0.13. These values are less

than both models’ C-type averages as well as less than the Clow average, suggesting

our Clow group includes more diverse objects than just P types (e.g., the five F types

also all have AMPC consistent with Clow).
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There are 14 GALEX -observed asteroids listed simply as X types in the Tholen

system (presumably because no visible albedo was available at the time of classifica-

tion); Figure 5.10 shows that these are in fact distributed across both the Clow and

Chigh albedo ranges.

In the Bus/Binzel system, the X complex consists of four subgroups: Xc, Xk,

X and Xe, these being differentiated by their spectral slope and presence of various

absorption features. In the GALEX sample the most numerous of these are the Xc

types, which have the least red visible color and seem to include both high and low

visible albedo members. Both the Xe and Xk types have higher visible color indices

(with larger uncertainties in the color). As with the Tholen X types, we see no

systematic trends with respect to the NUV properties of these subgroups.

5.7.2 G types

Three GALEX -observed asteroids are categorized as G types. Like G-type Ceres,

these have intermediate AMPC and an above-average NUV − VMPC = 6.22 ± 0.11.

In contrast, however, the G-type NUV − VPTF = 5.79 ± 0.10 lies slightly below the

C-type average. The reason for this discrepancy is that all three G types in this

sample have pW1 < 0.125 and so are formally classed as Clow objects, as a result

their assumed Abond = 0.01 in the computation of VPTF may be too low. On the

other hand, [Oszkiewicz et al. (2011)] fit G12 = 0.88 ± 0.2 to Ceres’ phase function,

suggesting that the assumed G12 = 0.84 ± 0.14 for Clow types (Table 5.2) is a more

valid assumption for G types than the Chigh value of G12 = 0.42± 0.20. Hence the G

types seem not to fit well into either of our Clow or Chigh groups, and hence are not

accurately modeled by our VPTF.

The three-asteroid G-type sample’s higher than average NUV−VMPC agrees with

the Cere’s HST data (Figure 5.9), which as discussed above could be indicative of an

absorption feature at ∼300 nm unique to G types [Li et al. (2006)], the precise shape

and location of which remains unresolved in the broadband photometry considered

here.
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Tholen’s G types are represented in the Bus/Binzel system by the Cg and Cgh

groups; however no asteroids in our GALEX sample have either of these SMASSII

labels.

5.7.3 B types

Members of the Tholen B and F classes, represented also by the Bus/Binzel B and

Cb classes, all are classified as Clow types in the GALEX sample based on their

pW1. Unlike the G types, the B types are not anomalous in NUV − VMPC, meaning

the B types likely lack the G types’ strong absorption at 300nm. The B types also

are characterized by slightly higher AMPC = 0.026 compared to the Clow average

AMPC = 0.020. Hence, like the G types, the B types show a lower than average

NUV − VPTF symptomatic of an underestimated Abond and therefore too dim of a

predicted VPTF.

5.8 Summary

We present NUV-band photometry of 405 asteroids observed serendipitously by GALEX

from 2003–2012. Using a compilation of visible-band color data, we select the subset

of these GALEX -observed asteroids belonging to the C-type or S-type classes. We

then compute the visual-band magnitude (using two different models) corresponding

to each GALEX detection in an effort to study the NUV − V color. For both V

models, the derived NUV− V color distribution is bimodal, with S types having the

redder color, just as they do within the visible band. The average C-type NUV− V

agrees with HST observations of the asteroids Lutetia and Ceres, both of which are

members of the visible-color-defined C-type group. Slight differences in the measured

NUV − V among known taxonomic subgroups of the C types may indicate mem-

bership in either the M-type or G-type subgroups, though the 300–400 nm region

(u-band) is more diagnostic of this division.
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Chapter 6

Trojan Lightcurve Demographics

6.1 Introduction

[Lagrange(1772)] demonstrated that one solution to the general three-body prob-

lem is that of constant equal distances—a planet’s Trojans are minor bodies sat-

isfying this condition by occupying the co-orbital Lagrange points L4 and L5, sit-

uated 60 deg ahead of and behind the planet in its orbit. Jupiter has the largest

known and most studied Trojan population, although Earth, Mars, Uranus, and Nep-

tune also have known Trojans of varying degrees of stability ([Connors et al. (2011)];

[Bowell (1990)]; [Alexandersen et al. (2013)]; [Chiang et al. (2003)]).

According to the original version of the Nice model ([Morissey et al. (2005))];

[Tsiganis et al. (2005)]; [Gomes et al. (2005))]) the Jovian Trojans accumulated via

chaotic capture during an instability caused by Jupiter and Saturn crossing a mu-

tual mean-motion resonance. Later revisions to the Nice model incorporated a non-

continuous resonance crossing (“jumping Jupiter”; [Brasser et al. (2009)]) and a fifth

giant planet that was ejected during the instability ([Batygin et al. (2012)];

[Nesvorný & Morbidelli (2012))]). [Nesvorný et al. (2013))] showed that not only is

the Trojans’ capture still reproduced with these revisions, but also that the revised

model predicts an asymmetry between the number of Trojans at L4 and L5, which

the original version [Morissey et al. (2005))] did not predict.

The asymmetry between the two Trojan swarms is one example of a demographic

trend well-suited for characterization with wide-field surveys such as the Sloan Dig-
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ital sky-survey (SDSS; [York et al. (2000)]) and the Wide-field Infrared Survey Ex-

plorer (WISE; [Wright et al. (2010)]). In addition to confirming the L4/L5 asymme-

try (namely, that ∼50% more Trojans exist at L4 than at L5), these surveys confirmed

the preponderance of two distinct spectral groups, recognized in earlier studies (e.g.,

[Jewitt & Luu (1990)]) as C types and D types. [Bus et al. (2002)] review these and

other asteroid taxonomic classes, which are defined on the basis of low-resolution

(R ≈ 100) visible reflectance spectra. In this work we employ a clustering technique

for distinguishing ‘C type’ and ‘D type’ Trojans, applying it to a compilation of

visible-color data sets (a technique used previously in defining the C-type vs. S-type

metric in [Waszczak et al. (2015)]).

The two Trojan groups may have been captured from disparate regions of our

solar system’s primordial planetesimal disk, where different chemical and/or physi-

cal conditions might have lead to different bulk and/or surface compositions (e.g.,

[Brown (2012)]). The similarity of D types to comet nuclei [Jewitt & Luu (1990)]

suggested their outer solar system origin well before the discovery of the Kuiper belt

and other trans-Neptunian objects—many of which also share the distinctly red col-

ors [Ofek (2012)] of D-type Trojans. C types on the other hand are one of the two

dominant groups in the main asteroid belt and likely originated in the giant-planet

region (between Jupiter and Neptune). This history for main-belt C types is consis-

tent with simulations of a hypothetical “hot Jupiter” episode in our early solar system

(the Grand Tack model, [Walsh et al. (2011)]), which simultaneously reproduce the

coarse orbital and compositional structure of the main asteroid belt.

No variants of the Nice model or Grand Tack simulations have yet been used

(or attempted) to reproduce the Trojans’ dual-composition. Ideally such a model

would not only trace the source regions of the Trojans’ two compositional groups,

but should predict any orbital structure, number-size distributions, spin properties,

and/or surface roughness characterizing either group given their dynamical histories.

Observational programs are thus tasked with elucidating any such key demographic

trends. These might include (or suffer contamination from) population trends ac-

quired post-emplacement, e.g., due to collisions or the effects of solar radiation over
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several billions of years.

[Grav et al. (2012))] for instance showed (with the WISE sample) that the ratio

of the two Trojan types varies as a function of diameter—a conclusion independently

verified by [Wong et al. (2014)]. [Sonnett et al. (2015)] used WISE lightcurves to

investigate the binarity fraction of Trojans, another clue to the origin and history

of small-body populations (e.g., [Goldreich et al. (2002))]) that should be further

explored within the Trojan subgroups. Orbital trends may also exist within the

groups: for example, [Emery et al. (2011)] noticed a possible correlation between

near-IR color and inclination within the C-type group. A taxonomic asymmetry may

exist between the L4 and L5 swarms [Roig et al. (2008)]; however this result depends

on the controversial definition of Trojan dynamical families [Brož & Rozehnal (2011)].

The present work examines the rotational (spin) and solar-phase-angle-dependent

photometric properties of Trojans as inferred from lightcurve observations. We ap-

pend derived parameters from 107 Trojan lightcurves appearing in the larger (predom-

inantly main-belt) lightcurve set of [Waszczak et al. (2015)] to 80 additional Trojan

lightcurves referenced from the literature.

6.2 Color-based taxonomic metric

I adopt the multi-data-set fuzzy c-means (FCM) clustering method described in the

appendix of [Waszczak et al. (2015)]. In that work, the method was applied to all

main-belt asteroids appearing in at least one of seven colorimetry data sets—here,

we apply it to all Trojans appearing in at least one of six data sets. Whereas for

main-belt asteroids the two clusters considered were the C types and S types, in this

work the clustering analysis distinguishes C types from D types.

The six data sets are described in Table 5.1. As seen in Figure 6.1 panel A, the first

three data sets are two dimensional, while the last three are one dimensional. Note

that in the case of [Waszczak et al. (2015)], all data sets used were two dimensional;

the FCM clustering technique is equally applicable to 1D data as it is to higher

dimensional data. Regardless of the dimensionality, the number of clusters to be
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identified is all data sets is input as two, given prior knowledge of the two color

groups’ existence. Correlations between the output cluster-membership scores (for

each Trojan, a probability between 0 = C-type and 1 = D-type) is seen in the off-

diagonal plots in Figure 6.1.

Compiling these various data sets not only serves to average the predicted class

membership of Trojans occurring in multiple surveys, it also yields a unified sample

having greater completeness across a wider range of diameters. Targeted surveys such

as the Eight-Color Asteroid Survey or the IRTF survey of [Emery et al. (2011)] tend

to include only the brightest objects, while wide-field surveys like SDSS and WISE

contribute serendipitous data on many smaller objects.

The colorimetric or spectroscopic observations comprising these six surveys all are

indicators of the spectral slope (‘redness’) of the Trojans included therein. For this

reason, some authors have referred to the D and C-type Trojans more descriptively

as the ‘redder’ and ‘less-red’ groups ([Emery et al. (2011)], [Wong et al. (2014)]).

Some authors also identify P types as members of one of the groups or as their

own, intermediate-redness group. [Szabó et al. (2007)] resolved the two composi-

tional groups in SDSS using the color index t∗ = 0.93(r− i) + 0.34(i− z)− 0.25. The

width and location of the r, i and z bands make t∗ a proxy for the spectral reflectance

slope between 0.7 µm and 1 µm. Here for the SDSS data instead of t∗ we use the more

commonly-cited color index a∗ = 0.89(g − r) + 0.45(r − i)− 0.57, which was derived

to maximize separation of main-belt C and S types and is a measure of the slope be-

tween ∼0.4µm and 0.8µm. For the WISE sample, Grav et al. ([Grav et al. (2011))],

[Grav et al. (2012))]) reported each Trojan’s albedo in the near-infrared W1 band (3.4

µm), denoted pW1. Technically this single-band reflectance is, by itself, not a color

measurement. However, given that the visible band albedos of the two types are very

similar (pV ≈ 0.06 for both types), the pW1 is indeed a proxy for the visible-to-NIR

reflectance slope.

Of the 6,277 Trojans known as of this analysis (size distribution in Figure 6.1 panel

A; diameters are computed assuming pV = 0.06 for all Trojans), 423 are classifiable

with this work’s taxonomic metric based on their inclusion in one or more of the six
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data sets. We define D types as those with color indices greater than 2/3 (271 objects)

and C types as those with color indices less than 1/3 (128 objects). There are 24

Trojans with color indices between 1/3 and 2/3 which are ambiguously classified—

either because they are equally distant from both clusters in one or more surveys, or

because they occupy conflicting clusters in two or more surveys and thus average to

near 1/2.

6.3 Rotation periods and amplitudes

[Waszczak et al. (2015)] reviews the basics of using lightcurve observations to extract

information about the shape and spin periods of asteroids, as applied in particular

to the Palomar Transient Factory (PTF) set of ∼9,000 lightcurves. For a description

of the period-fitting algorithm to which the PTF lightcurves were subjected, the

algorithm’s performance, table of output lightcurve parameters, and an analysis of

the main-belt asteroid lightcurve statistics, we refer the reader to that work. In the

PTF lightcurve set there are 117 Trojan lightcurves (of 100 unique Trojans) that

have ‘reliable’ period fits, where ‘reliable’ is defined in detail in that work. Of those

100, there are 38 Trojans that also have a taxonomic classification according to this

work’s cluster-based scheme. Figure 6.1 panel B shows the number-size distribution

of Trojans with periods in PTF and color information.

Plots of only a small selection of PTF Trojan lightcurves appear in Figures 6.2,

6.7 and 6.8 of this chapter. Plots of the remaining ∼100 PTF lightcurves may be

generated using the data tables available in [Waszczak et al. (2015)].

The PTF Trojan lightcurve sample is dominated by smaller (D < 40 km) Trojans.

To increase the sample size overall and the completeness at the large-diameter end, we

supplement these with data from the Light Curve Data Base (LCDB,

[Warner et al. (2009)]), an online repository for lightcurve parameters contributed by

a large community of observers over many decades. We consider only those Trojans

with quality code 3 (highest reliability score) periods. This increases the lightcurve

sample to 164 Trojans (86 with D > 40 km), of which 93 (66 with D > 40 km) have a
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taxonomic color index available. Some works contributing lightcurves to the Trojan

LCDB data include [Mann et al. (2007)], [Mottola et al. (2011))], [Melita et al. (2010)],

French et al. ([French et al. (2011)], [French et al. (2012)], [French et al. (2015)]),

and [Warner & Stevens (2011)]. Each contributing observer/program describes their

own observational program, data reduction and time-series analysis in their respec-

tive works; all contributed lightcurve data include a period estimate and a lower limit

estimate of the amplitude.

The middle column of Figure 6.2 shows the distribution of the 164 Trojans in

diameter, period, and amplitude space. The running geometric mean and one-sigma

percentiles are also overlaid as green and red lines, respectively, to aid visualization of

the change with diameter. For all data points in these plots, the diameter is computed

from the absolute visual magnitude (H) and an assumed albedo pV = 0.06. The right-

hand column of plots show the subset of these data that have taxonomic labels (color

indices), and the separate geometric means for the two groups. The left column

of plots in Figure 6.2 compares these same data to the distribution of main-belt C

types, shown in green in the plot backgrounds. These main-belt C types are also

the union of PTF lightcurve data and LCBD data (the latter contributes most of

the D > 100 km data for main-belt C types). Furthermore, the PTF main-belt

C types include asteroids classified as such on the basis of their photometric index

[Waszczak et al. (2015)], as opposed (or in addition) to their color index. Though

some D types have been found in the main-belt [DeMeo et al. (2013)], these are far

too rare to consider in the same population-level analysis we undertake here.

The bottom middle and bottom right panels of Figure 6.2 include contours describ-

ing the theoretical maximal amplitudes of self-gravitating cohesionless rotators, of var-

ious bulk densities, associated with spinning at the break-up limit.

[Waszczak et al. (2015)] showed for example that main-belt asteroids exhibit a sharp

upper limit of ∼2 g/cm3 for S types and a slightly lower upper limit of 1-2 g/cm3

for C types. Again, these are only upper limits under the assumption that we are

seeing cohesionless bodies that happen to be rotating at their maximum possible

rate. All of the Trojan data points fall to the left of the 0.5 g/cm3 contour, meaning
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that—under these same assumptions—the Trojans could have bulk densities as low

as 0.5 g/cm3. The only specific Trojans having density estimates available by other

methods are both binary systems. The first such system is 617 Patroclus, measured

by [Marchis et al. (2006)] as 0.8 g/cm3 and by [Muller et al. (2010))] as 1.08 ± 0.33

g/cm3. The second is 624 Hektor, measured by [Marchis et al. (2014)] as 1.0 ± 0.3

g/cm3.

Figure 6.3 presents the same data from Figure 6.2 albeit omitting the individual

points and only showing the running geocentric mean and running 16th–84th per-

centile (1σ) contours. Apart from differences with respect to smaller-scale structure,

for D > 40 km the Trojans qualitatively match the main-belt C types very well in

terms of both period and amplitude. We verify this formally in Figure 6.4 by com-

paring the one-dimensional distributions of spin rates and amplitudes (for D > 40

km objects only) with a two-sided Kolmogorov-Smirnov (KS) test [Massey (1951))].

The Trojan C types and main-belt C types are not statistically different distributions

to more than 2σ, meaning we cannot reject the null hypothesis that they are indeed

the same distribution. The same conclusion hold for the comparison of large Trojan

D types with large Trojan C types, and for comparing both Trojan types together

against the main-belt.

In making the one-dimensional histograms in Figure 6.4, we plot the best-fitted

Maxwellian distribution for visual reference; however we have not performed the usual

per-datum normalization by the running geometric mean in these plots. Even lacking

that normalization, the D > 40 km objects do fit a Maxwellian frequency distribution

reasonably well, certainly better than do the D < 40 km objects (Figure 6.5), a

property shared by the main-belt population as described by [Pravec & Harris (2000)]

and [Pravec et al. (2002)]. [Waszczak et al. (2015)] noted the main-belt asteroids’

qualitative fit to a Maxwellian as well, but showed that the observed D > 40 km

distribution actually differs from its best-fit Maxwellian at the 10σ significance level

(via a KS test). Here, the 86-object D > 40 km Trojan sample differs at about the

9σ level from a Maxwellian.

A Maxwellian distribution in spin frequencies has often been cited as the evolved
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state for a population of collisionally-evolved particles (e.g., [Salo (1987)]), this be-

ing most easily understood as a vector combination of Gaussian-distributed angu-

lar momenta distributions in each of the three spatial dimensions. Recent work

[Steinberg & Sari (2015)] suggests that a Lévy distribution may be a more accurate

model, and that the apparent lack of the data’s fit to a Lévy distribution may in-

dicate a significant residual primordial (or at least non-collisional) spin component.

[Mottola et al. (2014))] consider the possibility that the large Trojans’ deviation from

a Maxwellian may be evidence for episodes of nonisotropic cometary outgassing dur-

ing a Trojan’s lifetime, the angular momentum change of which dominates over the

mostly isotropic nature of the collisions, which otherwise would create the Maxwellian

distribution but instead introduces more spread in the distribution (both fast and slow

rotators).

At 10–40 km sizes, the Trojan and main-belt populations differ in the following

ways:

1. unlike the main-belt asteroids, small Trojans, i.e., 10 < (D/km) < 40 objects,

do not show an increased fraction of fast rotators piling up at a ∼2-hour spin

barrier. Rather, the 84th percentile spin rate of smaller Trojans is the same as

for larger Trojans (∼6 hours),

2. small Trojans show a greater proportion of slow rotators (periods of several days

to tens of days) as compared to similar-sized main belt objects,

3. small Trojans have an apparently higher mean amplitude than do the main-

belt C types, though the 84th percentile of the two populations’ amplitudes is

remarkably identical over the observed size range.

Regarding point (1) above, it is difficult to infer whether the observed 5–6 hour

lower limit on period is itself a spin barrier analogous the main-belt’s ∼2 hour barrier,

or whether it is a manifestation of some other mechanism or event, perhaps primordial

and possibly shared with the main-belt C types (and still presently among the D > 40
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km populations). If the former (a spin barrier), then as mentioned earlier it could

imply Trojan bulk densities of as low as ∼0.5 g/cm3.

[French et al. (2015)] discuss the possible role of the Yarkovsky-O’Keefe-Radzievskii-

Paddack (YORP) effect in the differing spin distributions for small and large Tro-

jans. YORP is the gradual change in asteroids’ angular momentum vectors (direc-

tion and magnitude) due to asymmetric torques created by photon pressure on their

irregularly-shaped surfaces. The forces involved may only become significant over

several billions of years. For YORP, the change in spin rate is inversely proportional

to both the square of the orbital semi-major axis and the square (or higher power)

of the object’s linear size. An asteroid twice as far from the sun experiences 1/4 the

spin rate change, as does an object twice the size at the same orbital radius.

Again as noted by [French et al. (2015)], if Trojans and main-belt C types are

the same bulk density, then the largest Trojans affected by YORP at 5 AU should

be half the size of the smallest susceptible main belt objects. Taking the latter to

be ∼40 km, then only Trojans smaller than 20 km will have YORP-influenced spin

states. Though this work’s sample does not show an excess of faster rotators near

or below D = 20 km, note the sample’s completeness at this size is only of order

1%. On the other hand, if ∼5 hours is indeed the fastest possible spin period for

Trojans, then the addition of YORP forces at 20 km cannot produce a population

of faster rotators (they would break apart), it could however contribute to an excess

of slow (∼10-day period) spin rates, which is indeed observed. Slow rotators may

also be, in some cases, binary systems that have drained their angular momentum

through tidal locking. Finally, the extent to which the cometary outgassing scenario of

[Mottola et al. (2014))] might be applied to D < 40 km Trojans is unclear, however

given that cometary activity has been seen in D < 10 km main-belt objects (the

main-belt comets, e.g., [Jewitt (2012)]), the capacity for similar sized Trojans to

retain sub-surface ice reservoirs is not unreasonable.
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6.4 Binarity

Lightcurves of binary asteroid systems are typically characterized by amplitudes of

∆m > 0.9 mag, with deep ‘V’-shaped or cusp-like minima. These minima correspond

to the mutual event (eclipse or occultation) occurring once per rotation period (if the

two members are contacting) or orbital period (if detached). As mentioned above, bi-

nary systems can provide opportunities to estimate the asteroids’ bulk densities given

precise (i.e., adaptive-optics) astrometric observations (e.g., [Marchis et al. (2006)]).

Their population frequency may offer clues about small-body formation and dy-

namical evolution, as has been explored for example in the context of KBOs (e.g.,

[Goldreich et al. (2002))]).

[Sonnett et al. (2015)] further motivates the search for Trojan binaries, and uses

the WISE -observed sample to identify 34 candidate binary Trojans. Six of these

happen to have lightcurves in the PTF sample (Figure 6.7). One of these (asteroid

13323) has two lightcurves in PTF: one from the 2010 opposition and the other from

2014. In both of these oppositions, its fitted lightcurve full-amplitude is less than

0.5 mag, contrary to the 0.92 ± 0.08 mag observed by WISE. Not only is he 2014

PTF lightcurve is lacking data at the minima, it could also represent a different (non-

eclipsing) viewing geometry. The 2010 PTF lightcurve of 13323 is however from the

same opposition as the WISE lightcurve. On the other hand, the WISE lightcurve

clearly shows two minima of different depths; it is certainly possible that the deeper of

these two is undersampled in PTF, resulting in the underestimated PTF amplitude.

[Sonnett et al. (2015)] did not comment on the taxonomic types of the binary

candidates they identified. Nine out of the 34 candidates they identified have a color

index in the taxonomic metric we use in this work; according to these colors seven of

the WISE binary candidates are D types and two are C types.

Because it parameterizes period-folded rotation curves using only the four coeffi-

cients of a second-order Fourier series, the PTF lightcurve-fitting algorithm

[Waszczak et al. (2015)] was neither designed nor reliable for the successful identi-

fication or modeling of binary-asteroid lightcurves. Given sufficiently densely and
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evenly sampled lightcurves in PTF, the fitting procedure sometimes outputs a ‘valid’

lightcurve solution for binaries that may fit the maxima well but give significant resid-

uals with respect to the minimum-flux observations. Assuming there are indeed pos-

itive detections at the minima, these data points will, in successive iterations, receive

inflated uncertainty values (errorbars) in an effort to minimize the fit’s chi-squared.

If the errorbars grow too large, the minima data points can often be discarded, and

the lightcurve fitting may be aborted before a desirable set of fitted parameters is

obtained. However, in some instances the fraction of data occurring at minima is

sufficiently low, and the rest of the lightcurve adequately constrained such that a

solution is produced and the lightcurve is added to the sample.

We visually identified two likely binaries among the PTF lightcurves (Figure 6.8):

asteroids 5244 and 9430. The latter has three lightcurves in PTF, both R and g band

from 2012 and R band from 2013. Their color indices indicate that asteroid 5244

is a C-type Trojan and 9340 is a D type. The lightcurves in Figure 6.8 do exhibit

the cusp-like minima described above, in contrast to the WISE binary candidates in

Figure 6.7.

6.5 Photometric phase functions

As with rotational properties, [Waszczak et al. (2015)] provide a detailed overview of

asteroids’ photometric variation as a function of solar-phase-angle (i.e., phase func-

tions). Figure 6.1 of [Waszczak et al. (2015)] includes example C-type (main-belt)

and D-type (Trojan) phase function data from the literature; we also produced nearly

4,000 new fitted phase functions (mostly main-belt asteroids) from the PTF data. In

PTF we fit three phase function models to lightcurves, two of which we consider here

for the Trojans: the G12 model of [Muinonen et al. (2010))], and a simpler linear

model β (units of mag/deg).

In general, asteroid phase-function lightcurves are much more time consuming

to produce from targeted observations as compared to rotation lightcurves, given

the much longer observational baseline required. PTF and other wide-field surveys
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provide an unprecedentedly efficient means of collecting asteroid phase-curve data.

Unfortunately, this also means that, unlike the case of rotational parameters, the

literature does not contain a very large pre-existing catalog of phase parameter mea-

surements (compared to the size of the rotational database).

[French (1987)] was the first to publish a Trojan-asteroid phase curve; she found

that (1173) Anchises exhibits a very linear phase curve lacking the commonly-seen

opposition effect. Anchises’ phase function data therefore were poorly fit by the

[Bowell et al. (1989)] G-parameter phase function model. Despite being classified

as a C-type Trojan according to this work’s color index, Anchises’ observed phase

function differs from the typically-fitted G ≈ 0.08 of main-belt asteroids. We note

however that the [French (1987)] data were limited to phase angles of less than 2

deg (a very limited sampling compared to main belt asteroids, which are typically

observed out to 20–30 deg).

[Schaefer et al. (2010)] observed nine Trojans and fit both a multi-parameter

(Hapke) and a single-parameter (linear) phase function mode. They claim the linear

model yielded comparable fits to the Hapke model (i.e., similar χ2), with most fitted

slopes in the range 0.04 ≤ β ≤ 0.06, albeit with stated uncertainties of 20-40% and

one object with a negative (S < 0) fitted slope. A key shortcoming in the analysis

of [Schaefer et al. (2010)] was their lack of a fit for the rotational modulation, which,

as we explain in [Waszczak et al. (2015)], causes underestimated uncertainties in the

fitted parameters.

Another work [Shevchenko et al. (2012)] observed three Trojans and computed

higher-precision linear phase function fits. They accurately fit the rotational com-

ponent with high-cadence sampling at each epoch (or, equivalently, at each phase

angle), and computed phase-slope (β) values of 0.045, 0.040 and 0.044 (all ±0.001

mag/deg, or 2-3% uncertainties) for 588 Achilles, 884 Priamus and 1143 Odysseus,

respectively. All three are classified as D-type Trojans in the color-index-based tax-

onomic classification scheme.

In Figure 6.9 we plot the fitted G12 and β parameters for 23 taxonomically-

classified Trojans that have sufficient phase-angle coverage (data occupying three
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or more phase-angle bins of width 3 deg) and either a reliable fitted period or a fitted

amplitude of less than 0.1 mag. Neither the G12 nor β distributions of the C types

are statistically distinct from the D types, nor are the Trojan C types distinct from

the much larger main-belt C types in their phase function parameters.

More measurements of Trojan phase curves are required to better discern the ex-

tent to which the C and D types (and main-belt and Trojan asteroids) differ in their

phase function parameters. For main-belt S and C types,

[Waszczak et al. (2015)] showed that the two populations clearly differ in their phase

function, though this does not necessarily mean, for instance, that all (color-index-

defined) C types throughout the solar system should have the same phase function.

As noted in [Waszczak et al. (2015)], the phase function depends on many physi-

cal surface properties (grain size, compactness, topographic roughness, and more)

which could conceivably vary independently of the bulk (or at least surface) min-

eralogical/chemical composition of the asteroids to which we attribute the observed

colors. Differing collisional rates, ambient dust densities, solar radiation levels and

other orbital environmental factors may lead to differing photometric properties that

might ultimately be seen in the phase-function parameter (but perhaps not color)

distributions.

A related point is that the phase function of an asteroid is commonly recognized of

as being intricately related to the object’s albedo. As we have been assuming the two

Trojan types (and Trojans and main-belt C types) have a common geometric albedo

of pV = 0.06, the hypothesis that they could exhibit differences in phase function

may seem inconsistent. However, [Waszczak et al. (2015)] details how the geometric

albedo, while formally defined in terms of the phase function, is not necessarily an

unambiguous proxy for the phase function; they demonstrate this with main-belt

asteroid data in particular.
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6.6 Summary

We present a sample of rotational (period and amplitude) parameters for 164 Trojan

lightcurves, and use it to search for differences between the two Trojan taxonomic

types and between Trojans to main-belt C types. This sample is a combination of new

lightcurves from the PTF survey (mostly D < 40 km objects) and existing lightcurves

from the literature (primarily D > 40 km and larger objects, considering only those

with quality code 3 periods). We also consider binarity and the distribution of phase-

function parameters. Any potential discrepancies in these populations’ lightcurve

properties would need to be taken into account by dynamical and other models of the

origin and evolution of these small bodies.

In order to label Trojans as either C or D type, we employ a color-based taxonomic

scheme based upon a clustering analysis of six different data sets, in a manner similar

to what was done for main-belt asteroids in [Waszczak et al. (2015)].

The large Trojans (D > 40 km) show no statistically significant differences in the

spin period or spin amplitude distributions, both in comparing C and D types and

Trojans and main-belt asteroids. The samples in this size range are ∼40% complete

for C and D types, ∼50% complete for Trojans irrespective of color type, and ∼30%

complete for main-belt C types. Because these results are based on KS-test compar-

isons, we can only report a non-detection of any difference in their distributions (as

opposed to confidence that they are in fact identical distributions, which we cannot

claim).

For smaller Trojans, the spin and amplitude distributions do differ at the 3–4σ

level. While the sample sizes in this regime are far smaller in terms of population

completeness, some key differences stand out, including the lack of Trojans rotating

fast than ∼5 hours. Whether this represents a ‘spin barrier’ analogous to the main-

belt’s ∼2-hour limit is not clear; if true it could imply the Trojans have bulk densities

as low as ∼0.5 gm/cm3, comparable to the low densities determined by astrometric

observations of known Trojan binaries.

The effects of YORP would probably not be seen on Trojans larger than 10–
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20 km in size, assuming a simple inverse-square relationship with semi-major axis

and comparing to the main-belt population. This smaller influence of YORP rela-

tive to main-belt asteroids was proposed by [French et al. (2015)], while a cometary

outgassing scenario was suggested by [Mottola et al. (2014))].

Although the PTF lightcurve sample as currently analyzed is not ideal for the

identification or study of binary systems, we do present PTF lightcurves of six Trojans

that were identified by [Sonnett et al. (2015)] in WISE, and we identify two PTF-

observed Trojans whose lightcurves are strongly suggestive of binary systems. Finally,

the phase-function parameter distributions of Trojans do not show any statistically

significant differences; the need for further exploration of this issue in particular is very

clear, given that the phase function can conceivably contain information unrelated to

the bulk composition (such as surface roughness or regolith compactness).
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Figure 6.2: A small selection of example Trojan PTF lightcurves. Each row cor-
responds to a different asteroid. Column A shows the phase curve (corrected for
rotation); Column B shows the rotation curve (corrected for phase-function); Col-
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Figure 6.7: PTF lightcurves of six Trojans which were identified as candidate binaries
in WISE (there were 34 such candidates found by [Sonnett et al. (2015)]). See Figure
6.2 for a description of the plot-labeling format used here. Note the first asteroid
(13323) has two lightcurves in PTF, from different oppositions.
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Figure 6.8: PTF lightcurves of two Trojans identified visually, in the course of this
work, as likely binary systems. The second object, asteroid 9430, has three different
lightcurves: two from the 2012 opposition (R and g band) and one from the 2013
opposition (R band). Note that none of the WISE candidates (Figure 6.8) unam-
biguously show the deep cusp-like minima of the kind seen in the above Trojans.
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Figure 6.9: Phase function parameter distributions of PTF-observed Trojans and
main-belt C-type asteroids. Only the 23 Trojans included here had sufficient phase-
angle coverage and reliable period (or low amplitude) giving them a ‘reliable’ phase-
parameter estimate.
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[Ivezić et al. (2001)] Ivezić, Ž. et al., 2001. Solar system objects observed in the Sloan

Digital sky-survey commissioning data. http://dx.doi.org/10.1086/323452 As-

tron. J. 122, 2749–2784.
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