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Abstract

Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-

present “zero-point” fluctuations of the quantum ground state. Through squeezing, however, it is

possible to decrease the noise of a single motional quadrature below the zero-point level as long

as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level

was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is

a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical

devices even at typical dilution refrigerator temperatures of ∼ 10 mK.

Kronwald, Marquardt, and Clerk [30] propose a method of squeezing a single quadrature of

mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out

with a large thermal occupation. The scheme operates under the framework of cavity optomechanics,

where an optical or microwave cavity is coupled to the mechanics in order to control and read out the

mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the

cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics

to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion.

In this dissertation, I describe two experiments related to the implementation of this proposal in

an electromechanical system. I also expand on the theory presented in [30] to include the effects of

squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment

of the pump frequencies.

In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al..

We perform back-action evading measurements of the mechanical squeezed state in order to probe

the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature

fluctuations at the level of 1.09± 0.06 times the quantum zero-point motion.

In the second experiment, we measure the spectral noise of the microwave cavity in the presence

of the squeezing tones and fit a full model to the spectrum in order to deduce a quadrature variance

of 0.80± 0.03 times the zero-point level. These measurements provide the first evidence of quantum

squeezing of motion in a mechanical resonator.
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Chapter 1

Introduction

In popular science, quantum mechanics is seen mainly as a source of non-intuitive, “spooky” phe-

nomena that we can exploit to produce new technologies. Lasers, transistors, and scanning tunneling

microscopes are all touted as applications of quantum mechanics. Superconductors are commonly

found in MRI magnets and SQUID magnetometers, and have been used in maglev train prototypes.

Quantum key distribution systems that use either quantum indeterminacy or entanglement to se-

curely share keys between multiple parties are already available from several companies. Quantum

computers, which rely on superposition and entanglement to perform calculations at faster speeds

than their classical counterparts, are seen as the technology of the future.

Less attention is given to the limits and constraints placed by quantum mechanics. Built into

the fundamental assumption that quantum states can be represented as a linear vector space is the

Schwarz inequality: for any two vectors p and q in the linear vector space with a defined inner

product 〈, 〉,

〈p, p〉 〈q, q〉 ≥ |〈p, q〉|2 . (1.1)

If p and q do not commute, then the right-hand side of the above equation will be greater than 0.

This leads to the familiar Heisenberg uncertainty principle for the position, x̂, and momentum, p̂,

of a particle:

∆x̂2∆p̂2 ≥ |〈[x̂, p̂]〉|2 /4 = h̄2/4. (1.2)

Through the uncertainty principle, it is impossible to simultaneously localize a particle’s state in

both position and momentum space. The uncertainty principle also leads to the ground state of a

harmonic oscillator having a non-zero energy. As the harmonic oscillator must have x̂2 ≥ ∆x̂2 and
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p̂2 ≥ ∆p̂2, the oscillator’s energy must satisfy

E ≥ ∆p̂2

2m
+ 1

2mω
2
m∆x̂2. (1.3)

Since ∆p̂2 ≥ h̄2/4∆x̂2,

E ≥ h̄2

8m∆x̂2
+ 1

2mω
2
m∆x̂2, (1.4)

which is minimized when ∆x̂ =
√
h̄/2mωm and E = 1

2 h̄ωm. Thus, as a result of the quantum, wave-

like nature of the physical world, a harmonic oscillator can never be completely at rest. Even in the

quantum ground state, its position will always have fluctuations with variance ∆x̂2
zp = h̄/ (2mωm),

called the zero-point fluctuations.

These zero-point fluctuations place limits on continuous position measurements of mechanical

resonators. Such measurements are often performed in the context of force detection, and micro-scale

mechanical resonators have been used to sense electric forces due to the presence of charges [12] and

magnetic forces from single spins [46]. They are also widely-used as accelerometers and gyroscopes

[65]. On a much larger scale, mechanical resonators are fundamental to many gravitational wave

detectors. Bar resonator detectors, from the original Weber bars [59] to the more-recent Nautilus

[6] and AURIGA [67] projects, detect displacements of a 1000-kg-scale “antenna” for gravitational

waves. Interferometric detectors like GEO [63], LIGO [2], and VIRGO [3] essentially measure the

position of the 10-kg-scale mirrors at the ends of their interferometer arms. For all these systems,

zero-point fluctuations place a lower bound on the minimum measurable displacement of the me-

chanical objects.

In addition to the intrinsic zero-point motion of a mechanical object, the act of measuring position

must itself add noise. The quantum limits on continuous position measurements of mechanical

resonators were first studied theoretically in the context of interferometers [7, 9]. To illustrate

theses limits, it is thus useful to consider the end mirror of a Fabry-Pérot cavity in one arm of a

Michelson interferometer (Fig. 1.1a). When the cavity is driven at its resonance frequency, ωc, the

motion of the mechanics modulates the phase of the laser drive, and thus the mechanical position

can be measured from the resulting phase shift. The laser itself has shot noise, which leads to

uncertainty in the measured phase. This “imprecision” noise is evident as a white noise floor in

the position noise spectral density, Sxx(ω). The zero-point motion of the mechanics contributes a

Lorentzian centered at the mechanical resonance frequency, ωm, and with a linewidth equal to the

intrinsic mechanical damping rate, γm, to Sxx. As the laser power, P , is increased, the measurement

uncertainty is decreased, and thus the imprecision decreases. However, the shot noise of the laser

begins to drive the mechanical motion, leading to a larger Lorentzian response centered at ωm. The
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contributions of imprecision, back-action, and zero-point fluctuations at different laser powers are

shown in Fig. 1.1b&c. There exists an optimum pump power for which the total noise is minimized;

this point is referred to as the “standard quantum limit” (SQL). At the standard quantum limit

power, the imprecision noise and back-action noise at ωm each contribute half the zero-point noise,

leading to a total position noise twice the zero-point fluctuations. While we have considered the limits

of measurement for the specific case of a mirror in an optical cavity, the SQL represents the minimum

noise of any continuous, weak measurement of position. For further discussion, [13] includes an in-

depth derivation of the quantum limits on position measurement.

In practice, most position measurement systems have noise contributions above the limits pre-

sented here. For example, a linear amplifier adds to the measurement imprecision even in the

quantum limit, and classical noise in the cavity can lead to additional back-action. Since I joined

the Schwab group in 2009, much work has been done in the field of optomechanics to simply perform

measurements at the level of these limits. Several groups have performed measurements of impreci-

sion “below the SQL” – that is, at high-enough powers that the imprecision noise floor contributes

less than S0
xx(ωm)/2 [55, 4, 61]. Other groups have observed contributions from the shot-noise back-

action (also referred to as “radiation pressure shot noise”) [43, 51]. So far, no group has been able

to perform a measurement with both imprecision and back-action at the standard quantum limit.

In the derivations and experiments discussed so far, the measurements have been insensitive to

the phase of the mechanical motion. The position of the mechanical resonator can be broken down

into two orthogonal motional quadratures, X̂1 and X̂2, which are related to the position operator by

x̂ =
√

2xzp

(
X̂1 cosωmt+ X̂2 sinωmt

)
. These non-commuting quadrature operators define a set of

axes that rotate through position-momentum space at a frequency ωm. If we are only interesting in

measuring one of these quadratures, it is possible to avoid the imprecision and back-action noise at

the expense of giving up information or adding noise to the orthogonal quadrature. Over the past

several years, the shot-noise imprecision has been avoided by using quadrature-squeezed light for the

laser drive [26, 1], and the quantum back-action has been evaded in single-quadrature measurements

via parametric modulation of the optomechanical coupling [51]. The next logical step is to avoid

the zero-point fluctuations in a single quadrature by squeezing the mechanical motion.

In the quantum ground state, a mechanical resonator has position fluctuations divided equally

between X̂1 and X̂2. The ground-state fluctuations minimize the uncertainty relation given by the

quadratures’ non-zero commutator:

〈∆X̂2
1 〉〈∆X̂2

2 〉 ≥
1

4

∣∣∣〈[X̂1, X̂2]〉
∣∣∣2 = 1/4

〈∆X̂2
1 〉ZP = 〈∆X̂2

2 〉ZP = 1/2. (1.5)

Given this uncertainty relation, it is, in principle, possible to squeeze the zero-point noise such that
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Figure 1.1: Quantum noise limits on continuous position measurement. a) Example of a continuous
position measurement scheme. One mirror (red) of a Fabry-Pérot cavity with frequency ωc has a
mechanical resonance with frequency ωm and loss rate γm. The position of the mirror changes the
length of the cavity, shifting the phase of a laser drive at ωc. b) Total position noise spectral density
measured at the mechanical frequency, in units of the corresponding zero-point noise. The zero-point
fluctuations (dashed red line) are constant for all applied powers. The imprecision (dashed purple
line) decreases with applied power, while the back-action (dashed blue line) increases. The total
noise is shown in black. At PSQL, the back-action and imprecision are equal, and each contribute
half of the zero-point fluctuations. c) Noise spectral density vs. frequency for P/PSQL = 0.1 (left),
1.0 (center), and 10 (right). Imprecision noise is shown in purple, back-action noise is shown in blue,
and the zero-point fluctuations are shown in red. The total noise spectral density is shown in black.
For low powers, the imprecision dominates the total noise, while at high powers, the back-action
dominates.



5

fluctuations in one quadrature are reduced below the zero-point level at the expense of increasing

noise in the orthogonal quadrature. More generally, other non-commuting observable pairs can be

squeezed, and quantum squeezed states1 have been created and detected in such varied systems

as optical [49] and microwave [66] modes, the motion of trapped ions [37], and spin states in an

ensemble of cold atoms [24]. Transient quantum squeezing has also been created and observed

in the motion of molecular nuclei [16] and of terahertz-frequency phonons in an atomic lattice on

picosecond timescales [21]. While [37], [16], and [21] all produce quantum squeezed states of motion,

when it comes to potential applications, they do not have the same advantages as the steady-state

squeezing of the engineered, high-Q mechanical resonator that we deal with in this work. Moreover, a

mesoscopic membrane is, in many ways, a more “classical” object than a collection of ions or phonons,

and quantum manipulation of larger, more macroscopic systems is a current goal of experimental

physics.

While a squeezed thermal state always has a positive Wigner function, when the fluctuations

in one quadrature are reduced below the zero-point level, the squeezed state no longer has a well-

behaved P-representation [29] – that is, it cannot be represented as an incoherent mixture of coherent

states, which are often referred to as the “most classical” of quantum states. For this reason, a quan-

tum squeezed state is considered a non-classical state [22]. Much effort has gone into producing and

studying non-classical behavior in larger and larger systems, and recent progress in the field of opto-

and electromechanics has resulted in the generation of mechanical Fock states [39], entanglement [40],

and observations of quantum sideband asymmetry [32, 38]. Quantum squeezing in a micron-scale

mechanical resonator is an important addition to this short list.

A major challenge for quantum squeezing of a radio-frequency mechanical mode is that, even

at a temperature of 10 mK, the thermal occupation and corresponding position fluctuations are

far larger than the quantum zero-point fluctuations: ∆x̂2 ∼ 100 · ∆x̂2
zp for a 4 MHz resonator;

quantum squeezing can only be accomplished by first overcoming this large thermal contribution.

In contrast, optical modes are found in the quantum ground state at room temperature. Squeezing

of mechanical fluctuations was first demonstrated far outside the quantum regime by parametrically

modulating the mechanical spring constant [47]. Since parametric methods are limited to 3 dB

of steady-state squeezing, the occupation factor of the mechanical mode must be well below one

phonon to achieve squeezing below the zero-point fluctuations. While sideband cooling has led

to occupations of less than one phonon in recent years [56, 10], nonlinearities and heating tend to

prevent the phonon occupation from dropping far below 1, making quantum squeezing via parametric

techniques difficult. There are many theoretical proposals for surpassing the 3 dB limit to produce

quantum squeezing [44, 48, 14, 68, 27, 34, 54, 57, 23, 5, 33], and improvement over the 3 dB limit

1Throughout this thesis, I will refer to “quantum” squeezed states as states where noise in one quadrature (or
one non-commuting observable) is reduced below its zero-point value. Minimization of the uncertainty relation is not
required in this definition.
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Figure 1.2: Squeezing drive schematic, showing the relative frequencies and amplitudes of the red-
and blue-detuned pump tones.

has been realized experimentally with modified parametric techniques [53, 58, 42]. Squeezing below

the zero-point fluctuations, however, has yet to be achieved.

In the experiments described in this dissertation and in [64], we implement a reservoir-engineering

scheme proposed by Kronwald, Marquardt, and Clerk [30]. This method is closely related to the ap-

proach of Cirac et. al. [11] that was recently used to produce quantum squeezed states in the motion

of trapped ions [28]. Squeezing via reservoir engineering has advantages over other methods, as it

creates a system in which the mechanics relaxes into a steady-state squeezed state without the fast

measurements and control necessary for feedback. The scheme consists of applying two pump tones

to an optical or microwave cavity parametrically-coupled to a mechanical resonator. The pumps are

detuned from the cavity frequency, ωc, by the mechanical frequency, ±ωm, and the red-detuned (-)

pump has a greater amplitude than the blue-detuned (+) pump (Fig. 1.2). This is a similar set-up

to one used for a back-action-evading (BAE) measurement of a single quadrature [8], but with ex-

cess red power. As the blue/red pump occupation ratio, n+
p /n

−
p , goes to 0, the pump configuration

becomes a single, red-detuned drive, as in sideband cooling [35]. In this limit, the fluctuations of

both quadratures are damped and cooled, but the final noise in each quadrature is limited by the

zero-point noise of the cavity and drive. As the ratio goes to 1, the pump configuration becomes the

balanced drives of BAE. In this limit, all back-action noise is added to the X̂2 quadrature, leaving

the X̂1 quadrature unperturbed by the measurement, and neither quadrature is cooled. In between

these limits, both quadratures are damped by the excess red power, while the backaction noise added

to X̂1 is less than the zero-point noise associated with the total damping. By optimizing the pump

ratio between these two limits, it is possible to produce arbitrarily-large amounts of sub-zero-point

squeezing (i.e., > 3 dB) if the coupling between the mechanics and the squeezed reservoir sufficiently

dominates the mechanical dissipation rate.

While I worked on many projects throughout my tenure in the Schwab group, including su-

perconducting parametric amplifiers, graphene bolometers, and back-action evading measurements,
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I have chosen to focus this dissertation on a thorough description of our squeezing experiments.

The measurements presented here represent the first evidence of quantum squeezing in a mechani-

cal resonator. They demonstrate the effectiveness of the Kronwald, Marquardt, and Clerk (KMC)

squeezing method, even in a system where the mechanics start out with 100 times the zero-point

fluctuations, and where both the cavity and mechanical baths are subject to power-dependent heat-

ing.

This dissertation is laid out as follows: In Chapter 2, I derive the theoretical background necessary

for understanding our calibrations and measurements. In Chapter 3, I introduce our measurement

set-up and calibration procedures. In Chapters 4 and 5, I present measurements of squeezing for two

devices, which I will refer to as Device 1 (D1) and Device 2 (D2). For D1, we perform back-action

evading measurements of a squeezed state, showing the full phase dependence of the mechanical

motion. For D2, we fit the output noise spectrum of photons exiting the cavity, and find evidence

that the mechanics are squeezed such that the X̂1 quadrature has fluctuations at 0.80± 0.03 times

the zero-point level. Appendix A includes definitions of variables and functions used throughout

this dissertation, and Appendix B includes a characterization of the heating behavior we see in our

devices.
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Chapter 2

Theory

Here, I derive the equations governing our system using input-output theory. Standard references

for this approach include [19] and [20]. The main objectives of this derivation are to

• Find the quadrature variances produced when our electromechanical device is driven with two

tones at ω± = ωc±ωm when both the mechanics and cavity are coupled to thermal baths with

non-zero temperatures (Section 2.4).

• Derive measureable quantities for our system in the presence of the squeezing tones, such as

the cavity transmission (Section 2.5) and the noise spectrum (Section 2.6).

• Find the effects of imperfect detuning (i.e., ω± 6= ωc ± ωm) on both the amount of squeezing

(Section 2.4.4) and on measurable quantities (Sections 2.5 and 2.6).

• Provide the theoretical background necessary for understanding the BAE probe measurements

of Chapter 4 (Section 2.7).

• Derive equations necessary for understanding our typical calibrations and device character-

ization, including our two-tone thermal calibration (Section 2.6.2) and single-tone linewidth

broadening (Section 2.8.2) and cooling (Section 2.8.1).

These derivations represent a combination of results already published by other authors [30,

13, 14, 60, 51, 35, 45], unpublished notes and comments from within our group (Chan U Lei) or

from our theory collaborators (Andreas Kronwald, Anja Metelmann, and Aashish Clerk), and my

own calculations. The main results discussed here that are not included in the KMC squeezing

paper are the inclusion of a non-zero thermal cavity occupation and of the effects of imperfect pump

alignment. The effects of imbalanced pump power on BAE measurements are also, to my knowledge,

unpublished.
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Figure 2.1: Cartoon of the mechanical and cavity resonators with definitions of the coupling to
input, output, and internal baths.

2.1 Setting up the system

2.1.1 Parameters of the system

We begin by considering a microwave cavity with resonant frequency ωc and a mechanical resonator

with frequency ωm and effective mass m, defining the photon and phonon annihilation operators as

â and b̂, respectively. The position of the mechanics is then given by

x̂ = xzp

(
b̂+ b̂†

)
, (2.1)

where xzp =
√
h̄/(2ωmm) is the rms amplitude of the zero-point fluctuations of the mechanical

oscillator in its quantum ground state. As the frequency of the cavity depends on the position of

the mechanics, the two are coupled together with a coupling constant g = dωc/dx. We define the

single-photon coupling rate, g0 = gxzp, as the cavity frequency shift for a displacement of xzp.

In order to send photons into the cavity and read out photons from the cavity, we must couple

it to a transmission line. In our system, the microwave cavity couples to a left (input) and a right

(output) port with coupling rates κL and κR, respectively. Moreover, neither the mechanics nor the

cavity are perfectly isolated – they both have internal losses that provide coupling to external baths.

The internal loss rate for the cavity is κint, and the intrinsic loss rate for the mechanics is γm. We

further define the total cavity loss rate as κ = κL + κR + κint. This system is depicted in Fig. 2.1.

2.1.2 Input noise operators

Coupling to the environment not only leads to photons and phonons leaving the system, but also

allows noise to enter the system. We define the input phonon noise annihilation operator to be ĉin,

and the photon noise annihilation operators for each port to be d̂in,i, where i = L,R, int. These
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operators all obey the canonical commutation relations, and have the following expectation values:

〈
d̂†in,i(t)d̂in,j(t

′)
〉

= nthc,iδijδ(t− t′)〈
d̂in,i(t)d̂

†
in,j(t

′)
〉

= (nthc,i + 1)δijδ(t− t′)〈
ĉ†in(t)ĉin(t′)

〉
= nthmδ(t− t′)〈

ĉin(t)ĉ†in(t′)
〉

= (nthm + 1)δ(t− t′)

(2.2)

Here, nthi represents the Bose occupancy of a given bath at temperature Ti: n
th
i = (eh̄ωi/kBTi−1)−1.

At 0 temperature, nthi = 0. At 10 mK, we expect nthc,i, the microwave occupations, to be effectively

0, and nthm to be between 10 and 100 for our MHz-frequency devices. By applying strong driving

tones, however, we can substantially heat these baths; in general, nthm and nthc,int will be dependent

on the applied power.

To simplify future calculations, we can define

d̂in =
∑

i=L,R,int

√
κi√
κ
d̂in,i (2.3)

so that d̂in has the following expectation values:

〈
d̂†in(t)d̂in(t′)

〉
=
∑
i

κi
κ
nthc,iδ(t− t′) ≡ nthc δ(t− t′)〈

d̂in(t)d̂†in(t′)
〉

=
∑
i

κi
κ

(nthc,i + 1)δ(t− t′) = (nthc + 1)δ(t− t′).
(2.4)

Here, we have defined nthc as the average thermal cavity occupation from the external and internal

baths, weighted by their coupling rates.

It is also useful to consider the Fourier transforms of these operators. For a general operator ξ̂,

we define the Fourier transforms as:

ξ̂[ω] =

∫ ∞
−∞

dteiωtξ̂(t) ξ̂†[ω] =

∫ ∞
−∞

dteiωtξ̂†(t) =
[
ξ̂[−ω]

]†
(2.5)

ξ̂(t) =
1

2π

∫ ∞
−∞

dωe−iωtξ̂[ω] ξ̂†(t) =
1

2π

∫ ∞
−∞

dωe−iωtξ̂†[ω]. (2.6)
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Figure 2.2: Schematic of two-tone pump configuration to show relative frequencies. Detunings are
exaggerated for clarity.

In frequency space, Eq. 2.2 then becomes

〈
d̂†in[ω]d̂in[ω′]

〉
= 2π nthc δ(ω + ω′)〈

d̂in[ω]d̂†in[ω′]
〉

= 2π (nthc + 1) δ(ω + ω′)〈
ĉ†in[ω]ĉin[ω′]

〉
= 2π nthm δ(ω + ω′)〈

ĉin[ω]ĉ†in[ω′]
〉

= 2π (nthm + 1) δ(ω + ω′).

(2.7)

2.1.3 Pump configuration

In order to implement the squeezing scheme, we drive the system with two microwave tones, one red-

detuned by ωm from ωc, and one blue-detuned by ωm from ωc: ω± = ωc±ωm. We will also consider

the general case where the pumps are not perfectly aligned, such that ω± = (ωc + ∆) ± (ωm + δ).

Imperfect alignment of the pumps degrades squeezing and changes the appearance of the output

spectrum. The pump configuration is illustrated in Fig. 2.2.

2.2 Hamiltonian

2.2.1 Optomechanical Hamiltonian

We begin with the standard optomechanical Hamiltonian:

Ĥ = h̄

(
ωc +

h̄g0

xzp
x̂

)
â†â+ h̄ωmb̂

†b̂. (2.8)

This Hamiltonian consists of the bare Hamiltonian for two oscillators,

Ĥ0 = h̄ωcâ
†â+ h̄ωmb̂

†b̂, (2.9)
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and an interaction term due to the dependence of the cavity frequency on the position of the

mechanics, x̂:

Ĥint =
h̄g0

xzp
x̂ â†â

= h̄g0

(
b̂+ b̂†

)
â†â. (2.10)

Applying standard input-output theory to the Heisenberg equations of motion, we can then arrive

at the Langevin equations of motion for our operators:

˙̂a =
i

h̄

[
Ĥ, â

]
− κ

2
â−

∑
i=L,R,int

√
κi âin,i

˙̂
b =

i

h̄

[
Ĥ, b̂

]
− γm

2
b̂−√γm b̂in.

(2.11)

We intend to drive the system from the left port with two large, coherent tones with frequencies

ω− and ω+. Otherwise, all input operators should be small fluctuations. We can thus write

âin,L = ā−ine
−iω−t + ā+

ine
−iω+t + d̂in,L

âin,R = d̂in,R; âin,int = d̂in,int.
(2.12)

2.2.2 Rotating frame

In order to simplify our calculations, we transform into a frame rotating with respect to Ĥδ =

h̄(ωc + ∆)â†â+ h̄(ωm + δ)b̂†b̂ by applying the rotation transformation Û = eiĤδt/h̄:

Ĥ′ = ÛĤÛ† − Ĥδ. (2.13)

Since

Û âÛ† = e−i(ωc+∆)tâ (2.14)

Û b̂Û† = e−i(ωm+δ)tb̂, (2.15)

the Hamiltonian in the rotated frame then becomes

Ĥ′ = −h̄∆â†â− h̄δb̂†b̂+ h̄g0â
†â
(
e−i(ωm+δ)tb̂+ ei(ωm+δ)tb̂†

)
. (2.16)
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If we transform all the input operators into the same frame, the explicit time dependence of âin,L

becomes:

âin,L = ā−ine
i(ωm+δ)t + ā+

ine
−i(ωm+δ)t + d̂in,L. (2.17)

We then obtain the following equations of motion from Eq. 2.11 in the rotating frame:

˙̂a = i∆â− ig0â
(
e−i(ωm+δ)tb̂+ ei(ωm+δ)tb̂†

)
− κ

2
â

−
√
κL

(
ā−ine

i(ωm+δ)t + ā+
ine
−i(ωm+δ)t

)
−
√
κ d̂in

˙̂
b = iδ b̂− ig0â

†â ei(ωm+δ)t − γm
2
b̂−√γm b̂in.

(2.18)

2.3 Solving the equations of motion

2.3.1 Classical solution

To linearize the equations of motion, we displace the photon and phonon operators by their classical

solutions:

â = ā(t) + d̂

b̂ = b̄(t) + ĉ.
(2.19)

If we neglect the quantum operators, Eq. 2.20 gives us a system of equations for the classical

amplitudes:

˙̄a = i∆ā− κ

2
ā−
√
κL

(
ā−ine

i(ωm+δ)t + ā+
ine
−i(ωm+δ)t

)
˙̄b = iδb̄− ig0|ā|2ei(ωm+δ)t − γm

2
b̄.

(2.20)

Here, we have neglected the term −ig0â
(
e−i(ωm+δ)tb̄+ ei(ωm+δ)tb̄∗

)
in the equation of motion for ā.

This term creates a shift in the cavity frequency that depends on the classical value for the position.

From now on, we will assume that ωc refers to this shifted frequency, and that ∆ is defined with

respect to the new ωc. We can then solve for the classical solutions:

ā = ā−e
i(ωm+δ)t + ā+e

−i(ωm+δ)t

b̄ = −ig0

(
ā2
− + ā2

+
γm
2 + iωm

+
ā−ā+

γm
2 − iωm

e−2iωmt +
ā−ā+

γm
2 + 6iωm

e2iωmt

)
ei(ωm+δ)t,

(2.21)

where

ā− =
−√κL

κ
2 + i(ωm + δ −∆)

ā−in; ā+ =
−√κL

κ
2 + i(−ωm − δ −∆)

ā+
in. (2.22)
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Without loss of generality, we can choose the phases of the input amplitudes such that ā± are

real. The classical amplitudes are related to the intracavity pump photon numbers, n−p and n+
p , by

n±p =
√
ā±.

With the classical terms removed, we obtain the linearized equations of motion for the quantum

noise operators:

˙̂
d = i∆d̂− ig0ā

(
e−i(ωm+δ)tĉ+ ei(ωm+δ)tĉ†

)
− κ

2
d̂−
√
kcd̂in

˙̂c = iδĉ− ig0

(
ā∗d̂+ ād̂†

)
ei(ωm+δ)t − γm

2
ĉ−√γmĉin.

(2.23)

Note that we neglect the contributions from the d̂†d̂ term in the Hamiltonian, as the cavity noise

occupation is much smaller than the intracavity pump occupation.

2.3.2 Rotating wave approximation

Per Eq. 2.21, ā has terms at frequencies ±(ωm + δ). When we substitute the expression for ā into

Eq. 2.23, we thus find that some terms are stationary with respect to our rotating frame, and some

rotate at ±2(ωm+δ). In our sideband-resolved case (ωm � κ), the contributions from the stationary

terms dominate, and thus we can set the ±2(ωm + δ) terms equal to zero. Under this rotating wave

approximation (RWA), the equations of motion become:

˙̂
d = i∆d̂− ig0

(
ā−ĉ+ ā+ĉ

†)− κ

2
d̂−
√
kcd̂in

˙̂c = iδĉ− ig0

(
ā−d̂+ ā+d̂

†
)
− γm

2
ĉ−√γmĉin.

(2.24)

Without the rotating wave approximation, we are left with a series of equations that couple together

terms rotating at ω = ...,−4(ωm + δ),−2(ωm + δ), 0, 2(ωm + δ), 4(ωm + δ), ..., etc. with respect

to the current frame. These equations are solvable to the desired order, but the analytic solutions

become unwieldy for even first-order corrections. Implementation of non-RWA corrections (also

called “bad-cavity” effects) is thus done numerically.
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2.3.3 Heisenberg-Langevin equations

We can now use Eq. 2.24 to write down the Heisenberg-Langevin equations for all mode operators

in our system:

˙̂
d =

(
i∆− κ

2

)
d̂−
√
κd̂in − i

[
G−ĉ+G+ĉ

†]
˙̂
d† =

(
−i∆− κ

2

)
d̂† −

√
κd̂†in + i

[
G−ĉ

† +G+ĉ
]

˙̂c =
(
iδ − γm

2

)
ĉ−√γmĉin − i

[
G−d̂+G+d̂

†
]

˙̂c† =
(
−iδ − γm

2

)
ĉ† −√γmĉ†in + i

[
G−d̂

† +G+d̂
]
, (2.25)

where G± = g0ā± are the enhanced optomechanical coupling rates. We then take the Fourier

transform of this system of equations to find the frequency-domain operators:

(κ
2
− i(ω + ∆)

)
d̂[ω] = −

√
κd̂in[ω]− iG−ĉ[ω]− iG+ĉ

†[ω](κ
2
− i(ω −∆)

)
d̂†[ω] = −

√
κd̂†in[ω] + iG−ĉ

†[ω] + iG+ĉ[ω](γm
2
− i(ω + δ)

)
ĉ[ω] = −√γmĉin[ω]− iG−d̂[ω]− iG+d̂

†[ω](γm
2
− i(ω − δ)

)
ĉ†[ω] = −√γmĉ†in[ω] + iG−d̂

†[ω] + iG+d̂[ω].

(2.26)

Eq. 2.26 can be written as a matrix operation of the form Ax = xin:
κ
2 − i(ω + ∆) 0 iG− iG+

0 κ
2 − i(ω −∆) −iG+ −iG−

iG− iG+
γm
2 − i(ω + δ) 0

−iG+ −iG− 0 γm
2 − i(ω − δ)




d̂[ω]

d̂†[ω]

ĉ[ω]

ĉ†[ω]



= −



√
κd̂in[ω]
√
κd̂†in[ω]

√
γmĉin[ω]
√
γmĉ

†
in[ω]

 . (2.27)

The inverse of this matrix can be found analytically, and thus the system photon and phonon

operators can be found in terms of the inputs.



16

2.4 Quadrature squeezing

2.4.1 Quadrature operators

For squeezing and back-action evasion, it is helpful to consider the equations of motion for the

quadrature operators for the cavity and mechanics:

Û1 =
1√
2

(
d̂† + d̂

)
X̂1 =

1√
2

(
ĉ† + ĉ

)
Û2 =

i√
2

(
d̂† − d̂

)
X̂2 =

i√
2

(
ĉ† − ĉ

)
. (2.28)

Using the input expectation values from Eq. 2.7, we can also find the expectation values for the

quadrature inputs:

〈
Û1in[ω]Û1in[ω′]

〉
= 2π

(
nthc + 1/2

)
δ[ω + ω′]

〈
X̂1in[ω]X̂1in[ω′]

〉
= 2π

(
nthm + 1/2

)
δ[ω + ω′]〈

Û1in[ω]Û2in[ω′]
〉

= 2π (i/2) δ[ω + ω′]
〈
X̂1in[ω]X̂2in[ω′]

〉
= 2π (i/2) δ[ω + ω′]〈

Û2in[ω]Û2in[ω′]
〉

= 2π
(
nthc + 1/2

)
δ[ω + ω′]

〈
X̂2in[ω]X̂2in[ω′]

〉
= 2π

(
nthm + 1/2

)
δ[ω + ω′]〈

Û2in[ω]Û1in[ω′]
〉

= 2π (−i/2) δ[ω + ω′]
〈
X̂2in[ω]X̂1in[ω′]

〉
= 2π (−i/2) δ[ω + ω′]. (2.29)

2.4.2 Frequency-domain Langevin equations

To transform the matrix equations of motion from Eq. 2.27 into this new basis, we note that we can

write Eq. 2.28 in the form X = Tx, where X = {Û1, Û2, X̂1, X̂2} is the quadrature operator vector,

and where

T =
1√
2


1 1 0 0

−i i 0 0

0 0 1 1

0 0 −i i

 . (2.30)
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We can then evaluate TAT−1 to find a system of equations for the quadrature operators:
κ
2 − iω ∆ 0 −(G− −G+)

−∆ κ
2 − iω G− +G+ 0

0 −(G− −G+) γm
2 − iω δ

G− +G+ 0 δ γm
2 − iω




Û1[ω]

Û2[ω]

X̂1[ω]

X̂2[ω]



= −



√
κÛ1in[ω]
√
κÛ2in[ω]

√
γmX̂1in[ω]
√
γmX̂2in[ω]

 . (2.31)

Inverting the matrix in Eq. 2.31 allows us to find a general expression for the quadrature operators

in terms of the input quadratures of the form X = DXin, where D is the inverted matrix. In terms

of the elements of D, X̂1 is then

X̂1[ω] = −
√
κD31[ω]Û1in[ω]−

√
κD32[ω]Û2in[ω]−√γmD33[ω]X̂1in[ω]−√γmD34[ω]X̂2in[ω],

(2.32)

where

D31[ω] = h[ω]−1
{

∆ (G− −G+)χ−1
m [ω] + δ (G− +G+)χ−1

c [ω]
}

D32[ω] = h[ω]−1
{

(G− −G+)
(
4G2 + χ−1

m [ω]χ−1
c [ω]

)
− (G− +G+) δ∆

}
D33[ω] = h[ω]−1

{
G2χ−1

c [ω] + χ−1
m [ω]

(
(χ−1
c [ω])2 + ∆2

)}
D34[ω] = h[ω]−1

{
∆ (G− −G+)

2 − δ
(
(χ−1
c [ω])2 + ∆2

)}
h[ω] = G4 + 2G2χ−1

c [ω]χ−1
m [ω]− 2G2

tot∆δ +
(
(χ−1
c [ω])2 + ∆2

) (
(χ−1
m [ω])2 + δ2

)
.

(2.33)

Here, I have introduced the effective enhanced optomechanical coupling rate G2 = G2
− − G2

+, the

total enhanced optomechanical coupling rate G2
tot = G2

− + G2
+, and the mechanical and cavity

susceptibilities

χm[ω] =
(γm

2
− iω

)−1

χcω] =
(κ

2
− iω

)−1

.

(2.34)

Using the expression for X̂1[ω], we can find the X̂1 quadrature fluctuations:

〈X̂2
1 〉 =

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

dω dω′
〈
X̂1[ω]X̂1[ω′]

〉
. (2.35)
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2.4.3 Special case: ∆= δ= 0

When the pumps are perfectly aligned, the expression for X̂1 simplifies to:

X̂1[ω] = −
√
κ

G− −G+

G2 + χ−1
m [ω]χ−1

c [ω]
Û2in[ω]−√γm

χ−1
c [ω]

G2 + χ−1
m [ω]χ−1

c [ω]
X̂1in[ω]. (2.36)

Note that, when G+ = G−, the first term is 0 and the second term simplifies to
√
γmχm[ω]X̂1in[ω],

so X̂1 has no dependence on the pump tones. This is the basis of back-action evading measurements,

which are discussed later in Section 2.7.

We can integrate over X̂1[ω]X̂1[ω′] to find 〈X̂2
1 〉:

〈X̂2
1 〉 =

1

2π

∫ ∞
−∞

dω

{
κ

(G− −G+)
2∣∣G2 + χ−1

m [ω]χ−1
c [ω]

∣∣2 (nthc + 1/2) + γm
(κ/2)2 + ω2∣∣G2 + χ−1

m [ω]χ−1
c [ω]

∣∣2 (nthm + 1/2)

}
.

(2.37)

As long as 4G ≤ (κ− γm), we can evaluate the integral:

〈X̂2
1 〉 =

4κ(G− −G+)2

(4G2 + γmκ) (κ+ γm)

(
nthc + 1/2

)
+
γm
(
4G2 + κ(κ+ γm)

)
(4G2 + γmκ) (κ+ γm)

(
nthm + 1/2

)
. (2.38)

Similarly, we can solve for 〈X̂2
2 〉:

〈X̂2
2 〉 =

4κ(G− +G+)2

(4G2 + γmκ) (κ+ γm)

(
nthc + 1/2

)
+
γm
(
4G2 + κ(κ+ γm)

)
(4G2 + γmκ) (κ+ γm)

(
nthm + 1/2

)
. (2.39)

Earlier, I argued that squeezing occurs because both quadratures are damped, but less backaction

is added to X̂1 than is associated with the amount of net damping. It is thus helpful to rewrite

the quadrature variances in terms of the fluctuations we’d expect to obtain in the presence of a

red-detuned tone with strength G:

〈X̂2
1 〉 = 〈X̂2

damp〉 −
8κG+(G− −G+)

(4G2 + γmκ) (κ+ γm)

(
nthc + 1/2

)
〈X̂2

2 〉 = 〈X̂2
damp〉+

8κG+(G− +G+)

(4G2 + γmκ) (κ+ γm)

(
nthc + 1/2

)
〈X̂2

damp〉 =

{
γm
(
4G2 + κ(κ+ γm)

)
(4G2 + γmκ) (κ+ γm)

(
nthm + 1/2

)
+

4κG2
(
nthc + 1/2

)
(4G2 + γmκ) (κ+ γm)

}
. (2.40)

Here, 〈X̂2
damp〉 is the variance in the presence of the net damping associated with G, which appears

identically in both quadratures. The first term in 〈X̂2
damp〉 is proportional to nthm + 1/2 and has

a prefactor that is less than 1 for all G > 0. This term represents the cooling of the mechanical

occupation. The second term is proportional to nthc + 1/2, and thus represents the added back-

action noise from the microwave field. We see that, relative to the back-action of
4κG2(nthc +1/2)

(4G2+γmκ)(κ+γm)
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Figure 2.3: Plot of Eq. 2.38 for 〈X̂2
1 〉 at different total drive strengths and drive ratios. For both

plots, γm = 3× 10−5κ. Each curve represents a fixed total cooperativity (Ctot = 4G2
tot/κγm). Ctot=

10, 30, 100, 300, 1000, 3000, 10 000, 30 000, with the lowest cooperativity in red and the highest
in dark blue. The solid black line shows the ground state fluctuations, and the dashed black line
indicates squeezing of 3 dB below the zero point fluctuations. a) Predictions for ideal cavity and
mechanical occupations at 10 mK: nthc = 0; nthm =50. b) Predictions for cavity and mechanical
occupations including heating: nthc = 0.7; nthm =600.

associated with the net damping, the back-action is reduced by a factor of 2G+(G− − G+)/G2 for

X̂1 and increased by a factor of 2G+(G−+G+)/G2 for X̂2. This reduction for X̂1 makes it possible

to reduce 〈X̂2
1 〉 below 〈X̂2

1 〉ZP = 1/2.

Fig. 2.3 shows the predicted squeezing for our typical device parameters under ideal conditions

and with heating. Note that the optimum drive ratio tends to increase with increasing power.

2.4.4 General case

In general, to calculate 〈X̂2
1 〉 when δ and ∆ are non-zero, we must calculate the integral

〈X̂2
1 〉 =

1

2π

∫ ∞
−∞

dω

{
κ (D31[ω]D31[−ω] + D32[ω]D32[−ω]) (nthc + 1/2)

+ iκ (D31[ω]D32[−ω]−D32[ω]D31[−ω]) /2

+ γm (D33[ω]D33[−ω] + D34[ω]D34[−ω]) (nthm + 1/2)

+ iγm (D33[ω]D34[−ω]−D34[ω]D33[−ω]) /2

}
. (2.41)

To simplify this expression, it is useful to note that the terms on the second and fourth lines are

odd functions of ω, and thus integrate to 0. Moreover, D[−ω] = D∗[ω], and so we can write 〈X̂2
1 〉as

〈X̂2
1 〉 =

1

2π

∫ ∞
−∞

dω

{
κ
(
|D31[ω]|2 + |D32[ω]|2

)
(nthc + 1/2)

+ γm
(
|D33[ω]|2 + |D34[ω]|2

)
(nthm + 1/2)

}
. (2.42)
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Figure 2.4: Effects of detuning on 〈X̂2
1 〉 for different pump ratios. For all plots, γm = 3 × 10−5κ,

nthc = 0.7, nthm = 600, and the total cooperativity is Cctot = 104. The pump power ratio n+
p /n

−
p =

(G+/G−)2 is shown in the upper-right corner of each plot. ∆/κ is plotted on each y-axis from
-0.1 to 0.1. δ/γtot is plotted on each x-axis from -0.03 to 0.03. Note that γtot = γm + 4G2/κ, the

total mechanical linewidth, is different for each pump ratio. Values of
〈
X̂2

1 (∆, δ)
〉

, normalized by

〈X̂2
1 〉 evaluated at ∆ = δ = 0, are shown as contours, with red indicating an increase in 〈X̂2

1 〉, and
blue indicating a reduction. As the ratio increases, the detunings produce more of an effect on 〈X̂2

1 〉.
For high ratios, some combinations of detunings can produce a reduction of 〈X̂2

1 〉.

When either δ = 0 or ∆ = 0, this integral can be solved analytically. In the fully-general case, it is

easier to solve numerically. Fig. 2.4 shows the effects of imperfect alignment on 〈X̂2
1 〉.

2.5 Driven response

One way to measure the parameters of our system is through taking a driven response with a network

analyzer. The vector network analyzer (VNA) sends a small probe tone into the left port of our

device and measures the relative amplitude and phase of the tone when it exits the right port. The

VNA sweeps the frequency of the probe to measure the complex transmission (S21) as a function of

frequency.

We could theoretically calculate S21 for our system completely classically, but it is also straight-

forward to use Eq. 2.27 by setting all the input noise terms equal to 0 apart from d̂in,L = αin,L. We

can then solve for S21 = αout,R/αin,L.

Since d̂out,R = d̂in,R +
√
κRd̂, we care only about the component of B = A−1 that gives the
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d̂in[ω] dependence of d̂[ω], B11:

S21(ω) = αout,R/αin,L = −
√
κRκL B11 (2.43)

B11 = f [ω]−1

[
G2
−χ
−1
m [ω + δ]−G2

+χ
−1
m [ω − δ] + χ−1

c [ω −∆]χ−1
m [ω + δ]χ−1

m [ω − δ]
]

f [ω] = G4 + χ−1
c [ω + ∆]

(
G2
−χ
−1
m [ω + δ]−G2

+χ
−1
m [ω − δ]

)
+ χ−1

c [ω −∆]
(
G2
−χ
−1
m [ω − δ]−G2

+χ
−1
m [ω + δ]

)
+ χ−1

c [ω + ∆]χ−1
c [ω −∆]χ−1

m [ω + δ]χ−1
m [ω − δ].

Eq. 2.43 is a general model of the driven response of the system, and can be easily adapted for the

case of a single red-detuned pump (G+ → 0), a single blue-detuned pump (G− → 0), or no pumps

(G+, G− → 0). In the latter case, it is easy to confirm that B11 = χc[ω] as expected. Fig. 2.5 has

example driven responses for various pump ratios and detunings.

In the squeezing experiment, we are usually operating in the regime where γm � G, κ, and so it

is valid to approximate γm = 0 in χm. In this case, we obtain

B11 = f [ω]−1

[
− i
(
ωG2 + δG2

tot

)
−
(
ω2 − δ2

)
χ−1
c [ω −∆]

]
f [ω] = G4 − 2iG2ωχ−1

c [ω]− 2G2
totδ∆− (ω2 − δ2)χ−1

c [ω + ∆]χ−1
c [ω −∆].

(2.44)

2.6 Output spectrum

We measure the output field with a spectrum analyzer, which is equivalent to measuring the sym-

metrized current spectral density in the lab frame:

S̄II [ω] =
1

2

∫
dt 〈{I(t), I(0)}〉 eiωt

=
1

2

∫
dω′

2π
〈{I[ω], I[ω′]}〉 , (2.45)
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Figure 2.5: S21 for two tones at different detunings. For all plots, γm = 3× 10−5κ, and Ctot = 104.
Blue responses are for (G+/G−)2 = 0.9, turquoise are for (G+/G−)2 = 0.5, and yellow are for
(G+/G−)2 = 0.1. Each row has a fixed value of δ/κ, as indicated to the right of each row. Each
column has a fixed value of ∆/κ, as indicated at the top of each column.
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where I = d̂out,R + d̂†out,R, and d̂out,R = d̂in,R +
√
κRd̂. The output operators in the lab frame can

be written in terms of the cavity operators in the rotating frame:

d̂out,R[ω] = d̂in,R[ω] +
√
κRd̂[ω − Ωc]

d̂†out,R[ω] = d̂†in,R[ω] +
√
κRd̂

†[ω + Ωc],
(2.46)

where Ωc = ωc + ∆ is the frequency of the rotating frame for the cavity operators. In terms of the

rotating-frame matrix B, the output field operator in the lab frame is given by:

d̂out,R[ω] = d̂in,R[ω]−
√
κRκ

(
B11[ω − Ωc]d̂in[ω − Ωc] + B12[ω − Ωc]d̂

†
in[ω − Ωc]

)
−√κRγm

(
B13[ω − Ωc]ĉin[ω − Ωc] + B14[ω − Ωc]ĉ

†
in[ω − Ωc]

)
. (2.47)

When we measure S̄II [ω], we can only access positive frequencies. Thus, we only care about

the terms peaked at +ωc. This allows us to only consider the contributions from the terms〈{
d̂out,R[ω], d̂†out,R[ω′]

}〉
.

We can thus calculate the relevant expectation values:

1

2π

〈
d̂out,R[ω]d̂†out,R[ω′]

〉
= δ[ω + ω′]

{
(nthc,R + 1)− κR (B11[ω − Ωc] + B∗11[−ω′ − Ωc]) (nthc,R + 1)

+ κRκ
(
B11[ω − Ωc]B

∗
11[−ω′ − Ωc](n

th
c + 1) + B12[ω − Ωc]B

∗
12[−ω′ − Ωc]n

th
c

)
+ κRγm

(
B13[ω − Ωc]B

∗
13[−ω′ − Ωc](n

th
m + 1) + B14[ω − Ωc]B

∗
14[−ω′ − Ωc]n

th
m

)}
1

2π

〈
d̂†out,R[ω′]d̂out,R[ω]

〉
= δ[ω + ω′]

{
nthc,R − κR (B11[ω − Ωc] + B∗11[−ω′ − Ωc])n

th
c,R

+ κRκ
(
B11[ω − Ωc]B

∗
11[−ω′ − Ωc]n

th
c + B12[ω − Ωc]B

∗
12[−ω′ − Ωc](n

th
c + 1)

)
+ κRγm

(
B13[ω − Ωc]B

∗
13[−ω′ − Ωc]n

th
m + B14[ω − Ωc]B

∗
14[−ω′ − Ωc](n

th
m + 1)

)}
(2.48)

and the final output spectrum:

S̄II [ω] = (nthc,R + 1/2)− 2κRRe[B11[ω − Ωc]](n
th
c,R + 1/2)

+ κRκ
(
|B11[ω − Ωc]|2 + |B12[ω − Ωc]|2

)
(nthc + 1/2)

+ κRγm
(
|B13[ω − Ωc]|2 + |B14[ω − Ωc]|2

)
(nthm + 1/2). (2.49)

Fig. 2.6 has example driven responses for various pump detunings to show how imperfect pump

alignment affects the measured spectrum.
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Figure 2.6: S̄II − S0 for two tones at different detunings. For all plots, γm = 3 × 10−5κ, and
Ctot = 104. Blue responses are for (G+/G−)2 = 0.9, turquoise are for (G+/G−)2 = 0.5, and yellow
are for (G+/G−)2 = 0.1. Each row has a fixed value of δ/κ, as indicated to the left or right of
each row. Each column has a fixed value of ∆/κ, as indicated at the top of each column. At the
highest ratio, the mechanical response always appears as a peak on top of the cavity response. For
the intermediate ratio, the mechanical response appears as a dip at δ = ∆ = 0, but can become a
peak for imperfect detuning. For the lowest ratio, the mechanical response is always a dip.



25

2.6.1 Special case: ∆ = δ = 0

When ∆ = δ = 0, the B matrix simplifies, and we can write the photon annihilation operator as

d̂ = − χ−1
m

G2 + χ−1
m χ−1

c

√
κd̂in +

iG−

G2 + χ−1
m χ−1

c

√
γmĉin +

iG+

G2 + χ−1
m χ−1

c

√
γmĉ

†
in. (2.50)

Applying Eq. 2.49 then gives

S̄II [ω] = (nthc,R + 1/2)− κR
γmG2 + κ

(
(γm/2)2 + (ω − Ωc)

2
)

|g[ω − Ωc]|2
nthc,R

+ κRκ
(γm/2)2 + (ω − Ωc)

2

|g[ω − Ωc]|2
nthc + κRγm

G2
−n

th
m +G2

+(nthm + 1)

|g[ω − Ωc]|2
;

g[ω] = G2 + (γm/2− iω)(κ/2− iω). (2.51)

For Device 2, γm � G, κ and nthm � 1 at the pump powers we apply for squeezing. Moreover,

nthc,R = 0, and thus we can approximate the spectrum, centered at the mean pump frequency Ωc, as

S̄II [ω + Ωc] = 1/2 + κR
ω2 κnthc + (G2

− +G2
+) γm n

th
m

|G2 − iω(κ/2− iω)|2
. (2.52)

If we include the gain of the output line, G(ω), the signal that we actually measure, in units of

W/Hz, is

Sout(ω + Ωc) = S0 + h̄ωG(ω)κR
ω2 κnthc + (G2

− +G2
+) γm n

th
m

|G2 − iω(κ/2− iω)|2
, (2.53)

where S0 includes both the noise floor of S̄II and any white noise added by the measurement chain.

Since the system gain and h̄ω are effectively constant over the linewidth of the cavity, we can write

the measured spectrum as

Sout(ω + Ωc) = S0 + h̄ωcG(ωc)κR
ω2 κnthc + (G2

− +G2
+) γm n

th
m

|G2 − iω(κ/2− iω)|2
. (2.54)

2.6.2 Weak driving regime

For our thermal calibration (Section 3.4.2), we drive the system weakly with two tones of equal

amplitude, such that G+ = G−. In the weak-driving regime, it is useful to define the optical damping

rate, γ±op = 4G2
±/κ. The total mechanical linewidth is then γtot = γm + γ−op − γ+

op = γm + γeffop .

For the thermal calibration, the pumps are positioned so that κ � δ � γtot. In this case,

we can approximate the cavity response, χc[ω], as a constant over the linewidth of the mechanical

sideband. We can thus evaluate all cavity susceptibilities at ω = ωc + ∆ ± δ, where the minus

(plus) sign is for the sideband of the red-detuned (blue-detuned) pump. As long as δ � κ, then
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χ−1
c (ω − ωc) = κ/2 − i∆. Moreover, as the mechanical sidebands are assumed to be separated by

many mechanical linewidths, we can safely take the product of the red and blue mechanical sideband

susceptibilities to be 0. With these assumptions, we have

S̄II [ω + Ωc − δ] = (nthc,R + 1/2) + 4
κR
κ

(nth′c − nth′c,R) +
κR
κ
γ−′op

∣∣χ̃−m[ω]
∣∣2

×
{
γmn

th
m − 2γtot(n

th′
c − nth′c,R)− γtotnthc,R + γ−′opn

th′
c + γ+′

op (nth′c + 1)

}
. (2.55)

S̄II [ω + Ωc + δ] = (nthc,R + 1/2) + 4
κR
κ

(nth′c − nth′c,R) +
κR
κ
γ+′
op

∣∣χ̃+
m[ω]

∣∣2
×
{
γm(nthm + 1) + 2γtot(n

th′
c − nth′c,R) + γtotn

th
c,R + γ−′op (nth′c + 1) + γ+′

opn
th′
c

}
.

(2.56)

Prime superscripts indicate multiplication by a factor of
(
1 + (2∆/κ)2

)−1
to take into account the

detuning of the average pump frequency. γtot is now γm − γ−′op + γ+′
op , and we have defined

∣∣χ̃±m[ω]
∣∣2 =

{(
ω ± (γ−′op + γ+′

op )∆/κ
)2

+ (γtot/2)
2
}−1

. (2.57)

For thermal calibrations, γ+
op = γ−op = γop � γm and nthc , n

th
c,R, 1� nthm , so we have

S̄II [ω + Ωc ± δ] = S0 +
κR
κ

γ′opγmn
th
m

γ2
m/4 + ω2

, (2.58)

which is a Lorentzian with an area proportional to nthm and a linewidth of γm.

2.7 Back-action evasion

2.7.1 Balanced back-action with ∆ = 0

In a back-action evading measurement, pumps of equal power are applied at ωc±ωm. In this config-

uration, the pumps add all their backaction to the X̂2 quadrature while performing a measurement

of the X̂1 quadrature. From Eqs. 2.38 and 2.39, we find that the quadrature noise terms when

G− = G+ = G are given by

〈X̂2
1 〉 = nthm + 1/2

〈X̂2
2 〉 =

8G2

γm (κ+ γm)

(
nthc + 1/2

)
+ nthm + 1/2. (2.59)
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X̂1 is thus unaffected by the measurement, but X̂2 contains back-action noise due to both the

classical (nthc ) and quantum (1/2) noise in the cavity. The output spectrum for a BAE measurement

is obtained by applying G− = G+ = G to Eq. 2.51:

S̄II [ω] = (nthc,R + 1/2) + κRκ|χc|2(nthc − nthc,R) + κRγm|χc|2|χm|2G2(2nthm + 1). (2.60)

For the BAE measurements described in Chapter 4, the linewidth of the mechanics is � κ. When

we measure the BAE sideband, we only care about frequencies on the scale of the mechanical

linewidth, so we can approximate the cavity susceptibility as constant over the mechanical response:

χc ≈ (κ/2− i∆)−1. The output spectrum then becomes

S̄II [ω] = S0 + 2
κR
κ
γmγ

′
op|χm|2(nthm + 1/2), (2.61)

where S0 is a flat spectral background, and the prime superscript again indicates multiplication by

a factor of
(
1 + (2∆/κ)2

)−1
. The BAE tones thus produce a sideband with an area proportional to

the occupation of X̂1. From Eqs. 2.59 and 2.61, we see that two balanced tones detuned by ±ωm
from the cavity center do indeed perform a measurement of X̂1 without adding back-action noise to

the quadrature.

2.7.2 Effects of imbalance

To measure the phase dependence of a squeezed state in Chapter 4, we introduce weaker BAE

probe tones and measure their sideband. These probe tones usually have some detuning ∆ from

cavity center so that their sideband does not overlap with the pump sideband. As there is always

some uncertainty in how well the probe tones are balanced – that is, in how well their intracavity

occupations are matched – we need a model of their sideband spectrum when G− 6= G+.

For the purposes of the weak probe measurements, we can treat the strong probes as preparing

the state with some initial linewidth γm and some initial occuption nthm , which the probes then

measure without perturbing the initial state. In general, a full theory with four driving tones would

be necessary to describe this system. This approximation, however, has been able to accurately

describe past measurements [51].

For the measurements described later in this dissertation, we can again work in the weak-coupling

regime where γtot � κ, and thus χc = (κ/2 − i∆)−1. With this definition for χc, and with δ = 0,

our photon annihilation operator becomes

d̂ = − χ−1
m

G2 + χ−1
m χ−1

c

√
κd̂in +

iG−

G2 + χ−1
m χ−1

c

√
γmĉin +

iG+

G2 + χ−1
m χ−1

c

√
γmĉ

†
in. (2.62)
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Applying Eq. 2.49 then gives

S̄II [ω + ωc + ∆] = (nthc,R + 1/2)− κR
γmG2 + κ

(
(γm/2)2 + ω2

)
|g̃[ω]|2

nthc,R

+ κRκ
(γm/2)2 + ω2

|g̃[ω]|2
nthc + κRγm

G2
−n

th
m +G2

+(nthm + 1)

|g̃[ω]|2
;

g̃[ω] = G2 + (γm/2− iω)(κ/2− i∆). (2.63)

We can write |g̃[ω]|2 as

|g̃[ω]|2 =
(
(κ/2)2 + ∆2

)((
ω − γeff ′op

∆

κ

)2

+
(
γeff ′op /2 + γm/2

)2)
, (2.64)

where γeffop = 4G2/κ = γ−op − γ+
op. For our weak, nearly-balanced probes, the mechanical frequency

shift is much smaller than the linewidth of the mechanics that has been broadened by the squeezing

pumps. We can thus approximate γeff ′op
∆
κ = 0. Identifying γtot = γm + γeff ′op , we have

S̄II [ω + ωc + ∆] = (nthc,R + 1/2)− κR
κ

γmγ
eff ′
op

(γtot/2)2 + ω2
nthc,R

+
4κR
κ

[
1− (γtot/2)2 − (γm/2)2

(γtot/2)2 + ω2

] (
nth′c − nth′c,R

)
+
κR
κ

γ−′opγmn
th
m + γ+′

opγm(nthm + 1)

(γtot/2)2 + ω2

= (nthc,R + 1/2) +
4κR
κ

(
nth′c − nth′c,R

)
+
κR
κ

γm
(γtot/2)2 + ω2

{
γ−′opn

th
m + γ+′

op (nthm + 1)− γeff ′op nthc,R − 2γeff ′op

(
nth′c − nth′c,R

)}
,

(2.65)

where we’ve used the fact that γeff ′op � γm for our measurements. When the probes are balanced,

γ−′op = γ+′
op , and γeff ′op = 0, so we retrieve Eq. 2.61. If, instead, n+

p = n−p (1− ε), the output spectrum

becomes

S̄II [ω + ωc + ∆] = S0 + 2
κR
κ

γmγ
−′
op

(γtot/2)2 + ω2

{
nthm + 1/2− ε

2

(
nthm + 1 + nthc,R + 2

(
nth′c − nth′c,R

))}
.

(2.66)

We see that, when there is more red power than blue power, the sideband area is less than we’d

expect for the given mechanical fluctuations, due both to less blue gain than expected, and to

squashing from the cavity fluctuations. We would then infer a smaller quadrature variance than

the actual variance. When there is more blue power than red power, we’d infer a larger quadrature

variance than the actual value. It is thus important to carefully balance the probe tones to measure

the correct noise power.
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2.8 Single, red-detuned tone

For the purpose of calibration and characterization, we often want to pump the system with a single,

red-detuned tone. In this case, G+ is 0, and we need only define one detuning. We can thus let

δ = 0, so that now ω− = ωc+∆−ωm. Applying these new definitions reduces the number of coupled

Langevin equations so that we now have:

d̂[ω]

ĉ[ω]

 = −g−[ω]−1

γm
2 − iω −iG−
−iG− κ

2 − i(ω + ∆)

 √κd̂in[ω]
√
γmĉin[ω]

 , (2.67)

where

g−[ω] = G2
− + (κ/2− i(ω + ∆)) (γm/2− iω) . (2.68)

2.8.1 Cooling

From Eq. 2.67, the phonon annihilation operator when ∆ = 0 is

ĉ[ω] =
√
κ
iG−
g−[ω]

d̂in[ω]−√γm
κ/2− iω
g−[ω]

ĉin[ω]. (2.69)

The mechanical occupation is then given by

n̄m =
1

(2π)2

∫∫ ∞
−∞

dωdω′
〈
ĉ†[ω]ĉ[ω′]

〉
=

1

2π

∫ ∞
−∞

dω

{
κ

G2
−∣∣G2

− + χ−1
m [ω]χ−1

c [ω]
∣∣2nthc + γm

(κ/2)2 + ω2∣∣G2
− + χ−1

m [ω]χ−1
c [ω]

∣∣2nthm
}
. (2.70)

From the similarities to Eq. 2.37, we find

n̄m =
4κG2

−(
4G2
− + γmκ

)
(κ+ γm)

nthc +
γm
(
4G2
− + κ(κ+ γm)

)(
4G2
− + γmκ

)
(κ+ γm)

nthm

=
κγ−op

γtot (κ+ γm)
nthc +

γm (γtot + κ)

γtot (κ+ γm)
nthm . (2.71)

When γm < γtot � κ, this simplifies to

n̄m =
γ−op
γtot

nthc +
γm
γtot

nthm . (2.72)

So, when the pump strength is weak, γtot ∼ γm, and the mechanical occupation is strongly coupled

to the mechanical thermal bath. As the pump strength increases and the mechanical damping, γ−op,

dominates over the coupling to the mechanical bath, γm, the mechanical occupation approaches the
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Figure 2.7: Normalized driven responses for a single, red-detuned tone with ∆ = 0. In this model,
γm = 10−5κ, and G− is, from turquoise to red, 0.03 κ, 0.1 κ, 0.3 κ, and 1 κ. In the 1 κ trace,
mode-splitting is evident.

occupation of the cavity bath.

If we include the bad-cavity effects that we neglected when making the rotating wave approxi-

mation, the occupation becomes [15, 45]:

n̄m =
γ−op
γtot

(
nthc + 2

(
κ

4ωm

)2

nthc +

(
κ

4ωm

)2
)

+
γm
γtot

nthm . (2.73)

2.8.2 Driven response

As in the two-tone case, the first term of the Langevin equation matrix gives us the driven response

transmission:

S21[ω] = −
√
κLκR

γm
2 − iω

G2
− + (κ/2− i(ω + ∆)) (γm/2− iω)

. (2.74)

Fig. 2.7 shows the typical electrically-induced transparency (or opacity in our transmission devices)

as the pump power increases.

In the weak-driving regime, the mechanical linewidth is much smaller than the cavity linewidth.

In taking a driven response of the mechanics, we only care about frequencies near the mechanical

sideband frequency. When the sideband is close to the center of the cavity, ω+∆ is effectively 0

when compared to κ. We thus have

S21[ω] = −2

√
κLκR
κ

γm
2 − iω

(γm + 4G2
−/κ)/2− iω

= −2

√
κLκR
κ

[
1− γop/2

γtot/2− iω

]
. (2.75)

This is a Lorentzian response with linewidth γtot. Driven responses of the mechanics are used to
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Figure 2.8: Background-subtracted spectral responses for a single, red-detuned tone with ∆ = 0. As
in Fig. 2.7, γm = 10−5κ, and G− is, from turquoise to red, 0.03 κ, 0.1 κ, 0.3 κ, and 1 κ. Additionally,
nthm = 100 and nthc = 0.1. As the mechanical mode is cooled, the squashing from the thermal cavity
occupation is more evident, and eventually the mechanical sideband appears as a dip rather than as
a peak. At the highest powers, there is mode-splitting due to hybridization between the cavity and
mechanical modes.

calibrate G− to the measured output power of the pump (Section 3.4.3).

2.8.3 Spectral response

Following the same procedure as in Section 2.6, the output spectrum in the single-tone case is given

by

S̄II [ω] = (nthc,R + 1/2)− 2κRRe[B11[ω − Ωc]](n
th
c,R + 1/2)

+ κRκ|B11[ω − Ωc]|2(nthc + 1/2) + κRγm|B12[ω − Ωc]|2(nthm + 1/2), (2.76)

where B is now the matrix in Eq. 2.67. The output spectrum is then

S̄II [ω] = (nthc,R + 1/2) + κR
κ(γ2

m/4 + (ω − ωc −∆)2)(nthc − nthc,R) + γmG
2
−(nthm − nthc,R)∣∣G2

− + (κ/2− i(ω − ωc)) (γm/2− i(ω − ωc −∆))
∣∣2 . (2.77)

Example spectra are shown in Fig. 2.8.

In the weak-coupling limit, and with ∆ = 0, if we only care about the spectrum near the

mechanical response, the output spectrum becomes

S̄II [ω + ωc] = (nthc,R + 1/2) +
4κR
κ

(nthc − nthc,R) +
κR
κ

γ−opγtot

γ2
tot/4 + ω2

[
n̄m − (2nthc − nthc,R)

]
, (2.78)

where n̄m = γm
γtot

nthm +
γ−
op

γtot
nthc as defined in Eq. 2.72. The sideband area is not simply proportional to

n̄m, but to n̄m − (2nthc − nthc,R). The decrease in the sideband area is due to destructive interference

between the cavity noise that interacts with the mechanics and the noise that does not interact
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with the mechanics. The effect is commonly referred to as “noise-squashing” [41, 45]. Similarly,

“anti-squashing” can occur for the sideband of a blue-detuned pump.

Note that, in the absence of any mechanics, the full spectrum in Eq. 2.77 becomes

S̄II [ω] = (nthc,R + 1/2) + κRκ
nthc − nthc,R

(κ/2)2 + (ω − ωc)2
, (2.79)

which is a Lorentzian with linewidth κ and an area proportional to nthc − nthc,R. If the only cavity

bath with non-zero occupation is the right port, then nthc = κR
κ n

th
c,R, and we have

SII [ω] = (nthc,R + 1/2)− κR
κ− κR

(κ/2)2 + (ω − ωc)2
nthc,R, (2.80)

which looks like a Lorentzian dip in the noise floor with linewidth κ. Observation of such a dip is

thus a sign of a hot output port.
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Chapter 3

Experimental set-up and
calibrations

3.1 Device

3.1.1 Device fabrication

Our device consists of a lumped-element LC circuit, in which the suspended top gate of the parallel-

plate capacitor acts as a mechanical resonator due to drum-head resonances in the membrane. 50-Ω

coplanar-waveguide transmission lines are coupled to the LC resonator via coupling capacitors at

the input and output. We make the output coupling capacitor larger than the input capacitor to

improve read-out. Optical and SEM images of a sample device are shown in Fig. 3.1.

The devices are fabricated from aluminum on top of a high-resistivity silicon substrate. The

substrate is first cleaned and its native oxide is removed with buffered HF. A 100 nm layer of

aluminum is sputtered on the chip to form the bottom layer of the device. The bottom layer

is patterned via photolithography and a wet etch. This layer includes the bottom plate of the

capacitor and half of the ground plane. A layer of S1813 photoresist is spun onto the device,

patterned via photolithography, thinned with a flood exposure of the whole chip, and developed.

This layer protects the aluminum bottom layer and serves as a sacrificial layer for the capacitor gap

and inductor cross-overs. A top layer of 100 nm aluminum is sputtered and patterned in the same

manner as the bottom layer. The top layer includes the inductor, the top gate of the capacitor, and

the other half of the ground plane. Finally, the sacrificial layer is removed with Remover-PG and

the device is dried in a critical-point dryer, leaving the top gate of the capacitor suspended.

Chan U Lei, a graduate student in the Schwab group, developed the fabrication procedure sum-

marized here and made the devices. For further details, see his PhD thesis.
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50 µm

10 µm10 µm

Figure 3.1: Images of a typical device. Left: True-color optical micrograph with aluminum in gray
and silicon in blue. The parallel-plate capacitor is the square in the center of the image, while
the spiral inductor connects the top plate to ground. The input (left) coupling capacitor can be
seen to be smaller than the output (right) coupling capacitor. Right: False-color SEM image of
the device. The suspension of the top capacitor plate is evident. The gap height is a few hundred
nanometers at room temperature, but contracts to ∼ 100 nm at low temperatures. At front, the
spiral inductor bridges over the bottom plate’s connection to ground. These bridges provide some
parasitic capacitance.

BeCu
clip

launcher
pin

Arlon
circuit board

2 cm

Figure 3.2: Photograph of sample package, showing BeCu clips, printed circuit boards around the
chip, and SMA launchers. The chip shown mounted here is a 6 mm × 6 mm parametric amplifier
device, but the same sample package is used for the electromechanical devices. Typical chip sizes
are either 6× 6 mm or 3× 6 mm.
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Figure 3.3: Additional aluminum shield (center) fits over both the sample package and cold finger
(left), and includes a hole in the top for accessing the output SMA connector. The aluminum cap
is then bolted to the bottom, and the whole finger is covered with the mu-metal and Metglas shield
(right).

3.1.2 Sample package and shielding

The sample is mounted in a gold-plated copper sample package using beryllium copper clips (see

Fig. 3.2). For some devices, we also use a small amount of either PMMA photoresist or GE varnish

for additional thermalization, but we have not seen a noticeable improvement in performance in

these cases. The sample package contains pieces of Arlon circuit board (AR1000) that have been

indium-soldered into the box. The chip is wire-bonded to the circuit board using aluminum wire.

Southwest Microwave launchers (214-5 series) convert the transmission lines from grounded coplanar

waveguide to coaxial SMA connectors.

The entire sample package is mounted on a cold finger and surrounded by a mu-metal shield.

For additional magnetic shielding, we have tried using superconducting aluminum boxes around the

sample packages, and additional Metglas around the mu-metal shield, but did not find a noticeable

difference in performance with the extra shielding. The additional shielding is shown in Fig. 3.3.

Typical shielding on devices mounted in the dilution refrigerator is shown in Fig. 3.4.

3.2 Dilution refrigerator

All measurements are performed on the same Oxford Instruments Kelvinox 400 dilution refrigerator.

With all stages and cables connected, our fridge has a base temperature of 7 mK, as confirmed with

mechanical thermal measurements described in Section 3.4.2 and [51]. The refrigerator is mounted

to a floating optical table for vibration isolation, and is located within a shielded room to minimize

electrical noise.
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cold
fingers

mu-metal

Figure 3.4: Samples mounted in the fridge. The stage shown here is connected to the mixing chamber
via gold-plated copper stand-offs. Each of the two cold fingers has two samples packages mounted,
and the sample packages are surrounded by mu-metal shielding. There is also a mu-metal plate
above this stage, and a cryoperm can around both plates connected to the mixing chamber.

For the purposes of mounting components, the fridge has a stage at 4.2 K thermally connected

to the liquid helium bath (hereafter referred to as the 4 K stage or 4 K plate), a stage at ∼ 1.7 K

connected to the 1 K pot, a stage at ∼ 100 mK connected to the dilution unit heat exchangers, and

a stage connected to the mixing chamber which is capable of reaching the fridge’s base temperature.

The mixing stage temperature is measured with a calibrated ruthenium oxide resistance thermometer

and a Picowatt AVS-47B resistance bridge. We can control the temperature of this stage between

20 mK and 1 K using a Picowatt TS-530A temperature controller.

3.3 Microwave circuitry

A simplified circuit diagram for our microwave measurements is shown in Fig. 3.5. Up to three sources

are combined at room temperature, filtered, and sent into the fridge. The pumps are attenuated

to decrease the room-temperature thermal noise, and then sent into the input port of the device.

At the output of the device, the transmitted pump power and noise spectrum from the device are

amplified in two stages and then measured. Each part of the this process is discussed further in the

following sections.
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Figure 3.5: Microwave circuit diagram showing both the input and output lines.
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Figure 3.6: Phase noise measurements of the microwave sources used in this experiment. fp is the
carrier frequency. We are mainly concerned about the phase noise between 3 and 5 MHz away from
the carrier, as the mechanical frequencies of our devices lie within this range.

3.3.1 Input line: sources, filtering, and attenuation

The pumps and probes necessary for the squeezing experiment and associated calibrations are all

generated by off-the-shelf microwave signal generators. For the experiments described here, we used

an Agilent E8267C vector source, an Agilent E8257D signal generator, and a Rohde & Schwarz

SMA100A signal generator. All sources have phase noise at the level of -150 to -140 dBc/Hz at 4

MHz away from the carrier frequency, as shown in Fig. 3.6. In addition, room temperature thermal

noise contributes -174 dBm/Hz. When we are using the sources as low-power probes, this white

thermal noise dominates the pump phase noise, and thus no filtering is necessary. If we use the

sources at higher powers, however, this phase noise behaves as a hot bath at the cavity frequency

and can significantly impact our measurements.

To suppress the pump phase noise below the level of the room-temperature thermal noise, we
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Figure 3.7: a) Photograph of copper filter cavity. The rough-tuning shaft at the back of the can
adjusts the length of the cavity. The fine-tuning quartz rod at the front of the can can be inserted to
adjust the frequency of the filter by ∼ 1 MHz. b) Schematics for operating the filter in transmission
(left) or reflection (right). c) Filter cavity bank, set up in a combination of transmission and
reflection. d) Example transmission through filter cavities operating in tranmission (red and blue)
or reflection (purple). Note the anti-resonance in the red filter’s transmission that adds attenuation
near the cavity frequency.

filter the noise using a bank of adjustable cylindrical cavities (Fig. 3.7). The filter cavities have

two ports, and thus can either be used as transmission, band-pass filters or the second port can be

shorted, and the reflected signal can be picked off with a circulator for a band-reject filter.

Once the phase noise is dominated by room-temperature thermal noise for all relevant pump

powers, it can be reduced by cold attenuators inside the fridge. If noise with temperature Tin is

incident upon an attenuator with gain G < 1 at temperature T0, the resulting noise temperature at

the output of the attenuator is

Tout = TinG+ T0(1−G). (3.1)

For Device 1, we had cold attenuators with 10, 5, 8, and 16 dB attenuation placed on stages with

temperatures of 4.2 K, 1.7 K, 100 mK, and 10 mK. For Device 2, we changed our input line, with one
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Figure 3.8: Comparison of the fridge input and output lines for Devices 1 and 2. Device 1’s input line
has a chain of attenuators, while Device 2’s has a single 20 dB attenuator at 4 K and a directional
coupler at the base temperature. Device 1’s output line has both circulators on the cold stage, while
Device 2’s has one at base temperature.

20 dB attenuator placed directly in the 4.2 K liquid helium bath, and one 20 dB directional coupler

placed on the mixing stage. The coupler’s directly-connected port is connected to a termination (i.e.,

a 50 Ω load) at the 4 K plate, so the majority of the power going into the coupler is dissipated at a

stage with much higher cooling power. The coupled port goes to the device, and the isolated port is

connected to a termination at the mixing plate. When the mixing plate is at 10 mK, Device 1 thus

has a temperature of 60 mK at its left input port, and Device 2 has an input temperature of 80 mK.

In terms of cavity quanta at ωc for Device 1 or 2, nthc,L is 0.013 or 0.025, respectively. In practice,

there is additional attenuation due to non-superconducting cables used above the 4 K plate, and

additional reflection due to connectors and non-ideal components. Thus, the noise temperature of

the input port is less than the theoretical value calculated here. Furthermore, as nthc = Σi
κi
κ n

th
c,i,

the occupation at the input port is reduced by a factor of κL/κ, which is between 1/5 and 1/10.

Figure 3.8 shows the input line circuit diagrams for both Device 1 and Device 2.

3.3.2 Cryogenic switches

In order to test more than one device per cool-down while avoiding the heat load of running many

cables from room temperature down to the mixing stage, we use two microwave switches on the

mixing stage to switch the input and output lines between different devices. The switches are

off-the-shelf Radiall R573423600 latching SP6T microwave switches with a 0-18 GHz operation

bandwidth (Fig. 3.9). The switches are designed to work at room temperature, but can be operated

at cryogenic temperatures. In order to reset the switch and latch to a new position, it is necessary

to send current pulses to the switch. These pulses heat the mixing stage up to ∼ 100 mK. The fridge
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Figure 3.9: a) Two Radiall R573423600 switches (blue) mounted to the mixing stage. b) Schematic
for switch positions. The first switch position is a section of cable with the same length as the cables
that are connected to the devices. This channel is useful for calibrations and diagnostics.

then takes 30 minutes to cool back down to 20 mK. It is possible to modify the switch to use half

the current [62], which would lead to less heating.

Although the switches have six positions, we use only five: four for devices, and one for a through.

The cables on the through channel are the same length as the cables from the input switch to the

devices and back to the output switch, so we can use the through channel to calibrate the fridge

transmission if needed. The through channel is also useful for diagnosing any noise sources that we

observe in the system.

3.3.3 Output line: circulators and amplifiers

To ensure that the output port does not see the ∼ 4 K noise temperature of the cryogenic amplifier,

we place two circulators (Pamtech CTH4080) between the device and the amplifier. For Device 1,

these circulators were both located on the cold plate. We found, however, that they contributed a

measurable occupation of nthc,R ≈ 0.3 to the cavity occupation. For Device 2, one of the circulators

was therefore moved to the mixing stage. The location of the circulators for the two devices is shown

in Fig. 3.8.

As the circulators use magnetic material to break the symmetry between input and output ports,

it is important that they have adequate magnetic shielding to prevent them from interfering with

our superconducting devices. For Device 1, this shielding was provided by a sheet of mu-metal that

we bent by hand in the lab. For Device 2, we had Pamtech install shielding on the circulators.

Additionally, there is a cryoperm shield mounted to the cold stage and a cryoperm plate on the

mixing stage just above the cold fingers that further shield the devices from the circulators.

After the circulators, we use a high electron mobility transistor (HEMT) amplifier to amplify
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Figure 3.10: Measurement of the output line noise temperature and gain. The noise power of the
system is measured at different temperatures, Tin, between 1 and 4 K and converted to temperature
via Pout/RBW = kBTout (dark green + symbols). As Tout = (Tin + TN )G, the system noise
temperature, TN can be found from the x-intercept of a linear fit to Tout vs. Tin (green line). The
system gain can then be found from the y-intercept. We find TN = 5.42± 0.03 K and G = 58.4 dB.

the signal from our device. The HEMT (model CIT-4254-077) was made at Caltech by the Weinreb

group, and has an input noise temperature of 3.5 K and gain of 38 dB at 5 GHz. The HEMT has

sufficient gain to dominate the noise of the output line that follows it. Due to ∼ 1− 2 dB of losses

between the device and the amplifier, however, we measure the effective noise temperature of our

output line to be 5.42± 0.03 K (Fig. 3.10).

At room temperature, a 120 K noise temperature MiTeq LCA 0408 amplifier provides 25 dB of

additional amplification. The signal is then fed directly into an Agilent N9020A spectrum analyzer,

which measures the symmetrized current spectral density, as discussed in Section 2.6.1. In general,

we are interested in two types of spectrum analyzer measurements. We either measure the low-power

noise spectral density of the cavity and mechanics, Sout [dBm/Hz], or we measure the large pump

through power, Pthru [dBm]. If, instead of performing a spectral measurement, we need to measure

the driven response of the device, we simply couple Port 1 of an Agilent N5230A or Agilent 8753ES

vector network analyzer into the input line via a 10 dB directional coupler and connect the output

line to Port 2 of the VNA rather than to the spectrum analyzer.
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Figure 3.11: Microwave transmission for Device 1 (left) and Device 2 (right). The parasitic bypass
channel creates the anti-resonance on the blue side of the cavity.

3.4 Device characterization and calibrations

3.4.1 Parasitic channel

When we measure the driven response of our devices over a frequency range much larger than the

cavity linewidth, we don’t see the expected Lorentzian response in the wings. Instead, we see an

anti-resonance indicative of the presence of a parasitic bypass channel (Fig. 3.11). This bypass

channel can be modeled as a reactance, X||, in parallel with the cavity, as described in the SI of

[60]1 and shown in Fig. 3.12a. With this model, we find that the driven response of the cavity is

S21(ω) = −
√
κLκR − 2RLX

−1
|| (ω − ωc)

κ/2− i(ω − ωc)
, (3.2)

where RL = 50 Ω is the impedance at the input and output of the cavity. This transmission is

shown in Fig. 3.12b. The gain in power of the output line is modified by a factor λ(ω) relative to

the gain on cavity resonance:

G(ω) = λ(ω)G(ωc) =

∣∣∣∣1− 2RL
X||

(ω − ωc)√
κLκR

∣∣∣∣2G(ωc). (3.3)

We find that the reactance is approximately X|| ∼ 10 kΩ. We can thus write λ in the form:

λ(ω) = [1− ξ (ω − ωc)]2 (3.4)

for some constant ξ.

1Here, I use the convention that the reactance is equal to Im[Z], whereas the SI of [60] defines the reactance as
i Im[Z].
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Figure 3.12: Bypass channel model. a) Circuit diagram for the model. The microwave cavity is
depicted as an RLC circuit with input and output capacitors. b) Calculated transmission based on
the model from (a). Lorentzian transmission is shown in blue; transmission with a bypass channel
is shown in red.

3.4.2 Thermal calibration

To calibrate the measured noise spectrum at the output of our measurement chain against known

thermal occupations, we follow a procedure similar to the one described in [25]. As described in

Section 2.6.2, the output spectrum for the sideband of a red or blue-detuned tone in the weak-driving

regime looks like a Lorentzian on top of a noise background. Taking into account the output line

noise and gain, the sideband spectrum centered at ωc ± δ becomes

Smech[ω]− S0 = h̄ωcG(ωc)
κR
κ

γ±opγm

(γm/2)2 + ω2
nthm . (3.5)

The integrated sideband power is then

P±m = h̄ωcG(ωc)κR
γ±op
κ
nthm . (3.6)

The through power of the pumps is given by P±thru = h̄ω±G(ω±)κRn
±
p , so the normalized sideband

power can be written as

(
Pm
Pthru

)
±

=
ωcG(ωc)

ω±G(ω±)

(
2g0

κ

)2

nthm . (3.7)

Note that, while the output gain is approximately flat on scales less than 1 MHz, it is not constant

with frequency. In particular, the parasitic bypass channel described in Section 3.4.1 creates a gain

of λ± = (1∓ ξωm)2 at ω± relative to that at ωc.

As the mechanical occupation follows a Bose-Einstein distribution, at the high occupations of

the thermal cal (nthm ≥ 100), the thermal occupation is linear in temperature: nthm = kBT/h̄ωm. We
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thus find that the normalized sideband power is proportional to the fridge temperature:

(
Pm
Pthru

)
±

=
ωc

ω±λ±

(
2g0

κ

)2
kB
h̄ωm

T. (3.8)

If we measure Pm/Pthru vs. temperature for both the red- and blue-detuned tones, the two slopes

allow us to find both g0 and λ±, as all other quantities in Eq. 3.8 are known or measureable. Plugging

these values back into Eq. 3.7 also allows us to directly relate any measured normalized sideband

area to the number of mechanical quanta.

3.4.3 Linewidth broadening and pump power calibration

As seen in Section 2.8.2, a single, red-detuned tone causes the mechanical linewidth to broaden by

an amount proportional to G2
−:

γtot = γm + 4G2
−/κ. (3.9)

G2
− = g2

0np, so G2
− is proportional to P−thru. By measuring the mechanical linewidth via driven

response at different applied powers, G2
− can be calibrated to the measured output pump power

through some constant of proportionality: G2
− = β− × P−thru.

For some devices, κ changes appreciably with pump power. We thus first find κ with a full-

cavity driven response for each applied power. We then find a linear fit to γtot vs. P−thruκ̄/κ,

where κ̄ is the mean value of all measured cavity linewidths. The obtained offset is then γm, and

the obtained slope is 4β−/κ̄. As this calibration only involves driven responses and measurements

of large through powers, it is more precise than the thermal calibration, which relies on low-SNR

spectral measurements.

G2
+ can also be calibrated from linewidth narrowing. For the data shown here, however, we

calibrate G2
+ by multiplying β− by the balancing ratio found in the thermal calibration (i.e., the

ratio of gains at ω = ω±). The calibration for G2
+ thus has a greater uncertainty than that for G2

−.

Once we know g0 from the thermal calibration, we can also obtain a calibration for the number

of pump photons versus through power:

n±p = β±P
±
thru/g

2
0 . (3.10)
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Chapter 4

Device 1: Back-action evading
measurements for direct detection
of squeezed motion

4.1 Overview

The first device (D1) in which we implemented the KMC squeezing scheme was the same device used

in the back-action evasion experiments discussed in [51]. In this experiment, we successfully avoided

both the quantum and classical measurement back-action while measuring a single quadrature of the

mechanical motion. The results of the BAE experiment are summarized in Fig. 4.1. The relevant

parameters for this device are shown in Table 4.1.

Parameter Value
ωm 2π × 4.0 MHz
γm 2π × 10 Hz
ωc 2π × 5.45 GHz
κ 2π × 860 kHz
g0 2π × 15.5 Hz
xzp ∼ 1.8 fm

Table 4.1: Parameters for Device 1.

As part of the BAE experiment, a pair of strong pump tones perform a BAE measurement of X̂1,

and a pair of weak probe tones perform a phase-dependent measurement of the mechanics to detect

the back-action in X̂2 (Fig. 4.1c,d). This measurement scheme is easily modified for our squeezing

experiment; the strong BAE pump tones are simply replaced by strong squeezing tones. As long as

the probe tones are weaker than the pump tones and the pump and probe sidebands are separated by

many linewidths, the presence of the probe tones should not affect the squeezed state. As squeezing

produces excess damping, to separate the probe tone sideband from the pump tone sideband, it is

necessary to detune the probe sideband by up to ∼ κ/10 from the cavity center (Fig. 4.2). Extra
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Figure 4.1: a) Total imprecision and back-action noise for two tones in a BAE configuration (red)
and in a detuned configuration (yellow). Configurations are shown in (b). The solid yellow line
is a fit to the detuned tones’ back-action, while the dashed black line is the quantum back-action.
The BAE tones avoid both the classical and quantum back-action at high pump powers. c) BAE
pump and probe configuration. The BAE pumps (red) measure the X̂1 quadrature fluctuations and
add noise to X̂2. The relative phase of the probes (turquoise) can be adjusted so that they can
measure fluctuations in a quadrature oriented with phase φ with respect to X̂1. The probe tones
are weaker than the BAE pumps so that they don’t add significant back-action to X̂1 for any φ.
d) Fluctuations measured by the BAE pumps (red) and BAE probes (turquoise) as a function of
probe phase. For all phases, the BAE pumps measure 〈X̂2

1 〉, while the probes measure 〈X̂2
1 〉 at 0◦

and 180◦, and 〈X̂2
2 〉 at ±90◦.
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Figure 4.2: Pump scheme for BAE measurements of the squeezed state. The squeezing tones are
shown in dark red and blue, while the BAE probes are shown in light red and blue. The measured
signal is the sideband of the BAE probe tones at ωc − (2π × 80 kHz).

care must therefore be taken to properly calibrate the probe sideband area. Moreover, since there

are squashing (anti-squashing) effects associated with excess red (blue) probe tone power, it is

important to have an accurate way to balance the red and blue probe powers in the presence of the

large squeezing tones. This chapter explains these calibrations and demonstrates a phase-dependent

measurement of a squeezed mechanical state with minimum fluctuations of 1.09± 0.06 x2
zp.

4.2 Device calibrations and characterizations

4.2.1 Thermal calibration

For thermal calibration, weak red- and blue-detuned pumps are applied so that their sidebands are

detuned by many linewidths, as described in Section 3.4.2. The pump powers are chosen to be ∼ 1100

photons. At this occupation, γop ∼ 1 Hz for each pump, so a power imbalance of 10% between the

two pumps would result in damping or amplification of less than 1%, given the mechanics’ 10 Hz

linewidth. At these pump powers, we also expect insignificant heating of the mechanical and cavity

baths.

As the signal that we will want to measure for this device is a BAE probe sideband detuned by

∆/2π = −80 kHz from the cavity center, we perform the thermal calibration with the sidebands

centered at ωc − 2π × 80 kHz and detuned from each other by 1 kHz, as seen in Fig. 4.3. With a

non-zero ∆, the optomechanical damping (and thus the sideband transduction) for both pumps is

reduced by a factor of 1/
(
1 + (2∆/κ)2

)
, or by about 3.3%, relative to sidebands centered on the

cavity frequency. By performing the calibration at ωc + ∆, this correction is automatically included

in the thermal calibration.

Fig. 4.4 shows the results of the thermal calibration for this device. From the fits to the scaled
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Figure 4.3: Pump and sideband scheme for Device 1’s thermal calibration. Here, ∆ = −2π × 80
kHz, and δ = 2π × 500 Hz.

sideband power vs. temperature, we obtain

(
Pm
Pthru

)
−

= (4.995± 0.107)× 10−6 × T(
Pm
Pthru

)
+

= (8.848± 0.189)× 10−6 × T.

To find the parasitic channel parameter ξ, we solve

slope+

slope−
=

(1− ξ(∆− ωm))
2

(1− ξ(∆ + ωm))
2

to find ξ = (0.142± 0.007)ω−1
m . The coupling rate for this device is then g0 = 2π×(15.56±0.19 Hz).

From the parasitic channel parameter, we expect the probes to be balanced when P+
thru/P

−
thru =

−2.48 ± 0.13. From the slopes, we are also able to directly relate sideband area to occupational

quanta:

n̄meas = (10.411± 0.223)× 109 ×
(

Pm
Pthru

)
−

= (5.877± 0.126)× 109 ×
(

Pm
Pthru

)
+

.

(4.1)

We use Eq. 4.1 to convert sideband area to units of mechanical quanta in our BAE probe measure-

ments. If we’d like to calculate 〈x̂2〉 in units of x2
zp instead of in units of quanta, we can simply

multiply the noise in quanta by 2, as x2
zp corresponds to 1/2 quantum:

〈x̂2〉meas = (20.822± 0.446)× 109 ×
(

Pm
Pthru

)
−

= (11.754± 0.252)× 109 ×
(

Pm
Pthru

)
+

.

(4.2)

Fig. 4.5 shows how the mechanical and cavity frequencies change with temperature. The me-
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Figure 4.4: a) Red-detuned pump sideband noise spectra for temperatures ranging from 20 mK
(blue) to 150 mK (red). b) Normalized sideband power versus temperature for both red- and
blue-detuned pumps. The difference in output gain for the two pump frequencies is evident in the
difference in the slopes.

chanical values are obtained by fits to the sideband spectra, while the cavity values are obtained

from driven responses. The mechanical linewidth is observed to broaden with temperature, and the

mechanical frequency to increase slightly. Note that all data were taken in the presence of the two

weak pumps, so the cavity linewidth and frequency may not exhibit the same behavior as they would

in the absence of any applied power. For these measurements, κ changes by less than 1%.

4.2.2 Linewidth broadening

We apply a single, red-detuned tone at ω− = ωc − ωm and measure the resulting damping of the

mechanical linewidth via driven response, as described in Section 3.4.3. Examples of driven response

spectra are shown in Fig. 4.6b. By fitting γtot = γm + γop to the linewidth vs. measured pump

through power, we obtain

γtot/2π = (10.54± 0.12) Hz + (1.727± 0.004)× 108 (Hz/W)× P−thru,

as seen in Fig. 4.6a. From this fit and the value of g0 obtained in the thermal calibration, we find

that n−p = (1.541±0.038)×1011×P−thru. Later changes to the output line of the measurement chain

made it necessary to adjust the through power values by 0.76 dB. For the squeezing data shown



50

 (G
H

z)
 (M

H
z)

γ m
 /

 2 
π

 (H
z)

8
10
12
14
16
18
20
22

ω m
 /

 2
π

4.007 350

4.007 360

4.007 370

4.007 380

4.007 390

4.007 400

4.007 410

T (mK)

κ 
/ 

2π
 (k

H
z)

863.0
863.5
864.0
864.5
865.0
865.5
866.0
866.5

ω c /
 2
π

5.448 136
5.448 138
5.448 140
5.448 142
5.448 144
5.448 146
5.448 148
5.448 150
5.448 152

50 100 150 2000 50 100 150 2000

50 100 150 2000 50 100 150 2000

mechanics

cavity

Figure 4.5: Mechanical and cavity frequencies and linewidths as a function of temperature in the
presence of two weak pumps.



51

np
-

103 104 105 106 107 108

∆ 
f m

 (k
H

z)

-2

-1

0

P       (W)thru
-

10-9 10-7 10-5 10-3

γ to
t /

2�
  (

H
z)

100

101

102

103

104

105

-100 -50 50 100
-28

-24

-20

-16

S 2
1 (

dB
)

0
f - f0 (Hz)

102

np
-

103 105 107a) b)

c)

Figure 4.6: Linewidth broadening calibration. a) Mechanical linewidth vs. through power (yellow
circles). The solid line is a fit to the first 17 data points: γtot = (10.54 ± 0.12) + (1.727 ± 0.004) ×
108 × P−thru Hz. The upper axis indicates the corresponding pump occupation obtained from this
calibration. b) Example driven responses for the first 10 pump powers, with the lowest power in
red and the highest in dark blue. Here, f0 indicates the sideband center frequency. The linewidths
in (a) are obtained from Lorentzian fits to the complex transmission. c) Mechanical frequency vs.
applied pump power.

later, we have

n−p = (1.295± 0.042)× 1011 × P−thru

n+
p =

(1− ξ(∆− ωm))
2

(1− ξ(∆ + ωm))
2 (1.295± 0.042)× 1011 × P+

thru

= (2.294± 0.102)× 1011 × P+
thru,

where Pthru is in Watts.

4.2.3 Balancing calibration

For BAE probe measurements, it is very important that the probe tones have exactly the same

intra-cavity power. If there is excess red or blue pump power, then there will be squashing or anti-

squashing present in the measured noise sideband due to the non-zero cavity bath occupation, and

the quadrature noise will be either underestimated or overestimated, as described in Section 2.7.2.

The thermal calibration tells us the ratio of the gains at the two probe frequencies, and thus lets us
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Figure 4.7: Balancing calibration. a) Frequency schematic for the balancing calibration. The two
strong squeezing tones (purple) are adjusted so that the mechanical linewidth is 160 Hz and detuned
to avoid parametric instabilities. The two probe tones (red and blue) are centered at the same ∆ as
during the squeezing measurements, but are also detuned slightly. b) Linewidth shift measured from
fits to the red-detuned squeezing pump tone’s spectral sideband at different blue probe powers.

know what the ratio of output probe powers necessary for balancing the probes. This calibration

has a large error bar of ±0.13 dB, however, and is not accurate enough for our purposes. We thus

perform a separate balancing calibration to find the output power ratio that produces equal red and

blue probe occupations in the cavity.

In order for the conditions during balancing to be as similar as possible to the conditions during

squeezing measurements, we adopt the following balancing procedure. First, we apply the squeezing

tones, but increase the blue power and decrease the red power so that the mechanical linewidth

is 160 Hz. This narrow linewidth makes it easy to measure changes in the mechanical linewidth.

We also detune the squeezing tones by δ = 2π × 8 kHz to avoid any parametric instabilities. We

then apply the two BAE probe tones with ∆ = −2π × 80 kHz and δ = 2π × 1 kHz. This pump

configuration is shown in Fig. 4.7a. We measure the red-detuned squeezing pump’s spectral sideband

and the two probe tones’ through powers with the probe tones on, and then we turn off the probe

tones and measure the red squeezing pump’s sideband again. The change in mechanical linewidth

due to the presence of the probe tones tells us about the damping or anti-damping added by the

probe tones. We repeat this procedure for different blue probe tone powers, keeping all other powers

fixed. The results are shown in Fig. 4.7b. When the change in the mechanical linewidth is 0,

then the probe tones are balanced. From a fit to the data shown, this 0 intercept occurs when

P+
thru/P

−
thru = −2.38± 0.01 dB. For our squeezing measurements, we ensure that our probe through

powers are within 0.02 dB of this ratio.
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Figure 4.8: Measurement of nthc,R. Light green spectrum is the cavity spectrum in the absence of
pumps, minus the no-pump spectrum taken with the switch set to the through channel. Dark green
line is a Lorentzian fit with a linear background. The fit yields an occupation of nthc,R ≈ 0.37.

4.2.4 nth
c,R measurements

From Eq. 2.80, if there is excess microwave occupation at the right port, we should see a dip in

the cavity spectrum when no pumps are applied. As seen in Fig. 4.8, we observe such a dip for

D1. To calibrate the occupation due to this dip, we take spectra in the presence of no pumps both

with the device connected, and then with the circuit switched to a through channel (Section 3.3.2).

Subtracting off the floor from the through channel produces the spectrum shown in Fig. 4.8. We

then integrate the Lorentzian area, Ac, and use the np calibration from Section 4.2.2 to convert

this area to a cavity occupation. We must also take into account the difference in gain at ω− and

ωc due to the parallel bypass channel, as described in Section 4.2.1. As shown in Eq. 2.80, there is

an additional factor of (1-κR/κ) that enters into the spectrum, where κR ≈ 2π × 450 kHz for this

device. The occupation is thus:

nthc,R =
Ac × β−

(1− κR/κ)

G(ω−)

G(ωc)
. (4.3)

Using this method, we find that nthc,R is approximately 0.37 quanta, which corresponds to a bath

temperature of ∼ 200 mK. This observation led us to change the location of the circulators on the

output line before measuring other devices, as described in Section 3.3.3.

4.2.5 Cooling estimates

To characterize the performance of the device, we perform a sideband cooling experiment by applying

a single tone at ωc − ωm and measuring the resulting mechanical occupation vs. applied power. As
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Figure 4.9: Cooling estimates for D1. The measured nthc for two pumps in a BAE configuration is
shown in small, light blue circles. Solid blue line indicates a power-law fit to these data. Dark blue
circles are corresponding nthc estimates calculated from the power law, with error. n̄m calculated
from n̄meas + 2nthc − nthc,R is shown in turquoise. The mechanical occupation is limited to about 1-2

quanta at high pump powers. nthm inferred from n̄m is shown in yellow. Some heating of the thermal
bath is evident above n−p = 106.

the sideband power is proportional to n̄m−(2nthc −nthc,R) (see Eq. 2.78), we need some way to measure

nthc vs. applied power in order to extract the mechanical occupation. At the time of the cooling

measurements presented in this section, we had yet to establish a robust way to measure nthc , which

is made more difficult when nthc,R 6= 0. As our goal at the time was to perform BAE measurements,

we did have a set of measurements of cavity spectra vs. applied BAE power, with corresponding

backgrounds taken with the microwave switch set to the through channel. These measurements are

not taken at the same total powers as the cooling measurements, but we can extract nthc vs. total

BAE power (n−p + n+
p + ncoolp , where ncoolp is the occupation of a cooling tone used during BAE

measurements to broaden the mechanical linewidth). We then fit nthc vs. total pump occupation

with a power law and use this model plus the nthc,R occupation obtained in the previous section to

estimate the mechanical occupation. The results of this measurement are shown in Fig. 4.9.

With the given estimates for nthc , we find that the mechanical occupation reaches between 1 and

2 quanta before starting to heat up. Later, in Appendix B, we’ll see that the assumption that the

cavity occupation in the presence of a single, red-detuned pump is the same as the occupation in

the presence of two, equal-powered red- and blue-detuned pumps with the same total power is not

necessarily valid. It is thus likely that we have over-estimated nthc here, which would also lead us to
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over-estimate n̄m and nthm in Fig. 4.9.

4.3 BAE probe measurements

4.3.1 Measurement set-up

As X̂1 and X̂2 represent the amplitudes of the cosωmt and sinωmt components of x̂, they define a

set of axes rotating at ωm. The phase of the X̂1 quadrature is set by the phase difference between

the two squeezing pump tones:

cos ((ωc − ωm)t− φ0) + cos ((ωc + ωm)t+ φ0) = 2 cos (ωct) cos (ωmt+ φ0) . (4.4)

The probe phase is defined similarly:

cos ((ωc + ∆− ωm)t− φprb) + cos ((ωc + ∆ + ωm)t+ φprb)

= 2 cos ((ωc + ∆)t) cos (ωmt+ φprb) . (4.5)

The quadrature phase measured by the probes is then oriented at an angle φ = φprb − φ0 relative

to X̂1. The signal measured by the probes is proportional to

〈X̂2
φ〉 = 〈X̂2

1 〉 cos2 φ+ 〈X̂2
2 〉 sin2 φ, (4.6)

as shown in Fig. 4.10.

The relative phase between the pumps and probes can be measured by comparing the phase of

the probe tones’ beat tone at ωm with the phase of the pumps’ beat tone at ωm. To measure the

beat tones of the pumps and probes, we split off some of the source power and feed it into power

diodes, then filter off any high-frequency oscillations (Fig. 4.11). The power diodes measure the

beat power rather than amplitude, so they detect signals oscillating at 2×ωm. The phase difference

between the two diode outputs is thus twice φ.

In order for the probe BAE tones to measure the full 2π phase space of the squeezed state,

we must halve the frequencies of the diode signals. To do this, we produce two reference signals

at ωm with an arbitrary function generator, double the frequency of the references, and lock the

resulting 2ωm tones to the diode signals. To lock the references to the diode signals, we measure

the phase difference between them with a phase detector and use the resulting signal as an external

modulation input to the function generator. When the phases are locked, the output of the phase

detector is 0, and the function generator stops modulating the reference. We then measure the phase

difference between the two locked ωm signals with a lock-in.
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Figure 4.10: Top: Cartoon of a thermal state (red) and a squeezed state (turquoise) in phase space.
Here, the x-axis is the probes’ measurement axis, and the squeezed axis is rotated by φ = π/10, π/2,
π, or 13π/8, from left to right. The full width of the mechanical state in the X̂1 or X̂2 direction

represents the root-mean-squared fluctuations in that quadrature, so
√
〈X̂2

1 〉 =
√
〈X̂2

2 〉 = 1 for

the thermal state, and
√
〈X̂2

1 〉 = 1/2,
√
〈X̂2

2 〉 = 2 for the squeezed state. The projection of the

rms fluctuations onto the probe measurement axis is depicted as a heavy black line on the x-axis.

Bottom: The projection of the rms fluctuations on the probe axis vs. φ,
√
〈X̂2

φ〉, is shown in black.

The probes actually measure a signal proportional to 〈X̂2
φ〉 = 〈X̂2

1 〉 cos2 φ + 〈X̂2
2 〉 sin2 φ, shown in

turquoise. At φ = 0 and π, the probes measure the fluctuations along X̂1, and at φ = π/2 and 3π/2,
they measure the fluctuations along X̂2. The thermal state’s fluctuations are plotted in red.
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We find that the phase measured in this manner is stable to within 1 degree over 5 minutes.

We thus measure the phase every 5 minutes and adjust the probe phases to the desired value as a

form of slow feedback. Measurements of the phase over the course of 100 5-minute segments give a

standard deviation of 0.72◦.

4.3.2 Data processing

To measure fluctuations on the zero-point level with our amplifier that adds more than 20 quanta of

noise, we must average over many hours, or even days, to obtain acceptable levels of signal-to-noise.

Even on these time scales, our system is very stable. We observe changes of less than 1% in the

through power of our pump or probe tones, as shown in Fig. 4.12. The drift in through power we

do see is most likely due to the frequency drift of our room-temperature filter cavities, as we know

that their frequency is strongly temperature-dependent. Note that our measurement scheme should

not be affected by system-wide changes in gain, as we always normalize the mechanical spectrum

by the probe through power. Changing input gain can change the squeezing pump intra-cavity

occupation, however, which could change the amount of squeezing in the mechanics. Frequency-

dependent changes in input gain, like those from shifting filter cavities, can also change the probe

power ratio, which can introduce errors into the measured spectra. We thus reset the filter cavities

and adjust pump powers twice a day to prevent large-scale drifts.

Over these long time scales, we do observe drifts of the system noise floor over time. These shifts

are most likely due to the HEMT noise or the spectrum analyzer filter. Moreover, the noise floor

is not flat, but instead has some curvature. We adjust for these drifts and take into account the

curvature of the noise floor by switching between measurements of the probe sideband and the noise

floor with the probes off (but with the squeezing tones still on). As we already must adjust the

phase of the probes every ∼ 5 minutes, as described in Section 4.3.1, we take this opportunity to

switch between the sideband measurements and the floor measurements. Our complete measurement

procedure is as follows:

1. Turn on pumps and probes. Adjust phase of probes.

2. Measure through powers of probes.

3. Measure probe sideband spectrum, averaging for ∼ 5 minutes.

4. Turn off probes. Measure floor spectrum, averaging for ∼ 5 minutes.

5. Repeat.

6. Every ten cycles, measure the pump through powers and the pump sideband spectrum for

reference.
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Figure 4.12: Gain stability vs. time. Top: Red and blue probe through power vs. time, normalized
by the mean through value. The standard deviation is 0.38% for the red through and 0.57% for the
blue through. Bottom: Probe through power ratio vs. time, normalized to the balancing ratio of
0.578 ± 0.001 obtained from the calibration described in Section 4.2.3. The mean ratio for this 30
hour period is 0.581, with a standard deviation of 0.004.
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Figure 4.13: Processing and fitting the probe sideband. The spectra shown here are for the smallest
noise signal we measured; less averaging is required for larger signals. f0 is the sideband frequency
at (ωc + ∆)/2π. a) Spectra of the sideband (green) and floor (blue) with ∼ 5 minutes of averaging
for each. b) 261 5-minute spectra averaged together for the sideband (green) and floor (blue). The
curved shape of the floor is apparent, as are a few small spurs in the sideband spectrum. c) Averaged
sideband spectrum after subtracting the background and removing the spurs. d) Lorentzian fit to
the spectrum shown in (c). The spectrum shown here has been smoothed by 5 bins to make it easier
to compare to the fit curve. All other spectra shown in the figure are binned so that each bin width
is twice the spectrum analyzer resolution bandwidth.

We then subtract the floor spectrum from the sideband spectrum before fitting the Lorentzian

sideband. The subtraction and fitting procedure is illustrated in Fig. 4.13.

After averaging the 5-minute spectra, subtracting the noise floor, and removing any spurs, we

bin the resulting spectrum by twice the spectral resolution bandwidth to ensure that neighboring

bins are uncorrelated. We fit a Lorentzian to the final spectrum using MATLAB’s “fit” function

with the NonlinearLeastSquares option. Our free parameters are the Lorentzian area, linewidth,

center frequency, and an overall linear offset. We can then convert the normalized sideband area

to units of x2
zp using the thermal calibration from Section 4.2.1, Eq. 4.2. Note that, as the BAE

sideband is proportional to twice the single-tone damping rate (Eq. 2.61), we divide the mechanical

sideband area by twice the red-detuned through power in order to use the same calibration. The

error derived in Section 2.7.2 for imbalances between the red- and blue-detuned probe tones assumes
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that the calibration is done in this manner, as the sideband Lorentzian includes an overall factor of

γ−op.

As we collect up to 261 of the 5-minute spectra, we have an independent way to check the error

bars generated by the fitting routine. We can fit the individual spectra (or, more realistically, fit

averages over several spectra) to gather statistics on the fit parameters produced. We find that the

standard error of the fit parameters generated for different spectra matches the error bars produced

by the fitting routine as long as the fitted spectrum is minimally-binned (i.e., so that there are the

maximum number of uncorrelated bins in the spectrum). If the spectrum is not minimally-binned,

the fit routine tends to overestimate the error bars. To calculate the final error bars of the quadrature

fluctuations, we include the thermal calibration error and any error due to imbalance in the probes

and the uncertainty of the balancing calibration. With balancing within 0.02 dB, and estimating

nthc ∼< 1 and nthc,R=0.37, we can use Eq. 2.66 to find that the error due to any probe imbalance is

≤ 1%.

4.3.3 Parameter search

As seen in Section 2.4.3, the X̂1 quadrature variance depends on both the total pump power and

the n+
p /n

−
p pump power ratio. We thus perform a rough search of this parameter space. Using

the procedure described in the previous section, we take measurements for a range of phases at a

given squeezing pump ratio to find the probe phase associated with X̂1, i.e., the phase with the
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Figure 4.15: BAE probe spectra at −81◦, −51◦, −21◦, and 9◦, from blue to red. Lorentzian fits
obtained via the procedure described in Section 4.3.2 are shown in dark, solid lines. The spectra
have been smoothed to make it easier to compare to the fit curves. Here, f0 is the sideband centroid
frequency. The spectrum at −81◦ is the same as that depicted in Fig. 4.13.

minimum probe sideband area. As this phase should not change as long as the pump ratio is fixed,

we then change the total pump power and look for the smallest signal. We then change the ratio,

find the minimum phase for that ratio, and change the total pump power again. Fig. 4.14 shows

the obtained X̂1 variance vs. total pump power for several ratios. Using this rough search method,

we find that optimum squeezing is produced when n−p = 1.131 × 107 and n+
p = 0.232 × 107, with

a ratio of n+
p /n

−
p = 0.2. We keep the total probe power a factor of 10 below the squeezing pump

power, with each nprobep = 6.2× 105. To check that the probes are not interfering with the state of

the mechanics, we decrease the probe power by a few dB and find that the measured occupations

are unchanged.

4.3.4 Phase sweep

Once the optimum pump and probe powers are found, we measure phases between −170◦ and 170◦

in steps of 10◦. Four of these spectra and fits are shown in Fig. 4.15.

As the BAE probes measure the projection of the fluctuations onto an axis oriented with angle φ

with respect to the X̂1 axis (see Sec. 4.3.1 and Fig. 4.10), the sideband area should look like cos 2φ

plus some offset. The probes measure the fluctuations in X̂1 at 0◦ and 180◦, and the fluctuations in

X̂2 at 90◦ and 270◦. However, the probe phase measured by the lock-in at room temperature is not

necessarily the same as φ in the cavity, so there will be some phase shift in the measured fluctuations

from Eq. 4.6. This shift is evident in the measured quadrature variance vs. phase shown in Fig. 4.16.

From Fig. 4.16, X̂1 is squeezed to a level of 〈X̂2
1 〉 = 1.09± 0.06 x2

zp, while X̂2 has a variation of

〈X̂2
2 〉 = 6.95±0.12 x2

zp. Using Eqs. 2.38 and 2.39, we can extract thermal bath occupations of nthc ∼

0.75 and nthm ∼ 70. Referring back to Fig. 4.9, both bath occupations are lower than those estimated



63

-180 -150 -120
0
1
2
3
4
5
6
7
8

-90 -60 -30 0 30 60 90 120 150 180
probe phase (degrees)

0

1

2

3

n m ef
f

φ
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0.043 quanta.

for the total pump power of 1.42e7 photons. However, there are significant differences between the

conditions during the squeezing experiment and those for the cavity occupation estimation. The

cavity occupation was extracted from measurements during a BAE experiment, where the total

power is composed of two strong pumps of equal amplitude, whereas the blue-detuned squeezing

pump has 0.2 times the power of the red-detuned pump here. As we will see in Appendix B,

applying two tones of equal power can result in as much as a factor of 5 increase in the cavity

thermal occupation compared to when the same total power is applied with a single, red-detuned

pump. Moreover, the cooling experiment and nthc measurements were both done at 20 mK, whereas

the squeezing experiments took place at 10 mK.

Another sign that the cavity and mechanical bath heating may be dependent on the pump ratio

is that the optimum pump ratio we found in the parameter space search (Section 4.3.3) is lower

than we’d expect. If we assume that the heating is fixed at nthc = 0.75 and nthm = 70 for a total

pump power of n−p + n+
p = 1.363 × 107, the optimum pump ratio should be closer to n+

p /n
−
p = 0.7

rather than 0.2. As seen in Fig. 4.14, the X̂1 variance at a ratio of 0.3 (blue) is alread higher than

the variance at a ratio of 0.2 (yellow) at a total pump occupation of 1.363× 107.

At a temperature of 10 mK, the 4.0 MHz mechanical mode should start out with fluctuations of

〈X̂2
1 〉 = 〈X̂2

2 〉 = 105 〈X̂2
1 〉ZP , so both quadratures are damped. This makes it difficult to define the

amount of squeezing. If we consider only the net damping from the excess red pump power acting

on the mechanics, and take the bath occupations to be nthc ∼ 0.75 and nthm ∼ 70 as extracted above,
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we’d expect that the mechanics would be cooled to n̄m = 0.82, with fluctuations of 〈x̂2〉 = 2.6x2
zp.

Our measured X̂1 variance has about 3.9 dB of squeezing compared this value.

4.4 Discussion

These measurements represent the first implementation of a reservoir engineering approach to

squeeze the motion of a mechanical resonator. They are also the first continuous BAE measure-

ments of a mechanical squeezed state. While we were not able to produce a quantum squeezed

state, we demonstrated more than 3 dB of squeezing, stable on timescales of days to weeks.

It is unfortunate that we did not have a better way to measure the cavity and mechanical thermal

bath occupations at the time of these measurements, as it would have been useful to compare the

expected squeezing from Eq. 2.38 to the measured squeezing with the BAE probes. These techniques

were developed later by forming more accurate models of our system beyond the weak-coupling or

single-tone limits, as described in Chapter 2. By the time we cooled down the device described in

Chapter 5, we had already implemented full spectral response and driven response models on several

devices, and found them to be a useful tool for extracting the parameters of our system.
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Chapter 5

Device 2: Full-spectrum
measurements

5.1 Overview

As the previous device failed to squeeze below the zero-point fluctuations due to the presence of

power-dependent heating, we sought to minimize the required power by fabricating a new device

with higher coupling. We tested several alternative devices, but results presented here are from the

device with the most extensive testing and measurements (D2). The relevant parameters for D2 are

shown in Table 5.1. Note that g0 for this device is a factor of two larger than g0 for D1.

For this device, κ is almost half that of D1. This is advantageous for squeezing, since we are able

to achieve high cooperativities at lower pump powers. However, at the optimum squeezing pump

powers for this device, the mechanical linewidth is broadened to more than κ/10. To use the BAE

probe measurement scheme from the last chapter for this device, it would thus be necessary to place

the probe sideband outside the bandwidth of the cavity, decreasing measurement sensitivity and

increasing measurement time. As the previous measurements already took weeks to complete, this

is not a feasible measurement scheme for this device.

Instead, we used a full model of the squeezed driven and spectral responses to extract the

occupations of the thermal baths. With our calibrations and the results of these fits, we know

all parameters of the Hamiltonian discussed in Chapter 2 and can thus extract the quadrature

Parameter Value
ωm 2π × 3.6 MHz
γm 2π × 3 Hz
ωc 2π × 6.23 GHz
κ 2π × 440 kHz
g0 2π × 35.6 Hz
xzp 2.3 fm

Table 5.1: Parameters for Device 2.
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Figure 5.1: Normalized sideband power versus temperature for both red- and blue-detuned pumps.

variances. A similar model, in the limit of no blue-detuned pump power, has proved useful in

cooling experiments where the broadened mechanical linewidth is comparable to κ [56].

5.2 Device calibrations and characterization

5.2.1 Thermal calibration

As described in Section 3.4.2, we measure the integrated sideband powers of weak blue-detuned and

red-detuned pumps versus temperature in order to calibrate the sideband area to known thermal

occupations and to find g0. To prevent the pumps from heating or cooling the mechanical state, we

choose n−p = n+
p ∼ 50. As will be seen in Section 5.2.2, this corresponds to γ±op ∼ 2π × 0.5 Hz for

each pump. For the temperatures in this calibration, γm ≥ 2π× 5 Hz, and so balancing within 10%

will damp or amplify the mechanics by less than 1%.

As the cavity linewidth changes slightly with temperature, instead of fitting Pm/Pthru vs. tem-

perature as we did with the last device, we fit Pm/Pthru × (κ/κ̄)2 vs. temperature, where κ̄ is the

average linewidth for all temperatures. This ensures that the slope is a constant with respect to

temperature:

(
Pm
Pthru

)
±

(κ
κ̄

)2

=
ωc

ω±λ±

(
2g0

κ̄

)2
kB
h̄ωm

T. (5.1)
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Figure 5.2: Mechanical and cavity frequencies and linewidths as a function of temperature.

We find

(
Pm
Pthru

)
−

(κ
κ̄

)2

= (7.317± 0.270)× 10−5 × T(
Pm
Pthru

)
+

(κ
κ̄

)2

= (13.097± 0.418)× 10−5 × T.

These fits are shown in Fig. 5.1. From these slopes, we find that the parasitic bypass channel

parameter is ξ = (0.145±0.012)ω−1
m , and the optomechanical coupling rate is g0 = 2π×(35.61±0.45

Hz).

Fig. 5.2 shows the temperature-dependence of the device parameters. The mechanical linewidth

and frequency both increase with temperature. The cavity linewidth shows a slight increase with

temperature and the cavity frequency shows a slight decrease with temperature, but as there are

100 pump photons in the cavity, these parameters may be dominated by the presence of the pumps

rather than the temperature of the cavity.
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Figure 5.3: a) Linewidth broadening calibration. Yellow circles represent the total mechanical
linewidth obtained by fitting a Lorentzian model to the mechanical driven response at different
red-detuned pump powers. The solid yellow line represents a fit to the first 12 data points. The
fit equation is given in Eq. 5.2. b) G2

− versus red-detuned pump power in the weak-driving regime
(yellow circles) and the strong-coupling regime (red circles). Yellow circles represent values of G2

−
obtained from Lorentzian fits using γtot = γm + 4G2

−/κ, and red circles represent values of G2
−

obtained by fitting Eq. 2.74 to the driven response.

5.2.2 Linewidth broadening

To calibrate G− to the measured pump through power, P−thru, we measure the mechanical linewidth

vs. pump power via driven response, as described in Sec. 3.4.3. We observe considerable narrowing

of the cavity linewidth with increasing pump power in this device, suggesting the presence of two-

level systems [18]. Instead of fitting γtot vs. P−thru, we fit γtot vs. P−thru × κ̄/κ. The resulting offset

is then γm, and the obtained slope is 4β−/κ̄. We can thus obtain a calibration for G2
− = β−×P−thru

for all measured through powers.

Fig. 5.3a shows the resulting mechanical linewidth vs. scaled through power. We apply a linear

fit to the first 12 data points to ensure that γtot � κ, and we obtain

γtot/2π = (2.563± 1.405) Hz + (7.042± 0.197)× 109(Hz/W)× P−thru(κ̄/κ) (5.2)

G2
− = (3.251± 0.091)× 1015 (rad/s)2

W
× P−thru. (5.3)

As we increase the pump power, the mechanical linewidth becomes comparable to the cavity

linewidth, and the mechanical response can no longer be fit in the Lorentzian form of Eq. 2.75. In

this regime, a full model of the driven response (Eq. 2.74) is necessary. When we extract G2
− from

full fits to the driven response, we find that G2
− vs. P−thru is linear up to pump occupations greater

than n−p = 107 (Fig. 5.3b). As G2
− is proportional to g2

0 , this suggests that we have made a valid
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Figure 5.4: Mechanical and cavity linewidths and frequencies vs. pump power, determined through
Lorentzian fits to both mechanical and cavity driven responses.

assumption that the single-photon optomechanical coupling rate is independent of pump power. It

also shows that the full model derived in Chapter 2 accurately captures the behavior of the device

when γtot is comparable to κ.

Fig. 5.4 shows the effects of increasing red-detuned pump power on the mechanical and cavity

linewidths and frequencies. The mechanical frequency begins to decrease with increasing pump

power. The cavity linewidth narrows, while the cavity frequency increases. This behavior is consis-

tent with the presence of two-level systems (TLS) [52].

From the bypass channel parameter found in Section 5.2.1, we can also calculate a calibration

for G2
+ vs. P+

thru:

G2
+ = (5.817± 0.290)× 1015 (rad/s)2

W
× P+

thru. (5.4)

Combining the G2
± calibrations with the value of g0 obtained in Section 5.2.1, we can find calibrations
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for the intracavity pump occupations:

n−p = (6.492± 0.244)× 1011 1

W
× P−thru

n+
p = (11.621± 0.716)× 1015 1

W
× P+

thru. (5.5)

5.2.3 Noise floor

In order to deal with noise floors that are not perfectly flat over the linewidth of the cavity, we take

spectra with the pumps turned off and subtract these noise floors from the spectra measured with

the pumps on. We used a similar procedure for our BAE probe measurements (Sec. 4.3.2), although

the noise floor was taken with the squeezing pumps on. We used the no-pump-floor method with

several other devices, and it produced spectra with flat noise floors outside of the cavity bandwidth

(see, for example, the green spectrum in Fig. 5.9).

With this device, however, the noise floor appears to have a small peak on top of a linear

background, as shown in Fig. 5.5a. Just as the observation of a dip in the noise floor in the absence

of pumps is a sign of cavity occupation from the right port (Section 4.2.4), a peak in the no-pump

floor could indicate a non-zero nthc,int or nthc,L. If we subtract the linear background, we can fit a

Lorentzian to the noise floor. The fit gives a linewidth of 990 kHz and an area corresponding to an

occupation of 0.22 quanta.

There are several reasons why it is unlikely that this peak in the noise floor represents a physical

cavity occupation as opposed to being an artifact of a slight frequency-dependence in the HEMT

noise or output line gain. First of all, at the fridge base temperature, the linewidth of this device

is always measured to be ≤ 550 kHz, even in the presence of drive powers of only a few photons.

It is thus unlikely that the cavity would have a linewidth of almost 1 MHz when occupied by 0.22

photons. Secondly, it is unlikely that the occupation is due to nthc,int, as the device is well-thermalized

to the mixing stage, as seen from measurements of the mechanical occupation. It is theoretically

possible for noise on the input line to be less attenuated than we would expect, creating an nthc,L

larger than the expected occupation of 0.025 quanta (Section 3.3.1). However, as nthc = Σi
κi
κ n

th
c,i,

where κL
κ n

th
c,i < 0.2, if the 0.22 photons in nthc are due only to nthc,L, then nthc,L = κ

κL
nthc = 1.1, which

corresponds to a physical temperature of over 450 mK. It is unlikely that our input line, with its 20

dB of attenuation at both 4 K and the mixing stage, would have such a high temperature, particularly

since we do not observe any peaks in the noise floors of other devices at different frequencies. Most

convincingly, when we measure the noise floor for the same frequency span at room temperature

and perform the same analysis to subtract out the linear background, we see a peak of exactly the

same scale as the cold no-pump floor (Fig. 5.5b).

It thus seems most likely that the peak or kink in the noise floor is merely an artifact of our
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Figure 5.5: Noise floor analysis. a) Averaged noise floor spectrum, showing an apparent peak on
top of a linear background. The dashed line represents a linear fit to the sections of the spectrum
shown in dark blue. b) Transparent blue: Spectrum from (a) with the linear background subtracted.
Solid blue: Lorentzian fit to the background-subtracted spectrum. The Lorentzian linewidth is 990
kHz, and the area gives nthc = 0.22. Pale gray: room temperature noise floor with the same linear
background subtraction procedure applied.
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measurement system noise. Moreover, it is worth noting that this is a small effect. If we do not

subtract off the no-pump noise floors and instead modify the data analysis procedure described in

Section 5.3.1 to fit the floor with a linear background, our optimal squeezing point changes by 10%,

or about two error bars.

5.2.4 Cooling measurements

To estimate the bath heating vs. power for this device, we first perform a cooling measurement. We

apply a single, red-detuned pump and measure the output spectrum. At lower pump powers, the

mechanical linewidth is much smaller than the cavity linewidth. We thus fit the mechanical sideband

with a Lorentzian to find the sideband area, which is proportional to n̄m− 2nthc when nthc,R = 0. We

then fit the cavity spectrum with a Lorentzian to find nthc and extract the mechanical occupation.

At higher pump powers, the mechanical linewidth becomes comparable to the cavity linewidth,

and a Lorentzian model of the sideband can no longer describe the measured spectra. We thus fit

the full model from Eq. 2.77. To determine κ and G−, we first fit the driven response to a full model

from Eq. 2.74. Our remaining free parameters are then nthm , nthc , ωm, ωc, and a constant offset. The

mechanical linewidth is determined from a linear fit to γm vs. nthm , obtained from thermal calibration

data (see the upper left panel of Fig. 5.2), but fits that assume that γm = 0 yield identical results,

as γm << γtot in the strong-coupling regime. n̄m is then calculated by plugging the measured

frequencies and bath occupations into Eq. 2.71. The results of the cooling measurements are shown

in Fig. 5.6.

At a pump power of 8.6e5, we obtain a minimum occupation of n̄m = 0.22 ± 0.08. This is the

coldest mechanical occupation that we have measured in the group to this date, and is comparable

to the coldest steady-state occupations produced in other groups [56]. Using the extracted bath

occupations vs. applied power, we can also estimate the squeezing we’d expect for our device.

Assuming that the heating for a total squeezing pump power n−p + n+
p is the same as the measured

heating for a single red-detuned tone with the same total power, we can calculate 〈X̂2
1 〉 vs. pump

ratio from Eq. 2.38, and thus find the ratio that produces the minimum value of 〈X̂2
1 〉. The results of

these calculations are shown in Fig. 5.7. Squeezing appears to be possible for total pump occupations

above 107.

5.2.5 Excess amplifier phase noise

When we first performed measurements of cooling for this device, we observed an increasing slope

in the noise floor as we turned up the red-detuned pump power, as seen in Fig. 5.8. This suggests

that there is some power-dependent noise source in our system. It is important to figure out where

the noise is arising: if it is a source that occurs in the circuit before the device input, then the
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noise will couple into the cavity and can interact with the cavity and mechanics. If it is a source

that occurs after the circulators on the device output line, then the noise does not interact with the

mechanics. In either case, we will want to get rid of the source of the noise, but in the latter case,

we can calibrate off the noise if necessary.

Our first assumption is that the noise is phase noise on the source that we have failed to fil-

ter sufficiently. We observed insufficient pump filtering before in past devices, however, and the

frequency-dependence of the noise had a different shape, as seen in Fig. 5.9. To rule out phase noise

on the pump, we add in a rejection filter centered at ωc directly after the microwave source and

compare to the un-filtered noise. We also tune the filter off of the cavity center and measure the

noise. In both cases, the noise spectrum is the same as with no filtering, as shown in Fig. 5.10. If

the noise were coming from the source, we’d expect the filter to create a dip in the floor. Since

decreasing the pump noise does not change the output noise, we conclude that the noise must be

added somewhere further along our measurement chain.

We switch to the through channel in the fridge and observe the same excess noise at the same

output power, so we conclude that the noise does not originate in the device itself. We thus

turn our attention to room-temperature contributions on the output line. To measure the power-

dependent noise contributions at room temperature, we connect our filtered pump directly to the

room-temperature output line, bypassing the fridge. The two possible contributors of excess noise in

the room-temperature output line are the MiTeq low-noise amplifier (LNA) and the spectrum ana-

lyzer (SA). In between the source and each of these components, there are some losses. The system

can be modeled as a chain of attenuators and amplifiers, as shown in Fig. 5.11. Each component has

some gain, G, which is > 1 for the amplifier and spectrum analyzer, and < 1 for the attenuators.

Each component also has some noise temperature, T . The attenuators’ noise temperature is simply

the temperature of the room, T0 ≈ 300 K. According to their specifications, the LNA has a noise

temperature of TLNA ≈ 120 K, and the spectrum analyzer has a noise temperature of TSA ≈ 2000
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Figure 5.11: Model of room-temperature output line noise sources, showing the noise added by each
component (above) and the gain of the component (below).

K. We can also include a hypothetical power-dependent noise term for both active components. For

ideal operation, αLNA = αSA = 0. The source also has some phase noise proportional to the source

power, which we treat as a power-dependent noise temperature.

For now, we will assume that the gain of each component is independent of frequency. We can

always compensate for differences in gain by measuring the frequency-dependence of the chain’s

transmission and applying a correction. We have made no assumptions about whether the power-

dependence of the added noise is a function of frequency. In terms of the noise temperature of a

given frequency bin (T ) or the coherent pump power (P ) arriving at the left port of each component,

the output noise and power at the right port is given by

T att1out = G1Tin + (1−G1)T0 P att1out = G1Pin

TLNAout = GLNA(T att1out + TLNA + αLNAP
att1
out ) PLNAout = GLNAP

att1
out

T att2out = G2T
LNA
out + (1−G2)T0 P att2out = G2P

LNA
out

TSAout = GSA(T att2out + TSA + αSAP
att2
out ) PSAout = GSAP

att2
out . (5.6)

So, for the whole chain, we obtain

Tout = GSAG2GLNAG1Tin + [GSAG2GLNA(1−G1) +GSA(1−G2)]T0

+GSAG2GLNATLNA +GSAG2GLNAG1αLNAPin

+GSATSA +GSAG2GLNAG1αSAPin. (5.7)

To calculate Tout when the source is on, we set Pin = Psrc and Tin = Tsrc + αsrcPsrc. When the

source is off, Pin = 0 and Tin = T0. The difference between the output temperature when the source

is on and when it is off is then

∆Tout = GSAG2GLNAG1 (Tsrc + αsrcPsrc − T0 + αLNAPsrc + αSAPsrc) . (5.8)

If we measure the total gain Gtot = GSAG2GLNAG1, we can plot ∆Tout vs. GtotPsrc. The resulting

plot should be linear with an offset of Gtot(Tsrc−T0) and a slope of αsrc +αLNA +αSA. If we filter
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Figure 5.12: Results of room-temperature filtering on the output line phase noise. The slope of
∆Pout vs. GtotPsrc is plotted for no filtering (red), filtering before the spectrum analyzer (yellow),
and filtering before the LNA (turquoise). ∆Pout ∝ ∆Tout is the measured noise power spectral
density. Each circle represents a 100 kHz frequency bin for which an individual fit of ∆Pout vs.
GtotPsrc was performed. Filtering before the spectrum analyzer produces little change to the slope,
while filtering before the LNA decreases the noise by up to 25 dB. Note that the pump noise slope
is reduced below the ∼ -145 dBc/Hz that we’d expect at 3.6 MHz away from the carrier due to a
filter cavity in transmission centered at ω− = ωc − ωm directly after the source.

the pump frequency before the spectrum analyzer, Psrc will be multiplied by a factor of Gfilt < 1

before entering the SA, and the slope of ∆Tout vs. GtotPsrc becomes αsrc +αLNA +GfiltαSA. This

suppresses the contribution from the power-dependent noise due to the spectrum analyzer. If the

spectrum analyzer is adding excess noise in the presence of the pump, we should see a decrease in

the slope when the pre-SA filter is in place. Similarly, if we put a filter in front of the LNA, the

slope becomes αsrc +GfiltαLNA +GfiltαSA, and we suppress the contributions from both the LNA

and the spectrum analyzer. By comparing the slopes for the no-filter, pre-SA filter, and pre-LNA

filter cases, we are able to tell if one of the circuit components is adding power-dependent noise.

The slope vs. frequency is shown for these three cases in Fig. 5.12. We see that filtering before

the spectrum analyzer does not change the power-dependence of the noise, while filtering before the

LNA decreases the noise by more than 20 dB for frequencies near ωc. This suggests that the LNA is

adding phase noise proportional to the pump power, even when the incident power is well below the

LNA’s compression point (as it is for all pump powers discussed in this chapter). We tried replacing

the LNA with a similar MiTeq amplifier, but we observed the same power-dependent noise.

As using a filter on the output line increases losses at the cavity frequency, we instead decide

to cancel out the pump power at the output of the fridge, before the LNA. A schematic for the

cancellation circuit is shown in Fig. 5.13, and a comparison of the power dependence of the noise for

cancellation before and after the LNA is shown in Fig. 5.14. The cooling data taken in Section 5.2.4

was taken with the pre-LNA cancellation circuit in place. No power-dependent noise slope was

observed after cancellation.
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Figure 5.13: Circuit diagram for pump cancellation. Some of the filtered pump power is split off
before the pump enters the fridge. The tone is attenuated and phase-shifted so that it destructively
interferes with the pump at the output of the fridge. Pump through powers are measured on a
second spectrum analyzer prior to cancellation to avoid any drifts in through power due to changes
in the cancellation line. Cancellation of more than 30 dB is achievable on time scales of 12 hours.
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Figure 5.14: Results of room-temperature cancellation on the output line phase noise. The slope of
∆Pout vs. GtotPsrc is plotted for no cancellation (red), cancellation before the spectrum analyzer
(yellow), and cancellation before the LNA (turquoise). Analysis is the same as that for Fig. 5.12.
Cancellation before the spectrum analyzer produces a small change to the slope, while filtering before
the LNA decreases the noise by about 30 dB.
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5.3 Squeezing analysis

5.3.1 Procedure

To squeeze the mechanics, we first set up squeezing pumps at ωc ± ωm and measure the through

powers of the pumps. We then measure driven responses with spans on the scale of the cavity

linewidth and on the scale of the mechanical linewidth. We use Eq. 2.43 to fit both the real and

imaginary parts of the driven response transmission. The calibrations from Section 5.2.2 are used

to determine G− and G+. The cavity response is fitted first, with free parameters for ωc, κ, and

a linear, complex floor. Estimates for γm and ωm are entered as fixed parameters. Once ωc and

κ are determined, the mechanical response is fitted to obtain ωm. At the high pump powers used

for squeezing, the mechanical linewidth is much greater than γm, and so it can be ignored in the

fitting. The results of this fitting procedure are shown in Fig. 5.15.

If needed, the fit can be iterated using the previous fit’s results as estimates for the new fit. As

the driven response fit model includes the effects of imperfect alignment (i.e., it does not make the

assumption ∆ = δ = 0), the driven response fits can be used to align the pump frequencies. We

can measure the driven response to obtain ωm and ωc, adjust the pump frequencies, and repeat

the driven response measurement until our pumps are positioned at ωc ± ωm. Alternatively, we can

sweep the detuning as described in Section 5.3.3.

Once the pumps are aligned, we switch from driven responses to spectral measurements. As with

D1, we take data in 5 minute averaging windows, interleaving spectra with the squeezing pumps on

and floors with the pumps off. We measure the through powers of the squeezing pumps before every

pumps-on spectrum. Sample spectra after 5 minutes of averaging are shown in the top-left panel of

Fig. 5.16. We take between 10 and 25 of these spectra for each pump configuration. The average of

25 5-minute spectra is shown in the top-right panel of Fig. 5.16. Here, the kink in the noise floor

is clearly evident. This kink is most-likely due to frequency dependence in the noise floor of our

measurement system, as discussed in Section 5.2.3. Note also that the floor of the pumps-on spectrum

appears to be more sloped than the pumps-off noise floor. This is because we are not implementing

the pump-cancellation scheme in Fig. 5.13 to reduce the noise added by the room-temperature LNA,

as discussed in Section 5.2.5. The squeezing data presented here were taken with both squeezing

pumps generated by an Agilent E8267C vector source, which was found to produce better squeezing

than using two separate sources for the squeezing pumps. The vector source, however, is difficult

to cancel, as the tones cannot be phase-shifted and attenuated individually. As we found that the

excess noise comes from a source further along the measurement line that cannot possibly interact

with the cavity due to our cryogenic circulators, we can subtract it out of the spectrum. The excess

noise contribution is linear across the linewidth of the cavity, so we perform a linear fit on the wings

of our measured background-subtracted spectra and subtract off this contribution. A background-
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Figure 5.16: Data processing and analysis for squeezing spectra. Top left: 5-minute averages of the
pumps-on spectrum (light) and pumps-off floor (dark). Top right: 25 5-minute spectra averaged
together for the squeezing spectrum (light) and floor (dark). The kink in the noise floor is evident.
Bottom left: Background-subtracted, averaged spectrum. There still appears to be a slight slope in
the noise floor due to the noise added by the LNA, as discussed in Section 5.2.5. To subtract off
this noise added by the output chain, we apply a linear fit to the portions of the spectrum shown
in red. Bottom right: Spectrum with linear background subtracted, normalized by the red-detuned
tone’s through power. The black line is a fit to Eq. 5.10.

subtracted spectrum showing the linear background fit is shown in the bottom-left panel of Fig. 5.16.

Lastly, any spurs are removed from the spectrum, and the spectrum is binned.

We normalize the background-subtracted spectrum by P−thru to cancel out the factor of κR in

Eq. 2.54, so that the measured spectrum can be written as

(Sout − S0)/P−thru =
1

(1 + ξ ωm)
2
n−p

{
ω2 κnthc + (G2

− +G2
+) γm n

th
m

|G2 − iω(κ/2− iω)|2

}
, (5.9)

centered at ω = ωc. In Section 2.6.1, we made the assumptions that γm � G, κ, nthc,R = 0, and

nthm � 1 in deriving the output spectrum from which Eq. 5.9 is derived. All these conditions are met

for the measurements described here. As we don’t have a good way to measure γm in the presence

of the large pump powers, we combine the factor of γm in the output spectrum with nthm , and simply
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fit for the mechanical loss rate, ṅthm = γmn
th
m . We then have

(Sout − S0)/P−thru =
1

(1 + ξ ωm)
2
n−p

ω2κnthc + (G2
− +G2

+) ṅthm
|G2 − iω(κ/2− iω)|2

. (5.10)

We use values for G−, G+, n−p , and ξωm obtained from calibrations for the measured red- and blue-

detuned pump through powers (Sections 5.2.1 and 5.2.2). κ is obtained from the driven response fit

described above. The only free parameters are then nthc , ṅthm , and a linear offset. An example of a

spectral fit is shown in the bottom-right panel of Fig. 5.16.

Once the bath occupations are known, we can estimate the quadrature variances using Eqs. 2.38 and 2.39.

In the limit where γm � G, κ and nthm � 1, these equations become

〈X̂2
1 〉 =

(G− −G+)
2

G2
(nthc + 1/2) +

4G2 + κ2

4G2
ṅthm/κ

〈X̂2
2 〉 =

(G− +G+)
2

G2
(nthc + 1/2) +

4G2 + κ2

4G2
ṅthm/κ.

(5.11)

5.3.2 Parameter space search

Based on the bath occupations vs. pump power for the cooling experiment in Section 5.2.4, we find

that optimal squeezing is predicted for total pump powers over n−p + n+
p = 107, and for n+

p /n
−
p

ratios above 0.5 (Fig. 5.7). We thus focus our search of parameter space on these regions. The fit

results for total pump powers between 1e7 and 2e7, and for ratios between 0.52 and 0.72 are shown

in Fig. 5.17.

We find that optimum squeezing is produced for total pump powers of 1.75× 107 and 2.0× 107,

and for ratios near the lower end of the parameter space that we measured. We choose to focus on

n−p + n+
p = 1.75 × 107. We also find our first indication of ratio-dependent heating, as the cavity

bath occupation is observed to increase slightly with increasing pump ratio.

5.3.3 Alignment

To produce optimal squeezing, it is important to align the pumps so that they are positioned at

exactly ωc±ωm. As seen in Section 2.4.4, changes in δ on the scale of 1% of the mechanical linewidth

can produce a noticeable effect on the amount of squeezing, while changes in ∆ on the scale of 10%

of the cavity linewidth can start to affect the squeezing. As we can measure the cavity frequency

well within 0.1× κ, we focus our alignment procedure on ensuring that δ = 0.

From our model of the driven response (Section 2.5, and in particular the center column of

Fig. 2.5), we see that, when δ 6= 0, the mechanical dip is shallower than when δ = 0, and is not

centered between the two pump frequencies. We thus set up our squeezing tones at ωc ± (ωm + δ)
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Figure 5.17: Bath occupations and X̂1 quadrature variance vs. pump power ratio for total pump
powers ranging from 1.0 × 107 (dark blue) to 2.0 × 107 (red) in steps of 0.25 × 107. Error bars
(∼> 5%) are not shown for this rough search. While nthc does not vary strongly with pump power
over this small range, there is a slight trend of increasing nthc with increasing ratio evident for all
pump powers. The mechanical bath is observed to heat up monotonically with increasing pump
power for all ratios apart from n+

p /n
−
p ∼ 0.55 and 0.6. Optimum squeezing is produced for the

higher pump powers at the lowest ratios.
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Figure 5.18: Frequency alignment for squeezing tones. a) Mechanical driven response for detunings
between −2π× 2 kHz (red) and 2π× 2 kHz (blue). The transmission at ωc appears to be minimized
somewhere between the −2π × 500 Hz and 2π × 0 Hz detunings. b) Minimum transmission vs.
detuning. The detuning can be determined to less than 500 Hz.

and try varying δ until we minimize the transmission at ωc. An example of this alignment procedure

is shown in Fig. 5.18. Using this procedure, we can ensure δ < 2π × 500 Hz.

5.3.4 Fit results: ideal assumptions

After choosing red- and blue-detuned pump powers and aligning the pumps, we measure and fit the

driven and spectral responses assuming perfect alignment and no bad-cavity effects, as described in

Section 5.3.1. We repeat this procedure at n−p + n+
p = 1.76× 107 for different n+

p /n
−
p pump ratios.

Examples of fits to the driven and spectral responses are shown in Fig. 5.19. From the spectral fits,

we obtain the bath occupations, nthm and nthc , as shown in Fig. 5.20. Then, using Eq. 5.11, we can find

the quadrature noise expectation values, again assuming perfect alignment and no bad-cavity effects,

as shown in Fig. 5.21. Error bars are propagated from the fit errors for κ, nthc , and ṅthm and from

the calibration errors for G−, G+, ξ, and n−p assuming non-correlated, Gaussian error distributions.

As seen in Fig. 5.21, several points are squeezed below the zero-point fluctuations, with a mini-

mum measured quadrature variance of 〈X̂2
1 〉 = 0.81± 0.03 〈X̂2

1 〉ZP at a pump power ratio of ∼ 0.4.

The squeezing degrades above a ratio of 0.6, due to a sudden increase in nthc at higher ratios.
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Figure 5.19: Fits of the squeezing model to both driven (a) and spectral (b) responses. The driven
response model (Eq. 2.5) allows for imperfect detunings, while the spectral response model (Eq. 5.10)
assumes that ∆ = δ = 0. Both assume negligible bad-cavity effects. As the n+

p /n
−
p ratio increases,

the effective damping decreases, and the mechanical linewidth narrows. In the spectral response,
the mechanical response changes from a dip to a peak as the noise squashing effects decrease with
decreasing red power.
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points are multiple error bars below the zero-point fluctuations.
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There are several assumptions made in obtaining the results of Fig. 5.21 that may not be generally

true. First, we neglected the bad-cavity effects due to ωm 6� κ. In sideband cooling, neglecting these

effects introduces errors on the order of (κ/ωm)2, which is 1.5% for D2. Second, we assumed that

the pumps are perfectly-aligned with ∆ = δ = 0. As seen in Fig. 2.4, imperfect alignment can

degrade the amount of squeezing, particularly at high pump ratios. It also alters the appearance of

the spectrum (Fig. 2.6). From our alignment measurements (Section 5.3.3), we expect to be aligned

within 2π×500 Hz, but ideally we’d like to take the detuning into account in both fitting the spectrum

and extracting the quadrature variances. Lastly, in calculating the error bars for the quadrature

variances, we assumed that all our sources of error are uncorrelated. This is not necessarily the case

– overestimating nthc may make the fit routine underestimate ṅthm to compensate, for example. The

next section addresses these assumptions.

5.3.5 Fit results: including alignment and bad cavity effects

It is possible to include the effects of imperfect alignment and of the first-order counter-rotating terms

by using a numerical model to fit the squeezing spectra and extract the quadrature variances. To

take into account the unknown correlations of our fit parameters in the error bars of the estimated

quadrature variances, we use a Bayesian approach. This analysis is due to A. Weinstein, and is

described in the supplementary information of [64], so I will only summarize the procedure here.

The ultimate goal of the Bayesian analysis is to find the posterior probability distribution of

obtaining a set of bath occupations, α = {nthc , ṅthm}, as well as the set of supporting measurements,

β, given the measured squeezing spectrum, D, and the full, non-RWA model of our system, I. Here, β

includes all calibrations (thermal calibration and linewidth broadening calibration slopes), measured

frequencies obtained from the driven response (κ, ∆, and δ), and the measured pump through powers

(P−thru and P+
thru). We can then find the Bayesian posterior distribution by calculating

p(α, β|D, I) = p(D|α, β, I)p(α, β)/p(D), (5.12)

where p(D|α, β, I) is the likelihood function for obtaining the measured spectrum given α, β, and

the system model, p(α, β) is the prior distribution for α and β, and p(D) is an overall scale constant

that does not affect the posterior distribution peak or width. We take the prior distributions for β

to be independent Gaussian distributions, and assume that the priors for α are uniform in log space.

The posterior distribution is sampled numerically using the emcee package in Python [17]. The re-

sulting distribution can then be used to construct the full, non-RWA quadrature spectrum, SX1,2X1,2 ,

and the quadrature distributions can be found via numerical integration.

The results of numerical fitting are shown in Fig. 5.22, and the estimated bath occupations and

quadrature variances are shown in Fig. 5.23, with the ideal model values shown for comparison. The
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Figure 5.22: Full-model spectral fits for all measured ratios. The pump power ratio n+
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−
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displayed in the upper-right corner of each plot.

minimum quadrature noise obtained with the full analysis is 〈X̂2
1 〉 = 0.80 ± 0.03 〈X̂2

1 〉ZP at a ratio

of 0.4.

In general, the two analysis approaches agree within their error bars at pump ratios at or below

0.5, and then begin to deviate at higher ratios, with some full-model points having lower values of

〈X̂2
1 〉 than the simple-simple model fits, and some having higher. While both models extract similar

values for nthc (apart from at a ratio of 0.55, which appears to be an outlier for the simple model), the

models differ in their extracted ṅthm values. This is likely due to the inclusion of imperfect detuning

in the full model: imperfect alignment can have a large effect on the mechanical response in the

output spectrum (see Fig. 2.6), and thus on the estimation of ṅthm , but has less of an effect on the

cavity response. The error bars for 〈X̂2
1 〉 from the Bayesian analysis also differ from those of the
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simple model (see, for example, the points at 0.5, 0.55, 0.6, 0.8, and 0.9). This seems to suggest that

some sources of error are correlated so as to reduce the 〈X̂2
1 〉 error at higher ratios and to increase

it at intermediate ratios. Both analyses find quantum squeezing at several ratios.

5.4 Discussion

From the Bayesian analysis, we infer a minimum 〈X̂2
1 〉 value of 0.80±0.03 〈X̂2

1 〉ZP , or 1.0±0.2 dB of

sub-zero-point squeezing. At the same ratio, 〈X̂2
2 〉 = 10.95± 0.72 〈X̂2

1 〉ZP . The effective mechanical

occupation, defined via (neffm + 1/2)2 = 〈X̂2
1 〉〈X̂2

2 〉 is thus 0.98. Relative to this occupation, the

X̂1 quadrature fluctuations are squeezed by 5.7 dB, well over the 3 dB limit of parametric squeezing.

From Figs. 5.20 and 5.23, we see that both the cavity bath occupation and the mechanical loss

rate increase with increasing ratio. The squeezing estimates derived from cooling measurements in

Fig. 5.7 predict that optimum squeezing should occur at ratios above 0.6 at these pump powers.

Instead, we obtain optimum squeezing at a ratio of 0.4 - 0.45. Clearly, the amount of squeezing is

limited by this ratio-dependent heating. This heating is further discussed in Appendix B.

The results presented in this chapter are the first evidence for quantum squeezing in a mechanical

resonator. While our fits may not be a “direct” measurement of the squeezed state (i.e., we do

not measure a signal directly proportional to 〈X̂2
1 〉 as we do in Chapter 4), if we assume that

the linearized Hamiltonian described in Chapter 2 accurately describes our system, the measured

output spectrum in the presence of the squeezing pumps tells us that the mechanics is in a squeezed

state with X̂1 fluctuations below the zero-point level. The same linearized Hamiltonian has been

shown to capture the behavior of many opto/electromechanical systems (it is assumed in most of

the opto/electromechanics papers discussed in Chapter 1), including our own [51, 60]. The same

approach of fitting the output spectrum and extracting the thermal bath occupations that we use

here was also used to infer sideband cooling below an occupation of 1 in the widely-cited work by

Teufel et. al. [56].

In the future, devices could be fabricated where the mechanics are coupled to two microwave

cavities – one for squeezing and one for read-out. A double-cavity approach would avoid the problem

of fitting the squeezing sideband and BAE probe sideband in the same cavity bandwidth. Coupling

the mechanics to two microwave cavities while preserving high optomechanical coupling to both is

likely to prove challenging, however.

In the KMC squeezing method, the cavity noise is also squeezed, and can be used to improve the

imprecision of position detection [31]. Given the success of this method in squeezing the mechanical

motion, measuring the squeezed cavity noise would be an obvious subject for future work.
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Appendix A

Table of variable definitions

Symbol Definition

Frequencies

ωm mechanical frequency. For measurements, sometimes fm = ωm/2π is used

γm mechanical loss/damping rate

ωc cavity frequency. For measurements, sometimes fc = ωc/2π is used

κL, κR, κint cavity loss rates for the left, right, and internal ports

κ total cavity loss rate: κ = κL + κR + κint

ω−, ω+ red- and blue-detuned pump frequencies

∆
detuning between the mean pump frequency and the cavity frequency:

∆ = (ω− + ω+)/2− ωc

δ
detuning between half the pump frequency difference and the mechanical

frequency: δ = (ω+ − ω−)/2− ωm
Ωc mean pump frequency: Ωc = ωc + ∆ = (ω+ − ω−)/2

g0 single-photon optomechanical coupling rate

G−, G+

red- and blue-detuned enhanced optomechanical coupling rates:

G± = g0

√
n±p

G effective enhanced optomechanical coupling rate: G2 = G2
− −G2

+

Gtot total enhanced optomechanical coupling rate: G2 = G2
− +G2

+

γ−op, γ
+
op red- and blue-detuned optomechanical damping rates: γ±op = 4g2

0n
±
p /κ

γtot total mechanical linewidth: γtot = γm + γ−op − γ+
op

Occupations

nthm mechanical thermal bath occupation

ṅthm mechanical thermal bath heating rate (in quanta/s): ṅthm = γmn
th
m
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nthc,L microwave thermal bath occupation at the left port of the cavity

nthc,R microwave thermal bath occupation at the right port of the cavity

nthc,int microwave thermal bath occupation due to internal losses in the cavity

nthc effective cavity thermal bath occupation: nthc = Σi
κi
κ n

th
c,i

n̄m average mechanical occupation

n−p , n+
p red- and blue-detuned pump occupations

Measured quantities

S21 Complex transmission

Sout
Noise spectral density measured at the output of the measurement chain.

(W/Hz)

S0

Any noise spectral density that is independent of frequency over the mea-

sured frequency span. S0 can be referenced to the output of the device, or

to the output of the measurement chain.

Pthru

Pump tone power measured at the output of the measurement chain. ±

superscripts can be used to indicate measurements of the blue-detuned or

red-detuned pump. (W)

Auxiliary functions

χc[ω] Cavity susceptibility: χc[ω] = (κ/2− iω)
−1

χm[ω] Mechanical susceptibility: χm[ω] = (γm/2− iω)
−1

h[ω] See Eq. 2.33 (too long to reproduce)

f [ω] See Eq. 2.44 (too long to reproduce)

g[ω] g[ω] = G2 + (γm/2− iω)(κ/2− iω) (Eq. 2.51)

g̃[ω] g[ω] = G2 + (γm/2− iω)(κ/2− i∆) (Eq. 2.63)

g−[ω] g[ω] = G2 + (γm/2− iω)(κ/2− i(ω + ∆)) (Eq. 2.68)
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Appendix B

Power-dependent heating

For both D1 and D2, the amount of squeezing is limited by the presence of power-dependent heating

of the cavity and mechanical baths. Similarly, heating of the cavity bath in the presence of a single

red-detuned tone has prevented superconducting electromechanical devices from sideband cooling

deep into the ground state [45, 56, 36]. This heating is typically assumed to be due to two-level

systems (TLS) in the oxide at the surface of the superconductor. Signatures of TLS noise include

improvement of the electrical quality factor at higher pump powers due to TLS saturation and

a shifting cavity frequency with pump power due to the changing effective dielectric constant of

the TLS [52]. We observe such effects for most of our devices (see, for example, κ and ωc vs.

n−p in Fig. 5.4). The presence of TLS is known to effectively increase nthc , as TLS noise changes the

dielectric constant in the microwave cavity, and thus induces frequency noise in the cavity frequency.

The presence of the pump converts this frequency noise to phase noise on the pump, which then

looks like thermal cavity noise. The effective cavity noise, nthc , is expected to be proportional to
√
np [52]. Our cooling measurements for D2 roughly show this dependence (Fig. 5.6). Decreasing

the contributions of TLS noise through fabrication techniques is a current goal of the Schwab group.

In the experiments discussed here, we not only observe heating that increases with the total

pump power, but also heating that is dependent on the pump ratio (Figs. 5.20 and 5.23). Two-level

systems in microwave resonators are not well-studied in the presence of two strong drive tones of

similar power, so the physical mechanism behind this ratio-dependent noise is currently unknown.

In this Appendix, I will try to characterize this noise with the hopes that we will be able to find an

explanation in the future.

B.1 nthc heating in the absence of mechanics

To explore and characterize the behavior of the ratio-dependent heating, we can first study the

cavity heating alone by moving the mechanical sidebands out of the cavity and measuring only the

cavity occupation vs. pump ratio. When the pump power ratio approaches and surpasses 1 at
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Figure B.1: Pump configuration for studying nthc heating. This configuration ensures that the cavity
enhancement of any sidebands of the blue-detuned pump is less than the cavity enhancement for the
corresponding sideband of the red-detuned pump. For the measurements in Fig. B.2 and Fig. B.3,
ω− = ωc − 2π × 4.5 MHz, and ω+ = ωc + 2π × 2 MHz.

high pump powers, the mechanical linewidth narrows considerably and the mechanical motion is

amplified, even when the pumps are equally detuned so that their sidebands are far from ωc (i.e.,

δ > κ). The mechanical mode can then become unstable, as it is susceptible to frequency shifts

on the scale of the mechanical linewidth. This instability will set in at lower pump powers if any

of the blue-detuned pump’s sidebands – from the fundamental or from any higher-order mode of

the mechanics – are closer to the center of the cavity than the corresponding red-detuned pump’s

sideband, as the cavity enhances scattering between the blue-detuned pump and the mechanical

mode. In order to explore the cavity heating as the pump ratio approaches or surpasses 1, it is

thus necessary to position the pumps so that all mechanical mode sidebands are outside the cavity

bandwidth and, at the same time, the blue-detuned pump’s sidebands are all further from the cavity

than the red-detuned pump’s. Fig. B.1 shows one such configuration.

Using this configuration, we can turn up the blue pump power to twice the red power without

unstable mechanics dominating the spectrum. We change the total power of the applied pumps as

well as the pump power ratio and measure the thermal cavity occupation at each pump configuration.

Fig. B.2 shows the extracted nthc occupation as a function of both total pump power and power ratio.

As the total pump power increases, nthc increases slightly. As the ratio changes, however, nthc peaks

strongly at a ratio of 1 before decreasing again. At the higher pump powers, nthc at a ratio of 1 is

about 4-5 times greater than it is at a ratio of 0. Fig. B.2 shows us that the excess heating is not

simply a result of increasing the blue power. Instead, it seems that the heating is greatest when the

pump powers are equal. When the pump powers are equal, the power in the cavity beating at 2ωm

is maximized, so the heating is likely related to this low-frequency beating.

As the thermal conductance between the cavity bath and the fridge may be smaller at low

temperatures, we tried repeating this measurement at different fridge temperatures to see if we could

reduce nthc . Fig. B.3a shows nthc vs. pump ratio at a fixed total pump power of n−p +n+
p = 1.3× 107

at temperatures of 10 mK, 100 mK, 200 mK, and 400 mK. Raising the sample temperature only
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Figure B.2: nthc vs. pump power ratio (x-axis) and total pump power (y-axis). nthc ranges from 0.1
(dark blue) to 2.4 (yellow), with maximum heating at high pump powers with a ratio of 1.

seems to make the noise worse. As the thermal cavity occupation given by the Bose distribution is

expected to increase from effectively 0 at 10 mK to ∼ 0.9 at 400 mK, some of this increase in noise

may be due to the increase in sample temperature. In Fig. B.3b, the Bose occupation is subtracted

off, but there is still some temperature dependence at all ratios, especially at temperatures over 100

mK.

Cavity heating vs. pump ratio is not present when both pumps are red-detuned from the cavity,

as seen in Fig. B.4. Here, one tone is located at ωc−2π×11 MHz, and one is located at ωc−2π×4.5

MHz. The pumps have the same spacing of 6.5 MHz as in Fig. B.2, and thus produce beat power

at the same frequency as before.

B.2 3-omega

By adding a third tone located at ωc − 3ωm, it is possible to adjust the amplitude and phase of the

third tone to cancel out the power beating at 2ωm (Fig. B.5) [50]. We can easily add a third tone

and adjust its phase using the vector source, Agilent E8267C. We thus don’t have to use the phase

measurement set-up in Section 4.3.1.

We chose the total n−p +n+
p to be 1.5e7, with a ratio of n+

p /n
−
p = 0.68. The 3-omega tone has the

same intracavity power as the blue-detuned tone. Fig. B.6 shows the spectra we obtain for different

phases of the third tone. Even by eye, it is clear that the cavity and mechanical occupations are

dependent on the third tone’s phase.
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No ratio-dependent heating is evident.
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Fig. B.7 shows the fit results extracted from the spectra in Fig. B.6. Both nthc and ṅthm show

a dependence on phase. Relative to the bath occupations in the presence of two pumps, both also

show a reduction at some phases and an increase for others. This adds additional support to the

theory that the heating is due to the power in the cavity beating at 2ωm. Adding a third tone at

ωc− 3ωm with the correct phase relation may thus help offset the effects of ratio-dependent heating

in future measurements.
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