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Abstract

This thesis consists of two independent chapters. The first chap-
ter deals with universal algebra. It is shown, in von Neumann-Bernays-
G8del set theory, that free images of partial algebras exist in arbi-
trary varieties. It follows from this, as set-complete Boolean alge-
bras form a variety, that there exist free set-complete Boolean alge-
bras on any class of generators. This appears to contradict a well-
known result of A. Hales and H. Gaifman, stating that there is no com-
plete Boolean algebra on any infinite set of generators. However, it
does not, as the algebras constructed in this chapter are allowed to be
proper classes. The second chapter deals with positive elementary in-
ductions. It is shown that, in any reasonable structure 7 the
induetive closure ordinal of 1M is admissible, by showing it is equal to
an ordinal measuring the saturation of m. This is also used to show
that non-recursively saturated models of the theories ACF, RCF, and DCF

have inductive closure ordinals greater than .
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CHAPTER 1 Free Algebras in Von Neumann-Bernays-G8del Set Theory

In 1962, A. Hales and H. Gaifman independently proved the follow-

ing theorem:

Theorem 1 If  is a regular cardinal, there is no free set (y,«)-dis-
tributive complete Boolean algebra on a set of , generators.

In view of this result, an existence theorem along these lines can
only be obtained by allowing Boolean algebras which are proper classes.
In fact, the following theorem can be established without much diffi-
culty in a strong enough set theory, for example Morse-Kelley, which

freely allows quantification over classes.

Theorem 2 Let E be a class of equations in the type of set-complete
Boolean algebras. If the Boolean algebra 2 satisfies the equations E,
then for any class X, there is a class X’ equipollent with X such that
there is a free E-set-complete Boolean algebra on X’.
It will be shown in this chapter how results of this kind can be
obtained in the weaker set theory of von Neumann-Bernays-G8del (NBG).
In fact, the following general result is proved in NBG which

easily gives Theorem 2 as a corollary.

Theorem 3 Let v be a class similarity type. Let E be a class of equa-
tions in type #. Then, if A is a partial algebra of type s, there exiasts
a v(E)-free image of A.

This theorem partially generalizes the following known result from

universal algebra [Pierce].
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Theorem 4 Let v be a set similarity type. Let 81 be a class of set
partial algebras, closed under set products and subalgebras. Then, if

/A is a set partial algebra of type r, there is an 'g9'-free image of A.

§1. Free images of partial algebras

In this chapter, we will work in the axiom system NBGA (von Neu-
mann-Bernays-G8del with atoms) [see Rubin] + PR, where PR is:

There is a limited formula ¢ a class Z such that for any nonempty
class Y, there is a unique set x such that # # x c Y, and o(x,Y,Z).
(See [Rubin g Rubin] for a weaker form of PR, and some of its uses.)

Uses of PR will usually be as follows: we will have classes Yab’
for {(a,b) in some index class I, and we will say that we construct sets

a8 the unique x such that

X, Such that § 4 x c ¥, by defining x .

o(x,Y,;,2) halds.

Because of the restrictions of this set theory, and the extension
of the concept of 'algebra' we will use, we must redefine 'algebra’'.
First, we note that we can define an indexed collection of classes
(A DY) g’ o8 in [Rubin], so that we can recover B and each AB from

R BE
((Ag))geps ©VeDR if they are proper classes.

Definition 1.1 A class r is a similarity type if 7 is a function.

Definition 1.2 If 7 is a similarity type, a partial algebra of type

is a system/A = ((A, «Fj”jen('r)” (abbreviated ((A; FJ)X such

Jes(-r))

that each F.1 is a function from some subclass of AT(J) to A. If each

Q(FJ) = AT(J), A is called an abstract algebra of type r.
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Definition 1.3 If s is a similarity type, and X is a class, then W‘r

X
(the words of r with variables X) is the smallest class W such that

1) If u e X, then {O,u) (read xu) €W
2) If j e p(r), and w ¢ WT(J), then ({1,j),w) (read Qj(w)) € W.

Note: This definition is not allowed in NBGA, as we cannot prove that
W_rx exists directly, but it can easily be modified to work properly as
follows: Fix r,X as above. For g c T, X c X, o and x sets, let wcx be

the smallest set w satisfying

1) If ue x, (O,u) € w.
and

2") 12 j € 9(g), and t € w"(d), then ({1,3%, t) e w.

Let W .= | w .

>'q

X o~:_1’°
xX

Definition 1.4 Let #,X be as in definition 1.3. We can then define

operations on WTx by letting FJ. (w) = Qj(w) if (J,y) € r and w € (WTx)y.

xl

The algebra ((WTx; F;j”jeg(-r) is called the word algebra WT
For /A = ((A; F:]”:Je;o(-r) a (partial) algebra of type r, W € HTx,

and v a function from X to A, we define:

Definition 1.5 The value of w at v in/A, written Va]m(w,v) by set in-

duction:
1) Valy(x,v) = v(w)

ii) ValA(Qj(w),v) = FJ(VaJ,A(-,v) o W) (if defined).



(See note following definition 1.3)
For future reference, we will also need some standard concepts in

universal algebra.

Definition 1.6 Let A = (({A; Fj”;}eg(-.-) be a partial algebra of type r.

A) If B cA, we define A | B(the restriction of A to B)=

((B; Fy N (B'(") x B)Y).
B) If ¢ c 1y We define A | o (the reduct of A to o) =
(A3 F:j”jen(a) as a partial algebra of type o.

C) If v co) and ¢ is a similarity type, we define A t g, the ex-
pansion of A to g, as a partial algebra ((A; F;”jen(o)of type @, so
that
Fy J e a(r)

? B 3e o)~ aln).

*

Note that, if all concepts are defined, if /A is a partial algebra of

type v, then (A ¢t o) ¢ 7 = /A.
Most algebraic concepts can be defined in the conventional manner;

however, we must redefine [X]A’ the subalgebra of A generated by X.

Definition 1.7 Let A be a partial algebra of type v, X cA. Then[X],,

the subalgebra of A generated by X, is

{val, (w,v) : v is a set, g(v) c X and w e w'm(v)].

We can now define the main concept used in this chsapter.
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Definition 1.8 Let r be a similarity type. Let /A be a partial algebra

of type r. Let [P be a property of partial algebras of type v. A pair
({B,c)) is called a P-free image of A if the following four conditions

hold:

1) P (B)holds i.e., B has property P. In particular, B is a par-

tial algebra of type .
2) o is a homomorphism from /A to [B.
n - .
3) o A][B B
4) If ¢ has the property P, and ¢ is a homomorphism from/A to €,

there 1s a homomorphism y from B to ¢ such that § « ¢ = ¢

Definition 1.9 If, in definition 1.8, o is id |\A, then B is a P-free

extension of A.

Definition 1.10. 1If, in definition 1.8, g is 1-1, then {(B,o)) is a P-

free quasi-extension of A.

Definition 1.11 Let X be a class, and let ¥ = ((X ;)) be an algebra of

type §. If B is a P-free extension of X t v, B is a P-free algebra on X.

I will now give some examples of the above concepts.

Example 1 Suppose we have groups G1, G2, considered as algebras of type

=1
{{»2y, { ,1)}, with a common subgroup H = G1 n 62.

-1

. -1
Let A = ((G1 U Gz; ’ G, U GE, G, U Gaw. Then a group-free ex-

tension of A is the free product G1 *H 62.

Example 2 The free group on a set X is the group-free algebra on X.
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Example 3 Suppose we have groups G,, G, with G, N G, = @, and an iso-
morphism ¢ from H <G, into G,. Let r = {{-,2), ¢y, (1,1)). Let P

be the property of algebras ({(G; -, ", i) of type r that

1) ((Gs °, -1\3 is a group, and

i11) i =14 }eG.

- . - -1 -1
Let A = ((G1 U Gy G1 u Gz’ (}1 U Gz, o)), & partial algebra of

type v. Then ((G1 *H Gy o U 52)) is a [P-free image of /A, where o3 is

the natural map from Gi into G1 *H G,

We will now derive some simple properties of free images.

Lemma 1 Let ((B,o)) be & P-free image of A, and let C,p be as in con-

dition 4 of definition 1.8. Then the ¢y of that condition is unique.

Proof: Suppose y,y’ satisfy condition 4. Fix a b € B. By condition 3

of 1.8, b = VaJ.B(w,v) for some may v into o"A.

Claim: § o V= y’ o V.

Proof: Fix t € g(v). v(t) = o(a) for some a € A. Hence,

¥ o v(t) = y(v(t)) = y(o(a)) = ola) = §'(c(a)) = §/(v(t)) = 4’ v(t).

S0, 4(b) = y(Valy(w,v))
= Va.lq:(w,' e V) (¢ is a homomorphism)
= Va.lc(w,‘,' o V) (claim)
= 4" (Valg(w,v)) (4 is a homomorphism)

#’(p) 4
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Lemma 2 If ((B,o))s {{B’;c’)) are P-free images of A, then there is an

isomorphism § : B + B’ such that § « o = o’.

Proof: As {{B,s)) is a P-free image of A, and ¢’ is a homomorphism

from /A to an algebra [B’ satisfying P, there is a homomorphism y from B
to B’ such that §y « ¢ = ¢’/. Similarly, there is a homomorphism 4’ from
B’ to B such that ¢/ ¢« g’ = ¢. 80, 4/ ¢« # e o= 1id ¢ . From lemma 1,
withC =B, o= g, We get ¢’ o y = id [ B. Similarly ¢ . 4’ = ia | B/,

so that 4 is an isomorphism from B to B’. 4

§2. Pierce's Theorem

Theorem 2.1 [Lemma 4.1.5 of [Pierce]]. Let v be a similarity type
which ig a set. Let g be a class of set partial algebras of type =,
closed under set products and subalgebras. Then, if A is a set partial
algebra of type », and P is the property of belonging to 9, then we can
construct a [P-free image of /A.

The reasons I will prove this theorem here, are that I am not using
the axiom of choice here, as Pierce does, and that this proof, but not
Pierce's can be modified into a proof of the main theorem in Morse-Kel-

ley set theory.

Proof: The main step of the proof, as in [Pierce], consists of showing
that there is a (possibly empty) set of pairs f(Ai,(pi\ : 1 € I} such
that

(1) By eu

(i1) @y is homomorphism from/A to A, and q,i"A generates A, in A,.

i i

(111) IfC € 9, and ¢ is a homomorphism from/A to €, there is i € I,
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and a monomorphism g from Ai to C, such that o= ¢ o Py -

Let T be the congruence relation on M-r A generated by

)iET(J))

QJ((X = x, Whenever F ((ai)ie-r(;])) = b in A. (The notation

(xi)iEI indicates the function defined on I which for each i € I, takes
the value xi.) Let I = {A : A is a congruence relation on IWTA, AT

and W_,/A € 9}. For Ael, leth, = MTA/A, and let g, be defined so

that q;A(a.) = [xa.]A' |

Property i) above is clear. Property ii) follows from the fact
that PA is a homomorphism from A to A, by construction. To show prop-
erty iii), suppose € = ((C; H ))Jes('r) is a 9, and ¢ is a homomorphism

valm(w2"4’)]' ADT, as p is a homomorphism, and g = Va.lm(-,q,)/t.\ clear-
ly satisfies the condition of property iii).

To complete the proof, let D = "AeIAA' Let o be defined from A to
D so that o(a)(A) = g,(a). Define B= [¢"A], and B =D ['B. I claim
that ((B,c)) is a P-free image of A. Property 1) holds because B e 8=
9. Properties 2) and 3) hold by construction. Property 4) holds, as
follows: Suppose € € 3, and ¢ is & homomorphism from A to €. By prop-
erty iii) there is a A € I, and a monomorphism g from A, to C, such
that o= 0 « g,- Let § be defined on B by y(b) = a(b(A)). Then, for

a €4, y(o(a)) = a(c(a)(2)) = a(g,(a)) = pla). 4

§3. The main result

Theorem 3.1 Let v be a similarity type. Let E be a class of equations

in WTV. Let /A be a partial algebra of type . Then there exists a



v(E) -free image of A.

Proof: We will define a directed class of partial algebras le " for
]

sets x C_:A, s CT and maps *xs;yt : BX,B — lBy,t such that _li_m_. Bx’s=IB

is the y(E)-free image of A.

For x cA, sct, letA =4 s } x, and let ((B, g1 g)) be the
v(E n st) -free image of Axs’ as described in Theorem 2.1. For xcycA,
s ct cr, consider the map ¢ : x » Byt defined by g(a) = q;yt(a). It is
easy to see that 4 is a homomorphism from Ax . to Byt
from the fact that ((B__,q )} is & v(E n Wiv)-free image of A__, there

is a unique homomorphism S
b

} s, and hence,

yt. H Bxs-OByt 1 8 such that *n;ﬂoc&s".

Now we consider the direct limit:

IfaGBx',beByt

e = b if x,¥y ¢ z; 8,t c u; and, %s

’ ng, &Ddu_c_:'r, WB&Y

(a) =

Yyeszu(®)

;zu

*
We say a = b if there exist z and u such that a nzub. Let B =

l*%A,s cT Bys®

¥*
Claim 1: = is an equivalence relation on B .

*
Proof: = is reflexive on B, because if a € Bxs’ then

(a)

(a), so a =__ a.

=
*18 3X8 *IB 3 X8 X8

= is clearly symmetric, so we must show that = is transitive. Sup-

posea.eBx’, b € B

i 2g 79 c eBx,‘,, aEy-r. b, and b’zu c. We claim a

= c follows:
YUz, Hu -
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bxssyuztn M) T Yyyuzan Cxesye (2)
= tyuyzun gy (P)
= ¥xrsiyuz, (b)
= Yzusyuz, (*x's';zu (b))

-*zu;yuz,tuu ("'x's';zu (e))

= $ere sz, (O ]

*
We would like to use B = B /=, but we can't because equivalence
classes are proper classes. However, using PR we can select from each
equivalence class a canonical element, and B will then consist of those

elements.

Claim 2: If a = b, we can construct, from a and b, z cAand ugr

such that a !zub'

Proof: Let W= {{(z,u) : a szub}. By PR we can construct a non-empty
set wcW. Let z=(Jg(w), and u=Jg(w). It is now clear that

a azub.

# *
Claim 3: From a € B* we can construct an a € B , with the following
properties:

(i) a= a

* ¥*
(1) Ifa=Db, thena = b .



11

* *

Proof: For a fixed a € B, let (a]l] = {b e B : a = b}. Using FR, we
can construct a non-empty set w c [a]. By claim 1, for each

b,b’ € W, b=a = b’, so b= b/, Hence, by claim 2, we can construct

= ’. =
Zop?? Ypb’ such that b —zbb"ubb'b Let y = Ub,b'ev zbb,,t

Ub Stew Wt It follows as in the proof of transitivity in claim 1,
’

th&t’ for b,b' € W, b =

% ,» then

’ ’
b’. Hence if b ¢ Bxs’ b’ € Bx’s

T, (b) = - (b’). Denote this common value by 8.
’ -

Property (i) above follows from claim 1. Property (ii) follows
from the fact thatv a.* was constructed from [a]; hence if a = b, [a] =

(6], soa = b . 1

* *
We can finally define B : B= {a : a € B }.

*
We will now define the operations of # on B :

* X
Definition 3.1 Suppose (F,x) € v, and b € (B') . For y € x, suppose

bt-:Bx

v . Letw-Uzy,a.ndt-[(P,x)}UUuy. Let b’ be the

Yy yex yex
(coordinate-wise) image of b in B¢ (using the 4's). Define

FB* (b) = FB“ (b?).

*.X
Claim 4: If (F,x) € r, b,c € (B ), and b and ¢ are coordinate-wise =,

then FB*(b) = re*(°)°

Proof: By claim 2, for y € x we can construct q_y c A, vy C T such that

3 ” -
by !qy’vy Cye Let (similar to derinition 3.1) w Uyex 9 and

t’ = ((Fx)} U Uyex v Let 4 be the common (coordinate-wise) image of

X
b and ¢ in (Bw,t,) .
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Subclaim 4.1 FB... (b) = FB* (d).

Proot: Let w,t,b’ be as defined in definition 3.1. It is then clear

that w c W/ and t c t’. From definition 3.1, FB* (b) = F (b?) and

Bt

FB* () = F (d). It follows from properties of the 4's, that

B'»ltl

Yt w’t’ ° b’ = d. Hence,
]

88 ottt is a homomorphism from [Bwt to
3

B,y b T %;w,t,(rm* (b)) = FB*(d), wol 40 Tz (v) =_,., F * () 4

Similarly, FB* () = FB* (d), so, by claim 1, FB* (b) = FB* (e) 4

In view of claim 4, we can define operation on B.

Definition 3.2 If (F,x) € 7, b € (B)*, define Fg (b) = (FB* (p)) .

Definition 3.3 If & ¢ A, (8) = 9y, (a))".
Claim 5: ({B,¢)) is a v(E)-free image of A.

Proof: There are four conditions in definition 1.8 to be verified.
(1) P(B) holds, i.e., B satisfies the equations in E.

Suppose the equation e = 'w, = w2' is in E; let the set t consist
of the operation symbols occuring in e, and let x be the get of variable
symbols occuring in e. Suppose f is a function from x to B. We must

show:

(3.1) Va.JB(w1,f) = Va.lm(wa,f).

Let g and h be defined on x so that f(v) € Bg(v),h(v) for all vex.
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Let y = . . g(v), andu=+ ]t UL_J“x h(v). Let f’ be the image of f
in .
Byu
It follows from claim 4 (and definition 1.2, and a simple induction
argument) that
(3.2) Va.lB* (w1,t) = v;lB* (w1,f') = v;lm* (w1,f’),
yu

and similarly for W,e But, as 'Byu was defined as a free image, its

property 1 implies that

(3.3) valp, (w,£7) = Valp (wy '),
yu yu

and so

(3.4) vuha* (w1,f’) = quw (w1,1”) (3.2)
= valByu (wa,f') (3.3)
= v"lla* (wa,f') (3.2)

It can be shown, using detinition 3.2 and claim 4, that
(3.5) val (w,f) = Val » (w,t).
B B
Hence, using (3.4) and (3.5) we obtain

(3.6) val, (w.l,f) = Valg (w,,f), which implies (3.1), as B selected a

representative of each equivalence class of B*. 4 (property 1)

(2) ¢ is_a homomorphism from A to [B.

We must show that for any (F,x) € r, £ € A", if F,(f) is defined,

then

3.7 q)(!'m(f)) =Ty (p o 1).
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Let y = p(f) U (F (f)], and t = {(F,x)}. Then:

Fplp « £) = Ex (g o 1) (definition 3.2)

F*(Wtof) (claimh)

- F;Byt (Qnyt o T) (definition 3.1)

= Qo (F (f)) (property 2 of definition
3.8 for ((B,,, q;.yt)))
=@ (F/A(f)) (definition 3.3)

This shows equivalence of the sides of (3.7), and hence equality.
{ (property 2)

(3) o"A_generates B.

Suppose b € B, '!:haml?,ele8 for some x c A, 8 ¢ 7. From property

"
3 for Bxs’ we have Pyg X generated Bxs' Hence, there is a word w € st,

such that b = Va.lB (""sz)' But then:

b = VBJ.B (w, cpxs

= Vs.lB* (W [ %) (claim 4)

= Valy (w0 P x),
and as before equality must hold. 4 (property 3)
(4) 1If ¢ satisfies E, and y is a homomorphism from A to €, tnere is a
homomorphism 4 fromBto € such that § o ¢ = «.

Fix sets x c A, and s ¢ 7. Define homomorphisms y . fromA _+C ;s

by
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(3.8) YXB = v '\ X.

Since C satisfies E n st, by property 4 of definition 1.8 there is

& homomorphism . . :Bx'-oc } s such that

(3:9) 435 * ®s = Yys®
Now define .g* : B + € (not necessarily a homomorphism) by
*
(3.10) = Ux’s xs*
We now need an auxiliary result:

* *
Subclaim 5.1 If b, c € B, and b = ¢, then 4 (b) = 4 (c).

Proof: Suppose b € B ., C € Byt, and b=, c. Letd= 1|,m;zu(|:>) =

byt 3zu(C)-

It is sufficient to show that ,,*(b) = **(d), as the proof that
»*
¥ (c) = ,,*(d)) is similar. We need to show that the adjoining diagram

commutes. We already know that all circuits except the bottom B__,B

x8’ zu’ ¢

loop commute. But that is the desired result.
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Define:
(3.11) ¥xs ™ Vo ° bxs;zu’

To show *'::s = s we will show that *'xs satisfies property 4 of

¥xs
definition 1.8, Since that y is unique by lemma 1 of §1, we have

s = byggr 804 4 (B) = 4 (b) = ¢ __(b) = ¢, (@) = ¢ (a).

We have:
Vixs * P ™ Yoy ° ¥xgszu ° Pxs (3.11)
= by * (0 } x) (definition ¢m;zu)
= yzu r X (5.9)
- Ves (3.8)

Hence 4’ - satisfies the defining property (&) of ¥yg» hence, by

Lemma 1 of §1, *'xs = ¥yg*

Hence, i*(b) = *xs(b) = "'xa(b) = *zu(d) = t*(d) = (similarily)
q,*(c) 4 Subclaim 5.1

We now define
¥*
(3.12) ¢=¢ }B.

We must show that 4 is a homomorphism from B to €. Fix

{(F;x) € v, and b € BX. Let w, t, b’ be as in definition 3.1. Then:
*
@(FB(b)) = (F[B* (b) (Subclaim 5.1, definition 3.2)
*
= ¥ (FB (b’)) (definition 3.1)
wt

= Js'm(‘,,wf e b’) (definition ,,wt)



= Fc(q,* e b?) (3.10)
= Fe(,,* e b) (Subclaim 5.1)
= Fc(* e b) (3.12)

Hence § is a homomorphism, as asserted. All that remains to be shown

is that §y ¢« o= y. To do this, note that for a € A,

#(p(a)) = **(q,{a}m(a)) (Subclaim 5.1, (3.12), definition 3.3)
= y{a],¢(3) (3.9)
= y(a) (3.8)
{ (property %)
4 claim 5
4 Theorem

§4 Applications

To use Theorem 3.1 to get results involving more familiar algebras,

we need the following lemma:
Lemma 1 Let 7 be the type {('v',2)} U {{V,s2) : 2z a set}. Let E con-
sist of the following equations in WT“:

(E 12) x\/\/z (x)tez-x , 2 a set

(B 22) yvV, (x)"" = ¥ v\, (3vx) "%, z & set

(E 3zy) x, vV, (xt)tez = \/Z(J':,‘.')It"Ez , Y € z sets

(BE4) xyx=x

(E5) xvy=ywvx
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(E6) (xvy)vz =xv (yvz).

Then there is an exact correspondence between set-complete join
semi-lattices /A = ({A;Vv)) and algebras of type r satisfying the equa-
* tez
tions E; by A ‘= ({A;v, Vz)) defined by Vz(o.t) = \/{a.,G : tez).
Proof: We must show the following:
%*
(1) IfA is a set-complete join semi-lattice, then/A kE

(2) 1£8 kE, B of type 7, then B | {{'V',2)} is a set-complete
join semi-lattice
| = *
(3) IfB kE, then B= (B 1{('v',2}})
() If/A is a set-complete join semi-lattice, then A = lh* !
{¢rvt,2yy.
In order to show (1) suppose A be a set-complete join semi-lattice.

Equations E 1-3 for A* follow from properties of the \/ operation on

A, while E 4-6 are the defining equations of a semi-lattice.

In order to show (2) suppose B k E. Clearly B’ = B | {{v;2)} is a

semi-lattice, as B k E4 - E6. Suppose z ¢ B. I claim

(4.1) a= (vz)m(m Mz) 18 \Vz in B’. If b € z, then

bva = b vV, (8)° (4.1)
=\, o b (E 3zb)
= & (h-‘):

so b< a. If c is such that
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(4.2) b<c for all b € z, then

cva=c vV, (£)be (%.1)
=cvV, (c\ﬂ:.)tﬁz (E 2z)
= cvV, () (+.2)
= c (E 12),

80 a < c. Hence V(z) = a in B’, as was to be shown.

In order to show (3) suppose B f E. Let B’ be as in (2). We must show
that, for z a set, and f a function from z to B, (\/Z)B, (£) =

(Vz)lB (f). However, a similar argument to that in (2) above shows that

\ﬁ,{f(t) ttez)= (Vz)IB (£). Hence
(V)pr* (1) =\ 2(6) & & € 2) = (V) (2).
Property (4) is clear. J

Using this lemma we can describe a set-complete Boolean algebra as
an algebraic system as follows:

Let r = {{A2), tv,2), ¢7,1)Y, (0,0y, (1,03} U
f{Ag %) (vz,zy}(’ . A0) o ceriiel algsied 58 type ¢ Wil be alied a

partial set-complete Boolean algebra (p s-cBa). An algebra

B = {{(B; A»vs’s 0,1, Ag? Vz”z a set °f type 1 is a set-complete Boolean

algebra (s-cBa) if
(1) ¢(B3Asvs’s 0,1)) is a Boolean algebra.

(2) B satisfies the equations of lemma 1 for both A and v.

Theorem 4.1 Let /A be a p s-cBa, and suppose A’= {{A; A,vs ', 0,1)) i8 &
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Boolean algebra, and the partial operations Ay Vz of A are preserved in

A’, 1.e., if b = /‘z(“t)tez is defined in A, then b = Afa, : t € z} in A"

Then there is a (s-cBa)-free quasi-extension of A.

Proof: Using theorem 3.1, we get a (s-cBa)-free image ((B,o)) of A.
However, let ¢ be the normal completion of A’, and let ¢ be the induced
map from A to C. Clearly € is a s-cBa, and by the preservation above,
@ is a 1-1 homomorphism from A to €. Hence, from property 4 of defini-
tion 1.8 applied to {(B,¢)), there is a homomorphism 4 from B to ¢ such

that § « g = ¢ Hence o is 1-1. 4

Theorem 4.2 Let E be a class of equations in the type of a s-cBa. If
® (considered as a s-cBa) satisfies the equations E, then for any class
X, there is a class X’ such that X is equipollent with X’, and there is

a (E - s-cBa)-free algebra on X’.

Proof: Apply theorem 3.1 with the class of equations consisting of E
and the s-cBa equations, and A = ((X ; )) ¢t r of the type of s-cBa's
to get ((B,g)) which is a free (E - s-cBa)-free image of A. If we can
show that o is 1-1, we are done as then B is an (E - s-cBa)-free alge-

bra on ¢"X. Suppose u, ve X, u¥ v. Let ¢ : X 4 2 be defined by

¢.3) o=x)={; T7u-

By property 4 of definition 1.8 for (({B,g)), there is a § : B »+ 2 such

that VyeoOF= @ But ¢('ﬂ) # cp('V'), 80 a(u) # U(V). -l

Contrast this with the Gaifman-Hales Theorem, which in our termin-
ology reads:
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Theorem 4.3 If y is a regular cardinal, there is no (set (y,w)-distri-
butive cBa)-free algebra on a set of  generators.

The reason theorem 4.2 does not contradict this, is that Gaifman
and Hales assumed that all of the Boolean algebras in question were sets;
re-working the proof in the notation of this chapter would merely show
that any such algebra 1s a proper class.

Here is one last theorem proved exactly as theorem kg,

Theorem 4.4 ILet A be a partial set-complete lattice, and suppose
A’ = {{A; A,v)) is a normally distributive lattice. Suppose also the
partial operations of A are preserved in A’. Then there is a (distri-

butive set-complete lattice)-free quasi-extension of A.
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CHAPTER 2 Positive Elementary Inductions in Reasonable Structures

Consider the following well-known result, from [Barwise 1] and

[Moschovakis]:

Theorem 1 If M is an almost acceptable structure, then > (the induc-
tive closure ordinal of 79)is equal to o(m) (the ordinal of the smallest
admissible set above T, or equivalently, the recursive saturation ordi-
nal of ). Hence yX is admissible.

Moschovakis has shown that for sny M, w" is admissible or the limit
of a countable sequence of admissible ordinals.

In 1977, Barwise [Barwise 2] proved the following theorem:

Theorem 2 If 4 is a limit of a sequence of admissible ordinals, then
there is a structure m such that Y = x.
In this chapter, I introduce saturation ordinals o™ and gl to show:

Theorem 3 1) For any T, ,‘“5 pgg pn- 2) If m is reasonable,

nn = p": = o!!’ hence, “ﬂ is admissible.

As a corollary we have:

Theorem 4 If Th(yn) admits recursive elimination of quantifiers, o(m) >
ws and M has an inductive definition with closure ordinal > y, then
,‘" > w. In particular, if mp is a non-recursively saturated model of

ACF, RCF or DCF, then 4 > w.

§1. Saturation ordinals

Let m = (M;R1 3 eeey RL) be an infinite structure with finitely
many relations, and no functions or constants. As in [Moschovakis],
let u'l! be the closure ordinal of the structure m ; i.e., the supremum of

the closure ordinals of the positive first-order operators on M, Let
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also o(mm) be the ordinal of the smallest admissible set above 7 as in
[Barwise 1]. We shall introduce below some ordinals associated with m
which measure in a sense its "saturation”. We need to explain some new
notation first.

Let & be a limit ordinal and let P’ = {ch(x,ir') : p<Q} be an a-
sequence of formulas of & (where ¢ is the language of the structure )
containing the same list of free variables x,y (¥ = Fys eees yk). Let
a= (0.1, o ‘k) € Hka.ndputp- [q,B(x,'a'.) : p<a}. We say p is an
(n,a) -type if the following conditions are satisfied:

i) For eachp <, g € &y " L(@) n 2,2 Vhere L(a) is the o
stage of G8del's constructible hierarchy.
ii) p<pg’'<a=m k (Vx)[ch,(xra = tpa(x,:)]-

i1ii) There is a list of exactly n variables x, y, z, such that all

the free and bound variables of each 7 (x,¥) are among x, y, z.

iv) The function g 4 o is g, -definable in L(a).

As we will see in §2, the complements of the stages of a positive first-
order inductive definition correspond to some typical examples of
(n,a) -types.

Let us call m (n,a)-recursively saturated if for any (m,a)-type

p= {ch(I:;) :p<a} 1f (vp<a)mp (ax)q (x,8)), then

mE (3x) Bé\acpp(x,a_). Define o’ﬂ' to be the least @ such that m is
(n,a) -recursively saturated, p"E_t = sup Dﬂ:’ and p'm to be the least a such
that for all n, 7 is (n,a) -recursiv:ly saturated. It is reasonable to

call o the weak saturation ordinal of gy, and o' the saturation ordinal

of . It is clear that p < g™
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Fact: For any M, n € gy, pz'r is admissible, pm? is admissible, and O!g is

admissible or a limit of admissibles.

Proof: Suppose Q = p'm or p'g is not admissible. Then there is apg < a
and a z, in L(a) function f such that f : # ﬁf—o . Consider the least
such g. If there were an (n,p)-type P contradicting the definition of

(n,p) -recursive saturation of @y, with p = {¢Y(x,5) : y < p}, then p =

(¥ (x8) : 5 <0}, With ¥, = o(rpe 1enst y such that f£(y) > g)? COntTa-
dicts the definition of (n,a)-recursive saturation of m. It follows
that p", p are admissible, and clearly then that p is admissible or a
limit of admissibles.

§2. Comparing the closure and saturation ordinals.

The next theorem, which is the key result of this chapter, shows
that the closure and both saturation ordinals coincide for many natural
structures M. To make this precise, let us call a structure 1 reason-
able if there is an inductive relation which is not hyperelementary, or
equivalently, if there is a positive first-order operator on m with

closure ordinal n!m.

Theorem 2.1 i) For any structure 1 ,:m < p'ﬂ‘ .

ii) For any reasonable structure m, M is (n,u'm) -saturated for all

n € g, so that p'm < um. Hence pﬂ = p"f = %" and so w is admissible.

Note: Part 1i) of this theorem partially answers a question of Moscho-
vakis about the possible values of ,‘!m. Barwise [2] has shown that there

are structures f such that ,:m is any countable limit of admissibles, so
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that some assumption for part ii) is necessary.

Proof: i) This proof is similar to a conventional proof that

n‘IR < o(m). Let q,('x_, S8) be a first-order positive operator. From theorem

4B.1 of [Moschovakis], there is an operator

$(x,8) — (R Z)(v w)(e(x, z, u) v 8(u)) (each Q denotes ¥ or v),
with g quantifier-free, such that for any o, I: = I‘: 3

Define, by transifinite recursion, formulas
@)= QDO DE = D vEDE=3r V $Y@)).
v<B8
- a

It is clear that for any q, x € 1:‘ ~mk 4%(X), and, in addition,
the map g B ‘,9 is g, in L(a) for any admissible a. Let n be the number
of variables occuring (free and bound) in the formulas ¢’. Let a= ﬂ?‘
We wish to show that “q,“ < a; i.e., to show that there is no xe¢ Im....I:;z

(0]

We know that x € 1" ife

Szyule(x 2 ) vgx(xE=1una V (X))
iee

(%) Qzvu V [V [eolx -z-:a.)V(H x)(x-uAf"(;))]]
px  v<p

Using the (nQ)-recursive saturation of s, we show that (*) holds

oo o

(%%) VIZTFIIV IE® 5 D vEDNE=1aa 4Y@)1
< Yv<8

which will give us our result since (**) asserts that x e s a

S0 we have left only to move the quantifiers, one by one, past the
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disjunction. The idea is essentially due to Keisler [Keisler]. We show
inductively that if [ea : p<0a} is an (n,a)-type, and 1 is (n,Q)-recur-
sively saturated, and Q‘l 3 e Qk is any string of quantifiers, then for

anym<k -1,

(&) mfkQv, ... vamp\éaq‘n” Vol e kak%/’-,av(ﬁ',;)

1£f
(B) mEQvy -or Q¥ Uiy Ve p\ézqma Vme2 c°

Q‘kvk y\</g - ev(u,_)-

(This is what we need since the formula inside the brackets of (*) (for

8 < a) form a (n,a)-cotype, i.e., their negations form an (n,a)-type.)
For qm_’_1 = 7 the result is trivial. For Q‘m+1 = Y we use Keisler's

trick: It is trivial that (A) = (B), so we only have to prove (B) = (A).

Treat Vis eceey V, 88 parameters: Suppose
m ¥ B\</‘:!v\rw_.l cee QY y\</3 - o, (u,v).
Then
m bk ’ng T §m+2 Voo tee d‘kvk ~/F\a ev(;f,'?). [Where
V=a %=vl
As {5h+2 Vien e kak y/<\a ev(ﬁ,'v'): g < a} form an (n,a)-type, by

(n,a)-recursive saturation we have:

™k v, s/<\aa""2 Va0 Qg Vi é\a °y(‘_";’)’ e
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m b vv V V 03 eeey V. V-ae(ﬁ',-)-
m+1 a<a°h+2 m+2 % k\‘B v

Hence —(A) = — (B), so (A) & (B).

This gives us \|¢|fm_<_ p’zs_ pgf for an arbitrary first order positive opera-

tor o 80 u“ S_ p!*‘_o

ii) Let m be a reasonable structure. There is then an inductive
definition cp('i,s) with closure ordinal uﬂ. To complete the proof we

'simula.te'l'-(u%within qm and use the construction to show that m is

(0, ™) -saturated for all n. We know ([Moschovakis]) that y is admissible
or a limit of admissibles; this fact will be needed for the following.

Lemma: There is a function F from ' onto L(x") such that if F(g) e F(a),
there is a y < a such that F(g) = F(y), and such that the following re-

lations are inductive: (Putting y = o).

a) Tn(ﬁ,m‘, ceesm ) U E I:; and F(lfﬂm) is a formula [{) of £

with only n variables, free and bound, Vv

1’ LELIE Vn md

m k g(m|, — mn)
b) Nn({f, My seep W) — ue I; and F(I\Tl(p) is a formula [y] of

‘n with only n variables, free and bound, Vir eees YV and

m V *(“31: ceey mn)
e) T (5,8) e W5 € I;, and r(l{f[q)) is & A, formula [{] of ,g;:,
where L' = {'¢'}, and F(I's—lm) is a finite sequence, and

L(x) H(F(l;lm))-
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d) N (5,5) e 05 € I; and r(lE]cP) is a A, formila [y of.g: and

F“;]cp) is a finite sequence, and L(y) ¥ ¢(F(|§|¢)).

The proof of the lemma will be given in an appendix. Given the

lemma, we proceed:
Let p = {'B(x’:) 1 p< ,‘m] be an (n,.‘“)-type, defined in L(,:‘m) by a
formula t = r*a“l o Lix™ k (= D(elss ¢ B, Zys -ees Zg), Where g is a

AO formula and Zys wees zq € L(,,,“). Then, using the lemma, we can define
an inductive relation

M(%,y) s F = tly| (x,a) (supressing parameters).
D
let p, q, and r be distinct elements of m. As in [Moschovakis], we
create a single inductive definition y(x, ¥, z, u, S) such that:

—, -— Q
1) (x 7 p,t'i)ef:(u-oyexw

ii) There is a 60 such that

(x, ¥ @ ‘-1-0) € I: —NE - ¢|;|q’(x,a)

W (&% 5D el e @@EN[0T e D e
X X

(x,':?}q,l'f)elﬂ-

Suppose now that p were such that (v g < ) m k (gx)fa(x,i), but
mK ax A ¢ (x,8). I claim then that (r,T,r, 4,) € I , but
<u ° X
(r,%,x,,) £ T, 8o that |«/™> ™, a contradiction; hence we would be
- :

done. So now,
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(r:;:r:‘—l-o) € I: - (W)(H;X(%;’;P:EO) € I: & (x:'f,q,—ude I:)
- (E@NF eI 2k vz (x8)
0 v,
— ()8 <)k ta(x;;))

— mE (zx) A ¢.(x,a), which was assumed.
B<K B

(52,7 8) € T o (38 < W) ((5,Fm)%) € 27
— (3B < n)(¥x) (ﬂﬂ[(x;-ivp’_uo) € Is( &
VeGeta B
(I:qu,uo) € IX]
+ (@ <)E[T e T2 ©HLT) € 17
~ (@ <) ED[T ¢ P amb o ¢|-y-|m(x,a]

— (3B < n)(vx)(7y f_a)[*mlvl 'V(x,E)]

— (33 < ) MK (3x) \/e\p vv(x.i)

— =~ (vp<x) mE (ax) ‘a("’:)’ which was

assumed false. 4

By the methods of the next section, this result can be extended to

models M which have function symbols.

§3 The closure ordinal of non-recursively saturated structures.

In this section, "% can have function symbols.

Lemma 1 If gy is such that Th(yp) admits recursive elimination of
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quantifiers, and m is (n,w)-recursively saturated for every n € w, then
m is recursively saturated. (See [Schlipf] for definitions of recur-

sively saturated structures.)

Proof The idea of this proof, is to find, for any recursive w-type (a
type satisfying conditions i) and iv) of an (n,w)-type), an m € @ and
an (m,w)-type which fails to satisfy the conditions for (m,w)-recursive
saturation, if the original type fails to satisfy the conditions for re-
cursive saturation.

Let T = {q,m(x,;) :me W) be a recursive W-type. Eliminate quanti-
fiers to find {Qm(x,i) : m € w} such that mf @ +* ¥, ond each ¢ is
quantifier-free.

The next phase of the proof is to eliminate function symbols, re-
placing them by the appropriate relations, as the proof in §2 was only
correct in the absence of function symbols. Find, for each k-ary re-
lation R of T, k new variable symbols v?, seap v’l‘: 3 for each k-ary
function f of 9, 2k new variable symbols u.lf, e ui, vf, iw'id v:; and
a new variable v-, none of which occur in any Yo We will assign to any
formula 4, using only the variables of the ¢ 's, a formula y with vari-
ables only among v“i‘, u1f, vf, v, and the variables of §, such that
[ ¢ + y» and the function symbols of yp only appear in y as
vs= r(v1, —— vk), where v, Vv,, ..., V, are variables. This allows us
to replace v = r(v1, sany vk) by R, (v,v1, A vk), and we can treat
as a relational system.

By replacing each

R(tys +ves t) by (@) +o0 @R -o0s V) &
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1}1‘-1:1 &‘é'tz&""{:'tk)’ and each

t, = t, by (gv )(v = t, & Y = t2)), we can reduce § to an equiva~
lent §’ where functions only occur in atomic formulas of the form v = t,
where v is a variable and t is a term. (The construction following is
essentially due to Moschovakis.) We now replace each formula v = t by
an equivalent formula using more variables (the u.f 5 vf ), but containing
function symbols only as v = f(vl, sl vn) where the v's are variables.
This is done by a complicated recursion.
Let F(w=t) = w=t if t is a variable symbol.

Let F(wf(t,, ...y £)) = (AV]) =+ @) (v = £2(v], ..., v}) &
(quy) +- (A (0] = V) & g vy = ve g F(uy = ) g -+
» Flug = ).

Let F(— ) = — F(p), and similarly for all connectives and quantifiers.
Let then y = F(§).

This is a fairly complicated method, so let us consider an example.
Suppose ¢ has a binary relation R, a unary function £, and a binary
function g, and let § by R(£(f(vy)), 8(8(70;‘“’1): g(va,vs)). Then
¢ 18 @) @) (R(V, v3) & ¥ = £(£(v,)) & v = &(8(vervy)s &(v,vy)).
x then is:

@) (@) (R(V], 5) &

@V (V= 2(v]) & (@) (u] = v] & (av])(uf = 2(v) &
@) (] = v} 2wl = v ) &
@) (@) (5 = e(+&, ¥B) & () (zuf) (uf = V8 o uf = VB 4
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(av8) (0v8) (a6 = &(v5,v8) & () (o) (o = +6 4 o = oF o

u=voauy =) a

(@vE) (av8) (o€ = e(vE, vE) & (auf)(mu)(ul = vE 5 uS = ¥E ,

W= v, 2w = v))))),

which is clearly equivalent to ¢.
We now associate by this procedure a Ym to each 'm such that

= ¥y~ Xy 804 y, bas all its function symbols in the form

*
Ve f(vl, — vk). Let . be m with all k-ary functions replaced by
(k+1) -ary relations, and construct X: in ,g(sm*) by the obvious replace-
»*
ment. Let g, = /\ y, .
1<kt
Then {g, : k € w} is an (n,w)~type for som n, which satisfies the

defining property of (n,w)-recursive saturation if and only if

{% : m € w} satisfies the defining property for recursive aa.tm'a.tionA

Corollary 1 If Th(m) admits recursive elimination of quantifiers, 1 is
not recursively saturated, and 9y has an inductive definition with clo-

sure ordinal > w, then > w.

Proof: Suppose the hypothesis, and n'm = W, then, clearly, m is reason~-

able, so “'.D! = pm from the theorem, but, by the above lemma, as p"m = W,

m is recursively saturated, a contradiction. -l
Corollary 2 If 9 is a non-recursively saturated model of ACF, RCF or

DCF, then yX> w.
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_j?_rﬂf_: All the assumptions of Corollary 1 are clear except the induc-
tive definition with closure ordinal >w. For ACFO, RCF, or DCFO, we
could take

cp(x,R) ~ x=0o0r (Iy)(x =y + 1 & Ry), with closure ordinal w.

However, for ACFP, Dcrp, we need a more complicated formla:

o(X,¥sR) ¢+ {y =0 & [x=1 or (3z,w)(R(2,0) & R(w,0) 2 (x =2 + w or
x=z-worx=zwor (WfgOgxw=2))]}
or y =1 or (3z,w)(R(x,2) & R(W,0) & y = x z + w)

It is apparent that
(x,y) € I; «+ ¥ is the value of a monic polynomial with algebraic coef-

ficients at xj3hence

(x,0) € I: «~ x is algebraic. This induction clearly cannot terminate
in at a finite stage; hence |q|” > 4. 4

We can use the example of Kunen ([Moschovakis], p. 159, exercise 5)
to show that the condition in Corollary 1 of the existence of an induc-
tive definition with closure ordinal >w, is necessary. Let m = (M;E),
where E is an equivalence relation on M with exactly one equivalence
class of each finite cardinality, and no infinite equivalence classes.
It can be shown that any first order positive inductive definition
closes after a finite number of stages, so that ,;m = W, But, the type
{q,n(x) : n € W}, where q,n(x) states that there are at least n elements

equivalent to x, violates the definition of recursive saturation for m.
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Lemma There is & function F : y L L(x®) such that F(p) € F(a)

(z y<a) F(g) = F(y) and such that the following relations are induc-
tive:

_— —_— [ ] —
a) Tn(u, My eees mn) ~ue I‘zp and 1"(|u|‘:p is a formula [§] of
,gu with only n variables, free and bound, Vis sees V and

n

"'ﬁi" *(m‘: ey mn)

b) F (@ m, ooy m) e 1;' and r(lEIcp) is a formula [§] of
‘u with only n variables, free and bound, Vir eees L and
m ¥ *(mv o mn)

) T*(\'f,;) — U B € I:;, F(lﬁ_lm) is a A, formula §] of ‘!i:’
F(|-s-|¢) is a finite sequence and L(y) k ¢(F(|§|w)),
(L = {e}].

d) N*(E,;) — U,8 € I:, F(Iﬂw) is a A, formula [§] of 4:,
r(|§'lw) is a finite sequence and L(y") K t(F(lsIm)).

Proof We define ,31 operators in a similar mamner [Barwise 1], p. 63
ff, as follows

5 (% ¥ 2) = {xy}

Je(x: Yy z) = {x3
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z) = {X¥)

z) = {2}

z) = {2,{x,¥)}

z) = (z,%,7Y)

z) = Ux

z) = x-y

Z) = xXxy

z) = p(x)

z) = p(x)

z) = {{u,v,w) : (W,u,v) € XN YN 2}
z) = {(u,W,v) : (W,u,V) € XN ¥ N z)
z) = f(wv) :uexgveygu= v}

z) = ((L,V) tuexgVeEYguEev)

We define a well-ordering on 16 y 4 x x x % by:

(knavaa:as) < (k'aax‘"aé:a:;) iff m(a-l ’a2’a3) < m(a{:aé:aé)

or fuax(0q 05, 05) = max(ay,a3,04)
and (a3<aéor (%-aémd
(a2<a2' or
Gy = 0 euk fey < of o
(o = of and k< k’) ... )

Since 4 is a limit of admissibles, it is easily seen as in [Rubin],
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that the order type of 16 x yx x x x x under << is y, hence we can define
a 1-1 order-preserving map J : y 16 XHXHXHe+ Now, we can finally de-
fine F by transfinite recursion:

Ma ¥ g (J(a) )0 = 0

F(Fla ), Flap),Flog)) if J(a) = (k, ap, 0p,05).

Fla) =

It can be shown (with a large amount of work as in [Barwise 1] or
[Rubin]) that F satisfies the conditions of the lemma. Now, we go on to
construct inductive definitions. First, we note that the relations

< Faxel and (F€ I or |x] < |7])
) ? 9 ® ®

and

T<FaxeTand (74T or |3 < I7])
) P ® P ®

are inductive, as shown in [Moschovakis] theorem 2A.2. It can easily
be seen that, in a similar manner, the relations <<* and 5_(_* can be
shown to be inductive. Hence, using theorem 2A.2 of [Moschovakis]
again, we can define the function J inductively. We will now define

relations Ei’ Ei’ E, E, I, and T such that
1) xEy o F(|x] ) e ®(|¥] )
P P
2) XEY e F(I:':qu) £ r(lﬂq,)
3) X Iy s F(|X| ) = F(|¥] )
o® ()
b)) xIy « F(|x| ) # F(l¥] )
P ?

5) ;Ei;" x Ey



6)

)

8)

9)

10)

I will give the inductive definitions for Ei’ E, E, I and T here.

- - - W -— - -— - — - -
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XE 4 X Ey
-_—— = e
iny-ox<y

P
_<u~i. ==
y"TD -+ X 1'.'{

x Ey + (32)(z E;¥ & 2 I2)

(vz)(z E;y or z Ix) » x Ey.

[k = 0] or

[ -
[k=1gx= Yy ]or

[k=2a (R= ForX=¥,)] or

(k=3¢ (J(;: 1, Sf-]: 52: 5-5) or J(;) 2, ;1: -3-;2: ;3)]

k= g X= "y, or

Yo -— — -_— -—
(k=54 x= ¥y 0r J(x, 3, ¥ ¥pr ¥5))] or

[k- 6 & (J(E’ i"” -i‘) -y-e) ;s) or J(-x-’ 5’ §1! 5‘-2’ Sr-s))]

[k=Ta (D) (X5, Tozs, 7

[k =8 s xEY, & X Ey,) or

[k=10 ¢ (@(@(J(;) 3, ;) ;) 0) & ;E}-‘] or

(k=11 g @) @EN(I(W, 3, v, X, 0) & WEy,] or
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[k =12 ¢ (3u) (a¥) (7) (@) (I(x, 6, ¥, W, W) &
I(E 6 & ¥ W a TEY, & TEG, & E Ey,) or
[x =13 & (z0) (3V) (zw) (2%) (I(x, 6, W, ¥, v) &
J(E 6 u, v, w) o TEy, & L Ey, & LEy;] or
[k =1k g (z0) (V) (W EY, & V EY, & WIV & J(x,3,,V,0))]
or
(k=15 ¢ () (@FV)(WEY, & VEy, 2 U EV &
J(x, 3, u, v, 0)])
X EY s (32) (2E,¥ & X Iz)
~ (v2) (ZE,¥ or x Iz)
e (v2)(z By x or z EY) 4 (v2)(z E,¥ or z Ex)

—h—

“I

X Iy e (@)(Z E, X g 2z Ey) or (32)(Z E,;¥ 4 2 EX).
Using these definitions, it is easy to see that for any I formula
#(x;s ..» x ), the relation L(x") t(li—f,|¢: ';2|cp’ |yn|m)ia in-

ductive. This completes the proof as the desired relations are Z, as

shown in the proposition V.1.6 of [Barwise 1]. 4
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