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Abstract

We present a complete system for Spectral Cauchy characteristic extraction (Spectral

CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method

employs numerous innovative algorithms to efficiently calculate the Bondi strain,

news, and flux.

Spectral CCE was envisioned to ensure physically accurate gravitational wave-

forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO)

and similar experiments, while working toward a template bank with more than a

thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional

parameter space.

The Bondi strain, news, and flux are physical quantities central to efforts to

understand and detect astrophysical gravitational wave sources within the Simulations

of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the

first strong field probe of the Einstein field equation.

In a series of included papers, we demonstrate stability, convergence, and gauge

invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt

null code, while achieving a factor of 200 improvement in computational efficiency.

Spectral CCE represents a significant computational advance. It is the foundation

upon which further capability will be built, specifically enabling the complete calcu-

lation of junk-free, gauge-free, and physically valid waveform data on the fly within

SpEC.
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Statement of Originality

This section lays out precisely by whom contributions were made. This section is suf-

ficiently detailed that reference to the code repository might be necessary for perfect

resolution.

The main innovations in the development of Spectral CCE were the use of a Lau-

rent expansion and a Magnus expansion to numerically solve the Bondi hypersurface

equations. The adaptation of these analytic complex analysis methods to numerics is

an unusual and surprisingly effective method. I performed the calculations, coding,

and testing completely for both of these methods. Yanbei Chen helped confirm the

result of one calculation in an earlier iteration of the method.

Implementation of the numerics in Spectral CCE was a collaborative effort with

Béla Szilágyi, who has since moved to JPL. His contribution cannot be overstated—

without his patience I would not have learned enough of SpEC and C++ to get very far.

In the final code, Béla implemented the worldtube file reader, the SphericalShellsSW

coordinate map, and the indefinite integral virtual base class. I greatly modified and

debugged all of these routines, which function at the interface of my code and the

rest of SpEC.

The remainder of the approximately 200 C++ files (totalling around 20,000 lines)

in the Characteristic directory were written, tested, and debugged by me, with oc-

casional help from Béla. The sYlmSpinsfast and FourierContinuation basis functions

were also implemented by me, and built upon, respectively, the Spinsfast and fftw

transform libraries.

The Characteristic Observers routine was written by Dan Hemberger. Mark Scheel

wrote the MultiVars module, which allows simultaneous evolution of different drivers

and will eventually permit Spectral CCE to be run in tandem with SpEC’s Cauchy

evolution. Jonathan Blackman contributed to the domestication of the input files

scheme necessary to run Spectral CCE.

All new mathematical formalism for inertial strain, news, and flux was developed

by Jeffrey Winicour, with some contributions to design, rigor, and correctness by me.
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Advisers

Christian Ott (2010-2013)

Yanbei Chen (2013-2015)

What does this thesis contain?

This thesis begins with a general introduction to the gravitational wave extraction

problem in Chapter 1, followed by a brief discussion of the presentation of convergence

data in Chapter 2.

Chapters 3 through 5 present papers containing the core results of this thesis.

Each chapter begins with a short introduction to motivate and contextualize the

subject matter. The papers have their own subject-specific introductions and provide

relevant citations.

Chapter 6 discusses the current status of the Spectral Cauchy characteristic ex-

traction project, while Chapter 7 lays out a roadmap for future work in the area.

Finally, Appendix A discusses the implementation of the Fourier Continuation ba-

sis function in SpEC, which was not used in the final characteristic extraction module.

Some additional published research conducted in parallel to work on Cauchy char-

acteristic extraction included work on optimizing high speed transport networks us-

ing genetic algorithms, which can be found at http://arxiv.org/abs/1503.01524,

and hazards to Earth orbiting satellites from captured asteroid disruption in distant Lunar

retrograde orbits, which can be found at http://arxiv.org/abs/1505.03800.

http://arxiv.org/abs/1503.01524
http://arxiv.org/abs/1505.03800
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Chapter 1 – Gravitational waves?

A general introduction

Black holes are perhaps one of the most surprising discoveries of all time. Initially

predicted on the basis of pure logic, their later astrophysical discovery attests to

the strangeness of our universe. So peculiar, so foreign to our intuition, are these

mysterious and distant entities that even now, after nearly a century of formal study,

we are still learning about them.

All objects with mass exert a mutual gravitational pull. Newton’s discovery of

the underlying mathematical relation showed that gravity is the same force, whether

it propels a dropped hammer onto one’s foot or holds the galaxy together. The Earth

exerts a gravitational pull on us, satellites, the moon, and everything else in the

universe. When NASA sends a robot to Mars, it must be launched on a rocket at a

speed that is fast enough to escape Earth’s pull forever. That speed is 11.2 km/s,

roughly 25,000 mph. This speed is known as an escape velocity - provided you can

travel faster, you can escape that planet or star.

When stars larger than ten of our suns end their relatively short, violent lives they

form a black hole. Lacking thermal and light pressure to counteract their enormous

gravity, they collapse to a density where their escape velocity exceeds the speed of

light. There is effectively a surface, a place in space, where light can only just escape.

This is known as the “event horizon,” as observers outside the black hole can never

see what happens inside. Indeed, we are causally disconnected.

The gravity of a black hole is so strong it is an ideal laboratory for testing our

physical theories. Gravity is described by Einstein’s General Theory of Relativity,

one of the most successful predictive theories of all time, together with the Standard

Model of particle physics. The Standard Model describes every physical thing we can

see, except gravity. Physicists have been unable to conclusively combine the two into

a single unifying framework — the holy grail of physics. A better understanding of

General Relativity can only come from tests in the strongest gravity possible — a

black hole.
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Black holes are, all things considered, rather small. For black holes resulting from

the death of big stars, up to ten times more massive than our sun, a size of a few

kilometers is typical. The best telescopes aren’t (yet!) able to clearly resolve the

event horizon of known black holes in our galaxy.

Incredibly, black holes warp space and time to such an extent that when perturbed

they generate measureable gravitational radiation. Radio waves and light represent

oscillations of the electromagnetic field, and are the primary means by which as-

tronomers can observe stars and galaxies. Gravitational waves represent oscillations

in the gravitational field, and we hope to use them to infer things about black holes

and other astrophysical cataclysms we cannot directly observe.

An electromagnetic wave is an interacting thicket of transient electric and mag-

netic fields, which can be detected with a dipole antenna, which is basically a wire

containing free electrons. Similarly, gravitational waves manifest as transient gravi-

tational fields changing as a quadrupole stretching and squeezing of spacetime. Ex-

perimenters have built a series of large quadrupole antenna detectors designed to

observe gravitational waves. The Laser Interferometer Gravitational Wave Observa-

tory (LIGO) and its sister detectors around the world are designed to detect rapid

but minute stretching and squeezings — equivalent to the entire Earth squeezing by

less than the width of a proton a few hundred times a second. LIGO is currently

undergoing a series of upgrades and is expected to reach design sensitivity and full

detection capability later in 2015.

LIGO’s detection capability is enhanced through the use of matched filtering,

wherein actual (noisy) data is compared with an expected waveform, to improve the

signal to noise ratio. The research in this thesis has been part of the effort to compute

a comprehensive catalogue of waveforms with which to scour LIGO’s data in search

of events.

Generating waveforms requires a computational simulation of the expected event.

This thesis focuses on waveforms generated by binary black hole events, where two

black holes inspiral, then merge into a single black hole which subsequently rings down

like a struck bell. The Simulating Extreme Spacetimes collaboration has developed
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the Spectral Einstein Code (SpEC), a very powerful program that can simulate a black

hole binary merger on a super computer cluster in only weeks.

The main problem that this thesis seeks to address is one of waveform validity.

SpEC’s computational domain is necessarily finite and waveforms generated directly

from its output data are contaminated by gauge effects, technical “noise” associated

with the “gauge freedom” of coordinate systems in General Relativity. The compu-

tational domain’s coordinate system has to respond dynamically — the gauge — to

the shifting coordinate system to avoid getting sucked into the black holes it is sim-

ulating. As a result, the coordinates get shaken by outgoing gravitational radiation

— the gauge effect.

In more detail, simulations of General Relativity are typically performed by split-

ting the equations into three spatial dimensions and one time dimension (“3+1”).

Complete field information is specified throughout the 3D volume at a particular

time (the “time slice”) and used to calculate a derivative, from which the next time

slice can be computed. Because General Relativity mixes space and time, a simula-

tion has to specify how one (3D) time slice fits onto the next, parameterized by the

quantities known as “time lapse” and “spatial coordinate shift.” The simplest choice

corresponds to a lapse of one and a shift of zero. This is termed “geodesic gauge” as

coordinates follow the path of inertial observers (geodesics).

Free falling inertial observers quickly fall inwards and vanish behind the event hori-

zon, so another choice must be made. SpEC uses a gauge termed “damped harmonic”

but, as a dynamically evolved coordinate system, it is sensitive to local conditions.

Sailors cast about in terrible seas are notorious for overestimating the size of waves,

and SpEC’s gauge contaminated waveforms suffer a similar problem. Unable to tell

the difference between a relatively slowly varying background gravitational field and

gravitational waves, the coordinate system is wiggled by the radiation. While the

simulation is no less physically valid, waveforms derived from such a coordinate sys-

tem are contaminated by this non-inertial coordinate motion, and must be fixed to

be useful for physical investigations using matched filtering.

This thesis demonstrates a method to remove gauge contamination and other
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confounding factors by propagating the gravitational waves to a point infinitely far

away and, thus, infinitely far in the future, a point termed “future null infinity,”

or I +. This method, called Spectral Cauchy characteristic extraction (CCE), is a

substantial improvement over previous attempts and also permits calculation of other

physically interesting quantities.

The principal quantities we obtain from Spectral CCE are the strain, the Bondi

news, Ψ4, and various fluxes. The strain (h) is the quantity measured by LIGO, the

degree to which spacetime is actually stretched and warped by a gravitational wave,

by an observer very far from the source. The Bondi news (N) is equivalent to an

inertial time derivative of the strain and represents the flux of energy. Inertial time

derivative refers to an operation carried out in an unaccelerated, inertial frame. Ψ4 is

technically defined as a part of the Weyl (conformal) curvature tensor at I +, but is

also equivalent to the inertial time derivative of the news. In summary, Ψ4 = N,ũ =

h,ũũ.

Various fluxes represent the flow of conserved quantities corresponding to various

symmetries. In brief, they are generated by one time translation — energy, three space

translations — momentum, three rotations — 3D angular momentum, and three

Lorentz boosts — boost angular momentum. Together, they represent important

quantities to track for the study of the physical dynamics of black hole binary systems.

This thesis represents a substantial advance in the capability of binary black hole

merger simulations using SpEC. Spectral CCE is robust, accurate and, above all,

computationally efficient. It bridges the gap between numerical results and physically

valid waveform templates; a crucial step for the detection and study of gravitational

waves and their sources by the advanced detector network.

A technical introduction

Here, we shall describe the simulation architecture used in Cauchy characteristic

extraction in more detail.
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Near field Cauchy evolution

SpEC simulations are performed using a Cauchy evolution, a numerical technique

wherein a constant time slice is given initial data and then evolved forward in time

according to an evolution equation. In General Relativity, there is no unique way to

pick slices of constant time. Nevertheless, the methodology is strongly analogous to

a standard 3D wave equation evolution, with a carefully constructed initial condition

and evolution equation for each of the coupled variables. The state at one time slice

is used to compute the fields’ time derivative, which in turn is used to compute the

next slice.

In SpEC, the initial condition specifies two separated black holes with velocities

carefully tuned to replicate the physical state of a binary black hole inspiral some

time, perhaps tens of orbits or a few seconds, before merger. The initial condition

can be expressed as an elliptic equation and solved to recreate a snapshot of an actual

astrophysical binary. In practice, tightly bound binaries have tidal interactions and

very low residual eccentricity that is difficult to solve exactly. The degree to which

the initial condition solving algorithm is unable to provide a perfectly astrophysi-

cal initial condition will result in junk radiation, in which the holes rapidly radiate

gravitational waves until they reach pseudo-equilibrium. Junk radiation is difficult to

resolve numerically but typically only affects the very beginning of the simulation.

In SpEC, the Einstein field equations are written as 50 simultaneous coupled highly

nonlinear first order partial differential equations. Time slicing is regulated by a par-

ticular gauge (damped harmonic) in which all points on a given 3D time slice (“folia-

tion”) are space-like separated, or causally disconnected. Simulations are performed

in hundreds of parallel subdomains.

The Cauchy evolution represents the pinnacle of nearly five decades of computa-

tional innovation. It is important to remember that there are no general theorems

which guarantee stability and convergence for such highly coupled, nonlinear systems

as binary black hole mergers in full General Relativity. Nonetheless, finite computa-

tional resources necessitate the computational domain being finite in both space and
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time. Ideally, we would like to simulate the entirety of the radiative field within the

Cauchy evolution to extract the most accurate waveforms. One possible approach to

include spatial infinity in a finite domain is to apply a conformal transformation to

compactify the space-like Cauchy foliations. Compactification is a standard proce-

dure that uses a well-behaved function such as r = tan(rcomp) to provide a coordinate

map between a compact and an infinite domain.

For simulations with wavelike solutions, however, spatial compactification fails as

an infinite number of wave crests get shoehorned into a finite domain. The compacti-

fied wavelength rapidly decreases in size beneath the Nyquist sampling limit as radius

increases to infinity, resulting in a total loss of information. Additionally, the increase

in spatial frequency and characteristic wave speed towards the outer boundary breaks

a numerical stability requirement known as the Courant or CFL condition. The CFL

condition places a limit on the time difference between adjacent foliations, regulated

by the spacing of collocation points. Typically expressed as ∆t < a∆xmin, a is a

constant related to the wave speed, or the speed at which information is propagated

across the domain. Heuristically, time slices must move more slowly than the waves

they simulate to allow time for the information to propagate.

As the outer boundary of the Cauchy domain is some finite distance from the black

holes, the outer boundary condition must be carefully chosen to avoid reflections

which, converging on the origin, disrupt the simulation. On the outer boundary,

the field is processed to suppress ingoing radiation and allow outgoing radiation to

escape with a minimum of reflections. While this condition is acceptable, a method

that enables a smaller Cauchy evolution domain is highly desirable if SpEC is to

successfully compute extremely long runs of hundreds of orbits.

Far field characteristic evolution

In contrast to the Cauchy evolution, a characteristic evolution sidesteps the Nyquist

limit by using a null retarded time coordinate (u = r+ t), where spacetime foliations

are null, just like a future light cone. In these coordinates, outgoing waves appear as

constant across the domain, so the code doesn’t have to resolve an infinite number of
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waves, as shown in Fig. 1.

t1

t2

t3

t4
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u2

r1 r2 r3 r4

HbL

u3
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u2
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HcL

Figure 1: a) Ingoing (blue) and outgoing (red) characteristic worldlines on a radial (r) grid
coordinate system. b) Retarded time (u = r + t) grid null coordinate parallels outgoing
characteristics. c) Compactified null radial (ρ = r/(R+ r)) grid coordinates bring I + into
a finite domain. Ingoing characteristics appear curved in this coordinate system.

In these coordinates the full, unabridged vacuum Einstein field equations are ex-

pressed in the Bondi form, a formalism and coordinate system that, surprisingly, per-

mits radial spatial derivative equations for each term in the metric to be expressed in

a nested, hierarchical fashion. With a conformal compactification of the radial coordi-

nate, I + (future null infinity) is included within the domain. Provided a mechanism

for radial integration (the primary innovation presented in this thesis), a gravitational

wave on the inner boundary can be readily propagated to infinity, resolving numerous

issues with obtaining waveforms directly from the Cauchy evolution.

Despite the conveniences of the characteristic evolution formulation, it cannot be

used to replace the Cauchy evolution by running the innermost parts of the simulation,

for a variety of reasons. In particular, strong gravitational fields near the black

holes lead to the formation of caustics, wherein outgoing wave characteristics collide,

breaking coordinate uniqueness and resulting in a catastrophic loss of stability for

any null foliated simulation. As a result, the spheroidal worldtube that forms the

inner boundary of the characteristic domain must be positioned within the Cauchy

domain sufficiently far from the origin to avoid caustics.

In addition to inner boundary data, the characteristic evolution also requires an

initial condition. Freedom in the choice of an initial condition does affect the extracted

waveform, although the structure of the characteristics typically advect the initial
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condition out of the system before junk radiation passes through. We use a condition

where initial boundary data is smoothly rolled off to zero at I +, imposed at u = 0.

As discussed in Chapter 3, the Cauchy and characteristic evolutions can fully

simulate both the strong field black hole merger and its radiation field to I +, shown

in Fig. 2.

Ρwt0

t

t f

i0

i+

I+

C

E

HaL

wt0

t f

I+

t � const

u
� co

nst

C
E

HbL HcL

C E

Figure 2: a) Penrose compactification of Minkowski (flat) space. The space-like foliated
Cauchy evolution domain exists in the world-sphere C, bounded by the worldtube “wt” and
space-like global final time tf . The null foliated characteristic evolution domain in hollow
world-sphere E extends the worldtube to I +. Blue and red arrows represent ingoing and
outgoing characteristics respectively. Dashed lines extrapolate constant time and radius
lines to i+ and i0. b) A closer look at the two computational domains with space-like
foliation in C and null foliations in E shown for clarity. The worldtube boundary between the
two domains is the extraction surface, and doesn’t necessary reside on the outer boundary
of the Cauchy evolution. Initial conditions are imposed at the space-like t = 0 and null
u = 0 on the bottom of the diagram. c) A 3D rendering showing black radial compactified
spokes with the equiangular gridpoint spacing used in our evolution.

Cauchy characteristic matching

An alternative approach at the worldtube is Cauchy characteristic matching (CCM).

Instead of running the Cauchy evolution with transparent boundary conditions and

later interpolating data on a virtual worldtube within the Cauchy domain, the outer

boundary would be welded directly to the characteristic evolution’s inner boundary.

This would allow free movement of gravitational radiation in both directions across

the worldtube, solving the reflection problem. Additionally, the common boundary

radius could be dynamically updated during a run to balance computational loads.

Additionally, CCM can help solve the initial condition without junk radiation by
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stepping inwards during the initialization procedure, then resuming forward stepping.

CCM has never been implemented in full generality, though the algorithms developed

for this thesis are fully consistent with a CCM-specific inner boundary procedure.

Characteristic extraction of waveforms at I +

With a functional characteristic evolution system propagating metric information to

I +, it only remains to extract gauge invariant waveforms.

The coordinate system used in the characteristic evolution is derived from that at

the worldtube, thus, a naive calculation of the strain, news, or any other quantity re-

mains contaminated by gauge. The metric quantities in the characteristic coordinates

must be transformed into an inertial, free falling coordinate system. Being infinitely

far away, inertial coordinates can be safely used at I + without them falling into the

black holes.

It is possible to write an expression for the gauge-free inertial news in terms of

the characteristic coordinates. This was first done using the Pitt null code, a finite

difference Cauchy characteristic extraction code. In Chapter 4, we re-implement this

method as an intermediate step and operational test, before moving entirely to the

inertial coordinate system.

Characteristic extraction in the inertial frame

The inertial coordinates are co-evolved in the characteristic evolution, and permit

the transformation of a contaminated conformal metric to a gauge-free inertial one

according to standard procedures involving Jacobians. There is a freedom in the

choice of the initial condition for the inertial coordinates, which manifests mathemat-

ically as the supertranslations: generators of asymptotic symmetries surplus to the

Poincaré group. In practice, sane coordinate choices (reflecting asymptotically flat

space) deliver repeatably reliable waveforms.

Once you have the inertial metric and its derivatives, one may compute a broad

cornucopia of physically interesting quantities, as discussed in Chapter 5. These
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quantities are termed strain, news, Ψ4, and fluxes. Combined, they represent complete

information about a gravitational wave field measured at I +.

The strain (what we measure) and its inertial time derivative the Bondi news

(the energy) can be expressed very compactly in terms of inertial spherical metric

components.

The Einstein field equations in General Relativity are expressed in terms of the

Riemann curvature tensor. In four dimensions it has 20 independent components,

which completely describe the local curvature of spacetime. If you subtract the trace,

you are left with the 10 component Weyl curvature tensor, which is also known as

the conformal tensor as it is invariant under conformal (angle preserving) transforma-

tions when expressed in the (1,3) form. The Weyl tensor contains all the curvature

information at I +, from which we can readily compute Ψ4, the spherical component

relevant to gravitational waves.

Finally, the Spectral Cauchy characteristic formalism and algorithms permit the

computation of momentum fluxes conjugate to each asymptotic symmetry. At I +

there are ten such symmetries, corresponding to the generators of the Poincaré group.

Sequentially, they are time translation (energy), spatial translation (momentum), ro-

tation (angular momentum), and Lorentz boosts, which are the relativistic equivalents

of rotation that mix time and space, and represent transformations between frames

with different linear velocities. Each symmetry can be expressed in terms of a field

of Killing vectors on I +, from which more general forms of the Bondi news are

computed. In turn, this is combined with Ψ4 to find the corresponding flux.

In the following chapters, I motivate and explain each result before presenting the

relevant paper.
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Chapter 2 – Technical note on data presentation

In numerical physics, it is customary to test accuracy and estimate error by calcu-

lating the convergence of simulations that differ only in their resolution. Increasing
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Figure 3: Typical convergence graph showing log10(Erel) vs time t, with a consistent reduc-
tion in error for an increase in resolution. In this instance, Erel is expressed as |∆Ψ4

22/Ψ
4
22|,

the absolute error in the (2,2) mode of Ψ4 normalized by the function itself. As the highest
resolution run is used to estimate the error of the medium resolution run, its own error
cannot easily be estimated.

the resolution by some fixed factor α between runs yields a set of results that should

be rapidly converging to the exact solution. This relative error is typically calcu-

lated by comparing the data from runs of adjacent resolutions (A0, A1, A2, . . .) and

normalizing, according to

Ei = log10

( |Ai − Ai+1|
|Ai+1|

)
,

where the resolution increases with i. Normalizing the data by dividing through by

the higher resolution dataset allows consistent comparison of a signal that varies in

magnitude by more than an order of magnitude, but it can be deceptive in cases where

the magnitude of the signal gets very small, such as in the post-ringdown phase.

On a log scale, estimated error between adjacent resolutions should reduce by a
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known factor to verify convergence at the required order. As an example, consider

Fig. 3 taken from Chapter 5. After some initial noise associated with junk radiation,

the graphed errors stabilize at about 10−2.2 and 10−2.9. This difference of 100.7 ≈ 5

is consistent with the greatest source of error — the 4th order Runge-Kutta 4 time

integrator. The medium resolution run has a timestep 50% smaller than the low

resolution run, resulting in a factor 1.54 ≈ 5 decrease in error.



15

Chapter 3 – Characteristic evolution

The core of any prospective characteristic evolution code is the algorithm that per-

forms the evolution. This algorithm solves the equations that govern General Relativ-

ity in vacuum, in the appropriate compactified null coordinate system. The equations

are derived using the Bondi formulation, a simplified way of writing down the metric

on a null hypersurface, and can be solved in a nested, heirarchical fashion. That is,

given the spherical part of the metric on one 3D foliation, the remaining parts of the

metric are reconstructed with a series of radial integrals. Once the complete metric is

derived, the time derivative of the spherical part is calculated and the process begins

again.

We were fortunate to have the Pitt null code, an existing evolution code, upon

which to base our efforts. In the Pitt null code, radial integrals were computed a

single step at a time, using a variety of tools common to finite difference methods,

such as predictor-corrector methods and manually regularized equations at the outer

boundary.

SpEC uses spectral methods to increase accuracy and speed. Spectral methods

compute derivatives and other elementary calculus operations by representing fields

with a spanning set of basis functions, each of which has analytic derivatives. As

such, accuracy is proportional not to the size of the stencil, but the collocation point

density of the entire domain.

Spectral methods are not conducive to recycling the algorithmic methods em-

ployed by the Pitt null code. Instead, we began with the same equations and formal-

ism and rebuilt the algorithm to exploit the advantages of the spectral method while

avoiding its pitfalls. The principal advantage of spectral methods in this context is

the ability to perform a highly accurate radial integral in a single step. The main

pitfall is that the function to be integrated must be finite everywhere on the domain.

In the Bondi formulation, the hypersurface equations are not regular at I +, di-

verging with terms in powers of r, the areal or Bondi radius. We solved this problem

by expressing the integrand as a Laurent series and then regularizing the pole by
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sequentially applying integration by parts. This method, which requires the calcu-

lation of derivatives up to 4th order, is inadvisable using finite differences. Spectral

methods are accurate enough, however, that we find the correct answer with plenty

of precision to spare.

One other major issue solved in Chapter 3 is that of the variable being present in

nonlinear terms on the right hand side of one of the hypersurface equations. Pitt null

code solved this problem using predictor-corrector methods, an inelegant approach

when using spectral methods. We determined that the problem terms could be fac-

torized with a Magnus expansion once the equations were expressed in matrix form,

in a generalization of the integrating factor method. Fortunately, the terms in the

Magnus expansion converge very quickly, and this method survived implementation

with double precision floating point arithmetic.

With the analytic challenges of the hypersurface equations squared away, the

spectral characteristic evolution algorithm was subjected to a battery of tests to

ensure stability and the appropriate order of convergence with increased resolution.

Finally, its results were compared with the Pitt null code running on the same inner

boundary data. The results were consistent and convergent, until the somewhat

temperamental Pitt null code gradually lost convergence while running on our test

case. With better stability, robustness, accuracy, and about 200 times more speed,

spectral characteristic evolution had arrived.

In September 2014, the nine month effort to establish stability and convergence of

Spectral Characteristic Evolution was more or less complete, and I passed candidacy.

The results of this work were published in Classical and Quantum Gravity. The paper

describes the method using modern notation and four appendices. It also establishes

consistency with the legacy Pitt null code, which is part of the Einstein toolkit, an

open source library of General Relativity-related software.

Subsequent to publication, and somewhat to my surprise, the paper was recognized

for its significance with a feature in CQG+. It was also featured in IOPSelect, an

open access portal for selected CQG+ papers.

http://arxiv.org/abs/1406.7029

http://arxiv.org/abs/1406.7029
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Figure 4: Screen cap from CQG+ website.
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Abstract. We present a spectral algorithm for solving the full nonlinear

vacuum Einstein field equations in the Bondi framework. Developed within the

Spectral Einstein Code (SpEC), we demonstrate spectral characteristic evolution

as a technical precursor to Cauchy Characteristic Extraction (CCE), a rigorous

method for obtaining gauge-invariant gravitational waveforms from existing and

future astrophysical simulations. We demonstrate the new algorithm’s stability,

convergence, and agreement with existing evolution methods. We explain how an

innovative spectral approach enables a two orders of magnitude improvement in

computational efficiency.

1. What is Characteristic Evolution, and why?

As an international network of gravitational wave observatories come online, the

race to the first direct detection of gravitational waves is expected to herald the

beginning of gravitational wave astronomy. Detectors such as Advanced LIGO,

VIRGO, GEO, and KAGRA aim for strain sensitivities approaching 10−24[1, 2, 3, 4].

Nevertheless, signal candidates from compact binaries or supernovae will be on the
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cusp of detectability, with very poor signal to noise ratios requiring matched filtering

for detection[5]. Matched filtering requires a comprehensive template bank, the

generation of which has been a primary goal of the field of numerical relativity. These

templates cover a range of expected astronomical phenomena, and are generated by a

variety of numerical codes, including the Spectral Einstein Code (SpEC)[6]. Filling out

the template bank requires a balance of numerical relativity and analytic waveforms

(post-Newtonian[7] and effective-one-body[8]), with waveform models often calibrated

using numerical results[9, 10, 11].

One technical challenge facing the construction of a large template bank

is extraction of gauge invariant waveforms from simulations. In general, large

computationally intensive simulations are needed to describe the physics of events

such as supernovae and compact object binary inspirals. While a waveform-

like signal can readily be extracted from anywhere in the computational domain,

waveforms are only rigorously defined at future null infinity. Finite radii waveform

approximations are universally contaminated by coordinate system dynamics, or

gauge effects, which are poorly understood and nearly impossible to remove or even

quantify. Comparison with Cauchy Characteristic Extraction, or CCE, an alternative

which applies Characteristic Evolution to enable waveform computation at future

null infinity, suggests that extrapolation gauge errors could dominate the global

error[12]. Characteristic Evolution has been previously implemented at up to 4th

order radial accuracy[13], while complete extraction has been achieved with finite

difference/volume methods up to 2nd order[14, 15].

Here we implement inner boundary extraction and evolution. This must be

combined with an appropriate outer boundary algorithm to generate the gauge-

invariant news at future null infinity. In a hypothetical complete system illustrated
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in Figure 1(d), Cauchy Characteristic Matching (CCM) allows inflowing energy to

cross the inner boundary (injection) and enter the Cauchy evolution, ameliorating

issues with boundary reflections. Matching, however, faces many technical challenges

beyond the scope of this paper, and has only been implemented in the linearized

limit[16, 17].

Another method is extrapolation[12], which takes metric quantities at a series of

increasing radii, then fits them to a function in l = 1/r. In this coordinate, l = 0

corresponds to infinitely far from the origin, where the extrapolated metric quantities

are converted to waveforms. Because each sampling point is subject to an unknown

degree of coordinate effect contamination, the extrapolated waveform is itself not

gauge invariant.

While characteristic evolution is computationally and conceptually much more

involved than extrapolation, it is able to provide gauge invariant waveforms unaffected

by coordinate effects. These waveforms are unique modulo the supertranslations, a 4

parameter subgroup of the BMS group, corresponding to arbitrary inertial observer

initial conditions at future null infinity[18, 19]. Removing gauge effects through

characteristic evolution is essential for obtaining accurate and useful waveforms.

Essentially, characteristic evolution takes metric data at a topologically spherical

worldtube Γ enclosing the relativistic Cauchy evolution and evolves it, as well as

initial data, outward to future null infinity, or I +. At the outer boundary, the metric

quantities can be read off and, in combination with an inertial conformal coordinate

system, used to calculate the true waveform.

The calculation is performed in the Bondi system, in which radial coordinates

are outgoing null rays: normal to the worldtube and to each time slice. The spherical

coordinates and time-like foliation is adapted from the Cauchy evolution via the
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Figure 1. a) Extrapolation methodology. Time-interpolated points (blue)

along four nested worldtubes (purple) are derived from metric data on each

space-like foliation (green) and used to fit a polynomial in l = r−1, which is

extrapolated to I + at l = 0. b) The finite difference-based characteristic

evolution algorithm takes time-interpolated inner boundary conditions and

solves each null foliation one null parallelogram at a time in a radial marching

algorithm. c) Spectral extraction performs radial integration to I + in a

single step. d) A matching algorithm wherein characteristic and Cauchy

evolutions share a time parameter and common domain boundary.

worldtube boundary data, illustrated in Figure 1(c).

While this simplifies aspects of the evolution, the domain is still infinite, and

must be compactified. We use the compactification r = Rρ/(1 − ρ), where r is the
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Figure 2. a) Ingoing (blue) and outgoing (red) characteristic worldlines on

a radial (r) grid coordinate system. b) Retarded time (u = r + t) grid null

coordinate parallels outgoing characteristics. c) Compactified null radial

(ρ = r/(R + r)) grid coordinates bring I + into a finite domain. Ingoing

characteristics appear curved in this coordinate system.

Bondi radius, ρ is the compactified null radial coordinate and R the compactification

parameter. Setting R to the Bondi radius of the worldtube R = r|Γ confines

ρ ∈ [1/2, 1], as shown in Figure 2 (c). While the worldtube is defined by a constant

coordinate radius sphere, the Bondi radius at this surface is a variable function of

time and angles, giving rise to a wobbly, non-spherical shape in the Bondi coordinate

system. This variable compactification parameter requires additional terms in the

equations.

Fixing ρ ∈ [1/2, 1] and having a variable compactification parameter is different

to the approach used in earlier incarnations of CCE, which either interpolated the

boundary’s variable position or used a different compactification scheme[20, 12].

While the Pitt null code[14] assumed that a coordinate sphere of constant Cartesian

radius formed the worldtube, we lift that constraint here. A fixed computational

domain for Characteristic Evolution enables conceptually simple radial integration

and dynamically variable extraction radii.

Figure 3 shows a series of diagrams illustrating the derivation of the
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computational domain.
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Figure 3. a) Compactified time coordinate yields Penrose-like diagram

of global space, depicted here as Minkowski. Space-like foliated Cauchy

evolution domain exists in world-sphere C, bounded by worldtube ‘wt’. Null

foliated characteristic evolution domain in hollow world-sphere E extends

worldtube to I +. As before, blue and red arrows represent ingoing and

outgoing characteristics respectively. tf represents a space-like global final

time of Cauchy evolution. Dashed lines extrapolate constant time and radius

lines to i+ and i0. b) A closer look at the two computational domains

with space-like foliation in C and null foliations in E shown for clarity. The

worldtube boundary between the two domains is the extraction surface, and

doesn’t necessary reside on the outer boundary of the Cauchy evolution. c) A

3D rendering showing black radial compactified spokes with the equiangular

gridpoint spacing used in our evolution.

2. Previous Work

An implementation of Characteristic Evolution was developed by the group of

Winicour during the mid 1990s [20, 14, 16], and is now part of the publicly available

Einstein tool kit (PITTNullCode)[21]. In its original form it uses finite differences,

achieving 2nd order accuracy. The code has been updated and adapted many times
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since, and in its current form takes O(days) to produce a waveform at an accuracy

that matches that of the Cauchy evolution for O(1000M) SpEC runs. Five years ago

an O(1000M) run was sufficiently challenging that there was no CCE bottleneck.

Today, with hundreds of runs exceeding dozens of orbits and a few exceeding 105M ,

a faster algorithm is needed. The goal is to have the SpEC characteristic code run

alongside the Cauchy evolution at an insigificant additional cost.

This algorithm would build on the formalism of the Pitt null code, but exploit

SpEC capabilities to use spectral methods and a much coarser grid to achieve

equivalent accuracy. The finite difference algorithm marches outwards one null

parallelogram at a time, shown in Figure 1 (b). A spectral algorithm would rapidly

calculate high-accuracy radial data in a single step of numerical integration, as shown

in Figure 1 (c).

The difficulty of a spectral approach lies in consistently treating divergences. As

written, the hypersurface evolution equations’ source terms are linear or greater order

in r and diverge at infinity. In a finite domain, large but finite terms on either side

would numerically cancel, leaving a valid result with no further complications. The

Pitt null code uses an asymptotic form to solve the final step to I +. To include a

point at infinity within a single domain spectral scheme, however, this divergence has

to be understood and pre-emptively cancelled. Here, we present a novel approach to

regularizing the full nonlinear system, enabling a fully spectral treatment.
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3. A New Algorithm

3.1. General Information

The Bondi metric can be expressed as

ds2 =−
(
e2β(rW + 1)− r2hABU

AUB
)
du2

− 2e2βdudr − 2r2hABU
BdudyA + r2hABdy

AdyB . (3.1)

yA are angular coordinates, where the uppercase Latin indices A, B, and so

on range from 2 to 3. The quantities W,hAB, U
A, QA, β parametrise the metric,

representing respectively the mass aspect, the conformal 2-metric, the shift and its

radial derivative, and the lapse. Where non-scalar, they are related to complex spin-

weighted quantities by contracting them with the appropriate dyad. The dyad qA

is a complex field on the unit sphere satisfying qAqA = 0, qAq̄A = 2, qA = qABqB,

with qABqBC = δAC and qAB = (qAq̄B + q̄AqB)/2, the unit sphere metric. Under

this convention, the spin-weighted functions U = UAqA and Q = QAq
A, while

J = hABq
AqB/2 uniquely determines the spherical conformal 2-metric component

of the general 4-metric[20]. We chose a dyad consistent with our formulation of the

eth operator ð[22], given by qA = (−1,−i/ sin θ). This is regular everywhere except

the poles, which we can avoid through careful choice of grid points. It is worth noting

that any choice of angular coordinates are possible. Other conventions use multiple

patches to avoid singularities at the poles, in which the phase dislocation due to

spin-weight when moving from patch to patch is explicit.

The key to the Bondi formulation is that all the spin-weighted metric quantities

have a heirarchical structure, enabling their natural ordering as a nested series of

self-referential equations on the outgoing null hypersurface. This form first appeared

in Winicour[23, 16, 20]. In a relatively simple form they are
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β,r =Nβ , (3.2)

(r2Q),r =− r2(ð̄J + ðK),r +2r4ð(r−2β),r +NQ , (3.3)

U,r =r−2e2βQ+NU , (3.4)

(r2W ),r =
1

2
e2βR− 1− eβðð̄eβ +

1

4
r−2(r4(ðŪ + ð̄U)),r +NW , (3.5)

where the scalar curvature

R =2K − ðð̄K +
1

2
(ð̄2J + ð2J̄) +

1

4K
(ð̄J̄ðJ − ð̄JðJ̄) , (3.6)

and the time derivative term

2(rJ),ur = ((1 + rW )(rJ),r ) ,r−r−1(r2ðU),r +2r−1eβð2eβ − (rW ),r J +NJ , (3.7)

where

1 =K2 − JJ̄. (3.8)

The nonlinear terms Nβ, NQ, NU , NW , NJ are given in Appendix D‡. The radial

compactification is given by r = Rρ/(1 − ρ), where the compactification parameter

R(u, θ, φ) is the (not necessarily constant) Bondi areal radius of the worldtube.

On each hypersurface in the spacetime foliation, each equation is solved in turn.

Given J , β is solved, then U , Q, and W in turn, enabling the computation of J,u. J,u

permits a step forward in time and J is thus defined on the next hypersurface.

Spherical derivatives are implemented using the eth operator ð on spin-weighted

spherical harmonics. ð is given by the contraction of the dyad with the derivative

operator[22].

‡ Note that W is defined according to the convention in [16], which differs from [20] by a factor of

r2.

26



In spherical coordinates, this can be written

ðη = −(sins θ)

(
∂

∂θ
+

i

sin θ

∂

∂φ

)
(sin−s θ η) , (3.9)

ð̄η = −(sin−s θ)

(
∂

∂θ
− i

sin θ

∂

∂φ

)
(sins θ η) . (3.10)

ð and ð̄ increment and decrement respectively the spin-weight s of the quantity they

act upon. Details are given in Appendix C.

In the Pitt null code approach to CCE, a finite difference-based algorithm is

used to solve the hypersurface equations, radially marching from the inner boundary

outward, one point at a time. In our algorithm, we use spectral methods to calculate

the radial indefinite integral on all collocation points along a spherical radial spoke

in a single calculation. A spectral approach is faster and more accurate, but requires

the finessing of a few technical difficulties.

The most obvious of these appears in the hypersurface equations forW andQ. To

calculate a numerical integral, it is necessary to express the integrand as a bounded

function on all radial collocation points, including those at I +. Given that Q is

regular and O(1) at I +, r2Q is clearly divergent. The integral of the right hand side

is similarly divergent for the outermost collocation point, where r → ∞ or ρ → 1.

Here, we solve this problem by expressing the right hand side as a Laurent series

around the pole at ρ = 1 and then repeatedly integrating by parts. Mathematically,

if the equation is written

(r2Q),ρ = A+
B

1− ρ +
C

(1− ρ)2
+

D

(1− ρ)3
, (3.11)
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then, as shown in Appendix A,

Q =Q0 +
D

2ρ2R2
− (−C +D′/2)

1− ρ
ρ2R2

− (B − C ′ +D′′/2)
(1− ρ)2log(1− ρ)

ρ2R2

−(B′ − C ′′ +D′′′/2)
(ρ+ (1− ρ)log(1− ρ))(1− ρ)2

ρ2R2

+
(1− ρ)2

ρ2R2

∫
A+ (B′′ − C ′′′ +D′′′′/2)(ρ+ (1− ρ)log(1− ρ)) , (3.12)

where D′ = ∂D
∂ρ

and so on. In this context, the
∫

operator refers to a radial numerical

integral where the integration constant is fixed such that the inner boundary value

(at the worldtube) vanishes. Note that all terms within the integral are bounded

within the domain ρ ∈ [1/2, 1], including at I +. On the outer boundary, terms in

log(1− ρ) must cancel out to preserve C∞ differentiability.

A second, less obvious, issue is that the right hand side of the J,uρ hypersurface

equation has nonlinear terms with the desired quantity J,u in them (as seen in the

equation for P1, Eqn A6, Bishop et al. [16]). In order to perform the radial integral

and solve for J,u in a single step, these nonlinear terms have to be somehow removed.

One approach is to factorise using an integrating factor and, conceptually, that is

what is done. We shall illustrate this first with a simple example.

Given

J,uρ +AJ,u = B , then (3.13)

(
e
∫
AJ,u

)
,ρ = e

∫
AB , and (3.14)

J,u = e−
∫
A

∫
e
∫
AB . (3.15)

The actual equations are, however, more difficult as the variable is complex, and

the nonlinear term also includes the complex conjugate J̄ ,u term, which makes a

simple factorization impossible. Writing J,u = Φ, the actual equation can be written

(rΦ),ρ − (rJ)(ΦΓ̄ + Φ̄Γ) = A+
B

1− ρ +
C

(1− ρ)2
, where (3.16)
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Γ =

(
J,ρ − J

K,ρ

K

)
. (3.17)

The right hand side is a Laurent expansion analogous to the equations for Q

and W. The part (ΦΓ̄ + Φ̄Γ) is a quantity plus its conjugate and is thus wholey real.

This leads to the insight that a real-imaginary split of the equation is productive.

Writing J = JR + iJI , we can exploit the isomorphism between complex numbers

and non-singular 2× 2 matrices by writing



rΦR

rΦI


 , ρ−



JRΓR JRΓI

JIΓR JIΓI






rΦR

rΦI


 =



RHSR

RHSI


 . (3.18)

We have restored the integrating factor form of the equation, only now in

matrix form. The use of non-constant matrices for an integrating factor requires

the calculation of commutators, which in all but the trivial case are non-zero. The

required formalism is the Magnus expansion[24, 25], in which the usual integrating

factor is supplemented by integrals of progressively higher order commutators.

Let

F =



JRΓR JRΓI

JIΓR JIΓI


 , (3.19)

and

Φ =




ΦR

ΦI


 . (3.20)

Then

(rΦ),ρ − F.(rΦ) = exp
(
Ω(ρ)

)
.
(

exp
(
− Ω(ρ)

)
.(rΦ)

)
,ρ
, (3.21)

where

Ω(ρ) =
∞∑

k=1

Ωk(ρ) . (3.22)
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Write F (ρ1) = F1. Then Ωk forms a series called the Magnus expansion.

Ω1(ρ) =

∫ ρ

ρ0

dρ1F1 , (3.23)

Ω2(ρ) =
1

2

∫ ρ

ρ0

dρ1

∫ ρ

ρ0

dρ2[F1, F2] , (3.24)

Ω3(ρ) =
1

6

∫ ρ

ρ0

dρ1

∫ ρ

ρ0

dρ2

∫ ρ

ρ0

dρ3[F1, [F2, F3]] + [F3[F2, F1]] , (3.25)

and so on.

In practise, this series must be truncated. Fortunately, |F | ≈ 10−3 << 1 in

practical cases, so the series converges rapidly, necessitating calculation of only the

first three terms. Although a formalism exists[19] to deal with the non-linear terms

without resorting to the Magnus expansion, it requires transformation in terms of

dyads, whose issues around the poles we have been careful to avoid.

With the Magnus expansion, the troublesome nonlinear terms are readily dealt

with and the equation can be expressed in the form

(rΦ),ρ = Ã+
B̃

1− ρ +
C̃

(1− ρ)2
. (3.26)

This is solved analogously to the radial hypersurface equations for W and Q.

3.2. Details specific to our implementation

In our implementation, we used a spherical coordinate system. The Chebyshev

pseudospectral method was used for the (1D interval) radial basis function.

Spherepack (for real tensor quantities) and Spinsfast (for complex spin-weighted

quantities) were used for the 2D spherical basis function[26, 27, 28].

Calculus operations such as integration, differentiation, and computation of ð

were performed in each basis function according to standard methods. Time stepping

was performed with an adaptive Dormand Prince 5th order routine, or Runge-Kutta
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4 with constant time steps. Spectral filtering of spatial quantities ensured that all

system modes remained within the time integrators’ domains of stability. Specifically,

the ith radial coefficient was filtered by a factor exp(−108(i/(Nρ − 1))24), where i

varies between 0 and Nρ − 1. Angular coefficients were set to zero for l = Lmax

and l = Lmax − 1. Filtering was applied at the end of each time step and to the

hypersurface quantites Q, W , and H after their computation.

4. Stability and Convergence

The spectral characteristic evolution algorithm is analytically derived, but how does it

actually perform? We tested the stability and convergence of the code under a variety

of circumstances designed to far exceed the demands of any actual CCE run[12].

For a stability test, we ran the algorithm with a variety of settings for a million

steps with white noise initial and boundary conditions of magnitude 10−6. The

linear setting truncates all nonlinear terms, and represents a baseline condition. The

nonlinear setting restores all nonlinear terms in the equations. The most general

setting includes a variable inner boundary position, encoded in the magnitude of the

compactification parameter R. Each of these three conditions was run, and in all

three cases, the norm of J was stable. In particular, all three runs do not grow

exponentially, as seen in Figure 4.

The purpose of a spectral algorithm is to obtain faster convergence, particularly

with respect to radial integration. We ran a series of tests while varying Nρ between

6 and 46. The test was run on the generic run discussed in Section 6 between

t = 1000M and t = 1100M , and the results averaged between t = 1050M and

t = 1100M to remove any transient contamination. While our algorithm can use

any one-dimensional spectral representation for the radial direction, these tests were
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Figure 4. Graph of |J | over a million time steps with a white noise boundary

condition. The three lines represent a linear baseline, a nonlinear run, and

the full nonlinear system including boundary position variation. All three

runs display sub-exponential growth, indicating stability. For the linear test,

a minimal resolution of Nρ = 4, L = 8 was used. For the nonlinear tests, a

minimal resolution of Nρ = 8, L = 12 was used. All tests used an adaptive

RK3 time stepper.

conducted using Gauss Chebyshev Lobatto polynomial basis functions, as discussed

in the previous section. Figure 5 shows that local relative error in J converges

exponentially as the number of radial points increases up to around 24, at which

point convergence becomes sub-exponential due to roundoff error introduced in the

integration algorithm.

Convergence with angular resolution was calculated identically to that for

Figure 5, and shows rapid exponential convergence, as seen in Figure 6. Our

implementation uses the Spinsfast package[28] for spin-weighted spherical harmonic

computation in a manner analogous to Spherepack.
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Figure 5. Log(relative error) shows a linear relationship with number

of radial points Nρ, indicating spectral convergence. At Nρ ≈ 24,

convergence turns sub-exponential. Error is calculated according to

Mean
1050M<t<1100M

(
log10

|JNρ−JNρ+2|∞
|JNρ+2|∞

)
for the generic precessing run. For these

runs, L = 16, ∆t = 0.4M , RK4 is used, and Nρ varies from 6 to 46.

Finally, timestep convergence was analysed. For the purposes of this test, the

minimum grid spacing to timestep was held constant, while the timestep was varied

over more than an order of magnitude. The code displays 4th order time convergence,

consistent with the chosen integrator RK4, as shown in Figure 7.

5. Comparison With Finite Differences Evolution

For longer run comparisons we used the generic precessing Binary Black Hole

simulation detailed in Table 1 (case 4) of Taylor et al.[12]. Its parameters are

mass ratio q = 3, black hole spin χ1 = (0.7, 0, 0.7)/
√

2 and χ2 = (−0.3, 0, 0.3)/
√

2,

number of orbits 26, total time T = 7509M , initial eccentricity 10−3, initial frequency

ωini = 0.032/M , and extraction (coordinate) radius R = 100M . We performed 3 runs
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Figure 6. Log(relative error) vs spherical resolution shows rapid spectral

convergence. Error is calculated analogously to Figure 5. For these runs,

Nρ = 24, ∆t = 0.4M , RK4 is used, and L varies from 8 to 27.

using the PITT null code for baseline comparisons with 3 runs using the new spectral

Characteristic Evolution code, using parameters shown in Table 1. The spectral

code converges rapidly to within the error implied by the PITT null code, as shown

in Figure 8. Parameters for the SpEC runs were specifically chosen for comparible

levels of error with the Pitt null code. Note that despite SpEC code spatial resolution

parameters being chosen for consistent minimum grid spacing to time step ratio,

rather than equal numbers of points, the global error comparison is not adversely

affected. Both codes were run on the same cluster with dense output.

Note also that the resolution of the SpEC runs is an order of magnitude lower,

the time steps an order of magnitude longer, and the run time more than two orders

of magnitude faster for equivalent or superior accuracy. In this case, accuracy is

ultimately limited by the order of the time stepper (RK4) and the order of the time

interpolation on the inner boundary (also 4th order).

34



- 2.4 - 2.2 - 2.0 -1.8 -1.6 -1.4
- 3.0

- 2.5

- 2.0

-1.5

-1.0

Log10 H Dt� ML

L
o

g 10
HÈJ

D
t

-
J D

t�2
È�ÈJ

D
t�2

ÈL

Figure 7. Log plot of relative error vs time step shows 4th order

convergence, demarcated by parallel dashed red lines. Error is calculated

analogously to Figure 5. For this test the minimum grid spacing is

adjusted with time step to maintain a constant ratio. For time steps of

(0.04M, 0.02M, 0.01M, 0.005M, 0.0025M), the number of radial points was

(6, 8, 11, 15, 21) respectively. Angular resolution was held constant with

L = 9.

Run Pitt 1 Pitt 2 Pitt 3 SpEC 1 SpEC 2 SpEC 3

Nr 100 150 200 10 12 14

Nstereo or L 40 60 80 12 14 17

∆t/M 0.1 0.0666 . . . 0.05 1.0 0.666 . . . 0.5

T (CPU hours) 2688 5760 6912 12 31 52

Table 1. Parameters used for code comparisons. The Pitt null code uses

two stereographic patches of size N2
stereo. For both codes, the total number

of angular points is given by 2N2
stereo and 2L2 respectively.
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Global accuracy and convergence was assessed by graphing the relative complex

difference between runs of adjacent accuracy. The errors are computed according to

EPitt low res =
|j22Pitt 1

− j22Pitt 2
|

|j22Pitt 2
| ,

EPitt high res =
|j22Pitt 2

− j22Pitt 3
|

|j22Pitt 3
| ,

ESpEC low res =
|j22SpEC 1

− j22SpEC 2
|

|j22SpEC 2
| ,

ESpEC high res =
|j22SpEC 2

− j22SpEC 3
|

|j22SpEC 3
| ,

EPitt vs SpEC =
|j22SpEC 3

− j22Pitt 3
|

|j22SpEC 3
| ,

where j22 is the 22 spherical harmonic coefficient of J .

Figure 8 shows strong and consistent convergence of the SpEC runs over the full

7509M , as well as consistent agreement between the SpEC and Pitt runs. Figure 9

shows convergence during the junk radiation part of the run, where partial loss of

agreement between the Pitt and SpEC runs is caused by their respective differences

in unphysical junk radiation resolution. The error nevertheless remains well bounded

for the entire run.

6. Conclusion

A new algorithm for spectral Characteristic Evolution has been developed,

implemented, and demonstrated within the SpEC framework. It exploits analytic

regularization of the vacuum hypersurface equations and the accuracy and speed

of spectral methods. Stability, self-convergence, and convergent agreement with

the existing finite difference Characteristic Evolution code are demonstrated. This

algorithm will form the basis for a complete extraction and matching methodology

that will enable gauge invariant waveforms and junk radiation-free initial conditions

to be computed on the fly.
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Figure 8. Comparison of convergence of Pitt and SpEC evolution codes.

The Pitt runs (dashed) show 2nd order convergence until around 5000M ,

when convergence is gradually lost. The SpEC runs (solid), with parameters

chosen for comparible levels of error, display higher order time convergence

throughout the entire run. The dotted line shows the level of agreement

between the highest resolution runs of each code, consistent with their

respective resolution of junk radiation. Peak amplitude J,uu occurs at

t = 6832M , at which point error in relative amplitude and phase is 10−2.367

and 0.002 respectively. These values represent expected error for a strain

calculation.
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[10] T. Hinderer, A. Buonanno, A. H. Mroué, D. A. Hemberger, G. Lovelace, H. P. Pfeiffer, L. E.

Kidder, M. A. Scheel, B. Szilagy, N. W. Taylor, and S. A. Teukolsky, “Periastron Advance

in Spinning Black Hole Binaries: Comparing Effective-One-Body and Numerical

Relativity,” Phys. Rev. D 88 no. 8, (Oct., 2013) 084005, arXiv:1309.0544 [gr-qc].

[11] The NRAR Collaboration Collaboration, I. Hinder et al., “Error-analysis and comparison

39



to analytical models of numerical waveforms produced by the NRAR Collaboration,”

Classical and Quantum Gravity 31 no. 2, (2014) 025012, arXiv:1307.5307 [gr-qc].

[12] N. W. Taylor, M. Boyle, C. Reisswig, M. A. Scheel, T. Chu, L. E. Kidder, and B. Szilágyi,
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[29] M. Babiuc, B. Szilágyi, I. Hawke, and Y. Zlochower, “Gravitational wave extraction based on

Cauchy-characteristic extraction and characteristic evolution,” Class. Quantum Grav. 22

no. 23, (2005) 5089–5107, arXiv:gr-qc/0501008.

http://stacks.iop.org/0264-9381/22/5089.

Appendix A. Regularizing Divergent Equations Using Integration by

Parts

This appendix describes the process of future null infinity regularization using

integration by parts. A Laurent series is an expansion about a pole of (in this case)

finite order. It is the logical extension of a Taylor series to functions that diverge in

well defined ways.

We wish to radially integrate the following equation.

(r2Q),ρ = A+
B

1− ρ +
C

(1− ρ)2
+

D

(1− ρ)3
. (A.1)

Note that r = Rρ/(1− ρ), so both sides are infinite at ρ = 1.

The most divergent term is the D term — we integrate by parts.
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∫
D

(1− ρ)3
dρ =

D/2

(1− ρ)2
−
∫

D′/2

(1− ρ)2
dρ . (A.2)

In practise, limits of integration are ρ ∈ [1/2, 1] where ρ = 1/2 is the worldtube

inner boundary of the domain.

This term is now an integral of the same order as the term in C, as well as a

term external to the integral that is of the same order. This is cancelled out through

division by r2 = R2ρ2/(1 − ρ)2. In this way, all the terms are regularized, i.e., finite

throughout the domain. We include the D′/2 term in the C integral, and so on.

∫ −C +D′/2

(1− ρ)2
dρ =

∫
∂

∂ρ

(
1

1− ρ

)
(−C +D′/2)dρ

=
−C +D′/2

1− ρ −
∫ −C ′ +D′′/2

1− ρ dρ , (A.3)

∫
B − C ′ +D′′/2

1− ρ dρ =

− (B − C ′ +D′′/2) log(1− ρ) +

∫
(B′ − C ′′ +D′′′/2) log(1− ρ)dρ , (A.4)

∫
(B′−C ′′ +D′′′/2) log(1− ρ)dρ =

− (B′ − C ′′ +D′′′/2)(ρ+ (1− ρ) log(1− ρ))

+

∫
(B′′ − C ′′′ +D′′′′/2)(ρ+ (1− ρ) log(1− ρ))dρ . (A.5)

Crucially, the integral term is now bounded in the domain. This means it can

be computed numerically. Computationally, the limits of integration are enforced by

subtracting the value of the function on the inner boundary. Q0 is the boundary value

of Q. Combining terms, equation 3.11 can be expressed:
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Q =Q0 +
D

2ρ2R2
− (−C +D′/2)

1− ρ
ρ2R2

− (B − C ′ +D′′/2)
(1− ρ)2log(1− ρ)

ρ2R2

−(B′ − C ′′ +D′′′/2)
(ρ+ (1− ρ)log(1− ρ))(1− ρ)2

ρ2R2

+
(1− ρ)2

ρ2R2

∫
A+ (B′′ − C ′′′ +D′′′′/2)(ρ+ (1− ρ)log(1− ρ)) . (A.6)

Appendix B. Inner Boundary Algorithm Formalism

The boundary algorithm formalism is drawn from Bishop et al.[16]. It begins with

metric quantities on the worldtube forming the boundary between the space-like

foliated numerical GR simulation and the null-foliated CCE domain. It calculates

several intermediate helper quantities to simplify the computational complexity.

Finally, it produces boundary values for each of the hypersurface or Bondi metric

quantities. Note that all quantities in this section refer to inner boundary values

only.

Appendix B.1. Initial Metric Quantities

The Metric Quantities are extracted directly from the simulation. They are

the covariant 3-metric gij, the contravariant 3-metric gij = (gij)
−1, the co-

and contravariant 3-metric derivatives gij,α and gij,α (calculated using gij,γ =

−gikgjlgkl,γ), and their 4-metric counterparts. The time components are calculated
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from the lapse α =
√
gi0βi − g00 and shift βi = gijgj0 as follows.

gk0 =g0k = gkiβ
i , (B.1)

g00 =gi0β
i − α2 = gikβ

iβk − α2 , (B.2)

gk0,γ =g0k,γ = (gkiβ
i),γ = gki,γ β

i + gkiβ
i,γ , (B.3)

g00,γ =gi0,γ β
i + gi0β

i,γ −2αα,γ , (B.4)

gαβ,γ =− gαδgβεgδε,γ . (B.5)

Appendix B.2. Intermediate Quantities

Additional spherical derivates are calculated by evaluating the angular derivatives of

the spherical harmonic expansions of the quantities on the worldtube.

Appendix B.2.1. Jacobians To perform coordinate transformations, Jacobians and

their derivatives were derived. They included the spherical-to-Cartesian Λ
(r,A)
i and

its derivative Λ
(r,A)
i ,α, the Cartesian-to-spherical Λi

(r,A) and its derivative Λi
(r,A),α.

Appendix B.2.2. Null Generator We calculate the unit normal vectors to the time

slice (nγ) and the sphere (sγ) to calculate the null generator (lγ).

nγ =
(
1/α,−βi/α

)
, (B.6)

sγ =(0,
gijxj√
gijxixj

) , (B.7)

lγ =
nγ + sγ

α− βisjgij
. (B.8)

44



Their time derivatives are

nα,t =
1

α2
(−α,t , α,t βi − αβi,t ) , (B.9)

si,t =(−gim + sism/2)gmn,t s
n , (B.10)

sα,t =
(
0, si,t

)
, (B.11)

lα,t =
nα,t +sα,t−lαα,t +lα(gij,t β

isj + gijβ
i,t s

j + gijβ
isj,t )

α− gijβisj
. (B.12)

Appendix B.2.3. (Affine) Spherical Metric Quantities Dramatic simplification is

possible by calculating a number of auxiliary metric terms in a spherical coordinate

system. Here, ,λ denotes a derivative in the null direction, whereas A, B, C etc sub-

and superscripts denote indices across the spherical components of the coordinate

system, i.e. θ and φ.

gαβ,λ =lγgαβ,γ , (B.13)

ηAB =Λi
AΛj

Bgij , (B.14)

ηAB,λ =Λk
AΛl

Bgkl,λ +(lµ,A Λl
B + lµ,B Λl

A)gµl , (B.15)

ηAB,t =Λi
AΛj

Bgij,t , (B.16)

ηuA,λ =lt,A gtt + Λk
Agtk,λ +lk,A gtk + Λk

Al
µ,t gµk . (B.17)

The contravariant quantities are similarly defined.

ηABηBC =δAC , (B.18)

ηAλ =ηABΛk
Bgtk , (B.19)

ηλλ =− gtt + ηAλΛk
Agtk , (B.20)

ηAB,λ =− ηACηBDηCD,λ , (B.21)

ηAλ,λ =ηABηuA,λ−ηABηCληCB,λ . (B.22)
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Appendix B.2.4. Dyad Quantities The dyad allows construction of spin-weighted

scalars on the sphere. Given r =
√
x2 + y2 + z2,

qi =
1

r
√
x2 + y2

(
−xz + iyr,−yz − ixr, x2 + y2

)
, (B.23)

qA =Λi
Aq

i/r , (B.24)

since qi = qi. Explicitly,

qA =
(
−1,−irc

r

)
, (B.25)

qA =

(
−1,−i r

rc

)
, (B.26)

where rc =
√
x2 + y2, and its derivatives are defined

qi,t =
1

r3r3
c

(z((x4 − y2(y2 + z2))x,t + xy(2r2
c + z2)y,t)− xr4

cz,t + ir3(x(−yx,t + xy,t)),

z(xy(2r2
c + z2)x,t − (x4 − y4 + x2z2)y,t)− yr4

cz,t + ir3(y(−yx,t + xy,t)),

r2
c (z(z(xx,t + yy,t)− r2

cz,t))
)
, (B.27)

qi,x =
1

r3r3
c

(
z(x4 − y2(y2 + z2))− ir3xy, xyz(2r2

c + z2)− ir3y2, xz2r2
c

)
, (B.28)

qi,y =
1

r3r3
c

(
xyz(2r2

c + z2) + ix2r3,−z(x4 − y4 + x2z2) + ixyr3, yz2r2
c

)
, (B.29)

qi,z =
rc
R3

(−x,−y,−z) . (B.30)

Then qi,λ = lαqi,α. Note that the qi are not necessarily constant (qi,t 6= 0) as the

properties of the worldtube are time-dependent. This approach differs from the Pitt

null code.
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Appendix B.2.5. The Bondi r The Bondi radius rb is an areal radius, not a coordinate

radius. The value of the Bondi radius rb at every point on the worldtube provides

the compactification parameter. Given |qAB| = sin2 θ = x2+y2

x2+y2+z2
,

rb =

( |ηAB|
|qAB|

) 1
4

, (B.31)

rb,λ =
rb
4
ηABηAB,λ , (B.32)

rb,t =
rb
4
ηABηAB,t . (B.33)

In contrast, derivatives of the coordinate radius r are

r,λ =lαr,α , (B.34)

r,t =
xx,t +yy,t +zz,t

r
, (B.35)

r,α =
1

r

(
xixi,t , x

i
)
. (B.36)

In the present algorithm the cartesian extraction radius r is held constant, but

derivatives are included for the general case of a variable extraction coordinate radius.

Appendix B.2.6. Derivatives of Hypersurface Quantities Calculation of Q and Φ =

J,u require the null-derivatives of several other hypersurface quantities.

β,λ =
rb

8rb,λ

(
J,λ J̄ ,λ−

1

1 + JJ̄
R(J̄J,λ )2

)
, (B.37)

J,λ =2J

(
r,λ
r
− rb,λ

rb

)
+
r2

r2
b

(gijq
i,λ q

j +
1

2
gij,λ q

iqj) , (B.38)

U,λ =2β,λ U + 2β,λ η
AλqA − ηAλ,λ qA − rb,λB ηABqA + rb,B η

AB,λ qA . (B.39)

Appendix B.3. Hypersurface Quantities

The hypersurface quanties are J , K, β, U , Q, and W , as well as the time derivative

J,u.

47



J =
r2

2r2
b

gijq
iqj , (B.40)

Φ =J,u = 2J

(
r,t
r
− rb,t

rb

)
+
r2

r2
b

(gijq
i,t q

j +
1

2
gij,t q

iqj) , (B.41)

K =
√

1 + JJ̄ , (B.42)

β =− 1

2
log(rb,λ ) , (B.43)

U =− (ηλA +
rb,B
rb,λ

ηAB)qA , (B.44)

Q =r2
b (JŪ,λ +

√
1 + JJ̄U,λ ) , (B.45)

W =
rb,λ η

λλ

rb
− 2rb,u

rb
− 1

rb
+

2rb,A η
Aλ

rb
+
rb,A rb,B η

AB

rb,λ rb
. (B.46)

Appendix B.4. Bondi Metric Reconstruction

J , K, β, U , Q, andW can be combined to reconstruct the Bondi metric, with standard

coordinate 4-vector ordering (u, r, θ, φ)[20].

ηαβ =




0 −e−2β 0 0

−e−2β (rW + 1)e−2β 1
2
(U + Ū)e−2β − ir

2rc
(U − Ū)e−2β

0 1
2
(U + Ū)e−2β 1

2r2
(2K − J − J̄) i

2rrc
(J − J̄)

0 − ir
2rc

(U − Ū)e−2β i
2rrc

(J − J̄) 1
2r2c

(2K + J + J̄)




, (B.47)

ηαβ =




−(rW + 1)e2β r2

2

(
(J +K)Ū irrc

2

(
J̄U − JŪ

+ r2

2

(
2KUŪ + JŪ2 + J̄U2

)
−e2β + (J̄ +K)U

)
+ K(Ū − U)

)

−e2β 0 0 0

r2

2

(
(J +K)Ū + (J̄ +K)U

)
0 r2

2
(J + J̄ + 2K) irrc

2
(J̄ − J)

irrc
2

(
J̄U − JŪ +K(Ū − U)

)
0 irrc

2
(J̄ − J) − r2c

2
(J + J̄ − 2K)




.

(B.48)
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Appendix C. ð Operator and Spin-Weighted Spherical Harmonics

The hypersurface equations are written making use of the ð formalism[22], which

simplifies equations with spherical symmetry. In our implementation, we use a basis

capable of multiple values on the poles, so only a single patch is necessary to cover

the entire sphere.

Rank 2 tensors on the sphere can be broken down and expressed as a sum of

spin-weighted spherical harmonics when contracted with an appropriate dyad qA.

Following [22](Eqn. 8), a generic tensor can be written as the sum of respectively a

symmetric trace free part, a trace part, and an antisymmetric part:

wAB = tAB +
p

2
qAB + i

u

4
(qAq̄B − q̄AqB) . (C.1)

p = qCDwCD and u = i(qC q̄D−q̄CqD)wCD/2 are both real scalar fields with spin-weight

0. Writing t = tABq
AqB yields a complex scalar field with spin-weight 2. Together,

these three scalars p, u, and t completely specify the tensor field independent of choice

of basis.

ð is a spherical derivative operator on spin-weighted spherical harmonics. In

spherical coordinates,

ðη = −(sins θ)

(
∂

∂θ
+

i

sin θ

∂

∂φ

)
(sin−s θ η) , (C.2)

ð̄η = −(sin−s θ)

(
∂

∂θ
− i

sin θ

∂

∂φ

)
(sins θ η) . (C.3)

This can be thought of as a contraction of the dyad with the spherical derivatives

operator.

In terms of spin-weighted spherical harmonics,

ð (sYlm) = +
√

(l − s)(l + s+ 1)s+1Ylm , (C.4)

ð̄ (sYlm) = −
√

(l + s)(l − s+ 1)s+1Ylm . (C.5)
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Used in combination, these definitions allow the ð formalism to be used in the

spectral domain. We used the package Spinsfast[28] to implement spin-weighted

spherical harmonics.

ð assumes a spherical domain. However, in general the compactification

parameter R = rb|Γ is not constant on the sphere. The corrected operation is

ðη = ð̃η − η,ρ
ρ(1− ρ)

R
ð̃R , (C.6)

where ð̃ denotes the naive operator in the affine coordinate system.

This correction is the same that operates at the end of the calculation of J,u = Φ

in Appendix D, only in reverse[29].

Appendix D. All Evolution Algorithm Terms

These are largely drawn from Bishop et al.[20], with some re-arrangement of terms

to ensure internal consistency with the Magnus expansion formalism, and the

compactification transformation ρ = r/(R + r). Additionally, terms are grouped

by their order in the Laurent expansion, where relevant.

Appendix D.1. β terms

β,r = Nβ , (D.1)

Nβ =
ρ(1− ρ)3

8R
(J,ρ J̄ ,ρ−K2,ρ ) . (D.2)

Appendix D.2. Q terms

(r2Q),ρ =
QC +QCNL

(1− ρ)2
+

QD

(1− ρ)3
. (D.3)
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QC =−R2ρ2ð̄J,ρ−R2ρ2ðK,ρ +2R2ρ2ðβ,ρ , (D.4)

QCNL =R2ρ2(1−K)(ðK,ρ +ð̄J,ρ ) + J̄ðJ,ρ +J,ρ J̄ ,ρ +J ð̄K,ρ

+K,ρ ð̄J − J,ρ ð̄K +
ðJ̄(J,ρ−J2J̄ ,ρ ) + ðJ(J̄ ,ρ−J̄2J,ρ )

2K2
, (D.5)

QD =− 4R2ρðβ . (D.6)

Appendix D.3. U terms

U,ρ = UA + UANL . (D.7)

UA =
e2β

Rρ2
Q , (D.8)

UANL =
e2β

Rρ2
(KQ−Q− JQ̄) . (D.9)

Appendix D.4. W terms

(r2W ),ρ =
WC +WCNL

(1− ρ)2
+

WD

(1− ρ)3
. (D.10)

WC =R−R2e2β(ðβð̄β + ðð̄β) +
R2ρ2

4
(ðŪ ,ρ +ð̄U,ρ ) , where (D.11)

R =
Re2β

2

(
2K − ðð̄K +

1

2
(ð̄2J + ð2J̄) +

1

4K
(ð̄J̄ðJ − ð̄JðJ̄)

)
, (D.12)

WCNL =Re2β

(
(1−K)(ðð̄β + ðβð̄β) +

1

2
(J ð̄β2 + J̄ðβ2)

−1

2
(ðβ(ð̄K − ðJ̄) + ð̄β(ðK − ð̄J)) +

1

2
(J ð̄2β + J̄ð2β)

)

− e2βR
3ρ4

8

(
2KU,ρ Ū ,ρ +JŪ2,ρ +J̄U2,ρ

)
, (D.13)

WD =R2ρ(ðŪ + ð̄U) . (D.14)
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Appendix D.5. J,u = Φ terms

(rΦ),ρ−(rJ)(ΦΓ̄ + Φ̄Γ) = ΦA + ΦANL +
ΦB + ΦBNL

1− ρ +
ΦC + ΦCNL

(1− ρ)2
. (D.15)

Γ =

(
J,ρ−J

K,ρ
K

)
. (D.16)

ΦA =(1− ρ)J,ρ +
1

2
Rρ2W,ρ J,ρ +

ρ

2
(1− ρ+RρW )J,ρρ , (D.17)

ΦB =(
3

2
Rρ−Rρ2)WJ,ρ−

1

2
RρðU,ρ +

e2β

ρ
(ð2β + ðβ2) , (D.18)

ΦC =−RðU , (D.19)

ΦANL =− 4Jβ,ρ , (D.20)

ΦBNL =N1B +N2B +N3B +N4B +N5B +N6B +N7B

+ P1B + P2B + P3B + P4B , (D.21)

ΦCNL =N2C +N3C + P3C . (D.22)

N terms are as in Bishop et al.[20], with a prefactor R
2(1−ρ)2

and the usual

compactification transformation.
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N1B =− e2β

2ρ

(
K(ðJ ð̄β + 2ðKðβ − ð̄Jðβ)

+J(ð̄J ð̄β − 2ðKð̄β)− J̄ðJðβ
)
, (D.23)

N2B =− Rρ

4

(
ðJŪ,ρ +ð̄JU,ρ

)
, (D.24)

N2C =− R

2

(
ðJŪ + ð̄JU

)
, (D.25)

N3B =
Rρ

2

(
(1−K)ðU,ρ−JðŪ ,ρ

)
, (D.26)

N3C =R(1−K)ðU −RJðŪ , (D.27)

N4B =
e−2β

4
R2ρ3

(
K2U2,ρ +2JKU,ρ Ū ,ρ +J2Ū2,ρ

)
, (D.28)

N5B =− Rρ

4
J,ρ (ðŪ + ð̄U) , (D.29)

N6B =
Rρ

2

(
1

2
(ŪðJ + U ð̄J)(JJ̄,ρ−J̄J,ρ ) + Ū ð̄J(JK,ρ−KJ,ρ )

−Ū(ðJ,ρ−2KðKJ,ρ +2JðKK,ρ )− U(ð̄J,ρ−KðJ̄J,ρ +JðJ̄K,ρ )
)
, (D.30)

N7B =
Rρ

2
(KJ,ρ−JK,ρ )

(
Ū(ð̄J − ðK) + U(ð̄K − ðJ̄)

+K(ð̄U − ðŪ) + (J ð̄Ū − J̄ðU)
)
. (D.31)

P terms are as in Bishop et al.[20] except for the terms in J,u, which have been

moved to the left hand side of the equation. They have a prefactor J
2ρ(1−ρ)

and the
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usual compactification transformation.

P1A =− 4Jβ,ρ , (D.32)

P1B =− 4RρJβ,ρW , (D.33)

P2B =
e2β

2ρ
J
(
−2K(ðð̄β + ð̄βðβ)− (ð̄βðK + ðβð̄K) + J(ð̄2β + ð̄β2)

+J̄(ð2β + ðβ2) + (ð̄J ð̄β + ðJ̄ðβ)
)
, (D.34)

P3B =
Rρ

4
J(ð̄U,ρ +ðŪ ,ρ ) , (D.35)

P3C =
R

2
J(ð̄U + ðŪ) , (D.36)

P4B =− e−2β

2
R2ρ3J

(
2KU,ρ Ū ,ρ +JŪ2,ρ +J̄U2,ρ

)
. (D.37)

The non-spherical and non-constant inner boundary creates a discrepancy

between the Bondi and affine coordinates. The corrective factor is given by

f,ũ = f,u +f,r r,u = f,u +ρ(1− ρ)
R,u
R
f,ρ , (D.38)

where once again ,ũ denotes a derivative performed in the affine coordinate system,

whereas ,u is the regular derivative in the Bondi coordinate system. Time steps are

performed in the affine coordinate system, whereas the hypersurface equations are

calculated and solved in the Bondi coordinate system.

This term must be added at the end of the calculation in any instance where R,u

is nonzero.
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Chapter 4 – Gauge free Bondi news

Following the completion of the Spectral Characteristic Evolution algorithm, Béla

and I pushed to complete a news extraction capability before he took up a position

at JPL. In collaboration with Jeffrey Winicour, we adapted the method used in the

Pitt null code and were able to produce consistent and convergent results in relatively

short order.

The characteristic evolution algorithm allows the reconstruction of the conformal

metric at I +. This metric contains all the far-field gravitational wave information,

but remains scrambled by gauge effects. It is possible to write down a formula for the

unscrambled Bondi news in terms of the conformal metric by effectively performing a

transformation. While this calculation is quite involved, it is the most computation-

ally lean method to extract the news and forms an excellent baseline alternative to

the Pitt null code for later development. An inertial coordinate system was defined

and evolved at I +, onto which the news was interpolated before being transformed

into its constituent spin-weighted spherical harmonic modes.

The main technical challenge we faced in this paper was demonstrating both gauge

invariance and consistency with the Pitt null code. To show gauge invariance, Béla

Szilágyi produced two SpEC head-on black hole collisions in two different gauges.

While physically the same, their coordinate systems were very different. Both codes

removed gauge effects so effectively it was difficult to assess their comparative perfor-

mance however, with a worldtube extraction radius comparable to the initial distance

between the black holes, the gauge effects were significant enough that they dominated

over other sources of error. In order to gain comparable results, SpEC’s resolution had

to be substantially decreased, at which point it didn’t resolve all the features of the

junk radiation. Conversely, Pitt null code’s non-spectral methods struggled to resolve

rapid motion of the worldtube at the test extraction radius. In search of a sufficiently

challenging test case, we operated both codes far beyond their nominal use cases.

Despite these challenges, we found that gauge-contaminated news differed between

the runs in both Pitt and SpEC by more than the implied error, while the gauge-free
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news agreed to within that same implied error across all codes and runs.

With the completion of the Bondi news extraction module, spectral characteristic

extraction was functionally complete. The code was finalized and is already being used

as a preferred alternative to the Pitt null code for Cauchy characteristic extraction.

The paper was submitted to CQG on February 27, 2015, and was published on

November 2015 with minor revisions. http://arxiv.org/abs/1502.06987

http://arxiv.org/abs/1502.06987
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Abstract. We present gauge invariant spectral Cauchy characteristic extraction.

We compare gravitational waveforms extracted from a head-on black hole merger

simulated in two different gauges by two different codes. We show rapid convergence,

demonstrating both gauge invariance of the extraction algorithm and consistency

between the legacy Pitt null code and the much faster Spectral Einstein Code

(SpEC).
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1. What is CCE? What is gravitational waveform gauge invariance?

t

I
+

x A
�

x A

rwt

G

Figure 1: Cauchy characteristic extraction. A Cauchy evolution of the Einstein field

equation proceeds on a space-like foliation (green). A finite spheroidal worldtube Γ at

areal radius rwt forms the inner boundary to a characteristic evolution on a null foliation

(red). Based on a coordinate system xA derived from the Cauchy data on the worldtube,

gravitational information is propagated to compactified future null infinity I +. At I + an

inertial coordinate system xÃ is co-evolved, in which the desired gauge-invariant waveform

can be expressed.

The strong gravitational radiation produced in the inspiral and merger of binary

black holes has been a dominant motivation for the construction of gravitational

wave observatories. The details of the gravitational waveform supplied by numerical

simulation is a key theoretical tool to fully complement the sensitivity of the LIGO,

Virgo, GEO, and KAGRA observatories, by enhancing detection and providing useful

scientific interpretation of the gravitational signal[1, 2, 3, 4]. Characteristic evolution

coupled to Cauchy evolution via Cauchy-characteristic extraction (CCE) provides the

most accurate numerical computation of the Bondi news function, which determines

both the waveform and the radiated energy and momentum at null infinity.
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In CCE, the Cauchy evolution is used to supply boundary data on a timelike

inner worldtube necessary to carry out a characteristic evolution extending to future

null infinity I +, where the radiation is computed using the geometric methods

developed by Bondi et al.[5], Sachs[6], and Penrose[7], as depicted in Fig. 1.

More intuitive methods, including intrinsically inertial compactified hyperboloidal

formulations[8, 9, 10] have not yet found adoption in the evolution of binary black

holes. CCE is an initial-boundary value problem based upon a timelike worldtube[11].

It has been implemented as a characteristic evolution code, the Pitt null code[12, 13],

which incorporates a Penrose compactification of the spacetime, and which has

subsequently been extended to higher order methods by Reisswig et al.[14]. It has

more recently been implemented as a spectral code within the Spectral Einstein Code

(SpEC) by Handmer and Szilágyi[15], upon which the present work is based.

One technical complication introduced by CCE is that the coordinates induced

on I + by the computational Cauchy coordinates on the inner worldtube do not

correspond to inertial observers, i.e., to the coordinates intrinsic to a distant freely

falling and non-rotating observatory. The gravitational waveform first obtained

in the “computational coordinates” of CCE is in a scrambled form. This gauge

ambiguity in the waveform is removed by constructing the transformation between

computational coordinates and inertial coordinates at I +. There still remains the

freedom in the choice of inertial observers. In special relativistic theories, this freedom

is reduced to the translations and Lorentz transformations of the Poincaré group. As

explained in Sec. 3, in an asymptotically flat space time the corresponding asymptotic

symmetry group consists of supertranslations and Lorentz transformations. This

freedom governs the redshift and initial phase of the waveform.

A physically relevant calculation of the radiation flux must also be referred
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to such inertial coordinates at I +. In this paper, the calculation of the energy-

momentum flux via the Bondi news function is first carried out in the induced

worldtube coordinates and then transformed to the inertial coordinates.

2. Characteristic Formalism

The characteristic formalism is based upon a family of outgoing null cones emanating

from an inner worldtube and extending to infinity where they foliate I + into spherical

slices. We let u label these hypersurfaces, yA (A = 2, 3) be angular coordinates that

label the null rays, and r be a surface area coordinate along the outgoing null cones.

Employing the conventions used in [15], in the resulting xα = (u, r, yA)

coordinates, the metric takes the Bondi-Sachs form

ds2 =−
(
e2β(rW + 1)− r2hABUAUB

)
du2

− 2e2βdudr − 2r2hABU
BdudyA + r2hABdy

AdyB , (2.1)

where hABhBC = δAC and det(hAB) = det(qAB), with qAB a unit sphere metric. In

analyzing the Einstein equations, we also use the intermediate variable

QA = r2e−2βhABU
B
,r . (2.2)

The metric coefficients W,hAB, U
A, QA, β represent respectively the mass aspect,

the spherical 2-metric, the shift and its radial derivative, and the lapse. The vector

and tensor fields hAB, U
A, QA are expressed as spin-weighted fields by contracting

them with the complex dyad qA for the unit sphere metric satisfying qAqA = 0,

qAq̄A = 2, qA = qABqB, with qABqBC = δAC and qAB = (qAq̄B + q̄AqB)/2. Under

this convention, the spin-weighted functions U = UAqA and Q = QAq
A, while

J = hABq
AqB/2 uniquely determines the spherical 2-metric component of the general

4-metric[13]. We chose a dyad consistent with the computational formulation of the
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spin-weight raising ð operator [16], given by qA = (−1,−i/ sin θ) in standard spherical

coordinates (θ, φ). This is regular everywhere except the poles, which we can avoid

through careful choice of grid points. It is worth noting that any choice of angular

coordinates are possible. Other conventions use multiple patches to avoid singularities

at the poles.

A key feature of the Bondi-Sachs formulation is that the Einstein equations can

be integrated along the outgoing characteristics in a sequential order. We use a form

which first appeared in [17] and was implemented as the Pitt code in [13, 18]:

β,r = Nβ , (2.3)

(r2Q),r = − r2(ð̄J + ðK),r +2r4ð(r−2β),r +NQ , (2.4)

U,r = r−2e2βQ+NU , (2.5)

(r2W ),r =
1

2
e2βR− 1− eβðð̄eβ +

1

4
r−2(r4(ðŪ + ð̄U)),r +NW , (2.6)

and the evolution equation

2(rJ),ur = ((1 + rW )(rJ),r ) ,r−r−1(r2ðU),r +2r−1eβð2eβ − (rW ),r J +NJ , (2.7)

where

R = 2K − ðð̄K +
1

2
(ð̄2J + ð2J̄) +

1

4K
(ð̄J̄ðJ − ð̄JðJ̄) , (2.8)

is the curvature scalar associated with hAB, K2 = 1 + JJ̄ and Nβ, NQ, NW , NJ are

nonlinear terms given in [13].

On each constant u hypersurface of the spacetime foliation, these equations are

integrated in turn. Given J , β is solved, then U , Q, and W in turn, enabling the

computation of J,u. J,u permits a step forward in time and J is thus defined on the

next hypersurface. The radial compactification of infinity is given by

r = rwtρ/(1− ρ) ,
1

2
≤ ρ ≤ 1 , (2.9)
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where the compactification parameter rwt(u, y
A) is the (not necessarily constant) areal

radius coordinate on the worldtube.

Angular derivatives are implemented using the action of the ð operator on spin-

weighted spherical harmonics, e.g., ðU = qAqBUA:B, where a colon denotes the

covariant derivative with respect to qAB [16]. In spherical coordinates, this takes

the explicit form for a spin-weight-s field η

ðη = −(sins θ)

(
∂

∂θ
+

i

sin θ

∂

∂φ

)
(sin−s θ η) , (2.10)

ð̄η = −(sin−s θ)

(
∂

∂θ
− i

sin θ

∂

∂φ

)
(sins θ η) . (2.11)

ð̄ is the associated spin-weight lowering operator.

The spectral algorithm used to solve these equations and the treatment of the

nonlinear terms Nβ, NQ, NU , NW , NJ are detailed in Handmer and Szilágyi[15]. Here,

we extend the characteristic spectral algorithm to calculating the gauge invariant

Bondi news at I +.

3. Waveforms at I +

For technical simplicity, the theoretical derivation of the waveform at infinity is best

presented in terms of an inverse surface-area coordinate ` = 1/r, where ` = 0 at I +.

In the resulting xµ = (u, `, xA) conformal Bondi coordinates, the physical spacetime

metric gµν has the conformal compactification ĝµν = `2gµν , where ĝµν is smooth at

I + and, referring to the metric (2.1), takes the form[11]

ĝµνdx
µdxν = −

(
e2β(`2 + `W )− hABUAUB

)
du2 + 2e2βdud` (3.1)

− 2hABU
BdudxA + hABdx

AdxB .

As described in [19, 20], both the Bondi news functionN(u, xA) and the Newman-
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Penrose Weyl tensor component [21]

Ψ0
4(u, x

A) = lim
r→∞

rψ4 , (3.2)

which describe the waveform, are determined by the asymptotic limit at I + of the

tensor field

Σ̂µν =
1

`
(∇̂µ∇̂ν −

1

4
ĝµν∇̂α∇̂α)` . (3.3)

This limit is constructed from the leading coefficients in an expansion of the metric

about I + in powers of `. We thus write

hAB = HAB + `cAB +O(`2) . (3.4)

Conditions on the asymptotic expansion of the remaining components of the metric

follow from the Einstein equations:

β = H +O(`2) , (3.5)

UA = LA + 2`e2HHABDBH +O(`2) , (3.6)

and

W = DAL
A + `(e2HR/2 +DAD

Ae2H − 1) +O(`2) , (3.7)

where H and L are the asymptotic limits of β and U and where R and DA are the

2-dimensional curvature scalar and covariant derivative associated with HAB.

The expansion coefficients H, HAB, cAB, and LA (all functions of u and xA)

completely determine the radiation field. One can further specialize the Bondi

coordinates to be inertial at I +, i.e., have Minkowski form, in which case H =

LA = 0, HAB = qAB (the unit sphere metric) so that the radiation field is completely

determined by cAB. However, the characteristic extraction of the waveform is carried

out in computational coordinates (determined by the Cauchy data on the extraction

worldtube) so this inertial simplification cannot be assumed.
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In order to first compute the Bondi news function in the ĝµν computational

frame, it is necessary to determine the conformal factor ω relating HAB to a unit

sphere metric QAB, i.e., to an inertial conformal Bondi frame[11] satisfying

QAB = ω2HAB . (3.8)

(See [22] for a discussion of how the news in an arbitrary conformal frame is related

to its expression in this inertial Bondi frame.) We can determine ω by solving the

elliptic equation governing the conformal transformation of the curvature scalar (2.8)

to a unit sphere geometry:

R = 2(ω2 +HABDADB logω) . (3.9)

The elliptic equation (3.9) need only be solved at the initial time where, with initial

data J |I + = 0, HABDADB simplifies to the 2-Laplacian on the unit sphere. Then, as

described in the next section, application of the Einstein equations on I + determines

the time dependence of ω according to

2n̂α∂α logω = −e−2HDAL
A , (3.10)

where n̂α = ĝαβ∇β` is the null vector tangent to the generators of I +. We use (3.10)

to evolve ω along the generators of I + given a solution of (3.9) as initial condition.

First recall some basic elements of Penrose compactification. In a general

conformal frame with metric ĝµν = Ω2gµν , where Ω = 0 on I +, the vacuum Einstein

equations Gµν = 0 take the form

Ω2Ĝµν + 2Ω∇̂µ∇̂νΩ− ĝµν
(

2Ω∇̂ρ∇̂ρΩ− 3(∇̂ρΩ∇̂ρΩ)

)
= 0 . (3.11)

It immediately follows that

(∇̂ρΩ)∇̂ρΩ|I + = 0 , (3.12)
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so that I + is a null hypersurface and that

[∇̂µ∇̂νΩ−
1

4
ĝµν∇̂ρ∇̂ρΩ]|I + = 0 . (3.13)

With respect to this frame, the construction of an inertial conformal frame

proceeds as follows. We introduce a new conformal factor Ω̃ = ωΩ, with g̃µν = ω2ĝµν

by requiring, in accord with (3.10),

[2n̂σ∂σω + ω∇̂σn̂
σ]|I + = 0 , n̂σ = ĝρσ∇ρΩ . (3.14)

As a result, it follows from a straightforward calculation that

∇̃ρ∇̃ρΩ̃|I + = 0 , (3.15)

i.e., in the g̃µν conformal frame I + is null, shear- and divergence-free.

It also follows that

ñσ∇̃σñ
ν |I + = 0 , (3.16)

where ñσ = g̃ρσ∇̃ρΩ̃, i.e., in the g̃µν frame, ñσ is an affinely parametrized null generator

of I +.

To construct inertial coordinates (ũ, xÃ) on I +, we first assign angular

coordinates xÃ to each point of the initial spacelike spherical slice u = u0 of I +.

We then propagate these coordinates along the generators of I + according to

ñρ∂ρx
Ã|I + = ω−1n̂ρ∂ρx

Ã|I + = 0 . (3.17)

In addition, we require

ñρ∂ρũ|I + = ω−1n̂ρ∂ρũ|I + = 1 , (3.18)

so that ũ is an affine parameter along the generators in the g̃µν conformal frame.
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4. News

The Bondi news function N is computed in the computational coordinates with

the appropriate conformal transformation. It is then interpolated onto the inertial

coordinates. The formalism follows that of [13], Appendix B (with a sign error in s3

corrected):

N =
1

4ωA

(
s1 + s2 +

1

4

(
ðŪ + ð̄U

)
s3 − 4ω−2s4 + 2ω−1s5

)
, (4.1)
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where A = ωe2β and the si terms are

s1 = (J2J̄,`u + JJ̄J,`u − 2JKK,`u − 2JK,`u + 2J,`uK + 2J,`u)/(K + 1) ,

s2 = (ðJ,`JJ̄Ū + 2ðJ,`KŪ + 2ðJ,`Ū + ðJ̄,`J2Ū

− 2ðK,`JKŪ − 2ðK,`JŪ + 2ðUJJ̄K,` − 2ðUJJ̄,`K

− 2ðUJJ̄,` + 4ðUKK,` + 4ðUK,` + 2ðŪJJ̄J,` − 2ðŪJKK,`

− 2ðŪJK,` + 4ðŪJ,`K + 4ðŪJ,` + ð̄J,`JJ̄U + 2ð̄J,`KU + 2ð̄J,`U

+ ð̄J̄,`J2U − 2ð̄K,`JKU − 2ð̄K,`JU + 2ð̄UJ2J̄,` − 2ð̄UJKK,`

− 2ð̄UJK,` + 2ð̄ŪJ2K,` − 2ð̄ŪJJ,`K − 2ð̄ŪJJ,`)/(2(K + 1)) ,

s3 = −(J2J̄,` + JJ̄J,` − 2JKK,` − 2JK,` + 2J,`K + 2J,`)/(K + 1) ,

s4 = (ðAðωJJ̄ + 2ðAðωK + 2ðAðω − ðAð̄ωJK

− ðAð̄ωJ − ðωð̄AJK − ðωð̄AJ + ð̄Að̄ωJ2)/(2(K + 1)) ,

s5 = (2ð2AJJ̄ + 4ð2AK + 4ð2A+ 2ð̄2AJ2 − 4ð̄ðAJK

− 4ð̄ðAJ + ðAðJJJ̄2 + 2ðAðJJ̄K + 2ðAðJJ̄ + ðAðJ̄J2J̄

+ 2ðAðJ̄JK + 2ðAðJ̄J − 2ðAðKJJ̄K − 4ðAðKJJ̄ − 4ðAðKK

− 4ðAðK − ðAð̄JJJ̄K + 2ðAð̄JK + 2ðAð̄J − ðAð̄J̄J2K

+ 2ðAð̄KJ2J̄ − ðJ ð̄AJJ̄K − 2ðJ ð̄AJJ̄ − 2ðJ ð̄AK

− 2ðJ ð̄A− ðJ̄ ð̄AJ2K − 2ðJ̄ ð̄AJ2 + 2ðKð̄AJ2J̄

+ 4ðKð̄AJK + 4ðKð̄AJ + ð̄Að̄JJ2J̄

+ ð̄Að̄J̄J3 − 2ð̄Að̄KJ2K)/(4(K + 1)) . (4.2)

In our implementation, ,l derivatives are derived from spectrally calculated ,ρ

derivatives using the appropriate Jacobian.
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5. Results

In our comparison tests of CCE, the worldtube boundary data were extracted from

a simulation of an equal mass non-spinning head-on black hole collision, with initial

separation of 30M . The control run (Isotropic) utilized the standard harmonic gauge

damping identical to that in [23] throughout the head-on merger and ring-down.

Harmonic gauge damping adds a dissipative forcing term to the wave equations

satisfied by the harmonic Cartesian spatial coordinates (x, y, z). In order to diminish

the effects of a custom designed gauge, we also compare with results of another run

(HytZero) which turns off gauge damping in the harmonic y-direction, transverse to

the x-direction motion of the black holes. These two high-resolution runs were used

as boundary data for all the subsequent CCE runs. These runs include 3 different

resolutions, 2 different codes, 2 different gauges, and 3 different extraction radii, for

a total of 36 runs.

As described in [15], the SpEC characteristic evolution algorithm exploits spectral

methods and innovative integral methods that greatly improve upon the speed and

accuracy of the Pitt null code. This is seen as essential for for taking advantage of the

efficiency of SpEC Cauchy evolution. The necessary improvement in efficiency has been

preserved in the SpEC extraction module, as displayed in Table 1. The comparison

runs were performed using the current version of the Pitt code [20], which forms part

of the Einstein Toolkit.

The initial conditions and extraction parameters were deliberately chosen as a

stressful test of the algorithms. In particular, at the beginning of the run the black

hole excision boundary extends out to Cartesian radius R = 16M , which is very close

to our smallest choice of extraction radius at R = 30M . At this radius, gauge effects

are highly significant and would make perturbative extraction schemes meaningless,
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in accordance with our intentions. One consequence of such an extreme choice is

that differences between the Pitt and SpEC inertial frame and worldtube initialization

procedures lead to noticeably different waveforms. Worldtube initialization involves

supplying the “integration constants” from the Cauchy code, which allows radial

integration of the characteristic hypersurface and evolution equations (2.3) – (2.7)

from the worldtube to I +. In both Pitt null code and SpEC, the initial condition

on J is determined by the inner boundary value, supplied by the Cauchy evolution,

with a smooth roll off to zero at I +.

The extraction worldtube Γ is determined by a surface of constant Cartesian

radius R. In the Pitt CCE code, the areal radius rwt of Γ lies between two surfaces

of constant Cartesian radii R1 ≤ rwt ≤ R2 and this carries over to the compactified

radial coordinate. As a result, interpolation is necessary to supply the integration

constants, which introduces numerical error. In the SpEC CCE code, this interpolation

error is avoided by introducing the compactified radial coordinate (2.9), with range

1/2 ≤ ρ ≤ 1 between Γ and I +.

Worldtube data from each run were extracted using both Pitt and SpEC CCE, at

three different Cartesian radii: R = 30M , R = 100M and R = 250M , as illustrated

by the news function waveforms in Figs. 2, 4, and 6, respectively. In these figures, the

HytZero and Isotropic waveforms are so close that they appear on top of one another.

The major discrepancy between the Pitt and SpEC waveforms is due to the worldtube

interpolation error in the Pitt code. This is especially evident at small extraction

radii, where there is strong “junk” radiation near the worldtube, which is inherent in

the initial Cauchy data and its mismatch with the initial characteristic data.

This interpolation error in the Pitt code converges away at larger radii, where

the field gradients between R1 and R2 become smaller. This is seen in Figs. 3, 5, and
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Run Pitt1 Pitt2 Pitt3 SpEC1 SpEC2 SpEC3

Nr 100 150 200 10 12 14

N or L 40 60 80 12 14 17

∆t/M 0.1 0.0666 . . . 0.05 1.0 0.666 . . . 0.5

T (CPU hours) 173 274 374 0.7 1.9 3.1

Table 1: Resolution parameters used for code convergence comparisons, with time steps

∆t. Nr represents the radial grid sizes. The Pitt null code uses two stereographic patches

with 2N2 total number of angular grid points. The SpEC code has 2L2 total angular grid

points. T is the CPU time taken for R = 30M , tfinal = 450M runs in the Isotropic gauge,

and is representative for the other runs. All resolutions and codes were run from the same

initial data.

7, where the relative difference between the Pitt and SpEC news function waveforms

is compared with the relative numerical error implied by convergence tests.

Each run was computed at 3 different resolutions to monitor convergence, as

indicated in Table 1. In the following subsections, we first show convergence and the

removal of gauge effects, separately for the Pitt and SpEC codes. Next, we compare

Ψ0
4 waveforms and establish further agreement between the two codes. Finally, we

examine the evolution of the inertial coordinates at I + relative to the worldtube

coordinates induced by the Cauchy evolution.

Comparison of the relative error Erel between dataset A and dataset B is

computed according to

Erel = log10

( |A−B|
|B|

)
, (5.1)

where in convergence tests B is the highest resolution dataset, and the real parts of

the (`,m) = (2, 2) spherical harmonic modes are compared.
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Figure 2: Waveforms of the real part of the (2, 2) spherical harmonic mode of the news

function, as computed by the Pitt null code and SpEC with extraction worldtube at

R = 30M . Different initialization procedures at the worldtube give rise to a difference

between the Pitt and SpEC waveforms, which is most pronounced at this small extraction

radius. The different gauge choices, Isotropic and HytZero, do not have noticeable effect on

this scale, indicating successful gauge effect removal in both codes.

5.1. Pitt code convergence and removal of gauge effects

Here, in order to establish a baseline, we examine the self convergence of the Pitt

code for each of the extraction radii, using the three resolutions (Pitt1,Pitt2,Pitt3)

indicated in Table 1. In Figs. 8, 9, and 10, we see in both the Isotropic and HytZero

gauges that the news function converges over the entire run. Indeed, Isotropic (solid

lines) and HytZero (dashed lines) overlap completely. The figures also plot the

relative error in the news computed in both gauges, which is consistently below the

numerical error implied by convergence tests for extraction worldtubes at R = 30M

and R = 100M . This verifies that the Pitt code successfully removes gauge effects.

Furthermore, the figures plot the relative error between the news computed in the
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Figure 3: Graphs showing the relative difference between the real part of the (2, 2) mode

Pitt and SpEC news function waveforms for extraction radius R = 30M , in comparison to

the relative numerical error implied by convergence tests, corresponding to the waveforms

in Fig. 2. While both SpEC and Pitt have comparable and consistent levels of error, the

codes do not agree within that level of error at this extraction radius.

worldtube coordinates and the inertial coordinates at I +. In the R = 30M case

shown in Fig. 8, the initial discrepancy is high due to the strong gauge effects of junk

radiation. It does not fall below the relative error between the Isotropic and HytZero

gauges until well after the signal has passed. This confirms that the transformation to

inertial coordinates is essential for correctly removing gauge effects from the waveform.

For extraction at R = 100M shown in Fig. 9, the relative error between worldtube

and inertial coordinates has dropped below the Isotropic-HytZero gauge effect. At

R = 250M shown in Fig. 10, the predominant error is the Isotropic-HytZero gauge

effect.

These results show that the selected runs do produce a substantial gauge error

between the worldtube and inertial coordinates and that the Pitt code effectively
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Figure 4: Waveforms of the real part of the (2, 2) mode of the news function, as computed

by the Pitt and SpEC codes with extraction worldtube at R = 100M . Compared to Fig. 2, at

this larger extraction radius the worldtube initialization differences lead to a much smaller

difference between waveforms, which appear nearly identical here. The main discrepancy

arises from the treatment of the junk radiation at early times. Here, too, gauge differences

between HytZero and Isotropic are not visible at this scale.

removes it, while remaining convergent for the duration of the run.

5.2. SpEC code convergence and removal of gauge effects

Here we examine the SpEC code’s self convergence for each extraction radii, in the

same way that the Pitt code was examined in Sec. 5.1. In Figs. 11, 12, and 13, we see

that convergence, measured with the resolutions indicated in Table 1, is comparable

to the Pitt code’s convergence, while the potential gauge contamination is consistently

removed at all worldtube radii. As in Figs. 8, 9, and 10, the solid lines (Isotropic)

and dashed lines (HytZero) overlap due to consistency in gauge removal. The SpEC

extraction code effectively removes gauge error at all radii while remaining convergent
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Figure 5: Graph showing the relative difference between the real part of the (2, 2) mode

SpEC and Pitt news waveforms for extraction radius R = 100M , and the relative numerical

error, corresponding to the waveforms in Fig. 4. In comparison with Fig. 3, by R = 100M

the difference between the Pitt and SpEC algorithms has dropped to the level of numerical

error in each algorithm.

throughout the runs.

5.3. Comparison of Ψ0
4 between the Pitt and SpEC codes

In Secs 5.1 and 5.2, we have shown that both codes are convergent and remove

potential gauge effects. We have also demonstrated that the difference in the news

computed by the two codes disappears as the extraction worldtube radius increases.

Here we provide further evidence that even at a small worldtube radius the waveform

computed by the SpEC code is valid.

After the gauge freedom is removed by extraction, there is still supertranslation

and Lorentz freedom in the choice of inertial coordinates, which affect the phase and

velocity of the inertial observers. This effect is highly sensitive to initial conditions
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Figure 6: Waveforms of the real part of the (2, 2) mode of the news function, as computed

by the Pitt and SpEC codes with extraction worldtube at R = 250M . At this large extraction

radius there is a barely noticeable difference between all the waveforms, limited to the junk

radiation at early times.

and also to the evolution of the inertial confomal transformation factor ω, especially in

the extreme gauge conditions of extraction at R = 30M . It feeds into the worldtube

interpolation error in the Pitt code. In order to verify that the discrepancy illustrated

in Fig. 2 between the news computed by the Pitt null code and SpEC is partially due

to this inertial coordinate freedom, we compute the time derivative of the news, which

is related to the Weyl curvature in inertial coordinates according to ∂tN = Ψ0
4. This

suppresses phase differences between the two waveforms. In making the comparisons,

Ψ0
4 is computed semi-independently using the Weyl tensor waveform module in the

current version of the Pitt code [20]. In these runs, Ψ0
4 was found to be convergent

with truncation error comparable to the consistency between Ψ0
4 and ∂tN in the Pitt

code.

In Fig. 14, we see that the time derivative of the news and Ψ0
4 have much less
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Figure 7: Graphs showing the relative difference between SpEC and Pitt news waveforms at

R = 250M , in comparison to the relative numerical error, corresponding to the waveforms in

Fig. 6. During the post-junk part of the waveform, the error due to worldtube initialization

has dropped to the level of the numerical error, completing the trend seen in Fig. 5.

discrepancy than Fig. 2 would suggest. In Figs. 15, 17, and 19, we compare relative

errors between Ψ0
4 and ∂tN computed by the Pitt and SpEC codes. Not only is

there agreement between the codes at R = 30M , this agreement persists for larger

extraction radii, as shown in Figs. 16 and 18. Both codes show agreement with the

Ψ0
4 waveform throughout the runs at all three extraction radii. This indicates that a

major part of the discrepancy in Fig. 2 is due to initialization errors in the Pitt code,

confirming the physical validity of the extracted SpEC waveform.

5.4. Relative motion between inertial and worldtube coordinates

In Section 3, we discussed the construction of an inertial coordinate system and its

evolution with respect to the worldtube coordinates constructed from the Cartesian

coordinates of the Cauchy code. Here, we describe the motion of the inertial (θ, φ)
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Figure 8: Graphs of the relative error log10 |∆N22/N22| in the (2, 2) mode of the news

function for the R = 30M Pitt extraction run in both gauges. The relative errors for

the Pitt1 (low) and Pitt2 (high) resolutions (compared to Pitt2 and Pitt3 respectively)

are rescaled to demonstrate convergence. The dashed blue line indicates the relative error

(Isotropic vs HytZero) between the news computed in both gauges. The dot-dashed purple

line (Inertial vs worldtube) indicates the relative error between the news computed in the

worldtube coordinates and the inertial coordinates. At this small extraction radius, this

discrepancy is high due to the strong gauge effect of junk radiation.

angular coordinates relative to the worldtube angular coordinates, constructed in

the standard way from the worldtube Cartesian coordinates. Figure 20 illustrates

the global pattern of this relative motion for the Isotropic gauge SpEC run with the

highest resolution extraction at R = 30M . Generally speaking, the coordinates wiggle

back and forth in the direction corresponding to the motion of the black holes. The

complete movement amounts to at most a few percent of their initial values, but even

this is sufficient to introduce considerable gauge error in the waveform, as already

seen in Fig. 8.
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Figure 9: Graphs of the relative error log10 |∆N22/N22| in the news function for Pitt

extraction at R = 100M . Again, the errors for the Pitt1 and Pitt2 resolutions demonstrate

convergence. Compared to Fig. 8, the relative error (Inertial vs worldtube) between inertial

and worldtube coordinates has now dropped below the Isotropic vs HytZero gauge effect.

In Fig. 21, the relative φ motion of the point circled in Fig. 20 is plotted as a

function of inertial time. Initial junk radiation causes considerable wobble, followed

by a smooth return almost to its starting point. The maximum excursion of the

φ-coordinate shift from its initial value is about 3.5%.

5.5. Precessing, spinning binary black hole merger

In addition to the head-on collision tests which we have described, we have also

investigated stability and convergence of the Pitt and SpEC CCE modules, together

with the inertial-worldtube coordinate transformation, using the generic test run of

precessing, spinning binary black holes in [15], as taken from Taylor et al.[24]. Its

parameters are mass ratio q = 3, black hole spins χ1 = (0.7, 0, 0.7)/
√

2 and χ2 =

(−0.3, 0, 0.3)/
√

2, number of orbits 26, total time T = 7509M , initial eccentricity
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Figure 10: Graphs of the relative error log10 |∆N22/N22| in the news function for Pitt

extraction at R = 250M . At this large extraction radius, the dominant error arises from

the Isotropic-HytZero gauge effect.

10−3, initial frequency ωini = 0.032/M , and extraction radius R = 100M . The Pitt

and SpEC waveforms displayed in Fig. 22 are fairly typical waveforms, spanning the

initial junk radiation through inspiral, merger, and ringdown.

Figures 23 and 24 show a log scale comparison of the waveforms with absolute

error. The codes agree strongly throughout the run.

The relative inertial-worldtube coordinate motion of a representative point in

the extended generic run is illustrated in Fig. 25. At early times, the helix has two

loops per cycle corresponding to each of the black holes. At later times, precession

dominates the evolution of this particular coordinate. Throughout the run, the

deviation is around 0.5%.
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Figure 11: Graphs of the relative error log10 |∆N22/N22| in the news function for the

R = 30M SpEC extraction run in both gauges. The relative errors for the SpEC1 (low)

and SpEC2 (high) resolutions (compared to SpEC2 and SpEC3 respectively) are rescaled

to demonstrate convergence. The graph Isotropic vs HytZero indicates the relative error

between the news computed in both gauges. Even at this small extraction radius, there is

relatively little Isotropic vs HytZero gauge error.

6. Conclusion

The SpEC characteristic evolution algorithm has now been furnished with a

convergent, efficient news extraction module. SpEC is now capable of rapidly

producing accurate, gauge free waveforms as required.
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4 and ∂tN as computed for the SpEC and Pitt runs using the

Isotropic gauge with extraction radius R = 100M .
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throughout the run.

85



0 100 200 300 400 500 600

- 0.002

0.000

0.002

0.004

t� M

R
e

HY
40

L

IsotropicSpEC N ,t

IsotropicPitt N ,t

IsotropicY 4
0

Figure 18: Waveforms of Ψ0
4 and ∂tN as computed for the SpEC and Pitt codes using the

Isotropic gauge with extraction radius R = 250M .
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exaggerated by a factor of 10 for visibility.

0 100 200 300 400
0.96

0.97

0.98

0.99

1.00

1.01

t� M

re
la

ti
ve

sh
if

t
in

Φ
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Fig. 20 shows approximately a 3.5 percent variation from its initial value.
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consistent agreement throughout the run.
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Absolute error shows consistency between the Pitt and SpEC news waveforms through

merger and ringdown.
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89



Θ

Φ

t � M

0.13730

0.13735

0.13740

0.13745

4.2500

4.2505

4.2510

4.2515

0

2000

4000

6000

Figure 25: Relative motion of a representative angular coordinate taken from SpEC3 with

extraction radius R = 100M showing a long term helical pattern concordant with the

black hole inspiral and merger. Globally, initial oscillation due to junk radiation is aligned

primarily along the Cartesian x direction, corresponding to the initial black hole orientation.

Coordinate motion is an epicyclic helix whose amplitude is modulated by precession of the

orbital plane.

“Comparing gravitational waveform extrapolation to Cauchy-characteristic extraction in

binary black hole simulations,” Phys. Rev. D 88 (Dec, 2013) 124010, arXiv:1309.3605

[gr-qc]. http://link.aps.org/doi/10.1103/PhysRevD.88.124010.

[25] A. H. Mroue, M. A. Scheel, B. Szilagyi, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E.

Kidder, G. Lovelace, S. Ossokine, N. W. Taylor, A. Zenginoglu, L. T. Buchman, T. Chu,

90



E. Foley, M. Giesler, R. Owen, and S. A. Teukolsky, “A catalog of 174 binary black hole

simulations for gravitational wave astronomy,” Phys. Rev. Lett. 111 (2013) 241104,

arXiv:1304.6077 [gr-qc].

91



92

Chapter 5 – Strain, news, and flux

Even though Spectral Cauchy characteristic extraction can compute the gauge-free

news at I +, the construction and exploitation of the inertial metric and its derived

quantities remained to be realized.

The first step was the construction of an inertial coordinate system, demonstrated

in the previous chapter. This coordinate system, unlocked from the gauge-affected

worldtube coordinates, provided a platform for further calculation. With these coor-

dinates, the conformal metric at I + may be transformed to the inertial metric using

standard procedures.

One recent key advance was the realization that slices of constant inertial time

ũ are in fact not null but asymptotically time-like, adding an additional term to the

formula for the Bondi news. This stems from the requirement that the transformation

from worldtube coordinates to inertial coordinates is linear in the inverse areal radial

coordinate ` = 1/r, simplifying the calculation of the relevant Jacobian. The inertial

frame-derived news was compared with the news computed in the previous chapter

and found to converge.

Complete metric information in the domain volume also permits the calculation

of the Weyl tensor, which is the traceless, conformally invariant version of the more

standard Riemann curvature tensor. While identically zero at I +, the spherical

components of the Weyl tensor’s radial derivative enables computation of Ψ4, the

part relevant to gravitational waves.

Finally, gravitational waves transport energy and momentum. Although “energy”

is not necessarily well defined in General Relativity, any space-time symmetry which

may be expressed as a field of Killing vectors has a conjugate momentum that is

conserved. In this case, time is an asymptotic symmetry, expressed with the Killing

vector ξα̃ = (1, 0, 0, 0)|I ∗ , its conserved conjugate momentum is energy, and the

corresponding flux is equivalent to the square of the news |N |2.
In general, any Killing vector representing an asymptotic symmetry generates

a corresponding momentum flux that may be calculated analogously to the news.
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This paper presents the formalism and method for doing so, as well as the Killing

vectors in explicit form. In addition to the ten symmetries and fluxes described

in the introduction, there is also a countably infinite set of fluxes arising from the

supertranslations. There is a freedom in the choice of initial inertial coordinates — the

freefalling coordinates are individually assigned an initial position and velocity. This

freedom is an additional symmetry and has its own corresponding flux. Evaluation of

the supertranslation flux can help determine the extent to which the initial worldtube

coordinates behave as expected.

While energy and linear momentum fluxes have been estimated using other meth-

ods, Spectral CCE is the first package that will provide complete flux information.

This is particularly interesting for investigating the momentum transfers that occur

during “super kick” mergers, precession during long runs, and convergence of the

Cauchy evolution under high mass ratios, high spins, and other challenging condi-

tions.

Although initially numerical convergence issues delayed an authoritative compu-

tation of the flux, completion and subsequent publication has since been achieved.

Serendipitously, the data was found to be convergent in the most power-dense modes.

The inertial flux module required the design of new algorithms to solve equations

provided by Jeffrey Winicour, and was operational by early March 2015. Non-null

inertial time ũ was discovered during testing, and the formalism, algorithms, and

code continued to evolve. Development continued through my PhD defence on May

12 and was ultimately completed by or before September 14.

A paper was subsequently completed, submitted to CQG in May 2016, and ac-

cepted with a minor syntactical revision in September 2016. http://arxiv.org/abs/

1605.04332

http://arxiv.org/abs/1605.04332
http://arxiv.org/abs/1605.04332
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Abstract.

We present a new approach for the Cauchy-characteristic extraction of

gravitational radiation strain, news function, and the flux of the energy-momentum,

supermomentum and angular momentum associated with the Bondi-Metzner-

Sachs asymptotic symmetries. In Cauchy-characteristic extraction, a characteristic

evolution code takes numerical data on an inner worldtube supplied by a Cauchy

evolution code, and propagates it outwards to obtain the space-time metric in a

neighborhood of null infinity. The metric is first determined in a scrambled form in

terms of coordinates determined by the Cauchy formalism. In prior treatments,

the waveform is first extracted from this metric and then transformed into an

asymptotic inertial coordinate system. This procedure provides the physically

proper description of the waveform and the radiated energy but it does not

generalize to determine the flux of angular momentum or supermomentum. Here

we formulate and implement a new approach which transforms the full metric into

an asymptotic inertial frame and provides a uniform treatment of all the radiation
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fluxes associated with the asymptotic symmetries. Computations are performed

and calibrated using the Spectral Einstein Code (SpEC).

PACS numbers: 04.20Ex, 04.25Dm, 04.25Nx, 04.70Bw
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1. Introduction

The strong gravitational radiation produced in the inspiral and merger of binary

black holes has been a dominant motivation for the construction of gravitational wave

observatories. This effort has recently been brought to fruition by the observation

of a binary inspiral and merger by the LIGO gravitational wave detectors [1].

The details of the gravitational waveform supplied by numerical simulation is a

key theoretical tool to fully complement the sensitivity of the LIGO and Virgo

observatories [2, 3, 4, 5], by enhancing the detection and the scientific interpretation

of the gravitational signal. Besides the gravitational waveform, the flux of energy-

momentum carried off by the waves has important astrophysical effects on the binary

system. In particular, the recoil “kick” on the binary due the radiative loss of

momentum can possibly eject the final black hole from a galactic center. The strength

of such kicks has been computed by various means [6, 7, 8, 9, 10, 11]. The most

unambiguous and accurate approach is in terms of the Bondi news function [12],

which supplies the gravitational energy and momentum flux at future null infinity

I +.

This can be carried out via Cauchy-characteristic extraction (CCE), in which the

Cauchy evolution is used to supply the boundary data on a timelike inner worldtube,

which then allows a characteristic evolution extending to I + where the radiation is

computed using the geometric methods developed by Bondi et al. [12], Sachs [13] and

Penrose [14]. For a review, see [15]. A version of this initial-boundary value problem

based upon a timelike worldtube [16] has been implemented as a characteristic

evolution code, the PITT null code [17, 18, 19, 20], and more recently as the SpEC

characteristic code [21, 22], both of which incorporate a Penrose compactification

of the exterior space-time extending to I +. In this way, characteristic evolution
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coupled to Cauchy evolution has been implemented to give an accurate numerical

computation of the Bondi news function, which determines both the waveform and

the radiated energy-momentum.

One technical complication introduced by CCE is that the coordinates induced

on I + are related to the Cauchy coordinates on the inner worldtube. Consequently,

these computational coordinates do not correspond to inertial observers at I +, i.e.

to the coordinates intrinsic to a distant freely falling and non-rotating observatory.

Thus, the gravitational waveform first obtained in the “computational coordinates”

of CCE is in a scrambled form. Because the news function is an invariant

irrespective of coordinate system, the procedure up to now has been to compute

it first in the computational coordinates.‡ It is then unscrambled by constructing

the transformation between code coordinates and inertial coordinates on I +, as

portrayed in Fig. 1. Likewise, a physically relevant calculation of the radiation

waveform must also be referred to such inertial coordinates on I +.

In addition to energy-momentum loss, the gravitational radiation of angular

momentum has important consequences for the evolution of a relativistic binary

system. For a historic account of attempts at a universally accepted definition

of angular momentum for radiating systems in general relativity see [24]. At

spatial infinity, reasonable asymptotic conditions establish the Poincaré group as the

asymptotic symmetry group. This allows a Poincaré covariant definition of angular

momentum in which the translation freedom mixes angular momentum with linear

momentum in the standard manner [25]. However, the Bondi-Metzner-Sachs (BMS)

asymptotic symmetry group [26] at I + has an infinite supertranslation subgroup.

‡ More accurately, the news tensor Nab is a gauge invariant field on I + [23]. The news function

N = 1
4Nabq

aqb depends upon a choice of complex polarization dyad qa, which has gauge freedom.

But this freedom can be trivially unwrapped by the construction Nab = Nq̄aq̄b + N̄qaqb.
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Fortunately, the translations form an invariant subgroup of the BMS group, which

leads to an unambiguous definition of energy-momentum. However, although the

Lorentz group is a subgroup of the BMS group, the supertranslations lead to a

mixing of the associated supermomentum with angular momentum, the physical

consequences of which have not been fully explored. For a stationary epoch in

the neighborhood of I +, this supertranslation freedom can be removed and the

BMS group reduced to the Poincaré group, in which case angular momentum can

be well-defined. However, for a system which makes a stationary to stationary

transition, the two Poincaré groups obtained at early and late times can be shifted

by a supertranslation. Such supertranslation shifts could lead to a distinctly general

relativistic mechanism for a system to lose angular momentum. See [27, 28, 29] for

discussions. This in fact occurs if the intervening gravitational radiation produces a

non-zero gravitational memory effect. A non-zero gravitational radiation memory

is equivalent to such a supertranslation shift [30]. In this paper, we develop a

unified algorithm for the computation of the gravitational fluxes of energy-momentum,

angular momentum and supermomentum to infinity.

There are two distinct approaches for obtaining flux-conserved quantities which

form a representation of the BMS asymptotic symmetry group. One approach

consists of the BMS linkage integrals Lξ(Σ) [16, 31, 29], which for each spherical

cross-section Σ of I + generalize the Komar integrals [32] for exact symmetries to

the case of asymptotic Killing vectors ξa. Associated with the linkage integrals

are locally defined fluxes LFξ whose integral determines the change Lξ(Σ2)-Lξ(Σ1)

between two cross-sections. The second approach, originated by Ashetkar and

Streubel, is based upon the Hamiltonian phase space of gravitational radiation

modes at I + [33]. The Hamiltonian densities generating a BMS transformation also
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geometrically define local fluxes HFξ. In the case of the supertranslations αa, Ashetkar

and Streubel showed that these Hamiltonian fluxes could be integrated to obtain

flux conserved charges Qα(Σ). In the case of the BMS time and space translations,

ξa = τa, the corresponding linkage and Hamiltonian energy-momentum integrals

and their fluxes are identical, i.e. Lτ (Σ) = Qτ (Σ) and LFτ = HFτ . However, their

supermomentum fluxes differ locally. Subsequently, Wald and Zoupas [34] generalized

the Hamiltonian approach and obtained flux conserved quantities for all the Ashetkar-

Streubel Hamiltonian fluxes, including angular momentum. They showed that these

flux conserved quantities, including angular momentum, were identical to previous

expressions proposed by Dray and Streubel [35].

The relation between the linkage and Hamiltonian BMS fluxes has been examined

in [36]. Although their construction and their local values are completely different, it

has been shown that the integrals of all the linkage and Hamiltonian fluxes between

cross-sections of I + agree, including the angular momentum and supermomentum

fluxes, in the most physically relevant case when Σ2 and Σ1 are shear-free cross-

sections in the limits of infinite future and past retarded time, respectively. Although,

for the rotations and boosts a factor-of-two anomaly in the linkages must be taken

into account, i.e.
∫

Σ
LFξdS = 2

∫
Σ
HFξdS .

There have been other approaches to defining energy-momentum and angular

momentum at I + which do not appeal to the BMS symmetries. Some [35, 37]

have been based upon an asymptotic version of Penrose’s construction of quasi–local

energy-momentum and angular momentum using twistor theory [38]. Another has

been based upon the modification of the BMS group to a quasigroup of asymptotic

symmetries [39]. Other important work on the computation of the physical properties

of radiation at I + has been presented in [40, 41, 42, 43].
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Here, we concentrate on the linkage approach because it is readily adapted to

previous computational infrastructure treating I +. However, the computational

methods presented here should also be useful in computing the Hamiltonian charges

and fluxes, as formulated by Wald and Zoupas, which have all the desired physical

properties. Although the linkage approach is geometrically well defined, its main

physical shortcoming is that the associated supermomentum fluxes do not locally

vanish in Minkowksi space, although their integrals between cross-sections of I +

determined by two Minkowski space light cones do vanish. As a result, the local

physical significance of these supermomentum fluxes is unclear, although the local

time rate of change of all the linkage fluxes LḞξ do vanish in Minkowski space.

Furthermore, as shown in Sec. 5, in a general radiating spacetime LḞξ = 0 for

all BMS generators in any region where the Newman-Penrose radiative component

of the Weyl tensor ψ0
4 vanishes. In particular, LḞξ → 0 for all BMS symmetries

in the infinite retarded time past on I +. It is precisely in this limit that the

supertranslation freedom can also be eliminated and a preferred Poincaré subgroup

can be identified [27]. As a result, the energy-momentum and angular momentum

fluxes LFξ can be uniquely defined by a retarded time integration of LḞξ, using

the initial value LFξ = 0 at u = −∞. Similarly, the energy momentum and

angular momentum can also be uniquely defined for such systems by a retarded

time integration of LFξ, using their initial values at u = −∞, or at spatial infinity.

However, there remains the possibility of carrying out a similar construction at I +

in the infinite retarded time future u = +∞. This leads to the same unresolved issue

discussed above for a stationary to stationary transition, i.e. to a net supertranslation

shift between the future and past Poincaré groups. The identical supertranslation

ambiguity exists in the Hamiltonian description of angular momentum.
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As already discussed, in previous applications of CCE to compute energy-

momentum loss, the Bondi news function was first computed from the radiation

field in the computational coordinates by a gauge invariant method. The news

and radiation waveform were then transformed to inertial coordinates on I +. In

that approach, it was only necessary to find the 3-dimensional transformation to

inertial coordinates intrinsic to I + itself. This procedure is possible because

the news function can be defined geometrically, without reference to the BMS

symmetries. However, this procedure is not feasible in computing the angular

momentum and supermomentum fluxes. Here, we present a unified approach

to computing all the BMS fluxes of energy-momentum, angular momentum and

supermomentum to infinity by carrying out the transformation to inertial coordinates

in a full 4-dimensional neighborhood of I +. We are able to accomplish this by

constructing a surprisingly simple transformation between the computational and

inertial coordinates. The metric is then transformed to the inertial coordinates,

in which the BMS symmetries are readily identified and the corresponding fluxes

computed. We formulate a simple computational algorithm for carrying out this

transformation.

In this procedure, there remains the freedom of the BMS group in the choice of

inertial observers. In special relativistic theories, the corresponding freedom reduces

to the translations and Lorentz transformations of the Poincaré group. The BMS

supertranslations introduce a gauge freedom in the radiation strain.

2. Waveforms at I +

The characteristic formalism is based upon a family of outgoing null hypersurfaces

emanating from an inner worldtube and extending to infinity, where they foliate I +
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Figure 1: Cauchy characteristic extraction. A Cauchy evolution of the Einstein field

equation proceeds on a space-like foliation (green). A finite topologically spherical

worldtube Γ at areal radius rwt forms the inner boundary to a characteristic evolution on

a null foliation (red). Based on a spherical coordinate system xA constructed from Cauchy

coordinates on the worldtube, gravitational information is propagated to compactified future

null infinity I +. At I +, an inertial coordinate system x̃A is co-evolved, in which the desired

physical waveform can be expressed.

into spherical slices. Let u label these null hypersurfaces, xA (A = 2, 3) be angular

coordinates which label the null rays and r be a surface area coordinate. Using the

notion of [16], in the resulting (u, r, xA) coordinates, the metric takes the Bondi-Sachs

form

ds2 = −
(
e2β V

r
− r2hABU

AUB

)
du2 − 2e2βdudr − 2r2hABU

BdudxA

+ r2hABdx
AdxB, (2.1)

where hABhBC = δAC and det(hAB) = det(qAB), with qAB a unit sphere metric.

As described in more detail in [16, 44], in this formalism Einstein’s equations

decompose into a system which propagate boundary data for the metric variables

(β, V, UA, hAB) on an inner worldtube to a solution at I +. In the Pitt null code and in
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the SpEC characteristic code, this solution is computed in a Penrose compactification

of I +, e.g. in terms of the coordinates xµ = (u, `, xA), where ` = 1/r, ` = 0 at I +.

Then the conformal metric ĝµν = `2gµν is smooth at I + and takes the form

ĝµνdx
µdxν = −

(
`3e2βV − hABUAUB

)
du2 +2e2βdud`−2hABU

BdudxA+hABdx
AdxB .

(2.2)

General conditions on the asymptotic behavior of the metric variables follow from

the vacuum Einstein equations [16],

β = H +O(`2) , (2.3)

UA = LA + 2`e2HHABDBH +O(`2) , (2.4)

`2V = DAL
A + `(e2HR/2 +DAD

Ae2H) +O(`2) , (2.5)

and

hAB = HAB + `cAB +O(`2) , (2.6)

where R and DA are the 2-dimensional curvature scalar and covariant derivative

associated with HAB and the determinant condition implies

HABcAB = 0 . (2.7)

The expansion coefficients H, HAB, cAB and LA (all functions of u and xA) completely

determine the radiation field.

One can further specialize the Bondi coordinates to be inertial at I +, i.e. have

asymptotic Minkowski form, in which case H = LA = 0, HAB|I + = qAB (the

unit sphere metric) so that the radiation field is completely determined by cAB,

which describes the asymptotic shear of the outgoing null cones or, equivalently,

the radiation strain. In these inertial coordinates, the retarded time derivative ∂ucAB
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determines the Bondi news function N(u, xA). However, the characteristic extraction

of the waveform is carried out in computational coordinates derived from the Cauchy

coordinates on the inner worldtube, so this inertial simplification cannot be assumed.

In previous work the Bondi news function N was first computed in the

computational ĝµν frame. It was then transformed to inertial coordinates (ũ, x̃A)

on I + to determine the physical dependence of the waveform on retarded time and

angle. Here we construct the transformation to a compactified version of inertial

coordinates (ũ, ˜̀, x̃A) in a full neighborhood of I +.

3. Construction of inertial coordinates

First, we recall some basic elements of Penrose compactification. In a spacetime

with metric gµν , the vacuum Einstein equations Gµν = 0 expressed in terms of a

conformally related metric ĝµν = Ω2gµν , where Ω = 0 on I +, take the form

Ω2Ĝµν + 2Ω∇̂µ∇̂νΩ− ĝµν
(

2Ω∇̂ρ∇̂ρΩ− 3(∇̂ρΩ∇̂ρΩ)

)
= 0 . (3.1)

It immediately follows that

(∇̂ρΩ)∇̂ρΩ|I + = 0 , (3.2)

so that I + is a null hypersurface and that

[∇̂µ∇̂νΩ−
1

4
ĝµν∇̂ρ∇̂ρΩ]|I + = 0 . (3.3)

With respect to this general frame, we now choose Ω = ` and computational

coordinates (u, `, xA), as in Sec. 2, and proceed to construct an inertial conformal

frame as follows. We introduce a new conformal factor Ω̃ = ωΩ = ω`, with

g̃µν = ω2ĝµν such that

∇̃ρ∇̃ρΩ̃|I + = 0 , (3.4)
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by requiring

[2n̂σ∂σω + ω∇̂σn̂
σ]|I + = 0 , n̂σ = ĝρσ∇ρ` . (3.5)

It then follows that

∇̃µ∇̃νΩ̃|I + = 0 , ∇̃ρ∇̃ρΩ̃|I + = 0 , (3.6)

i.e. in the g̃µν conformal frame I + is null, shear-free and divergence-free. It also

follows that

ñσ∇̃σñ
ν |I + = 0 , ñσ = g̃ρσ∇̃ρΩ̃ , (3.7)

i.e. in the g̃µν frame ñσ is an affinely parametrized null generator of I +.

We now construct inertial conformal coordinates (ũ, x̃A) on I +, by first assigning

angular coordinates x̃A to each point of some initial spacelike spherical slice ũ = u0

of I +. We then propagate these coordinates along the null geodesics generating I +

according to

ñρ∂ρx̃
A|I + = ω−1n̂ρ∂ρx̃

A|I + = 0 . (3.8)

In addition, we require

ñρ∂ρũ|I + = ω−1n̂ρ∂ρũ|I + = 1 , (3.9)

so that ũ is an affine parameter along the generators in the g̃µν conformal frame.

This determines the transformation from the computational coordinates xµ =

(u, `, xA) to inertial coordinates (ũ(u, xB), x̃A(u, xB)) on I +, which allows the news

function and the extracted waveform to be re-expressed in the physically relevant

coordinates of a detector. However, this is not sufficient to identify the BMS

symmetries and their associated fluxes. The remaining complication is that after

transforming to inertial coordinates the metric on the spherical cross-sections of I +,

HÃB̃ = ĝÃB̃|I + =
∂xµ

∂x̃A
∂xν

∂x̃B
ĝµν |I + , (3.10)
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does not reduce to a unit sphere metric. As a result, the identification of the

translations as a subgroup of the supertranslation group is complicated; essentially

one must solve an elliptic equation to identify the curved 2-space version of the ` = 0

and ` = 1 spherical harmonics on the spherical cross-sections.

For this purpose, it is simplest to proceed by determining the conformal factor

ω relating HÃB̃ to a unit-sphere metric QÃB̃,

QÃB̃ = ω2HÃB̃ . (3.11)

We determine ω by solving the elliptic equation governing the conformal

transformation of the curvature scalar to the unit sphere curvature,

R = 2(ω2 +DAD
A logω) , (3.12)

where R and DA are the curvature scalar and covariant derivative associated with the

2-metric HAB. Since this is a scalar equation it can be solved in the computational

coordinates.

The elliptic equation (3.12) need only be solved at the initial time. Then,

the shear-free property of the null geodesics generating I + implies that ω may be

propagated along the generators by means of (3.6), which takes the explicit form

2n̂α∂α logω = −e−2HDAL
A . (3.13)

After initialization of ω so that the initial slice of I + has unit sphere geometry, it

then follows that all cross-sections of I + have unit sphere geometry. In terms of

standard spherical coordinates x̃A = (θ̃, φ̃), the induced metric on the cross-sections

of I + has components

g̃ÃB̃(ũ, x̃A)|I + = QÃB̃ , g̃ÃB̃(ũ, x̃A)|I + = QÃB̃ , (3.14)
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where, in these coordinates,

QÃB̃dx̃
Adx̃B = dθ̃2 + sin2 θ̃dφ̃2 . (3.15)

Given such inertial coordinates on I +, we then extend them to coordinates

x̃µ = (ũ, ˜̀, x̃A) in a neighborhood of I +, where

˜̀= ω(u, xA)` = Ω̃ . (3.16)

The Jacobian of the transformation from computational to inertial coordinates has

the simple property

∂`ũ = ∂`x̃
A = 0 , ∂` ˜̀= ω . (3.17)

As a result it immediately follows that at I + the metric reduces to the simple form

g̃ÃB̃(ũ, x̃A)|I + = QÃB̃ , g̃ÃB̃(ũ, x̃A)|I + = QÃB̃ , (3.18)

g̃ũũ(ũ, x̃
A)|I + = g̃ũÃ(ũ, x̃A)|I + = g̃

˜̀̀̃
(ũ, x̃A)|I + = g̃

˜̀Ã(ũ, x̃A)|I + = 0 . (3.19)

This transformation to inertial coordinates also determines the metric in a

neighborhood of I +, which simplifies the identification of the BMS group and the

computation of the radiation strain and BMS fluxes.

4. The BMS group

In the inertial coordinates and conformal frame constructed in Sec. 3, the asymptotic

Killing vectors composing the BMS group can be described by by [13, 16]

ξρ̃∂ρ̃|I + =

(
α(x̃A) +

1

2
ũf Ã

:Ã

)
∂ũ + f Ã∂Ã , (4.1)

where a “colon” denotes the covariant derivative with respect to the unit sphere metric

QÃB̃, α(x̃A) represents the supertranslation freedom and f Ã(x̃B) is a conformal Killing

vector on the unit sphere,

f (Ã:B̃) =
1

2
QÃB̃f C̃

:C̃
. (4.2)
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This conformal group is isomorphic to the Lorentz group.

The additional property that ξµ is tangent to I +,

ξ
˜̀|I + = ξρ∂ρΩ̃|I + = 0 , (4.3)

implies that ξµ satisfies the asymptotic Killing equation in the physical space

geometry,

Ω̃−2∇(µξν)|I + = [∇̃(µ̃ξν̃) − Ω̃−1g̃µ̃ν̃ξρ̃∇̃ρ̃Ω̃]|I + = 0 . (4.4)

The supertranslations form an invariant subgroup of the BMS group for

which f Ã = 0. The translations are an invariant 4-parameter subgroup of the

supertranslations for which α(x̃A) is composed of ` = 0 and ` = 1 spherical harmonics.

The rotation subgroup intrinsic to a cross-section Σ+ of I + consists of the BMS

transformations which map Σ+ onto itself. Without introducing any artificially

preferred structure on I +, there is no invariant way to extract a rotation group,

Lorentz group or Poincaré group from the BMS group.

Given a cross-section Σ+ of I + and a generator ξµ of the BMS group, the linkage

integral Lξ(Σ
+) which generalizes the Komar integral for an exact symmetry is given

in terms of the physical space geometry by

Lξ(Σ
+) = lim

Σ→Σ+

∮

Σ

(∇[µξµ] −K [µN ν]∇ρξ
ρ)dSµν , (4.5)

where Kµ and Nµ are, respectively, ingoing and outgoing null vectors normal to Σ,

normalized by KµNµ = −1. The limit is taken along the outgoing null hypersurface

N emanating from Σ to Σ+, as shown in Fig. 2. The value of this limit depends upon

how the BMS generator is extended off I +. The asymptotic symmetry condition

(4.4) allows the freedom in this extension of the form

ξµ → ξµ + Ω̃2vµ . (4.6)
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Figure 2: Diagram of the computational domain under Penrose compactification, with

angle θ̃ suppressed. The Cauchy evolution C runs from time ti to tf within the worldtube

Γ. The characteristic evolution E is performed on null hypersurfaces extending from Γ to

future null infinity I +. Cross-sections Σ of a null hypersurface (topologically a 2-sphere)

approach the limit Σ+ at I +, where the linkage integral is defined. Ingoing (Kµ) and

outgoing (Nµ) null vectors are normal to Σ. Gauge independent news, strain, ψ0
4 and flux

are computed in inertial coordinates at I +.

In the original formulation of the linkages [16], vµ was determined by a null

hypersurface propagation law on N ,

(∇(µξν) − 1

2
gµν∇ρξ

ρ)Kµ = 0 . (4.7)

In [29], other choices of propagation law were considered. In the next section. we

adopt a simple extension in which the generators ξµ only depend linearly on the

inertial conformal factor ˜̀.

5. The BMS fluxes

Our focus is on the radiation flux Fξ across I + which governs the change of linkage

between two cross-sections,

Lξ(Σ2)− Lξ(Σ1) =

∫ Σ+
2

Σ+
1

FξdV . (5.1)
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In a conformal frame in which I + is divergence-free, it was shown in [29] that there is

a local geometric expression for Fξ which is independent of the freedom (4.6) governing

the extension of ξµ off I +. The resulting flux is uniquely determined by (i) the choice

of ξµ on I + and (ii) the local conformal geometry near I +; and (iii) it is independent

of any choice of cross-section or other extraneous constructs.

In the g̃µ̃ν̃ conformal inertial frame described in Sec. 3, this flux is constructed

as follows. The transformation from the computational coordinates xµ(u, `, xA) to

inertial coordinates (ũ(u, xB), x̃A(u, xB)) on I + is first extended to coordinates

x̃µ = (ũ, ˜̀, x̃A) in a neighborhood of I + where, as before,

˜̀= ω(u, xA)` = Ω̃ . (5.2)

This transformation determines the metric in the extension of the inertial frame to a

neighborhood of I +,

g̃µ̃ν̃(ũ, ˜̀, x̃A) = ω−2 ∂x̃
µ

∂xα
∂x̃ν

∂xβ
ĝαβ(u, `, xA) . (5.3)

In addition to (3.18) and (3.19), this implies

g̃ũ
˜̀
(ũ, 0, x̃A) = 1 ,

g̃ũũ(ũ, 0, x̃A) = ω−2 ∂ũ

∂xA
∂ũ

∂xB
ĝAB , (5.4)

g̃ũÃ(ũ, 0, x̃A) = ω−2 ∂ũ

∂xB
∂x̃A

∂xC
ĝBC .

The corresponding covariant components are

g̃ũ˜̀(ũ, 0, x̃
A) = 1 ,

g̃ ˜̀̀̃ (ũ, 0, x̃A) = − g̃ũũ +QÃB̃ g̃
ũÃg̃ũB̃ , (5.5)

g̃˜̀Ã(ũ, 0, x̃A) = −QÃB̃ g̃
ũB̃ .

Note that the x̃µ coordinates are not null coordinates. While the ũ = const cross-

sections of I + are space-like, (5.4) implies in general that g̃ũũ > 0 so that the
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ũ = const hypersurfaces in the neighborhood of I + are asymptotically time-like. This

somewhat surprising feature stems from the requirement that the transformation from

computational coordinates to inertial coordinates is linear in `. The transformation

to the x̃µ inertial coordinates determines the essential geometric quantities associated

with the inertial frame metric g̃µ̃ν̃ , e.g. the associated covariant derivative ∇̃µ̃ and

curvature scalar R̃.

Restrictions on the ˜̀-derivatives of the inertial metric at I + arise from (3.6),

∂˜̀g̃ũũ|I + = 0 ,

∂˜̀g̃ũ˜̀|I + =
1

2
∂ũg̃ ˜̀̀̃ |I + , (5.6)

∂˜̀g̃ũÃ|I + = ∂ũg̃Ã˜̀|I + .

In addition,

g̃ũ˜̀ =
∂u

∂ũ
ωe2β , (5.7)

so since (2.3) implies ∂˜̀β|I + = 0, we have

∂˜̀g̃ũ˜̀|I + = ∂ũg̃ ˜̀̀̃ |I + = 0 . (5.8)

The determinant condition (2.7), i.e. hAB∂`hAB|I + = 0 implies
{
QÃB̃∂˜̀g̃ÃB̃ + 2g̃ũÃ∂˜̀g̃ũÃ

}
|I + = 0 , (5.9)

so that
{
QÃB̃∂˜̀g̃ÃB̃ + 2g̃ũÃ∂ũg̃˜̀Ã

}
|I + =

{
QÃB̃∂˜̀g̃ÃB̃ − 2QÃB̃ g̃

ũÃ∂ũg̃
ũB̃

}
|I + = 0 . (5.10)

The corresponding contravariant components satisfy

∂˜̀g̃
˜̀̀̃ |I + = 0 ,

∂˜̀g̃
˜̀Ã|I + = ∂ũg̃

ũÃ|I + , (5.11)

∂˜̀g̃
ũ˜̀|I + =

1

2
∂ũg̃

ũũ|I + = QÃB̃g
ũÃ∂ũg̃

ũB̃|I + ,

QÃB̃∂˜̀g̃
ÃB̃|I + = 0 .
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In general, since ξµ̃ is tangent to I +, we can define a smooth scalar field

K = Ω̃−1ξµ̃∂µ̃Ω̃ and the asymptotic Killing equation (4.4) implies we can define a

smooth field X µ̃ν̃ according to

∇̃(µ̃ξν̃) = Kg̃µ̃ν̃ + Ω̃X µ̃ν̃ . (5.12)

We write X = X µ̃
µ̃ . In the g̃µ̃ν̃ inertial frame,

K = ˜̀−1ξ
˜̀
, (5.13)

so that

K|I + =
∂ξ

˜̀

∂ ˜̀
|I + . (5.14)

Evaluation of (5.12) at I + gives, in addition to (4.1),

∂ξ
˜̀

∂ ˜̀
|I + =

∂ξũ

∂ũ
|I + =

1

2
ξÃ

:Ã
|I + ,

∂ξũ

∂ ˜̀
|I + = {−g̃ũÃ ∂ξ

ũ

∂xÃ
+

1

2
ξũ
∂g̃ũũ

∂ũ
+

1

2
ξÃ
∂g̃ũũ

∂xÃ
}|I + , (5.15)

∂ξÃ

∂ ˜̀
|I + = {g̃Ãũ∂ξ

ũ

∂ũ
− g̃ũB̃ξÃ:B̃ + ξB̃gũÃ:B̃ + ξũ

∂g̃ũÃ

∂ũ
−QÃB̃ ∂ξ

ũ

∂xB̃
}|I + .

As shown in [29], it also follows that

X µ̃ν̃∂ν̃Ω̃|I + = 0 , (5.16)

which results from a straightforward calculation using (3.19), (5.13) and (5.15). Thus

we can further define a smooth field X µ̃ according to

X µ̃ = Ω̃−1X µ̃ν̃∂ν̃Ω̃ . (5.17)

Let QÃ(x̃B) be a complex polarization dyad satisfying

Q(ÃQ̄B̃) = QÃB̃ . (5.18)

We have

QÃQB̃∂˜̀g̃ÃB̃|I + = −QÃQB̃

{
∂˜̀g̃

ÃB̃ − 2g̃ũÃ∂ũg̃
ũB̃

}
|I + . (5.19)
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The outgoing null vector normal to the (ũ = const, ˜̀= const) 2-surfaces is

Nα̃ = ∂α̃ũ−
1

2
g̃ũũ∂α̃ ˜̀ . (5.20)

The shear or asymptotic strain h on a constant inertial time cross-section of I + is

then given by

h =
1

2
QÃQB̃∇̃ÃNB̃|I + , (5.21)

so that

h =
1

4
QÃQB̃

{
∂˜̀g̃ÃB̃ − 2g̃˜̀Ã:B̃

}
|I + , (5.22)

=
1

4
QÃQB̃

{
2g̃Ãũ∂ũg̃

B̃ũ + 2g̃ũÃ:B̃ − ∂˜̀g̃
ÃB̃

}
|I + . (5.23)

Here,

∂˜̀g̃
ÃB̃ = ω−2xÃ,C x

B̃,D `,˜̀∂`ĝ
CD = ω−3xÃ,C x

B̃,D ∂`ĝ
CD . (5.24)

The strain h has gauge freedom corresponding to the supertranslation freedom

in the choice of slicing of I +. A gauge independent description of the radiation

waveform is given by the news function

N =
1

2
QÃQB̃X

ÃB̃|I + = ∂ũh , (5.25)

where XÃB̃ corresponds to the translation

ξα̃|I + = ∇̃α̃ ˜̀|I + = (1, 0, 0, 0) , (5.26)

with

∂˜̀ξ
α̃|I + = ∂ũ(

1

2
g̃ũũ, 0, g̃ũÃ)|I + . (5.27)

A short calculation gives

N =
1

4
QÃQB̃∂ũ(2g̃

ũÃ:B̃ + 2g̃ũÃ∂ũg̃
ũB̃ − ∂˜̀g̃

ÃB̃) , (5.28)
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in accordance with (5.23) and (5.25).

The absolute square of the news function determines the flux of energy and

momentum. The flux corresponding to a general asymptotic symmetry is given by [29]

Fξ = −∇̃µ̃∇̃ν̃X
µ̃ν̃ + 3∇̃µ̃X

µ̃ +
3

4
∇̃µ̃∇̃µ̃X +

1

24
R̃X . (5.29)

Note that Fξ is a scalar so that it could be evaluated in any coordinate system.

However, its physical properties are only manifest in the inertial x̃µ coordinates.

Since Fξ is independent of the freedom (4.6), it suffices to extend the BMS

generators to a neighborhood of I + with the linear ˜̀-dependence

ξµ̃(ũ, ˜̀, x̃A) = ξµ̃(ũ, 0, x̃A) + ˜̀∂ξ
µ̃

∂ ˜̀
(ũ, 0, x̃A) , (5.30)

where the coefficients are determined by (4.1) and (5.15). This determines the

asymptotic Killing vectors in the neighborhood of I + for the purpose of computing

the flux in terms of (5.29).

It is also possible to compute the time derivative of the flux in terms of its relation

to the Weyl tensor [29],

Ḟξ := ñµ∂µFξ = −Ω−1C̃αβγδñ
βñδXαγ|I + , (5.31)

where asymptotic flatness implies Cαβγδ = O(Ω). In inertial coordinates, in which

X α̃˜̀|I + = 0, this reduces to

Ḟξ = ∂ũFξ = −∂˜̀C̃ÃũB̃ũX
ÃB̃|I + . (5.32)

By virtue of the trace-free property of the Weyl tensor this may be rewritten

∂ũFξ = −1

4
{∂˜̀C̃ÃũB̃ũQ

ÃQB̃X C̃D̃Q̄C̃Q̄D̃ + ∂˜̀C̃ÃũB̃ũQ̄
ÃQ̄B̃X C̃D̃QC̃QD̃}|I + , (5.33)

or

∂ũFξ = ΨX̄ + Ψ̄X , (5.34)
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where X = 1
2
XÃB̃QÃQB̃|I + and Ψ = −1

2
∂˜̀C̃ÃũB̃ũQ

ÃQB̃|I + . In Newman-Penrose

notation Ψ̄ is the asymptotic ψ0
4 component of the Weyl tensor.

A straightforward computation based upon (5.12) gives

X =
1

2
XÃB̃QÃQB̃|I + ,

=
1

4
QÃQB̃{2(∂˜̀g̃

ÃC̃)ξB̃ :C̃ − (∂˜̀g̃
ÃB̃):C̃ξ

C̃ − 3

2
(∂˜̀g̃

ÃB̃)ξC̃ :C̃ + 2(∂˜̀ξ
B̃):Ã

+ 2(∂˜̀g̃
Ã˜̀

)∂˜̀ξ
B̃ + 2g̃Ãũ∂ũ∂˜̀ξ

B̃ − (∂ũ∂˜̀g̃
ÃB̃)ξũ}|I + .

(5.35)

Here the ∂˜̀ξÃ derivative of the Killing field is supplied from (5.15). Using the

properties of ξα|I + and ∂˜̀g̃Ã
˜̀|I + , this reduces to

X =
1

4
QÃQB̃{(∂˜̀g̃

ÃB̃)ξC̃:D̃Q[CQ̄D] − (∂˜̀g̃
ÃB̃):C̃ξ

C̃

+ 2(∂˜̀ξ
B̃):Ã + ∂ũ(2g̃

Ãũ∂˜̀ξ
B̃ − ξũ∂˜̀g̃

ÃB̃)}|I + .

(5.36)

These expressions simplify for specific BMS symmetries.

For a supertranslation ξũ = α(x̃A), f Ã = 0 and we have

∂ξÃ

∂ ˜̀
|I + = [α

∂g̃ũÃ

∂ũ
− α:Ã]|I + , (5.37)

with the result that

X = α∂ũh−
1

2
QÃQB̃α

:ÃB̃ . (5.38)

For the translations, for which α(x̃A) is an ` = 0 or ` = 1 spherical harmonic,

QÃQB̃α:ÃB̃ = 0. Since ∂ũh = N , we have

X = αN . (5.39)

For the rotations, α = 0 and f Ã = εÃB̃Φ:B̃, where Φ is an ` = 1 harmonic

satisfying Φ:Ã
:Ã = −2Φ with εÃB̃ = iQ[ÃQB̃], εÃC̃εB̃C̃ = δÃ

B̃
. As a result, f Ã:B̃ =
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−ΦεÃB̃, and

∂˜̀ξ
Ã|I + = {−gũB̃f Ã:B̃ + f B̃gũÃ:B̃}|I + . (5.40)

We define a strain tensor according to

hÃB̃ =
1

4

{
− ∂˜̀g̃

ÃB̃ + 2g̃Ãũ∂ũg̃
ũB̃ + 2g̃ũ(Ã:B̃)

}
|I + , (5.41)

so that QÃQB̃h
AB = h. Then a straightforward calculation gives

X = − 2iΦh+QÃQB̃h
ÃB̃

:C̃f
C̃

+ QÃQB̃{f C̃gB̃ũ:C̃
:Ã − f C̃gB̃ũ:Ã

:C̃ + gÃũf B̃}|I + . (5.42)

But the second line vanishes due to the identity

VB:CA − VB:AC = QABVC −QBCVA , (5.43)

for the commutator of covariant derivatives with respect to the unit sphere metric

QAB. Thus, for a rotation,

X = −2iΦh+QÃQB̃h
ÃB̃

:C̃f
C̃ . (5.44)

For the boosts, α = 0, f Ã = Γ:Ã, where Γ:ÃB̃ = −ΓQÃB̃, Γ:Ã
:Ã = −2Γ, ξũ = −uΓ

and

∂˜̀ξ
Ã|I + = {−ũΓ∂ũg

ũÃ + Γ:B̃gũÃ:B̃ + ũΓ:Ã}|I + . (5.45)

Then by the analogous calculation leading to (5.44)

X = −Γ∂ũ(ũh) +QÃQB̃h
ÃB̃

:C̃Γ:C̃ . (5.46)

6. Results

Our results are based upon the same generic precessing binary black hole run taken

from Taylor et al. [45], which was also used in [21] to calibrate the SpEC characteristic
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code and in [22] to compare waveform extraction using the SpEC and Pitt null

codes using the gauge invariant version of the of the news function computed in

computational coordinates. The physical parameters are mass ratio q = 3, black hole

dimensionless spins χ1 = (0.7, 0, 0.7)/
√

2 and χ2 = (−0.3, 0, 0.3)/
√

2, number of orbits

26, total time T = 7509M , initial eccentricity 10−3, initial frequency ωini = 0.032/M

and extraction radius R = 100M , where M is the total mass of the black holes.

Extraction was carried out at the three different resolutions elaborated in Table 1

to assess convergence.

Run Low Med High

Nr 10 12 14

L 12 14 17

∆t/M 1.0 0.666 . . . 0.5

Table 1: Resolution parameters used for code convergence comparisons, with time steps

∆t. Nr represents the radial grid sizes. The SpEC code has 2L2 total angular grid points.

6.1. Verification of strain, news, and radiative Weyl component Ψ

Here we show that the news function computed using the inertial coordinate algorithm

(inertial news) agrees with the gauge independent news (gauge-free news) computed

in [22] using the computational coordinates. We also show that strain and and

Ψ (corresponding to the Newman-Penrose component ψ̄0
4) are consistent with the

computation of the news function.

Comparison of the relative error Erel between dataset A and dataset B is

computed according to

Erel = log10

( |A−B|
|B|

)
, (6.1)
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where in the convergence tests B is the highest resolution dataset. For the strain,

news function and radiative Weyl component Ψ, the real parts of the (`,m) = (2, 2)

spherical harmonic modes are compared.

Spatial convergence is at an exponential rate expected of a spectral code, while

time convergence is 4th order. The convergence test shows which error source

dominates the simulation. Given an increase in resolution by some constant factor,

spectral convergence results in reducing the error by a constant factor on a log

scale. In contrast, high-order polynomial convergence such as E ∝ ∆t4 will yield

logarithmic convergence on a log scale under the same increase in resolution. For

these simulations, 4th order time convergent error dominates over the spatial spectral

error.

In Fig. 3, we computed the news function in two different ways at the three

different resolutions outlined in Table 1, for a total of six datasets. The inertial

news (computed directly in the inertial coordinate system) is compared with the

high resolution results for the gauge-free news (computed first in the computational

coordinates, as in [22]). Both versions of the news agree and display 4th order

convergence.

Similarly, we computed the error in the strain by comparing adjacent resolutions.

The strain remains convergent over the entire run, as shown in Fig. 4. With only

a 20% increase in resolution, the error in the medium resolution run decreases by

85%, consistent with the underlying spatial spectral method and the 4th order time

integrator.

The higher time derivatives in Ψ make it more sensitive to the numerical noise

produced by the junk radiation in the initial phase of the run. After this initial

period, the error in Ψ displays the same rate of convergence as the news and strain,
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Figure 3: 4th order convergence of the news function computed two different ways. Solid

lines are the error in the new, inertial coordinates computation. Dashed lines are error

in the gauge-free news computed in computational coordinates. Here, error is computed

with reference to the highest resolution grid, showing both self convergence and agreement

between the two methods.

as shown in Fig. 5.

Finally, we verify the inertial frame relationships Ψ = N,ũ = h,ũũ. Computed in

the highest resolution inertial domain, these quantities agree, as shown in Fig. 6.

6.2. Flux

In the inertial frame at I +, the asymptotic Killing vectors which generate the BMS

group have the form (4.1), i.e.

ξρ̃∂ρ̃|I + =

(
α(x̃A) +

1

2
ũf Ã

:Ã

)
∂ũ + f Ã∂Ã , (6.2)
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Figure 4: Here, we compare error in the low and medium resolution calculations of the strain

computed in the inertial coordinates (inertial strain) by comparing them to the medium and

high resolution runs, respectively. Comparison between the errors in the medium and low

resolution runs is consistent with the 4th order convergence arising from the time integrator.

where f Ã(x̃B) is a conformal killing vector for the unit sphere metric. Here we consider

the fluxes corresponding to the BMS generators for the time translation Tu, the three

spatial translations (Tx, Ty, Tz), the three rotations (Rx, Ry, Rz), and the three boosts

(Bx, By, Bz), with respect to the corresponding axes of the asymptotic inertial frame,

as well as a sample supertranslation (ST), totaling 11 asymptotic symmetries.

We compute the energy flux by calculating the absolute square |N |2 of the news

function. For the remaining flux calculations, we first use (5.34) to compute the flux

rate of change and then carry out a retarded inertial time integral. As a result, the

numerical noise in Ψ during the initial phase of junk radiation (see Fig. 5) introduces

some non-convergent error. Consequently, although the plots of the time dependence
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Figure 5: The errors in the inertial coordinate computation of Ψ for low and medium

resolution runs are compared with the medium and high resolution runs, respectively. The

results confirm 4th order convergence following the initial phase of junk radiation.

of the fluxes show good agreement for the three resolutions, convergence of the error

is not as clean as for the energy flux computed directly from the news function.

Therefore, for the purpose of convergence studies, we concentrate on the error in the

retarded time derivative of the flux, although both rates of convergence are shown for

completeness.

In all cases, we plot the waveform and convergence of the strongest mode.

Part (a) of each plot is a spherical representation of the functional form of the

corresponding BMS generator. Spatial components are shown with vector arrows,

while the time component is demarcated with a color gradient.

6.2.1. Energy and momentum flux The time translation is described by the BMS

generator ξα[Tu] with components αTu = 1, fA = 0, corresponding to an ` = 0 spherical
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Figure 6: Comparison of Ψ = N,ũ = h,ũũ (real and imaginary parts). Following the initial

phase of junk radiation, the data overlap completely, hiding Ψ and N,ũ behind h,ũũ.

harmonic. Figure 7 shows the form of the generator (7a), its associated flux (7b), the

flux convergence (7c) and the stronger convergence of the inertial time derivative of

the flux (7d).

The three momentum fluxes are derived from the three spatial translations,

described by the BMS generators ξα[Tx], ξ
α
[Ty] and ξα[Tz], with fA = 0 and α constructed

from l = 1 spherical harmonics,

α[Tx] = sin θ̃ cos φ̃ , α[Ty] = sin θ̃ sin φ̃ , α[Tz] = cos θ̃ , (6.3)

corresponding to the axes of the asymptotic inertial frame. The corresponding

momentum fluxes FTx, FTy and FTz can also be obtained directly from the energy

flux by weighting it with the corresponding ` = 1 harmonics,

FTx = sin θ̃ cos φ̃|N |2, FTy = sin θ̃ sin φ̃|N |2, FTz = cos θ̃|N |2, (6.4)
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Figure 7: (7a) The ũ component of ξTu = 1 is uniform everywhere on the sphere and has

no angular component. (7b) The (` = 2,m = 2) spherical harmonic component of the flux,

FTu = |N |2. (7c) Convergence of the flux is partially compromised by junk radiation, while

the inertial time derivative of the flux (7d) shows the appropriate 4th order convergence

following the junk phase.

in which case the clean 4th order convergence obtained for the energy flux |N |2 would

also result following the initial period of junk radiation.

Alternatively, these momentum fluxes can be obtained by a retarded time

integral, e.g. FTz =
∫
ḞTzdu. However, although the strain and energy flux both

have dominant components in the (` = 2,m = 2) mode, the nonlinear effect of

multiplication by an ` = 1 harmonic shifts the momentum fluxes into other modes.

For this reason, we plot the (` = 3,m = 2) mode.

The z-component of momentum flux FTz obtained this way is shown in Fig. 8b.

Convergence of the flux is shown in Fig. 8c and its inertial time derivative in Fig. 8d.
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Figure 8: (8a) The ũ component of ξTz shifts from pole to pole, illustrating a translation

in the z-direction. (8b) The (` = 3,m = 2) spherical harmonic component of the flux. (8c)

Convergence of the flux is partially compromised by junk radiation, while the inertial time

derivative of the flux (8d) shows the appropriate 4th order convergence following the junk

phase.

The (` = 3,m = 3) mode of the x-component of the momentum flux FTxis shown

in Fig. 9b. Convergence of the flux is shown in Fig. 9c and its inertial time derivative

in Fig. 9d.

Similarly, the (` = 3,m = 3) mode of the y-component of the momentum flux

FTy is shown in Fig. 10b. Convergence of the flux is shown in Fig. 10c and its inertial

time derivative in Fig. 10d.

6.2.2. Rotations The three spatial rotations with respect to the inertial axes are

described by the BMS generators ξα[Rx], ξ
α
[Ry] and ξα[Rz] with α = 0 and f Ã = εÃB̃Φ:B̃,
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Figure 9: (9a) The ũ component of ξTx shifts with φ, showing a translation in the x

(φ = 0) direction. (9b) The (` = 3,m = 3) spherical harmonic component of the flux. (9c)

Convergence of the flux is partially compromised by junk radiation, while the inertial time

derivative of the flux (9d) shows the appropriate 4th order convergence following the junk

phase.

where Φ is constructed from ` = 1 spherical harmonics. A rotation Rz about the z-

axis corresponds to the spherical harmonic Φ = cos θ̃, so that f Ã = (0, 1). Most of the

motion of the orbiting black holes is about this axis, so we expect to see a greater flux

of the corresponding z-component of angular momentum FRz. The (` = 2,m = 2)

mode of the z component of the angular momentum flux FRz is shown in Fig. 11b.

Convergence of the flux is shown in Fig. 11c and its inertial time derivative in Fig. 11d.

A rotation Rx about the x-axis corresponds to the spherical harmonic Φ =

sin θ̃ cos φ̃ so that f Ã = (− sin φ̃,− cot θ̃ cos φ̃). Similarly, a rotation Ry about

the y-axis corresponds to the spherical harmonic Φ = sin θ̃ sin φ̃ so that f Ã =
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Figure 10: (10a) The ũ component of ξTy shifts with φ, showing a translation in the y

(φ = π/2) direction. (10b) The (` = 3,m = 3) spherical harmonic component of the flux.

(10c) Convergence of the flux is partially compromised by junk radiation, while the inertial

time derivative of the flux (10d) shows the appropriate 4th order convergence following the

junk phase.

(cos φ̃,− cot θ̃ sin φ̃).

The (` = 2,m = 1) modes of the x and y-components of the angular momentum

flux, FRx and FRy, are shown in Fig. 12b and Fig. 13b, respectively. Convergence of

these fluxes is shown in Fig. 12c and Fig. 13c; and convergence of their inertial time

derivative in Fig. 12d and Fig. 13d.

6.2.3. Boosts In addition to the rotations, the other transformations of the Lorentz

group are the three boosts with BMS generators ξα[Bx], ξ
α
[By] and ξα[Bz] for which f Ã

:Ã
6= 0.

For these boost generators, α = 0, f Ã = Γ:Ã, where Γ consists of ` = 1 spherical
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Figure 11: (11a) Vectors illustrate the nature of ξRz, a rotation about z. (11b) The

(` = 2,m = 2) spherical harmonic component of the flux. (11c) Convergence of the flux is

partially compromised by junk radiation, while the inertial time derivative of the flux (11d)

shows the appropriate 4th order convergence following the junk phase.

harmonics, so that Γ:Ã
:Ã = −2Γ and ξũ = −uΓ. As a result, the boosts acquire a

ξũ component with linear dependence on ũ, as well as ` = 1 angular dependence.

The corresponding physical quantities describe the dipole moment of the system

corresponding to the center-of-mass integrals in Lorentz covariant theories.

For a boost Bz in the inertial z-direction, Γ = cos θ̃ so that f Ã = (− sin θ̃, 0) and

ξũ[Bz] = −ũ cos θ̃. The (` = 3,m = 0) mode of the z-component of the boost flux FBz

is shown in Fig. 14b. Convergence of the flux is shown in Fig. 14c and its inertial

time derivative in Fig. 14d.

For a boost Bx in the inertial x-direction, Γ = sin θ̃ cos φ̃ so that f Ã =

(cos θ̃ cos φ̃,− csc θ̃ sin φ̃). Similarly, for a boost By in the inertial y-direction, Γ =
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Figure 12: (12a) Vectors illustrate the nature of ξRx, a rotation about the x-axis (φ = 0).

(12b) The (` = 2,m = 1) spherical harmonic component of the flux. (12c) Convergence of

the flux is partially compromised by junk radiation, while the inertial time derivative of the

flux (12d) shows the appropriate 4th order convergence following the junk phase.

sin θ̃ sin φ̃ so that f Ã = (cos θ̃ sin φ̃, csc θ̃ cos φ̃). The (` = 3,m = 3) mode of the x

and y-components of the boost flux, FBx and FBy, is shown in Fig. 15b and Fig. 16b,

respectively. Convergence of these fluxes is shown in Fig. 15c and Fig. 16c; and

convergence of their inertial time derivative in Fig. 15d and Fig. 16d.

6.2.4. Supertranslations The BMS supertranslation generators ξα̃[ST ] are described

by f Ã = 0, with α(x̃B) constructed from spherical harmonics with l > 1. This

leads to an infinite set of transformations, which extend well beyond the limit of

code resolution. Here we concentrate on the supertranslation corresponding to a |Y22|

spherical harmonic, αST = sin2 θ̃ cos 2φ̃.
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Figure 13: (13a) Vectors illustrate the nature of ξRy, a rotation about y (φ = π/2). (13b)

The (` = 2,m = 1) spherical harmonic component of the flux. (13c) Convergence of the

flux is partially compromised by junk radiation, while the inertial time derivative of the

flux (13d) shows the appropriate 4th order convergence following the junk phase.

The (` = 2,m = 2) mode of the |Y22|-derived supertranslation flux FST is shown

in Fig. 17b. Convergence of the flux is shown in Fig. 17c and its inertial time derivative

in Fig. 17d.

7. Conclusion

In the context of Cauchy-characteristic evolution, we have developed the

mathematical formalism for computing the gravitational radiation fluxes to I +

of energy-momentum, angular-momentum-dipole-moment and supermomentum,

associated with the asymptotic symmetries of the BMS group. We have implemented
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Figure 14: (14a) Vectors illustrate the nature of ξÃBz, while colors illustrate the gradient of

ξũBz, illustrating a Lorentz boost Bz in the z-direction. (14b) The (` = 3,m = 0) spherical

harmonic component of the flux. (14c) Convergence of the flux is partially compromised

by junk radiation, while the inertial time derivative of the flux (14d) shows the appropriate

4th order convergence following the junk phase.

this algorithm as part of the Spectral Einstein Code (SpEC). The resulting code

supplies a uniform computation of the radiation strain, news function, Newman-

Penrose radiative ψ0
4 curvature component and BMS fluxes in terms of inertial

coordinates at I +. It is a stable, convergent, and highly efficient code for determining

all the physical attributes of the gravitational radiation field.

Convergence tests were carried out based upon the simulation of a generic

precessing binary black hole. These tests showed that the numerical accuracy was

limited by the 4th order time integrator, as opposed to the exponential convergence

rate expected of the spatial spectral code. The main source of error arose from the
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Figure 15: (15a) Vectors illustrate the nature of ξÃBx, while colors illustrate the gradient

of ξũBx, illustrating a boost in the x (φ = 0) direction. (15b) The (` = 3,m = 3) spherical

harmonic component of the flux. (15c) Convergence of the flux is partially compromised

by junk radiation, while the inertial time derivative of the flux (15d) shows the appropriate

4th order convergence following the junk phase.

artificial junk radiation introduced by the binary black hole initial data.

The accuracy for radiation strain, news function N and ψ0
4 were comparable to

computations using a prior version of the SpEC characteristic code. The same was

also found for the computation of energy-momentum flux, which is determined by the

` = 0 and ` = 1 components of |N |2.

The computation of the angular momentum and supermomentum fluxes is more

complicated than the energy-momentum flux. In addition, there are ambiguities

in their underlying construction, which we base here upon the linkage integrals.

However, these ambiguities are not as serious in the case of the retarded time
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Figure 16: (16a) Vectors illustrate the nature of ξÃBy, while colors illustrate the gradient

of ξũBy, illustrating a boost in the y (φ = π/2) direction. (16b) The (` = 3,m = 3) spherical

harmonic component of the flux. (16c) Convergence of the flux is partially compromised

by junk radiation, while the inertial time derivative of the flux (16d) shows the appropriate

4th order convergence following the junk phase.

derivatives of the linkage flux Ḟξ, which only depend upon a product of ψ0
4 with

the choice of BMS generator, according to (5.34). An idealized strategy for studying,

say, angular momentum would be to base its initial value either on the Wald-Zoupas

Hamiltonian approach [34] in the infinite past retarded time u → −∞ or on its

unambiguous definition at spatial infinity, where the initial flux should vanish. The

dynamical properties of angular momentum can then be studied by retarded time

integrals of Ḟξ. However, in practice this strategy would require binary black hole

data devoid of junk radiation, which is not true at least for the generic precessing

system simulated here. Following the the initial phase of junk radiation, tests of Ḟξ
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Figure 17: (17a) A color gradient illustrates the nature of ξũST , a |Y22| supertranslation.

(17b) The (` = 2,m = 2) spherical harmonic component of the flux. (17c) Convergence of

the flux is partially compromised by junk radiation, while the inertial time derivative of the

flux (17d) shows the appropriate 4th order convergence following the junk phase.

showed clear 4th order convergence. However, the high derivatives involved in the

calculation of Ḟξ magnify the effect of the junk radiation.

These considerations add to other important reasons to develop methods for

obtaining binary black hole data which suppress junk radiation. In particular, this

would allow application of our code to study the interesting question of how a

supertranslation shift between the preferred Poincaré groups at u = ±∞ might affect

angular momentum loss.
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[20] M. C. Babiuc, B. Szilágyi, J. Winicour, and Y. Zlochower, “A characteristic extraction tool

for gravitational waveforms,” Phys. Rev. D 84 (Aug, 2011) 044057, arXiv:1011.4223

[gr-qc]. http://link.aps.org/doi/10.1103/PhysRevD.84.044057.
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Chapter 6 – Current Status of Spectral CCE Project

By late April 2015, the Spectral CCE module in SpEC was regularly producing accurate

waveforms of the news, strain, and Ψ4 roughly 200 times faster than the Pitt null code. A

basic wc command in the working directory reveals roughly 20,000 lines of new code dis-

tributed across nearly 200 component compute items, drivers, and input files. Ultimately,

the code exists to serve the Spectral CCE algorithm, an innovative mechanism for regu-

larizing several mathematical problems in the underlying formalism. The structure of the

code is illustrated by Fig. 5.
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Figure 5: Diagram showing dependencies of Spectral CCE derived from
DataBoxItems.input. Worldtube data enters at the left, is evolved in the middle,
requiring the calculation of lots of types of derivatives of the Bondi variables, and then
inertial outer boundary quantities are calculated at the top right.

The complete code base can be accessed on the feature/CCE branch of SpEC, though
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will soon be merged with master. Early development exists on the

feature/Characteristic branch. A graph of Spectral CCE’s commit history by chandmer

is shown in Fig. 6.
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Figure 6: Graph showing history of commits by chandmer on various development branches
of SpEC. Mean number of files per commit: 8.9. Mean line additions: 341.5. Mean line
deletions: 132.8. A complete commit history before mid 2013 is not readily available due
to version control migration from SVN to git.

As of September 22, 2016, the most recent git commit was

commit 2af43111da4e2bcb5c200eb7fb96de130f18a476

Author: Casey Handmer <chandmer@caltech.edu>

Date: Fri Sep 11 15:04:55 2015 -0700

Removed superfluous DataBox Items

The Spectral CCE code is completely documented and commented with up-to-date

references to the relevant equations in the appropriate header files. All compute items can

be found in the Characteristic directory, used by the driver located in the sub-directory

Tests.

There is a convention in file nomenclature explained here.

1. Characteristic*.*pp are compute items that perform hypersurface calculations of
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β,Q,U,W, and J,u, according to their names. They operate in a 3D hollow sphere

domain composed of the spinsfast grid (with a point on the pole) and a radial interval,

typically composed of GaussChebyshevLobatto basis functions.

2. CharacteristicBoundary*.*pp are compute items that perform calculations on the

worldtube. They translate worldtube data from the Cauchy to the Bondi frame.

Essentially, they provide an inner boundary condition. These calculations are per-

formed on the spherepack grid, which does not have a point on the pole, before being

transformed.

3. CharacteristicScri*.*pp are compute items and functions that operate at the

outer boundary, typically on the spherepack grid. There are also some projection

helper compute items that perform changes of basis function.

4. CharacteristicVol*.*pp are all compute items that transform quantities from the

spinsfast to the spherepack grid throughout the domain.

5. CharacteristicInertial*.*pp are compute items that perform calculations in and

related to the inertial coordinate system at I +

Additionally, a basic convention allows the description of co- and contravariant tensors

in ascii font. For example, MCA means a Metric in the Cauchy frame that is contrAvariant.

Similarly, MconfOd would be the derivatives of a conformal Metric that is cOvariant. In

SpEC, this would be encoded as a Tensor<Tensor<DataMesh> >. Naturally, all compute

items’ header (.hpp) files contain a complete description of the item, its properties, and

references to relevant equations in papers.
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Chapter 7 – Avenues of future research

At the time of thesis submission, some avenues of future work of varying levels of difficulty

exist.

• Flux. While the formalism for the flux was recently completed (at the time of writing)

and a complete and convergent implementation exists, further optimization is likely

possible.

• MultiVars. A more complete integration with SpEC would use the new MultiVars

capability to run CCE simultaneously with the SpEC Cauchy evolution. MultiVars

could also evolve ω, the inertial coordinates xÃ, and the fluxes Fξ rather than using

the current Variable Step Explicit (VSEX) method in the driver.

• Matching. With simultaneous evolution enabled by MultiVars, the obvious next step

is an open boundary condition, or characteristic matching. Matching would enable

the dynamical alteration of the worldtube boundary, which will help to deal with

initial conditions, junk radiation, and potentially greatly reduce the computational

cost of computing the “induction” zone in the Cauchy evolution.

Matching will require some additional formalism beyond reverse engineering the inner

boundary algorithm presented in Chapter 3.
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Appendix A – Fourier Continuation in SpEC

During 2011 and 2012, I implemented and used a new basis function in SpEC called Fourier

Continuation (FC). Developed primarily at the Caltech Applied Math department by Oscar

Bruno and his group, Fourier Continuation is a spectrally accurate basis function with the

attractive property of evenly spaced gridpoints, allowing a relaxed CFL condition.

By April 2012, it was apparent that SpEC had already abstracted the drawbacks FC was

designed to address, and I discontinued its use. It remains an attractive solution for different

sorts of problems and may be useful in particular for future simulations that deal with

matter. Here, I include a basic description of its properties, method, and implementation

in SpEC.



What is FC?

Casey Handmer

January 2012

1 Introduction

This document is written as a companion to and explanation of header notes found

in the FC source code in SpEC. As of January 2012, the FC routine was contained

within the file

Spectral/BasisFunctions/FourierContinuationFftw.*pp

in the SpEC repository.

First and foremost, FC stands for Fourier Continuation, a family of relatively

new, versatile, and powerful spectral techniques that are finding broad applications in

numerical PDE solving. Their primary advantages are O(N logN) speeds in calculus

operations, equidistant point spacing (and thus relaxed CFL conditions), and their

applicability to non-periodic, non-rectangular domains without sacrificing stability.

As the FC method has been modified to work better with SpEC, the remainder of

this document explains how and why.

2 Obtaining the FC spectrum as applied in SpEC

Step one in any spectral method is understanding how to transform function values

on collocation points in physical space to coefficients in spectral space (phys2spec)
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and back again (spec2phys). As the current SpEC architecture is restricted to real

valued spectral (and physical) quantities, I implemented FC using the Discrete Sine

Transform Type IV (DST-IV) and Discrete Cosine Transform Type IV (DCT-IV)

transforms wherever appropriate. These transforms, which are special cases of the

Fast Fourier Transform (FFT), are their own inverse; however, applying a derivative

(or anti-derivative) operation necessitates switching between the two. For reference,

their explicit form as implemented in fftw3[5] is

us = 2
n−1∑

r=0

ursinπ/n(r + 1/2)(s+ 1/2) ,

us = 2
n−1∑

r=0

urcosπ/n(r + 1/2)(s+ 1/2) .

Once in spectral form, the derivative or integral may be obtained almost trivially, as

explained below.

As stated, however, this transform is useful only for “periodic” domains. The quo-

tation marks are present as the DS/CT-IV transforms actually correspond to func-

tions on a quarter period of the fundamental basis element, and so the periodicity

condition instead takes the form that the function has odd symmetry at its left bound-

ary and even symmetry on its right boundary for the DST, and vice versa for the DCT.

In either case, or with the more traditional FFT, a function that fails the periodic-

ity condition will not be preserved through the application of phys2spec→spec2phys,

due to the Gibbs phenomenon. In all variants of the FC method as applied to non-

periodic functions, then, some method is used to generate a periodic function that

can be transformed without rapidly varying ringing at either end of the domain.

For these purposes the extention matrix Q is applied. This matrix is pictured in

Figure 2.

In SpEC, Q is a 6 × 38 matrix comprising I6, a 6 × 26 central part that blends

each canonical basis vector to zero, and a 6 × 6 matrix of zeroes. Calculating this

matrix is a non-trivial exercise explained in Section 3. For now, we merely assume

its existence and explain its properties.
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Figure 1: Matrix plot of Q, the FC extension matrix.

Q takes any 6 points (nominally consisting of the right hand end of some set of

collocation values) and smoothly blends it to zero. Thus applied to either end of an

arbitrary set of n > 6 collocation values, Q generates a periodic function to order 6.

Higher order Q matrices are possible, but can lead to instabilities.

In SpEC, the DST-IV transform forms the backbone of the method. Thus the

extended right end of the collocation points is added to its reverse to make a boundary

with even symmetry, and the extended left end of the collocation points is added to

the negative of its reverse to create a boundary with odd symmetry. Since the crux

of both boundaries necessarily occurs in the middle of the extended region, only 13

points are needed from either end to achieve the desired effect. Thus, the application

of the extension algorithm increases the size of the spectral function values by 26

points.

Upon the operation spec2phys, these additional points are simply snipped off at

either end to return to the original domain. Note that in the SpEC implementation of

FC, phys2spec refers to the DST-IV transform, while spec2phys refers to the DCT-IV

transform. This means that in the event of an even number of calculus operations,

such as the identity or the second derivative, the phys2spec function is applied to

perform the spec2phys operation. To avoid confusion, these operations are referred

to by their transform name explicitly.

146



2.1 Derivative operator

The derivative operator in SpEC is illustrative of the whole system in general, so most

of the detail will be included here. The algorithm is:

1. extend collocation values

2. phys2spec (DST-IV)

3. filter (optional for linear ODE/PDE solving)

4. differentiate

5. spec2phys (DCT-IV)

6. truncate to return to original domain

2.1.1 The differentiation function

Obtained via the differentiation of the sine basis, and thus motivating the DCT-IV

inverse transform. The normalising factor missing from the fftw3 implementation of

the DS/CT-IV transforms, (2(n+ 26))−1, is also included in this step:

dfk[i] = fk[i]π
i+ 1/2

2(n+ 26)

n− 1

n+ 26
,

where i runs from 0 to n + 25. The last fraction term is included to correct for the

extension of the domain in spectral space.

2.1.2 The filter function

The filter function ensures stability in nonlinear PDE solving by filtering out poorly

resolved noise at high frequencies. In SpEC, it takes the form

fkfilt[i] = fk[i]exp

(
−α
(

i

n+ 25

)p)
,

where α = 16log10 and p = 50; these values taken from analysis and experimentation

are reported in [1] and found to work.
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2.2 Second derivative

In SpEC, the second derivative operator returns the first derivative as well. The only

difference worth noting from the first derivative operator is that the inverse transform

for the second derivative is a second application of the DST-IV transform, rather than

the DCT-IV used for the first derivative and integral operations. The multiplicative

factor used is

ddfk[i] = −fk[i]
1

2(n+ 26)

(
π(i+ 1/2)(n− 1)

(n+ 26)

)2

,

where, once again, i runs from 0 to n+ 25.

2.3 Integral operator

The integral operator is identical to the derivative operator, and the multiplicative

factor is

intfk[i] = −fk[i]
1

2(n+ 26)π(i+ 1/2)

n+ 26

n− 1
,

which is effectively the inverse of the derivative operator! Note that the resulting

integral is not normalised, so in SpEC the left most value is subtracted from the array

such that the value at each point xi is equivalent to the definite integral of the function

from 0 to xi.

3 Obtaining the matrix Q

The extension matrix Q is based on Gram polynomials[4, 6]. Without getting into too

much theory, I’m going to give a recipe for its construction, generalisable to arbitary

order, m. Although my construction was somewhat more involved, the method I give

here is equally valid.

We begin by constructing the Gram polynomials of order m. They are an or-

thonormal discrete polynomial basis defined by the usual inner product. Thus the

first order is always a vector {1/m, 1/m, 1/m . . . } of length m. The discrete values
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are defined by the values taken by the continuous polynomials at each of the m dis-

cretisation points. For the remainder of this section, the continous functions will be

referred to by Gi(x), where i indexes the order of the Gram polynomial.

Next, we construct a family of trigonometric functions that are periodic on some

interval D > 2 × (M − m), where M is the desired length of the extension matrix

Q. If desired these can be designated even or odd and phase shifted to coincide with

the even/odd center of the Gram polynomials they will eventually mimic. In general

these functions are not taken to order D; rather, their order K is minimised to prevent

rapidly varying oscillations, which over-resolve the behaviour we are looking for.

We define a set of points to be matched by the trigonometric functions. This is

composed of the Gi(x) oversampled by a factor l within their natural domain [0, 1],

and a similarly oversampled list of zeros corresponding to the points M −m + 1 to

M at the other end of our nascent Q. These values form a rectangular matrix m of

size m× (2lm+ 2).

Next, we sample the periodic trigonometric (incomplete) basis at each point cor-

responding to the long side of our oversampled matrix m, and for each individual trig

basis element, yeilding a matrix A of size 2K × (2lm+ 2).

Applying Singular Value Decomposition between A and m yields a matrix of size

2K × m; this is a set of coefficients that, when applied to the trigonometric basis

function, gives a set of m highly accurate, smooth functions which take each Gi(x)

Gram polynomial and blends it to zero. Note that this is best done using a symbolic

algebra program to extremely high precision (> 50 digits), or else the whole exercise

is basically pointless.

The trig function is sampled at each point in its domain of length D to give a

matrix of size D×m. This matrix is multiplied by the (inverse of the) original m×m
Gram basis matrix to convert the fitted Gram polynomials on the left hand edge to

the identity matrix.

Finally, the matrix is truncated to length M as desired, and should now have the
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same general character as the matrix in Figure 2, with an identity segment, a curvey

segment, and a zero segment. This is the extension matrix Q.

3.1 MCMC optimisation, testing

One aspect I glossed over above is the choice of m, M , K, D, and l, as well as other

optional parameters a sufficiently enthusiastic person could dream up. Already there

is a rather slow step (SVD), a high dimensional parameter space, and no obvious

figure of merit.

To cut to the chase, the parameters that are used in the current version of FC in

SpEC are

m = 6, M = 38, K = 24, D = 68, l = 7 .

To give you an idea of how discretisation can mess up the optimisation process, the

second best set of parameters I found was

m = 6, M = 38, K = 25, D = 74, l = 37 !

Although I experimented with a number of direct optimisation methods that used

steepest descent, the most efficient implementation came from my favourite pet prob-

lem smasher, an MCMC approach using the Metropolis-Hastings (MH) “Good enough

while you sleep” algorithm[7].

For those who lack access to google, a summary of the MH algorithm is presented

here.

1. initialise params, cost, and anything else that it needs.

2. augment params with a small random increment; paramstar = params +

random.

3. evaluate coststar(paramstar).

4. perform evaluation cost/coststar < random(0, 1),

if true, params = paramstar, cost = coststar.
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5. loop over 2-4 until optimal condition is found.

Obviously, this routine will minimise the cost. Variants which maximise cost are

not too difficult to imagine. It is also customary to have a step to save the “best yet”

parameter set, as the chain can and does wander quite far from the optimal solu-

tion. One primary difficulty in setting up the MH algorithm is choice of appropriate

paramstar trials. In general some percentage change on the existing parameters is a

good way to regulate step size. For calculating Q, all the parameters are discrete, so

it’s not such a big issue. Similarly, the range of the random numbers used in step 4

can be modified, depending on how confident you are that local minima or maxima

do not present problems.

The largest non-triviality of any MH optimisation algorithm, however, is determin-

ing how to condense all the details down to a single cost. Experimentation revealed

that integration always worked better than differentiation, so my cost function fo-

cused on the first derivative operator as outlined above. To begin with, I calculated

the exact value of the function and first derivative of Gi(x) on the domain [0, 1] di-

vided into 6 to 12 (m to 2m) discretization points, forming two arrays comprising 324

function and derivative values on 42 different test domains. The FC derivative opera-

tor was applied to each of the 42 test domains and the largest absolute error returned,

forming the cost function. My reasoning was that the Gram polynomials formed a

natural basis on which to test the derivative operator, and that over-sampling them

was an efficient way of testing the accuracy of the algorithm for small numbers of

points. In general, the accuracy of the FC derivative operator is spectral within the

domain and m− 1th on the outer m boundary values[1], so smaller domains are more

likely to be problematic. It is also similar to the tests used within SpEC.

This cost function proved the most versatile of the variations I tried, and was

eventually minimised to O(10−9) for the largest error on the domain.

In general the optimiser was run until no further improvements occurred. The

number of steps taken to reach this level varies depending on the problem from tens
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to tens of millions. Fortunately the MH algorithm generalises to higher dimensional

parameter spaces very efficiently.

4 Multiple domains, sub-patches, optimised per-

formance

Parallisation is readily achieved within FC by subdividing the domain into separate

regions (not necessarily rectangular or even regular) and passing each domain to a

different processor. Boundary information is passed by ghost zones (not yet imple-

mented for FC in SpEC), in which the outer 3 points of any given subdomain are

drawn from the interior of an adjacent subdomain, to generate a “common” zone of

6 points. The passing of ghost zone point value information can be made efficient if

each axis is passed in turn. Other implementations use up to 12 points to accurately

transmit internal data. It is not known if SpEC requires that level of precision. It is

known that implicit time stepping lends greater stability to the evolution, permitting

narrower common volumes between subdomains.

According to analysis carried out in [1], extremely large domains on a single proces-

sor benefit from further subdivision into “sub-patches”. Appropriate implementation

of sub-patches is theorised to reduce the FC cost from O(N logN) per dimension to

O(N). Analysis suggests the maximum efficient size of a sub-patch domain with a

Q matrix of length 38 is 210 points. A 3D domain of linear length 210 is extremely

large for SpEC, however, so this will probably remain in the realm of speculation.

As in most spectral methods, higher dimensional application of the FC algorithm

performs derivatives along each axis sequentially. If filtering of the base data is

required, this sequential differentiation remains the most efficient way to implement

it.
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4.1 External and internal domain boundary conditions, over-

laps, etc

In SpEC, FC(6) is the only currently implemented form of the FC algorithm. Therefore

both external and internal (i.e., subdomain) boundaries are of length 6, though other

lengths appear in the literature. For boundaries, BCs are ideally satisfied by injection,

though currently SpEC uses Bjørhus conditions[3]. For internal domain boundaries,

information is carried across through the use of ghost zones, currently implemented

in the Hydro part of SpEC, but not tested with FC. In this case, the 3 point deep

outer most layer of each computational subdomain is extended with an exterior 3

point deep layer drawn from adjacent subdomains to ensure high accuracy near the

boundary.

5 Explicit time stepping? Implicit time stepping?

For explicit 4th order Adams-Bashforth (AB4) [2] time-stepping, [1] has shown a CFL

condition of ∆t = 0.136∆x. All indications are that 4th order Runge-Kutta (RK4)

explicit time-stepping is similar.

The CFL condition places a limit on the largest time step (and thus overall speed)

possible when simulating hyperbolic systems, based on the smallest spacing of collo-

cation points ∆xmin. As FC’s points are equidistantly spaced, the CFL condition is

optimal.

Chebyshev-Gauss-Lobatto (CGL) basis functions are a very popular, polynomial-

based spectral method. Like many polynomial-based spectral methods, CGL uses

unequally spaced points, so that ∆x ∝ N−2. As a result, for domains with large

numbers of points N , the CFL condition scales sub-optimally as N2, rather than

FC’s N .

This issue is addressed in SpEC by the use of lots of smaller subdomains. For larger

domains, these incur a developmental and computational overhead that favor the use
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of FC. For smaller domains, FC’s 26 extra spectral points consume computational

resources, disfavoring the method.

Although SpEC uses explicit RK4 time stepping, FC has been successfully demon-

strated with both implicit and explicit methods, and thus possesses the needed ver-

satility should the time stepping system be changed.

6 Conclusion – May 2015

Although the FC method is a powerful new method for solving PDEs, we found

that its principal strengths (low dispersion, stability, relaxed CFL condition) were

not strongly required for spectral CCE. In particular, spectral CCE did not require

a large radial domain. In comparison testing, we found CGL methods were more

accurate and no slower, and switched to using them for the remainder of the project.

References

[1] Albin, Nathan, and Oscar P. Bruno. A spectral FC solver for the compressible

Navier-Stokes equations in general domains I: Explicit time-stepping. Journal of

Computational Physics 230 (2011) pp. 6248-6270.

[2] Bashforth, Francis. An Attempt to test the Theories of Capillary Action by com-

paring the theoretical and measured forms of drops of fluid. With an explanation

of the method of integration employed in constructing the tables which give the

theoretical forms of such drops, by J. C. Adams. Cambridge University Press.

1883.

[3] Bjørhus, Morten. The ODE Formulation of Hyperbolic PDEs Discretized by the

Spectral Collocation Method. SIAM Journal of Scientific Computing 16 (3) (1995)

pp. 542-557.

154



[4] Chebyshev, Pafnuty. Sur l’interpolation. Zapiski Akademii Nauk 4 (1) (1864) pp.

539-560.

[5] Frigo, Matteo, and Steven G. Johnson. The design and implementation of

FFTW3. Proceedings of the IEEE 93 (2) (2005) pp. 216-231.

[6] Gram, Jørgen P. Ueber die Entwickelung reeller Functionen in Reihen mittelst der

Methode der kleinsten Quadrate. Journal f ur die reine und angewandte Mathe-

matik 94 (1883) pp. 41-73.

[7] Gregory, Phil. Bayesian Logical Data Analysis for the Physical Sciences. Cam-

bridge University Press. 2005.

155



=D

FINIS


	Acknowledgements
	Abstract
	List of Figures
	Statement of Originality
	Advisers
	What does this thesis contain?
	Chapter 1 – Gravitational waves?
	A general introduction
	A technical introduction

	Chapter 2 – Technical note on data presentation
	Chapter 3 – Characteristic evolution
	Chapter 4 – Gauge free Bondi news
	Chapter 5 – Strain, news, and flux
	Chapter 6 – Current Status of Spectral CCE Project
	Chapter 7 – Avenues of future research
	Appendix A – Fourier Continuation in SpEC

