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Abstract

Organismal development, homeostasis, and pathology are rooted in inherently prob-

abilistic events. From gene expression to cellular differentiation, rates and likelihoods

shape the form and function of biology. Processes ranging from growth to cancer

homeostasis to reprogramming of stem cells all require transitions between distinct

phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity

and dynamics with which such transitions occur is central to understanding natural

biological phenomena and is critical for therapeutic interventions.

While these processes may produce robust population-level behaviors, decisions

are made by individual cells. In certain circumstances, these minuscule computing

units effectively roll dice to determine their fate. And while the ‘omics’ era has

provided vast amounts of data on what these populations are doing en masse, the

behaviors of the underlying units of these processes get washed out in averages.

Therefore, in order to understand the behavior of a sample of cells, it is critical

to reveal how its underlying components, or mixture of cells in distinct states, each

contribute to the overall phenotype. As such, we must first define what states exist

in the population, determine what controls the stability of these states, and measure

in high dimensionality the dynamics with which these cells transition between states.

To address a specific example of this general problem, we investigate the hetero-

geneity and dynamics of mouse embryonic stem cells (mESCs). While a number of

reports have identified particular genes in ES cells that switch between ‘high’ and

‘low’ metastable expression states in culture, it remains unclear how levels of many

of these regulators combine to form states in transcriptional space. Using a method

called single molecule mRNA fluorescent in situ hybridization (smFISH), we quanti-
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tatively measure and fit distributions of core pluripotency regulators in single cells,

identifying a wide range of variabilities between genes, but each explained by a simple

model of bursty transcription. From this data, we also observed that strongly bimodal

genes appear to be co-expressed, effectively limiting the occupancy of transcriptional

space to two primary states across genes studied here. However, these states also

appear punctuated by the conditional expression of the most highly variable genes,

potentially defining smaller substates of pluripotency.

Having defined the transcriptional states, we next asked what might control their

stability or persistence. Surprisingly, we found that DNA methylation, a mark nor-

mally associated with irreversible developmental progression, was itself differentially

regulated between these two primary states. Furthermore, both acute or chronic in-

hibition of DNA methyltransferase activity led to reduced heterogeneity among the

population, suggesting that metastability can be modulated by this strong epigenetic

mark.

Finally, because understanding the dynamics of state transitions is fundamental

to a variety of biological problems, we sought to develop a high-throughput method

for the identification of cellular trajectories without the need for cell-line engineer-

ing. We achieved this by combining cell-lineage information gathered from time-lapse

microscopy with endpoint smFISH for measurements of final expression states. Ap-

plying a simple mathematical framework to these lineage-tree associated expression

states enables the inference of dynamic transitions. We apply our novel approach in

order to infer temporal sequences of events, quantitative switching rates, and network

topology among a set of ESC states.

Taken together, we identify distinct expression states in ES cells, gain fundamental

insight into how a strong epigenetic modifier enforces the stability of these states, and

develop and apply a new method for the identification of cellular trajectories using

scalable in situ readouts of cellular state.
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Chapter 1

Introduction

1.1 Cellular Specialization

From single-celled organisms operating in communities, to complex multi-cellular

creatures, a ubiquitous process is cellular specialization. Bacterial populations de-

velop specialized subsets that improve population fitness by aiding immune evasion,

environmental robustness, motility, and metabolic labor division all through non-

genetic variation [1–5]. In more complex organisms, stem cells in adult tissues are

tasked with producing progenies that must decide between distinct terminally dif-

ferentiated fates [6–11]. Defects in the fundamental regulatory processes underlying

these decision-making processes can lead to cancer [12–19]. As a result, understand-

ing how cells choose specific cellular states, the kinetics of these decision making

processes, and how these populations interact to ultimately control basic processes is

a central problem in modern biology and medicine.

In all of these contexts, cells move between phenotypic states that express unique

sets of proteins. In one of the simplest known examples, following infection of E.

coli, the bacteriophage lambda can decide to either enter a stable dormant state

(lysogenic) or begin to produce and release more phage following lysis of the cell

(lytic). Lyosgenic to lytic transitions are achieved through the downregulation of cI,

a repressor of lytic activity [20, 21]. Transitions between these states can be triggered

through environmental cues and cellular damage, but are also inherently stochastic.

In more complex systems, transitions between states is achieved by traveling along
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defined transcriptional trajectories [22, 23]. For example, during developmental tra-

jectories of higher organisms, precursor cells can act as common progenitors for mul-

tiple terminally differentiated fates by engaging distinct transcriptional programs [24,

25] (Figure 1A). Interconversion between cellular states also occur in pathology, nor-

mal tissue homeostasis, and state selection during adult stem cell differentiation.

Examples include hematopoiesis [26, 27]; cancer [12–19]; tissue maintenance in the

central nervous system [6, 11, 24, 28, 29], epithelial lining [8, 9], adipocytes [30], and

epidermis[10, 31]; wound healing [32, 33]; and diabetes [34], among others. These

programs are controlled by transcription factors in gene regulatory networks that

activate or repress target genes necessary to enter into and maintain these cellular

states [7, 24, 28]. Interactions within these networks determine the ultimate dynam-

ics and robustness of such state switching behaviors. In particular, the rates with

which such networks produce alternative states can directly impact tumor resistance

to therapy [13, 14], biofilm resistance to antibiotics [3], bacterial population fitness

under nutrient limitation [4], and tissue homeostasis [6, 9, 35]. Thus, it is a central

problem to gain a better understanding of how cells adopt unique phenotypic states,

identify genes or transcriptional programs that distinguish such phenotypic states,

and the rates with which these transitions occur.

In one specific example of cell-state transitions, Gupta et al. [13] began with a cell

line derived from primary breast cancer tissue in which the existence of three states

had been identified on the basis of distinct gene expression profiles: basal, luminal,

and stem-like. Furthermore, live cells in each of these states could be separated by

FACS using a unique set of cell-surface proteins. By isolating and re-plating each of

these subpopulations, they were able to demonstrate that each individual type was

capable of returning to an equilibrium comprised of all three cell states. Critically,

these experiments demonstrated that differentiated cells were capable of giving rise

to stem-like cells. This data was consistent with a simple Markovian process wherein

a cell’s next transition rate depended only upon its current state. Significantly, these

experiments show that therapeutics targeting any single cell state would not be able

to eradicate the tumor.
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Further demonstrating the significance of cell states in cancer, Leder et al. [14]

showed how knowledge of cell states in a glioblastoma (GBM) could be leveraged to

improve cancer therapy. They began by modeling metastability between two pheno-

types characterized by either a stem-like quiescent radiation-resistant state, as well as

a differentiated radiation-sensitive state. These mathematical models were combined

with radiation treatment of an in vivo mouse GBM used to tune the model, as well

as to demonstrate efficacy. Through combined theoretical and experimental work,

they identified a dosing schedule that effectively limited the growth rate of the overall

tumor. This was achieved by matching the treatment schedule to the dynamics of

cellular interconversion, in order to maximize the number of quiescent cells. Thus,

defining states using gene expression and phenotypic behavior is necessary in order to

construct models of dynamic state transitions that can ultimately produce effective

therapies.

1.2 Transcriptional noise and dynamics of activa-

tion complicate the identification of states

To begin, we must know what states exist within a heterogeneous population of cells.

Averaging over a mixed population of cells would blur the differences between states,

precluding the ability to readily identify a transcriptional program. The readout of

‘states’ must therefore be performed at the level of the individual cell (Figure 1B,

top) [36, 37]. Additionally, even though single-cell readouts of static measurements

can enable the identification of what states exist in a population, distinct regimes

of dynamics could each give rise to the same equilibrium distribution, and this is a

problem we will also seek to address.

The readout of cellular state is complicated by the fundamentally noisy process

of transcription. mRNA is produced sporadically in short bursts whose initiation

is intrinsically random. Such stochasticity can lead to large cell-to-cell variation,

resulting in a distribution of transcript counts among otherwise identical cells. Under
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certain assumptions, these distributions can often be modeled using a gamma or

negative binomial distribution [38–47]. The effects of this bursty expression can in

some cases be buffered by slower degradation rates of its protein. In other instances

however, noisiness in expression can also trigger transitions between cellular states

[4, 48–52]. Thus, transcriptional noise can make the identification of cellular states a

challenging experimental problem.

In addition to the stochastic nature of transcription, cells can also behave proba-

bilistically as a function of environmental cues. For example, when cells respond to

TNFα through the activation of NF-κB, individual cells do not respond more strongly

to increasing ligand concentrations; instead, the fraction of activated cells increases

[53]. This again would confound results gathered from population level statistics such

as bulk time-point assays.

1.3 Current methods for measuring dynamics

Once transcriptional states are identified within a population, there are several com-

mon methods to measure dynamics. There are a class of techniques that can obtain

phenotypic state information at the single-cell level (through, for example, single-cell

RNA-seq, qPCR, and flow cytometry), but are unable to follow the same cell over

time. The lack of single cell histories prevent incorporation of lineage or spatial re-

latedness, limiting the application of these techniques to cases where a perturbation

must be triggered at the beginning of the experiment. Therefore, these cannot address

transition events that occur during equilibrium or homeostasis.

Another way to measure gene expression dynamics across multiple divisions in

single cells is through the use of quantitative time-lapse microscopy with knock-in

reporters. Time-lapse microscopy has provided a powerful means of exploring the

temporal dynamics of gene expression and cellular decision-making among individual

cells, and through in vivo lineage tracking [10, 31, 54]. In these examples, however,

the target genes were identified a priori and required cell- or mouse-line construction.

Thus, they are limited by availability of spectrally distinct fluorescent proteins, time-
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consuming and potentially perturbing reporter engineering, invasive imaging, and

pre-existing knowledge of genes of interest.

Alternatively, transition rates can be measured through the isolation of sub-

populations via fluorescence-activated cell sorting (FACS), followed by growth where

the cells are allowed to re-equilibrate [13, 52, 55]. However, cell transition events may

not be purely stochastic, and may additionally rely on signaling interactions among

cellular sub-populations. As a result, destroying the native context of the sample may

inherently lead to transition rates that are biased. In the context of cancer therapeu-

tics, this may be a significant limitation as the in vivo dynamics underlying tumor

repopulation of heterogeneity following treatment may vary from what is observed

from purified populations.

A recent single-cell sequencing approach takes advantage of somatic mutations

to identify related cells, and maps their topology throughout the brain [56]. If this

technique can be expanded to confer higher resolution of cellular lineages, and be

coupled to high-throughput mRNA quantification, our new method as presented in

Chapter 3 could also be performed on in vivo samples directly, and yield deep insight

into dynamics within whole tissues.

1.4 Embryonic stem cells provide an ideal model

system for studying metastability

In order to develop and demonstrate tools to better quantitatively analyze hetero-

geneous populations, we require a system where functional heterogeneity of single

components have been demonstrated to occur naturally in vitro without external

perturbations (Figure 1C). As such, we take advantage of mouse embryonic stem

cells (mESCs, or ESCs) wherein a number genes studied individually have appeared

heterogeneous under constant, standard growth conditions, and demonstrated inter-

conversion between purified subpopulations. Furthermore, this variability has been

shown to be functional, with effects on self-renewal and propensities to differenti-
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ate into distinct lineages [55, 57–62]. Despite this deep literature, however, clear

definitions of the underlying transcriptional states in multidimensional space, what

contributes to state stability, or the trajectories along which cells move during tran-

sitions remain unresolved.

ESC are defined as the outgrowth of the inner cell mass (ICM) in culture from

E3.5 embyros. When grown in serum and LIF, a number of genes including Tbx3,

Rex1, Dppa3, Nanog, Prdm14, Pecam1, SSEA1, and Hex, appear highly variable, and

are associated with specific, although sometimes redundant, differentiation propensi-

ties [55, 58–65]. For example, starting with a frequently used marker of pluripotency,

Rex1, Toyooka et al [60] sorted high- and low-Rex1 cells using a knockin reporter

and performed subpopulation qPCR. These experiments revealed that the ‘low’ cells

expressed increased levels of Fgf5 and Sox17, markers of epiblast-like cells, corre-

sponding to a slightly later stage of development than the ICM. Conversely, the

Rex1-high cells appeared to express comparatively higher levels of other genes asso-

ciated with pluripotency such as Nanog, Tcl1, Tbx3, Klf4, and Dppa3. Functionally,

using a non-FACS-based system to select highly purified positive and negative states

of Rex1, they demonstrated that, under differentiation conditions, Rex1-lows were

much more efficient at differentiation into both mesendoderm and neuroectoderm

than Rex1-highs. Significantly, both of these subpopulations showed the ability to

interconvert between one another, re-equilibrating over the timescale of days.

At the same time as this study, Hayashi et al [58] also reported similar findings

for a different gene called Dppa3 (or Stella). Intriguingly, they also concluded that

Dppa3-low cells appeared closer to epiblast than ICM, were more likely to express

Fgf5 and were lower in Rex1, Nanog, and other pluripotency associated genes than

Dppa3-high sorted cells. They also demonstrated that Dppa3-low cells were more

readily differentiated into neural cells than Dppa3-high cells. To explore the dynam-

ics of these states, they also purified subpopulations and observed re-equilibration

over the timescale of days, but also noticed a difference in plating efficiency between

subpopulations after sorting; this is significant, as it may suggest that rates of in-

terconversion and viability are dependent on context, and that studying dynamics
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under perturbed conditions may be different than those under equilibrium, especially

if subpopulations communicate with one another [66].

Another example of phenotypic stem cell heterogeneity is the surprising sponta-

neous entrance of ESCs into the so-called 2-cell (2C)-embryonic state. Developmen-

tally, the 2C state is characterized by a major shift towards Zygotic Genome Activa-

tion (ZGA), where the embryo begins to produce transcripts from its own genome, as

opposed to using those inherited maternally. At this stage of development, cells are

totipotent, capable of giving rise to extraembyronic lineages in addition to all three

germ layers. One of the most specific transcriptional markers of this state is known

as Zscan4, which is only expressed in 2C cells [67] and sporadically in 5% of ESCs at

any given time [57, 68].

Zscan4 is a set of nine paralogous genes in a subtelomeric cluster on Chromosome

7. It contains a SCAN domain that mediates self-association and heterodimerization

with other SCAN-domain-containing proteins [69]. Zscan4 also has a series of four

zinc-fingers, likely enabling specific DNA binding [67]. Perturbations to Zscan4 at this

stage of development lead to delayed division and failure to implant [67]. Mechanistic

studies of Zscan4 have demonstrated a connection to telomere extension by rapid in-

duction of telomeric sister chromatid exchange; maintenance of genome integrity and

euploidy; and prevention of culture crisis [68]. This state, as marked by Zscan4 expres-

sion, is also associated with the strong upregulation of endogenous retrovirus activity,

specifically murine endogenous retrovirus with leucine tRNA primer (MuERV-L) [57].

As these MuERV-L elements were strongly correlated with Zscan4, Macfarlan et

al [57] developed a live-cell reporter using MuERV-L regulatory elements in order

to separate populations demonstrating this retrotransposon activity. Doing so, they

found that 50% of cells displaying high levels of activity quickly shut down MuERV-L

activity with 24 hours, indicating a relatively short state half-life [57]. Additionally,

Zalzman et al [68] learned using a Zscan4 reporter that almost every cell in culture can

pass through this state at least once in nine days. Furthermore, they demonstrated the

unique ability for these 2C-like cells isolated in culture to contribute to extraembryonic

lineages [57], whereas negative cells contributed only to ICM. Thus, much like was
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demonstrated for Rex1 and Dppa3, Zscan4 displays phenotypic differences between

metastable states.

Intriguingly, because Zscan4 is located in a subtelomeric region compacted by high

levels of DNA and histone methylation, it may exhibit ‘telomere position effect’. It

was postulated that as a result, these loci may be tightly controlled epigenetically, and

be susceptible to demethylating perturbations [70]. Indeed, treatment with histone

or DNA methylation inhibitors increased the fraction of cells found to be expressing

Zscan4 [70]. Furthermore, evidence of a positive feedback loop for Zscan4 has also

been identified [71]. Therefore, regulators of chromatin modifications may influence

the entry into, or stability of, these metastable states.

This was made all the more plausible by a recent connection to another hetero-

geneously expressed gene, Tbx3, which acts as an activator of Zscan4 [71]. Tbx3

is a transcription factor shown to be heterogeneously expressed [63, 72], associated

with maintenance of pluripotency [63, 73] and represses ectoderm differentiation [66,

74]. One way in which Tbx3 is thought to assist in maintenance of pluripotency is

through the upregulation of Nanog via cross-activation of PI(3)K from LIF signal-

ing [63]. Further evidence of the strong interconnectivity of the network underlying

pluripotency is Tbx3’s direct repression of de novo DNA methyltransferase Dnmt3b,

which can lead to a slight increase in the fraction of cells expressing 2C-like genes

such as Zscan4, as well as elongated telomeres [71]. Thus, as the known network of

heterogeneous regulators grows increasingly complex, so do the apparent interactions.

There are paradoxical reports that overexpression of pluripotency regulators can

also lead to differentiation. For example, it was reported that while loss of Tbx3

can lead to differentiation towards ectoderm and trophectoderm differentiation [74],

overexpression of Tbx3 can actually lead to activation of Gatat6 and differentiation

into primitive endoderm [74]. As a result, it appears that Tbx3 dosage must be

tightly controlled in order to maintain pluripotency; this unusual ‘dual role’ behavior

has also been observed for several pluripotency genes in mouse ESCs including Oct4

and Sox2 [75–79].

As a result, it becomes even more clear that knowing the relative expression levels
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of genes within individual cells is crucial to understanding decision making in ESCs.

The literature also provides evidence that multiple genes, each studied individually,

can represent highly similar phenotypes and dynamics, suggesting that a higher-

dimensional analysis is first necessary to address specifically what states exist among

population, whether these genes might represent overlapping substates, and how to

resolve differences between these states and other known states, such as EpiSCs [80,

81].

Efforts to gain a systems-level understanding of ES cells have used a variety of

measurement techniques such as chromatin immunoprecipitation sequencing (ChIP-

Seq), bulk RNA-seq, gain- and loss-of function perturbation, mathematical modeling,

and small-sample sized analyses of single cells by RNA-seq and qPCR [65, 73, 82–85].

These analyses have primarily led to the identification of novel stem cell regulators,

highlighted the complexity and interconnectivity of the underlying machinery, and

have postulated how dynamics might arise from known physical regulatory interac-

tions.

However, several questions remain unanswered. First, how can we distinguish

states of gene expression from noise in transcription? Because production of mRNA

is inherently a stochastic processes, it is best characterized by its distribution [86–88].

Fitting quantitative models of transcription to distributions requires a large number

of cells, but can enable the disambiguation of states from noise (Chapter 2). Second,

in high-dimensional space, it is unclear what trajectories are taken through state space

under natural, unperturbed conditions at equilibrium. This is critical, as the study

of cell transitions frequently occur at equilibrium in order to maintain homeostasis,

and as such, applying a forced external perturbation may yield systematically biased

rates. Here, building on a rich literature of previously identified functional hetero-

geneity, interactions between pluripotency regulators, and the importance of several

signaling pathways in ESCs, we aim to construct states of pluripotency that appear

in culture using a unified experimental and quantitative context, as well as to reveal

the dynamics of transitions between these states.
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1.5 How can we improve the identification of tran-

scriptional states and their transition rates?

While individual genes in ES cells have been show to be heterogeneous (Figure 1C), it

is not known how these combine in a high-dimensional transcriptional space to define

cellular states. This is critical as individual genes do not act alone, but operate within

a complex regulatory network.

A truly direct, quantitative, and high-dimensional investigation of stem cell het-

erogeneity across many hundreds to thousands of cells could yield mRNA distributions

that provide insight into transcriptional kinetics, as well as the relationships between

genes. Additionally, a method that can be performed directly on unperturbed samples

could provide information about spatial context, local signaling, clonal expansion, and

more. Furthermore, the use of popular sequencing approaches can introduce strong

technical noise such as amplification bias [89]. Thus, we propose using a technique

known as ‘single molecule mRNA fluorescence in situ hybridization’, abbreviated here

as smFISH [38, 87, 90], to address these difficulties. Not only does this approach en-

able the collection of large sample sizes directly without nucleic acid amplification

(Figure 2A), it can also be performed in an intact specimen, where the spatial infor-

mation of the sample can provide further insight into the tissues’ behavior.

While static distributions begin to provide insight into the occupancy of tran-

scriptional state space, it cannot reveal the dynamics of gene expression or cellular

state transitions. Excitingly, we demonstrate that simply adding on top of these

measurements the relatedness of cells can reveal insight into the dynamics underly-

ing the distribution. To take advantage of this, we use a combination of time-lapse

movies tracking cells across multiple generations (Figure 2B), followed by end-point

single-cell measurements [91–93] in the spatially unperturbed sample (Figure 2C).

Generally, these can encompass smFISH, immunostaining, morphological parameters,

or any imaging-based in situ single cell readout. Using this method, we demonstrate

the ability to infer transition rates and network topology connecting expression states

across many generations [94]. Overlaying static gene-expression or phenotype data
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on lineage trees in situ provides a powerful, scalable platform to identify novel, high-

dimensional dynamics in systems ranging from cell culture to model organisms.

1.6 How do cells implement state stability?

In addition to estimating the rates of transition between states, it is important to

understand the sources that drive and resist transitions. Thus, the mechanisms that

control the stability of states and generate transitions among them are areas of in-

terest for both therapeutics and basic biology. In stem cells, signaling pathways [95,

96] and epigenetic regulatory systems [97] have been shown to play key roles in these

processes. A particular epigenetic modification, DNA methylation (which is found in

most plant, animal and fungal systems [98]) is particularly stable and heritable over

long time periods [99]. As a result, in the context of cell state transitions, this modifi-

cation is frequently studied in major unidirectional developmental changes [100–103].

The recent discovery of Tet hydroxymethylases [104] opens up the possibility that

methylation could be regulated in a dynamic fashion on faster timescales than are

usually considered. However, it has remained unclear what role methylation plays in

reversible state-switching events.

mESCs here also provide an ideal model system to address this question. They

switch stochastically between metastable states in standard growth conditions. More-

over, expression of enzymes that regulate DNA methylation, as well as overall methy-

lation levels themselves, is strongly affected by media that remove this heterogeneity,

such as culture under the signaling-perturbing ‘2i’ media [105, 106]. Conversely, re-

ducing the expression of Tet hydroxymethylases leads to decreased expression of the

pluripotency regulator Nanog [107, 108], but this point has also been debated [109].

Furthermore, while the role of methylation in ES cells has previously been explored

[102, 110], the ES cell population has generally been treated as a homogenous popu-

lation, potentially obscuring how methylation might be regulated or necessary for the

reported heterogeneity [58, 60, 62]. Together, there exists the possibility that dynamic

changes in DNA methylation might be involved with state switching in metastable
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mouse ES cells. To test this possibility, it is necessary to determine the extent to

which DNA methylation varies between states, the timescale over which methylation

levels respond to state-switching events, and the causal role of DNA methyltrans-

ferases and Tet hydroxymethylases in controlling transitions between states. These

questions are addressed in Chapter 2.

Together, using mouse ES cells, we attempt to ask how noise and distinct gene

expression states together give rise to heterogeneity observed in ES cells, how cells

stabilize the resulting expression states, and how we can identify the rates of transition

and trajectories between these characterized states.
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1.7 Figures
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Figure 1.1: Examples of phenotypic state switching
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(A) A cartoon schematic of a developing embryo from zygote to fully developed brain.

The lineage tree (right) shows how an early progenitor (depicted in white) may later

choose between two alternate fates (neuron or glia, in orange and blue). (B) A ‘tube’

of cells may, as a bulk average, appear purple leading one to assume that all cells

in the tube are purple. Closer examination would reveal that the purple-appearing

tube is made up of a combination of blue and red cells. The single-cell distribution of

half red and half blue cells can, in turn, be generated from two different underlying

dynamical models: one with fast switching between blue and red, and one with slow

switching between blue and red. (C) ESCs show homogeneous antibody stains for

Oct4 expression (red), but heterogeneous Nanog (green). Image by Fred Tan.
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(A) Protocol for application of smFISH; probes are mixed with cells in suspension

and spotted onto a slide at low density for imaging. Resulting transcripts will appear

as single, diffraction limited dots. (B) Schematic for knock-in reporter creation for use

in time-lapse microscopy. (C) Proposed fusion of time-lapse with endpoint smFISH

to connect terminal transcriptional state with lineage information.
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4. Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. An excitable
gene regulatory circuit induces transient cellular differentiation. Nature (2006)
(cit. on pp. 1, 2, 4).

5. Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and
biological noise: from microbes to mammals. Cell (2011) (cit. on p. 1).

6. Sakamoto, M. et al. Continuous neurogenesis in the adult forebrain is required
for innate olfactory responses. Proc Natl Acad Sci USA (2011) (cit. on pp. 1,
2).

7. Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and func-
tional integrity of the adult forebrain. Nat Neurosci (2008) (cit. on pp. 1, 2).

8. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis
and regeneration. Nat Rev Mol Cell Biol (2014) (cit. on pp. 1, 2).

9. Leushacke, M. & Barker, N. Lgr5 and Lgr6 as markers to study adult stem cell
roles in self-renewal and cancer. Oncogene (2012) (cit. on pp. 1, 2).

10. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as
a determinant of stem-cell fate. Nature (2013) (cit. on pp. 1, 2, 4).
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Chapter 2

Dynamic Heterogeneity and DNA
Methylation in Embryonic Stem
Cells

2.1 Summary

Cell populations can be strikingly heterogeneous, composed of multiple cellular states,

each exhibiting stochastic noise in its gene expression. A major challenge is to dis-

entangle these two types of variability, and to understand the dynamic processes

and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal

model system to address this issue because they exhibit heterogeneous and dynamic

expression of functionally important regulatory factors. We analyzed gene expres-

sion in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse

movies. These data discriminated stochastic switching between two coherent (corre-

lated) gene expression states and burst-like transcriptional noise. We further showed

that the ‘2i’ signaling pathway inhibitors modulate both types of variation. Finally,

we found that DNA methylation plays a key role in maintaining these metastable

states. Together, these results show how ESC gene expression states and dynamics

arise from a combination of intrinsic noise, coherent cellular states, and epigenetic

regulation.
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2.2 Introduction

Many cell populations appear to consist of mixtures of cells in distinct cellular states.

In fact, interconversion between states has been shown to underlie processes ranging

from adult stem cell niche control [1, 2] to bacterial fitness [3] and cancer development

[4]. A central challenge is to identify transcriptional states, along with the mechanisms

that control their stability and generate transitions among them.

Single-cell transcriptional studies have revealed substantial gene expression het-

erogeneity in stem cells [5–9]. Moreover, subpopulations expressing different levels

of Nanog, Rex1, Dppa3, or Prdm14 show functional biases in their differentiation

propensity [10–13]. This heterogeneity could in principle arise from stochastic fluc-

tuations, or ‘noise’, in gene expression [14–16]. Alternatively, it could reflect the

coexistence of multiple cellular states, each with a distinct gene expression pattern

showing correlation between a set of genes [4, 8, 17, 18]. Disentangling these two

sources of variation is important for interpreting the transcriptional states of individ-

ual cells and understanding stem cell dynamics.

A related challenge is to understand the mechanisms that stabilize cellular states

despite noise. DNA methylation has been shown to be heritable over many genera-

tions, is critical for normal development [19], and may help stabilize irreversible cell

fate transitions [20–23]. However, the role of DNA methylation in the reversible cell

state transitions that underlie equilibrium population heterogeneity has been much

less studied [24, 25]. Recently, it was reported that exposing ES cells to inhibitors

of MEK and GSK3$beta (called 2i) abolishes heterogeneity and induces a ‘naive’

pluripotent state [26, 27] with reduced methylation [28–30]. However, a causal role

linking methylation, heterogeneity, and 2i remains to be elucidated.

Together, these observations provoke several fundamental questions: First, how do

noise and states together determine the distribution of expression levels of individual

regulatory genes (Fig. 1A)? Second, how do gene expression levels vary dynamically

in individual cells, both within a state and during transitions between states (Fig.

1B)? Finally, how do cells stabilize metastable gene expression states, and what role
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does DNA methylation play in this process?

Using single-molecule RNA-FISH (smFISH), we analyzed the structure of hetero-

geneity in the expression of key cell fate regulators, finding that distinct cell states

account for most variation in some genes, while others are dominated by stochastic

bursts. Using time-lapse movies of individual cells, we observed abrupt, step-like

dynamics due to cell state transitions and transcriptional bursts. Finally, using per-

turbations, we observed that DNA methylation modulates the population fraction of

cells in the two states, consistent with reciprocal expression of the methyltransferase

Dnmt3b and the hydroxymethylase Tet1. Together, these results suggest how noise,

dynamics, and epigenetic regulatory mechanisms contribute together to the overall

distribution of gene expression states in stem cell populations.

2.3 Results

2.3.1 Mouse ESCs show three distinct types of gene expres-

sion distributions

The process of mRNA transcription is inherently stochastic. As a result, even a clonal

cell population in a single state is expected to display variability in the copy number of

each mRNA [31–39], potentially leading to phenotypic differences between otherwise

identical cells [3, 40–43]. In order to accurately measure mRNA copy numbers in

large numbers of individual ESCs, we developed an automated platform for smFISH

(Supp. Info.). This system enables rapid analysis of four genes per cell across 400

cells per sample (Figs. 6A-D). We validated the system by comparing three measures

of expression of the same gene in the same cells using a Rex1-dGFP reporter line [44]

(Fig. 6E).

Using this platform, we analyzed 36 pluripotency associated regulators that play

critical roles in ESCs or are heterogeneously expressed, as well as several markers of

early cell fates and housekeeping genes. The resulting mRNA distributions exhibited

a range of distribution shapes and degrees of heterogeneity (Fig. 2A). We analyzed
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these distributions within the framework of bursty transcriptional dynamics. In this

model, mRNA production occurs in stochastic bursts that are brief compared to the

mean inter-burst interval, and are exponentially distributed in size. Bursty dynam-

ics produce negative binomial (NB) mRNA distributions [37, 45], whose shape is

determined by the frequency and mean size of bursts.

Genes exhibited three qualitatively distinct types of mRNA distributions. First,

most genes were unimodal and well-fit by a single NB distribution (Figs. 2B & 7A,

maximum-likelihood estimation (MLE), χ2 Goodness of Fit (GOF) test p¿0.05). This

class included Oct4, Rest, Tcf3, Smarcc1, Sall4, and Zfp281. Coefficients of variation

(CV) were typically 0.5 for the most homogeneous genes (Fig. 2A).

Second, a subset of unimodal genes exhibited “long-tailed” distributions, in which

most cells had few, if any, transcripts, while a small number of cells displayed many

transcripts. These distributions were also well fit by a single NB distribution, but

with resulting distributions that generally decreased monotonically with increasing

mRNA concentration (Figs. 2B & 7A, χ2 G.O.F. p¿0.05). The most heterogeneous

long-tailed genes had burst frequencies of less than one burst per mRNA half-life.

These included Tbx3 (CV=2.13±0.23, mean±s.e.m.), Dppa3 (CV=1.76±0.31), and

Prdm14 (CV=1.599±0.20). Other long-tailed genes such as Pecam1, Klf4, Blimp1,

Socs3, Nr0b1, and Fgfr2 had higher burst frequencies and less skew. Long-tailed

genes arising from rare bursts could provide a source of stochastic variation that

could propagate to downstream genes.

Third, there were some genes whose mRNA distributions were significantly better

fit by a linear combination of two NB distributions than by one (Supp. Info., Akaike’s

Information Criteria (AIC) and log-likelihood ratio test, p¡0.05). These genes included

Rex1, Nanog, Esrrb, Tet1, Fgf4, Sox2, Tcl1, and Lifr (Figs. 2B & 7A). In some cases,

the two components of these distributions were well separated from one another (e.g.,

Rex1 and Esrrb), while in other cases they overlapped strongly (e.g., Nanog and Lifr),

such that the absolute number of transcripts for a single gene did not accurately

indicate to which state the cell belonged. These bimodal distributions suggested the

existence of multiple cell states (see below).
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Markers of most differentiated fates including Pax6 (neuroectoderm), Fgf5 (epi-

blast), Sox17 and FoxA2 (definitive endoderm), and Gata6 (primitive endoderm)

showed no detectable expression (data not shown). However, the mesendodermal reg-

ulator Brachyury (T) was expressed at a level of 5-20 transcripts in 6% of Rex1-low

cells. Similarly, the two-cell-like state marker Zscan4c [46] showed 3-60 transcripts

in 3% of cells (Fig. 7A). These genes did not fit well to NB distributions, suggest-

ing that processes other than transcriptional bursting impact their expression in this

small fraction of cells.

2.3.2 Bimodal genes vary coherently

We next used the smFISH data to determine whether the bimodal genes were cor-

related, which would suggest their control by a single pair of distinct cell states,

or varied independently, which would suggest a multiplicity of states. The data re-

vealed a cluster of bimodal genes that correlated with one another. Rex1, Nanog,

and Esrrb displayed the strongest correlations (r≈0.7, Figs. 2C, 7B), while genes

with strong overlap between modes, such as Tcl1, Lifr, Sox2, and Tet1, displayed

somewhat weaker, but still significant, correlations (r≈0.5, Fig. 2C, 7B), beyond

those observed between bimodal and non-bimodal genes (e.g., r=0.2 for Rex1 and

Oct4). Thus, a cell in the high or low expression state of one bimodal gene is likely to

be in the corresponding expression state of others. Some correlations were negative:

expression of the de novo methyltransferase Dnmt3b was reduced in the Rex1-high

state (r=-0.46, Fig. 2C). Note that cell cycle effects did not explain these correlations

(Fig. 7C). Together, these data suggest that bimodal genes appear to be broadly

co-regulated in two distinct states.

Long-tailed genes exhibited more complex relationships. Those with very large

variation (CV¿1.5) were correlated with the expression state of the bimodal gene

cluster, but not with one another (Fig. 2C, 2D, 7B). For example, genes like Dppa3,

Tbx3, and Prdm14 burst predominantly in the Rex1-high state, but even in this state,

most cells showed no transcripts of these genes (p¡0.001, see Supp. Info. for statistical
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analysis). Thus, it appears that these genes are expressed in infrequent, stochastic

bursts that occur mainly in one of the two cellular states.

Interestingly, expression of Socs3, a negative regulator and direct target of Stat

signaling [47], appeared conditional on expression of its bimodally expressed receptor

Lifr (note absence of Socs3 expression in low Lifr cells in Fig. 7B). Analysis of addi-

tional regulators not measured here could in principle reveal additional states or more

complex distributions. Overall, however, the multi-dimensional mRNA distributions

measured here are consistent with a simple picture based on two primary states and

stochastic bursting.

2.3.3 The two primary states exhibit distinct DNA methy-

lation profiles

These data contained an intriguing relationship between three factors involved in

DNA methylation: the de novo methyltransferase Dnmt3b, the hydroxylase Tet1,

which has been implicated in removing methylation [48–51], and Prdm14, which

represses expression of Dnmt3b [13, 30, 52, 53]. While Rex1 was anticorrelated with

Dnmt3b expression, and positively correlated with Tet1 (Fig. 3A), Prdm14 showed a

long-tailed distribution conditioned on the Rex1-high state (Fig. 2D). Based on these

relationships and the observation that methylation increases during early development

[54], we hypothesized that the Rex1-low state might exhibit increased methylation

compared to the Rex1 -high state.

To test this hypothesis, we sorted Rex1-high and -low cells using the Rex1-dGFP

reporter line, and performed locus-specific bisulfite sequencing at known targets of

methylation Dazl, Mael, and Sycp3 [55] (Figs. 3B, 8A,B). These promoters exhibited

2-3 times greater methylation in Rex1-low cells compared to Rex1-high cells, indi-

cating that the two states are differentially methylated in at least some genes. In

contrast, Rex1-low cells that subsequently reverted to the Rex1-high state recovered

the methylation levels of Rex1-high cells, indicating that methylation is reversible.

Similarly, quantitative ELISA analysis demonstrated both differential methylation
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and reversibility in global methylation levels (Fig. 3C).

We next asked more generally which genes exhibited differential promoter methy-

lation. We again sorted Rex1-high and -low cells and assayed DNA methylation

by Reduced Representation Bisulfite Sequencing analysis (RRBS), analysing regions

2kb upstream to 500bp downstream of each ESC-expressed mRNA transcriptional

start site [26, 54]. The distributions of methylation levels across genes were bimodal

in both Rex1 states, with the more highly methylated peak shifted to even higher

methylation levels in Rex1-low cells (Fig. 3D). By analyzing the shift in methylation

on a gene by gene basis, we found that the increase in methylation in Rex1-low cells

occurred predominantly through increased methylation of the promoters that were

more highly methylated in Rex1-high cells (Figs. 3E, 8C). Thus, the change in pro-

moter methylation occurs in a specific subset of promoters. Furthermore, the overall

methylation level of a gene was related to the number of CpGs in its promoter, such

that the larger the CpG content of a promoter, the lower its methylation in both

states. Not all gene promoters were well covered by RRBS. However, among those

that were, several key ES regulators including Esrrb, Tet1, and Tcl1 all showed in-

creased levels of methylation in the Rex1 -low state. Figs. 3E (inset) and 8C show

methylation levels of individual CpGs for 17 gene promoters. These results provide

a view of the change in promoter methylation that occurs during transitions between

the Rex1-high and -low states.

2.3.4 Bursty transcription generates dynamic fluctuations in

individual cells

Evidently, cells populate two transcriptional states, each characterized by distinct

methylation profiles. To understand the dynamic changes in gene expression that

occur as individual cells switch between these states, we turned to time-lapse mi-

croscopy. We analyzed transcriptional reporter cell lines for Nanog and Oct4, each

containing a histone 2B (H2B)-tagged fluorophore expressed under the control of the

corresponding promoter (Figs. 9A & B; see also Supp. Info.). We imaged the reporter



32

cell lines for 50-hour periods with 15-minute intervals between frames, and segmented

and tracked individual cells over time in the resulting image sequences. For each cell

lineage, we quantified the instantaneous reporter production rate, defined as the rate

of increase of total fluorescent protein in the cell, and corrected for the partitioning

of fluorescent protein into daughter cells during cell division (Supp. Info.). The H2B-

fluorescent protein degradation rate is negligible under these conditions (Fig. 9C),

enabling us to use the reporter production rate as a measure of instantaneous mRNA

level. An advantage of this approach is that it provides relatively strong fluorescence

signals per cell, but still enables high time resolution analysis (Locke et al., 2009).

Consistent with static smFISH distributions, the production rate distributions of the

Nanog and Oct4 fluorescent reporters were bimodal and unimodal, respectively (Fig.

4A).

Dynamically, cells remained in either one of two distinct Nanog expression states

for multiple cell cycles (Fig. 4B). During these periods, expression levels varied over

the full range of Nanog expression levels within each state, with no evidence for

persistent sub-states. However, closer examination revealed fluctuations within a

single state, which typically occurred in discrete steps separated by periods of steady

expression (Fig. 4C). Using a computational step detection algorithm (Fig. 9D, Supp.

Info.), we found that Nanog and Oct4 reporters exhibited 0.38 and 0.29 steps per cell

cycle, respectively. These steps occurred in a cell cycle phase-dependent manner (Fig.

4D), with down-steps clustered around cell division events and up-steps more broadly

distributed across cell cycle phases.

Could these step-like dynamics arise simply from transcriptional bursting? To

address this question, we simulated single cell mRNA and protein traces using the

bursty transcription model, with parameters determined from the NB fits of the static

mRNA distributions (Supp. Info.). These simulations generated dynamic traces

resembling those observed experimentally (Figs. 4E, 9E). In the simulations, mRNA

half-life and burst frequency determine the characteristics of detectable steps (Fig.

9F); in general, steps were most prominent at low burst frequencies and short mRNA

half-lives, and became difficult to discriminate at high burst frequencies and long
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mRNA half-lives.

Step-like dynamics appear to be a natural consequence of stochastic expression,

with up-steps reflecting burst-like production of mRNA, and down-steps resulting

from 2-fold reduction in mRNA copy number at cell division (Fig. 9G). This inter-

pretation is consistent with the observed clustering of down-steps around cell division

events, and a more uniform cell cycle distribution of up-steps (Fig. 4D). Because

large bursts can effectively cancel out mRNA dilution at cell division events, they

may appear under-represented near cell division events. Note that most cell cycles

showed no up-steps, suggesting that they are not due to increased gene dosage after

chromosome replication [Brewster:2014ez, 56].

2.3.5 Dynamic transitions between cellular states

We next asked how cells transition dynamically between states. Previous work has

relied on cell sorting, which can distort the signaling environments. By contrast,

movies enable direct observation of switching events within a mixed cell population.

Since the Nanog reporter production rate fluctuates even within a single state, we

used a Hidden Markov Model (HMM) to classify each cell into either Nanog-high or

Nanog-low at every point in time (Supp. Info.). We trained the HMM using time-

series data of Nanog reporter production rates, sampled at fixed intervals across all

tracked cell cycles, and used it to identify switching events and estimate switching

frequencies.

Transitions from the Nanog-low to the Nanog-high state, or vice versa, occurred

at a rate of 2.3 ± 0.25, or 7.9 ± 1.2, transitions per 100 cell cycles (mean ± SD),

respectively (Figs. 4F & G). These events did not correlate between sister cells

(Table 1), consistent with independent, stochastic events. Inter-state switching on

average showed bigger and longer-lasting fold-changes than intra-state steps in pro-

duction rates (Fig. 9H). Together, these results suggest that gene expression dynamics

are dominated by a combination of step-like changes due to bursty transcription on

shorter timescales, and abrupt, apparently stochastic inter-state switching events on
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longer timescales.

2.3.6 ‘2i’ inhibitors modulate bursty transcription and state-

switching dynamics

We next asked how gene expression heterogeneity and dynamics change in response

to key perturbations. Dual inhibition of MEK and GSK3$beta, known as ‘2i’, were

shown to enhance pluripotency and reduce Rex1 and Nanog heterogeneity [26, 44].

However, it has remained unclear how 2i affects the distribution of other heteroge-

neously expressed regulatory genes, and what impact it has on dynamic fluctuations

in gene expression.

We found that addition of 2i to serum+LIF media reduced variability in the

mRNA levels of most genes (Fig. 5A). In principle, this could reflect the elimination

of one cellular state and/or changes in burst parameters. In 2i, the bimodal genes

from Fig. 2A became unimodal, suggesting that 2i suppresses one of the two cellular

states (Figs. 5A, 10A). In the case of Nanog, the remaining state increased its mean

transcript level by 1.5-fold, to what we term Nanog-SH (Super High). Tet1, Sox2, and

Tcl1 also became unimodal, but displayed an overall decrease in absolute expression.

With long-tailed genes, we found that mean Dppa3 expression decreased slightly,

while Prdm14 and Tbx3 became more homogenously expressed, exhibiting an increase

in mean expression by 300% and 1000%, respectively. These changes reflect the

fact that nearly all cells were now observed to express Prdm14 and Tbx3. Thus, 2i

appeared to reduce variability in most genes, either by eliminating bimodality or by

increasing their burst frequency.

Recently, it was shown that 2i-treated cells exhibit differentiation propensity sim-

ilar to sorted Rex1-high subpopulations in embryoid body formation, suggesting they

may represent similar functional states (Marks et al., 2012). We used the time-lapse

movie system to compare the dynamic behavior of 2i-treated cells to that of cells in

the Rex1-high subpopulation. Consistent with mRNA measurements, 2i shifted most

cells into a Nanog-SH state (96% of total), characterized by 3-fold higher median
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production rate compared to the Nanog-high state in serum+LIF (Fig. 5B). Only

a small fraction of cells showed expression overlapping with the Nanog-low state in

serum+LIF at the beginning of the movies (after 6 days in treatment). Moreover,

these cells switched to the Nanog-SH state at a ¿40-fold higher rate than the Nanog-

low to Nanog-high switching rate measured in serum+LIF, with no reverse transitions

observed (Figs. 5C & 10B). These observations suggest that 2i increases the Nanog-

low to Nanog-high switching rate and reduces or eliminates Nanog-high to Nanog-low

transitions (Fig. 5C).

What effect, if any, does 2i have on the dynamics of gene expression noise? Static

distributions suggested that 2i increased Nanog burst frequency 45% from 0.39 to

0.55 burst/hour, using Nanog mRNA half-life previously estimated (Table S1 in [57])

and assuming no change between conditions. To analyze the effects on dynamics, we

computed the “mixing time”, previously introduced to quantify the mean timescale

over which a cell maintains a given expression level relative to the rest of the cell

population (Sigal et al., 2006). Simulations of the bursty gene expression model

showed that higher burst frequencies lead to faster mixing times, while burst size has

little effect (Fig. 10C). Together with smFISH measurements, this model predicted

that Nanog mixing times should be faster in 2i. Qualitatively consistent with this

prediction, the mixing time of Nanog production rate was reduced from 8.5 hours

in Nanog-high in serum+LIF media to 1.7 in Nanog-SH cells in 2i-containing media

(Figs. 5D & 10D).

Together, these results indicate that 2i impacts ESC heterogeneity at three levels:

first, it reduces gene expression variation in many, but not all, genes. Second, it

eliminates one cell state by increasing the rate of transitions out of the Nanog-low

state and inhibiting the reverse transition. Third, as shown for Nanog, 2i increases

burst frequency and reduces mixing times, effectively speeding up the intra-state

equilibration rate within the cell population.
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2.3.7 DNA methylation modulates metastability

Previous work has shown that in addition to reducing heterogeneity, 2i also diminishes

global levels of DNA methylation [29, 30, 48]. While the Rex1-high and -low states

appear differentially methylated (Figs. 3B-E), it remains unclear whether methylation

plays a functional role in stabilizing these states. To address this issue, we used a

triple-knockout (TKO) cell line lacking the active DNA methyltransferases Dnmt1,

Dnmt3A, and Dnmt3B [58]. We compared the expression distribution of Rex1, Nanog,

and Esrrb in TKO cells to its parental line using smFISH. The TKO cell lines had

35±2% fewer cells in the Rex1-low state (Fig. 5E), with similar results observed for

Nanog and Esrrb. This change did not reflect global up-regulation of all genes, as

expression of the houskeeping gene SDHA was indistinguishable between the two cell

lines. These results suggest that DNA methyltransferases increase the population of

the Rex1-low state.

To see if these results could be recapitulated with acute rather than chronic per-

turbations to methylation, we assayed changes in heterogeneity in Rex1-dGFP re-

porter cells exposed to 70nM 5-azacytidine (5-aza), an inhibitor of DNA methylation.

Within six days, the number of cells in the Rex1-low state diminished by more than

half from 29% to 13% of all cells (Fig. 5F). Thus, acute as well as chronic methylation

inhibition reduced the occupancy of the low state.

Finally, we asked whether methylation was similarly required for cells to return

to the low state after removal of 2i from 2i+serum+LIF conditions. The Rex1-low

population began to emerge within 48h of 2i removal (Fig. 5G). However, when 2i

was removed and replaced with 5-aza, the emergence of Rex1-low cells was severely

delayed and diminished. After 6 days, 5-aza treated cells only showed 6% Rex1-low

cells, compared to 25% in DMSO-treated cells. Together, these results suggest that

methylation is required for normal exit from the 2i state. Reduced methylation in 2i

thus contributes to the stability of the 2i ‘ground state’ [26, 29, 30, 48].
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2.4 Discussion

Recent work on ESC biology from a systems perspective has highlighted the apparent

complexity and strong interconnectivity of the circuit governing pluripotency [59, 60].

But it has been unclear how variably this circuit behaves in different cells, and to

what extent population average measurement techniques may obscure its single-cell

dynamics. Because gene expression is a stochastic process, levels of both mRNA and

protein in each cell are effectively random variables, best characterized by their distri-

butions. The framework of stochastic gene expression provides a tool to more rigor-

ously and quantitatively separate stochastic fluctuations inherent to gene expression

from variation due to multiple cell states specified by the underlying transcriptional

and signaling circuit. While the simplified model of bursty transcription used here

can explain the data, other models, including the “telegraph” model of transcription,

may provide other insights [36, 61].

Our data suggest that heterogeneity emerges in three distinct ways: first, gene ex-

pression is inherently noisy, occurring in stochastic bursts, even in genes such as Oct4

that are distributed in a relatively uniform fashion. Second, cells switch stochastically

between distinct states that impact the expression of many genes in a coordinated

manner. Third, ‘long-tailed’ regulators such as Prdm14, Tbx3, and Dppa3 are uncor-

related with one another and show low burst frequencies and large burst sizes, leading

to very high variability. Live cell imaging will be required to determine the absolute

burst kinetics for these genes. However, an mRNA distribution in which only a small

subpopulation of cells exhibit a large number of mRNA molecules for a particular

gene need not, and most likely does not, indicate a distinct cellular state. More-

over, infrequent bursting may provide a potential mechanism for stochastic priming

of cell fate decision-making [3, 42]. Further investigation of this possibility will re-

quire determining whether these bursts propagate to influence subsequent cell fate

decision-making events [62, 63].

The data above implicate methylation as a key regulatory mechanism affecting

stochastic switching between states. Methylation was previously explored in ES cells
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at the population level [24, 25, 29, 30, 48, 49], but it remained unclear whether

methylation itself contributes to heterogeneity [6, 10, 12, 13]. smFISH data revealed

a strong reciprocal relationship between the hydroxymethylase Tet1 and the DNA

methyltransferase Dnmt3b, with Tet1 expressed more highly in the Rex1-high state,

and Dnmt3b expressed more highly in the Rex1-low state. This difference in expres-

sion correlates with a differential global DNA methylation and in the methylation

of the promoters of key pluripotency regulators. Finally, methylation appears to be

functionally required for transitions, since either genetic deletion of DNA methyl-

transferases or pharmacological inhibition both impact the populations of the two

cell states and the underlying dynamics of state-switching (Figs. 5E-G). It will be in-

teresting to see whether methylation plays similar functional roles in other stochastic

state-switching systems.

These data provoke further questions about the molecular mechanisms through

which methylation is regulated and through which it modulates metastability. For

example, while known methyl binding proteins that aid in methylation-dependent

chromatin compaction and silencing are expressed in ES cells [26], DNA methylation

may also inhibit binding of transcription factors [64–66], and can control mRNA

isoform selection via alternative splicing [64]. The Esrrb gene, whose activity is

central to maintenance of pluripotency [67, 68], may provide a good model system to

investigate the effects of methylation, since its methylation levels and expression levels

are both strongly state-dependent. Regulation of this methylation likely involves

Prdm14, which is known to inhibit Dnmt3b expression [13, 28–30, 52, 53]. Given

the long-tailed expression pattern of Prdm14 observed here in serum+LIF and its

strong up-regulation in 2i, it will be interesting to see how much of the variation in

Dnmt3b/Tet1, and methylation more generally, can be attributed to bursty expression

of Prdm14.

Previous studies of ESC gene expression dynamics have focused on the equilibra-

tion of FACS-sorted subpopulations of high and low Nanog and Rex1 expression [6,

12]. Two groups explored transcriptional circuit models to explain the long timescales

of state-switching dynamics [69, 70]. These included noise-induced bistable switches,
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oscillators, and noise-excitable circuits [71]. Our dynamic data demonstrate that both

Nanog-high and Nanog-low states in serum+LIF conditions typically persist for ≥4

cell cycles, and that state-switching events are abrupt at the level of promoter activity.

Depending on protein and mRNA half-lives, the timescale of resulting protein level

changes may follow somewhat more slowly. State-switching events are also infrequent

(¡10% per cell cycle), and uncorrelated between sister cells. Together, these findings

appear incompatible with oscillatory or excitable models, which predict deterministic

state-switching or an unstable excited state, respectively, but are consistent with the

stochastic bistable switch model previously proposed [70]. These properties could

make this state-switching system a useful model for understanding the circuit level

dynamics of spontaneous cell state transitions in single cells.

Several competing explanations were proposed for the apparent heterogeneity in

Nanog expression in serum+LIF conditions. These models suggest that heterogeneity

is an artifact of knock-in reporters [72], or that it arises at least in part from monoal-

lelic regulation [73] or is manifested biallelically [74, 75]. Our smFISH data support

the existence of Nanog expression heterogeneity in wild-type cells in a standard feeder-

free culture condition. Further, both static and dynamic measurements indicate that

intra-state heterogeneity in Nanog is consistent with bursty transcription, with a rel-

atively low burst frequency of 0.39 burst/hour. Thus, active transcriptional loci

analyzed by smFISH against nascent transcripts [73] would be expected to ‘flicker’

on and off stochastically due to bursting. Such bursting could also lead to the mis-

leading appearance of weak correlations between alleles in static snapshots, and in

measurements based on destabilized fluorescent reporters. On the other hand, the

Nanog protein fusion reporters analyzed by Filipczyk et al showed correlated static

levels between alleles, likely because the longer lifetime of their reporters allowed in-

tegration of signal over many transcriptional bursts, and because transitions between

cellular states are rare and affect both alleles in a correlated fashion. The results of

Faddah et al with dual transcriptional reporters similarly showed general correlations

between the two alleles, consistent with the smFISH correlations shown here (Figs.

6E & 9B). Taken together, these previous studies and data presented here appear
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to converge on a relatively simple picture of heterogeneity based on two states and

stochastic bursting.

The quantitative measurement and analysis platform described above should en-

able further investigation of the structure of static and dynamic heterogeneity in

single ESCs. With the advent of higher dimensionality smFISH [76, 77], single-cell

RNA-Seq, and microfluidic high-throughput qPCR approaches, as well as improved

methods for rapidly and accurately constructing knock-in reporters [78], it will soon

be possible to explore the dynamics of ESC components in higher dimensions in in-

dividual cells, both within metastable states and during cell state transitions [79].

Ultimately, this should provide the capability of better understanding the dynamic

architecture of cell fate transition circuits.

2.5 Experimental Procedures

2.5.1 Culture Conditions and Cell Lines

E14 cells (E14Tg2a.4) obtained from Mutant Mouse Regional Resource Centers were

used for smFISH studies. NKICit cells, created by Kathrin Plath, were generated

by targeting the endogenous Nanog locus in V6.5 cells with H2B-Citrine-IRES-Neo-

SV40pA (Fig. 9A). NKICit+Cer cells were generated by randomly integrating into

NKICit cells a linearized PGK-H2B-Cerulean-BGHpA-SV40-Hygro-SV40pA vector.

OBACCer cells were generated by randomly integrating into E14 cells (a kind gift

from Bill Skarnes and Peri Tate) a linearized bacterial artificial chromosome (BAC)

containing the Oct4 locus (BACPAC (CHORI)), in which H2B-Cerulean-SV40pA-

PGK-Neo-BGHpA was inserted before the coding sequence (Fig. 9A). Rex1-dGFP

cells were kindly provided by the Austin Smith lab (Wray et al., 2011). All cells were

maintained on gelatin-coated dishes without feeders.
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2.5.2 smFISH Hybridization, Imaging, and Analysis

The RNA FISH protocol from Raj et al 2008 was adapted for fixed cells in suspension.

See supplemental experimental procedures for details. Semi-automated dot detection

and segmentation were performed using custom Matlab software. A Laplacian-of-

Gaussian (LoG) Kernel was used to score potential dots across all cells. The distri-

bution of these scores across all potential dots was thresholded by Otsu’s method to

discriminate between true dots and background dots (see Figs. 6A-D).

2.5.3 mRNA Distribution Fitting

The Negative Binomial Distribution is defined as

P (n, r, po) =

n+ r − 1

n

 pro(1− po)n

where n=number of transcripts per cell, po=probability of transition from the on pro-

moter state to the off promoter state, and r=number of bursting events per mRNA

half-life. The average burst size is computed as b=(1-po)/po. Using this model, in-

dividual mRNA distributions were fit using maximum likelihood estimation. To dis-

criminate between unimodal and bimodal fits, two tests were used to ensure that the

improvement of the fit is counterbalanced by the additional degrees of freedom from

the added parameters. To be considered bimodal, a distribution was required to pass

both Akaike Information Criteria (AIC) and the log-likelihood ratio test (p<0.05).

2.5.4 Fluorescence time-lapse microscopy and data analysis

Reporter cells were mixed with unlabeled parental cells at 1:9 ratio and plated at a

total density of 20,000 cells/cm2 on glass-bottom plates (MatTek) coated with human

laminin-511 (BioLamina) ¿12 hours before imaging. Images were acquired every 15

minutes for 50 hours with daily medium change. Cells were segmented and tracked

from the acquired images using our own Matlab code (see supplementary for image
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analysis methods).

2.5.5 2i Perturbation and Analysis

For 2i treatment we supplemented serum+LIF media with MEK inhibitor PD0325901

at 1uM and GSK3 inhibitor CH99021 at 3uM. Cells grown in serum+LIF media were

treated with 2i for 6 days before harvesting for smFISH assay and imaging for movies.

2.5.6 Methylation Analysis and Perturbation

RRBS preparation and high-throughput sequencing were performed by Zymo Re-

search. Analysis was performed using Bismark and Galaxy, with a single CpG cover-

age threshold ≥5. 5-azacytidine (Sigma) was used at a final concentration of 70nM.

5mC ELISA was performed with ELISA 5mC kit (Zymo).

2.6 Accession Information

Sequencing data has been deposited in NCBI’s GEO under accession number GSE58396.
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2.8 Figures
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(A) Intrinsic noise in gene expression can lead to uncorrelated variation (left), while

the coexistence of distinct cellular states can produce correlated variability in gene

expression (right). Both panels depict schematic static ‘snapshots’ of gene expression.

(B) Dynamically, gene expression levels could vary infrequently and abruptly (left)

or more frequently and gradually (right) both within and between cellular states

(schematic).
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(A) Top: coefficients of variation (CV, mean±SEM) for ESC-associated regula-

tors and housekeeping genes. Bottom: Distributions (violin plots) normalized by

maximum expression level reveal qualitatively distinct gene expression distributions.

Genes are sorted by increasing CV. (B) Smoothed histograms for mRNA distribu-

tions overlaid with NB fits. Solid lines show individual NB distributions. Dashed

gray lines show their sum (for bimodal genes). * denotes 95th percentile for Prdm14.

p-value: χ2 goodness of fit test. (C) Pairwise relationships between genes, analyzed

by smFISH (r, Pearson correlation coefficient; p-value by 2D K-S test (methods, figs.

7A,B). (D) Heat maps show examples of 4-dimensional data sets.
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(A) smFISH measurements show Rex1 bimodality is correlated with Tet1, and

anticorrelated with Dnmt3b expression. (B) Locus-specific bisulfite sequencing of the

Dazl promoter. Methylation levels shown are in the Rex1-high (top), Rex1-low (mid-

dle), and Rex1-low-to-high reverting (bottom) populations. (C) Global levels of 5mC

measured by quantitative ELISA in the Rex1-high, -low, and -low-to-high reverting

cells. (D) Histogram of promoter methylation shows bimodality in the Rex1-high

(top) and -low (bottom) states, as quantified by RRBS. (E) Scatter plot of promoter

methylation between Rex1-high and -low states. Each point is the methylation frac-

tion of a single gene promoter, color-coded by the number of CpGs in that promoter.

Divergence from the diagonal implies differential methylation between states. Inset)

Single CpGs in the promoter of the specific gene labeled, color coded by distance

from TSS; see Fig. 8C for additional genes.
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(A) Distribution of Nanog and Oct4 production rates from representative movies

in serum+LIF, and Gaussian fits to the components. Production rates were extracted

from a total of 376 and 103 tracked cell cycles for Nanog and Oct4, respectively. (B)

Production rate distributions of individual cell lineage trees, each consists of closely

related cells descending from a single cell. Lineage trees are color-coded by the state

they spend the majority of time in. (C) Example single lineage traces exhibiting

step-like changes in production rates within a state. (D) Cell cycle phase distribu-

tion of steps within the Nanog-high state. Step occurrences are normalized by the

frequencies of each cell cycle phase observed in the tracked data. (E) Representative

trace showing apparent steps from simulations under the bursty transcription model,

using parameters estimated from mRNA distribution for the Nanog-high state (see

Supp. Info.; see Fig. 9E for simulation of Oct4 dynamics). (F) Example traces of

individual cells switching between Nanog-low and Nanog-high states. (G) Empirical

transition rates (mean ± SD) between the two Nanog states (NHi, Nanog-high; NLo,

Nanog-low).
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(A) Comparison of mRNA distributions and CV between cells grown in serum+LIF

and 2i+serum+LIF. Top: For each gene, the CV in serum+LIF is plotted on the left,

and the CV for 2i+serum+LIF is plotted on the right. Dnmt3b in 2i+serum+LIF is

represented in gray to reflect its marginal case of poor quality of fit in both bimodal

and long-tailed models. Bottom: The left half of each violin represents the mRNA

distribution in serum+LIF, while the right represents 2i+serum+LIF. For each gene,

both conditions are normalized by the same value that is the larger of the pairs 95th

percentile expression level. (B) Distribution of Nanog production rates from movies

in 2i+serum+LIF. (C) Empirical transition rates between the two Nanog states in the

presence of 2i (NLo, Nanog-low; NSH, Nanog-SH). (D) Mixing time in each condition

is estimated from auto-correlation, A(τ), of production rate ranks shown in Fig. 10D,

right panels. Red: serum+LIF; Purple: 2i+serum+LIF; Error bars: standard devi-

ation, bootstrap method. (E) Comparison of transcriptional heterogeneity between

Dnmt TKO (black line) and the parental line (blue bars) as measured by smFISH for

Rex1, Nanog, Esrrb, and SDHA. Note that for Rex1/Nanog/Essrb, there are fewer

off cells in the leftmost bins for the TKO than WT. (F) Rex1-dGFP distribution

as measured by flow cytometry grown in serum+LIF with 5-aza or DMSO (carrier

control). Time-points were taken after 2, 4, and 6 days. (G) Cells were grown in

2i+serum+LIF, and subsequently re-plated into serum+LIF with 5-aza or DMSO

(carrier control). Time-points were taken after 2, 4, and 6 days. GFP levels were

measured by flow-cytometry.
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(A) A stack of snapshots taken through the whole volume of a single cell; the result-

ing maximum-intensity projection (green box), and a single slice (blue box) are fed

into the image-processing algorithm for dot-detection. (B) Cumulative Distributions

of dot counts for each of the two imaging approaches is shown across a population

of cells. (C) Same distributions as in B, but normalized by the sample median. (D)

Technical replicates for the single-slice approach. (E) Correlation between dGFP

protein fluorescence as measured simultaneously with dGFP transcripts. (left), and

correlation between Rex1 (unmodified allele) and dGFP (knock-in reporter on second

allele) transcripts (right). r is the Pearson correlation coefficient. (F) (Left) Sorted

subpopulations of the bimodal Rex1-dGFP knock-in reporter. (Right) qPCR results

on these subpopulations for a subset of target genes also examined by smFISH. Val-

ues were normalized to expression levels of the housekeeping gene Gapdh, and are

represented as 2(−∆∆Ct) with respect to the ’Rex1-high’ subpopulation
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Figure 2.7: mRNA distributions and correlations by smFISH
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(A) Empirical distributions and MLE fits for unimodal, bimodal, and long-tailed

genes. p-values are for χ2 GOF tests. p>0.05 indicates that the fit to the distribu-

tion is indistinguishable from the empirically measured distribution. Where present,

solid lines represent components of the fit. Dashed line represents the overall fit to

the distribution. (B) Pairwise relationships between heterogeneously expressed genes.

p-values are from the 2D KS-test. r is the Pearson correlation coefficient. (C) Cor-

relation and marginal distributions of Rex1 and Nanog in a control population (top)

and population synchronized by a double thymidine block fixed immediately following

the block (bottom). r is the Pearson correlation coefficient.
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Figure 2.8: Differential methylation between Rex1 states
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(A) Locus specific bisulfite sequencing plots between Rex1-high, -low, and -low-to-

high-reverting cells at three targets of methylation. Open circles are unmethylated,

filled circles are methylated, and x’s are unknown. (B) Measurements from A are

plotted as bar graphs for comparison. (C) Scatter plots showing how single CpGs

in the promoters of a given gene change between Rex1-high and -low states. Color

coding represents the position of a base relative the transcriptional state site.
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(A) Schematic of Nanog reporter (top) and Oct4 reporter (bottom) construction.

(B) Correlation between Nanog (unmodified allele) and Citrine (knock-in reporter on

second allele) transcripts in NKICit cell line. r, Pearson correlation coefficient. Light

blue, presumed fraction of cells with silenced reporter cassettes (∼10% of all cells; see

Supp. Info. for discussion); dark blue, remaining cell population. (C) H2B-Citrine

protein degradation rate assayed by blocking translation during movie at time in-

dicated. Total YFP became flat (top) with negligible slope (bottom) shortly after

cycloheximide treatment. (D) Identification of sharp inflections in total fluorescence

traces. (i) First, frames around cell divisions are removed and fluorescence lost during

divisions is added back to the daughter trace to create a continuous trace for each

lineage (ii), where a step detector spanning a 6-hour window is applied across consec-

utive frames. (iii) For each window, a one-piece linear fit is compared with a two-piece

fit that is flexible at the midpoint. A two-piece fit is considered better than a one-

piece fit when two criteria are met. 1) Residual noise of the one-piece fit is higher than

a threshold (see Supp. Info.), and 2) the slopes of the two-piece fit are significantly

different between the two pieces. iv) For each stretch of frames meeting both crite-

ria 1 (magenta line indicates threshold) and 2 (orange line indicates where two-piece

fit yields significantly different slopes), the window with the highest residual noise

is assigned to be the inflection. v) Continuized trace approximated into linear seg-

ments between identified points of inflection. (E) Apparent steps from simulated Oct4

expression under the bursty transcription model using parameters estimated from sm-

FISH. (F) Protein traces were simulated under the bursty transcription model over

various mRNA half-life and burst frequency combinations; mean burst size was kept

constant at 35 mRNA/burst. Gaussian noise proportional to the total protein level

and equivalent to the magnitude of frame-to-frame variation empirically observed

was added to the simulated traces for comparability. Arrowheads indicate detected

steps on simulated trace of the corresponding color. Note that changes in production

rate around cell division events can be identified as steps either before or after the

division. Red box: Estimated regime for Nanog-Hi in serum+LIF. Right: Variation

in the frequency of detected steps over the same parameter space. (G) Production
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rates decrease by an average of 0.63-fold across cell divisions. Each point represents a

division event. Average production rates of the 4-hour windows before and after each

cell division are compared. Black dotted line: zero change; grey dotted line: 0.5-fold

change; purple line: average trend; Inset) example trace indicating slope before and

after division. (H) Changes in production rate over state-switching events or intra-

state steps. ‘Higher rate’-to-‘lower rate’ ratios are plotted for all steps and events,

i.e., down-steps and Nanog-high-to-Nanog-low switching events are represented by

the reciprocals of rate change. (p-value, KS test)
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Figure 2.10: Quantitative analysis of how 2i+serum+LIF affect static distributions

and dynamics of gene expression for pluripotency regulators
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(A) smFISH transcript count distribution of factors in 2i+serum+LIF with MLE

fits overlaid. p-values are for χ2 GOF tests. p>0.05 indicates that the fit to the

distribution is indistinguishable from the empirically measured distribution. Where

present, solid lines represent components of the fit. Dashed line represents the overall

fit to the distribution. (B) Example trace of cells switching from Nanog-low to Nanog-

SH in 2i+serum+LIF. (C) Left: simulated traces similar to Fig. 9F, except over

various combinations of burst size and burst frequency; mRNA half-life was kept

constant at 4 hours. Bottom right: rank of production rate of 30 randomly selected

traces (out of a total of 200) in each simulation under the corresponding parameter

combination. Traces are color-coded by the initial rank at t = 0 as in D. Top right:

mixing time of protein production rate, defined as the time where auto-correlation

of rank drops below 0.5. (D) Nanog expression dynamics of cells in serum/LIF with

or without 2i. Each trace represents one cell randomly picked from a tracked lineage

tree. Production rates are normalized by cell size and ranked within the group for

each time point. Traces are color-coded by the initial rank at t = 0.
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Direction
of switch

Neither
sister
switched

Only one
sister
switched

Both
sisters
switched

Expected
number of
sister pairs
that both
switched**

NLo-to-
NHi

169 7 7 [0 - 1]

NHi-to-
NLo

139 15 2 [0 - 2]

Table 2.1: State-switching events show no correlation between sister cells

Data shown in Table 2.1 are combined results from two independent experiments.

Analysis of individual data sets yields the same conclusion. * Data points are dis-

carded if one of the cells in a sister pair was lost or not traceable in the movie **

Confidence interval obtained by random permutation test with 100,000 trials. Green

indicates observed frequency of sister pairs in which both cells switched falls within

the 95% C.I.

2.10 Supplemental Experimental Procedures

2.10.1 Detailed Culture Conditions

All cells were maintained in humidity-controlled chamber at 37oC, with 5% CO2

in serum+LIF media [Glasgow Minimum Essential Medium (GMEM) supplemented

with 10% FBS (HyClone, Thermo Scientific), 2 mM glutamine, 100 units/ml peni-

cillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate, 1000 units/ml Leukemia

Inhibitory Factor (LIF, Millipore), 1X Minimum Essential Medium Non-Essential

Amino Acids (MEM NEAA, Invitrogen), and 50 uM β-Mercaptoethanol.

2.10.2 Correlation between Citrine and Nanog transcripts in

Nanog knock-in reporter cells (NKICit)

We validated the Nanog knock-in reporter by performing smFISH for correlation

between Nanog (unmodified allele) and Citrine (knock-in reporter on second allele)
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(Fig. 9B). We observed that when grown in serum+LIF conditions, ∼10% of cells

contained Nanog but no Citrine transcripts, likely due to silenced expression of their

reporter cassettes during prolonged propagation without antibiotics. The remaining

cell population showed even stronger correlation between Nanog and Citrine tran-

scripts (r=0.78). We corrected for the potential systematic error that may result in

the calculation of low-to-high switching rate such that an observed rate of 1.9±0.29

transitions per 100 cell cycles was adjusted to the reported 2.3±0.25 (mean±SD). We

note that the magnitude of this error does not alter key conclusions, including those

about the relative stabilities of the two states. Furthermore, the asymmetry of this

silencing behavior (we did not find a corresponding fraction of cells expressing Cit-

rine but no Nanog transcripts) suggests that this is unlikely a result of mono-allelic

regulation.

2.10.3 smFISH Procedure and imaging system

Up to 48 20mer DNA probes per target mRNA were synthesized and conjugated

to Alexa fluorophore 488, 555, 594, or 647 (Life Technologies) and then purified by

HPLC. Cells for smFISH experiments were plated at 40,000/cm2 and harvested after

48 hours. Trypsinized cells were washed in PBS and fixed in 4% formaldehyde at

room temperature for 5 mins. Fixed cells were resuspended in 70% ethanol and

stored at -20oC overnight. The next day, cells were hybridized with 4nM probe per

target species at 30oC, in 20% Formamide, 2X SSC, 0.1g/ml Dextran Sulfate, 1mg/ml

E.coli tRNA, 2mM Vanadyl ribonucleoside complex, and 0.1% Tween 20 in nuclease

free water. The following morning, cells were washed in 20% Formamide, 2x SSC,

and 0.1% Tween 20 at 30oC, followed by two washes in 2x SSC + 0.1% Tween 20 at

room temperature. Hybridized cells were placed between #1 coverslips and flattened

by applying pressure evenly across the glass.

After flattening cells between coverslips, dots typically span two distinct focal

planes. However, to maximize the number of cells imaged in a given acquisition time,

only one of these focal planes was captured. This results in approximately 60% of
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each cell’s transcripts being captured in a single slice, as compared to taking a stack

of images across the entire volume of each cell (Fig. 6A-D).

Imaging was performed on a Nikon Ti-E with Perfect Focus, Semrock FISH fil-

tersets, Lumencor Sola illumination, 60x 1.4NA oil objective, and a Coolsnap HQ2

camera. Snapshots were taken using an automated grid-based acquisition system on

a motorized ASI MS-2000 stage.

2.10.4 Monte-Carlo Bivariate Kolmogorov-Smirnov Test

The 1D Kolmogorov-Smirnov test was extended to 2D dimensions [1] to determine

whether an empirical bivariate distribution showed any dependence between vari-

ables; the 2D Cumulative Distribution Function (CDF) is computed in each possible

quadrant of the 2D plane P(x<x0), P(y<y0); P(x>x0), P(y<y0); P(x<x0), P(y>y0);

and P(x>x0), P(y>y0). The 2D KS test statistic is thus defined as the largest dif-

ference between empirical and theoretical distributions across each of these possible

regions. In order to generate a test-statistic distribution under the null hypothesis,

we performed a Monte-Carlo simulation where sets of random pairs of data points are

sampled from the PDF formed by the product of the marginal distributions. The re-

sulting bivariate CDF is compared to the theoretical CDF and the maximal difference

is taken. This is performed repeatedly in order to generate a distribution of maximal

differences that would occur by chance. Finally, the test statistic is computed from

the empirical distribution, and compared to this distribution at a 95% confidence

level.

2.10.5 Movie acquisition system

Images were acquired on the IX81 inverted microscope system (Olympus) using the

Metamorph acquisition software (Molecular Devices) with the iKon Charge Coupled

Device (CCD) camera (Andor). Fluorophores were excited using X-Cite XLED1 light

source (Lumen Dynamics) equipped with the BLX, BGX, and GYX modules.
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2.10.6 Movie data analysis: Segmentation and tracking

The Schnitzcells script package [2] was used to segment and track cells from the ac-

quired images. This package performs a number of procedures as described below.

Briefly, cells were segmented with Matlab built-in edge detection script, using Lapla-

cian of Gaussian method. Segmented cells in individual frames were then tracked

across all time points by performing a point-matching algorithm on successive pairs

of frames to generate a cell lineage data structure. To obtain the total fluorescence

level of each cell, the images were “flattened” by correcting for the nonuniformity

of illumination, followed by local background correction that takes into account the

camera acquisition background, autofluorescence from the medium and fluorescence

contribution from neighboring cells.

2.10.7 Movie data analysis: Production rate estimation and

step detection

To enable the continuous estimation of production rates (slopes), frames around cell

divisions are removed and fluorescence lost during divisions (to sister cells) is added

back to the trace of interest to create a continuous total fluorescence trace for each

lineage. Instantaneous fluorescence production rates were estimated by fitting the

continuous total fluorescence of a 6-hour window to a linear section using the lin-

ear least squares method. Distributions of reporter production rates (Figs. 4A,B)

were obtained by sampling the instantaneous fluorescence production rates of all cell

lineages at 1-hour intervals. To characterize abrupt changes in production rates, we

identified sharp inflections of the continuous total fluorescence traces by applying a

custom-built step detector on overlapping and consecutive 6-hour windows 15 minutes

apart (Fig. 9D). For each window, we obtained fits to a linear polynomial model and

a continuous two-piece linear polynomial model with a joint at midpoint using the lin-

ear least squares and non-linear least squares methods, respectively. The continuous

two-piece linear model can be represented as follows:
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y =

 max+ c , x < xmid

maxmid + c+mb(x− xmid) , x ≥ xmid

where xmid is the midpoint of the window.

We used two criteria to determine whether a given window fits better to the one-

piece or two-piece linear fits: (1) whether the noisiness of the trace can explain the

deviation of the data from the one-piece fit (mean sum of squared errors, M.S.E.), and

(2) whether the two slopes obtained from the two-piece fit are significantly different

from each other. For (1), we define the noisiness of the trace as the variance of the

distribution of frame-to-frame fluctuations in total fluorescence, i.e., var(Yt+1 - Yt).

For a perfectly linear trace without noise, the mean of Yt+1 - Yt equals the slope of

the trace. As the observation noise increase, the SSE of one-piece fit increases even if

the underlying trace has a constant slope. We therefore estimated the portion of SSE

of one-piece fit unexplained by the noisiness of the trace as the residual noise, defined

as MSE1pc / var(Yt+1 - Yt), where n is the number of frames within a window. For

(2) we obtained the 95% confidence bounds of the two slopes in the two-piece fit

and determined if they overlap. Using (1) and (2), we identified stretches of frames

where two-piece fit is significantly better than one-piece. The frame with the highest

residual noise among each of these stretches was designated as the point of inflection

and the rest of the trace was approximated by linear segments between these points.

2.10.8 Movie data analysis: Hidden Markov Model and Viterbi

Algorithm

We set up a two-state HMM to estimate the frequency of state-switching events

between the higher and lower Nanog states. We assume each of the two states can

produce an independent Gaussian distribution of production rates, with specified

mean and variance, including potential overlap between the two states. Over each

unit time, a cell can either stay at its current state or switch to the other state

with specified probabilities. Thus, given a specific parameter set, there exists for
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the production rate time-series of each cell a corresponding series of underlying states

that has the maximum likelihood. This likelihood is a balance between the probability

of observing a production rate at the corresponding state and that of switching to

another state, such that a cell that transiently exhibits a production rate far from the

mean of its current state is more likely to be fluctuating rapidly within a state than

switching away and back. The Baum-Welch algorithm [3] maximizes the sum of this

likelihood over all cells by iteratively changing the parameters in small increments,

improving the total likelihood each time.

Prior to training the model with data, initial transition rates between the states

in both directions were set at 0.0001/hour. Initial parameters for each state were set

with the mean value drawn from the range of observed production rates and vari-

ance. Re-initializing the random parameters in the model yielded similar results. We

employed the HMM toolbox for Matlab (Murphy, 1998), which generated maximum

likelihood estimate of the model parameters using the Baum-Welch algorithm. Since

the production rate sequences used to train the HMM contained repeated time-series

when multiple lineages shared the same ancestor, the state-transition rates generated

directly from HMM could be an overestimation. We applied the Viterbi algorithm

[4] to combine the model parameter estimates and the observed data to infer the

most likely state sequence for each cell lineage. From this we reported the empirical

state-transition rates, normalized to the average length of a cell cycle.

2.10.9 Bursty transcription simulation and mixing time anal-

ysis

Bursty transcription was simulated using the model previously described [5]. In this

model, a promoter can transit stochastically between an active and an inactive form.

This is not to be confused with a cellular state, which is usually maintained over a

longer timescale and within which a gene bursts in a characteristic burst size and

frequency. Transcription occurs only when the promoter is in its active form, pro-

ducing a burst of mRNA molecules, which decay exponentially. To aid comparison
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between the simulated transcription dynamics and our experimental observations, we

added protein production to the simulation. Further, since our fluorescence protein

is stable, and to restrict the source of heterogeneity in our simulation to stochastic

transcription, we assumed zero protein decay rate and deterministic protein produc-

tion at a constant rate. Lastly, both mRNA and protein are partitioned when cells

divide, which were set to have division rates similar to experimental data. This model

can be described by the following reactions:

I
Kon−−→ A

A
Koff−−−→ I

A
βm−→ A+m

m
αm−−→ φ

m
βp−→ m+p

Here, A and I denote the promoter in its active and inactive forms, respectively;

m - mRNA level; p - protein level; kon and koff - activating and inactivating rates

of the promoter, respectively; αm - mRNA degradation rate; βm - mRNA production

rate; φ - mRNA degradation; βp - protein production rate.

A cellular state is thus characterized by the frequency of mRNA bursts and the

mean number of mRNA molecules produced per bursts. Here, we considered one

limiting case of this model, where koff is significantly larger than kon and somewhat

larger than αm. This assumption can be related physically to a scenario where bursts

are relatively infrequent and have short durations, and the distribution of mRNA

levels produced under these assumptions can be described with a single gamma (Raj

et al., 2006) or NB function [6]. A cell changes state in a gene when one or more of

the parameters kon, koff , or βm for that gene is changed, thus resulting in different

burst frequencies and sizes.

To simulate mRNA and protein dynamics for the Nanog-high state in serum+LIF

condition (shown in Figs. 4E, 9E), we used the following parameters estimated from

mRNA distributions in smFISH: for Nanog – burst size = 33 mRNA/hour, burst fre-

quency = 0.39 bursts/hour; for Oct4 – burst size = 87 mRNA/hour, burst frequency
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= 0.52 bursts/hour. These assume that mRNA half-lives of Nanog and Oct4 are 5.85

and 7.4 hours, respectively [7].

We utilized computer simulations of this model to explore whether changes in

state affect the intra-state dynamics of heterogeneity. Varying burst frequency and

burst size results in traces with various frequencies of apparent steps when analyzed

using the same step detector, which identified regimes in the bursty transcription

parameter space where steps of similar quality to the ones observed can be generated

(Figs. 9F, 10C). Furthermore, the resulting dynamics also display a wide range of

shapes of fluctuation and levels of expression. We quantified these variations with an

objective measurement, the “mixing time”, a population metric adapted from Sigal

et al. [8]. For each simulated population (n = 200 traces) using a single parameter

set, we ranked all traces by their production rate at each time point. Thus, a cell

starting with the lowest production rate among the population may change in this

rank when its production rate changes over time. We computed the autocorrelation

function A(τ) of this rank for each population and the mixing time is defined as the

time lag τ at which A(τ) decayed to 0.5. We opted to calculate the mixing time using

production rate but not total fluorescence level because the stable fluorescent reporter

facilitates accurate production rate estimate but may not reflect the physiological level

of endogenous proteins. Additionally, for more direct comparison between the mixing

times calculated from simulated and observed data, the production rates in simulation

were computed using the simulated protein traces after Gaussian noise similar to the

level observed was added.
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Chapter 3

Lineage-based inference of
dynamics and network architecture
from static single cell
measurements

3.1 Abstract

Elucidating the dynamics of cellular decision-making is critical to understanding pro-

cesses ranging from organismal development to immunology to cancer proliferation.

As a result, knowing the frequency, nature, and extent of transitions among cellular

states can inform both clinical and fundamental biology. Here, we demonstrate the

ability to infer transition rates and network topology connecting expression states

across many generations, by combining cell-phylogeny with multi-dimensional end-

point smFISH measurements. Overlaying static gene-expression data on lineage trees

in situ provides a powerful, scalable platform to identify novel, high-dimensional dy-

namics in systems ranging from cell culture to model organisms.

3.2 Introduction

Identifying the dynamics of gene regulatory networks underlying single cell decision-

making is a central problem in systems biology ranging from development to adult

tissue maintenance and to cancer homeostasis. Thus, understanding the states that
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cells exist in and the transition rates between them in natural undisturbed tissue

would lead to significant insights in a range of contexts.

Cells exhibit dynamic transitions among distinct states, characterized in part by

expression levels of one or more genes. In some systems, cells can remain in a state

for multiple cell cycles before transitioning to another state. For these systems, one

would like to know what transitions are permitted, how frequently they occur, and

whether there are specific temporal sequences. Knowing this information would pro-

vide fundamental insights into important processes such as phenotypic switching in

cancer cells and cell type decision-making processes in stem cells [1–3].

Despite the many systems of interest that exhibit these behaviors, there is no

general method to measure these dynamics. While existing techniques have provided

critical insights, each have inherent limitations. These include bulk and single-cell

qPCR and RNA-seq using sophisticated computational algorithms [4], FACSed sub-

population re-equilibration, in vivo and in vitro time-lapse microscopy for lineage

tracking or direct gene expression measurements [5–11], and spontaneous-mutation-

based lineage reconstruction [12]. However, while each has been valuable, they all

present their own individual challenges, such as limited temporal, spatial, or breadth

of target resolution; a priori knowledge; perturbations from natural contexts or ex-

pression level; or averaging over populations.

Here we describe a new approach that circumvents aforementioned difficulties and

provides the capability of inferring temporal event sequences, quantitative switching

rates, and network topology. We use a combination of time-lapse movies followed by

multiplexed end-point single-cell measurements [13–15] in the spatially unperturbed

sample. Generally, these can encompass smRNA-FISH, immunostaining, morphologi-

cal parameters, or any imaging-based in situ single cell readout. We demonstrate the

ability to infer transition rates and network topology connecting expression states

across many generations [16], by combining cell-phylogeny with multi-dimensional

endpoint smFISH measurements. Overlaying static gene-expression data on lineage

trees in situ provides a powerful, scalable platform to identify novel, high-dimensional

dynamics in systems ranging from cell culture to model organisms.
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Quantitatively measuring distributions of gene expression can yield insight into the

nature of the underlying heterogeneity. Simply adding on top of these measurements

the relatedness of those cells can reveal the dynamics of the underlying distribution.

The dynamics of state transitions captured during growth and division would thus

confer a signature as clusters among the leaves of the trees (Fig 1A). Consider a case

where cells switch between two states. In the first case, imagine the situation where

transition events occur frequently; as the lineage grows, closely related cells may

quickly adopt independent states, leading to little or no clustering (Fig 1A, left). In

an opposing scenario, imagine that the probability of staying in a specific state is much

greater than transitioning out of it. This would produce a more persistent phenotype,

and as such, would lead to stronger clustering of states among the offspring (Fig 1A,

right). Notably, the final distribution among the leaves of both trees are identical

(1/2 low, 1/2 high), but the differences in the underlying transition probabilities

yield markedly distinct dynamics that are measurable once the relatedness of each

cell is incorporated into the measurement.

In order to test the system, we applied the technique to mouse ES cells that display

metastability and heritability over multiple cell cycles under standard, unperturbed

growth conditions. While many transcription factors have been identified as key

regulators of pluripotency or fate-choice, it remains unclear how the underlying gene

regulatory networks gives rise to the observed dynamics, and what trajectories cells

take. Thus, even without requiring external perturbations, a rich set of dynamical

transition is observed between these states. Specifically, we explore the dynamical

relationships between three ES genes previously identified as heterogeneous [8, 17,

18]. We demonstrate the utility of such a system by coupling movies with multiplexed

endpoint single-cell RNA-FISH in order to (1) infer and additionally validate through

a knock-in reporter directly the stochastic transitions of pluripotency marker Esrrb;

and (2) extend the analysis to infer the transcriptional trajectory across a set of

transcriptional states defined by observed occupancy of Esrrb, Tbx3, and Zscan4c.



85

3.3 Results

3.3.1 The Framework

First, we explain how to infer transition rates between distinct cell states from mea-

sured lineage trees and end state gene expression data. To begin, we define the lineage

distance u between two cells at the final time point as the number of generations to

their common ancestor, as shown in Figure 2A. Thus, u = 1 for sisters, u = 2 for first

cousins, etc. We assume that cell state transition dynamics can be represented as a

Markovian memory-less process; that is, the rate of their next stochastic transition is

controlled only by their current state, and are constant through time. They can be

represented as a transition rate matrix T , whose elements T (I|M) represent the prob-

ability of observing a daughter cell in state I given that its parent cell was in state M

(Figure 2B, top left). Diagonal elements then represent the probability of a daughter

remaining in the same state as her parent. With these definitions, the columns of T

sum to one. For simplicity in this figure, we assume that all states are equally likely.

We also focus on the symmetric case (‘detailed balance’) in which T (I|M) = T (M |I).

However, this assumption is not strictly necessary, and the framework can be adapted

for situations that do not behave like this.

Our first step is to compute a multi-generational transition matrix. The probabil-

ity of observing a cell in state I conditional on state M of its ancestor u generations

back can be obtained by successively applying matrix T u times: Tu(I|M), where u

denotes matrix T taken to the power u.

In order to connect the dynamic transitions to the observed frequencies of each

state, we compute the correlation matrix, CIJ(u), defined as the probability of finding

a pair of cells separated by lineage distance u in states I and J (Figure 2B, top right).

If T is known, then CIJ(u) can be computed directly:

Cij(u) =
1

N

∑
M

Tu(I|M)Tu(J |M) =
1

N

∑
M

Tu(I|M)Tu(M |J) =
1

N
T 2u(I|J)

where the summation is over all possible states M of the ancestor, which, by as-
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sumption, occur with probability 1
N

. The correlation function C(u) is a set of NxN

matrices, one for each value of u. Because any pair must be in one of theN2 possible

pairs of states, the elements of C must sum to one.

Experimentally, C(u) can be read off from lineage-associated end state measure-

ments by counting occurrence of all pairs of states on the tree at lineage distance u.

The rate of decay of these correlation functions should be undone by compensating for

successive applications of a fixed transition rate, enabling an estimate of the transi-

tion rates between states from the correlation functions alone. To infer the dynamics

from measured correlation functions, we work backwards to recover T by comput-

ing Tinferred(u) := C(u)1/(2u) (Figure 2B). If the assumptions are correct, Tinferred(u)

should match the actual T , and be independent of u. Conversely, dependence of

Tinferred on u indicates that some underlying assumptions are incorrect.

3.3.2 Transition rates between states of Esrrb can be inferred

using this method

To test this framework, we first turned to the dynamics of a mouse stem cell pluripo-

tency regulator Esrrb, which has been shown to play a critical role in the core pluripo-

tency network [19], facilitate fibroblast reprogramming into iPS [20], and be central to

maintaining the naive pluripotent state [21], in addition to displaying a heterogeneous

expression pattern in stem cell culture [8]. To validate our inference method, we set

out to measure both directly and through inference the dynamics of Esrrb as it moves

between its two expression states. A non-perturbing knock-in reporter for Esrrb was

constructed by incorporating a self-cleaving peptide followed by a Histone2B-mCitrine

after the last exon of Esrrb, without affecting its 3’ UTR.

We followed single cells using quantitative fluorescence timelapse microscopy (Fig

3A) to directly measure the frequency at which cells switch states, as well as to

construct lineage trees. When the movie ended, the cells were fixed and hybridized in

situ with smFISH probes for the Esrrb transcript as well as the housekeeping control

gene β-actin. Cells and transcripts were segmented in 3D with the aid of a membrane-
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targeted fluorescent protein, enabling accurate and direct measurement of cytoplasmic

transcripts without disturbing the sample (Fig 3A). An example lineage tree overlaid

with extracted movie-fluorescence and state-assignment (hi/lo) confidence derived

from smFISH counts are shown in Fig 3B.

As a first validation, we checked to see if the rate of change in total fluorescence of

Esrrb in movies (hereafter referred to as promoter activity) across the final cell cycle

correlated with the transcript counts measured at the movie’s endpoint. Indeed, a

strong correlation was observed between Esrrb promoter activity with Esrrb tran-

script counts, but not with β-actin transcript counts (Figure 5), suggesting internal

consistency between these measurement modalities. Furthermore, the endpoint Esrrb

smFISH marginal distribution across all positions appeared bimodal (Figure 3A) as

previously described [8].

Using the correlation functions compiled from 14 trees (299 cells), we estimated

transition rates that were constant over time, demonstrating self-consistency and

Markovian transitions. Specifically, we measured the stability of the low sate to be

89±6% and the hi state as 93±3% (Figure 3B). Similarly, in the movies, we observed

cells 90±1% to stay in the low state, (Fig 3C) and 92±1% staying in the high state.

Together, these data show that the inference method yielded the same Markovian

dynamics as those measured directly using the more laborious and invasive knock-in

reporter.

3.3.3 Inferring trajectories among higher dimensional tran-

scriptional states

Having validated the inference approach, we next turned to a set of genes that have

previously been characterized as heterogeneous [8, 17, 22], but whose state transitions

and temporal persistence remain unknown. In addition to Esrrb, Tbx3 is biologically

important for the maintenance of pluripotency in ES cells as overexpression or under-

expression both destabilize the pluripotent state [23–27], and also shows a long-tail

distributions in ES cells yielding the highest CV among ES regulators [8]. Second,
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Zscan4c displays long-tailed heterogeneity and is associated with totipotency, or the

ability to generate all three germ layers, as well as extra-embryonic lineages [8, 17, 28].

These tailed distributions are consistent either with burst-like mRNA production [29]

or with Markovian two-state switching, among other models. Moreover, regardless of

the type of dynamics, the timescales for activating, de-activating, and remembering

a state are not known.

Tracking single cells growing into colonies using fluorescent protein expression like

that shown in Figure 4Ai, we collected data from 32 trees (446 cells) followed by

quantitative endpoint smFISH for Tbx3, Esrrb, and Zscan4c (Figure 4Aii). We then

combine these trees with single cell transcript counts as measured at the leaves (Figure

4C). Immediately, we observe both entire and partial colonies of cells that appeared

to express Tbx3 or Zscan4c, as opposed to a salt-and-pepper pattern in every colony.

This result largely rules out the stochastic model, where all cells have some low

probability of expression, thus showing the importance of performing experiments in

situ.

Using the population scatter data (Fig 4D), we observe that in the Esrrb+ state,

a subset of cells express Tbx3, while in Esrrb- state, a subset express Zscan4c, thus

yielding four main states. Additionally, a minority of cells appear to be in a state be-

tween these others. Thus, after classifying each cell into one of the resulting five states,

we can proceed to construct correlation functions. We assume a five-state Markovian

process (Figure 4E) where all transitions are allowed, and count the frequency with

which we observe pairs of sisters (u = 1), cousins (u = 2) etc., that occupy all possible

combinations of states (Figure 4F), yielding our correlation functions. By compen-

sating for the dilutive affect over time (See Figure 2), we use this data to compute the

transition rates among these classes. Indeed, Figure 4G shows flat lines representing

the probability that staying within each of these states over time is constant, vali-

dating the models assumptions. Additionally, some of the transition rates appear to

drop out of the system due to the lack of observed pairs in those states. This suggests

that cells move largely along a linear chain of states (Figure 4H), where cells tend to

generally make a subset of the possible transitions, as opposed to the starting model
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which allowed any-to-any connectivity (Figure 4E). This does not strictly rule out

these other transition events, but suggests that in general, cells are much more likely

to follow the linear chain trajectory between opposing ends of the network. Notably,

these data suggest that in order to access the Esrrb+/Tbx3+/Zscan4c+ state, a cell

must first pass through the Esrrb+/Tbx3+ state. An inspection of the 3D scatter

data alone would incorrectly lead one to assume that the Zscan4+ state emerges from

the persistent Esrrb- state, showing the utility of applying lineage information.

3.4 Discussion

Here we have demonstrated and validated directly the ability to extract the rates

of a two-state Markovian process, as well as the likely trajectory of cells switching

between a set of ESC states. As an inference, this data makes a set of predictions

that can and should be tested to both validate the model, and extend the utility of

the approach; specifically, the qualitative, highly non-trivial prediction would be that

Zscan4c+ is most readily accessed from the Esrrb+/Tbx3+ state. Furthermore, these

two states may also be more epigenetically similar, as both of these are likely to have

reduced levels of DNA methylation [8, 30]. This would also be biologically plausible

given evidence from the literature connecting Tbx3 to Zscan4c [26]. Intuitively, the

linear path of transitions as inferred allow a cell to move from least pluripotent to

totipotent.

Using only cell lineage information and a single snapshot of gene expression data,

we can determine rates of transitions and cellular trajectories. By applying novel

methods to expand the number of mRNAs assayed [31, 32], this platform presents a

powerful way to identify the dynamics among gene expression states.
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are then fixed, stained, and imaged by smFISH. The lineage tree is reconstructed

directly from observing cell division events depicted underneath each movie frame.

Transcript counts are then used to classify cellular states. These statistics are used in

correlation functions to identify transition rates using an assumed Markovian model

of the network.
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(A) Schematic showing an example tree following three divisions. Leaves are

colored red or blue to indicate state assignment. Brackets betweens two cells demon-

strate the definition of pairwise relatedness u, where sisters are u = 1, etc. (B) The

transition matrix T is broken into four entries, each defining a particular transition;

for example, the top left is the probability of staying in the blue state. Columns must

sum to one. Below the matrix is an example plotting the blue-to-blue and red-to-red

rate as a function of relatedness. If the Markovian model explains the data, these

should appear flat over time. Experimentally, we measure the right half of panel B;

C(u) is the number of pairs of cells at a fixed u in that set of observed states. This is

expected to decay as cells become less related and have had more time to transition

out of their starting state. C(u) and T (u) are related through taking T to the power

of 2u, where intuitively you are applying some fixed rate of transition u times, one

for each cellular division.
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(A) Left: a schematic of the Esrrb-H2B-mCitrine knockin reporter above an ex-

ample filmstrip of mCitrine levels. The filmstrip is followed by a composite image

of the membrane-mTurquoise (white), DAPI (red), and Esrrb transcripts by smFISH

(cyan dots). Note the off cells in the lower right corner. Dots are detected and

attributed to cells in 3D, with the resulting Esrrb transcript count mask displayed.

Combining cells from all colonies analyzed yields a bimodal distribution of Esrrb with

the indicated population fractions. (B) The lineage tree resulting from one of the two

starting cells in the example movie shown in A is shown in blue; leaves of the tree are

colored by confidence of cells in the Esrrb Hi state due to overlap of modes. Correla-

tion functions are plotted for pairs of cells in the on/on state and off/off state. These

correlation functions are transformed into transition rates by taking the appropriate

roots of the correlation function. Note that the rates appear constant (within error

bars) over time The two state model with resulting rates as inferred using correlation

functions is shown at the right. Error bars are standard deviation from bootstrapping

over individual colonies. (C) Analogous measurements to B, but as performed using

direct readouts of Esrrb promoter activity. The tree itself is colored to show total

fluorescence over time. Arrows indicate where on-to-off or off-to-on transition events

are detected on the tree. Middle) Example traces of an on- and off- transition event.

Right) The two state model with rates measured directly from the knock-in reporter.

Note that rates estimated from both methods fall within each others error, showing

excellent corroboration.
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(A) i) An example movie with fluorescence used only for tracking cells as they

divide. The last frame is overlaid with cell number as used in C. ii) Multiplexed

smFISH following the movie. White is membrane-mTurquoise2, red is DAPI, blue

dots are Esrrb-smFISH, green dots are Tbx3-smFISH, and cyan dots are Zscan4c-

smFISH. B) Masks of transcript counts per cell for each gene individually. Shading

represents transcript abundance where the dynamic range is indicated under each

frame (C) Lineage tree constructed from cells tracked in A.i, with transcript counts

for each cell indicated on the leaves; the colormap for each gene is the same as B. (D)

A 3D scatter plot of transcript counts, where each dot is a cell. Color coding indicates

state (E) The full matrix of possible transitions between the observed states; the size

of each node is proportional to the fraction of cells in that state (F) To compute

correlation functions, we first measure the frequency with which we observe pairs of

cells in a given combination of states. For this example, we show pairs of sisters, or

u = 1. Each element is the fraction of all pairs caught in the state defined by the

row and column. (G) Stability of each state as a function of lineage distance u. (H)

Five-state Markov model with rates for transitions between each state
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