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Abstract

In the first part of the thesis we explore three fundamental questions that arise naturally when we

conceive a machine learning scenario where the training and test distributions can differ. Contrary to

conventional wisdom, we show that in fact mismatched training and test distribution can yield better

out-of-sample performance. This optimal performance can be obtained by training with the dual

distribution. This optimal training distribution depends on the test distribution set by the problem,

but not on the target function that we want to learn. We show how to obtain this distribution in

both discrete and continuous input spaces, as well as how to approximate it in a practical scenario.

Benefits of using this distribution are exemplified in both synthetic and real data sets.

In order to apply the dual distribution in the supervised learning scenario where the training

data set is fixed, it is necessary to use weights to make the sample appear as if it came from the

dual distribution. We explore the negative effect that weighting a sample can have. The theoretical

decomposition of the use of weights regarding its effect on the out-of-sample error is easy to understand

but not actionable in practice, as the quantities involved cannot be computed. Hence, we propose

the Targeted Weighting algorithm that determines if, for a given set of weights, the out-of-sample

performance will improve or not in a practical setting. This is necessary as the setting assumes there

are no labeled points distributed according to the test distribution, only unlabeled samples.

Finally, we propose a new class of matching algorithms that can be used to match the training set

to a desired distribution, such as the dual distribution (or the test distribution). These algorithms

can be applied to very large datasets, and we show how they lead to improved performance in a large

real dataset such as the Netflix dataset. Their computational complexity is the main reason for their

advantage over previous algorithms proposed in the covariate shift literature.

In the second part of the thesis we apply Machine Learning to the problem of behavior recognition.

We develop a specific behavior classifier to study fly aggression, and we develop a system that allows

analyzing behavior in videos of animals, with minimal supervision. The system, which we call CUBA

(Caltech Unsupervised Behavior Analysis), allows detecting movemes, actions, and stories from time

series describing the position of animals in videos. The method summarizes the data, as well as it

provides biologists with a mathematical tool to test new hypotheses. Other benefits of CUBA include
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finding classifiers for specific behaviors without the need for annotation, as well as providing means

to discriminate groups of animals, for example, according to their genetic line.
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Chapter 1

Introduction

A basic assumption in learning theory is that the training and test sets are drawn from the same

probability distribution. However, in many practical situations, this assumption about the training

and test distributions does not hold. To illustrate this, take, for example, a recommender system.

In this case, the system is trained with data gathered over a long period of time during which users

rate certain items. Nevertheless, the system will be used and tested not only on old items that the

user has not rated yet, but also on new items and new users. Due to changes in opinions, moods,

trends, etc., with time, there is no guarantee that the distribution of the test data will be the same

as that of the training data. Rather, a realistic assumption is to model this situation as one in which

training and test distributions may differ. Other examples where this is the case have been reported

in natural language processing [40] and speech recognition [15]. These systems are commonly trained

by gathering speech samples from only a few individuals due to resource constraints. However, the

system is tested later on the general population and hence training and test distributions are likely

to differ. In this case it is not the effect of time that makes the two distributions differ, but rather

the effect of having a biased sample. Other examples of differing distributions are commonly found in

applications that involve experimental set-ups. Some of these set-ups can involve conditions such as

lighting, temperature, etc., which vary from experiment to experiment, making the training and test

distributions differ, as in [6].

The problem described above is referred to as dataset shift, and sometimes subdivided into co-

variate shift and sample selection bias, as described in [54]. Covariate shift occurs when the training

distribution PR of the input variable x is different from the test distribution PS of the same variable

x. Sample selection bias occurs when the sample used for training, is not representative of the overall

distribution, due to some bias (intended or unintended) in the sampling process. This can be modeled

as having PR(x) 6= PS(x), but it also can be modeled with an additional random variable s called

the sample selection variable. The selection variable indicates if a sample is included or not in the
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training or test sets. In this case, if the overall distribution from which data is sampled is P , then

PR(x) = P (x|s = 1).

There are various methods that have been devised to correct for this problem, and is part of the

ongoing work on domain adaptation and transfer learning. Although adjustments to the theory be-

come necessary, and numerous methods that will be described shortly have been devised to correct the

problem of mismatched training and test distributions, the fact that the theory requires a matched

distribution assumption to go through does not necessarily mean that matched distributions will lead

to better performance; just that they lead to theoretically more predictable performance. However,

the question of whether they do lead to better performance has not been addressed in the case of su-

pervised learning, perhaps because of an intuitive expectation that the answer would be yes. Hence, in

this part of the thesis the work is aimed to answer three fundamental questions in this learning scenario:

1. Is it better, in terms of out-of-sample performance, to have the training distribution PR equal

to the test distribution PS?

2. If so, is it advantageous to apply weights to the training points to achieve this?

3. What is the algorithmic way to achieve it?

Answering these three questions led to the results reported in this part of the thesis.

1.1 Overview

The seemingly obvious answer to the first question is much more interesting than expected and is the

topic of Chapter 2. In that chapter, we first show the simulation setup that led us to conceive the

idea that using mismatched training and test distributions could lead to better performance in the

supervised learning setting. We present both empirical and analytic results of this evidence.

We then introduce in Chapter 3 the formal notion of the dual distribution, which is the optimal

training distribution to draw samples from, for the learning algorithm. We then formulate the opti-

mization problem that allows us to find this dual distribution, and describe how to solve for it in the

general case. We also analyze various properties and parameters that affect the dual distribution.

Chapter 4 describes the various effects that come into play when weights are used to change the

original training distribution. On the one hand, training with data sampled from the dual distribution

will improve performance, and so using weights that make the training distribution look like the dual

distribution should be advantageous. On the other hand, weighting samples rather than sampling

from the desired distribution are not equivalent. The former can have a negative effect, in terms of
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an increase in the variance of our error estimates, which can also be viewed as an effective sample

size reduction. Each learning scenario yields a different bottom line performance after adding up

these effects, so that it is sometimes beneficial to use weights while other times it is not. Hence, we

introduce an algorithm that determines when weighting is beneficial in a given practical scenario.

Chapter 5 introduces a class of algorithms that can be used to match the training distribution to

any desired distribution, for example, the dual distribution. The algorithms we introduce have the

advantage of selecting only the desired coordinates along which matching is desired. They are also

efficient so they can be used in very large datasets. The efficiency issue was a constraint that we took

into account since we conceived the method initially for recommender systems, which have very large

datasets composed of ratings for thousands or millions of items, by thousands or millions of users.

1.2 Literature overview

As discussed, the problem of dataset shift has led to a substantial amount of work aimed at correcting

the problem. All of the work assumes that the answer to the first question we pose is affirmative, and

hence try to make PR = PS . The numerous methods can be roughly divided into four types [48].

The first type is referred to as instance weighting for covariate shift, in which weights are given

to points in the training set, such that the two distributions become effectively matched. Some of

these methods include discriminative approaches as in [13, 14]. To do this, these methods train a

classifier that can distinguish between samples coming from the training distribution and samples

coming from the test distributions. Other methods make assumptions regarding the source of the

bias and explicitly model a selection bias variable [71]. Others try to match the two distributions in

some Reproducing Kernel Hilbert Space as Kernel Mean Matching [38], while others use parametric

models for the ratio of test to train densities, using the Kullback-Liebler divergence as in KLIEP

(Kullback-Liebler importance estimation procedure) [67], or least squares deviation as in LSIF (least

squares importance fitting) [42], among others. Additional approaches are given in [57, 27, 55, 64].

A detailed description of these methods is given in Chapter 5. All these methods rely on finding

weights, which is not trivial as the actual distributions are not known. Furthermore, the addition of

weights reduces the effective sample size of the training set, hurting the out-of-sample performance

[61]. Another issue that comes up regards cross-validation, as it becomes necessary to match the

distribution of the validation set to the test set. As some of the methods find weights that are only

meaningful with respect to the rest of the sample, aggregating weights for different sets in K-fold type

validation methods is no longer trivial. This issue is addressed in methods like importance weighting

cross-validation [67]. On the theoretical side, learning bounds for the instance weighting setting are

shown in [25, 72]. Further theoretical results in a more general setting of learning from different



5

domains are given in [10].

The second type of methods use self-labeling or co-training techniques so that samples from the test

set, which are unlabeled, are introduced in the training set in order to match the distributions, and are

labeled using the labeled data. A final model is then re-estimated with these new points. Some of these

methods are described in [18, 46, 32]. A third approach is to change the feature representation, so that

features are selected, discarded, or transformed in an effort to make training and test distributions

similar. This idea is explored in various methods, including [16, 15, 11, 52], among many others.

Finally, cluster based methods rely on the assumption that the decision boundaries have low density

probabilities [34], and hence try to label new data in regions that are under-represented in the training

set through clustering, as proposed in [17, 51]. For a more detailed review on these and other methods,

refer to [48] and [64].

1.3 The learning setup

Before we answer the questions presented, we introduce the notation that will be used throughout the

thesis and that describes the learning problem. Let R = {xi, yi}Ni=1 be the training set, with xi ∈ X ,

and yi ∈ Y. X is known as the input space, and Y as the output space. We assume xi are iid ∼ PR,

where PR is the training distribution. The objective of the learning algorithm is to find a hypothesis

h ∈ H that is closest to the target function f , where f : X → Y. H is known as the hypothesis set,

where each h ∈ H is h : X → Y. The notion of closeness to the target function is determined by a

chosen loss function ` : Y ×Y → R. The returned hypothesis by the learning algorithm is denoted by

g. Finally, it is conventional to model the noisy data using a stochastic noise process ε, where εi is

the corresponding realization for xi, so that yi = f(xi) + εi. In this framework, learning consists of

solving the following optimization problem:

g = arg min
h

1

N

N∑
i=1

`(h(xi), yi). (1.1)

In parametric learning, as the name suggests, the hypothesis set H is parametrized by θ ∈ ZM , where

ZM is the M -dimensional space where the parameters live. That is H = {h(·; θ)|θ ∈ ZM}. The

learning algorithm outputs an optimal parameter θ? ∈ ZM given by

θ? = arg min
θ

1

N

N∑
i=1

`(h(xi; θ), yi), (1.2)

and

g(x) = h(x; θ?). (1.3)
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Now, let x ∼ PS where PS denotes the test distribution. In the usual learning setting PR = PS , but

here, we consider precisely the scenario where PR 6= PS . Finally, for a point x ∼ PS , the out-of-sample

error Eout is given by

Eout(x,R, f, ε) = `(g(x), y). (1.4)

The out-of-ample error Eout at x, depends not only on the point itself, but also on the dataset R,

which in turn determines which g ∈ H is returned. Finally, the target function f and the noise process

ε also affect this error (y depends on f and ε). The overall out-of-sample error is the expected value

of the pointwise error,

Eout = Ex[Eout(x,R, f, ε)]. (1.5)

Here Ex[·] denotes the expected value of the expression with respect to variable x.
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Chapter 2

Is it better to have PR = PS?

While great effort has been spent in the literature trying to match the training and test distributions,

a thorough analysis of the need for matching has not been carried out. In particular, the first fun-

damental question we asked in Chapter 1 has not been answered: is it better to have training and

test distributions matched, in terms of out-of-sample performance? As we will show shortly, the main

contribution in this chapter is to show that mismatched distributions can in fact outperform matched

distributions in the supervised learning setting, regardless of the specific target function. We first

published the results of this chapter in [36].

This statement is not very surprising if we are under the active learning paradigm. Under such

paradigm, training data is selected sequentially or in batches, making use of feedback obtained from

the target function. The goal is to select the least amount of training data that will lead to the

best performance. Therefore, the choice of such data may be tilted towards regions that best pin

down the target function further, irrespective of the test distribution. Some methods belonging to the

active learning paradigm exploit this idea by finding a ‘design’ distribution, from which the training

data should be sampled. The idea is that training the algorithm with data sampled from the design

distribution would result in better performance. Examples of these techniques are found in [70], [43],

[63], [66], [62], and [58], among others. Hence, it is clear that the active learning paradigm makes use

of unmatched distributions to improve performance.

In the supervised learning paradigm, however, the location of the training data is chosen without

any feedback from the target function. Therefore, it is more surprising in this case that a data

distribution that is mismatched to the test distribution would perform better. Recognizing that the

system may perform better under a scenario of mismatched distributions can influence the need for,

and the extent of, matching techniques, as well as the quantitative objective of matching algorithms.

In our analysis, we show that a mismatched distribution can be better than a matched distribution

in two different directions in the supervised learning paradigm:
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• For a given training distribution PR, the best test distribution PS can be different from PR.

• For a given test distribution PS , the best training distribution PR can be different from PS .

The justifications for these two directions, as well as their implications, are quite different. In a

practical setting, the test distribution is usually fixed, so the second direction reflects the practical

learning problem about what to do with the training data if it is drawn from a different distribution

than that of the test environment. One of the ramifications of this direction is the new notion of a dual

distribution. This is a training distribution PR that is optimal to use when the test distribution is PS ,

regardless of the specific target function. A dual distribution serves as a new objective for matching

algorithms. Instead of matching the training distribution to the test distribution, it is matched to a

dual of the test distribution, for optimal performance.

We cover both classification and regression settings in the sections that follow. The classification

setting is analyzed through empirical results obtained via Monte Carlo simulations. We then present

both empirical and analytic results in the regression setting.

2.1 Empirical results in the classification setting

Consider the learning scenario where the data set R used for training by the learning algorithm is

drawn from probability distribution PR, while the data set S that the algorithm will be tested on is

drawn from distribution PS . We show here that the performance of the learning algorithm in terms

of the out-of-sample error can be better when PS 6= PR, averaging over target functions and data set

realizations. The empirical evidence, which is statistically significant, is based on an elaborate Monte

Carlo simulation that involves various target functions and probability distributions. The details of

that simulation follow, and the results are illustrated in Figures 2.1 and 2.3.

We consider the input space X = [−1, 1]. There is no loss of generality by limiting our domain as

in any practical situation, the data has a finite domain and can be rescaled to the desired interval. We

pick a one-dimensional space to have a better understanding in this simpler case, before generalizing

to multiple dimensions. We run the learning algorithm for different target functions and different

training and test distributions. We then average the out-of-sample error over a large number of data

sets generated by those distributions and over target functions. Finally we compare the results for

matched and mismatched distributions.

Distributions. We use 31 different probability distributions to generate R and S including a

uniform distribution U(−1, 1), ten truncated Gaussian distributions N ∗(0, σ2) where σ is increased

in steps of 0.3, ten truncated exponential distributions Exp∗(τ) where τ is increased also in steps of 0.3,

and ten truncated mixture of Gaussian distributions, such thatMG∗(σ) = 1
2

(
N ∗(−0.5, σ2) +N ∗(0.5, σ2)

)
,
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with σ increased in steps of 0.25. By truncating the distributions we mean that we zero-out the proba-

bility distributions outside X and renormalize the densities accordingly. That is, if X has a truncated

Gaussian distribution such that X ∼ N ∗(0, σ2) and X̃ has a Gaussian distribution with X̃ ∼ N (0, σ2),

then

P (X ≤ x) =


0 x ≤ −1

1
ZP (X̃ ≤ x) −1 ≤ x ≤ 1

1 x ≥ 1

(2.1)

where Z = P (−1 ≤ X̃ ≤ 1). Similarly, this applies for the truncated Exponential and Mixture of

Gaussian distributions.

Data Sets. For each pair of probability distributions, we carry out the simulation generating 1,000

different target functions, running the learning algorithm, comparing the out-of-sample performance,

and then averaging over 100 different data set realizations. That is, each point in Figures 2.1 and 2.3

is an average over 100,000 runs with the same pair of distributions but with different combinations

of target functions and training and test sets. The sizes of the data sets are NR = 100 and 300, and

NS = 10, 000, where NR and NS are the number of points in the training and test sets R and S.

Target Functions. The target functions f : [−1, 1] → [−1, 1] were generated by taking the sign

of a polynomial in the desired interval. The polynomials were formed by choosing at random one to

five roots in the interval [-1,1]. This choice of target functions allows the decision boundaries to vary

both in number and location in each realization. Hence, the results presented do not depend on a

particular target function, so that the distributions cannot favor the regions around the boundaries,

as these are changing in each realization.

Learning model The learning algorithm minimized a squared loss function. For the hypothesis

set H we used linear functions of a non-linear transformation of the input space. The non-linear

transformation used powers of the input variable up to the number of roots of the polynomial that

describes the target function, plus a sinusoidal feature, which allows the model to learn a function

that is close to, but not identical to, the target. That is, for every h ∈ H

h(x; θ) = θTφM (x), (2.2)

with φM : X → RM , and θ ∈ RM , where

φM (x) = [1 x x2 · · · xM−2 sin(πx)]T . (2.3)

Out-of-sample error. The expected out-of-sample error Eout in this classification task is esti-

mated using the test set generated according to each of the PS with NS = 10, 000. The error at a



10

P
S

P
R

E
R,R’

[I[E
x,f

[Eout(x,R)] < E
x,f

[Eout(x,R’)]]] (25.8% cases where this is majority)

 

 

Uniform Gaussians Exponentials 2−MG

Uniform

Gaussians

Exp.

2−MG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Summary of Monte Carlo Simulation. Plot indicates, for each combination of probability
distributions ER∼PR,R′∼PS [I[Ex∼PS ,f [Eout(x,R, f)] < Ef,x∼PS [Eout(x,R

′, f)]]].

point x ∈ X depends not only on the point itself, but also on the training data set R used for learning

which in turn affects the learned hypothesis g ∈ H, and also depends on the target function f . We

compute Eout using the misclassification 0-1 loss, that is

Ex,R[Eout(x,R, f)] = Ex,R[I[f(x) 6= g(x)]], (2.4)

where I[a] denotes the indicator function of expression a, x ∼ PS , and R is generated according to

PR.

2.1.1 Fixing the training distribution

Figure 2.1 summarizes the result of the simulation to answer the question in the first direction: for a

given training distribution, is the best test distribution different? Each entry in the matrix corresponds

to a pair of distributions PR and PS . We fix PR, and evaluate the percentage of runs where using

PS 6= PR yields better out-of-sample performance than if PS = PR. That is, each entry corresponds

to

ER∼PR,R′∼PS [I[Ef,x∼PS [Eout(x,R, f)] < Ef,x∼PS [Eout(x,R
′, f)]]]. (2.5)

These results correspond to the case where NR = 100.

The matrix is organized placing families of distributions together, with increasing order of standard

deviation/time constant. The result that immediately stands out is that there is a significant number
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of entries where more than 50% of the runs have better performance when mismatched distributions are

used, as indicated by the yellow, orange, and red regions, which constitute 25.8% of all combinations

of the probability distributions used.

A number of interesting patterns are worth noting in this plot. The first row, which corresponds

to PR = U(−1, 1), falls under the category of better performance for mismatched distributions for

almost any other PS used. There is also a block structure in the plot, which is no accident due to the

way the families of distributions are grouped. Among these blocks, the lower triangular part of the

blocks in the diagonal corresponds to cases where the distributions are mismatched but out-of-sample

performance is better. We also note that the blocks in the upper-right and lower-left corner show the

same pattern in the lower triangular part of the blocks.

Perhaps it is already clear to the reader why this direction of our result is not particularly surpris-

ing, and in fact it is not all that significant in practice either. In the setup depicted in this part of the

simulation, if we are able to choose a test distribution, then we might as well choose a distribution

that concentrates on the region that the system learned best. Such regions are likely to correspond

to areas where large concentrations of training data are available. This can be expressed in terms

of lower-entropy test distributions, which are over-concentrated around the areas of higher density of

training points. Such concentration results in a better average out-of-sample performance than that

of PS = PR.

Figure 2.2 illustrates the entropy of different distributions. We plot H(XR) versus H(XS), where

H(·) is the entropy of the discretized probability distributions and XR ∼ PS and XS ∼ PS , marking

the cases where using PS 6= PR resulted in better out-of-sample performance of the algorithm. As it

is clear from the plot, these cases occur when H(XS) < H(XR).

A simple way to think of the problem is to see that if we could freely choose a test distribution,

and our learning algorithm outputs θ∗ as the learned parameters that minimizes some loss function

l(x, y, θ) on a training data set R = {(xi, yi)}, then to minimize the out-of-sample error we would

choose PS(x) = δ(x−x?), where δ is the delta-dirac function and x? = arg min
R

(l(x, y, θ∗))), the point

in the input space where the minimum out-of-sample error occurs.

Similar results as those shown in Figure 2.1 are found when NR = 300.

2.1.2 Fixing the test distribution

Figure 2.3 shows the result of the simulation in the other direction. Each entry in the matrix again

corresponds to a pair of distributions PR and PS . However, this time we fix PS and evaluate the

percentage of runs where using PR 6= PS yields better out-of-sample performance than if PR = PS .

More precisely, once again each entry computes the quantity in Equation 2.5.
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Figure 2.2: H(XR) vs H(XS): Characterization of why out-of-sample performance is better if there
is a mismatch in distributions when PR is fixed, using entropy.

This is the case that occurs in practice, where the distribution the system will be tested on is

fixed by the problem statement. However, the training set might have been generated with a different

distribution, and we would like to determine if training with a data set coming from PS would have

resulted in better out-of-sample performance. If the answer is yes, then one can consider the matching

algorithms that we mentioned to transform the training set into what would have been generated using

the alternate distribution.

The simulation result is quite surprising, as once again there is a significant number of entries where

more than 50% of the runs have better performance when mismatched distributions are used. For 14%

of the entries, a mismatch between PR and PS results in lower out-of-sample error, as indicated by

the light green, yellow, orange, and red entries in the matrix.

In this case, although the block structure is still present, there is no longer a clear pattern relating

the entropies of the training and test distributions that allows explaining the result easily as in the

previous simulation. Notice that there are cases where the mismatch is better if we choose PR of both

lower and higher entropy than the given PS . This is clear in the plot since the indicated regions in

the block structure are no longer lower-triangular but occupy both sides of the diagonal. We look at

this result further in the following section, when we analyze the other learning setting: regression.
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Figure 2.3: Summary of Monte Carlo Simulation. Plot indicates, for each combination of probability
distributions, ER∼PR,R′∼PS [I[Ef,x∼PS [Eout(x,R, f)] < Ef,x∼PS [Eout(x,R

′, f)]]].

2.2 Empirical and analytic results in the regression setting

We have shown empirical evidence that a mismatch in distributions can lead to better out-of-sample

performance in the classification setting, and now we focus on the regression setting to cover the other

major class of learning problems. In this section, we use the expressions for the expected out-of-sample

error as a function of x, a general test point in the input space X , and R, the training set, averaging

over target functions and noise realizations. These expressions are derived in detail in Appendix A, for

the case where we use a squared loss function and a linear model with non-linear transformations for

the hypothesis set. This correspond to the choice of linear model and loss function of the simulations

shown in the previous section.

The difference now is that although we choose again X = [−1, 1], in the regression setting Y = R.

To analyze the most general regression case, we also introduce both “stochastic” and “deterministic”

noise [2]. We take yi = f(xi)+εi, where εi represents the stochastic noise, and where f is more complex

than the elements of H, so f /∈ H, hence the deterministic noise. We make the usual assumption about

the stochastic noise, which is that it has zero mean and is iid. That is, E[ε] = 0, and E[εεT ] = σ2
NI,

where I is the identity matrix and σN is the standard deviation of the noise. We also make the

assumption that the coefficients of the target function that are not included in the model, θC , have

covariance matrix E[θCθ
T
C ] = σ2

CI.
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As introduced in Appendix A, for simplicity we let

z = φ(x). (2.6)

We reorganize the features in z and elements of θ as

zT = [zTM zTC ], θT = [θTM θTC ] (2.7)

so that the first M features of z correspond to the features in the linear transformation that H can

express. The matrix Z is the “transformed data matrix”, with

Z = [ZM ZC ]T . (2.8)

These matrices are precisely defined in Appendix A.

Taking the expected value with respect to the noise, the out-of-sample error at a point x ∈ X is

given by

Ef,ε[Eout(x,R, f, ε)] = σ2
C‖zTC − zTMZ

†
MZC‖

2 + σ2
Nz

T
M (ZTMZM )−1zM + σ2

N (2.9)

Notice that the above expression is independent of θ (i.e., the target function), as well as of the

noise. The only remaining randomness in the expression comes from generating R, and from z, the

point chosen to test the error, making the analysis very general.

Now, we are interested in minimizing the expected out-of-sample error. Let R denote a training

data set generated according to PR, while R′ a data set generated according to PS . Can we find

PR 6= PS such that

ER,x,θC ,ε[Eout(x,R, f, ε)] < ER′,x,θC [Eout(x,R
′, f, ε)]? (2.10)

The simulation shown in Section 2.1.2, although in a classification setting, suggests that this is the

case. We run the same Monte Carlo simulation in this regression setting. The advantage is that the

closed-form expression in Equation 2.9 already averages over target functions and noise, allowing us to

run in a shorter time more combinations of PR and PS . This expression only requires running Monte

Carlo simulations for the matrix Z and hence the two terms involving it, Z†MZC an (ZTMZM )−1. The

expectation over x ∼ PS can be done using numerical integration, which is faster than the Monte Carlo

simulation in this one-dimensional setting. In this case, we consider the same families of distributions,

but we vary the standard deviation of the distribution in smaller steps to obtain a finer grid.

Figure 2.4 indicates that the question posed in Equation 2.10 has an affirmative answer in 21% of

the PR 6= PS combinations that we considered. This particular simulation used the Fourier harmonics
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Figure 2.4: Monte Carlo simulation for ER∼PR,R′∼PS [I[(Ex,θC ,ε[Eout(x,R, θ, ε)] < Ex,θC ,ε[Eout(x,R
′, θ, ε)]]],

M = 11, C = 21, N = 500, and σN = σC = 0.2.

for the non-linear transformation up to order 5, so that M = 11. That is,

φM (x) = [1 cos(πx) sin(πx) · · · cos(5πx) sin(5πx)]T . (2.11)

On the other hand, the target functions were generated using harmonics up to order 10, so that

C = 21, with random Fourier coefficients. Both σC = σN = 0.2, and N = 500. Each entry in the

matrix computes

ER∼PR,R′∼PS [I[(Ex,θ,ε[Eout(x,R, θ, ε)] < Ex,θ,ε[Eout(x,R
′, θ, ε)]]] , (2.12)

which is the same quantity as that of Equation 2.5, except that now f is determined by θ.

Notice that, as shown in Figure 2.3, the cases where mismatched distributions outperform matched

ones cannot be explained using an entropy argument, as was the case in Section 2.1.1. Notice also that

there are now combinations for PR and PS where almost 100% of the simulations returned lower out-

of-sample error for mismatched distributions. In particular, this happened when PS was a truncated

Gaussian with small standard deviation (σ = 0.2), and when PS was a mixture of two Gaussians

with σ = 0.2. In addition, we note the similarity between this simulation and the one shown for the

classification setting in Figure 2.3.

We varied the size of N in order to see the effect of the sample size. We see very little variation

in the results. Holding the other parameters constant, we obtain a very similar result. For N = 1000

and for N = 3000, we obtain an affirmative answer to the question posed in Equation 2.10 in 21% and

20% of the cases where PR 6= PS respectively, so the result does not change from what we obtained in
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the N = 500 case. For N = 100, the percentage is even higher, at 30%. Hence, there is clear evidence

that although the number of combinations of distributions for which a mismatch between training

and test distributions is larger for smaller N , the result still holds as N grows. Notice that in the

simulations, the target function has 21 parameters. Hence, roughly for N = 100 there are effectively 5

samples per parameter, while for N = 3000 there are 150 samples per parameter. This covers a wide

range, from small to large sample sizes, given the complexity of the target function.

Going back to the derived expressions, a closed-form solution for the expected out-of-sample error

is given by

E[Eout(x,R, θ, ε)] = ER
∫ ∞
−∞

σ2
C‖zTC − zTMZ

†
MZC‖

2PS(x)dx+

∫ ∞
−∞

σ2
Nz

T
M (ZTMZM )−1zMPS(x)dx+σ2

N .

(2.13)

It cannot be further reduced analytically due to the inverse matrix terms. Yet, if we assume C = M

so that only stochastic noise is present, the expression reduces to

Eε,R,x,θ[Eout(x,R, θ, ε)] = σ2
N + ER

∫ ∞
−∞

σ2
Nz

T (ZTZ)−1zPS(x)dx

≥ σ2
N

(
1 +

∫ ∞
−∞

zT (ER[ZTZ])−1zPS(x)dx

)
, (2.14)

where we use the result in [37] for the expected value of the inverse of a matrix. With this expression,

we can find a specific example of a mismatched training distribution that leads to better out-of-

sample results. Again, without loss of generality, we pick the linear transformation consisting of

Fourier harmonics, namely

z = [1 cos(πx) sin(πx) · · · cos(mπx) sin(mπx)]T (2.15)

as this allows a vast representation of target functions. Here, M = 2m + 1. A few examples of the

variety of the target functions that can be achieved with this model are shown in Figure 2.5.

If PR is a Uniform distribution over X , or a Gaussian distribution truncated to this interval, then

ER[ZTZ] = ER
N∑
i=1

ziz
T
i

= Ndiag(1, 0.5, 0.5, . . . , 0.5) (2.16)

The above result is trivial for the uniform distribution case, and can be easily evaluated with numerical
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Figure 2.5: Sample realizations of targets generated with a truncated Fourier Series of 10 harmonics.

integration for the truncated Gaussians. This implies that

Eε,R,x,θ[Eout(x,R, θ, ε)] ≥ σ2
N

(
1 + Ex

[
2m+ 1

N

])
= σ2

N

(
1 +

M

N

)
(2.17)

Now instead, pick R to be distributed according to Uniform[−a, a]. In this case,

ER[ZTZ]ij =



sinc(ja) if i = 1, j is even

sinc(ia) if j = 1, i is even

1/2
(
1 + (−1)i sinc(ia)

)
if i = j 6= 1

1/2 (sinc((i+ j)a) + if i 6= j, and

sinc((i− j)a) i and j odd

1/2(sinc ((i+ j)a) − if i 6= j, and

sinc((i− j)a) i and j even

0 else

(2.18)

Figure 2.6 shows the closed-form bound for various choices of a and M = 10, choosing PS to be

a truncated Gaussian with σ = 0.4. The dotted line shows the bound for the case PR = PS . As it

is clear from the plot, there are various choices for a so that equation 2.10 is satisfied in terms of the

bound.

Since this is only a lower bound on the error, we verify that the minimum suggested by the

bound does correspond to a superior mismatched distribution. We Monte-Carlo the value for both
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Figure 2.6: Bound for ER,x,ε[Eout(x,R)]− σ2
N when R is generated with PR = PS = N ∗(0, 0.42) and

for PR 6= PS with PR = Uniform[−a, a].

cases considered: we choose PS = N ∗(0, 0.42) and generate R′ according to PS , while R is generated

according to U [−0.97, 0.97]. Notice that we use a = 0.97 as this choice results in the lowest error

bound from Figure 2.6. Using m = 10, N = 500 and averaging over 108 realizations of R and R′ we

obtain

ER,x,θ,ε[Eout(x,R, θ, ε)] = 1.0429σ2
N < ER′,x,θ,ε[Eout(x,R

′, θ, ε)] = 1.0440σ2
N (2.19)

Hence, we have a concrete example of a distribution PR that is different from PS (Figure 2.7) that

leads to better out-of-sample performance, averaging over noise realizations and target functions. The

existence of such distributions leads to the concept of a dual distribution which we examine in the

next chapter.
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Chapter 3

The dual distribution

As shown in the previous chapter, contrary to the common presumption, the optimal distribution from

which to sample training data is not necessarily the test distribution PS . Instead, we call the optimal

training distribution the dual distribution. This distribution only depends on the test distribution

and not in the particular target function in question. In this chapter, we define the dual distribution

precisely and then show how to obtain it in the general case, as well as in a practical scenario. We

end the chapter with a comparison of the dual distribution approach and a related concept in active

learning.

Given a distribution PS , we define a dual distribution P ?R to be a distribution that achieves

min
PR

ER,x,f,ε[Eout(x,R, f, ε)] (3.1)

where R is a data set generated according to PR and x ∼ PS . The above minimization problem of

course has the constraint that PR must be non-negative and should be normalized, so that the solution

yields a valid probability distribution.

3.1 Discrete input spaces

We first find the dual distribution in the case where the input space X is a discrete set. Let X =

{xj}dj=1, so that PR and PS become probability mass functions on d points. Hence, in this setting,

finding the dual distribution becomes an optimization problem in d−1 dimensions. We only optimize

with respect to d−1 elements of PR, since the last element can be determined from the normalization

constraint.

For simplicity, we illustrate the solution for a regression problem where only stochastic noise is

present. Given R, from Equation 2.9 we can compute the expected out-of-sample error with respect
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to PS , the noise, and the target function as

Ex,ε,θ[Eout(x,R, ε, θ)] = σ2
N

d∑
i=1

zTi (ZTZ)−1ziPS(xi). (3.2)

In this case, there are
∑N
i=1

(
d
i

)
possible data sets of size N (allowing for repetition of points in the

data set) that could be obtained for any given PR. To simplify the notation, since X is finite, we

assign each of the points a number, from 1 to d, and we denote the out-of-sample error for each of

these data sets as Ei1,i2,··· ,iN , where ik indicates the element number in X that corresponds to the

k’th data point in R.

Hence, we can find the expected out-of-sample error with respect to PR as

ER,x,ε,θ[Eout(x,R, ε, θ)] =
∑

i1,i2,...,iN

pi1pi2 · · · piNEi1,i2,...,iN , (3.3)

where all the Ei1,...,iN can be found using Equation 3.2. Therefore, P ?R is the solution to the following

optimization problem:

min
p1,p2,...,pd

∑
i1,i2,...,iN

pi1pi2 · · · piNEi1,i2,...,iN (3.4)

subject to

d∑
i=1

pi = 1

pi ≥ 0

Let us look at a concrete example, with N = 3,

z = Φ(x) = [cos(πx) sin(πx)]T (3.5)

X = {−3/4,−1/4, 0, 1/4, 3/4}

PS = [1/3, 0, 1/3, 1/3, 0]

[x1, x2, x3, x4, x5] = [−3/4,−1/4, 0, 1/4, 3/4]

Solving the optimization problem given in Equation 3.4 yields P ?R 6= PS , with

P ?R = [0.4672, 0.1140, 0.1140, 0.000, 0.3048]. (3.6)
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Figure 3.1: Probability mass functions for a given PS and its dual P ?R, in a regression problem with
stochastic noise, discrete input space X = {−3/4,−1/4, 0, 1/4, 3/4}, and N = 3.

For this example,

ER,x,ε,θ[Eout(x,R, θ, ε)] = 1.1391σ2
n < ER′,x,ε,θ[Eout(x,R, θ, ε)] = 1.5778σ2

n, (3.7)

where R′ is generated according to PS and R according to P ?R. Clearly there is a gain by training

with the dual distribution, in this case. When running the optimization, for data sets that have

repeated points that result in undefined out-of-sample error as the matrix (ZTZ)−1 is singular, we

conservatively take their error to be the maximum finite out-of-sample error over all combinations of

possible data sets. Figure 3.1 shows the dual distribution found, along with the given PS .

Notice that if a different loss function is chosen and no closed form solution exists for Eout(x,R),

the dual distribution can still be found using the same procedure as above. The only difference is

that Eout(x,R) must be estimated, using a held-out set for instance, for each possible dataset R, so

that the corresponding Ei1,...,iN can be computed and given as inputs to the optimization problem of

Equation 3.4

A very important property of the optimization problem formulated in Equation 3.4 is that it is a

convex optimization program. In fact it is a Geometric Program, although different from a standard

Geometric Program, since the equality constraint is not a monomial. Yet, the problem is still convex.

To illustrate this, let

ψi = log(pi) (3.8)

Λi1,...,iN = log(Ei1,...,iN ). (3.9)
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This change of variables implicitly makes pi > 0 so that the inequality constraints can be removed.

Also, the problem can be rewritten as

min
ψ1,ψ2,...,ψd

∑
i1,i2,...,iN

e
∑N
k=1 ψik+Λi1,i2,...,iN (3.10)

subject to

d∑
i=1

eψi = 1

(3.11)

Notice that the objective function is a sum of exponential functions of affine functions of ψi. Since

exponential functions are convex, affine transformations of convex functions are also convex, and

sums of convex functions result in a convex function, the objective in Equation 3.10 is convex [19].

Following the same argument, the equality constraint is also convex, so that the optimization problem

is a convex program.

Hence, if a minimum is found, this is the global optimum with a corresponding dual distribution.

This problem can be solved with any convex optimization package. Furthermore, in most applications,

PS is generally unknown and is estimated by binning the data, which leads to a discrete version of PS .

Therefore, this discrete formulation is appropriate to find dual distributions in such settings. Solving

the Geometric Program described by Equation 3.10 thus allows us to find the dual distribution in

various practical settings.

Nevertheless, we need to address the more general case of continuous input spaces. The following

section describes how to find the dual distribution in that case, as well as how to implement it in a

practical scenario.

3.2 The continuous case

When the input space X is continuous, as it is the case in most applications, the optimization prob-

lem in Equation 3.1 is a functional optimization problem, since we are interested in finding the full

distribution PR. We denote the corresponding probability density function by pR, and optimize with

respect to this density. The objective function of the optimization problem can be written as the

functional J : P → R

J(p) =

∫
xN

· · ·
∫
x1

L(x1, . . . , xN )

N∏
i=1

p(xi)dx1 · · · dxN , (3.12)

where

L(x1, . . . , xN ) = Ex∼PS ,f,ε[Eout(x,R, f, ε)], (3.13)
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and P is the set of all probability density functions with P ⊂ L1. (Recall an Lp space over X is

defined as the space of functions f for which
∫
X
|f(x)|p < ∞. Since probability density functions

integrate to unity, they are elements of L1). In the following subsection, we use functional calculus to

arrive at the analytic condition that the dual distribution must satisfy.

3.2.1 Analytic condition for the dual distribution

To minimize the functional J(p), we first transform the variables, as we did in Section 3.1. Let

ψ(x) = log p(x) (3.14)

Λ(x1, . . . , xN ) = log(L(x1, . . . , xN )). (3.15)

The optimization problem becomes

min
ψ

= J(ψ) (3.16)

subject to

∫
eψ(x)dx = 1

where

J(ψ) =

∫
xN

· · ·
∫
x1

eΛ(x1,...,xN ))+
∑N
i=1 ψ(xi)dx1 · · · dxN , (3.17)

and where the positivity constraints are implicit, given the domain of the logarithm.

Now, recall that the gradient of a functional J(ψ), denoted as ∇ψJ , is given by [28]

J(ψ + δζ) = J(ψ) + δ〈∇ψJ, ζ〉+O(δ2), (3.18)

where δ ∈ R, δ > 0, and ζ ∈ P is an arbitrary function. Consider the Lagrangian

L(ψ) = J(ψ) + λ

(∫
eψ(x)dx− 1

)
. (3.19)

Then, the dual distribution must satisfy

∇ψ(L(ψ(x))) = 0. (3.20)

In fact, we can use the Euler-Lagrange theorem [30] to show that if there is a function ψ that

satisfies Equation 3.20, then it is the global minimizer. The theorem states that for a function f ∈ C2,

with f : [a, b]d×R×R→ R where C2 denotes continuously twice differentiable functions, and we have
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the functional

inf
X
I(u) = inf

X

∫
X
f(x, u, u′)dx (3.21)

where X = {u ∈ C1, u : [a, b]d → R, |u|∂1Ω = u0}, u0 are the boundary conditions, and X = [a, b]d,

then if I(u) admits a minimizer ū ∈ C2, then ū satisfies the Euler-Lagrange (EL) equation:

∑ ∂

∂xi

∂

∂u′
f(x, ū(x), ū′(x))− ∂

∂u
f(x, ū(x), ū′(x)) = 0. (3.22)

Conversely, if ū satisfies the EL equation and the mapping M(u, u′)→ f(x, u, u′) is convex for every

x ∈ [a, b]d, then ū minimizes I(u).

In our case, u = ψ, and J(ψ) = I(ψ). Also, in our case, u′ does not appear, so that f(x, ψ, ψ′) =

f(x, ψ). Hence, having the gradient of the Lagrangian with respect to ψ equal to 0 is equivalent to

satisfying the EL equation. This is the necessary condition.

Now, we can show that it is in fact a sufficient condition by using the converse. Notice that in our

case X = P is a convex set, as convex combinations of density functions are also convex. Hence, all

that remains to show is that the mapping M is convex, that is, show that for 0 ≤ α ≤ 1, α ∈ R,

M(αψ + (1− α)φ) < αM(ψ) + (1− α)M(φ). (3.23)

Substituting, we have in the left hand side,

eΛ(x1,...,xN )+α
∑
i ψ(xi)+(1−α)

∑
i φ(xi). (3.24)

On the right hand side we have

αeΛ(x1,...,xN )+
∑
i ψ(xi) + (1− α)eΛ(x1,...,xN )+

∑
i φ(xi). (3.25)

Now, we notice that due to the strict convexity of the exponential function

eαθ1+(1−α)θ2 < αeθ1 + (1− α)eθ2 . (3.26)

Hence, dividing both sides of Equation 3.23 by eΛ(x1,...,xN ) and substituting θ1 =
∑
i ψ(xi) and

θ2 =
∑
i φ(xi) shows that the mapping M is strictly convex.

This implies that if the dual distribution exists, that is, if we find ψ that satisfies Equation 3.20,

then it is the unique, and is the global minimizer of J , and by constraint satisfaction, also the minimizer

of L. Note the theorem assumes continuous differentiability of u, but the theorem can be generalized

for functions that are continuously differentiable, except at sets of measure zero.
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We now compute the gradient of the Lagrangian. For simplicity, let dR denote dx1 · · · dxN , and

let R denote the support of the set {x1, . . . , xN} then

J(ψ + δξ) =

∫
R
e
∑N
i=1 ψ(xi)+δξ(xi)+Λ(x1,...,xN )dR

=

∫
R
e
∑N
i=1 ψ(xi)+Λ(x1,...,xN )

(
1 + δ

N∑
i=1

ξ(xi) +O(δ2)

)
dR

= J(ψ) + δ

∫
R
e
∑N
i=1 ψ(xi)+Λ(x1,...,xN )

N∑
i=1

ξ(xi)dR

= J(ψ) +

N∑
i=1

〈∫
xn,n6=i

e
∑N
i=1 ψ(xi)+Λ(x1,...,xN )dxnn6=i , ξ(xi)

〉
, (3.27)

where the simplification follows from using a Taylor expansion of the exponential. Finally, since the

loss functions we are interested in are independent of the order of the points in the training set, then

the logarithm of the loss function Λ(x1, . . . , xN ) is symmetric with respect to xi. Therefore,

∇ψ(J(ψ(xn))) = NExi∼eψ
i 6=n

[L(x1, . . . , xN )]. (3.28)

Following a similar procedure for the second term in the Lagrangian, we obtain that at point xn

∇ψ(L(ψ(xn)) =

(
NExi∼eψ

i 6=n
[L(x1, . . . , xN )] + λ

)
eψ(xn) (3.29)

We can now use the constraint to find λ by integrating the above equation over xn. We obtain

λ = −Neψ(xn)E xi∼p
i=1,...,N

[L(x1, . . . , xN )] (3.30)

Substituting for λ we obtain the optimality condition that the dual distribution needs to satisfy:

p(xn)

(
Exi∼p
i 6=n

[L(x1, . . . , xN )]− E xi∼p
i=1,...,N

[L(x1, . . . , xN )]

)
= 0. (3.31)

This condition applies to the dual distribution in the general case, without making assumptions about

the target class or the learning model. Now, all that remains is to find p that satisfies this condition,

which can be done, for example, using functional gradient descent [49].

The functional gradient descent step is given by

p(x) := p(x)− η∇(L(p(x)) (3.32)
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where η is the learning rate, hence

p(xn) := p(xn)− ηN
(
Exi∼p
i6=n

[L(x1, . . . , xN )]− E xi∼p
i=1,...,N

[L(x1, . . . , xN )]

)
p(xn). (3.33)

Notice that the integral of the update over xn is 0. Hence, this update guarantees that the nor-

malization constraint is satisfied at each step, so that gradient descent works in this case as in an

unconstrained problem. Therefore, if the initial condition is a valid probability density function (pdf),

all subsequent p’s will also be valid pdf’s.

The interpretation of this update is very intuitive: If a point xn is included in the training set,

and the resulting out-of-sample error is lower than the expected out-of-sample error with N points,

that is Exi∼p
i 6=n

[L(x1, . . . , xN )] < E xi∼p
i=1,...,N

[L(x1, . . . , xN )], then p(xn) should be increased. If including

the point leads to a higher out-of-sample error, then the density at this point should be decreased.

In the following subsection, we introduce a concrete example of how the condition of Equation

3.31 can be used computationally to derive the dual distribution.

3.2.2 Dual distribution examples

As shown in the previous subsection, finding the dual distribution reduces to performing functional

gradient descent. However, the update rule depends on being able to compute the expected out-of-

sample error Exi∼p
i 6=n

[L(x1, . . . , xN )]. Computing the expected value with respect to the training set

can be readily done using Monte Carlo (MC) simulation. This can be slow unless a closed form for

L(x1, . . . , xN ) exists.

If a squared loss function is used for `, and the hypothesis class H is chosen to be a linear

model (which can include non-linear transformations of the inputs), then a closed-form solution for

L(x1, . . . , xN ) exists. This solution is independent of the specific target function. Hence, in this

setting, the dual distribution can readily be found. The closed-form solution, as derived in Appendix

A is given by

L(x1, . . . , xN ) = σ2
C‖φC(x)T − φM (x)TΦ−1

MMΦMC‖2 + Ex∼PS
[
σ2
NφM (x)TΦ−1

MMφM (x)
]

+ σ2
N , (3.34)

where φ : X → ZM+C denotes the transformation of the input, with

φ(x) = [φM (x)T φC(x)T ]T , (3.35)

so that φM : X → ZM represents the part of the target function that can be captured by the model,

and φC(x) : X → ZC is the part of the target that cannot be captured by the model. The matrices
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Figure 3.2: Examples of dual distributions, for 1-D test distributions, in a linear regression problem.

Table 3.1: Out-of-sample (OoS) performance improvement when training the learning algorithm with
data coming from the dual distribution rather than from the test distribution

Test Parameters OoS error
Distr. improvement

Exponential λ = 5 46.3%
Gamma α = 4, β = 0.05 32.0%
Gaussian µ = 0, σ = 0.1 21.4%
Beta α = 2, β = 5 10.0%
F ν1 = 100, ν2 = 80 5.7%
Weibull λ = 1, k = 5 2.2%
Uniform [-1,1] 0.5%
2-D Gaussian Σ = [0.12 0.08; 0.08 0.12] 22.6%
2-D MG Σ = [0.12 0.06; 0.06 0.12] 5.71%

ΦMM ∈ ZM×M and ΦMC ∈ ZM×C defined for the training input points x1, . . . , xN are given by

ΦMM = ZTMZM =

N∑
i=1

φM (xi)φM (xi)
T , (3.36)

ΦMC = ZTMZC =

N∑
i=1

φM (xi)φC(xi)
T . (3.37)

Finally σ2
N and σ2

C characterize the energy of the stochastic noise and ‘excess’ target complexity as

explained before.

Figure 3.2 shows the dual distributions for various one-dimensional test distributions for the re-

gression setup. The learning model uses Fourier harmonics of the input, while the target functions are

constructed by considering functions that include Fourier harmonics higher than those that belong to
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Figure 3.3: Examples of dual distribution, for 2-D test distributions. (a) 2-D Gaussian; (b) Dual
distribution for (a); (c) Mixture of 2-D Gaussians; (d) Dual distribution for (c).

the model. The simulation parameters were set to N = 100, M = 3, C = 5, σN = σC = 0.2. The

input domain is X = [−1, 1], so the distributions were zeroed out outside this domain and renormal-

ized. Table 3.1 shows the parameters of the test distributions and also indicates the improvement

in out-of-sample performance when the learning algorithm is trained with samples coming from the

dual distribution, rather than from the test distribution. Figure 3.3 shows the dual distribution for

two-dimensional test distributions.

As it is clear from Table 3.1, the gains in using the dual distribution can be significant. For these

examples, N was chosen so that there were enough samples to estimate the three parameters in the

model (M = 3), and the target was more complex than the model.

The reader may be wondering how the sample size (N), the excess target complexity with respect

to the model (C −M) and its magnitude (σC), and the stochastic noise level (σN ) affect the dual

distribution. We address this question in the following section.

3.3 Variability of the dual distribution

The definition of the dual distribution is based on some specific aspects of the learning problem, such

as the training set size, the target complexity, and the model complexity. In this section, we explore
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the change in dual distribution due to these factors.

3.3.1 Asymptotic behavior

The first factor we analyze is the dependence of the dual distribution on N , the training set sample size.

In particular, consider the case where N →∞. Recall that the dual distribution is the distribution P

that minimizes the quantity Exi∼P [L(x1, . . . , xN )]. Using the closed-form expression for L(x1, . . . , xN )

in the squared loss and linear model with non-linear transformations case, we can separate the impact

of the stochastic and deterministic noise terms. The stochastic term, that is, the term proportional

to σ2
N from Equation 3.34, is O(1/N). Notice that:

Exi∼P
[
Φ−1
MM

]
=

1

N
Exi

( 1

N

N∑
i=1

φM (xi)φM (xi)
T

)−1


As N →∞,

1

N

N∑
i=1

φM (xi)φM (xi)
T P−→ Exi∼P [φM (xi)φM (xi)

T ] (3.38)

where
P−→ denotes convergence in probability. Substituting, the stochastic noise term simplifies to

1

N
Ex
[
σ2
NφM (x)TExi

[
φM (xi)φM (xi)

T
]−1

φM (x)
]
. (3.39)

Therefore, this term vanishes as N →∞.

The remaining term, on the other hand, is O(1), so this is the term that must be minimized.

Following a similar analysis as above, it follows that

lim
N→∞

Exi∼P [L(x1, . . . , xN )] = σ2
N + σ2

CEx
[
‖φC(x)T − φM (x)TΦ‖2

]
, (3.40)

where

Φ =
(
Exi

[
φM (xi)φM (xi)

T
])−1 Exi

[
φM (xi)φC(xi)

T
]
. (3.41)

Notice that if the collection of features {φi(x)}M+C
i=1 (the components of φ(x)) form an orthonormal

set under P , then by definition

Exi∼P [φi(x)φj(x)] =

 1 if i = j

0 if i 6= j
. (3.42)

Therefore, Exi
[
φM (xi)φM (xi)

T
]

= I, and Exi
[
φM (xi)φC(xi)

T
]

= 0, so that Φ = 0. This orthonor-

mality condition holds, for example, when P is a Gaussian distribution and the features are Hermite
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Figure 3.4: Example Dual Distributions in 1-Dimension when the training set size N changes, for
PS = N (0, 0.12), M = 3, C = 5, using a linear model with Fourier harmonics and a squared loss
function.

polynomials, or when P is a uniform distribution and the features are Fourier harmonics, among other

cases. In this case, the error would reduce to σ2
N +Cσ2

C , and hence there would be no dependence of

the error on the training distribution.

However, when the features are not orthonormal under P , the out-of-sample error still changes

with the training distribution in the limit as N →∞ . We can minimize Equation 3.40 with respect

to Φ. This optimization problem is strictly convex, as it is a quadratic program in the entries of Φ.

Finding the gradient and setting it to zero, we find that the necessary and sufficient condition for the

minimum is to satisfy the equation

ΦTEx∼PS [φM (x)] = Ex∼PS [φC(x)]. (3.43)

The solution to this equation will depend on the type of features chosen. For example, if the features

outside the model have mean zero, making the right hand side vanish, then the distribution P that

makes the features orthogonal will be the solution.

Figure 3.4 shows the effect of N on the dual distribution in a specific example. For this example

PS = N (0, 0.12), M = 3, C = 5, σN = σC = 0.2 and N varies. We used a linear model with Fourier

harmonics and a squared loss function. Notice that the variability of the dual distribution is small as

N changes.
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Figure 3.5: Example Dual Distributions in 1-Dimension when the deterministic noise changes, for
PS = N (0, 0.12), N = 100, M = 3, using a linear model with Fourier harmonics and a squared loss
function.

3.3.2 Effect of noise and complexity

We now look at the effect of target complexity. Notice that as the target complexity grows, the

deterministic noise term dominates L(x1, . . . , xN ). Hence, although the stochastic noise term does

not vanish as it is the case when N → ∞, it is still the deterministic noise term that drives the

minimization. Figure 3.5 shows the dual distributions for the same test distribution, as the target

complexity increases. As the figure shows, there is little variability with respect to the change in

target complexity. The variability actually disappears completely if Hermite polynomials are chosen

for the features. In this case, for all values of C, P ? = PS , and Figure 3.6 exemplifies this behavior.

If we now look at the case where only stochastic noise is present in the data, we notice that for

finite N , the error becomes

σ2
NEx∼PS

[
φM (x)TExi∼P

[
Φ−1
MM

]
φM (x)

]
. (3.44)

Again we have a quadratic form, but this time in terms of the matrix ΦMM rather than in term of

the matrix Φ. This objective function has a minimum of zero, which is achieved at E[ΦMM ] = 0.

However, ΦMM follows the particular form defined in Equation 3.36, which constrains the quadratic

program so it yields a different solution.

Figure 3.7 illustrates the effect of increasing the stochastic noise in a concrete example, where the

dual distribution is calculated for the same test distribution, and σN is increased while holding N ,

M , and C constant. Notice that for small values of σN , P ?R = PS .
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Figure 3.6: Example Dual Distributions in 1-Dimension when the deterministic noise changes, for
PS = N (0, 0.12), N = 100, M = 3, using a linear model with Hermite polynomial features and a
squared loss function.

As it can be seen from the above analysis, the dual distribution is fairly robust with respect to

the different components of the learning problem. Namely, the sample size, the noise, and the target

complexity. This property allows using the dual distribution in a practical setting where components

like the level of noise and target complexity might not be exactly known. The following subsection

describes how to find the dual distribution in a practical setting.

3.4 Using the dual distribution in a practical setting

The dual distribution can be applied in two different settings. The first is the population-based active

learning setting. This is a special case of active learning, in which contrary to supervised learning

where the training data set is fixed, it is possible to sample points according to a desired distribution.

This active learning setting is common in applications of experiment design, where the idea is precisely

to design the distribution from which points will be sampled. In this case, the design distribution

plays the role of the dual distribution, and is chosen by searching within a class of distributions [63].

The second setting where the dual distribution can be used, is in the supervised learning setting

case that we have been discussing. In this section, we will show how to use the dual distribution even

though the data has already been generated using a fixed distribution. We describe in detail how to

do this, and show results on benchmark datasets.

The supervised learning setting poses two challenges for the use of the dual distribution method.
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Figure 3.7: Example Dual Distributions in 1-Dimension when the stochastic noise changes, for PS =
N (0, 0.12), N = 100, M = 3, C = 5, using a linear model with Fourier harmonics and a squared loss
function.

First, the data set is fixed, so the expected values in Equation 3.33, which are taken with respect

to data set generations, cannot be evaluated. Hence, there is a problem in computing the dual

distribution itself. The second problem is how to use the dual distribution, since the data is already

fixed. It is now necessary to make the data set appear as if it came from a different distribution. Here

we describe how to approach both problems.

In order to get the dual distribution with only one data set sample, we make use of the fact that

in this setting, the dual distribution only needs to be computed at the positions xi, i = 1, . . . , N .

The reason for this is that we will use matching algorithms to make the sample look as if it was

distributed according to the dual distribution. As we explain shortly, matching algorithms only need

to compute weights for each of the samples. Hence, it is no longer necessary to compute the full

function, but simply its values at N locations. Also, we notice that the gradient at a point xn is given

by the difference in the expected loss with respect to N − 1 training points, having xn present in the

training set, and the expected loss with respect to N training points (Equation 3.31). So, given that

only one data set is available, E xi∼p
i=1,...,N

[L(x1, . . . , xN )] is approximated by the estimate of the loss

using a single sample (i.e. a single data set). On the other hand, Exi∼p
i 6=n

[L(x1, . . . , xN )] is estimated

by increasing the weight of point xn and finding the resulting loss. The difference of the two terms

will approximate the effect of this point on the loss, and hence determine an approximate value of the

gradient at this point.

Once the dual distribution is computed, we need to make the training dataset look as if it was

distributed according to this new distribution. To do this, we make use of the available methods from
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the covariate shift literature. These methods are described in Section 1.2. All these methods are

variants of importance weighting [64], and their goal is to estimate the weights w(x) = pS(x)/pR(x),

where pR and pS are the training and test densities, respectively. They do this, in order to match PR

to PS . Some of the methods, like KMM [38], KLIEP [67], and LSIF [42] usually perform better in the

covariate shift correction problem, as they try to estimate the ratio directly, rather than computing the

numerator and denominator separately. This can be done when there are unlabeled samples available,

coming from both the training and test distributions. In our case, the importance weights are given

by w(x) = p?R(x)/pR(x). Here, the numerator is found directly through functional gradient descent,

having no available samples distributed according to it. Hence, it is necessary to use methods that

actually compute the training density pR. This can be done either by finding a histogram of the

training set with the adequate resolution, or using other non-parametric methods like Kernel Density

Estimation (KDE) [56] and [53]. Chapter 5 proposes an alternative method that can be used to

match the training distribution to any other distribution, such as the dual. We call this algorithm

Soft Matching.

Therefore, the dual distribution can be used in the supervised learning setting, using the men-

tioned approximation for the functional gradient descent, and making use of importance weighting

to change the distribution of the training data. Table 3.2 shows the average out-of-sample error, in

both classification and regression tasks on 17 benchmark datasets [7] and [68], when the training set

is transformed so that it appears distributed as the dual distribution. The values are compared to the

case where no changes are made to the training set.

The results are averaged over 1,000 different splits of the data into training and test sets. The

training set is also split further, as a validation set is needed to compute the expected loss for the

functional gradient descent. The reported errors are on the test set which is not used at all during

training, nor during computation of the dual distribution. For all datasets 25% of the data was left

aside for testing, 25% was part of the validation set, and the remaining 50% was used for training. For

classification problems, weighted SVMs with Gaussian kernels were used, choosing the kernel width

as in [38], with the libsvm implementation [23]. Ridge regression was used for the remaining data

sets, with regularization parameter λ = 0.1.

As can be seen from the table, in all of the classification problems, the use of the dual distribution

led to a lower out-of-sample error (classification error percentage). Numbers in boldface indicate

that the improvement is statistically significant. For the regression problems, the improvements in

normalized mean-squared error (NMSE) were smaller but still present. Since the use of weights can

lead to an increase in variance or equivalently a sample size reduction [61], it is not surprising that

the improvement in performance is lower than in the examples where direct sampling from the dual
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Table 3.2: Generalization error in benchmark datasets under the supervised learning paradigm, with
and without the use of the dual distribution. 0/1 classification error is reported for the classification
tasks; normalized mean-squared error (NMSE) is shown for regression tasks. N is the size of the full
data set. All numbers are multiplied by 100.

Dataset N Dual No Dual

(Classif.) 0/1 Error

Breast C. 278 25.70± 0.14 27.53± 0.15
Breast WI 683 4.38± 0.04 4.45± 0.04
German Cred. 768 23.96± 0.09 25.08± 0.09
Haberman 306 25.56± 0.13 26.10± 0.13
Diabetes 768 24.09± 0.09 25.08± 0.09
Ionosphere 351 6.28± 0.07 6.41± 0.07

(Regression) NMSE

Abalone 4177 50.25± 0.10 50.75± 0.10
Ailerons 13750 18.63± 0.02 18.65± 0.02
Bank8FM 8192 6.70± 0.01 6.72± 0.01
Bank32NH 8192 46.84± 0.06 46.87± 0.06
Bos. Housing 606 36.74± 0.27 36.94± 0.27
CA Housing 20650 36.15± 0.04 36.19± 0.04
Cpu-act 8192 25.97± 0.08 26.39± 0.08
Cpu-small 8192 30.11± 0.09 30.47± 0.09
δ-Ailerons 9129 49.81± 0.10 49.81± 0.10
Kin8nm 8192 58.83± 0.05 58.83± 0.05
Puma8nh 8192 61.73± 0.05 61.73± 0.05

distribution is possible as in Table 3.1. However, the key takeaway is that there is empirical evidence

that shows that using the dual distribution does improve out-of-sample performance in a supervised

learning setting, in both classification and regression problems.

Since all datasets considered have a multidimensional test distribution, the dual distribution was

found for each of the projections of the test distribution, along its original coordinates, and the

distribution that led to the lowest error in the validation set was chosen in each run. As we discuss in

Section 3.5, finding the dual distribution for a multi-dimensional test distribution is computationally

more difficult, as it is necessary to compute numerically a function at every point in a high-dimensional

grid. Also, sampling from arbitrary distributions in high-dimensional spaces is less accurate when p

is saved in a grid, and this is required at every step of gradient descent.

Some important details regarding the implementation of the algorithm that produces the full dual

distribution, as well as the implementation of the algorithm that focuses on the training points, are

presented in the following section.

3.5 Computational and implementation details

The previous sections describe how to obtain the dual distribution in two cases: the case where it

is possible to compute the expected values in Equation 3.31, so that the full density of the dual
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Algorithm 1 Exact dual distribution

Input: PS , L(·), learning rate η
Discretize domain X → XD
Initialize p(xn) for xn ∈ XD
repeat

for all xn ∈ XD do

∇(L(p(xn)) :=

(
Exi∼P
i6=n

[L(x1, . . . , xN )]− E xi∼P
i=1,...,xN

[L(x1, . . . , xN )]

)
p(xn)

p(xn) := p(xn)− η∇ψ(L(p(xn))
if p(xn) < 0 then p(xn) = 0

end for
Normalize p

until (∇(L(p)) = 0)

distribution can be found, and the practical supervised learning case, where an approximation of the

dual distribution is found at the training points. Some important implementation details of both

algorithms are described in this section.

Algorithm 1 describes the procedure to obtain the dual distribution in the exact case, that is,

when we are allowed to sample data from a desired distribution. This algorithm is the one used to

obtain the dual distributions in the examples of Section 3.2.2.

We first discuss a significant speed up that can be applied in this case. In order to obtain the full

function numerically, it is necessary to discretize the domain, and obtain the distribution at the desired

resolution. Assume the chosen resolution is δ, then the number of times that Exi∼P,i6=n[L(x1, . . . , xN )]

must be computed is proportional to (1/δ)d, at each step of gradient descent, in d dimensions. This

value is computed via MC simulation, and hence it can be a very computationally expensive operation.

When we use a squared loss function and a linear model with non-linear transformations, there

is a closed form solution for the loss, given in Equation 3.34. However, it is still necessary to find

Exi [Φ
−1
MM ]. This matrix must be found through MC simulation for each value of xn in the grid, while

randomizing the remaining N−1 points generated according to P . However, there can be a significant

saving in computation if we apply the Sherman-Morrison identity [60]:

Φ−1
MM = Φ−1

MM,n −
Φ−1
MM,nφM (xn)φM (xn)TΦ−1

MM,n

1 + φM (xn)TΦ−1
MM,nφM (xn)

, (3.45)

where

ΦMM,n =

N∑
i=1
i 6=n

φM (xi)φM (xi)
T . (3.46)

Hence, Exi [Φ
−1
MM,n] can be computed once via MC simulation, and the value of Exi [Φ

−1
MM ] can be

approximated using the identity, and substituting for Φ−1
MM,n by its expected value. This allows us to
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Algorithm 2 Approximate dual distribution for supervised learning

Input: PS , pR, R = {xi}Ni=1, L(·), learning rate η
Initialize p(xi) for xi ∈ R
repeat
w := p./pR (element-wise division)
for all xi ∈ R do
w′ := w
E xi∼P
i=1,...,xN

[L(x1, . . . , xN )] := L(w;x1, . . . , xN )

w′(xi) := w(xi) + 1
Normalize w′ so that

∑
i w
′
i = N

Exi∼P
i 6=n

[L(x1, . . . , xN )] := L(w′;x1, . . . , xN )

∇(L(p(xn)) :=

(
Exi∼P
i6=n

[L(x1, . . . , xN )]− E xi∼P
i=1,...,xN

[L(x1, . . . , xN )]

)
p(xn)

p(xn) := p(xn)− η∇ψ(L(p(xn))
if p(xn) < 0 then p(xn) = 0

end for
Normalize p

until (∇(L(p)) = 0)

compute, with a single MC simulation, the value of Exi∼P,i6=n[L(x1, . . . , xN )] at every desired xn.

Another computational consideration that should be taken into account regards the constraint

satisfaction at each step. Although the update at each step, given by Equation 3.33, guarantees that

p integrates to 1 if the initial p is a proper pdf, numerically there might be small errors that can make

the resulting density add up to a value slightly different from 1. Hence, in the implementation we

normalize p at each step to avoid instability issues.

We also noticed that carrying out the minimization in the p space rather than in the ψ space

was much quicker and usually led to solutions that yield the lowest out-of-sample error. The only

drawback is that the positivity constraint must be also forced at each step. We did this by using the

heuristic of setting to zero at each step any values that become negative.

Finally, for all experiments, p was initialized to be a uniform distribution in the finite domain.

Another possible initialization point is p = pS . If an alternative initialization is used, p must be a

smooth function, and p(x) > 0 at every x. Otherwise, since the updates are proportional to p(x), the

points initialized at zero will not change throughout the descent.

Algorithm 2 describes the procedure to obtain an approximate dual distribution, in the supervised

learning setting. The same considerations regarding the constraints of the minimization problem are

taken into account.
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3.6 Differences with active learning

The concept of a dual distribution in supervised learning is somewhat related to similar ideas in

active learning and experimental design. Especially, the methods of ‘batch’ active learning, where a

‘design’ distribution is found in order to minimize the error, seems to be solving a similar problem to

the dual distribution. However, the fundamental difference is that active learning finds such optimal

distribution given a particular target function. Hence, most methods rely on the information given

by the target function in order to find a better training distribution. A common example is when

distributions give more weight to points around the boundaries of the target function. Yet, the

problem of finding the dual distribution is independent of the specific target function. The Monte Carlo

simulations presented in Chapter 2, as well as the bounds shown, average over different realizations

of target functions.

For example, [43] describes an algorithm to find an appropriate ‘design’ distribution that will lower

the out-of-sample error. In the algorithm proposed, a first parameter is estimated with s data points,

and with this parameter the optimal design distribution is found. Having a new design distribution,

T − s points are sampled from it and a final parameter is then estimated. Notice, however, that the

optimal design distribution is dependent on the target function. In the results we present, if a dual

distribution is found given a particular test distribution, such distribution is optimal independently

of the specific target function.

Other papers in the active learning community that focus on linear regression, like [63], seem

closely related to our work. In the mentioned paper, the results apply to linear regression only, and

consider the out-of-sample error conditioned on a given training set. The nice property of the out-of-

sample error in linear regression is that it is independent of the target function. This is the reason

why even in the active learning setting, the dependence of the target function disappears in this case

and the mathematical analysis looks similar to the one we presented in Section 2.2. Yet, even though

our analysis in Chapter 2 is done with linear regression and hence uses similar mathematical formulas,

our approach is based on averaging over realizations of training sets and of targets functions in the

supervised learning scenario, rather than in the cases addressed in the mentioned papers. Furthermore,

the problem of finding the dual distribution and the results presented can be applied to other learning

algorithms besides linear regression, both for classification and regression problems in the supervised

learning setting as shown in the previous section.

Another difference that may stand out to the reader is the way the ‘design’ distribution is used once

it is found in the active learning papers, as opposed to how we propose to use the dual distribution

here. In the active learning scenario, points are sampled from the design distribution, but in order to

avoid obtaining a biased estimator, as shown in [61], the loss function is weighted for these points with
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w(x) = q(x)/p(x), following their notation, where q(x) is the test distribution (PS(x)) and p(x) is the

‘design’ distribution found. Notice that in the results presented in the simulations of Section 2.1 and

in Tables 3.1 and 3.2, we do not re-weight the points but instead explicitly allow a mismatch between

PS and PR. Furthermore, in the supervised learning setting, where the training set is fixed and we

are not allowed to sample new points, we propose that matching algorithms, as the ones described

in Section 1.2, be used to match the given training set to the dual distribution. In this case, the

objective is to have weights w(x) = p?R(x)/pS(x), so that the training set appears distributed as the

dual distribution. These weights are actually inverse to those used in the active learning algorithms

described. Although we are aware that the estimator computed in the linear regression setting will be

biased when we use the dual distribution, we are concerned with minimizing the out-of-sample error,

which takes into account both bias and variance, and hence we may obtain a biased estimator but

improve the mean-squared error performance as the results show in Tables 3.1 and 3.2.

Furthermore, the results shown in [61] hold only in the asymptotic case, and since we are deal-

ing with the supervised learning scenario where only a finite training sample is available, the same

assumptions are not valid. Thus, it is no longer optimal to use the mentioned weighting mechanism

when N is not sufficiently large, as also shown in [61]. In the active learning setting, it is desirable

that as more points are sampled, the proposed algorithms have performance guarantees. Hence, the

algorithms are designed to satisfy conditions such as consistency of the estimator, unbiasedness, etc.,

in the asymptotic case, which explains why the active learning algorithms use the above-mentioned

weighting mechanism. In our setting, minimizing the out-of-sample performance with a fixed-size

training set is our main objective, which is why the two approaches differ. As it is clear, the dual dis-

tribution serves a different purpose in the supervised learning setting than that of the active learning

algorithms.

Having answered the first fundamental question posed in Chapter 1, is it better to have PR = PS ,

and having concluded that in fact P ∗R is the optimal training distribution to generate the dataset for

training the learning algorithm, we move on to answer the second question. Is it advantageous to use

weights to make the training set look like P ?R? We answer this question in the following chapter.
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Chapter 4

To weight or not to weight

As shown in the previous chapter, it is desirable to use the dual distribution to sample the training

data for a learning problem. Nevertheless, since in the supervised learning scenario it is not possible

to sample from the dual distribution, or even from the test distribution in the covariate shift case,

then it becomes necessary to use weights to match the training distribution to the dual (so far in the

literature weighting has been used to match training to test distributions). However, when applied

in practice, weighting has a mixed record and sometimes worsens the out-of-sample performance, as

discussed in [25]. This raises three natural questions:

• What makes weighting work in some cases but not others?

• Is there a way to predict when it will work and when it won’t?

• How accurate is the prediction when applied to real data?

In this chapter, we answer these questions. We also introduce Targeted Weighting, a novel al-

gorithm that predicts when weighting will be beneficial. When applied to various real datasets, the

algorithm achieved near-unanimous success.

4.1 What makes weighting work sometimes only?

As stated in Chapter 1, assume we have two distributions P and P ′ on the input space X , where P

is where training data is drawn from, and P ′ could be the distribution where the test data is drawn

from, or some other desired distribution like the dual distribution. Let the target be f : X → Y which

is unknown. If we are interested in finding the expected value of a loss function `(g(x), f(x)), x ∈ X

is the input variable, and g : X → Y the hypothesis output by the learning algorithm, a standard
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approach is to consider the empirical loss on a dataset R = {(xi, yi)}Ni=1, so that we solve the problem

g = arg min
h
J(h,R) = arg min

h

1

N

N∑
i=1

`(h(xi), f(xi)) (4.1)

By minimizing the empirical loss, we are approximating Ex∼P [`(h(x), f(x))] with the in-sample quan-

tity J(h,R). If weights are used to match P to P ′, assuming that we knew both distributions and

that P (x) > 0, we can use wi = P ′(xi)/P (xi) such that

Exi∼P [wi`(h(xi), f(xi)] = Exi∼P

[
P ′(xi)

P (xi)
`(h(xi), f(xi))

]
= Exi∼P ′ [`(h(xi), f(xi))]. (4.2)

Therefore, the use of weights allows simulating the expected value with respect to the desired distri-

bution P ′. When P ′ = PS , we solve the mismatch problem and obtain an unbiased estimate of the

loss [61]. When P = P ?R, we hope to obtain the benefits of training with the dual distribution, and

therefore improve the out-of-sample performance. However, there is a side effect of using weights.

From statistics, we know that the use of weights leads to an effective sample loss. We now develop an

approximate expression for this sample loss based on the change of variance in the sample estimate.

We also verify this expression empirically.

4.1.1 The effective sample size

In practice, the loss in Equation 4.2 is estimated empirically using a finite sample. There will be

a change in the variance between the unweighted and weighted estimates, and that change is tanta-

mount to an effective loss in sample size. Consider

V ar

[
1

N

N∑
i=1

`(h(xi), f(xi))

]
=

1

N2

N∑
i=1

V ar[`(h(xi), f(xi))] =
1

N
V ar[`(h(xi), f(xi))]. (4.3)

The variance of the estimate is reduced by N , the size of the sample. However, assume that the

weights were independent of x, that is, the set {wi}Ni=1 is a set of constant weights assigned to each

of the training samples. Then, the variance becomes:

V ar

[∑N
i=1 wi`(h(xi), f(xi))∑N

i=1 wi

]
= V ar[`(h(xi), f(xi)]

∑N
i=1 w

2
i(∑N

i=1 wi

)2 (4.4)

Hence, by introducing weights, the sample size has been effectively reduced to

Neff =
(
∑
i wi)

2∑
i w

2
i

, (4.5)
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Table 4.1: RMS error using: Neff training examples (R1); using weights found with a matching
algorithm but assigned randomly (R2); and using the weights found with matching assigned correctly
(R3)

Neff Reduced training set Random weights Matched Weights 100× |R1 −R2|/R1

RMS error (R1) RMS error (R2) RMS error (R3)

99,072,095 0.947405 0.947407 0.946639 0.0002%

99,070,481 0.947425 0.947322 0.946531 0.011%

98,959,437 0.947487 0.947218 0.946462 0.028%

98,138,979 0.947823 0.946958 0.946344 0.091%

97,416,899 0.947937 0.947159 0.946452 0.082%

88,128,713 0.952993 0.951354 0.947886 0.172%

35,484,865 0.999641 0.995888 0.986235 0.375%

25,925,094 1.002576 1.002970 0.989099 0.039%

6,632,779 1.054571 1.055235 1.034925 0.063%

which is maximized when all weights are equal, making Neff = N . This result is not exact, as in

practice, the weights are a function of x, for example, if w(x) = P ′(x)/P (x).

Nevertheless, this measure of the effective sample size can be verified in a real dataset such as

the Netflix dataset. For this set, we computed weights with the Soft Matching algorithm that is

introduced in Chapter 5. To test the pure effect of weights on effective sample size reduction, without

the matching effect itself coming into play, we assigned the weights randomly to the training set

consisting of 9.91 × 107 training points. We then tested the error on an out-of-sample set consisting

of 2.82× 106 points.

The out-of-sample error obtained when weights are assigned randomly on the full training set, was

compared to the out-of-sample error when weights are not used, but only Neff random training points

are used. Neff is computed with Equation 4.5 given the set of weights. To create different instances

of Neff , the maximum size of the random weights as well as the matching scheme were changed in

different trials. The results are summarized in Table 4.1, which shows averages over 30 runs. The

table shows that the RMS errors obtained by reducing the sample size (R1), or by using random

assignment of the weights (R2), follow each other very closely as expected, with an average difference

of less than 0.1%.

If we repeat the same experiment, except that the weights computed are no longer assigned ran-

domly but instead assigned in the order given by the matching algorithm, we obtain the RMS errors

shown in the fourth column of the table (R3). This column captures both the sample loss and the

positive effect of matching. If no weights are used, the RMS error obtained is 0.94664 and it is clear

that matching leads sometimes to lower RMS errors with respect to this value (these cases are high-

lighted in the table). Yet, as expected, it always leads to lower RMS error compared to the random

assignment of the same weights, thus verifying the favorable matching effect. As Neff decreases, the
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benefit of matching is overwhelmed by the reduction in sample size and becomes a net loss.

This notion of sample size loss was first discussed in [61], where without proof, the effective sample

size was defined in entropy terms as Ne = exp(−
∑N
i=1 pi log pi), where pi = w(xi)/

∑
i w(xi), and

w(x) = pS(x)/pR(x). In [38], the authors introduce the same expression for Neff that we use, assuming∑
i wi = N , as they provide a bound for learning using the Kernel Mean Matching (KMM) method,

in which N is replaced by the quantity Neff = N2/‖w‖2, where the weights are found through their

method.

A closer look shows that the effective sample size does not explain fully the negative effect of

matching. There is a broader effect that is caused by the difference between sampling directly from

a distribution and weighting points to make them look as if they were sampled from a different

distribution. In the next subsection, we analyze the expected value and variance of all the moments

of a weighted sample, in order to establish the difference between weighting and sampling.

4.1.2 Weighting vs sampling

We can compare analytically the difference between a sample from P ′ and a weighted sample from

P , by looking at the expected value and variance, with respect to the data set generation, of the

moments of the sample. Notice that a probability distribution is uniquely determined by the moment

generating function. Recall that the moment generating function of a random variable X is given by

MX(t) = E[eXt] = 1 +
E[X]t

1!
+

(E[X2]t)2

2!
+ · · · . (4.6)

Hence, if the moments are found, the moment generating function can be constructed and so the

distribution can also be uniquely determined. Since the moments of an underlying probability dis-

tribution can be estimated through the moments of the sample, we compare the expected value and

variance of the moments of the weighted sample coming from P and those of a an unweighted sample

coming from P ′, with weights w(x) = p′(x)/p(x). The differences we find will indicate the difference

of the distribution that a weighted sample simulates and the actual distribution we match to.

Let R = {xi}Ni=1 be a set with points sampled from P ′. The expected value of the k’th moment of

the sample is given by

Exi∼P ′

[∑
i x

k
i

N

]
=

1

N

∑
Ex∼P ′ [xki ] = Ex∼P ′ [xki ], (4.7)
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and the variance is given by

Varxi∼P ′

[∑
i x

k
i

N

]
=

1

N2
Ex∼P ′

∑
i

x2k
i +

∑
i 6=j

xki x
k
j

− Ex∼P ′ [xki ]

=
1

N
Exi∼P ′ [x2k

i ] +
N(N − 1)

N2
Exi∼P ′ [xki ]2 − Exi∼P ′ [xki ]2

=
1

N
(Exi∼P ′ [x2k

i ]− Exi∼P ′ [xki ]2)

=
1

N
Varxi∼P ′ [xki ] (4.8)

Now assume the points xi are sampled from P and we use importance weights. The expected

value of the k-th moment is given by

Exi∼P
[∑

i w(xi)x
k
i

N

]
=

1

N

∑
i

Exi∼P
[
w(xi)x

k
i

]
=

1

N

∑
i

Exi∼P ′
[
xki
]

= Ex∼P ′ [xki ], (4.9)

where we used the fact that

Ex∼P [w(x)f(x)] =

∫
p′(x)

p(x)
f(x)p(x)dx =

∫
f(x)p′(x)dx = Ex∼P ′ [f(x)] (4.10)

Hence, it is clear that the expected value of the moments is the same for a sample distributed as P ′

as for a sample distributed as P ′ if we use importance w(x) = p′(x)/p(x). However, the variance of

the moments does change:

Varxi∼P
[∑

i w(xi)x
k
i

N

]
=

1

N2
Exi∼P

∑
i

w(xi)
2x2k
i +

∑
i6=j

w(xi)w(xj)x
2k
i x

2k
j

− Ex∼P ′ [xki ]2

=
1

N2
(
∑
i

Exi∼P ′ [w(xi)x
2k
i ] +

∑
i 6=j

Exi∼P ′ [xki ]Exj∼P ′ [xkj ])− Ex∼P ′ [xki ]2

=
1

N
(Ex∼P ′ [x2k

i ]− Ex∼P ′ [xki ]2 + Ex∼P ′ [w(xi)x
2
i ]− Ex∼P ′ [x2k

i ])

=
1

N
Varxi∼P ′ [xki ] +

1

N
(Ex∼P ′ [w(xi)x

2
i ]− Ex∼P ′ [x2k

i ])

=
1

N
Varxi∼P ′ [xki ] +

1

N

∫
(p′(x)− p(x))x2k p

′(x)

p(x)
dx, (4.11)

where we use Equation 4.10 to obtain the final expression. Notice that we end up with an additional

term which resembles a distance between p′ and p. For the case k = 0, we denote the additional term

by D(p′||p), where

D(p||q) =

∫
(p(x)− q(x))

p(x)

q(x)
= Ex∼P

[
p(x)

q(x)

]
− 1. (4.12)



46

We first notice that this quantity is indeed a divergence, as it is non-negative and is 0 if and only if

p = q. To show this, we first prove that

Ex∼P
[
p(x)

q(x)

]
≥ 1. (4.13)

Notice that

Ex∼P
[
q(x)

p(x)

]
=

∫
q(x)

p(x)
p(x)dx = 1. (4.14)

Using Jensen’s inequality, and the function f(x) = 1/x which is convex for x > 0, we have

Ex∼P
[
p(x)

q(x)

]
= Ex∼Q

[
f

(
q(x)

p(x)

)]
≥ f

(
Ex∼Q

[
q(x)

p(x)

])
= 1. (4.15)

Notice also that Jensen’s inequality holds with equality only when the random variable is a constant.

In this case, this implies p(x)/q(x) is constant. Since both numerator and denominator integrate to

1, then they must be equal. Hence

D(p||q) =

∫
(p(x)− q(x))

p(x)

q(x)
≥ 0 (4.16)

with equality if and only if p = q.

In fact, this divergence falls in the class of f -divergences [29]. Let R+ be the set of non-negative

real numbers, that is R+ = {x : x ∈ R, x ≥ 0}, and let R++ be the set of positive real numbers,

that is R++ = {x : x ∈ R, x > 0}. These divergences are defined as D : G++ × G++ → R, where

G++ = {g : Rd → R++} and

Df (p||q) =

∫
f

(
dQ

dP

)
dP =

∫
f

(
q(x)

p(x)

)
p(x)dx, (4.17)

where f is a convex function f : R→ R+ that satisfies f(1) = 0. In our case,

f(u) = 1/u− 1.

Notice that f is only convex in the set R++, which agrees with the domain of D, since D is defined

only when both p and q are strictly positive. A more common f -Divergence is the KL-divergence

which uses f(u) = log 1/u. Notice that this is again a convex function although undefined at u = 0

as in our case.

This notion of distance between the distributions P and P ′ characterizes how the variance of the

moments of the samples changes. The “further” the two distributions are, the larger the difference in

this variance. An intuitive consequence of this effect, is that the support of the initial set must overlap
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significantly with the support of the distribution we want to match to. Take an extreme example;

assume in a matching scenario we want to match data sampled from a uniform distribution U [0, 1] to

a distribution given by the Gaussian distribution N (2, 0.12). The shift is so extreme that P (x) = 0

for x in the domain where the dual distribution is concentrated, so that the ratio w(x) = p′(x)/p(x)

is undefined. In practice, such scenario is uncommon as we expect that P ′, which is either the test

distribution PS or the dual P ?R, is close to the training distribution. In this case, we would like to

think of the sample as being “diverse” enough to be able to match it to the desired distribution.

Now, the term we found that changes the variance of the moments of our weighed sample is only

non-negative when we think of the 0-th moment. However, for the first moment, it is very easy

to see that this term can be negative. For example, it is negative if p is a very narrow Gaussian

distribution, while q is a much wider Gaussian distribution, both having the same mean. This makes

the negative terms dominate, as can easily be verified numerically. Hence, the variance of the moments

can actually be reduced. Such reduction would lead to lower out-of-sample error, when we consider

that our random variables xi represent the loss evaluated at the different points in the dataset. This

coincides with the examples of dual distributions shown in Figure 3.2, where the dual is a slightly

wider distribution than the test distribution.

We run a simple simulation to illustrate the difference between learning from a sample distributed

as P ′, and learning from a sample distributed as P but using importance weighting w(x) = p′(x)/p(x).

The problem consists of a polynomial regression problem, with a model including second-order Leg-

endre polynomials, while the target includes third-order Legendre polynomials. The constant δ cor-

responds to the coefficient of the deterministic noise term. Figure 4.1 summarizes the results, and we

plot the out-of-sample error obtained both weighting and sampling directly, as the sample size grows.

The different plots in the grid vary the KL-divergence between P ′ and P , with the KL-divergence

growing vertically down. Horizontally, the plots change the value of σC , the amount of deterministic

noise.

As it can be seen, as the KL-divergence grows, training with weighted samples always leads to a

larger out-of-sample error. If however, the KL-divergence is small, the difference in errors is almost

zero. For a medium KL-divergence, having a large number of samples diminishes the difference

between both scenarios. This scenario is the most likely in practice. Notice that this effect is persistent

regardless of how complex the target function is, as it is clear that the same behavior can be observed

for the different values of deterministic noise.
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Figure 4.1: Simulations illustrating the out-of-sample error difference vs the number of training sam-
ples, when sampling data form a distribution P ′ and matching a sample distributed as P using
importance weights w(x) = p′(x)/p(x). The figure illustrates the effect as P is further from P ′ in
KL-divergence sense (vertical), as well as the how the effect changes as deterministic noise changes
(horizontal)
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4.1.3 Decomposition of the weighting effect

As discussed above, using weights for matching can both help and hurt learning. We can decompose

the effect of weighting into two terms. There is an ideal gain that can be achieved by training with

the desired distribution (either the test or the dual distribution). Yet, since we are not able to sample

directly from the desired distribution, but instead weight the points to try and achieve this, there is

a difference in the moments of the distribution of a weighted versus a directly sampled dataset.

Let us introduce some notation in order to quantify these terms. Fix the training set size to N

points. Let g be the hypothesis output by the learning algorithm when training with points from

the original training distribution P . Now, we introduce variations of g according to the training

conditions. Let gP ′ be the hypothesis obtained if we had training data distributed according to P ′.

Let gw be the hypothesis obtained if the set of weights w has been used during training on points

from the original distribution P . As usual, let f be the target function we are trying to learn.

The bottom line in quantifying the value of using weights is the difference in out-of-sample error

with weights and without weights:

NetGain = Ex∼PS [`((g(x), f(x))]− Ex∼PS [`(gw(x), f(x))] (4.18)

Notice that the expected value of the out-of-sample error is taken with respect to the test distribution

PS , and that P ′ is not necessarily PS , for example, we may choose P ′ = P ?R.

The positive effect of training with the desired distribution can be quantified as

MatchGain = Ex∼PS [`(g(x), f(x))]− Ex∼PS [`(gP ′(x), f(x))] (4.19)

This term corresponds to the out-of-sample gain if we had trained with points coming from P ′ rather

than from P . As shown in Chapter 3, this quantity is maximized if P ′ is the dual distribution. The

quantities in the right hand side cannot be directly evaluated in practice, as the setup assumes the

training set is distributed according to P . Furthermore, gP ′ is unavailable, if it were, there would be

no need to perform matching to the desired distribution.

Now, we have to quantify the effect of using weights rather than sampling directly. This term is

given by

WeightLoss = Ex∼PS [`(gw(x), f(x))]− Ex∼PS [`(gP ′(x), f(x))]. (4.20)

Again, none of the two quantities in the right hand side can be evaluated in a practical setting as

x ∼ P .
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Figure 4.2: NetGain = α0 + α1Ex∼P ′ [(g(x)− gw(x))2]

Using the terms defined, it is clear that:

NetGain = MatchGain−WeightLoss. (4.21)

Therefore, the balance between the MatchGain and WeightLoss must be found in order to determine

if there is a gain in matching P to P ′. For example, it may be the case that even if P is different

from P ′, the MatchGain is so negligible that the WeightLoss dominates, and matching is therefore

not useful.

4.2 The algorithm: Targeted matching

The NetGain is defined in terms of g, gw, and f . It cannot be computed using the available data.

Not only is the target f unknown, which is normally circumvented by validating using the labeled

points available, but also the labeled points are distributed according to P , not PS . Only unlabeled

points may be distributed according to PS , so if we validate using the labeled points, all the expected

values would be computed with respect to the wrong distribution.

One way around that is to use IWCV [65], in which the labeled points are scaled by pS/p using

the same solution as the one shown in Equation 4.2. However, this assumes that P and PS are known.

Since they are not known, they need to be estimated from the samples. If we use validation to get

estimates of P and PS , this will compromise the ability of the same data to provide an unbiased

estimate of the quantity we are after that depends on P and PS . If we do not use validation, however,

and the weights we get deviate from w(xi) = P ′(xi)/P (xi), as they do in methods like KMM or

KLIEP, the weighted expected value will not be a good estimate for the expected value with respect
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to PS . Indeed, as pointed out in [67], the use of validation for KMM and other weighting methods is

an open research question.

An alternative approach, instead of estimating P and PS , is to directly estimate NetGain by

calculating the actual weights for subsets of the data using the method at hand, be it KMM or

some other method. We can then use these subsets as validation sets that capture the behavior of

the weighting method. The problem with this approach is that these methods estimate the weights

collectively. The algorithms return a weight for each point in the training set, but the weights returned

depend on all the remaining points. Arbitrarily dividing the dataset into validation and training will

change the actual weight that the algorithm intends to give to each point. Added to these issues,

using a weighted estimate will also suffer an increase in the variance, by the same argument followed

in Section 4.1.1, reducing the effective size of the validation set.

Hence, there is no straightforward way of validating the effect of a particular set of weights. Our

contribution in this section is to provide an alternative to validation that enables us to estimate

NetGain in order to decide whether weighting would be beneficial or not. Our method is based on

the following observation. The quantity Ex∼PS [`(g(x), gw(x))] can always be estimated since we have

unlabeled points x ∼ PS . Notice that if the loss ` is an appropriate metric, such as the squared loss,

then it follows the triangle inequality. In its reverse form, it implies

|Ex∼PS [`(g(x), f(x))]− Ex∼PS [`(gw(x), f(x))]| ≤ Ex∼PS [`(g(x), gw(x))]. (4.22)

Hence,

|NetGain| ≤ Ex∼PS [`(g(x), gw(x))] (4.23)

Therefore, we propose using the following regression model to estimate the MatchGain:

NetGain = α0 + α1Ex∼P ′ [`(g(x), gw(x))] (4.24)

In fact, we can simply set α1 = 1, so that α0 ∈ [−2Ex∼P ′ [`(g(x), gw(x)], 0].

We first verify the validity of this model in an example with synthetic data. We generate random

target functions by picking random coefficients for two dimensional Legendre polynomials, and we

carry out learning by using a squared loss function and polynomial features for a non-linear trans-

formation. We use P ′ = PS for simplicity, and plot the quantity Ex∼PS [`(g(x), gw(x)] versus the

MatchGain. Figure 4.2 shows typical regressions for the above model. We observe that α1 ≈ 1, and

that α0 varies according to P , and P ′, but does not change much for f ’s that are somewhat similar,

as the model of Equation 4.24 explains well the data points. Notice that it is precisely the quantity

α0 that can make NetGain negative, as the second term is always positive for α1 = 1. The key
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Algorithm 3 Targeted Weighting algorithm,

Input: R = {xi, yi}Ni=1, S = {xi}NSi=1, , w ∈ RN , R ∼ P, S ∼ P ′
Learn g and gw using R and w
Compute e = 1

NS

∑
i∈S(`(g(xi), gw(xi)) ≈ Ex∼P ′ [`(g(x), g(w))]

Set Count = 0
for k ← 1 : K do

Generate surrogate target fk
R(k) = {xi, fk(xi)}Ni=1

Learn gk and gkw using R(k) and w
Compute e1 = 1

NS

∑
i∈S(`(gk(xi), fk(xi)) ≈ Ex∼PS [`(gk(x), fk(x))]

Compute e2 = 1
NS

∑
i∈S(`(gkw(xi), fk(xi)) ≈ Ex∼PS [`(gkw(x), fk(x))]

Compute e3 = 1
NS

∑
i∈S(`(gk(xi), gkw(xi)) ≈ Ex∼PS [`(gk(x), gkw(x))]

αk0 = e1 − e2 − e3

if αk0 + e > 0 then
Count+ +

end if
end for
if Count > K/2 then

Use weights
else

Do not use weights
end if

observation is that the problem reduces to estimating α0.

We propose the following procedure to estimate the sign of NetGain. Since the simulations on

synthetic data show α0 changes with every P and P ′, but is fairly constant for f ’s that have comparable

complexity and numerical range, we can try to estimate α0 using surrogate target functions that are

similar to the actual target in these two aspects. To match the complexity, we generate the surrogate

functions using a parametric model and adjust the number of parameters and level of added noise to

make the error when learning surrogates about the same as the error when learning the actual target.

To match the numerical range, we normalize the outputs of the surrogates according to the range of

values of the target.

The algorithm, which we call Targeted Weighting (TW), is described in Algorithm 3. The idea

is to find α0 for K surrogate functions. Let fk, k = 1, . . . ,K, be surrogate target functions. Let gk

be the hypotheses learned when training the algorithm with points sampled from P . Let gkw be the

resulting hypotheses when training with the set of weights w. The idea is to find the values α0k for

each of these surrogates. According to the model of Equation 4.24, this value is given by

α0k = MatchGaink − Ex∼PS [`(gk, gkw] (4.25)

= Ex∼PS [`(gk(x), fk(x)]− Ex∼PS [`(gkw(x), fk(x))]− Ex∼PS [`(gk, gkw)]. (4.26)
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We then compute a proxy for the NetGain for each of the surrogate functions:

NetGain ≈ α0k + Ex∼PS [`(g(x), gw(x))]. (4.27)

With the K proxies for NetGain, we decide if weighting is beneficial or not by taking a majority vote

on the sign of the proxies obtained. We test our procedure on real datasets to verify its validity.

4.3 Experimental results

We applied this algorithm on various real datasets. One of these datasets is the Netflix Prize dataset.

The distribution of the training points in this set is quite different from that of the test points used

for evaluating the performance of the solutions. After the competition was over, the labels of the

test points were made available, which makes it possible to verify if indeed our algorithm improves

the ultimate out-of-sample performance. We also applied TW on 17 benchmark datasets that were

used in [38] to evaluate the matching effect. The original datasets have PR = PS , but we artificially

introduced a mismatch between P and PS as was done in that paper. We report the results in the

next two subsections.

4.3.1 Results on the Netflix dataset

We ran an elaborate experiment with TW on the Netflix data. In each run, we used K = 100 surrogate

functions. We generated the surrogate targets using a factorization model similar to SVD, so that

the surrogate function is r
(k)
ij = round(σ(pTikqjk + µ + ε)) for user i and movie j, where pik, qjk ∈ Rκ

are generated randomly, ε is added noise, and µ and σ adjust the mean and standard deviation of the

labels to those in the Netflix training set. The distributions that generate pik and qjk were chosen

to make the resulting ratings lie with high probability in the normal range [1, 5] of movie ratings.

If a particular rating was outside this range, its value was truncated to 1/5. The dimension of the

movie and user features, κ, was varied between 10 and 50 for the different surrogate functions, a range

compatible with the complexity of the original set.

We chose the training algorithm known as SVD++ [44], implemented with the speedup proposed

in [24]. This learning algorithm provided the best solutions during the Netflix competition. We

trained on the raw training set whose distribution is different from that of the validation and test sets

(known as ‘Probe’ and ‘Qual’). We only used the inputs in ‘Probe’ without their labels, as well as the

provided inputs in ‘Qual’ which are similarly distributed, in order to perform matching.

Since the training set has about 100 million points, and we matched along 6 coordinates, we

needed an efficient matching algorithm for our experiments, which we describe in Chapter 5 and call
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Table 4.2: TW with K = 100 in the Netflix dataset. NetGain is computed with the labels of the
original Netflix competition test set.

Coord. λ %fk with NetGain λ %fk with NetGain
NetGain > 0 improvement NetGain > 0 improvement

(basis points) (basis points)

t 0% −71 37% 9
dt 0% −14 58% 0.1
us 1000 0% −121 100 60% 5
ms 0% −147 28% −5
ut 0% −41 0% −20
un 0% −40 0% −17

t 55% 7 60% 2
dt 64% 0.1 77% 0.1
us 50 51% 9 10 69% 3
ms 5% −0.3 54% 0.4
ut 0% −14 0% −5
un 0% −13 0% −5

t 65% 1 76% 0.3
dt 84% 0.1 83% 0.01
us 5 71% 2 1 87% 0.4
ms 61% 0.2 76% 0.01
ut 0% −2 0% −0.01
un 0% −2 0% −0.01

t, us, ms 100, 100, 10 60% 10 100, 50, 10 60% 15

Soft Matching. Each point in the dataset consists only of a user id, a movie id and the time of the

rating, R = {ui,mi, ti}Ni=1. We represented each point by 6 characteristic coordinates that represent

the mismatch between the training and test points of this dataset. The coordinates are the absolute

time of rating (t); time since first rating of movie (dt); number of ratings per user or ‘user support’

(us); number of ratings for a movie or ‘movie support’ (ms); time since first rating of user (ut); and

order of rating among the user’s ratings (un). The distribution along these coordinates was distinctly

different between the training and test sets. Soft Matching matches the distributions along these

coordinates by binning the values along each coordinates and minimizing the discrepancy between

corresponding bins while maximizing Neff . A parameter λ controls the extent of matching, where

λ = 0 implies all weights are 1, and λ =∞ yields importance weighting. The details of this algorithm

will be explained further in Chapter 5.

Table 4.2 shows different choices for λ and the coordinate to be matched. It also shows what

percentage of surrogate functions had αk0 + E[`(g(x), gw(x))] > 0 (the ‘%fk with NetGain > 0’

column), and then the actual improvement or worsening of out-of-sample error in the test set. Notice

that in the results shown, if the weighting mechanism worsens results, it is always the case that less

than 50% of the surrogate functions yield improvement. On the other hand, only for one case of the

weighting mechanism parameters, there is a positive NetGain while less than 50% of the surrogate
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Table 4.3: Out-of-sample performance when not using weights, always using weights, and using TW
to decide if weights should be used. The number of points in the training set (NR) and the test set
(NS) are shown for reference. After sampling, only NsubR points were used for training

Dataset NR Avg. NS Test error
(Classif.) NsubR No weights With weights With TW

Br. Cancer(1) 546 173 137 0.055± 0.0006 0.055± 0.0006 0.053± 0.0006

Br. Cancer(2) 546 109 137 0.317± 0.003 0.313± 0.003 0.300± 0.004

Br. Cancer(3) 546 208 137 0.0681± 0.0007 0.0651± 0.0007 0.0650± 0.0007

Br. Cancer 546 228 137 0.045± 0.0005 0.046± 0.0005 0.044± 0.0005

German cred. 614 216 154 0.298± 0.0009 0.298± 0.0009 0.296± 0.0009

Haberman 245 97 61 0.257± 0.0016 0.259± 0.0016 0.248± 0.0016

India diabetes 614 217 154 0.269± 0.0011 0.271± 0.0011 0.262± 0.0011

Ionosphere 281 153 70 0.066± 0.0009 0.067± 0.0009 0.061± 0.0009

USPS 3vs9 1042 443 260 0.5031± 0.0009 0.4896± 0.0008 0.4883± 0.0008

(Regression) NMSE error

Abalone 3342 2319 835 0.4850± 0.0010 0.4840± 0.0010 0.4828± 0.0010

Ailerons 11000 3637 2750 0.1847± 0.0002 0.1850± 0.0002 0.1846± 0.0002

Bank8FM 6554 3393 1638 0.0657± 0.0001 0.0653± 0.0001 0.0653± 0.0001

Bank32nh 6554 3353 1638 0.4733± 0.0006 0.4740± 0.0006 0.4731± 0.0006

Bos. Housing 405 160 101 0.3197± 0.0028 0.3164± 0.0029 0.3061± 0.0026

CA Housing 16512 5250 4128 0.3688± 0.0004 0.3686± 0.0004 0.3679± 0.0004

Cpu-act 6554 6325 1638 0.2767± 0.0007 0.2778± 0.0010 0.2719± 0.0008

Cpu-small 6554 6331 1638 0.2891± 0.0007 0.2881± 0.0009 0.2846± 0.0007

Delta Ailerons 5703 5691 1426 0.4585± 0.0004 0.4603± 0.0004 0.4580± 0.0004

Kin8nm 6554 4109 1638 0.5881± 0.0005 0.5881± 0.0005 0.5877± 0.0005

Puma8nh 6554 3993 1638 0.632± 0.0006 0.632± 0.0006 0.631± 0.0006

functions yielded improvement. The table highlights the runs where the majority of the surrogates

agreed with the ultimate out-of-sample performance.

4.3.2 Results on further benchmark datasets

We also tested our TW algorithm on UCI classification dataset [7], as well as on LIACC Regression

datasets [68]. Since these datasets have PR = PS , a sampling bias is further introduced as described in

the experiments in [38]. We began with detailed experiments in the Breast Cancer dataset where three

types of sampling biases are introduced to the training set: bias using a single input feature (1), bias

using all features (2), and label-dependent bias (3). We then ran experiments in both classification

and regression datasets where sampling bias is introduced along the first PCA component, and we

matched along all original coordinates. All biased sampling parameters are set as in [38].

Experiments were run 1,000 times for each type of sampling bias scheme. We used a Gaussian

kernel SVM as the learning algorithm for the classification datasets. The SVM package libsvm [23]

with weights was used to carry out the experiments, and the size of the kernel for each dataset was

taken from [38]. For the regression datasets, we used regularized least squares (LS). For each run, a
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different split between training and test sets was done, where 20% of the data was saved for testing.

The remaining 80% was sub-sampled for each of the sampling bias schemes. TW was run using

K = 100 surrogate functions. For the classification tasks, the surrogate functions were generated

by randomly choosing support vectors and coefficients. The only constraint in this random selection

was to use a similar number of support vectors to the ones obtained when training with the original

data, in order to have comparable complexity. Specifically, surrogate target k had svk ∈ [0.9sv, 1.1sv],

where sv is the number of support vectors obtained with the original data. For the regression tasks,

a random parameter vector θk ∼ N (θ, (0.1θ)2) was generated, where θ were the parameters of the LS

output on the unweighted training data. The labels for the artificial target were then computed as

yik = xTi θk + εi, and εi ∼ N (0, 0.12).

Table 4.3 summarizes the expected out-of-sample error obtained when no weights are used, when

weights are always used, and when TW is used to decide if weights should be used. For classification

tasks, the test classification error is shown, while for regression the normalized mean-squared error

(NMSE = 1
NV ar[y]

∑
i(yi − g(xi))

2) is shown. As it can be seen in the table, for every dataset and

every sampling scheme used, the use of TW improves performance.

Hence, the unanimous success of Targeted Weighting in these datasets shows that it is a reliable

method that can be used to determine if a particular weighting scheme will yield out-of-sample im-

provements or not. With this algorithm it is possible to answer the second fundamental question we

had pose in Chapter 1. Now we move on to answer the final question: how to match a sample coming

from distribution P , to a desired distribution P ′?
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Chapter 5

A novel class of matching
algorithms

We have answered the first two fundamental questions posed in Chapter 1. Namely, we found that

there is an optimal distribution from which data should be drawn to train the learning algorithm, we

called it the dual distribution and described how to find it. We then established an algorithm that

can determine if a weighting scheme used to change the distribution of the training data will yield

out-of-sample improvement. The remaining question is: how to find such weighting scheme? This

question has received great attention in the covariate shift literature, in which various algorithms

have been proposed to match the training distribution to a test distribution. The idea behind these

methods is to estimate the weights w(x) = pS(x)/pR(x), in order to correct for the covariate shift

bias. In the following section, we review some of the most popular methods. We then propose a new

class of algorithms that allow finding the weights efficiently and show their performance on real data

sets.

5.1 Previous algorithms

The problem that instance weighting algorithms for covariate shift correction solve consists of esti-

mating w(x) = pS(x)/pR(x). The following methods find this ratio in different ways.

5.1.1 Indirect ratio estimation via KDE

The first approach used to find the importance weight was Kernel Density Estimation (KDE). The

method finds the training and test densities by modeling each distribution as a linear combination of
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kernel functions around the existing samples. That is

p̂(x) =
1

N(2πσ2)d/2

N∑
i=1

Kσ(x, xi). (5.1)

The method is very simple to implement, only requiring a choice for the size σ of the kernels. However,

the method suffers in the case of noisy data sets as the errors in estimation get amplified when the

ratio is taken between two estimated quantities.

Hence, the following methods propose estimating the ratio directly, rather than trying to first solve

the hard problem of estimating full densities in order to find the ratio.

5.1.2 Logistic regression methods

The next group of methods propose to build a classifier that would discriminate data coming from

the training and test distributions. The model assumes that all data is drawn from a probability

distribution p(x), and that there is a variable η that determines if a point comes from one or the other

distribution. With this assumption and using Bayes’ theorem, it is possible to estimate the ratio.

Specifically, let

pR(x) = p(x|η = −1) and pS(x) = p(x|η = 1). (5.2)

Then, by Bayes’ theorem

w(x) =
pS(x)

pR(x)
=
p(η = 1|x)p(η = −1)

p(η = −1|x)p(η = 1)
(5.3)

To find the quantities in the right hand side, the method assumes further that

p(η = −1)/p(η = 1) ≈ NR/NS (5.4)

and finds the remaining ratio via logistic regression. The optimization problem is given by

θ∗ = arg min
θ

1

NR +NS

∑
x∈R∪S

log(1 + exp(−ηθTx)) (5.5)

and the final estimate for the weights is therefore

ŵ(x) =
NR
NS

exp(xT θ∗). (5.6)

Variations of this idea are described in [13], [14], and [71]. The problem with this approach is that

the assumptions made by the model are quite strong.
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5.1.3 Kernel mean matching (KMM)

One of the methods that has been used in practical applications most often is Kernel Mean Matching

[38]. The success of this algorithm is based on a theorem that states that two distributions are the

same, if and only if the mean in all dimensions of a Reproducing Kernel Hilbert Space (RKHS) are

equal. Formally, let Φ : X → F be a map into a feature space and let µ : P → F denote the

expectation operator,

µ(P ) := Ex∼P (x)[Φ(x)]. (5.7)

where P is a probability space. Then the theorem proved in [38] states that the operator µ is bijective

if F is an RKHS with a universal kernel k(x, x′) = 〈Φ(x),Φ(x′)〉. In other words, for two distributions

P and P ′, P = P ′ iff µ(P ) = µ(P ′).

Hence, the authors propose to solve the following optimization problem to match the means of the

samples in a RKHS:

minimizew ||µ(PS)− Ex∼PR [w(x)φ(x)]|| (5.8)

s.t. w(x) ≥ 0, Ex∼PR(x)[w(x)] = 1.

In practice, the objective function of the above problem is approximated with empirical estimates:∣∣∣∣∣∣
∣∣∣∣∣∣ 1

NR

NR∑
i=1

wiφ(xi)−
1

NS

NS∑
j=1

φ(x′j)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

1

N2
R

wTKw − 2

N2
R

κTw + const (5.9)

The optimization problem becomes:

minimizew
1

N2
R

wTKw − 2

N2
R

κTw, (5.10)

s.t. w ∈ [0, B],

∣∣∣∣∣
NR∑
i=1

wi −NR

∣∣∣∣∣ ≤ NRε.
Hence, the problem reduces to solving a quadratic program with inequality constraints. However, the

main drawback of the method is that it is very sensitive to both the choice of the size of the kernel and

the constants B and ε. Before Targeted Weighting was introduced, there was no method available to

cross-validate different weighting schemes, and hence the choice of these parameters was problematic.

5.1.4 Parametric models for the ratio: KLIEP, LSIF, RuLSIF, etc.

Although KMM proved successful in some applications, as discussed in Chapter 4, weighting may

worsen performance, and hence it was sometimes not a useful method as cross-validation was not
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available (See Section 4.2). A few more methods were proposed based on the idea of estimating the

ratio of the importance weight directly, by using a parametric model for the ratio. The first of these

methods was Kullback-Liebler Importance Estimation Procedure (KLIEP) [67]. In this method, the

ratio is modeled by the equation

ŵ(x) =
pS(x)

pR(x)
=

T∑
t=1

αtφt(x). (5.11)

With this model, the idea is to minimize the KL-divergence between the training and test distributions,

given by

KL(α) = EPS
[
log

pS(x)

ŵ(x)pR(x)

]
= EPS

[
log

pS(x)

pR(x)

]
− EPS [log ŵ(x)]. (5.12)

Since the first term is constant with respect to the weights, the method maximizes the second term,

adding the constraint that Ex∼PR [ŵ(x)] =
∫
pS(x)dx = 1. Using empirical estimates for the above

quantities, the problem becomes:

maximizeα

NS∑
j=1

log

(∑
t

αtφt(x
′
j)

)
(5.13)

s.t.
1

NR

∑
t

αt

NR∑
i=1

φt(xi) = 1, α ≥ 0

This optimization problem is convex and the authors propose to solve it using gradient descent with

constraint satisfaction at each step. The authors suggest using Gaussian kernels centered at the test

points for the functions, that is ŵ(x) =
∑
j∈S αtKσ(x, xj). The authors also claim that KLIEP has a

model selection procedure, by cross validating the choice of kernel width, T, etc., with respect to the

value of the objective function. Nevertheless, this cross-validation procedure is a measure of how good

the match is between the two distributions, but is not a measure of the bottom line out-of-sample

performance. As argued in Chapter 4, matching distributions using weights may actually worsen

performance in some cases, depending on the tradeoff between the MatchBenefit and WeightLoss.

Targeted Weighting, on the other hand, could be used exactly for this cross-validation purpose in

conjunction with KLIEP, or any of the matching methods proposed so far.

A variant of this method was proposed, in which the KL divergence was replaced by a least squares

error approach. This led to least squares importance fitting (LSIF) [42]. In this method, the following
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objective function is minimized:

J(α) :=
1

2
EPR [(ŵ(x)− w(x))2]

=
1

2
EPR [ŵ(x)2] + EPR [ŵ(x)w(x)] +

1

2
EPR [w(x)2]

=
1

2
EPR [ŵ(x)2] + EPS [ŵ(x)] + const. (5.14)

Once again, expectations are approximated using empirical averages, so that the optimization problem

becomes:

minimizeα
1

2
αT Ĥα− ĥα (5.15)

s.t. α > 0

with Ĥjk = 1
NR

∑NR
i=1 φj(xi)φk(xi), and ĥi = 1

NS

∑NS
j=1 φi(x

′
j). Nevertheless, the authors point out

that the method is numerically unstable, so they use L2-regularization with an unconstrained problem

(uLSIF). Once again, they use the objective function value in order to cross-validate the choice of kernel

size

Finally, RuLSIF was proposed in which the weights are regularized, by using

w(x) =
pS(X)

βpR(x) + (1− β)pS(x)
. (5.16)

The need for this regularization is precisely the tradeoff pointed out in Chapter 4. Nevertheless,

the authors propose finding β using importance weighted cross-validation (IWCV) [65]. However,

IWCV requires knowledge of the ratio pS(x)/pR(x). Since this ratio is unknown, cross-validation is

done assuming that the estimate of the weights, found through one of the above methods, is actually

accurate.

5.1.5 Discrepancy minimization

The matching algorithms discussed so far make no assumption about the learning algorithm to be used.

That is, they make no assumption of what loss function is to be minimized or what the hypothesis set

is. One of the most recent algorithms, introduced in [26], uses the notion of discrepancy [47], which

leads to a tractable algorithm when we use a squared loss function, a linear model, and Y = R.

The intuition behind this approach is to find weights such that the training distribution is matched

to a distribution in which the hypothesis learned will yield the same out-of-sample error as if the

hypothesis had been learned with training points sampled from the test distribution. Notice that this
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notion does not imply that the weights found will exactly match the training and test distributions.

It will only match the out-of-sample error, which in fact is what matters to a practitioner. The hope

is that by doing this, the negative effect of weighting will be minimized, as the perturbation of the

weights from unity should be smaller than when we try to match exactly the two distributions.

Formally, the discrepancy is defined as follows. Let H be a set of functions with h : X → Y for

every h ∈ H, and let ` : Y × Y → R+ define a loss function over Y. The discrepancy distance discL

between two distributions P and Q over X is given by

discL(P,Q) = max
h,h′∈H

|LP (h′, h)− LQ(h′, h)| (5.17)

where LP (h, h′) = Ex∼P [`(h(x), h′(x))]. That is, the discrepancy finds the maximum out-of-sample

error difference that could result if we trained with points distributed as P instead of Q. It is not hard

to see that this notion can give a bound for the error made by training with a different distribution. In

fact, in [26], assuming that kernel ridge regression is used (model that uses a squared loss function, a

linear model with a kernel for the non-linear transformation, `2 norm regularization for the parameters,

and Y = R), the authors prove the following bound:

|`(h′(x), y)− `(h(x), y)| ≤ 2r
√
Mλdisc(P ′, P )/λ, (5.18)

where K(x, x) ≤ r2, L(h(x), y) ≤ M , and λ is the regularization parameter. Hence, the authors pro-

pose minimizing the discrepancy between the training and test sets. It turns out that the optimization

problem is equivalent to the following semi-definite program:

minimizew,λ λ (5.19)

s.t λI −M(w) � 0

λI +M(w) � 0

1Tw = 1, w ≥ 0

where M(w) =
∑
P̂S(x)xxT −

∑NR
i=1 wixix

T
i , and A � 0 denotes matrix A is positive semi-definite.

Solving this problem requires, therefore, using convex optimization packages. Since the notion of

discrepancy allows regularizing the weights, the algorithm is effective. Nevertheless, its main drawback

is that it is only valid for regression problems with the learning model specified above.
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5.2 A new class of algorithms

We propose a new class of algorithms for matching. These algorithms were conceived for very large

datasets, as it is the case with the Netflix dataset, where computational complexity is a key issue.

Furthermore, as the algorithms were conceived in the recommender system setting, we wanted to be

able to choose particular coordinates along which to match distributions. In recommender systems, the

data usually includes only an item ID, a user ID, and the rating which is the value that the system will

try to predict. The time of the rating may also be available. Under this scenario, matching training

and test sets is not meaningful as both user ID and movie ID are not relevant coordinates. Rather,

matching certain coordinates that can be derived from the data, such as the item popularity (known

as item support), or the amount of ratings by a particular user (user support), can be desired. We

begin by introducing the hard matching algorithm which is the basic building block of the algorithms

presented here. A “soft” version is also presented, and finally different variants of the initial algorithm

are discussed.

5.2.1 Hard matching

We recall that a sampled version of the loss function yields a variance with approximately Neff =

(
∑
i wi)

2
/
∑
i w

2
i . Hence, as there are many schemes that can match the training dataset to a desired

distribution, we pick the one that minimizes the `2-norm of w, since this will maximize Neff . The

reason for this is that the the numerator of the expression for Neff is a constant. To see this, notice

we can scale all weights by a constant and this would not have any effect on the learning algorithm.

Hence we pick to normalize the sum of the weights to NR. Here we use NR to denote the number of

points in the training set, while we use NS for the points in the test set. To illustrate the matching

condition, first consider a one-dimensional distribution. One way to match is to divide the input space

into bins and match the fraction of points appearing in each of the bins for the training set and for

data coming from the desired distribution.

To formalize this, let T denote the number of bins that we use to divide the input space. Let

b : X → {1, . . . , T} be a function that indicates the bin number into which each data point xi falls.

Let µ, ν ∈ RT be vectors that hold the frequency of points in each bin for the training set and for the

distribution we desire to match to. That is

µj =
1

NR

NR∑
i=1

I[b(xi) = j], (5.20)

and similarly for ν, except that the summation is over points in the test set if P ′ = PS . In case P ′ is

a different distribution, such as the dual distribution, ν can be obtained by integrating the density of
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P ′ for each of the bins. With this notation, the idea described above consists of solving the following

optimization problem:

minimizewi
1

2

NR∑
i=1

(wi − 1)2 (5.21)

s.t.
1

NR

∑
i:b(xi)=τ

wi = ν(τ), for τ = 1, . . . , T

wi ≥ 0,

where ν(τ) indicates the τ ’th component of the vector ν. This is a quadratic program with linear

constraints, and hence it is convex and has a unique solution. In fact we can solve for the weights

analytically by constructing the Lagrangian and setting its gradient to 0. We ignore for now the

positivity constraints. Notice further that since

NR∑
i=1

wi =
∑
τ

∑
i:b(xi)=τ

wi = NR
∑
τ

ν(τ) = NR, (5.22)

it is not necessary to include normalization constraints for the weights as this constraint is implicitly

satisfied.

The Lagrangian is given by

L(w, λ) =

NR∑
i=1

(wi − 1)2 +
1

NR

T∑
τ=1

λτ
∑

i:b(xi)=τ

wi − ν(τ), (5.23)

thus
∂L(w, λ)

∂wi
= 0 =⇒ wi = 1− λτ

NR
. (5.24)

Notice that this means that the weights of all points that fall in the same bin must be equal. Hence,

let wi = wτ for all xi ∈ R with b(xi) = τ . Then, substituting in the constraint,

1

NR

∑
i:b(xi)=τ

wi =
1

NR

∑
i:b(xi)=τ

NRµ(τ)wτ = µ(τ)wτ = ν(τ). (5.25)

Therefore, the solution for the weights is given by

wτ =
ν(τ)

µ(τ)
. (5.26)

Clearly, this approach gives an approximation for the importance weighs w(x) = p′(x)/p(x). Also

notice that having ignored the non-negativity constraints in the problem did not change the solution,
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as clearly wτ ≥ 0.

Now that the intuition is clear, we move on to multiple coordinates. We want the distributions to

be matched along each of the desired coordinates, and we consider projections into these coordinate

independently. This allows the algorithm to grow linearly in complexity with the number of coordinates

chosen, rather than exponentially in d, the number of dimensions of the input space. Generalizing the

previous notation, let C be the number of coordinates we want to match along, and let T1, . . . , TC be

the number of bins chosen along each of the coordinates. Let bc : X → {1, . . . , Tc} for c = 1, . . . , C be

functions that map each training point xi to the corresponding bin number along coordinate c. Also,

let µc, νc ∈ RTc , for c = 1, . . . , C be the corresponding frequency vectors along coordinate c. The

optimization problem we want to solve is given by

minimizewi
1

2

NR∑
i=1

(wi − 1)2 (5.27)

s.t.
1

NR

∑
i:bc(xi)=τ

wi = νc(τ), for
τ = 1, . . . , T,

c = 1 . . . , C

wi ≥ 0

The Lagrangian in this case is given by

L(w, λ) =
1

2

NR∑
i=1

(wi − 1)2 +
1

NR

C∑
c=1

Tc∑
τ=1

λcτ
∑

i:b(xi)=τ

wi − νc(τ). (5.28)

Setting the gradient of the Lagrangian with respect to wi to 0 yields

wi = 1−
C∑
c=1

λcbc(xi)

NR
. (5.29)

We now solve for the Lagrange multipliers. We substitute in the constraint and obtain

1

N2
R

∑
i:bc(xi)=τ

C∑
k=1

λkbk(xi) = µc(τ)− νc(τ). (5.30)

Notice further that for coordinate c, the above equation becomes

1

N2
R

∑
i:bc(xi)=τ

λcbc(xi) = µc(τ)− νc(τ)− 1

N2
R

∑
i:bc(xi)=τ

C∑
k=1
k 6=c

λkbk(xi). (5.31)
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But for the left hand side, since the outer sum is over the xi that satisfy bc(xi) = τ , we are simply

adding µc(τ)NR times the value of λcτ . Hence,

λcτ
NR

=
1

µc(τ)

µc(τ)− νc(τ)− 1

NR

∑
i:bc(xi)=τ

C∑
k=1
k 6=c

λkbk(xi)

NR

 . (5.32)

Rescaling the Lagrange multipliers to absorb the NR constant, we have the following system of equa-

tions:

wi = 1−
C∑
k=1

λkbk(xi)

λcτ = 1− νc(τ)

µc(τ)
− 1

NRµc(τ)

∑
i:bc(xi)=τ

C∑
k=1
k 6=c

λkbk(xi).

(5.33)

(5.34)

To solve for the Lagrange multipliers, we initialize them at 0, and use Equation 5.34 iteratively to

update their values. In our experiments, the values converge in a few iterations. With these values,

the weights can be readily found.

We applied this algorithm to the Netflix dataset, as this dataset suffers from the covariate shift

problem. The dataset consists of around 100 million points that included the user ID, movie number,

time of a rating and rating (the value to predict). That is, R = {(ui,mi, ti, ri)}. The dataset was

designed in such a way that the training set included ratings from historical data, but the test set

only included the most recent ratings available to Netflix. This inherently created a difference in

distributions along various coordinates of the data. The coordinates included: absolute time of rating

(t); time since first rating of movie (dt); number of ratings per user or ‘user support’ (us); number of

ratings for a movie or ‘movie support’ (ms); time since first rating of user (ut); and order of rating

among the user’s ratings (un).

We ran one of the most popular algorithms used in the Netflix competition, the SVD [44], and

noticed that performance actually worsened if we used hard matching. This occurred both if we

matched along single coordinates, or all coordinates at once. Table 5.1 summarizes these results. This

was actually not very surprising as we were aware that weights could have a negative effect on the

sample ‘size’, and in this particular dataset, some weights needed to become very large in order to

achieve the matching constraints, which worsens this effect. To alleviate this problem, we introduce

a regularized version of this method. We call this method “Soft Matching”, which we explain in the

next subsection.

A remaining question to be answered is how to choose the free parameters Tc, the number of bins in

each of the coordinates. Sometimes, the data will have a natural division for the different coordinates.
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Coordinates RMS error improvement
(basis points)

t −71
dt −14
us −121
ms −147
ut −41
un −40

all coords. −93

Table 5.1: RMS error improvement in basis points when the given coordinates are matched between
training and test sets using the hard matching algorithm.

For example, in the Netflix dataset, movies were rated over a period of 2,243 days. Therefore, binning

by day seemed a natural thing to do. Nevertheless, it is not necessarily clear from the data how many

bins should be chosen. Yet, the higher the number of bins, the higher the chance that some bins

will have very few points, which could lead to inaccurate estimates of pS(x)/pR(x) for those bins. In

the other extreme, if very few bins are chosen, the estimated ratio will also be inaccurate because it

captures a large part of the input space. In the extreme case, the ratio will always be 1. Therefore,

as a rule of thumb, in the experiments ran on UCI classification datasets and LIACC Regression

datasets, we chose the number of bins to be such that on average, every bin had at least 10 points.

Hence, for datasets containing in the order of 102 points, 10 bins were used, while for datasets in the

order of 103, 100 bins were used. For the Netflix dataset, the bins were either: the number of days,

which meant about 50,000 points per bin for the t, dt, ut, and un coordinates; the number of unique

movies (17,771) for the movie support ms, which yields about 5,000 items per bin; and 3,000 bins for

the user support, each one corresponding to the number of movies rated by each user, with the last

bin grouping all users that rated more than 3,000 movies. This yields about 33,000 points per bin.

5.2.2 Soft Matching

In order to reduce the negative effect or WeightLoss that hard matching can lead to, we alleviate the

effect by softening the constraints. One way to do this is to pull the constraints into the objective

function. By using free parameters that allow trading off the amount of matching desired, we can get

control how close to unity we want the weights to be. We call this problem Soft Matching, which is



68

described as follows:

minimizew
1

2

NR∑
i=1

(wi − 1)2 +
1

2

C∑
c=1

λc

Tc∑
τ=1

 ∑
i:b(xi)=τ

wi
NR
− νc(τ)

2

(5.35)

s.t. w ≥ 0.

Notice the similarity of the above objective function with the Lagrangian of Equation 5.28. In this

case, the parameters λc control the level of matching, rather than being Lagrange multipliers. If the

λc are set to infinity, then the constraints must be matched exactly in order for the objective function

to be finite. If on the other hand the λc are set 0, all weights remain equal to 1. We solve again for

the weights analytically by finding the gradient with respect to the weights and setting it to 0. As it

was the case for the hard matching algorithm, we initially ignore the inequality constraints. Setting

the gradient of the objective function to 0 yields

wi = 1− 1

NR

C∑
c=1

λc

 ∑
j:b(xj)=τ

wj
NR
− νc(τ)

 . (5.36)

Define further the auxiliary variables

ωc(bc(xi)) = −
∑

xj :bc(xj)=bc(xi)

wj
NR
− νc(bc(xi)) for c = 1, . . . , C. (5.37)

Thus,

wi = 1 +

C∑
c=1

λcωc(bc(xi)), (5.38)

where the NR constant has been absorbed into the λc’s. Substituting this equation in the definition

for ωc, we can solve for this auxiliary variables:

ωc(τ) =
1

1 + λcµc(τ)

νc(τ)− µc(τ)− 1

NR

∑
bc(xi)=τ

C∑
k=1
k 6=c

λkωk(bk(xi))

 (5.39)

Once again, notice the solution is parallel to the one obtained in the hard matching procedure,

except that the old Lagrange multipliers, λcτ are now −ωc(τ)λc. To verify that indeed in the case

that λc goes to infinity we recover the hard matching solution, we take Equation 5.39 and multiply it



69

by −λc. We have,

−λcωc(τ) =
−λc

1 + λcµc(τ)

νc(τ)− µc(τ)− 1

NR

∑
bc(xi)=τ

C∑
k=1
k 6=c

λkωk(bk(xi))



=
1

1/λc + µc

µc(τ)− νc(τ)− 1

NR

∑
bc(xi)=τ

C∑
k=1
k 6=c

−λkωk(bk(xi))

 . (5.40)

Now, taking the limit of the equation as λc →∞ we obtain

λcτ = 1− νc(τ)

µc(τ)
− 1

NRµc(τ)

∑
bc(xi)=τ

C∑
k=1
k 6=c

λkτ , (5.41)

where we have set

lim
λc→∞

−λcωc(τ) := λcτ . (5.42)

As it is clear, we have recovered the Hard Matching systems of equations (Eq. 5.33).

We now apply the Soft Matching algorithm to the Netflix dataset and obtain the results shown in

Table 5.2. As it is clear from the table, choosing certain coordinates, and for low values of λ, there

is an improvement in the RMS error on the test data. This had not occurred when we applied the

hard matching algorithm. It is important to note that in this dataset, it is extremely hard to obtain

improvements over available solutions, as practitioners tried for two years to improve upon solutions

in order to win the Netflix Prize competition. An improvement of a few basis points, as the ones

shown in Table 5.2, could have meant being ahead of the pack by a significant amount.

Picking the value for the λc can be done through cross-validation, which can be achieved using

the Targeted Weighting algorithm introduced in Chapter 4. Once we observed which values of λc

worked well for each of the coordinates, we matched simultaneously the subset of coordinates that

TW indicated were helpful. We then tried different values of λc and matched simultaneously the

favorable coordinates, namely the user support us, the movie support ms, and the absolute time t.

Having successfully applied Soft Matching to a real dataset that suffered from covariate shift,

we explore alternative formulations of the hard matching problem, on the one hand with the idea

of reducing the number of free parameters to be adjusted via cross-validation, and on the other,

expressing the “softening” of the initial algorithm in a principled way. We discuss these variants in

the following subsection.
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Table 5.2: Soft Matching applied to the Netflix dataset, with the SVD++ learning model using 50
factors. RMS improvement is given in basis points.

Coord. λ RMS λ RMS
improvement improvement

t −71 9
dt −14 0.1
us 1000 −121 100 5
ms −147 −5
ut −41 −20
un −40 −17

t 7 2
dt 0.1 0.1
us 50 9 10 3
ms −0.3 0.4
ut −14 −5
un −13 −5

t 1 0.3
dt 0.1 0.01
us 5 2 1 0.4
ms 0.2 0.01
ut −2 −0.01
un −2 −0.01

t, us, ms 100, 100, 10 10 100, 50, 10 15

5.2.3 Hard matching with slack variables

The second variation of hard matching we consider consists of using slack variables for the constraints,

rather than including a weighted version of the constraints in the objective function. This approach

accounts for the fact that even if two samples come from the same distribution, their realizations will

yield slightly different histograms along the desired coordinates. For this and the following problems

we state the optimization problem considering C = 1. Natural extensions for C > 1 only involve

summations over the number of coordinates. The optimization problem is:

minimizewi
1

2

NR∑
i=1

(wi − 1)2 (5.43)

s.t
∑

xi:b(xi)=τ

wi
NR
− ν(τ) = ξτ for τ = 1, . . . , T

1

2

T∑
τ=0

ξ2
τ ≤ K

(5.44)
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The Lagrangian of this problem is given by

L(w, λ, α) =
1

2

NR∑
i=1

(wi − 1)2 +

T∑
τ=1

λτ
∑

xi:b(xi)=τ

wi
NR
− ν(τ)− ξτ + α

(
1

2

T∑
τ=0

ξ2
τ −K

)
(5.45)

The Karush-Kuhn-Tucker (KKT) conditions of this problem yield

wi = 1− λτ
NR

(5.46)

λτ = αNRετ (5.47)

0 = α

(
1

2

T∑
τ=1

ε2τ −K

)
(5.48)

α ≥ 0. (5.49)

The KKT system also includes the constraints. Here, Equations 5.46 and 5.47 are the result of taking

the partial derivative with respect to the weights and to the Lagrange multipliers of the Lagrangian.

The remaining two are the complementary slackness conditions and the positivity constraint of La-

grange multipliers for inequality constraints. We eliminate λτ by combining Equations 5.46 and 5.47,

and then, substituting in the constraint obtain

wi =
ν(τ) + 1

α

µ(τ) + 1
α

, (5.50)

where τ = b(xi). Notice that we arrive at the same solution we had for the Soft Matching algorithm,

except that now the regularization parameters, λ, are replaced by the Lagrange multiplier α. In

this problem however, α is found through a different method, by using the complementary slackness

condition given in Equation 5.48. Notice that if α = 0, then the constraints are trivially satisfied.

Therefore, for complementary slackness to hold, it is necessary that

1

2

T∑
τ=1

ε2τ = K. (5.51)

Expressing this equation in terms of α, we obtain

1

2

T∑
τ=1

(
ν(τ)− µ(τ)

1 + αµ(τ)

)2

−K = 0. (5.52)

We can solve for α in the above equation numerically, for example, using the bisection method. Notice

that for large enough α the first term tends to 0, so that the left hand side is a negative number. On
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the other hand, for α = 0 the first term is larger than K, otherwise the constraints would already be

satisfied. Hence, the left hand side, as a function of α, goes from negative to positive in the interval

[0,∞). Thus, a solution can be found through numerical methods.

This formulation trades off setting the regularization parameter λ, for the parameter K. Once

again K must be determined. Yet, perhaps more information is available to find this K. For example,

one can generate two samples from an estimate of the distribution PS , and compute the expected value

of K through Monte Carlo simulations. Hence, this approach gives the advantage of determining the

free parameters through a method different than cross-validation.

The drawback, however, is that when multiple coordinates are considered, once again we require

solving iteratively an equation for the αc’s. However, this time each equation is solved through a

numerical method like the bisection method, rather than by simple substitution of values as in the

Soft Matching case. This slows down considerably the algorithm. Since the solutions given by this

algorithm and Soft Matching are practically the same, it is not surprising that the out-of-sample

improvement is the same as the one obtained when using Soft Matching. Hence, we prefer to use Soft

Matching due to the computational advantage.

5.2.4 Statistical approach

An alternative formulation similar to the slack variable approach, is to use the conditions from statis-

tics. The Kolmogorov-Smirnov test that determines if two samples come from the same distribution

can be used to specify the matching condition that two samples must satisfy. This procedure tests

the null hypothesis H0, that states that two samples come from the same distribution. Let Fm(x) and

Gm(x) be the empirical cdf’s, of the two samples with m and n points, respectively. The test accepts

the null hypothesis H0 if √
mn

m+ n
sup
x

(Fm(x)−Gn(x)) ≤ Dmn, (5.53)

where Dmn is a value that depends on the statistical significance of the test. Hence, we can set up

the following optimization problem:

minimizewi
1

2

∑
i

(wi − 1)2 (5.54)

s.t.

∣∣∣∣∣
t∑

τ=1

wi
NR
− ν(τ)

∣∣∣∣∣ ≤ DNRNS , for t = 1, . . . , T, (5.55)

where DNRNS is given by Kolmogorov-Smirnoff tables. Hence, in the limit where T is max(NR, NS),

this is equivalent to carrying out the Kolmogorov-Smirnoff test. We rewrite the problem to have twice
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the constraints, eliminating the absolute value, and it becomes

minimizewi
1

2

∑
i

(wi − 1)2 (5.56)

s.t.

t∑
τ=1

wi
NR
− ν(τ) ≤ DNRNS , for τ = t, . . . , T,

t∑
τ=1

ν(τ)− wi
NR
≤ DNRNS , for τ = t, . . . , T,

The Lagrangian of this problem is given by

L(w,α, β) =
1

2

∑
i

(wi − 1)2 +

T∑
t=1

αt

 t∑
τ=1

 ∑
i:b(i)=τ

wi
NR
− ν(τ)

−DNRNS

+

T∑
t=1

βt

 t∑
τ=1

 T∑
τ=1

ν(τ)−
∑

i:b(i)=τ

wi
NR

−DNRNS

 . (5.57)

The KKT conditions yield

wi = 1 +

T∑
τ=t

ατ − βτ
NR

(5.58)

0 = αt

t∑
τ=1

 ∑
i:b(i)=τ

wi
NR
− ν(τ)

−DNRNS

 for t = 1, . . . , T (5.59)

0 = βt

t∑
τ=1

ν(τ)−
∑

i:b(i)=τ

wi
NR

−DNRNS

 for t = 1, . . . , T (5.60)

ατ ≥ 0 (5.61)

βτ ≥ 0, (5.62)

where t = b(xi), and the system is completed by the constraints. We are now interested in finding ατ

and βτ in order to determine the weights. We substitute the value of the weights given by Equation

5.58 into Equation 5.59. We obtain that either αk = 0 or

k∑
t=1

T∑
τ=t

ατ − βτ
NR

=

k∑
τ=1

µ(τ)− ν(τ)−DNRNS for k = 1, . . . , T. (5.63)

Hence, for k = 1
T∑
τ=1

ατ − βτ
NR

=
µ(1)− ν(1)−DNRNS

µ1
. (5.64)
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Similarly, using Equation 5.60, we obtain that either βk = 0 or

k∑
t=1

T∑
τ=t

ατ − βτ
NR

= DNRNS −
k∑
τ=1

µ(τ)− ν(τ) for k = 1, . . . , T. (5.65)

Evaluating for t = 1 yields

T∑
τ=1

ατ − βτ
NR

=
DNRNS − (µ(1)− ν(1))

µ1
. (5.66)

Since we obtain for each inequality a value for
∑T
τ=1

ατ−βτ
NR

with different sign, we simply check which

constraint is being violated. Violation of one constraint will imply α1 or β1 equal to 0, and one of the

above equations is not valid. Hence, we can decide what the correct value is for
∑T
τ=1

ατ−βτ
NR

. Once

this value is known, we can uniquely determine w1. Subsequently, w2 can be obtained, and so on until

we have wT .

Hence, this is another method that can be used to carry out matching. The free parameter now,

rather than the regularization parameters λ as in Soft Matching, or the value of K as in hard matching

with slack variables, is the value of DNRNS , which must be determined using Kolmogorov-Smirnoff

test values. The drawback of this method is once again the extension to multiple coordinates. In this

case, the system of equations given by the KKT conditions cannot be solved in such a straightforward

way. Finally, we present a different approach based on a probabilistic assumption.

5.2.5 Probabilistic approach

The final variation we present uses a similar idea as the previous methods, except that it uses a

probabilistic formulation. Letting ν′ and ν′′ represent the frequency vectors of two samples, with each

component corresponding to the frequency count in each bin, we think of these as two realizations of

points sampled from a distribution P . Let N ′ and N ′′ be the number of points in each sample. We

ask the question, how different can these two vectors be, given that they were generated according to

the same distribution. This condition will become our new matching criterion.

Specifically, we are concerned with the quantity

maximizep
Pr(µ, ν|p)

Eρ′,ρ′′ [Pr(ρ′, ρ′′)|p
(5.67)

T∑
i=1

pi = 1

where Pr(X) denotes the probability of event X occurring. In this case, we are concerned about
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finding the probability that µ and ν were samples generated from p, a quantity that we normalize by

its expected value.

We first simplify this expression. Notice that

P (ν′|p) =
N !

(N ′p1)! · · · (N ′pT )!
pN

′p1
1 · · · pN

′pT
T . (5.68)

Further, recall Stirling’s approximation, namely

n! ≈
√

2πn
(n
e

)n
= en logn−n− 1

2 log(2πn). (5.69)

Substituting and canceling out terms, we obtain

P (ν′|p) ≈
√

2πN ′∏T
i=1

√
2πN ′pt

(5.70)

We now make the following simplifying assumption

Eρ[ρ|p] =

(
2πN∏T

t=1 2πNpt

)γ
(5.71)

Rewriting Equation 5.67, the problem is:

maximizep

(
N ′!

∏T
i=1 p

N′ν′i
i

(N ′ν′
1)!···(N ′ν′

T )!

)(
N ′′!

∏T
i=1 p

N′′ν′′i
i

(N ′′ν′′
1 )!···(N ′′ν′

T )!

)
(

2πN ′∏T
i=1 2πN ′pi

)γ (
2πN ′′∏T

i=1 2πN ′′pi

)γ (5.72)

Grouping all constant terms into the constant K, the objective function is

maximizepK

T∏
i=1

pN
′ν′+N ′′ν′′+2γ

i . (5.73)

Writing the Lagrangian for this problem, setting its gradient to 0, and solving for p, we obtain

p∗i =
N ′ν′i +N ′′ν′′i + 2λ

N ′ +N ′′ + 2γT
. (5.74)

With this value of p∗, we can now compute the maximum value of the objective function. This will

in turn be a criterion for determining if two samples came indeed from the same distribution. We
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denote this value Lmax, and it is given by

Lmax =
N ′!N ′′!(2πN ′)γ(T−1)(2πN ′′)γ(T−1)∏T

i=1(N ′ν′i)!(N
′′νii′′)!

T∏
i=1

(
N ′ν′i +N ′′ν′′i + 2γ

N ′ +N ′′ + 2γT

)N ′ν′
i+N

′′ν′′
i +2γ

. (5.75)

Now, this probabilistic approach to the problem reduces to finding weights such that the weighted

sample and the sample from the desired distribution have a normalized probability of coming from

the same distribution above certain threshold. This threshold can be set to a fraction of Lmax. That

is, the optimization problem becomes

min
w

1

2

∑
i

(wi − 1)2 (5.76)

s.t.
NR!N ′!(4π2NRN

′)γ(T−1)∏T
i=1

(∑
j:b(xj)=i

wj

)
!(N ′ν(i)′)!

T∏
i=1

(∑
j:b(xj)=i

wj +N ′ν(i)′ + 2γ

N ′ +N ′′ + 2γT

)∑
j:b(xj)=i

wj+N
′ν(i)′+2γ

≥ L

(5.77)

We can take the logarithm of the constraint, and we realize that the constraint is neither convex nor

concave, as it involves sums of entropies and negative entropies. To see this, ignoring terms that do

not involve w, and setting γ = 0.5, we obtain

T∑
τ=1

 ∑
i:b(i)=τ

wi +N ′ν(τ)′ + 1

 log

(∑
i:b(i)=τ wi +N ′ν(τ)′ + 1

NR +NS + T

)
−

∑
i:b(xi)=τ

wi log

(∑
i:b(i)=τ wi

NR

)
≥ `0.

(5.78)

Hence, although we begin with a more principled criterion to determine the extent of matching, the

resulting optimization problem is harder to solve. Particularly, the extension to multiple coordinates

is not as straightforward as for the previous problems. Secondly, due to the non-convexity of the

problem, we cannot guarantee that once we find a minimum, it is the global one. Finally, we see that

once again the free parameter `0 has to be chosen, although the order of it can be determined by

computing log(Lmax), if we use an estimate for p.

This concludes our exploration of matching methods, answering the third fundamental question

we posed in Chapter 1. In practice we use Soft Matching as it not only gives tangible improvements

in real datasets, but it is also the least demanding in terms of computation. Since we were precisely

interested in finding a suitable method for large datasets, this gives Soft Matching the edge over these

algorithms.
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Part II

Behavior Analysis with Machine

Learning
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Chapter 6

Supervised behavior classification

Shifting gears, we now move on to an application of Machine Learning in ethology, or behavior analysis.

Biologists study behavior in animals with various objectives. Among others, understanding the human

brain has become a primary objective not only for science but also for the US government with the

BRAIN initiative [9]. In order to understand such a complex organ as the brain, biologists begin this

endeavor by studying the brain of simpler organisms, such as fruit flies (Drosophila megalonaster).

To do this, scientists use a large number of techniques in genetics and neuroscience that allow them

to identify particular neurons, connections, substances, etc., that are responsible for animal behavior.

Nevertheless, to analyze the behavior of flies, biologists must record thousands of videos of animals

to quantify desired behaviors. Analyzing these videos is extremely time consuming, as biologists need

to determine how many times certain behavior occurs, as well as extract other properties of the

behavior such as duration, latency, etc. Annotating videos can take almost three times as much as the

actual duration of the videos, as these have to be viewed in slow motion [5]. This is when Machine

Learning comes in handy, as classifiers can be trained to detect specific behaviors from videos of

animals.

In this chapter, we describe a classifier that we developed in order to detect a particular fly behavior,

“unilateral wing extensions” (UWE). Figure 6.1 shows extracts of a sequence that is classified by

biologists as a UWE. The classifier was needed in order to analyze thousands of videos that would

take more than few years to annotate by hand. With an automated classifier, the time to analyze the

videos became negligible. The work required only involved labeling by hand a small fraction of the

videos in order to train and test the system. The resulting classifier was used in the study described

in [6]. In that paper, biologists discovered the specific neuron and substance that make male flies

aggressive, in situations where there is no competition for any resources, such as food, females, or

territory. The hope of this investigation is that aggressive behavior in humans might be understood,

especially to be able to design appropriate pharmacological products that could be used in mental
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Figure 6.1: Sequence depicting a Unilateral Wing Extension

disorders such as Post Traumatic Stress Disorder, Hyperirritability, etc.

Previous work in the area is described in [31], where different behaviors of flies were detected,

mainly through the use of manual filters. The method, however, was not yielding reliable performance

in this dataset, reason why a new method was called for. Other work in behavior classification included

behavior classification in mice as described in [21] and [39]. However, as we will describe shortly,

these methods based on structured output classification were not suited to this specific task where

very few labeled positive samples were available, and the quality of the videos varied greatly across

the experiment. Some more recent work in behavior classification was published after our work was

done, which describes methods for general purpose behavior classifiers (See [33] and [41]).

In the following sections we describe the input used for the system, the learning algorithm chosen

and implementation details, the post-processing stage, and the resulting performance of the classifier.

6.1 Pre-processing stage

The original format of the data was video recordings in grayscale, on movies filmed either at 30 or

200Hz. In order to be able to apply any learning algorithm to it, the videos had to be processed first

using Computer Vision techniques to extract the trajectories of the flies. Working with the gray scale

pixel values would be hopeless, given the number of input dimensions and the small amount of labeled

positives. Instead, the Computer Vision system extracts the time series that describe the position of

the fly and its various parts. To do this, we used the tracker software described in [33].

This tracker fits an ellipse to the body of each of the flies, and also it detects the position of

the tip of the wings and legs. Hence, the position of the fly is uniquely determined by the centroid

of the fly, the length of the two axes of the ellipse, the ellipse orientation, and the position of wing

and leg tips. Finally, invariant features with respect to position and orientation are derived. These

include the minimum wing angle, maximum wing angle, axis ratio, among others, which are crucial

for detecting wing extensions. The resulting features and derived features, that included first and
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second time derivatives resulted in 36 features that describe each frame of the input.

6.2 Learning algorithm

The data set available for training consisted of five twenty minute movies filmed at 200Hz, which were

annotated manually for this task. These movies contained only about 4,000 frames labeled as wing

extensions, in a dataset that included 480,000 frames. To add complexity to the problem, videos in

which the system was going to be tested on had been filmed across several years, and most of them

consisted of lower resolution videos filmed at 30Hz with different lighting conditions.

Hence, given the few positives and the level of noise of the data, we decided to take the simplest

approach which involved using a frame-by-frame classifier. By taking this approach we were able to

use the 4,000 frames as positives, rather than only about 100 positive bouts of wing extensions, the

number available in a more complex structured output method. We also chose the simplest learning

algorithm to avoid overfitting. We used a squared loss function for the error, weighting positives

heavily to account for class imbalance, and used `2 regularization for the parameters. The model was

a linear hypothesis set with non-linear transformation of the features. For the linear transformation,

we used a polynomial kernel of degree 2. A more complex kernel was avoided to avoid overfitting to

the data. This learning model is the same one as the one described in Appendix A, with the specific

non-linear transformation described.

6.3 Post-processing stage

The result of the linear classifier was extremely successful in terms of false negatives, as it detected

every wing extension in the test set. Nevertheless, the false positive rate was relatively high. The first

post-processing stage that was done was to smooth the result of the classifier with an averaging kernel

over the time series. Biologists had determined that the UWE should take at least 130 milliseconds (4

frames in 30 Hz) movies, so that discontinuous frames that were marked as positives were not counted

as such. This simple hint allowed reducing the false positive rate significantly.

After watching the remaining false positives that the classifier was giving, it was clear that there

were some wing threats (bilateral wing extensions) that were being labeled as positives. Also, events

where the fly was grooming itself with the wings were being erroneously labeled as positives. Another

case occurred when the flies performed wing extension towards their reflection on the wall rather than

towards the other fly. Finally, some mistakes were also due to errors in the tracker when the flies

stood up against the wall of the dish, so that the model used by the tracker confused the wings with

other parts of the fly. Since the false positives could be grouped and understood easily, further filters
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to the data were applied. A threshold for the minimum wing angle was set, to avoid bilateral wing

extensions (30 degrees). To avoid the grooming events, a minimum threshold for the maximum wing

angle was also set (62 degrees). The facing angle between the flies was set to at least 35 degrees to

avoid UWE not directed to the other fly, and the axis ratio of the fly was maintained at a minimum

of 0.8 to avoid tracker errors from standing flies. This approach does not lead to overfitting in this

particular case, as we chose a model with very few parameters compared to the number of frames in

the training set.

Applying these filters that were determined by biologists, the final classifier had a recall of 89.4%

and a precision of 87.1%. (The recall is the fraction of the true positives detected by the algorithm,

while the precision is the fraction of true positives detected divided by both the true detected positives

and the false positives). The final test was done on previously unseen movies by the system, which

included 113 manually scored UWE, out of which 101 were detected, and 15 false positives were

reported [6].

Hence, this simple Machine Learning approach allowed analyzing thousands of videos. Approaches

like this have been improved upon in the last few years, in which classifiers are developed for gen-

eral purpose behaviors, as in [33] and [41]. We decided to explore further the problem of behavior

classification, by considering a slightly different setup. Could we discover behaviors from videos of

animals in an unsupervised way, that is, without searching for behaviors previously labeled as such

by biologists? Answering this question led to the results presented in the following chapter.
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Chapter 7

CUBA: Caltech Unsupervised
Behavior Analysis

Up to now, Machine Learning has permeated behavioral biology with methods as the one described

in the previous chapter, where the task of classifying fractions of videos into specific behaviors fits

perfectly under the supervised learning scenario of learning systems. Yet, unsupervised methods had

not been widely applied to this problem. A recently published method analyzes the locomotion of fly

larvae using unsupervised methods [69]. The study aims to form a taxonomy of the types of behaviors

that can be observed in these larvae. Another method analyzes Caenorhabditis elegans worms and the

study introduced the so-called eigen-worm shapes. These shapes constitute a dictionary of behavioral

motifs that are able to describe the locomotion of the worms. The description in this space constitutes

a fingerprint for each of the worms. The fingerprints are then compared between different mutant

genetic lines and wild types of worms.

Nevertheless, these two methods were the only studies found in the literature that apply unsuper-

vised learning methods to the problem of behavioral biology. In this chapter, we study the problem

of analyzing behavior in an unsupervised manner. The goal is to be able to analyze automatically

large quantities of videos, and draw conclusions in an unbiased way, by letting data speak for itself.

The goal is that the method will aid biologists in testing hypotheses, as well as discovering patterns

in the data that were previously undetected.

This study led to a system which we call CUBA (Caltech Unsupervised Behavior Analysis). The

method extracts basic units that describe the motion of the animals, which we denote as movemes. A

moveme, as defined in [5] is the simplest pattern that is associated with a behavior. Movemes are then

compounded to form actions. Finally, a concatenation of actions forms an activity. CUBA is able

to extract such movemes. The abstraction can then be iterated to form actions. We then compare

the behavior of animals in this space, and cluster them into meaningful groups that perform the

same activity. With this abstraction, it is possible to understand the patterns that arise in biological
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experiments, as well as to use this as a mathematical tool to test hypotheses and discover new patterns.

One of the achievements of CUBA is that it was able to discriminate, without supervision, different

genetic lines of flies.

We describe CUBA in the following sections. In the first section, we start by defining the problem

more concretely, and explain the goal in the context of a few biological experiments where we applied

our work. We then describe the various methods used from Machine Learning that constitute CUBA.

Finally, we present the results obtained in two different datasets.

7.1 Problem statement

The goal of the method is to analyze behavior of animal videos, using unsupervised machine learning

techniques. The term behavior analysis may be ambiguous, unless we specify exactly what we mean

by it. Ethology, the branch of biology that studies behavior, is concerned with various aspects of

behavior, such as descriptive, causal, genetic, and evolutionary [5]. The first step in the analysis is

therefore to be able to have an accurate description of each behavior. With such descriptions it is

then possible to test hypotheses about causality, or to find differences between genetic lines, analyze

evolutionary changes, etc. Hence, we focus first on the descriptive aspect.

When describing behavior, it is important to answer basic questions such as what is happening,

how it is happening, and where it is happening. These answers vary depending on the time scale

used in the description. Hence the description of behavior should begin by identifying the simplest

meaningful patterns or movemes, and then be able to group movemes into meaningful structured

actions. At a larger time scale, actions should be grouped into activities or stories. This hierarchy is

analogous to the one used in natural language processing. When we want to understand a sentence,

we would like to begin by discovering phonemes, then words, then full sentences, and so on.

With this in mind, our definition of behavior analysis can be decomposed in a few steps. First,

given a set of time series that represent trajectories of animals, we want to identify typical coherent,

meaningful patterns at various time scale resolutions. Second, we would like to find a hierarchy that

allows grouping these patterns into more complex patterns in order to understand behavior at larger

time scales. Finally, having abstracted the trajectories in this new space of meaningful patterns, we

want to detect common patterns across individuals, detect clusters, find outliers, etc.

To clarify our goal, we describe a biological experiment that was the subject of study in [35].

The experiment aimed to understand if flies actually showed a fear-like response, when an arousing

stimulus such as a shadow was repetitively presented. The experiment varied parameters such as the

number and frequency of shadows presented, as well as evaluated different conditions such as having

the experiment with single and multiple flies at a time, or having an additional attractive resource
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such as food in the experiment. Taking this experiment as an example, a successful unsupervised

analysis would first identify the movemes which are very basic units that describe the locomotion of

the fly, such as slow walking, fast walking, accelerating, resting, hopping, etc. Putting together these

movemes, actions can start to emerge. For example the action of escaping can be formed with the

movemes of accelerating–flying/hopping–decelerating. An action like feeding could be described by

movemes of slow walking–stopping (on food)–slow walking. Finally, at a higher level, an activity or

story could describe a fly feeding until shadows pass, then jumping off and moving to the open space,

before finally returning to the food after spending some time in the boundary enclosing the arena.

Once we have a full description of what each fly is doing, the abstraction could allow finding

similar types of flies, by looking at flies that conform to the same story. Clustering similar flies would

help determining what are the typical behaviors of flies in the experiment. Also, it would be possible

to identify flies that are behaving differently from the norm, or perhaps identify previously unseen

behaviors. This abstraction is therefore useful in summarizing and describing what is occurring in the

experiment. Furthermore, the analysis becomes a tool to both formulate and test new hypotheses to

understand what is occurring in the experiment.

The above analysis can be done with any type of biological experiment where trajectories of

animals can be obtained using a computer vision tracking system. The goal in each experiment

might be different, but the descriptive analysis provided by the system will remain the same. Giving

biologists the power to summarize and cluster data, as well as to detect patterns in the experiments, is

the ultimate goal of the system. Having clarified this goal, we present in the next section the various

techniques used in order to construct such a system.

7.2 The method

As described before, the system performs the behavior analysis at three different levels. First it must

discover meaningful patterns in the data at the smallest time scale. Then, it must be able to group

these patterns or movemes into more complex actions and stories. Finally, the system summarizes the

data, clusters trajectories into meaningful groups, detects outliers, etc. We present now the methods

used at each of these stages.

7.2.1 Detecting movemes

In order to approach the problem of detecting movemes, we made a simplifying assumption about the

animals. We think of them as finite state machines that execute a certain action depending on their

internal state. For example, a fly that moves into a “hungry state” would most likely perform actions
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Figure 7.1: Graphical representation of a Hidden Markov Model

of finding food and eating. In a similar way, a fly in an “aroused state” would most likely try to fly

and escape. Such model lends itself to a formalization into a Dynamic Probabilistic Graphical Model

(PGM), where each node in the model represent a state in the animal in time, and each state has a

probability distribution over the possible outcomes of the observed variable. The advantage of this

probabilistic approach is that it allows modeling the inherent variability in the locomotion, actions,

etc., of individuals, while allowing to group and abstract similar movemes or actions into a state that

can have a semantic meaning. This approach has been taken by biologists before, for example, as in

[4], where a PGM is used to try and study emotions in animals.

One PGM that lends itself particularly well to our task is a Hidden Markov Model (HMM). An

HMM is a model for a stochastic process, in this case the time series. The process is described by

hidden states, and at each hidden state a probability distribution determines the observed output,

where the output is the time series. Hence, observing the time series allows inferring what the most

likely sequence of hidden states is in this process. This fits the description of actions being the result

of an internal state of the animal. The sequence of internal states or hidden states that the animal

goes through, are reflected by the observed variables such as velocity, acceleration, etc., of the animal.

A second important property of the HMM is that it takes into account the temporal relation of the

time series. This is the case as the model assumes that the transition between states depends on the

previous state of the system. Furthermore, the HMM assumes that the probability of being at any

given state is independent of all previous past states given the observed variable at that state and the

immediately previous state. This assumption allows us to include the time dependence, but it also

simplifies the model considerably, so that inferring the parameters of the model is computationally

efficient. Higher-order Markov Models can also be used but introduce a high computational cost. The

graphical representation of this model is shown in Figure 7.1.

We introduce some notation that is used to specify the HMM. Let Xt be the hidden state at

time t, with Xt ∈ {1, . . . , Q} where Q is the number of hidden states in the model. Let Yt be the

time series we observe, for time t = 1, . . . , T . Xt can be a value or a vector of observed features,
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Figure 7.2: Histogram of log-velocities and emission densities for a subset of the “Fear in Flies” dataset

such as velocity, acceleration, wing position, etc. Let A ∈ [0, 1]Q×Q be the Transition Matrix, where

Aij = P (Xt+1 = j|Xt = i). Let Bq be the Emission Probability of state q, so that Yt ∼ BXt . Finally,

let π ∈ RQ be the initial state distribution, with πi = P (X0 = i). Then, a HMM is completely

specified by the transition probability matrix, the emission probabilities and the initial distribution,

and we denote it by λ(A,B, π).

Now, in order to learn a HMM, two parameters need to be specified: the number of hidden states

Q, and the form of the emission probabilities Bq. As we will show in Section 7.3, we can determine Q

through cross-validation. We learn λ for different values of Q using a subset of the data (i.e. training

data). Then we use an unseen subset of the data to compute the likelihood of the trajectories given

the observed model. As it will become apparent, as Q becomes larger the model no longer increases

significantly the likelihood of the data but we start getting diminishing returns by adding complexity

to the model. Using an Occam’s razor principle, we chose the lowest value of Q that will yield a

high likelihood of the data. For small datasets, in fact increasing the number of states will lead to

overfitting and hence the likelihood will start decreasing.

The second choice is the parametric form of the emission probabilities. In our experiments, we

used Gaussian densities, although other choices are suitable, such as t-distributions, exponential dis-

tribution, etc. This choice should be made depending on the data to be analyzed. For example,

for data collected in [35], which we will refer to as the “Fear in Flies” dataset, a histogram of the

log-velocities of the data yield a distribution that could be approximated by a Mixture of Gaussians,

as exemplified by Figure 7.2. In this plot, the gray line indicates the distribution of the data (ig-

noring the time-stamp of the data), while each colored distribution represents a particular Gaussian
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distribution with different parameters. Each of these are the emission probabilities of the estimated

HMM for this particular subset of the data. The mixing component of the model, or weights for each

component, is given by the steady-state probabilities of the transition matrix of the HMM. The dotted

line represents the resulting distribution when these Gaussian components are added together. Hence,

the distribution of this particular parameter in log-space is suited for Gaussian emission probabilities,

while the distribution for other parameters may require a different type of emission probabilities. Once

these choices are made, we proceed to fit the HMM to the data. For all our experiments that require

fitting HMMs to data, we used the code in [50].

Once we fit the HMM, λ(A,B, π), the movemes are the small units in the time series that get

assigned to the same hidden state. These movemes are very short, usually in the order of 1 to 10

frames. The hidden states give semantic meaning to each of this movemes. For example, when fly

trajectories are analyzed, the hidden states represent the following movemes: stationary, slow walking,

slow walking on food, walking, walking on the boundary (usually named thigmotaxis), accelerating,

among others. Depending on the number of states chosen for each subset of the data, there are more

or less hidden states than the ones described above, so that there is a finer or coarser granularity to

the described movemes.

Having extracted coherent meaningful snippets of the time series into what we call movemes, we

move on to discover actions.

7.2.2 Detecting actions

In the context of behavior analysis, actions are defined as a combination of movemes that occur in

the same order [5], and as in any other context, they can be described by a verb. In order to detect

actions, we follow the same approach as the one used for detecting movemes. When movemes are

found, the initial observed variables are abstracted into sequences of hidden states. This abstraction

groups similar snippets of the time series into the same hidden state, and also transforms the initial

continuous time series into a time series of discrete states. Yet, this abstraction does not have to stop

at this level. We can further fit a HMM to the new time series in this discrete hidden-state space.

The idea once again is to group similar common sequences into single states that will now represent

actions.

The details of this process are exactly the same as the one described in the previous subsection,

except that now there is no need to choose a parametric form for the emission probabilities. In this

case, the emission probabilities are probability mass functions in [0, 1]Q. That is, at state Q
(2)
i , the

probability mass function will determine the probability of observing any one of the 1 to Q states of

the first level HMM. Yet there is still a free parameter that needs to be set, which is the number of
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hidden states that this new HMM will have. We will call this Q(2). The method for finding Q(2) is

the same as the one used for finding Q, via cross-validation. In this case, not only will the likelihood

of the data saturate, but it will also be evident that if the emission probabilities for these new states

assign all the mass to a single state in the first level HMM, then there is no abstraction being done by

the second layer. Rather, we are actually interested in emission probabilities that will have non-zero

probabilities of emission in more than one of the states of the first HMM.

To illustrate this, if we fit a HMM to the output of a HMM that is fitted to log-velocity data of flies,

a common state that emerges is one in which the emission probability mass function has a large mass

for the hidden states that represent the movemes of accelerating/decelerating and hopping. Thus, the

concatenation of an acceleration, a hop, and a deceleration are grouped together into a single action.

Hence, these new hidden states will be considered as actions.

As it may be clear to the reader, this process can be repeated as many times as desired in order to

abstract actions at larger resolutions in time. The experiments we present considered 2-level HMMs,

but the method can be applied using as many levels as desired. Now, in order to detect an even higher

level degree of abstraction, we move from analyzing single trajectories to finding similarities between

trajectories. We explain this concept in the following subsection.

7.2.3 Finding stories

The last level of abstraction that we consider is what we call stories or activities. To do this, rather

than simply adding more levels to our HMM model, we compare the full time series of individuals,

in order to find clusters of similar individuals. Once a cluster is found, we can represent it by its

medoid (the point closest to every other point in the cluster), and the concatenation of actions that

constitute this trajectory will constitute a story. As will be shown in Section 7.3, these stories have

clear interpretations.

The challenge of clustering the time series lies in quantifying how similar or different two trajecto-

ries are. To do this, we begin with the output of the HMM rather than with the original trajectories.

The output of the first- or second-level HMMs is easier to deal with as the inherent variability and

noise in the observed time series is naturally smoothed out by the HMM. We can now think of the

time series in the hidden-state space as vectors in {1, . . . , Q}T . In principle, we could find the dis-

tance between two points by using the Euclidean norm of the difference between pairwise vectors.

Nevertheless, if we are aiming to abstract a common story between a group of individuals, it is very

unlikely that even if two individuals fall into the same story, that they will be at the same state at

the same exact time. Not only this might not be the case, but even if two of these vectors follow the

same exact sequence of states, it is also possible that the each individual spends different amounts of
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time in each state. These two differences may not make the story different, and hence for this reason

we want to use a distance that is more flexible than the Euclidean distance of the two vectors.

One common distance that has been used in the analysis of time series is Dynamic Time Warping

(DTW) [12], introduced more than twenty years ago. Although technically this is not a distance as it

does not satisfy the triangle inequality, it has been used due to the fact that it yields small distances

between time series that are slightly distorted in the time axis. The technique has been successfully

applied in the speech recognition community [12], in gene alignment as in [1] and [8], in medical

applications such as cardiology [22], among others.

In our domain, the advantages of using DTW vs Euclidean distance are similar as those in other

time-series applications. We would like to group time series that have small variations in the duration

of each of the states, but that in general have a similar sequence of states. Another advantage of

DTW is that the algorithm is flexible enough to allow defining a particular cost between each pair

of states. In our case, since the numerical value of the hidden states may not be meaningful, we are

able to design better cost matrices. The simplest of these approaches sorts the state numbers by the

mean of the emission probabilities, so that the order of the states reflects the distance between two

states. More sophisticated measures such as the KL distance between the emission probabilities of

each pairwise state can be more descriptive.

In short, the DTW distance between two time series is found by comparing at each time step

the two time series, and deciding if it is less costly to insert or delete (i.e., warp) frames in one of

the time series, in order to make the corresponding cost at each step as low as possible. Dynamic

programming is used in order to find this optimal trajectory efficiently, and the cost of finding this

distance is O(T1T2), where T1 and T2 are the lengths of each of the time series. Fast approximations

to DTW have been proposed in [59] and [3] which reduce the cost to be nearly linear in the length of

the trajectories rather than quadratic.

Once distances are computed, we can use any clustering algorithm such as k-means in order to

find meaningful groups of trajectories. Since there is no sense for a centroid in this space, that is,

an average trajectory, we use the k-medoids algorithm which finds points in the dataset to be the

centers of mass of the clusters, and assigns the remaining points to the nearest cluster. As with the

k-means algorithm, the solution is only a local minimum for the NP-complete problem of finding the

best assignment, so we restart the algorithm many times to obtain a good enough clustering. As with

every clustering algorithm, finding the right number of clusters is non-trivial, but we rely on the same

methods used widely in practice. For example, plotting the average size (diameter) of the obtained

clusters, versus the number of clusters allows choosing a value for k when the average size of the

cluster saturates. The resulting clusters will constitute the various stories that can be found in the



90

data, and the medoids of the cluster will be the representatives of each of these stories.

Having described the various stages of the method, we now present results in two different datasets:

the Fear in Flies dataset [35] and the Fly Bowl dataset [20].

7.3 Results on real datasets

The machinery described in the previous section can be used in different ways according to the specific

dataset used. In this section we apply CUBA to two datasets that study flies. Each dataset served a

different purpose in the biology community and in the same way we use the machinery of CUBA in

different ways in order to come to useful conclusions concerning behavior.

7.3.1 CUBA in the Fear in Flies dataset

As described before, the Fear in Flies dataset was the result of a new setup, described in [35], that

allowed recording videos of flies in a closed arena, and where a servo-motor controlled paddle produces

shadows to stimulate the flies. The idea of the setup was to demonstrate fear-like behavior in fruit files.

The dataset consists of recordings of movies that test various conditions of the experiment. It includes

arenas with and without food, experiments with a different number of shadows presented, experiments

where the interval between shadows or shadow frequency changes, experiments with different genetic

lines tested at different temperatures, experiments with different levels of starvation of the flies, among

others. Figure 7.3 shows a typical frame of the movies contained in the dataset. This arena shows 10

flies, the food patch in the center (darker region), and the paddle passing on top of the closed arena.

In this section we present results of applying CUBA to subsets of this data. The results are by

no means exhaustive but are presented to illustrate how CUBA can be used as a tool for behavior

analysis for biologists.

In order to apply CUBA to the dataset, we first need to define what are the observed variables.

For this experiment, a Computer Vision tracker algorithm was developed in [35], which outputs the

position of each fly at each frame of the movie. Due to the resolution of the movies, as well as to the

number of flies in each preparation (usually 10), it is not possible to extract detailed pose features as

the ones we describe in Chapter 6. Rather, all the information available is the position of the fly at

each time step. A simple feature that can be derived from the position is the velocity of the fly. When

we refer to velocity we are referring to the speed in the filmed plane. This feature has the advantage of

including temporal correlation between frames, as well as being invariant with respect to the position

of the fly. Figure 7.4 shows a fly trajectory as output by the tracker, and the corresponding log-velocity

time series. A log-scale is used for the velocity due to the significant difference in speeds a fly can
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Figure 7.3: Fear in Flies dataset setup. The image corresponds to a frame of the videos captured and
depicts the closed arena with a food patch at the center, 10 fruit flies, and the servo-motor controlled
paddle that arouses the flies

have, for example, between slow walking and flying.

As it is evident from the velocity plot for a single fly, these time series are very noise and therefore

hard to understand. For this reason, extracting meaningful patterns or movemes requires the use of

the techniques described in the previous section. The first step of CUBA is to learn the movemes

using a HMM. Figure 7.5 exemplifies a typical model learned. This model was learned using 150 time

series of flies in experiments with food, both for single and 10-fly preparations, as well as for a varying

number of shadows.

The number of states was chosen through cross-validation of the likelihood on unseen data. Figure

7.6 shows the likelihood for different models used. As it is clear, the likelihood saturates around 10 to

12 hidden states. 12 states were chosen above 10 in this example, as the 12-state model was able to

capture the faster state (small tail in the log-velocity distribution plot) more precisely than the model

with 10 states.

With the model learned, the time series of velocities can now be transformed into time series of

hidden states, where these states constitute the most probable sequence of hidden states given the

model learned. Figure 7.7 shows a few sample trajectories in the hidden-state space. Each state is

represented by the same color that was used for the emission densities in Figure 7.5. The plot also

color codes the position of the fly by showing white, gray, and black colors on top of the time series

to indicate open space, food, and boundary, respectively.

Once the number of states is chosen, it is also possible to give semantic meaning to each of the

states. These correspond to movemes. By watching the movies and following the corresponding state
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(b) Log-Velocity time series of the fly

Figure 7.4: Trajectory and log-velocity of a single fly as output by the tracker

of the flies, it is clear that States 1 to 4 (dark blue states) are given to the fly when there is no

visible motion. State 5 is assigned to the fly when it is moving very slowly. State 6 (green) is most

frequent when flies are walking very slowly, usually in the food patch. The orange states, 10 and 11,

are assigned to the flies when they perform a short fast walk. The dark red state, state 12, is assigned

to the flies when they hop/fly. State 8 (yellow) corresponds to an acceleration state, as it is always

assigned to flies just before and after a hop/fly event. This explains why the emission probability

density function of this state has a very large standard deviation with respect to the other states.

The first major achievement of this analysis, is that it provides automatic classifiers for simple

moveme/actions such as hopping or freezing. The work in [35] uses thresholds set by hand in order to

detect events of hopping and freezing, but using CUBA, there is no need to fix a subjective threshold

value to detect such behaviors. Rather, state 12 represents the hopping bouts, while states 1 and 2

represent the freezing states.

Once the movemes are found, we move on to compounding movemes by running a new HMM on

the output of the first-level HMM. A typical outcome is shown in Figure 7.8. The figure shows the

emission probability mass function for each of the second-level hidden states. In this example we use

Q(2) = 7. From the plot, a few actions can be inferred. State 7 has an emission probability that

gives most of the weight to the hopping states and the acceleration state. Hence, this action groups

acceleration - hop/fly - deceleration into a single action. State 6 has an emission probability that

only gives weight to the two fast walking states. Hence, the action of fast walking groups the two

previously discovered movemes into a single action. Similarly State 5 groups together the movemes

of fast and slow walking. Another interesting action is that of State 3, in which the stationary states

and slow walking states of the first level HMM are grouped together. This is a common action that is



93

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
LogVel Histogram with HMM Emission Probability Distributions

fr
ac

tio
n 

of
 fl

ie
s

log velocity (log (mm/s))

 

 
Observed
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
HMM Fit

(a) Log-velocity histogram of time series and emission
densities B

Next State

C
ur

re
nt

 S
ta

te

Transition Matrix for 12−state HMM

 

 

2 4 6 8 10 12

2

4

6

8

10

12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Transition matrix of HMM A

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

State Number

P
ro

ba
bi

lit
y

Initial State Distribution

(c) Initial distribution π
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mainly visible when the flies are feeding, as they walk slowly and stop continuously while they feed.

We now move on to clustering time series of individuals in order to find stories in this setup. We

find the DTW pairwise distances among the individuals we want to analyze. Figure 7.9 shows two

time series in a simpler 4-state HMM that are compared for illustration purposes, with the position

overlaid, but not taken into account in the DTW distance calculation. The top plots show the warped

versions of the time series that yield the minimum cost in a frame to frame comparison of the warped

time-series. Once a matrix of distances is computed between each pair of trajectories, we can cluster

them using k-medoids. Figure 7.10 shows a pair of similar time series and a pair of dissimilar time-

series, when the 12-state HMM is used.

In order to visualize the clusters produced by k-medoids, we use Multidimensional Scaling (MD-

scaling) [45]. The technique finds the location of points in a d-dimensional Euclidean space, given a

matrix of distances or dissimilarities between points. In our case, the matrix of DTW distances is

the input to the MD-scaling algorithm, and we use d = 2 in order to visualize the clusters. Figure

7.11 show clusters found in a subset of the data that included 240 time-series of flies on food, coming

from setups with 10 flies, and where 10 forward and backward passes of the paddles were presented to

the flies. We first examine the clusters by looking at the medoid time-series. Figure 7.11b shows the

time series in HMM space of the three medoids of the dataset, with positions overlaid, as well as with

vertical lines indicating the time at which the forward and backward passes of the paddle occurred.

The three medoids can be interpreted as three distinct stories. The first medoid (from bottom

to top) indicates a fly walking slowly on food (green state), which gets agitated when shadows pass
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(yellow and red states) and ends up walking quickly (orange states) on the boundary before returning

to the food. The second medoid shows a fly that after the shadows pass gets agitated and stays on

the boundary walking quickly, as indicated by the predominant orange color of the trajectory. The

third story shows instead the fly returning shortly after the shadows pass, walking slowly on food as

indicated by the predominant green state. To confirm this observation, we plot five random time-

series from each of the clusters. As it is clear visually in Figure 7.12, the medoids are indeed faithful

representatives of the time-series that are grouped into the same cluster.

A more detailed analysis of each of the stories can be done by plotting histograms along time in

hidden-state space, of each of the stories. Furthermore, as the position of the location of the flies is

known, in terms of the three major regions, namely the food patch, open space, and boundary, the

histograms can be further separated by location. Figure 7.13 shows these histograms. The histogram

for time series in the same story is divided into three, displaying the percentage of flies on food at

the top, those in the open space in the middle, and those in the boundary in the bottom. A guide for

the mean log-velocity of each state and its standard deviation is plotted for reference at the rightmost

part of the plots.

These histograms provide a clear summary of the data, in terms of the velocity of the flies in the

experiment. It is clear that before the shadow stimuli are presented, the flies are all walking slowly

or stationary on food. The flies then disperse once the shadows are presented, and most flies hop, as

it is evidenced by the increase in frequency of the acceleration (yellow) state, and the hopping state

(dark red). Another interesting observation is that during the shadow presentations, not only the

acceleration and hopping states (yellow and dark red) increase, but it is also the case that the dark

blue state increases and decreases periodically with the shadows. This shows evidence of a freezing

behavior. As evidenced in other animals such as rodents, when an arousal event such as the presence

of a predator occurs, animals freeze before attempting escape. This may be a mechanism to avoid

detection, for example. Yet, before this experiment had been carried out, clear evidence of freezing in

flies had not been presented. CUBA detects evidence of this behavior.

Across all clusters, it is clear that the first two shadows are enough to disperse all flies from the

food patch. After the third shadow, it is now common to find flies in the boundary. Three possibilities

divide the time series into separate stories. Either flies are very quick to return to food, after settling

down in open space, as shown in story 3, and therefore flies will predominantly remain in the slow

walking state (green) once they settle down. It may also be the case that flies remain very agitated as

shown by the orange states in story 2. Yet, notice that the orange states are mostly predominant when

the flies are in the boundary. Therefore this raises an important point, which is that flies walk faster

when they are on the boundary. Similarly, when flies are on food, the fast walking states (orange) are
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Figure 7.12: Time series in HMM space with overlaid position from the three clusters found
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(b) Cluster 2: 62 flies
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(c) Cluster 3: 110 flies

Figure 7.13: Histograms of states occupied by flies by cluster (story) and position (food patch, open
space, and boundary)
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almost not present. This observation could be subject to causal testing, that is, biologists could test

if flies walk faster because they are in the boundary, or if it is the case that agitated flies spend more

time in the boundary. Finally, there is an intermediate story, in which flies disperse to open space, go

to the boundary, but then do return to food during the length of the video.

With this visualization, it is clear how applying CUBA to the dataset allows summarizing and

identifying the different behaviors present in the experiment. The detection of movemes as well as au-

tomatic classifiers for behaviors like freezing and hopping, present a major advantage as the classifiers

are a byproduct of the method that require no manual annotations. Also, clustering trajectories into

similar stories allows identifying the different types of behaviors elicited by the stimuli presented, as

well as having a concise but detailed understanding of what flies are doing. This methodology, com-

pared to usual methods that compare simple statistical quantities, such as mean or median velocities

as done in [35], allows a deeper understanding of the biological phenomena observed. A simple value

like the mean can be deceiving in the case of outliers, while the description given by CUBA gives a

clear picture of the phenomena observed.

Another application of CUBA to a biological experiment like the Fear in Flies dataset, is that it

allows using the mathematical models obtained to test hypotheses. For example, a simple experiment

that was carried out in the original investigation was to understand how the number of shadows

presented to the flies affected the flies. If more shadows elicited higher levels of agitation this could

imply an integration model for “fear” in flies. To illustrate how CUBA can be used to show this, we

apply the method comparing two scenarios: groups of 10-flies where 10 shadows are presented, and

groups of 10-flies subject to 20 shadows. We now learn two HMM models: one for the 10-shadow

data, and another for the 20-shadow experiment. We keep the number of hidden states Q equal for

both models.

We ran this experiment in two sets of data: 240 flies subject to 10 shadows, and 240 flies subject

to 20 shadows. Figure 7.14 shows the mean of the emission distributions found for both models,

with blue bars representing the model for the 10-shadow data and red for the 20-shadow data. The

standard deviation of the emission density function means are found by fitting the model multiple

times with different splits of the data into training and validation sets. For this subset of the data,

the chosen model using cross-validation was Q = 8. As it is clear from Figure 7.14a, state number 8,

which constitutes the hopping/flying state, has a significantly higher value for the mean in log-velocity

space. For the remaining states, there is no significance difference between the mean of the states.

This shows clear evidence that the arousal caused by 20 shadows leads to higher observed velocities

than in the case of 10-shadow presentations.

Figure 7.14b also shows evidence for the higher arousal in the 20-shadow experiment as it shows
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(b) Time-series in HMM space of medoids found

Figure 7.14: Comparisson of HMMs learned for the 10 vs 20 shadow experiments

the distribution of flies in each of the hidden states after the shadows are presented. As it is clear

from the plot, for the 20-shadow experiment, the flies spend more time in states 5 through 7 than the

flies in the 10-shadow experiment, which spend most of their time in the slow walking state (state 4).

This again shows evidence of a scalable response by the shadows, as the number of shadows increase.

This simple experiment exemplifies how hypothesis can be tested using the CUBA machinery. We

now move on to an application to CUBA to the Fly Bowl dataset, which was created in order to

understand interactions of flies in a closed bowl, when the wings have been removed.

7.3.2 CUBA in the Fly Bowl dataset

The Fly Bowl dataset is composed of videos of flies in a planar enclosed arena. There are usually 20

flies in each arena, and the wings of the flies have been removed. The software developed in [20] uses

Computer Vision techniques to extract the position of the flies, as well as their orientation. Various

techniques are used in order to avoid identity swapping when flies are close to each other. The work

presented in that paper detects and analyzes specific behaviors in flies: walk, stop, sharp turn, backup,

crab walk, touch, and chase. The high-throughput system developed in that study allowed analyzing

various genetic lines. The vectors describing behavior frequency and duration allowed predicting

genetic lines as well as gender.

In this context, we use CUBA to analyze the data without previously defining behaviors. For

a subset of the data consisting of 415 fly trajectories filmed during 13 minutes, we run the CUBA

machinery, once again on the log-velocity time series, and obtain a HMM with 15-states or movemes.

We then run a second HMM and choose through cross-validation Q(2) = 6 states. The inferred

trajectories in HMM space are then clustered, obtaining this time 4 clusters. Figure 7.15 shows the
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histograms of states in time for each of the clusters. In this case the fly bowl does not allow flies to

walk in the border, and since there is no food, there is no spatial differentiation in the flies.

The actions represented by the 6 hidden states of the second-level HMM are the following: state

1 and state 2 (dark blue states) represent stationary states; state 3 (cyan) represents a slow walk–

stop–slow walk repetition; state 4 (green state) represents a continuous slow walking state; state 5

(yellow) is a fast walking state; and state 6 (orange) involves accelerating–fast walking–decelerating

repetition. The histograms of Figure 7.15 also show plots that indicate which states of the first level

15-state HMM are included in each of the second-level hidden states, with their corresponding means

and standard deviation.

The four clusters indicate roughly the following stories: cluster 1 indicates flies that are transi-

tioning between states and hence are changing velocities throughout the movie, although they tend to

become more stationary towards the end; cluster 2 on the other hand indicates flies that are mostly

stationary or slow walking but the frequency of states remains mostly constant throughout the movie,

indicating mostly constant velocities of the flies; cluster 3 on the other hand indicates flies that are ag-

itated throughout the movie, indicated by the high percentage of state 6 (orange), as well as constant

changes in the frequencies of states indicating transition between states; finally cluster 4 is similar to

cluster 2, except that the flies do not tend to stop by the end of the movie, but rather maintain a

similar speed throughout the movie.

In this case, due to the lack of external stimuli, characterizing behavior in the form of stories is

less meaningful as behavior is usually the result of a response to some external or internal stimuli.

Nevertheless, the stories obtained become informative if we analyze the percentage of flies in each

video that fall in each of the clusters. Figure 7.16 shows the number of flies in each of the clusters,

for each of the videos analyzed. Notice that for some videos less than 20 flies are shown. This is the

case as some preparations had less flies or because the tracker could not detect a reliable trajectory

for some of the flies.

It may seem clear to the reader that the distribution among clusters is very different across the

different videos in the dataset. In fact, when we discussed this difference with biologists, they imme-

diately identified that the subset of videos used had different genetic lines of flies. Videos 1 and 2

correspond to one genetic line, videos 3 to 12 correspond to the control genetic line of wild type flies,

videos 13 to 15 correspond to another genetic line, and the final six videos correspond to a different

line. Clearly, the first two videos corresponding to one genetic line, account for most of the flies that

fall into cluster 3, the story of highly agitated flies. The videos in the third group account for most of

the flies falling in cluster 1. Finally the remaining videos have a similar distribution of flies in clus-

ters 2 and 4, clusters which are very similar and indicate flies moving at a nearly constant and slow
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Figure 7.15: Histograms of states occupied by flies by cluster for a subset of the Fly Bowl dataset
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Figure 7.16: Flies per cluster per video in a subset of the Fly Bowl dataset

speed throughout the movie. That is, wild type flies under this setup tend to be “calm and steady”

throughout the video, while the other genetic lines are prone to agitation and constant changes in

speed. Hence, applying CUBA to this dataset in fact allows us to discriminate between genetic lines,

just as the study that used predefined behaviors as descriptors in order to predict gender and genetic

lines did.

In fact, CUBA can be modified to be a semi-supervised method, as once DTW distances are

computed, we can use MD-scaling in this case not for visualization purposes but to embed the time-

series in a high-dimensional Euclidean space. In this space, supervised machine learning methods

can be used to identify various groups of flies, such as different genetic lines or genders, if this

information is available. In our experiment, this was done using completely unsupervised methods as

we were initially unaware the videos contained different genetic lines, and yet the method was able to

discriminate these. Hence, applying CUBA to a different dataset illustrates a different use that can

be given to the method developed.

The unsupervised method developed in this chapter is able to detect behavioral patterns at different

time scales. We can detect movemes by means of a HMM and its hidden states, a technique that allows

building classifiers for specific behaviors without the need for annotation. We can detect actions by

further grouping movemes using a new HMM whose observed variables are the hidden states of the

initial HMM. Furthermore, we can find distances between the observed time-series in this new hidden-

state space, by using an appropriate measure as DTW, which allows time deformations between series

when finding the comparison. This allows clustering in meaningful groups the time-series, yielding

typical stories found in the data. The machinery then allows testing hypotheses, by comparing the

models obtained, and allows understanding the data at a much more profound level, compared to the
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case where simple statistics like the mean and median are used to summarize the data. Finally, the

cluster membership distribution for groups of flies can be discriminative enough to detect different

genetic lines, as exemplified in the experiments on the Fly Bowl data. These are just some of the

advantages of using a system like CUBA. As biologists begin using this method to analyze their data,

it will become clear how much more can be learned on how these computational methods can help

advance the study of behavior.
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Conclusion

In the first part of the thesis, we explored three fundamental questions that arise naturally when we

conceive a machine learning scenario where the training and test distributions can differ. Contrary

to conventional wisdom, we show in Chapter 2 that in fact mismatched training and test distribution

can yield better out-of-sample performance. Thus, the natural step to follow is to find the optimal

training distribution for a given test distribution, regardless of the target function that we want to

learn. We called this distribution the dual distribution and showed how to obtain it in both discrete

and continuous input spaces, as well as how to approximate it in a practical scenario in Chapter 3.

Experiments on both synthetic and real data sets showed the benefits of using the dual distribution.

Yet, in order to apply the dual distribution in the supervised learning scenario where the training data

set is fixed, it was necessary to use weights to make the sample appear as if it came from the dual

distribution. We then explored the negative effect that weighting a sample can have. The theoretical

decomposition of the use of weights regarding its effect on the out-of-sample error is easy to understand

but not actionable in practice, as the quantities involved cannot be computed. Hence, we proposed

the Targeted Weighting algorithm in Chapter 4, that determines if, for a given set of weights, the

out-of-sample performance will improve or not in a practical setting. This is necessary as the setting

assumes there are no labeled points distributed according to the test distribution, only unlabeled

samples. Experiments on real datasets showed the unanimous success of our proposed algorithm.

Finally, we proposed a new class of matching algorithms in Chapter 5 that can be used to match the

training set to a desired distribution, such as the dual distribution (or the test distribution). These

algorithms can be applied to very large datasets, and we showed how they led to improved performance

in a large real dataset such as the Netflix dataset. Their computational complexity is the main reason

for their advantage over previous algorithms proposed in the covariate shift literature.

In the second part of the thesis, we apply Machine Learning to the problem of behavior recognition

in biological experiments. We developed a wing extension classifier needed to analyze thousands of

legacy videos efficiently. These videos were part of an ongoing study of fly aggression. The classifier

aided in the investigation that culminated in discovering the neuron and substance that is responsible

for fly male aggression. We then moved on to the more complex problem of analyzing behavior using
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minimal supervision for humans. To do this, we developed CUBA, which allows detecting movemes,

actions, and stories from time series describing the position of animals in videos. The method allows

summarizing the data, as well as it provides biologists a mathematical tool to test new hypotheses.

When applied to real data, the system also allowed finding classifiers for behaviors such as hopping

and freezing in flies without the need for annotation, and it also allowed discriminating groups of flies

according to their genetic line.
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Appendix A

An analytic learning setup

In this appendix, we introduce an analytic setup for the learning problem that is both tractable

and versatile. The setup uses a squared loss function and a linear learning model with non-linear

transformations. Highly sophisticated target functions and learning models, as well as noise, can be

handled under this setup, and we are able to get analytic solutions for the out-of-sample error in this

framework. Various chapters of the thesis use the results of this section.

We begin by defining the notation. Let R = {xi, yi}Ni=1 be the training set, with xi ∈ X , and

yi ∈ Y. Assume xi are iid ∼ PR, where PR is the training distribution. Let the target function be

f : X → Y, and let ε be the stochastic noise process, where εi is the realization corresponding for

xi, so that yi = f(xi) + εi. Let H be the hypothesis set used by the learning algorithm, where each

h ∈ H is h : X → Y. Finally we assume the learning algorithm returns a final hypothesis g ∈ H that

minimizes the squared loss function `2 : Y × Y → R, `2(h(xi), yi) = (h(xi)− yi)2. That is,

g = arg min
h

N∑
i=1

(yi − h(xi))
2. (A.1)

We let H be the set of linear functions in some transformed space Zm of the input space X , so

that

h(x; θ) = θTφM (x). (A.2)

where θ, φM (x) ∈ ZM . For simplicity we let

zM = φM (x) (A.3)

In these terms, the goal of the learning algorithm is to find θ∗, where g(x,R, f, ε) = h(x, θ∗).

We further characterize the target functions by expressing them in terms of non-linear transfor-
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mations, so that f(x) = θ̃Tφ(x), where

φ(x) = [φM (x) φC(x)]T (A.4)

and φC(x) ∈ ZC represents the features of the target function that cannot be captured by the model.

By letting the dimension of ZC grow as desired, and allowing arbitrary non-linear transformation, f

can be as complex as we want. Following the same notation as before, we have z = [zTM zTC ]T , and

θ = [θTM θTC ]T . Figure 2.5 shows sample target functions that can be generated if we use Fourier

harmonics as the features of the non-linear transformation, with φ(x) ∈ R10, and X = [−1, 1]. As it

is clear from the figure, there is great variety that can be achieved with this model.

We are interested in finding an expression for the out-of-sample error Eout in this framework. We

begin by finding Eout at a point x ∈ X . This error is also a function of R, f , ε, and we denote it

by Eout(x,R, f, ε). Since both the stochastic noise ε and the complexity of the target function (also

known as the deterministic noise) vary from problem to problem, we take the expected value with

respect to these quantities. To do this, we make the usual assumption about ε, which is that it has zero

mean (E[ε] = 0), and diagonal covariance matrix, E[εεT ] = σ2
NI, where I is the identity matrix and

σN is the standard deviation of the stochastic noise. For the target functions, we make the simplifying

assumption that the coefficients of the features outside the model, namely θC ∈ ZC , have covariance

matrix E[θCθ
T
C ] = σ2

CI. Then, the expected out-of-sample error is given by

Ef,ε[Eout(x,R, f, ε)] = Ef,ε[(f(x)− g(x,R, f, ε))2]. (A.5)

The final hypothesis g(x,R, f, ε) is obtained by minimizing the squared loss function on the training

set, and the solution is given by the pseudo-inverse of the data matrix. To be more precise, let

Z =


−zT1 −

−z2T−
...

−zTN−

 y =


y1

y2

...

yN

 (A.6)

where Z is the data matrix. Now

Z = [ZM ZC ]. (A.7)

In matrix form, the learning problem reduces to the following quadratic program,

min
θ
||y − Zθ||2 (A.8)
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with analytic solution θ? found through basic calculus:

θ? = (ZTZ)−1ZT y = (ZTZ)−1ZT (Zθ + ε) = θ + Z†ε, (A.9)

where Z† = (ZTZ)−1ZT is the so-called pseudo-inverse of matrix Z. However, as stated before, we

assume the target function is more complex than the learning model. Hence, the matrix Z cannot be

constructed as φC is unknown. Instead, we use the matrix ZM . In this case the learning algorithm

will output the parameter vector θ̂ ∈ ZM given by

θ̂ = Z†My = Z†MZ
T θ = Z†M (ZMθM + ZCθC + ε) (A.10)

Hence,

g(x,R, f, ε) = zTZ†M (ZMθM + ZCθC + ε) (A.11)

Substituting, the expected out-of-sample error is given by

Ef,ε [Eout(x,R, fε)]

= Ef,ε
[
‖zT θ + ε0 − zTM (Z†M (ZMθM + ZCθC + ε)‖2

]
= Eε,f

[
‖zTCθC + ε0 − zTMZ

†
M (ZCθC + ε)‖2

]
= Ef

[
(zTC − zTMZ

†
MZC)θCθ

T
C(zTC − zTMZ

†
MZC)T

]
+ Eε

[
ε20 + zTMZ

†
M εε

T (Z†M )T zM

]
= Ef

[
Tr
(

(zTC − zTMZ
†
MZC)θCθ

T
C(zTC − zTMZ

†
MZC)T

)]
+ Eε

[
Tr
(
zTMZ

†
M εε

T (Z†M )T zM

)]
+ σ2

N

= Ef
[
Tr
(
θCθ

T
C(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC)

)]
+ Eε

[
Tr(εεT (Z†M )T zMz

T
MZ

†
M )
]

+ σ2
N

= Tr
(
Ef
[
θTCθC

]
(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC)

)
+ Tr

(
Eε
[
εεT
]

(Z†M )T zMz
T
MZ

†
M

)
] + σ2

N

= Tr
(
σ2
C(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC)

)
+ Tr

(
σTN (Z†M )T zMz

T
MZ

†
M

)
+ σ2

N

= σ2
C(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC) + σ2

NTr
(
zTMZ

†
M (Z†M )T zM

)
= σ2

C‖zTC − zTMZ
†
MZC‖

2 + σ2
NTr

(
zTM (ZTMZM )−1ZTMZM (ZTMZM )−1zM

)
= σ2

C‖zTC − zTMZ
†
MZC‖

2 + σ2
Nz

T
M (ZTMZM )−1zM + σ2

N , (A.12)

where ε0 denotes the stochastic noise at the point x, and Tr(A) denotes the trace of matrix A. The

above derivation reorganizes the expression using the fact that the trace of a scalar is the scalar

itself, and the fact that Tr(AB) = Tr(BA). Finally, we use the assumptions on the stochastic and

deterministic noise to find the expected values.
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