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Chapter 3

The dual distribution

As shown in the previous chapter, contrary to the common presumption, the optimal distribution from

which to sample training data is not necessarily the test distribution PS . Instead, we call the optimal

training distribution the dual distribution. This distribution only depends on the test distribution

and not in the particular target function in question. In this chapter, we define the dual distribution

precisely and then show how to obtain it in the general case, as well as in a practical scenario. We

end the chapter with a comparison of the dual distribution approach and a related concept in active

learning.

Given a distribution PS , we define a dual distribution P ?R to be a distribution that achieves

min
PR

ER,x,f,ε[Eout(x,R, f, ε)] (3.1)

where R is a data set generated according to PR and x ∼ PS . The above minimization problem of

course has the constraint that PR must be non-negative and should be normalized, so that the solution

yields a valid probability distribution.

3.1 Discrete input spaces

We first find the dual distribution in the case where the input space X is a discrete set. Let X =

{xj}dj=1, so that PR and PS become probability mass functions on d points. Hence, in this setting,

finding the dual distribution becomes an optimization problem in d−1 dimensions. We only optimize

with respect to d−1 elements of PR, since the last element can be determined from the normalization

constraint.

For simplicity, we illustrate the solution for a regression problem where only stochastic noise is

present. Given R, from Equation 2.9 we can compute the expected out-of-sample error with respect
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to PS , the noise, and the target function as

Ex,ε,θ[Eout(x,R, ε, θ)] = σ2
N

d∑
i=1

zTi (ZTZ)−1ziPS(xi). (3.2)

In this case, there are
∑N
i=1

(
d
i

)
possible data sets of size N (allowing for repetition of points in the

data set) that could be obtained for any given PR. To simplify the notation, since X is finite, we

assign each of the points a number, from 1 to d, and we denote the out-of-sample error for each of

these data sets as Ei1,i2,··· ,iN , where ik indicates the element number in X that corresponds to the

k’th data point in R.

Hence, we can find the expected out-of-sample error with respect to PR as

ER,x,ε,θ[Eout(x,R, ε, θ)] =
∑

i1,i2,...,iN

pi1pi2 · · · piNEi1,i2,...,iN , (3.3)

where all the Ei1,...,iN can be found using Equation 3.2. Therefore, P ?R is the solution to the following

optimization problem:

min
p1,p2,...,pd

∑
i1,i2,...,iN

pi1pi2 · · · piNEi1,i2,...,iN (3.4)

subject to

d∑
i=1

pi = 1

pi ≥ 0

Let us look at a concrete example, with N = 3,

z = Φ(x) = [cos(πx) sin(πx)]T (3.5)

X = {−3/4,−1/4, 0, 1/4, 3/4}

PS = [1/3, 0, 1/3, 1/3, 0]

[x1, x2, x3, x4, x5] = [−3/4,−1/4, 0, 1/4, 3/4]

Solving the optimization problem given in Equation 3.4 yields P ?R 6= PS , with

P ?R = [0.4672, 0.1140, 0.1140, 0.000, 0.3048]. (3.6)
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Figure 3.1: Probability mass functions for a given PS and its dual P ?R, in a regression problem with
stochastic noise, discrete input space X = {−3/4,−1/4, 0, 1/4, 3/4}, and N = 3.

For this example,

ER,x,ε,θ[Eout(x,R, θ, ε)] = 1.1391σ2
n < ER′,x,ε,θ[Eout(x,R, θ, ε)] = 1.5778σ2

n, (3.7)

where R′ is generated according to PS and R according to P ?R. Clearly there is a gain by training

with the dual distribution, in this case. When running the optimization, for data sets that have

repeated points that result in undefined out-of-sample error as the matrix (ZTZ)−1 is singular, we

conservatively take their error to be the maximum finite out-of-sample error over all combinations of

possible data sets. Figure 3.1 shows the dual distribution found, along with the given PS .

Notice that if a different loss function is chosen and no closed form solution exists for Eout(x,R),

the dual distribution can still be found using the same procedure as above. The only difference is

that Eout(x,R) must be estimated, using a held-out set for instance, for each possible dataset R, so

that the corresponding Ei1,...,iN can be computed and given as inputs to the optimization problem of

Equation 3.4

A very important property of the optimization problem formulated in Equation 3.4 is that it is a

convex optimization program. In fact it is a Geometric Program, although different from a standard

Geometric Program, since the equality constraint is not a monomial. Yet, the problem is still convex.

To illustrate this, let

ψi = log(pi) (3.8)

Λi1,...,iN = log(Ei1,...,iN ). (3.9)
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This change of variables implicitly makes pi > 0 so that the inequality constraints can be removed.

Also, the problem can be rewritten as

min
ψ1,ψ2,...,ψd

∑
i1,i2,...,iN

e
∑N
k=1 ψik+Λi1,i2,...,iN (3.10)

subject to

d∑
i=1

eψi = 1

(3.11)

Notice that the objective function is a sum of exponential functions of affine functions of ψi. Since

exponential functions are convex, affine transformations of convex functions are also convex, and

sums of convex functions result in a convex function, the objective in Equation 3.10 is convex [19].

Following the same argument, the equality constraint is also convex, so that the optimization problem

is a convex program.

Hence, if a minimum is found, this is the global optimum with a corresponding dual distribution.

This problem can be solved with any convex optimization package. Furthermore, in most applications,

PS is generally unknown and is estimated by binning the data, which leads to a discrete version of PS .

Therefore, this discrete formulation is appropriate to find dual distributions in such settings. Solving

the Geometric Program described by Equation 3.10 thus allows us to find the dual distribution in

various practical settings.

Nevertheless, we need to address the more general case of continuous input spaces. The following

section describes how to find the dual distribution in that case, as well as how to implement it in a

practical scenario.

3.2 The continuous case

When the input space X is continuous, as it is the case in most applications, the optimization prob-

lem in Equation 3.1 is a functional optimization problem, since we are interested in finding the full

distribution PR. We denote the corresponding probability density function by pR, and optimize with

respect to this density. The objective function of the optimization problem can be written as the

functional J : P → R

J(p) =

∫
xN

· · ·
∫
x1

L(x1, . . . , xN )

N∏
i=1

p(xi)dx1 · · · dxN , (3.12)

where

L(x1, . . . , xN ) = Ex∼PS ,f,ε[Eout(x,R, f, ε)], (3.13)
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and P is the set of all probability density functions with P ⊂ L1. (Recall an Lp space over X is

defined as the space of functions f for which
∫
X
|f(x)|p < ∞. Since probability density functions

integrate to unity, they are elements of L1). In the following subsection, we use functional calculus to

arrive at the analytic condition that the dual distribution must satisfy.

3.2.1 Analytic condition for the dual distribution

To minimize the functional J(p), we first transform the variables, as we did in Section 3.1. Let

ψ(x) = log p(x) (3.14)

Λ(x1, . . . , xN ) = log(L(x1, . . . , xN )). (3.15)

The optimization problem becomes

min
ψ

= J(ψ) (3.16)

subject to

∫
eψ(x)dx = 1

where

J(ψ) =

∫
xN

· · ·
∫
x1

eΛ(x1,...,xN ))+
∑N
i=1 ψ(xi)dx1 · · · dxN , (3.17)

and where the positivity constraints are implicit, given the domain of the logarithm.

Now, recall that the gradient of a functional J(ψ), denoted as ∇ψJ , is given by [28]

J(ψ + δζ) = J(ψ) + δ〈∇ψJ, ζ〉+O(δ2), (3.18)

where δ ∈ R, δ > 0, and ζ ∈ P is an arbitrary function. Consider the Lagrangian

L(ψ) = J(ψ) + λ

(∫
eψ(x)dx− 1

)
. (3.19)

Then, the dual distribution must satisfy

∇ψ(L(ψ(x))) = 0. (3.20)

In fact, we can use the Euler-Lagrange theorem [30] to show that if there is a function ψ that

satisfies Equation 3.20, then it is the global minimizer. The theorem states that for a function f ∈ C2,

with f : [a, b]d×R×R→ R where C2 denotes continuously twice differentiable functions, and we have
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the functional

inf
X
I(u) = inf

X

∫
X
f(x, u, u′)dx (3.21)

where X = {u ∈ C1, u : [a, b]d → R, |u|∂1Ω = u0}, u0 are the boundary conditions, and X = [a, b]d,

then if I(u) admits a minimizer ū ∈ C2, then ū satisfies the Euler-Lagrange (EL) equation:

∑ ∂

∂xi

∂

∂u′
f(x, ū(x), ū′(x))− ∂

∂u
f(x, ū(x), ū′(x)) = 0. (3.22)

Conversely, if ū satisfies the EL equation and the mapping M(u, u′)→ f(x, u, u′) is convex for every

x ∈ [a, b]d, then ū minimizes I(u).

In our case, u = ψ, and J(ψ) = I(ψ). Also, in our case, u′ does not appear, so that f(x, ψ, ψ′) =

f(x, ψ). Hence, having the gradient of the Lagrangian with respect to ψ equal to 0 is equivalent to

satisfying the EL equation. This is the necessary condition.

Now, we can show that it is in fact a sufficient condition by using the converse. Notice that in our

case X = P is a convex set, as convex combinations of density functions are also convex. Hence, all

that remains to show is that the mapping M is convex, that is, show that for 0 ≤ α ≤ 1, α ∈ R,

M(αψ + (1− α)φ) < αM(ψ) + (1− α)M(φ). (3.23)

Substituting, we have in the left hand side,

eΛ(x1,...,xN )+α
∑
i ψ(xi)+(1−α)

∑
i φ(xi). (3.24)

On the right hand side we have

αeΛ(x1,...,xN )+
∑
i ψ(xi) + (1− α)eΛ(x1,...,xN )+

∑
i φ(xi). (3.25)

Now, we notice that due to the strict convexity of the exponential function

eαθ1+(1−α)θ2 < αeθ1 + (1− α)eθ2 . (3.26)

Hence, dividing both sides of Equation 3.23 by eΛ(x1,...,xN ) and substituting θ1 =
∑
i ψ(xi) and

θ2 =
∑
i φ(xi) shows that the mapping M is strictly convex.

This implies that if the dual distribution exists, that is, if we find ψ that satisfies Equation 3.20,

then it is the unique, and is the global minimizer of J , and by constraint satisfaction, also the minimizer

of L. Note the theorem assumes continuous differentiability of u, but the theorem can be generalized

for functions that are continuously differentiable, except at sets of measure zero.
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We now compute the gradient of the Lagrangian. For simplicity, let dR denote dx1 · · · dxN , and

let R denote the support of the set {x1, . . . , xN} then

J(ψ + δξ) =

∫
R
e
∑N
i=1 ψ(xi)+δξ(xi)+Λ(x1,...,xN )dR

=

∫
R
e
∑N
i=1 ψ(xi)+Λ(x1,...,xN )

(
1 + δ

N∑
i=1

ξ(xi) +O(δ2)

)
dR

= J(ψ) + δ

∫
R
e
∑N
i=1 ψ(xi)+Λ(x1,...,xN )

N∑
i=1

ξ(xi)dR

= J(ψ) +

N∑
i=1

〈∫
xn,n6=i

e
∑N
i=1 ψ(xi)+Λ(x1,...,xN )dxnn6=i , ξ(xi)

〉
, (3.27)

where the simplification follows from using a Taylor expansion of the exponential. Finally, since the

loss functions we are interested in are independent of the order of the points in the training set, then

the logarithm of the loss function Λ(x1, . . . , xN ) is symmetric with respect to xi. Therefore,

∇ψ(J(ψ(xn))) = NExi∼eψ
i 6=n

[L(x1, . . . , xN )]. (3.28)

Following a similar procedure for the second term in the Lagrangian, we obtain that at point xn

∇ψ(L(ψ(xn)) =

(
NExi∼eψ

i 6=n
[L(x1, . . . , xN )] + λ

)
eψ(xn) (3.29)

We can now use the constraint to find λ by integrating the above equation over xn. We obtain

λ = −Neψ(xn)E xi∼p
i=1,...,N

[L(x1, . . . , xN )] (3.30)

Substituting for λ we obtain the optimality condition that the dual distribution needs to satisfy:

p(xn)

(
Exi∼p
i 6=n

[L(x1, . . . , xN )]− E xi∼p
i=1,...,N

[L(x1, . . . , xN )]

)
= 0. (3.31)

This condition applies to the dual distribution in the general case, without making assumptions about

the target class or the learning model. Now, all that remains is to find p that satisfies this condition,

which can be done, for example, using functional gradient descent [49].

The functional gradient descent step is given by

p(x) := p(x)− η∇(L(p(x)) (3.32)
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where η is the learning rate, hence

p(xn) := p(xn)− ηN
(
Exi∼p
i6=n

[L(x1, . . . , xN )]− E xi∼p
i=1,...,N

[L(x1, . . . , xN )]

)
p(xn). (3.33)

Notice that the integral of the update over xn is 0. Hence, this update guarantees that the nor-

malization constraint is satisfied at each step, so that gradient descent works in this case as in an

unconstrained problem. Therefore, if the initial condition is a valid probability density function (pdf),

all subsequent p’s will also be valid pdf’s.

The interpretation of this update is very intuitive: If a point xn is included in the training set,

and the resulting out-of-sample error is lower than the expected out-of-sample error with N points,

that is Exi∼p
i 6=n

[L(x1, . . . , xN )] < E xi∼p
i=1,...,N

[L(x1, . . . , xN )], then p(xn) should be increased. If including

the point leads to a higher out-of-sample error, then the density at this point should be decreased.

In the following subsection, we introduce a concrete example of how the condition of Equation

3.31 can be used computationally to derive the dual distribution.

3.2.2 Dual distribution examples

As shown in the previous subsection, finding the dual distribution reduces to performing functional

gradient descent. However, the update rule depends on being able to compute the expected out-of-

sample error Exi∼p
i 6=n

[L(x1, . . . , xN )]. Computing the expected value with respect to the training set

can be readily done using Monte Carlo (MC) simulation. This can be slow unless a closed form for

L(x1, . . . , xN ) exists.

If a squared loss function is used for `, and the hypothesis class H is chosen to be a linear

model (which can include non-linear transformations of the inputs), then a closed-form solution for

L(x1, . . . , xN ) exists. This solution is independent of the specific target function. Hence, in this

setting, the dual distribution can readily be found. The closed-form solution, as derived in Appendix

A is given by

L(x1, . . . , xN ) = σ2
C‖φC(x)T − φM (x)TΦ−1

MMΦMC‖2 + Ex∼PS
[
σ2
NφM (x)TΦ−1

MMφM (x)
]

+ σ2
N , (3.34)

where φ : X → ZM+C denotes the transformation of the input, with

φ(x) = [φM (x)T φC(x)T ]T , (3.35)

so that φM : X → ZM represents the part of the target function that can be captured by the model,

and φC(x) : X → ZC is the part of the target that cannot be captured by the model. The matrices
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Figure 3.2: Examples of dual distributions, for 1-D test distributions, in a linear regression problem.

Table 3.1: Out-of-sample (OoS) performance improvement when training the learning algorithm with
data coming from the dual distribution rather than from the test distribution

Test Parameters OoS error
Distr. improvement

Exponential λ = 5 46.3%
Gamma α = 4, β = 0.05 32.0%
Gaussian µ = 0, σ = 0.1 21.4%
Beta α = 2, β = 5 10.0%
F ν1 = 100, ν2 = 80 5.7%
Weibull λ = 1, k = 5 2.2%
Uniform [-1,1] 0.5%
2-D Gaussian Σ = [0.12 0.08; 0.08 0.12] 22.6%
2-D MG Σ = [0.12 0.06; 0.06 0.12] 5.71%

ΦMM ∈ ZM×M and ΦMC ∈ ZM×C defined for the training input points x1, . . . , xN are given by

ΦMM = ZTMZM =

N∑
i=1

φM (xi)φM (xi)
T , (3.36)

ΦMC = ZTMZC =

N∑
i=1

φM (xi)φC(xi)
T . (3.37)

Finally σ2
N and σ2

C characterize the energy of the stochastic noise and ‘excess’ target complexity as

explained before.

Figure 3.2 shows the dual distributions for various one-dimensional test distributions for the re-

gression setup. The learning model uses Fourier harmonics of the input, while the target functions are

constructed by considering functions that include Fourier harmonics higher than those that belong to
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Figure 3.3: Examples of dual distribution, for 2-D test distributions. (a) 2-D Gaussian; (b) Dual
distribution for (a); (c) Mixture of 2-D Gaussians; (d) Dual distribution for (c).

the model. The simulation parameters were set to N = 100, M = 3, C = 5, σN = σC = 0.2. The

input domain is X = [−1, 1], so the distributions were zeroed out outside this domain and renormal-

ized. Table 3.1 shows the parameters of the test distributions and also indicates the improvement

in out-of-sample performance when the learning algorithm is trained with samples coming from the

dual distribution, rather than from the test distribution. Figure 3.3 shows the dual distribution for

two-dimensional test distributions.

As it is clear from Table 3.1, the gains in using the dual distribution can be significant. For these

examples, N was chosen so that there were enough samples to estimate the three parameters in the

model (M = 3), and the target was more complex than the model.

The reader may be wondering how the sample size (N), the excess target complexity with respect

to the model (C −M) and its magnitude (σC), and the stochastic noise level (σN ) affect the dual

distribution. We address this question in the following section.

3.3 Variability of the dual distribution

The definition of the dual distribution is based on some specific aspects of the learning problem, such

as the training set size, the target complexity, and the model complexity. In this section, we explore
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the change in dual distribution due to these factors.

3.3.1 Asymptotic behavior

The first factor we analyze is the dependence of the dual distribution on N , the training set sample size.

In particular, consider the case where N →∞. Recall that the dual distribution is the distribution P

that minimizes the quantity Exi∼P [L(x1, . . . , xN )]. Using the closed-form expression for L(x1, . . . , xN )

in the squared loss and linear model with non-linear transformations case, we can separate the impact

of the stochastic and deterministic noise terms. The stochastic term, that is, the term proportional

to σ2
N from Equation 3.34, is O(1/N). Notice that:

Exi∼P
[
Φ−1
MM

]
=

1

N
Exi

( 1

N

N∑
i=1

φM (xi)φM (xi)
T

)−1


As N →∞,

1

N

N∑
i=1

φM (xi)φM (xi)
T P−→ Exi∼P [φM (xi)φM (xi)

T ] (3.38)

where
P−→ denotes convergence in probability. Substituting, the stochastic noise term simplifies to

1

N
Ex
[
σ2
NφM (x)TExi

[
φM (xi)φM (xi)

T
]−1

φM (x)
]
. (3.39)

Therefore, this term vanishes as N →∞.

The remaining term, on the other hand, is O(1), so this is the term that must be minimized.

Following a similar analysis as above, it follows that

lim
N→∞

Exi∼P [L(x1, . . . , xN )] = σ2
N + σ2

CEx
[
‖φC(x)T − φM (x)TΦ‖2

]
, (3.40)

where

Φ =
(
Exi

[
φM (xi)φM (xi)

T
])−1 Exi

[
φM (xi)φC(xi)

T
]
. (3.41)

Notice that if the collection of features {φi(x)}M+C
i=1 (the components of φ(x)) form an orthonormal

set under P , then by definition

Exi∼P [φi(x)φj(x)] =

 1 if i = j

0 if i 6= j
. (3.42)

Therefore, Exi
[
φM (xi)φM (xi)

T
]

= I, and Exi
[
φM (xi)φC(xi)

T
]

= 0, so that Φ = 0. This orthonor-

mality condition holds, for example, when P is a Gaussian distribution and the features are Hermite
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Figure 3.4: Example Dual Distributions in 1-Dimension when the training set size N changes, for
PS = N (0, 0.12), M = 3, C = 5, using a linear model with Fourier harmonics and a squared loss
function.

polynomials, or when P is a uniform distribution and the features are Fourier harmonics, among other

cases. In this case, the error would reduce to σ2
N +Cσ2

C , and hence there would be no dependence of

the error on the training distribution.

However, when the features are not orthonormal under P , the out-of-sample error still changes

with the training distribution in the limit as N →∞ . We can minimize Equation 3.40 with respect

to Φ. This optimization problem is strictly convex, as it is a quadratic program in the entries of Φ.

Finding the gradient and setting it to zero, we find that the necessary and sufficient condition for the

minimum is to satisfy the equation

ΦTEx∼PS [φM (x)] = Ex∼PS [φC(x)]. (3.43)

The solution to this equation will depend on the type of features chosen. For example, if the features

outside the model have mean zero, making the right hand side vanish, then the distribution P that

makes the features orthogonal will be the solution.

Figure 3.4 shows the effect of N on the dual distribution in a specific example. For this example

PS = N (0, 0.12), M = 3, C = 5, σN = σC = 0.2 and N varies. We used a linear model with Fourier

harmonics and a squared loss function. Notice that the variability of the dual distribution is small as

N changes.
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Figure 3.5: Example Dual Distributions in 1-Dimension when the deterministic noise changes, for
PS = N (0, 0.12), N = 100, M = 3, using a linear model with Fourier harmonics and a squared loss
function.

3.3.2 Effect of noise and complexity

We now look at the effect of target complexity. Notice that as the target complexity grows, the

deterministic noise term dominates L(x1, . . . , xN ). Hence, although the stochastic noise term does

not vanish as it is the case when N → ∞, it is still the deterministic noise term that drives the

minimization. Figure 3.5 shows the dual distributions for the same test distribution, as the target

complexity increases. As the figure shows, there is little variability with respect to the change in

target complexity. The variability actually disappears completely if Hermite polynomials are chosen

for the features. In this case, for all values of C, P ? = PS , and Figure 3.6 exemplifies this behavior.

If we now look at the case where only stochastic noise is present in the data, we notice that for

finite N , the error becomes

σ2
NEx∼PS

[
φM (x)TExi∼P

[
Φ−1
MM

]
φM (x)

]
. (3.44)

Again we have a quadratic form, but this time in terms of the matrix ΦMM rather than in term of

the matrix Φ. This objective function has a minimum of zero, which is achieved at E[ΦMM ] = 0.

However, ΦMM follows the particular form defined in Equation 3.36, which constrains the quadratic

program so it yields a different solution.

Figure 3.7 illustrates the effect of increasing the stochastic noise in a concrete example, where the

dual distribution is calculated for the same test distribution, and σN is increased while holding N ,

M , and C constant. Notice that for small values of σN , P ?R = PS .
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Figure 3.6: Example Dual Distributions in 1-Dimension when the deterministic noise changes, for
PS = N (0, 0.12), N = 100, M = 3, using a linear model with Hermite polynomial features and a
squared loss function.

As it can be seen from the above analysis, the dual distribution is fairly robust with respect to

the different components of the learning problem. Namely, the sample size, the noise, and the target

complexity. This property allows using the dual distribution in a practical setting where components

like the level of noise and target complexity might not be exactly known. The following subsection

describes how to find the dual distribution in a practical setting.

3.4 Using the dual distribution in a practical setting

The dual distribution can be applied in two different settings. The first is the population-based active

learning setting. This is a special case of active learning, in which contrary to supervised learning

where the training data set is fixed, it is possible to sample points according to a desired distribution.

This active learning setting is common in applications of experiment design, where the idea is precisely

to design the distribution from which points will be sampled. In this case, the design distribution

plays the role of the dual distribution, and is chosen by searching within a class of distributions [63].

The second setting where the dual distribution can be used, is in the supervised learning setting

case that we have been discussing. In this section, we will show how to use the dual distribution even

though the data has already been generated using a fixed distribution. We describe in detail how to

do this, and show results on benchmark datasets.

The supervised learning setting poses two challenges for the use of the dual distribution method.
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Figure 3.7: Example Dual Distributions in 1-Dimension when the stochastic noise changes, for PS =
N (0, 0.12), N = 100, M = 3, C = 5, using a linear model with Fourier harmonics and a squared loss
function.

First, the data set is fixed, so the expected values in Equation 3.33, which are taken with respect

to data set generations, cannot be evaluated. Hence, there is a problem in computing the dual

distribution itself. The second problem is how to use the dual distribution, since the data is already

fixed. It is now necessary to make the data set appear as if it came from a different distribution. Here

we describe how to approach both problems.

In order to get the dual distribution with only one data set sample, we make use of the fact that

in this setting, the dual distribution only needs to be computed at the positions xi, i = 1, . . . , N .

The reason for this is that we will use matching algorithms to make the sample look as if it was

distributed according to the dual distribution. As we explain shortly, matching algorithms only need

to compute weights for each of the samples. Hence, it is no longer necessary to compute the full

function, but simply its values at N locations. Also, we notice that the gradient at a point xn is given

by the difference in the expected loss with respect to N − 1 training points, having xn present in the

training set, and the expected loss with respect to N training points (Equation 3.31). So, given that

only one data set is available, E xi∼p
i=1,...,N

[L(x1, . . . , xN )] is approximated by the estimate of the loss

using a single sample (i.e. a single data set). On the other hand, Exi∼p
i 6=n

[L(x1, . . . , xN )] is estimated

by increasing the weight of point xn and finding the resulting loss. The difference of the two terms

will approximate the effect of this point on the loss, and hence determine an approximate value of the

gradient at this point.

Once the dual distribution is computed, we need to make the training dataset look as if it was

distributed according to this new distribution. To do this, we make use of the available methods from
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the covariate shift literature. These methods are described in Section 1.2. All these methods are

variants of importance weighting [64], and their goal is to estimate the weights w(x) = pS(x)/pR(x),

where pR and pS are the training and test densities, respectively. They do this, in order to match PR

to PS . Some of the methods, like KMM [38], KLIEP [67], and LSIF [42] usually perform better in the

covariate shift correction problem, as they try to estimate the ratio directly, rather than computing the

numerator and denominator separately. This can be done when there are unlabeled samples available,

coming from both the training and test distributions. In our case, the importance weights are given

by w(x) = p?R(x)/pR(x). Here, the numerator is found directly through functional gradient descent,

having no available samples distributed according to it. Hence, it is necessary to use methods that

actually compute the training density pR. This can be done either by finding a histogram of the

training set with the adequate resolution, or using other non-parametric methods like Kernel Density

Estimation (KDE) [56] and [53]. Chapter 5 proposes an alternative method that can be used to

match the training distribution to any other distribution, such as the dual. We call this algorithm

Soft Matching.

Therefore, the dual distribution can be used in the supervised learning setting, using the men-

tioned approximation for the functional gradient descent, and making use of importance weighting

to change the distribution of the training data. Table 3.2 shows the average out-of-sample error, in

both classification and regression tasks on 17 benchmark datasets [7] and [68], when the training set

is transformed so that it appears distributed as the dual distribution. The values are compared to the

case where no changes are made to the training set.

The results are averaged over 1,000 different splits of the data into training and test sets. The

training set is also split further, as a validation set is needed to compute the expected loss for the

functional gradient descent. The reported errors are on the test set which is not used at all during

training, nor during computation of the dual distribution. For all datasets 25% of the data was left

aside for testing, 25% was part of the validation set, and the remaining 50% was used for training. For

classification problems, weighted SVMs with Gaussian kernels were used, choosing the kernel width

as in [38], with the libsvm implementation [23]. Ridge regression was used for the remaining data

sets, with regularization parameter λ = 0.1.

As can be seen from the table, in all of the classification problems, the use of the dual distribution

led to a lower out-of-sample error (classification error percentage). Numbers in boldface indicate

that the improvement is statistically significant. For the regression problems, the improvements in

normalized mean-squared error (NMSE) were smaller but still present. Since the use of weights can

lead to an increase in variance or equivalently a sample size reduction [61], it is not surprising that

the improvement in performance is lower than in the examples where direct sampling from the dual
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Table 3.2: Generalization error in benchmark datasets under the supervised learning paradigm, with
and without the use of the dual distribution. 0/1 classification error is reported for the classification
tasks; normalized mean-squared error (NMSE) is shown for regression tasks. N is the size of the full
data set. All numbers are multiplied by 100.

Dataset N Dual No Dual

(Classif.) 0/1 Error

Breast C. 278 25.70± 0.14 27.53± 0.15
Breast WI 683 4.38± 0.04 4.45± 0.04
German Cred. 768 23.96± 0.09 25.08± 0.09
Haberman 306 25.56± 0.13 26.10± 0.13
Diabetes 768 24.09± 0.09 25.08± 0.09
Ionosphere 351 6.28± 0.07 6.41± 0.07

(Regression) NMSE

Abalone 4177 50.25± 0.10 50.75± 0.10
Ailerons 13750 18.63± 0.02 18.65± 0.02
Bank8FM 8192 6.70± 0.01 6.72± 0.01
Bank32NH 8192 46.84± 0.06 46.87± 0.06
Bos. Housing 606 36.74± 0.27 36.94± 0.27
CA Housing 20650 36.15± 0.04 36.19± 0.04
Cpu-act 8192 25.97± 0.08 26.39± 0.08
Cpu-small 8192 30.11± 0.09 30.47± 0.09
δ-Ailerons 9129 49.81± 0.10 49.81± 0.10
Kin8nm 8192 58.83± 0.05 58.83± 0.05
Puma8nh 8192 61.73± 0.05 61.73± 0.05

distribution is possible as in Table 3.1. However, the key takeaway is that there is empirical evidence

that shows that using the dual distribution does improve out-of-sample performance in a supervised

learning setting, in both classification and regression problems.

Since all datasets considered have a multidimensional test distribution, the dual distribution was

found for each of the projections of the test distribution, along its original coordinates, and the

distribution that led to the lowest error in the validation set was chosen in each run. As we discuss in

Section 3.5, finding the dual distribution for a multi-dimensional test distribution is computationally

more difficult, as it is necessary to compute numerically a function at every point in a high-dimensional

grid. Also, sampling from arbitrary distributions in high-dimensional spaces is less accurate when p

is saved in a grid, and this is required at every step of gradient descent.

Some important details regarding the implementation of the algorithm that produces the full dual

distribution, as well as the implementation of the algorithm that focuses on the training points, are

presented in the following section.

3.5 Computational and implementation details

The previous sections describe how to obtain the dual distribution in two cases: the case where it

is possible to compute the expected values in Equation 3.31, so that the full density of the dual
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Algorithm 1 Exact dual distribution

Input: PS , L(·), learning rate η
Discretize domain X → XD
Initialize p(xn) for xn ∈ XD
repeat

for all xn ∈ XD do

∇(L(p(xn)) :=

(
Exi∼P
i6=n

[L(x1, . . . , xN )]− E xi∼P
i=1,...,xN

[L(x1, . . . , xN )]

)
p(xn)

p(xn) := p(xn)− η∇ψ(L(p(xn))
if p(xn) < 0 then p(xn) = 0

end for
Normalize p

until (∇(L(p)) = 0)

distribution can be found, and the practical supervised learning case, where an approximation of the

dual distribution is found at the training points. Some important implementation details of both

algorithms are described in this section.

Algorithm 1 describes the procedure to obtain the dual distribution in the exact case, that is,

when we are allowed to sample data from a desired distribution. This algorithm is the one used to

obtain the dual distributions in the examples of Section 3.2.2.

We first discuss a significant speed up that can be applied in this case. In order to obtain the full

function numerically, it is necessary to discretize the domain, and obtain the distribution at the desired

resolution. Assume the chosen resolution is δ, then the number of times that Exi∼P,i6=n[L(x1, . . . , xN )]

must be computed is proportional to (1/δ)d, at each step of gradient descent, in d dimensions. This

value is computed via MC simulation, and hence it can be a very computationally expensive operation.

When we use a squared loss function and a linear model with non-linear transformations, there

is a closed form solution for the loss, given in Equation 3.34. However, it is still necessary to find

Exi [Φ
−1
MM ]. This matrix must be found through MC simulation for each value of xn in the grid, while

randomizing the remaining N−1 points generated according to P . However, there can be a significant

saving in computation if we apply the Sherman-Morrison identity [60]:

Φ−1
MM = Φ−1

MM,n −
Φ−1
MM,nφM (xn)φM (xn)TΦ−1

MM,n

1 + φM (xn)TΦ−1
MM,nφM (xn)

, (3.45)

where

ΦMM,n =

N∑
i=1
i 6=n

φM (xi)φM (xi)
T . (3.46)

Hence, Exi [Φ
−1
MM,n] can be computed once via MC simulation, and the value of Exi [Φ

−1
MM ] can be

approximated using the identity, and substituting for Φ−1
MM,n by its expected value. This allows us to
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Algorithm 2 Approximate dual distribution for supervised learning

Input: PS , pR, R = {xi}Ni=1, L(·), learning rate η
Initialize p(xi) for xi ∈ R
repeat
w := p./pR (element-wise division)
for all xi ∈ R do
w′ := w
E xi∼P
i=1,...,xN

[L(x1, . . . , xN )] := L(w;x1, . . . , xN )

w′(xi) := w(xi) + 1
Normalize w′ so that

∑
i w
′
i = N

Exi∼P
i 6=n

[L(x1, . . . , xN )] := L(w′;x1, . . . , xN )

∇(L(p(xn)) :=

(
Exi∼P
i6=n

[L(x1, . . . , xN )]− E xi∼P
i=1,...,xN

[L(x1, . . . , xN )]

)
p(xn)

p(xn) := p(xn)− η∇ψ(L(p(xn))
if p(xn) < 0 then p(xn) = 0

end for
Normalize p

until (∇(L(p)) = 0)

compute, with a single MC simulation, the value of Exi∼P,i6=n[L(x1, . . . , xN )] at every desired xn.

Another computational consideration that should be taken into account regards the constraint

satisfaction at each step. Although the update at each step, given by Equation 3.33, guarantees that

p integrates to 1 if the initial p is a proper pdf, numerically there might be small errors that can make

the resulting density add up to a value slightly different from 1. Hence, in the implementation we

normalize p at each step to avoid instability issues.

We also noticed that carrying out the minimization in the p space rather than in the ψ space

was much quicker and usually led to solutions that yield the lowest out-of-sample error. The only

drawback is that the positivity constraint must be also forced at each step. We did this by using the

heuristic of setting to zero at each step any values that become negative.

Finally, for all experiments, p was initialized to be a uniform distribution in the finite domain.

Another possible initialization point is p = pS . If an alternative initialization is used, p must be a

smooth function, and p(x) > 0 at every x. Otherwise, since the updates are proportional to p(x), the

points initialized at zero will not change throughout the descent.

Algorithm 2 describes the procedure to obtain an approximate dual distribution, in the supervised

learning setting. The same considerations regarding the constraints of the minimization problem are

taken into account.
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3.6 Differences with active learning

The concept of a dual distribution in supervised learning is somewhat related to similar ideas in

active learning and experimental design. Especially, the methods of ‘batch’ active learning, where a

‘design’ distribution is found in order to minimize the error, seems to be solving a similar problem to

the dual distribution. However, the fundamental difference is that active learning finds such optimal

distribution given a particular target function. Hence, most methods rely on the information given

by the target function in order to find a better training distribution. A common example is when

distributions give more weight to points around the boundaries of the target function. Yet, the

problem of finding the dual distribution is independent of the specific target function. The Monte Carlo

simulations presented in Chapter 2, as well as the bounds shown, average over different realizations

of target functions.

For example, [43] describes an algorithm to find an appropriate ‘design’ distribution that will lower

the out-of-sample error. In the algorithm proposed, a first parameter is estimated with s data points,

and with this parameter the optimal design distribution is found. Having a new design distribution,

T − s points are sampled from it and a final parameter is then estimated. Notice, however, that the

optimal design distribution is dependent on the target function. In the results we present, if a dual

distribution is found given a particular test distribution, such distribution is optimal independently

of the specific target function.

Other papers in the active learning community that focus on linear regression, like [63], seem

closely related to our work. In the mentioned paper, the results apply to linear regression only, and

consider the out-of-sample error conditioned on a given training set. The nice property of the out-of-

sample error in linear regression is that it is independent of the target function. This is the reason

why even in the active learning setting, the dependence of the target function disappears in this case

and the mathematical analysis looks similar to the one we presented in Section 2.2. Yet, even though

our analysis in Chapter 2 is done with linear regression and hence uses similar mathematical formulas,

our approach is based on averaging over realizations of training sets and of targets functions in the

supervised learning scenario, rather than in the cases addressed in the mentioned papers. Furthermore,

the problem of finding the dual distribution and the results presented can be applied to other learning

algorithms besides linear regression, both for classification and regression problems in the supervised

learning setting as shown in the previous section.

Another difference that may stand out to the reader is the way the ‘design’ distribution is used once

it is found in the active learning papers, as opposed to how we propose to use the dual distribution

here. In the active learning scenario, points are sampled from the design distribution, but in order to

avoid obtaining a biased estimator, as shown in [61], the loss function is weighted for these points with
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w(x) = q(x)/p(x), following their notation, where q(x) is the test distribution (PS(x)) and p(x) is the

‘design’ distribution found. Notice that in the results presented in the simulations of Section 2.1 and

in Tables 3.1 and 3.2, we do not re-weight the points but instead explicitly allow a mismatch between

PS and PR. Furthermore, in the supervised learning setting, where the training set is fixed and we

are not allowed to sample new points, we propose that matching algorithms, as the ones described

in Section 1.2, be used to match the given training set to the dual distribution. In this case, the

objective is to have weights w(x) = p?R(x)/pS(x), so that the training set appears distributed as the

dual distribution. These weights are actually inverse to those used in the active learning algorithms

described. Although we are aware that the estimator computed in the linear regression setting will be

biased when we use the dual distribution, we are concerned with minimizing the out-of-sample error,

which takes into account both bias and variance, and hence we may obtain a biased estimator but

improve the mean-squared error performance as the results show in Tables 3.1 and 3.2.

Furthermore, the results shown in [61] hold only in the asymptotic case, and since we are deal-

ing with the supervised learning scenario where only a finite training sample is available, the same

assumptions are not valid. Thus, it is no longer optimal to use the mentioned weighting mechanism

when N is not sufficiently large, as also shown in [61]. In the active learning setting, it is desirable

that as more points are sampled, the proposed algorithms have performance guarantees. Hence, the

algorithms are designed to satisfy conditions such as consistency of the estimator, unbiasedness, etc.,

in the asymptotic case, which explains why the active learning algorithms use the above-mentioned

weighting mechanism. In our setting, minimizing the out-of-sample performance with a fixed-size

training set is our main objective, which is why the two approaches differ. As it is clear, the dual dis-

tribution serves a different purpose in the supervised learning setting than that of the active learning

algorithms.

Having answered the first fundamental question posed in Chapter 1, is it better to have PR = PS ,

and having concluded that in fact P ∗R is the optimal training distribution to generate the dataset for

training the learning algorithm, we move on to answer the second question. Is it advantageous to use

weights to make the training set look like P ?R? We answer this question in the following chapter.


