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Abstract

Toppling analysis of a precariously balanced rock (PBR) can provide insights into the na-

ture of ground motion that has not occurred at that location in the past and, by extension,

realistic constraints on peak ground motions for use in engineering design. Earlier ap-

proaches have targeted simplistic 2-D models of the rock or modeled the rock-pedestal

contact using spring-damper assemblies that require re-calibration for each rock. These

analyses also assume that the rock does not slide on the pedestal. Here, a method to model

PBRs in three dimensions is presented. The 3-D model is created from a point cloud of

the rock, the pedestal, and their interface, obtained using Terrestrial Laser Scanning (TLS).

The dynamic response of the model under earthquake excitation is simulated using a rigid

body dynamics algorithm. The veracity of this approach is demonstrated by comparisons

against data from shake table experiments. Fragility maps for toppling probability of the

Echo Cliff PBR and the Pacifico PBR as a function of various ground motion parameters,

rock-pedestal interface friction coefficient, and excitation direction are presented. The seis-

mic hazard at these PBR locations is estimated using these maps. Additionally, these maps

are used to assess whether the synthetic ground motions at these locations resulting from

scenario earthquakes on the San Andreas Fault are realistic (toppling would indicate that

the ground motions are unrealistically high).
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Chapter 1

Introduction

1.1 Motivation

Critical structures such as nuclear power plants must be protected against earthquake dam-

age by designing them to withstand intense shaking from very low-probability earthquakes

(0.0001 per year or a 10000 yr recurrence interval [3, 23]) on regional faults. At a given

location, this is currently taken from seismic hazard maps that are developed using proba-

bilistic seismic hazard analysis with past earthquake history as one of the key inputs [104].

Unfortunately, ground motion records of past earthquakes exist only for the past century,

and historical oral or written records extend only to the last millennium. As a consequence,

characterizing fault behavior and potential ground motions over such long return periods as

10000 years can only be performed based on paleoseismic data with all its limitations and

uncertainties [81]. These uncertainties may result in significant under- or over-prediction of

seismic hazard in a region. For example, the ground acceleration at the North Anna nuclear

power plant exceeded its design acceleration during the 2011 Mineral, Virginia earthquake,

resulting in the shutdown of the plant [42].

To reduce the uncertainty, hazard derived from paleoseismic observations must be sup-

plemented or constrained by other indirect methods. Brune [25] proposed a method to

achieve this using sensitive geological structures like precariously balanced rocks (PBRs)

which have existed in their present precarious conditions for thousands of years. Precari-

ously balanced rocks (PBRs) like the ones shown in Fig. 1.1 are of particular interest. The

age of most of these PBRs have been estimated to be at least 12,000 years [15]. The pres-
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ence of a PBR in a region is evidence for the fact that earthquake shaking strong enough to

overturn it has not occurred there during the rock’s existence in that precarious condition.

Therefore, the critical toppling intensity of a PBR in conjunction with its age may provide

an independent constraint on historic peak ground motion, and, by extension, an estimate

of future peak ground shaking in that region.

(a) (b)

Figure 1.1: (a) Benton rock in Southern California [25]; and (b) Omak rock in Washington.

Fig. 1.2 shows the PGA levels from the 2014 national seismic hazard maps (NSHM)

for Southern California corresponding to earthquakes that recur at least once every 2475

years. The black diamonds in this figure are the locations of some of the PBRs present

within 30 km of the San Andreas Fault (red contour regions with high PGA). Under the

assumption that these rocks have been present for 12, 000 years, they should have experi-

enced the PGA levels given by the NSHM at least four times during their lifetime. The

high PGA levels at the PBR locations from the NSHM do not agree with Brune’s prelimi-

nary quasi-static analysis [25], according to which most of these rocks would overturn for

PGAs as low as 0.3 g. This inconsistency of the seismic hazard maps with the existence

of the PBRs near major fault zones motivates the current research.

The aim of this research is to accurately estimate the earthquake ground motion required

to overturn the PBRs and to use it as an independent test of the probabilistic seismic hazard

maps and synthetic ground motions simulations. The results from this analysis will also
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Figure 1.2: 2014 National Seismic Hazard map for 2% probability of exceedance in 50 years for
PGA. The black diamonds show location of PBRs within 30 km of the San Andreas Fault.

assist in locating sensitive buildings like schools, hospitals, and power plants in areas of

low seismic risk and also in adequately and economically designing the buildings located

at high seismic risk locations, thereby reducing loss of life and property.

1.2 Precariously balanced rocks

Precariously balanced rocks are those rocks which are more likely to be overturned dur-

ing earthquakes. Using the minimum constant ground horizontal acceleration, hence-

forth referred to as the quasi-static toppling acceleration asg, required to overturn them,

Brune [25] has classified them as precarious (0.1 g ≤ asg ≤ 0.3 g) or semi-precarious

(0.3 g < asg ≤ 0.5 g). asg may be estimated by in-situ tilt tests in which the force required

at the center of mass of the rock to tilt it until it just overturns is measured [9] . A rough

estimate of asg may also be obtained from images of the rock [90].

Brune and his family conducted road surveys near major fault zones and cataloged

hundreds of PBRs in Southern California and Nevada. Apart from the set of PBRs near the

San Andreas Fault shown in Fig. 1.2, they found a band of PBRs located between the San

Jacinto and Elsinore fault zones in Southern California [26] and near Yucca mountain in

3



(a) (b) (c)

Figure 1.3: Formation of type II PBRs. (a) Water infiltrates through the fractured rock and weathers
it into corestones as in (b) which are then exhumed due to erosion to obtain the PBRs in (c) [15].

Nevada [89], which was one of the nuclear waste repositories. The presence of these rocks

near major fault zones amplifies the importance of this methodology.

1.2.1 Formation and age

There are two predominant geological processes that result in PBRs [91]. Type I rocks,

commonly referred to as hoodoos, are formed when a softer rock lies beneath a relatively

weather resistant rock. The difference in their weathering rates results in a bulbous rock

sitting on a narrow base. Type II PBRs are formed due to water trickling into a fractured,

buried rock mass. The regions of the rock near the fractures are weathered due to the water

flow. The unweathered parts of the rock tend to form stacks of boulders as the rock mass is

exhumed and the weathered materials are washed away due to erosion [72]. This process

is illustrated in Fig. 1.3. Both types of PBRs are present on bedrock, and therefore ground

motion amplification and soil-structure interaction do not significantly alter the ground

motions experienced by the PBR.

Due to the differences in the formation processes, type I rocks are mostly present in

sedimentary environments as opposed to type II rocks which are located in igneous and

volcanic environments. In this dissertation, we will be analyzing type II rocks as these types

of rocks are more likely to maintain their precarious configuration for longer periods of time

than the type I rocks due to their slow weathering rate after surface exposure [18,103]. The

formation process of type II PBRs also guarantees that the PBR and its pedestal are disjoint

structures which makes computation of the critical toppling intensity easier.

Bell et al. [15] used varnish microlamination (VML) method to study PBRs in Southern
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California. They found that most of the PBRs have been exposed for more than 10, 500

radiocarbon years, i.e., approximately 12, 000 years, without significant alteration. The

VML method uses the rock varnish to estimate the age of the rock. The rock varnish is

a dark coating on the rock which increases at a rate of few micrometers per millennium.

The chemical composition of this varnish is distinctly different from the rock underneath

and is made up of ingredients delivered from the atmosphere by precipitation, aerosols,

dust, and dew [40]. The rock varnish is formed and preserved well in semiarid deserts

like Southern California and Nevada. Therefore, an accurate estimate of the age of the

rock and information about any non-uniform erosion of the rock surface can be obtained

by measuring the thickness of the varnish layer and examining its chemical composition

at different points on the rock and the pedestal. More details about this method and its

accuracy can be found in [73].

1.2.2 Friction coefficient

Friction between rocks is of interest to three different fields: civil engineering, mining

engineering, and geophysics. In civil engineering applications like analyzing the stability

of a dam or a road cut, the normal stresses on the rocks are usually less than 5 MPa. Mining

engineers are interested in designing mine opening at depths as great as 3 km and the rocks

at this depth will experience normal stresses around 100MPa. Geophysicists are concerned

with earthquakes that occur as deep as 700 km below the earth’s surface. Though it is

difficult to realize the stresses corresponding to this depth in an experimental setup, the

experiments in which the normal stresses on the rock are above 1.5GPa are considered

reasonably accurate for geophysics applications.

In a typical friction experiment, a rectangular block is free to slide on a rigid flat surface

and the horizontal force required to move the block is applied through a spring. The force

vs displacement curve for the block obtained from the experiment is then used to calculate

the coefficient of friction, i.e., the ratio of shear to normal stress. Byerlee [27] analyzed the

experimental data obtained from various sources for different rock materials by dividing

them into the three regimes described above based on their normal stresses. Byerlee found
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that the coefficient of friction is independent of the rock type/material in all regimes. For

intermediate normal stresses, all the data points suggest that the friction coefficient is 0.85.

For high and low levels of normal stresses, the friction coefficient is between 0.6 − 0.85

and 0.6− 1.0, respectively.

In the case of a PBR balanced on a pedestal, the normal stresses are similar to that en-

countered in a civil engineering application. Therefore, the coefficient of friction between

the rock and the pedestal is between 0.6 and 1.0.

1.2.3 Past analysis

A good starting point for any discussion about the analysis of PBRs is the analysis of a

simple 2-D rectangular block. The idea of inferring ground motion characteristics from

overturned objects was first attempted by Mallet [80]. Using Dr. C. D. West’s formula,

Mallet estimated the minimum peak ground acceleration (PGA) required to overturn a

rectangular block as a product of the acceleration due to gravity with the aspect ratio of the

block, i.e., ratio of width to height. This estimate was later tested experimentally through

the use of 39 rectangular blocks of varying dimensions overturned on a harmonically forced

table [82]. The minimum overturning PGA from experiments did not match with those

calculated by Mallet in most cases.

Kirkpatrick [66] demonstrated experimentally that the PGA estimated by Mallet is the

minimum acceleration required to initiate rocking as opposed to overturn the block. In ad-

dition, Kirkpatrick analyzed the linearized equation of motion for the rocking response of

the block under harmonic excitation and found that the block will overturn at the PGA esti-

mated by Mallet under excitations with long time period. He also verified that his analytical

solution matches well with experimental results. The linearized response of the rectangular

block under harmonic excitation was re-derived by Ikegami and Kishinouye [56, 57] and

they obtained an overturning criteria based on work arguments. They also applied these

results to explain the overturning of tombstones during the 1946 Nankai and 1949 Imaichi

earthquakes. These authors demonstrate the scale effect of how intense ground motions

may topple slender but smaller objects, yet not be able to topple larger objects with the
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same slenderness.

All the analytical formulation described earlier assume perfectly inelastic impacts be-

tween the block and the ground. However, Kimura and Iida [64,65] were the first to account

for dynamic energy balance. This analysis revealed that momentum is not conserved be-

fore and after each basal impact in the earlier formulations. They enforced conservation of

momentum by reducing angular velocity immediately after impact by a ratio r which de-

pends only on the block geometrical parameters. Housner [52] independently derived the

expression for the velocity reduction r applied at impact 30 years after the work by Kimura

and Iida.

Most of the analysis on the toppling intensity of rectangular blocks and rocks are based

on Housner’s work. He derived an approximate overturning criteria when the rectangular

block is subjected to simple excitations like constant acceleration, sinusoidal pulse, and

random excitations. The results obtained by Housner [52] suggest that the block width

required for stability does not scale linearly with the block height, which seconds the scale

effect demonstrated by Ikegami and Kishinouye [56, 57]. Housner also used these results

to analyze the damage resulting from the 1960 Chilean earthquake.

This seemingly simple problem of a 2-D rigid rectangular block sitting on a horizon-

tally shaken rigid ground has since then attracted the attention of many researchers. The

response of a rectangular block under half-sine pulse and full sine pulse excitations were

further analyzed by Shi et al. [96], Anooshehpoor et al. [10], and Zhang and Makris [115],

and the linear dependence of the critical overturning PGA on the frequency of excitation

was noted. Sensitivity of the equation of motion to initial conditions and system param-

eters were analyzed numerically and results indicated that very small variations in exci-

tation frequency, phase, or amplitude of excitation can result in exponentially diverging

responses [11, 12, 24, 48–50, 70, 71, 87, 99, 102, 110–112, 114]. Large velocity reductions

applied at impact were shown to reduce to the sensitivity of the numerical block to small

variations in initial conditions [70, 112].

The equation of motion for the rocking response of the rectangular block changes de-

pending on the point about which the block rocks. This discontinuous nature of the equation

of motion, the external velocity reduction applied at impact, and the nonlinear terms in the

7



equation of motion make it difficult to obtain an analytical or closed form solution for the

critical overturning PGA when the block is subject to earthquake ground motions. In order

to generalize observations, several researchers [7,12,111] numerically analyzed ensembles

of rectangular blocks subjected to ensembles of earthquake ground motions or synthetic

earthquake-like waveforms. These researchers found that the overturning probability of

the block increased with increase in excitation amplitude and block slenderness and de-

crease in block width. They also found that vertical ground motion and small variations

in the velocity reduction r applied at impact did not systematically affect the overturning

probability in their numerical simulations. Kaneko and Hayashi [63] used ensembles of

synthetic waveforms matching a target spectrum and found that the overturning probability

can be described as a function of PGA and peak ground velocity (PGV ).

All the above analysis is focused mainly on the rocking response of the rectangular

block. Mochizuki and Kobayashi [83] explored the other possible modes of response,

i.e., free-flight, sliding, and coupled sliding with rocking. Ishiyama [58, 59] derived the

equations of motion for these modes and the conditions for transition from one mode to

another. Shenton [95] obtained the the relationship between horizontal ground acceleration

and coefficient of friction required to initiate response of the rectangular block under each

of these modes. Many researchers have analyzed the sliding response of the rectangular

block subjected to earthquake ground motions both analytically and numerically [41, 94,

100, 105].

The above analyses on a simple 2-D rectangular block has helped in understanding the

complex physics behind the problem. There has been limited research on the response of

the 3-D rectangular block to earthquake excitation [30,31]. Some researchers have tried to

apply these results to the analysis of PBRs. Coombs et al. [32] was probably the first to

investigate the stability of a balanced rock. They estimated the minimum PGA required to

overturn the Omak rock [Fig. 1.1(b)] using the same expression as Mallet [80]. They used

this acceleration to place constraints on the ground motions experienced at that location

during the 1872 Pacific Northwest earthquake. They also inferred a possible epicentral

location for the earthquake from this analysis. Weichert [108] updated this analysis through

numerical simulations of an equivalent 2-D rectangular block model of the rock.
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More recently Purvance et al. [88, 91] applied the rigid body rocking dynamics frame-

work to the PBR problem. Following the Yim et al. [111] approach, they numerically

simulated the rocking and overturning response of symmetric and asymmetric blocks un-

der synthetically generated random vibration excitations. They used the results from this

analysis to develop an empirical expression for estimating the overturning probability of a

block as a function of its geometric parameters and various ground motion intensity mea-

sures such as peak ground acceleration (PGA), the ratio of peak ground velocity (PGV) to

PGA (PGV/PGA), spectral acceleration at 1 s (S1s
a ) and 2 s (S2s

a ). Their choice of ground

motion intensity measures was based on the strong correlation of PGV/PGA with duration

of predominant acceleration pulse [88] and the correlation of S1s
a and S2s

a with PGV [85].

They compared the overturning fragility obtained from this empirical relation with results

of shake table experiments on blocks and rocks of various sizes and shapes subjected to

earthquake ground motion. The empirical relation was able to predict the PGA required to

overturn blocks quite well but over-predicted the PGA required to overturn rocks.

The empirical equation, developed for 2-D rectangular blocks with two-point contact,

does not account for the 3-D form of the rock or the curved form of basal contact (with

multiple contact points) and predicts greater stability for the rock than what is observed in

the experiments. To correct for the multiple contact points, Purvance et al. [88] conducted

tilt tests on the rocks and adjusted the location of the two sharp contact points in the 2-D

block model based on the ratio of the quasi-static toppling acceleration asg to the acceler-

ation due to gravity. They validated this methodology by comparing the results from the

empirical relation with experiments on three rocks.

These results are a great starting point to understanding the dynamics of PBRs, but the

idealizations and assumptions inherent in these analyses could have a significant impact

on their critical toppling intensity. The empirical expression derived by Purvance et al.

[91] assumes the response of the object to be restricted to the plane of applied excitation.

While this is true for a rectangular block under uni-axial ground excitation, for most rocks

this may not be true owing to their 3-D geometry and complex rock-pedestal interface.

Moreover, non-destructive tilt tests need to be conducted to obtain realistic results from the

empirical relation. But the inaccessible locations of most PBRs make it difficult to perform
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tilt tests.

In order to overcome these issues, Purvance et al. [89] developed RIGID to analyze the

response of 3-D PBR models to earthquake ground excitation using the discrete element

method. They modeled the rock and pedestal as two separate rigid bodies and used the

penalty stiffness method, which is analogous to a spring-damper assembly, to model the

contact between the rock and the pedestal. Though they validated RIGID against shake

table experiments on rectangular blocks, this methodology is not validated against exper-

iments conducted on real rocks. The main limitation of this algorithm is that the stiffness

and damping values of the spring-dashpot assembly needs to be calibrated carefully for

each rock in order to obtain realistic (low-interpenetration) simulations while keeping com-

putational costs manageable. Additionally, this algorithm is not capable of modeling the

sliding and the coupled sliding-rocking response of the PBR. It is for these reasons that this

algorithm has not been used lately for the analysis of PBRs and the current practice relies

entirely on the empirical expression developed by Purvance et al. [88].

In this dissertation, we present an alternate method to analyze the response of 3-D

PBR models to earthquake ground excitation under the assumption that the rock and the

pedestal behave like rigid bodies. In the next section, the past work on rigid body dynamics,

including the discrete element method adopted in RIGID, are discussed.

1.3 Rigid body dynamics

A rigid body is one which can only rotate and translate in space and cannot deform. All

the information about the translational and rotational state of a rigid body at any instant in

time can be condensed into four state variables. This is a major advantage of a rigid body

dynamics formulation over a finite element formulation where the displacements of many

nodes on the object need to be calculated and stored to obtain complete information about

the object at any instant in time.

The time evolution of the state variables of a rigid body follow Newton’s laws of

physics. The main challenge in rigid body dynamics comes in modeling the interaction

of one rigid body with another. This interaction is modeled using contact forces/impulses.
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There two ways in which the contact can be modeled: penalty stiffness method (soft con-

tact) and constraint based method (hard contact).

Discrete element methods are built on penalty stiffness method. Cundall [35] and Hart

et al. [45] developed a three-dimensional distinct element methodology (which is a subset

of discrete element method) and applied it to various rock mechanics and geomechanics ap-

plications. In this method, slight overlap of the rigid bodies are allowed. The contact forces

are proportional to the overlapping area/volume between the two rigid bodies. Therefore,

this method is analogous to using a spring-damper assembly to model the contact. Once

the contact forces are estimated, they are applied at one “contact point”. Cundall [35] ap-

plied the contact forces at the midpoint of the line joining the centroids of the rigid bodies

in contact. The algorithms RIGID developed by Purvance et al. [89] and 3DEC [44] are

based Cundall’s algorithm with some variations in contact detection techniques.

To estimate the contact forces accurately, the contact stiffness and damping values must

be chosen carefully. A low contact stiffness would result in high overlap between the

rock and the pedestal yielding unrealistic results. On the other hand, for a high contact

stiffness the simulation time step has to be very small to overcome numerical instabilities,

which results in high computational cost. In the absence of experimental data regarding

the contact stiffness between a PBR and its pedestal, Purvance et al. [89] calibrated the

contact stiffness parameters such that the numerical simulation of rectangular blocks using

RIGID match the shake table experimental results. The same parameters are then used for

simulating PBRs without validating the results with shake table experiments on rocks. The

uncertainties in the contact stiffness parameters and the high computational cost make this

method unsuitable for analyzing 3-D PBR models.

On the other hand, overlap between rigid bodies is not tolerated in constraint based

methods (hard contact). Therefore, contact forces/impulses are calculated to satisfy these

non-penetration constraints. There are two ways to achieve this : (i) using impulses alone

and (ii) using impulses as well as contact forces. In the first approach [16,17,109], impulses

are applied at points where two rigid bodies collide. These impulses are calculated such

that the rigid bodies are either touching each other (relative normal velocity is zero) or

moving away from each other (relative normal velocity is positive) at the contact points
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after the collision. In between collisions, each rigid body is assumed to be under free flight,

i.e., the presence of other rigid bodies are not acknowledged. This method is useful for the

dynamic simulation of cluttered environments where rigid bodies collide often. However,

it is not efficient for simulating scenarios with sustained contact like books stacked on a

book-shelf.

In the second approach, impulses are applied to satisfy velocity constraints (similar to

the first approach), and if the contact persists, then contact forces are applied to prevent

rigid bodies from accelerating towards each other at the contact points. This approach

addresses the issue of rigid bodies in sustained contact but is not efficient in simulating large

number of rigid bodies colliding with each other due to the additional expense of computing

contact forces. Lötstedt [75] was the first to handle contacts in this way. Baraff [13]

presented a fast algorithm based on Cottle and Dantzig’s algorithm [33] to compute the

contact forces and impulses efficiently.

Each of the methods described above are crafted for problems of a specific type. The

focus of this thesis is on simulating response of precariously balanced rocks to ground

excitation. Here, the PBR is one rigid body and the pedestal is another rigid body. Initially,

the PBR is sitting on the pedestal and the contact between them is maintained for varying

periods of time depending on the acceleration imparted to the pedestal. Therefore, the

constraint based method using both impulses as well as contact forces is the best way to

approach this problem. The problem set up is similar to the one formulated by Baraff [13].

1.4 Outline

The main focus of this dissertation is to provide an independent constraint on historic peak

ground motion experienced at a region using precariously balanced rocks. From past liter-

ature on analysis of rectangular blocks and PBRs, it can be seen that constraint based rigid

body dynamics algorithm using both impulses and contact forces is the best way to analyze

the response of a 3-D PBR model to earthquake excitation.

In Chapter 2, limitations of Baraff’s algorithm [13] are discussed following which de-

tails of the rigid body dynamics algorithm developed for this special problem are presented.
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The algorithm is validated against analytical results for simple geometries like rectangular

blocks.

In Chapter 3, the methodology to create and analyze 3-D PBR models subjected to

earthquake excitation is presented. The accuracy of the rigid body dynamics algorithm in

analyzing complex 3-D PBR models is verified by comparing the results against shake table

experiments on a rock. Two PBR models are then created and analyzed under earthquake

ground motion for different coefficients of friction and direction of earthquake excitation.

The fragility maps obtained from this analysis are then used to perform simple checks

on USGS national seismic hazard maps and synthetic ground motion simulations at the

location of PBRs.

In Chapter 4, a different application of the rigid body dynamics algorithm is presented

wherein quantitative estimates on the ground motion experienced at a region during an

earthquake are obtained from qualitative information about the sliding/rocking response of

man-made objects like battery-rack, train, and nuclear storage canister.

Chapter 5 concludes the dissertation with comments on possible lines of future research.
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Chapter 2

Rigid body dynamics algorithm

In the previous chapter, we concluded that constraint based rigid body dynamics algorithm

using both impulses and contact forces is the method that is best suited to analyze the

response of 3-D PBR (precariously balanced rock) models to earthquake excitation. In this

method, each rigid body is considered as a separate entity and the interaction between the

rigid bodies are modeled using impulses and contact forces. These impulses and contact

forces are calculated based on velocity and acceleration constraints. Lötstedt [75] was the

first to handle contacts in this way. Baraff [13] presented a fast algorithm based on Cottle

and Dantzig’s algorithm [33] to compute the contact forces and impulses efficiently.

Contact forces play an important role in determining the total acceleration of a rigid

body at any instant in time. In Baraff’s algorithm, the problem of computing contact forces

(normal and frictional contact forces) is posed as an optimization problem. Due to the

ill-constrained nature of the optimization problem, it can result in infinite solutions for the

contact forces. In certain cases (e.g., friction-less systems), all the contact force solutions

lead to the same total acceleration of the rigid body. However, in the presence of static

friction forces satisfying Coulomb friction law, all the solutions may not result in the same

total acceleration.

For example, let us consider the case where a rigid square cuboid of mass m = 100 kg

with half width w = 0.1 m, half height h = 0.6 m, and half depth d = 0.1 m is resting on

a rigid horizontal ground [Fig. 2.1(a)]. Say the cuboid comes in contact with the ground at

only the four corners (O1, O2, O3, and O4). If gravity g is the only external acceleration

on the cuboid, the normal contact forces at all corners can be equal (i.e., mg/4) or the
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Figure 2.1: (a) Rigid cuboid sitting on rigid ground accelerating with horizontal acceleration ü; (b)
Expected horizontal trajectory of the center of mass of the block and two trajectories obtained from
implementation of Baraff’s algorithm. Trajectory-1, which matches with the expected trajectory, is
obtained when contact force calculation starts with point O1, and trajectory-2 is obtained when the
contact force calculation starts with point O2.

forces at opposite corners can be equal, (i.e., O1 = O3, O2 = O4) such that O1 and O2 are

positive real numbers satisfying O1 + O2 = mg/2. So, there are infinite combinations of

forces that result in zero total translational and rotational acceleration of the cuboid, i.e., the

cuboid will remain at rest. In addition to gravity, if the ground constantly accelerates along

the diagonal direction opposite to O1 with a magnitude ü, which is greater than the quasi-

static toppling acceleration of the cuboid (i.e., the minimum constant ground acceleration

required for the cuboid to overturn), then it is expected that the block will rotate about

the corner O1 and overturn. For a static friction coefficient µ = 1.2, which is sufficiently

high enough to prevent sliding between the cuboid and the ground, Baraff’s algorithm

results in two possible dynamic paths for the cuboid [Fig. 2.1(b)]. For clarity, only the plan

(x-y plane) projection of the displacement of the center of mass relative to the ground is

presented. The line with asterisk markers is the expected trajectory which is the x = y line

due to the symmetry in the geometry of the cuboid and the applied ground acceleration.

Baraff’s algorithm is an iterative procedure in which the forces at the contact points

are handled sequentially. Say the algorithm starts at corner O1, the normal contact force

for point O1 is calculated such that the normal contact constraints are satisfied for this

contact point. Then, the friction force in X-direction is calculated followed by the friction
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force in Y-direction such that the friction constraints are satisfied. During the calculation

of the friction forces, the normal force is altered so that the normal contact constraints

continue to hold. This is repeated for the next contact point O2, making sure the normal

and frictional constraints for point O1 are still satisfied. The algorithm terminates when

the normal and friction constraints are satisfied at all contact points. This can happen

after calculating forces for just corner O1 or corners O1 and O2 etc. Due to the sequential

treatment of the contact points, this algorithm leads to different solutions based on the order

in which the contact points are considered or the order in which the friction forces are

calculated (X direction followed by Y direction). For the above example, if the algorithm

starts with contact point O1, then it results in trajectory-1, but if O2 is considered first, then

it leads to trajectory-2 [Fig. 2.1(b)]. Both solutions are mathematically correct solutions

to the optimization problem. However, the deviation of trajectory-2 from the expected

trajectory, caused by artificial twisting of the block about the vertical axis, violates the

inherent symmetry of the problem.

Baraff’s algorithm is aimed at obtaining fast simulations for computer graphics and

robotics applications for which this iterative algorithm works well. It is the de-facto stan-

dard algorithm used in simulation software packages such as Maya and Open dynamics

engine [97]. Past works on this topic have focused solely on solving the optimization prob-

lem without due regard to solution selection consistent with the physics of the problem

(from the infinite set of solutions).

In this chapter, an alternate method to solve the optimization problem formulated by

Lötstedt and Baraff is presented. The main idea behind this algorithm is that at each dy-

namic time step the rigid body will choose the contact force solution that is closest to the

equilibrium state of the rigid body at the previous time step. This will always lead to the

symmetric solution [e.g., trajectory-1 in Fig. 2.1(b)] if one is present.

2.1 Algorithm

Consider a rigid body rotating and translating in space. Let ucm(t) and u̇cm(t) be the

position vector and the translational velocity vector, respectively, of the center of mass

16



(cm) in the global coordinate system, R(t) be the rotation matrix between the local and

global coordinate systems, which are initially co-located at the cm, and l(t) be the angular

momentum of the rigid body about the cm in global coordinate system, all at time t. These

four quantities are the state variables as they provide complete information about the rigid

body at any instant in time. In this chapter, bold lowercase letters are vectors and bold

uppercase letters are matrices. All vectors and matrices are in the global coordinate system

unless noted otherwise. The rate of change of these state variables with respect to time are

given by:

d

dt
ucm(t) = u̇cm(t) (2.1)

d

dt
u̇cm(t) =

fT(t)

m
(2.2)

d

dt
R(t) = ω(t)×R(t) (2.3)

d

dt
l(t) = τT (t) (2.4)

Here, ω(t) is the angular velocity [ω(t) = I−1(t)l(t)], I(t) is the moment of inertia, fT(t)

is the net force, τT (t) is the net torque about cm, and m is the mass of the rigid body.

The moment of inertia at time t, I(t), can be calculated if its value at t = 0 is known

[I(t) = RT (t)I(0)R(t)].

The discussion above is for a general rigid body. We are interested in modeling the

interaction between a rock and its pedestal, a rigid body which does not rotate. The rock

and the pedestal are modeled separately with four state variables each. Let ucm(t), u̇cm(t),

R(t), and l(t) be the state variables for the rock and up(t), u̇p(t), Rp(t), and lp(t) be the

state variables for the pedestal. Since the pedestal can only translate, the rotation matrix of

the pedestal, Rp(t), is always the identity matrix and angular momentum of the pedestal,

lp(t), is always zero.

The aim of the algorithm is to obtain the state variables for the rock and pedestal at

time t + ∆t given the state of the system at time t. Since the pedestal has an infinite mass

and moment of inertia, the contact forces and impulses resulting from the interaction of

the pedestal with the rock have no effect on the dynamics of the pedestal. Let üp(t) be
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the applied pedestal acceleration as a function of time. Then, pedestal displacement and

velocity at t+∆tmay be determined by time-integrating Eqs. 2.1 and 2.2 using the constant

average acceleration method:

up(t+ ∆t) = up(t) +
∆t

2
[u̇p(t) + u̇p(t+ ∆t)] (2.5)

u̇p(t+ ∆t) = u̇p(t) +
∆t

2
[üp(t) + üp(t+ ∆t)] (2.6)

However, obtaining the state variables for the rock at t + ∆t is not as simple. The state

variables have to be estimated iteratively so that the rock is in dynamic equilibrium at

t+ ∆t. The outline of the algorithm is shown in Algorithm 1.

Algorithm 1 Rigid body dynamics algorithm
Input: rock state variables at t, pedestal state variables at t and t+ ∆t
Output: rock state variables at t+ ∆t

1: initialization
2: while rock state variables at t+ ∆t not converged do
3: update state variables at t+ ∆t using Eqs. 2.7 - 2.10 // Step 1
4: if rock penetrates the pedestal then // Step 2
5: reduce ∆t
6: go back to initialization
7: end if
8: if rock and pedestal in contact then
9: estimate impulses to resolve collision // Step 3

10: while normal impulses not converged do
11: update normal impulses // Step 3(a)
12: update frictional impulses // Step 3(b)
13: end while
14: estimate contact forces // Step 4
15: while normal forces not converged do
16: update normal forces // Step 4(a)
17: update frictional forces // Step 4(b)
18: end while
19: else
20: no contact forces
21: end if
22: end while

The following are the steps to go from time-step iteration k to iteration k+1 (outermost
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while loop) for the state variables of the rock.

Step 1: Integrate differential equations.

To estimate the state variables of the rock at t + ∆t, the differential Eqs. 2.1 - 2.4 for

the rock are time integrated using constant average acceleration method to yield:

ucm
k+1(t+ ∆t) = ucm(t) +

∆t

2
[u̇cm(t) + u̇kcm(t+ ∆t)] (2.7)

u̇k+1
cm (t+ ∆t) = u̇cm(t) +

∆t

2

[
fT(t)

m
+

fT
k(t+ ∆t)

m

]
(2.8)

Rk+1(t+ ∆t) = R(t) +
∆t

2
[ω(t)×R(t) + ωk(t+ ∆t)×Rk(t+ ∆t)] (2.9)

lk+1(t+ ∆t) = l(t) +
∆t

2
[τT (t) + τT

k(t+ ∆t)] (2.10)

Rk+1(t+ ∆t) is a rotation matrix, so its determinant should be unity and its inverse should

equal its transpose. If these properties are not satisfied by Rk+1(t+ ∆t), Cayley transform

[29] is used to project the matrix back onto the admissible space of rotation matrices. If

the rock is initially at rest on the pedestal, then ucm(0) = 0, u̇cm(0) = 0, R(0) = I, the

identity matrix, l(0) = 0, fT(0) = 0, τT (0) = 0, and ω(0) = 0.

Step 2: Find contact points.

Using the state variables obtained in Step 1, the positions of the points on the outer

surface of the rock are updated. For example, if α is a point on the rock and rα(0) is its

initial position with respect to the cm, then its updated position vector is:

uα
k+1(t+ ∆t) = ucm

k+1(t+ ∆t) + Rk+1(t+ ∆t)rα(0) (2.11)

Similarly, the positions of points on the pedestal surface are updated. At t + ∆t, if any

point of the rock is within ε (tolerance) from the surface of the pedestal, then that point

is assumed to be a contact point. However, if any point on the rock’s surface penetrates a

distance more than ε into the pedestal, then the system is taken back to an earlier time tc

(t ≤ tc ≤ t+ ∆t) when no point has penetrated more than ε into the surface of the pedestal

and the calculations are carried out for the reduced time step.

With no point on the rock’s surface penetrating into the pedestal, we look for rock
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points that are in contact with the pedestal. If none exist, it implies that the rock is in free-

fall under the action of gravity and the contact forces are set to zero. Net force acting on

the rock is fT
k+1(t+ ∆t) = mg, where g is the acceleration due to gravity, and net torque

acting on the rock is τT k+1(t + ∆t) = 0. Since the total force and total torque acting on

the rock are known now, we proceed to Step 5 of the algorithm.

If, on the other hand, at least one point of the rock is in contact with the ground, then

we go through Steps 3 and 4 to prevent the rock from penetrating into the pedestal at this

contact point. We start by attaching a coordinate system local to each contact point. The

outward normal (nα) to the pedestal at contact point α is known from the surface of the

pedestal. The unit vectors xα and yα in the tangential directions to the pedestal surface are

obtained by:

xα =
x̂− (x̂ · nα)nα
‖x̂− (x̂ · nα)nα‖2

; yα =
nα × xα
‖nα × xα‖2

(2.12)

Here, x̂ = {1, 0, 0}, the unit vector in the global X direction. For the above example of

a rigid cuboid sitting on horizontal ground, nα = {0, 0, 1}, xα = {1, 0, 0}, and yα =

{0, 1, 0} at all contact points.

Step 3: Resolve collisions by applying impulses.

The aim of this step is to ensure that the rock is not moving towards the pedestal at any

of the contact points. If contact point α of the rock is moving towards the pedestal, then

normal (jnαnα) and frictional impulses (jxαxα and jyαyα) are applied there in order to

instantaneously change its velocity. Say there are q contact points. Let j = [jn jx jy], where

jn = [jn1 jn2 ... jnq] etc., be the row vector of length 1 × 3q containing the magnitudes

of impulses applied at all contact points with respect to their local coordinate systems.

Similarly, let u̇− = [u̇−n u̇−x u̇−y ] and u̇+ = [u̇+
n u̇+

x u̇+
y ], where u̇−n = [u̇−n1 u̇

−
n2 ... u̇

−
nq] etc.,

be the row vectors of length 1 × 3q containing relative velocities of the contact points on

the rock with respect to the pedestal before and after collision, respectively.

Let u̇−cm = u̇k+1
cm (t + ∆t) and ω− = ωk+1(t + ∆t) be the translational and angular

velocity, respectively, of the rock before collision. Let u̇+
cm and ω+ be the translational

and angular velocity, respectively, of the rock after collision with the pedestal. To simplify
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notation, let rβ = rβ
k+1(t + ∆t) be the position vector of contact point β with respect to

the center of mass, and I = Ik+1(t+ ∆t) be the moment of inertia of the rock about cm

in the global coordinate system. The translational and angular velocity of the rock after

collision may be obtained as follows:

u̇+
cm =

1

m

q∑
β=1

jnβnβ +
1

m

q∑
β=1

jxβxβ +
1

m

q∑
β=1

jyβyβ + u̇−cm (2.13)

ω+ =

q∑
β=1

I−1(rβ × jnβnβ) +

q∑
β=1

I−1(rβ × jxβxβ) +

q∑
β=1

I−1(rβ × jyβyβ) + ω−

(2.14)

The relative normal velocity of contact point α with respect to pedestal before and after

collision are given by u̇−nα = nα · [u̇−cm +ω− × rα − u̇p(t+ ∆t)] and u̇+
nα = nα · [u̇+

cm +

ω+ × rα − u̇p(t + ∆t)], respectively. Similar expressions exist for the relative tangential

velocities. Substituting for u̇+
cm and ω+ from Eqs. 2.13 and 2.14 into these expressions

for relative velocities after collision, the affine relation between relative velocities after

collision and the impulses may be obtained as follows:

u̇+ = jC + d; C =


Cnn Cnx Cny

Cxn Cxx Cxy

Cyn Cyx Cyy

 ;

3q×3q

d =
[

dn dx dy

]
1×3q

(2.15)

(Cnn)αβ =
1

m
nα · nβ + (rα × nα)T I−1(rβ × nβ); dn = u̇−n

(Cxx)αβ =
1

m
xα · xβ + (rα × xα)T I−1(rβ × xβ); dx = u̇−x

(Cyy)αβ =
1

m
yα · yβ + (rα × yα)T I−1(rβ × yβ); dy = u̇−y

(Cnx)αβ = (Cxn)βα =
1

m
nα · xβ + (rα × nα)T I−1(rβ × xβ); α = 1, 2, ..., q

(Cny)αβ = (Cyn)βα =
1

m
nα · yβ + (rα × nα)T I−1(rβ × yβ); β = 1, 2, ..., q

(Cxy)αβ = (Cyx)βα =
1

m
xα · yβ + (rα × xα)T I−1(rβ × yβ);

There are a few constraints which the impulses (j) and the relative velocities after collision

21



(u̇+) must satisfy. If a contact point α of the rock is moving towards the pedestal (i.e.,

u̇−nα < 0), the normal impulse at α should push the point away from the pedestal to avoid

interpenetration, i.e., jnα ≥ 0. Next, from Newton’s law of restitution, if e is the coefficient

of restitution, then u̇+
nα = −eu̇−nα. However, if the rock is moving towards the pedestal

at multiple contact points, the effect of the impulses applied at other points also affect the

velocity at α as shown by Eq. 2.15. Therefore, Newton’s law of restitution is the lower

bound to the velocity after collision, i.e., u̇+
nα ≥ −eu̇−nα. Once u̇+

nα is above this lower

bound, there is no longer a need for an impulse at that point, i.e., jnα = 0. This constraint

can be expressed by the complementarity condition jnα(u̇+
nα + eu̇−nα) = 0.

Because the impulses are applied instantaneously, no tangible displacement results.

Therefore, static Coulomb friction laws are imposed on the friction impulses. This implies

that the friction impulses should lie within/on the friction cone, i.e.,
√
jxα

2 + jyα
2 ≤ µsjnα,

where µs is the static coefficient of friction. Also, the friction impulses should oppose

the tangential velocity. In the earlier work by Baraff, this condition is implemented local

to each contact point, i.e., the friction impulses at each contact point opposes the corre-

sponding tangential velocity (u̇xαjxα + u̇yαjyα ≤ 0). However, as seen from Eq. 2.15, the

tangential velocity at contact point α is influenced by the friction impulses at all contact

points. Therefore, the friction impulses must collectively oppose the tangential velocity

at all contact points and result in the least magnitude of tangential velocity at all contact

points.

The problem described above can be solved in many ways. Baraff [13] tackles it se-

quentially one contact point at a time. As illustrated earlier, this leads to different solutions

based on the ordering of the contact points. We resolve this problem by collectively solving

for all contact points first the normal impulse forces, and then the friction impulse forces.

Because these forces are coupled, we repeat this exercise several times in an iterative fash-

ion until there is little change in the forces (to within a tolerance). The computations in

impulse iteration p + 1 within time step iteration k + 1 are described next. To start the

iteration, all impulses are initialized to zero.

Step 3(a): Calculating normal impulses.

Using the normal part of Eq. 2.15 and the vectorized form of normal impulse con-
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straints, the normal impulse problem is recast as a minimization problem:

u̇+
n = jn

p+1Cnn + jx
pCxn + jy

pCyn + dn

jn
p+1 ≥ 0; u̇+

n + eu̇−n ≥ 0

jn
p+1(u̇+

n + eu̇−n )T = 0


=⇒

minimize jn
p+1(jn

p+1Cnn + dn
′)T

subject to jn
p+1 ≥ 0

jn
p+1Cnn + dn

′ ≥ 0

(2.16)

Here, dn
′ = jx

pCxn+jy
pCyn+(1+e)dn. This quadratic programming (QP) problem with

an objective function having an optimal value of zero is known as a Linear Complemen-

tarity Problem (LCP). Baraff [13] has shown that the matrix C is positive semi-definite.

This implies that sub-matrix Cnn is also positive semi-definite. This LCP is feasible, i.e.,

there exists a jn
p+1 satisfying all the inequality constraints in Eq. 2.16 (details in Appendix

A). It is also known that this LCP is solvable for every dn
′ if Cnn is positive semi-definite

and the problem is feasible [34]. However, the positive semi-definiteness of the matrix also

implies that the LCP/QP may have infinitely many solutions.

Here, we solve this LCP using the Sequential Quadratic Programming (SQP) algo-

rithm [68] of the open source nonlinear optimization software NLopt [61]. Starting from

jn
p the optimal solution for jn

p+1 is calculated iteratively based on the local gradient of the

objective function (similar to a Newton-Raphson iteration). The resulting solution, there-

fore, is the solution that is closest to jn
p from the infinite set of solutions, i.e., ‖jnp+1−jn

p‖2

is the minimum among all possible solutions to the LCP.

Step 3(b): Calculating friction impulses.

The friction part of Eq. 2.15 is:

[
u̇+

x u̇+
y

]
=
[

jx jy

]r+1

 Cxx Cxy

Cyx Cyy

+ jn
p+1
[

Cnx Cny

]
+
[

dx dy

]
(2.17)

This equation along with the friction impulse constraints constitute the friction impulse

problem. As mentioned previously, there are two constraints on the friction impulses: first,
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they should lie on/inside the friction cone, and second, they should collectively oppose the

tangential velocity at all contact points. These constraints are considered one by one and

the problem is solved iteratively. The computations involved in friction impulse iteration

r + 1 within impulse iteration p+ 1 are described next.

First, we define two sets to classify contact points in each friction impulse iteration: Sr

and S̄r. S̄r contains contact points that lie on the surface of the friction cone whose friction

forces are assumed to remain unchanged as long as the point belongs to this set. Set Sr

contains the remaining contact points. Let set N = {1, 2, ..., q} represent the set of all

contact points. At the start of the friction impulse iteration, set S0 contains all the contact

points and set S̄0 is empty, i.e., S0 = N and S̄0 = ∅.

Step 3(b)(i): Satisfying the “friction impulses oppose tangential velocity” constraint.

In this step, the friction impulses (jxαr+1 and jyαr+1) for all contact points α ∈ Sr are

calculated such that the relative tangential velocities of contact points in this set are reduced

to zero. As per the definition of set S̄r, the friction impulses of all contact points α ∈ S̄r

are left unchanged, i.e., jxαr+1 = jxα
r and jyαr+1 = jyα

r. For ease of notation, let jx,S
r+1

be the vector of frictional impulses in x direction for all contact points in Sr, and Cxx,SS

be the sub-matrix of Cxx corresponding to the contact points in Sr, and so on. Also let,

jx,S
r+1 = jx,S

r + ∆jx,S and jy,S
r+1 = jy,S

r + ∆jy,S. Using this relation, re-arranging the

terms in Eq. 2.17 and setting the tangential velocities for all contact points in set Sr equal

to zero gives:

[
0 0

]
=
[

jx,S jy,S

]r+1

 Cxx,SS Cxy,SS

Cyx,SS Cyy,SS


︸ ︷︷ ︸

C′

+
[

jx,S̄ jy,S̄

]r+1

 Cxx,S̄S Cxy,S̄S

Cyx,S̄S Cyy,S̄S

+ jn
p+1
[

Cnx,NS Cny,NS

]
+
[

dx,S dy,S

]
︸ ︷︷ ︸

d′

=⇒
[

∆jx,S ∆jy,S

]
= −d′(C′)−1 −

[
jx,S jy,S

]r
C′(C′)−1 (2.18)

The matrix C′ may in general be rank deficient. So, there may exist infinitely many so-

24



lutions for [∆jx,S ∆jy,S] from the above set of linear equations. However, if the Moore-

Penrose pseudo inverse is used for C′−1, then the resulting solution for [∆jx,S ∆jy,S] is the

solution with the least 2-norm. This implies that [jx jy]r+1 is the solution closest to [jx jy]r.

Step 3(b)(ii): Satisfying the friction cone constraint.

If friction impulses calculated in the previous step lie outside the friction cone for any

point α in Sr, a scaling factor σα is applied to ∆jxα and ∆jyα in order to project the friction

impulses back to the surface of the friction cone as shown below:

(jrxα + σα∆jxα)2 + (jryα + σα∆jyα)2 = µ2
s(j

p+1
nα )2 (2.19)

The positive root of the above quadratic expression is used for σα. The contact point α ∈

Sr, which has the maximum scaling factor (say ᾱ), is then moved to set S̄r+1. This implies

that Sr+1 = Sr \ {ᾱ} and S̄r+1 = S̄r ∪ {ᾱ}. In accordance with the definition of set

S̄r+1, the friction impulses for ᾱ lie on the surface of the friction cone, and do not change

in magnitude or direction as long as it remains in this set. The relative tangential velocity

(u̇+
xᾱ and u̇+

yᾱ) when the contact point ᾱ enters S̄r+1 is stored into u̇xᾱ and u̇yᾱ. In a future

friction impulse iteration, if u̇+
xᾱ or u̇+

yᾱ differ in sign from u̇xᾱ or u̇yᾱ, respectively, then

ᾱ is released from S̄ back to S. This method of dividing the contact points into sets Sr+1

and S̄r+1 offers a simple termination condition for the friction impulse iteration, ensuring

convergence is achieved within a few iterations.

Step 3(b)(iii): Termination condition for the friction impulse iteration.

At the end of Step 3(b)(ii), three things can happen: a point may move from Sr to S̄r+1,

few points may move from S̄r+1 to Sr+1, or the sets Sr+1 and S̄r+1 remain unchanged from

previous friction impulse iteration, i.e., Sr+1 = Sr and S̄r+1 = S̄r. In the first two sce-

narios, the algorithm goes back to Step 3(b)(i) and continues to the next friction impulse

iteration. In the third scenario, when the sets remain unchanged, the friction impulse itera-

tion is terminated with jx
p+1 = jx

r+1 and jy
p+1 = jy

r+1.

Step 3(c): Termination condition for the impulse iteration.

After convergence of the friction impulses jx
p+1 and jy

p+1, the algorithm goes back

to Step 3(a) for the next impulse iteration. The impulse iteration is terminated when the
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relative change in the normal impulses from the previous impulse iteration is less than a

tolerance ε1, i.e., ‖jnp+1− jn
p‖2 ≤ ε1‖jnp‖2. After termination, u̇+

cm and ω+ are calculated

using Eqs. 2.13 and 2.14, and u̇k+1
cm (t+ ∆t) and lk+1(t+ ∆t) are updated as follows:

u̇k+1
cm (t+ ∆t) = u̇+

cm (2.20)

lk+1(t+ ∆t) = lk+1(t+ ∆t) +

q∑
β=1

rβ × jnβnβ +

q∑
β=1

rβ × jxβxβ +

q∑
β=1

rβ × jyβyβ

(2.21)

Step 4: Computing the contact forces.

The aim of this step is to calculate contact forces to prevent the rock from accelerating

towards the pedestal at the contact points. Let f = [fn fx fy], where fn = [fn1 fn2 ... fnq]

etc., be the row vector of length 1 × 3q containing the magnitudes of forces applied at all

contact points with respect to their local coordinate systems. Similarly, let ü = [ün üx üy]

be the relative acceleration of the contact points on the rock with respect to the pedestal.

The translational (ücm) and rotational (ω̇) acceleration of the rock are given by:

ücm =
1

m

q∑
β=1

fnβnβ +
1

m

q∑
β=1

fxβxβ +
1

m

q∑
β=1

fyβyβ + g (2.22)

ω̇ =

q∑
β=1

I−1(rβ × fnβnβ) +

q∑
β=1

I−1(rβ × fxβxβ) +

q∑
β=1

I−1(rβ × fyβyβ) + I−1(l×w)

(2.23)

Here, I−1 = [Ik+1(t+ ∆t)]
−1, l = lk+1(t + ∆t), rβ = rβ

k+1(t + ∆t), ω = I−1l, üp =

üp(t+ ∆t), and g is the acceleration due to gravity in the global coordinate system.

Now, the normal acceleration of contact point α relative to the pedestal is given by

ünα = nα · [ücm + ω̇ × rα + ω × (ω × rα)− üp]. Similar relations exist for the relative

tangential accelerations (üxα and üyα) of contact point α. Substituting for ücm and ω̇

from Eqs. 2.22 and 2.23 into the above expressions, the affine relation between the relative
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accelerations and contact forces at all contact points is obtained:

ü = fA + b; A =


Ann Anx Any

Axn Axx Axy

Ayn Ayx Ayy

 ;

3q×3q

b =
[

bn bx by

]
1×3q

(2.24)

(Ann)αβ =
1

m
nα · nβ + (rα × nα)T I−1(rβ × nβ);

(Axx)αβ =
1

m
xα · xβ + (rα × xα)T I−1(rβ × xβ);

(Ayy)αβ =
1

m
yα · yβ + (rα × yα)T I−1(rβ × yβ);

(Axn)βα = (Anx)αβ =
1

m
nα · xβ + (rα × nα)T I−1(rβ × xβ);

(Ayn)βα = (Any)αβ =
1

m
nα · yβ + (rα × nα)T I−1(rβ × yβ);

(Ayx)βα = (Axy)αβ =
1

m
xα · yβ + (rα × xα)T I−1(rβ × yβ);

bnα = nα · [g + I−1(l×w)× rα + ω × (ω × rα)− üp]

bxα = xα · [g + I−1(l×w)× rα + ω × (ω × rα)− üp]

byα = yα · [g + I−1(l×w)× rα + ω × (ω × rα)− üp]

The contact points are divided into two sets R and D based on the relative tangential

velocity. If the relative tangential velocity of a contact point is zero (within a tolerance),

then the point belongs to set R, or else the contact point belongs to set D. There are a few

constraints on the contact forces (f ) and the relative accelerations (ü): (i) The normal force

at any contact point α should be non-negative, i.e., (fnα ≥ 0). This condition ensures that

the forces only push the rock and the pedestal away and do not make them stick together.

(ii) The rock and pedestal should not accelerate towards each other at the contact points, i.e.,

ünα ≥ 0. (iii) Normal forces are applied only to make the relative normal accelerations at

contact points non-negative, these forces should be zero if this condition is already satisfied

at a contact point (i.e., fnαünα = 0).

The conditions on the friction forces vary depending on whether a contact point belongs

to set R or D. For a contact point α with zero relative tangential velocity and belonging to

R, the forces of friction must satisfy the laws of static Coulomb friction, i.e., the friction
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forces should lie on/within the friction cone
√
fxα

2 + fyα
2 ≤ µs(fnα), and they should

oppose the tangential acceleration. As in the case of the impulses, the friction forces should

collectively oppose the tangential acceleration of all contact points belonging to R resulting

in the least magnitude of tangential acceleration at these contact points. For a contact point

α with non-zero relative tangential velocity and belonging to D, the forces of friction must

comply with laws of kinetic Coulomb friction, i.e., the magnitude of the friction force is

µdfnα and the friction forces should directly oppose the relative tangential velocity. Thus,

fxα = − u̇xα√
u̇2
xα + u̇2

yα

µdfnα; fyα = − u̇yα√
u̇2
xα + u̇2

yα

µdfnα ∀α ∈ D (2.25)

Here, µd is the kinetic coefficient of friction between the rock and the pedestal. Contact

forces are computed iteratively (iterations denoted by “p”) in two alternating steps in a

manner analogous to impulse forces (Step 3), the first involving the computation of normal

forces and the second involving the computation of frictional forces. The contact force

iteration is initialized with the contact forces at time t. If the rock is initially resting on the

pedestal, the initial values of the contact forces are computed by imposing acceleration due

to gravity alone on the rock. The two-step contact force computation is described next.

Step 4(a): Computing normal contact forces.

For ease of notation, let fn,R and fn,D contain the vector of normal forces for all contact

points belonging to sets R and D, respectively. Similarly, let Ann,RR be the sub-matrix

of Ann corresponding to the points in R, and so on. Substituting Eq. 2.25 into the normal
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part of Eq. 2.24 and re-arranging, we get the following affine relation:

[
ün,R ün,D

]
=
[

fn,R fn,D

]p+1

 Ann,RR Ann,RD

Ann,DR Ann,DD


+
[

fx,D fy,D

]p+1

 Axn,DR Axn,DD

Ayn,DR Ayn,DD


+
[

fx,R fy,R

]p+1

 Axn,RR Axn,RD

Ayn,RR Ayn,RD

+
[

bn,R bn,D

]p+1

︸ ︷︷ ︸
b′

=⇒
[

ün,R ün,D

]
=
[

fn,R fn,D

]p+1

 Ann,RR Ann,RD

A′nn,DR A′nn,DD


︸ ︷︷ ︸

A′

+b′

=⇒ ün = fn
p+1A′+b′ (2.26)

Here, (A′nn)αβ = (Ann)αβ − u̇xα√
u̇2xα+u̇2yα

µd(Axn)αβ − u̇yα√
u̇2xα+u̇2yα

µd(Ayn)αβ for α ∈ D and

β ∈ R ∪ D. The affine relation between the ün and fn
p+1 from Eq. 2.26 along with the

normal force constraints may be posed as the following QP:

ün = fn
p+1A′ + b′

fn
p+1 ≥ 0; ün ≥ 0

fn
p+1üTn = 0

 =⇒
minimize fn

p+1(fn
p+1A′ + b′)T

subject to fn
p+1 ≥ 0

fn
p+1A′ + b′ ≥ 0

(2.27)

As in the case of the impulses, this is an LCP, i.e., a special QP with the optimal value

of objective function equal to zero. However, matrix A′ is not necessarily symmetric or

positive semi-definite. This poses a problem as existence of solution is mathematically

guaranteed only when the matrix A′ is positive definite or semi-definite or belongs to one

of the special classes of matrices discussed in Chapter 3 of [34]. Fortunately, for realistic

values of µd, the diagonal elements of A′ are in general non-negative and solution does

exist for the corresponding LCP. The solution, if and when it exists, may be estimated

using an approach analogous to Step 3(a).

Step 4(b): Computing contact frictional forces.
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From the previous step, fn,D
p+1 is known, and therefore from Eq. 2.25, fx,D

p+1 and

fy,D
p+1 are also known. The aim of this step is to calculate fx,R

p+1 and fy,R
p+1 such that

they oppose üx,R and üy,R, respectively, at all contact points within/on the static friction

cone and belonging to R. The friction part of the affine relation from Eq. 2.24 is re-ordered

to get:

[
üx,R üy,R

]
=
[

fx,R fy,R

]p+1

 Axx,RR Axy,RR

Ayx,RR Ayy,RR


+
[

fn,R fn,D

]p+1

 Anx,RR Any,RR

Anx,DR Any,DR

+
[

fx,D fy,D

]p+1

 Axx,DR Axy,DR

Ayx,DR Ayy,DR


+
[

bx,R by,R

]
︸ ︷︷ ︸[

b′x,R b′y,R

]

=⇒
[

üx,R üy,R

]
=
[

fx,R fy,R

]p+1

 Axx,RR Axy,RR

Ayx,RR Ayy,RR

+
[

b′x,R b′y,R

]
(2.28)

This system is similar to Eq. 2.17 and is solved in a manner similar to Step 3(b).

Step 4(c): Termination condition for the contact force iteration.

After computing the friction forces fx,R
p+1 and fy,R

p+1, the algorithm goes back to

Step 4(a) for the next contact force iteration. This iteration is terminated when the relative

change in the normal forces from the previous contact force iteration is less than a desired

tolerance ε1, i.e., ‖fnp+1 − fn
p‖2 ≤ ε1‖fnp‖2. Then, the total force fT

k+1(t+ ∆t) and total

torque τT k+1(t+ ∆t) acting on the rock are given by:

fT
k+1(t+ ∆t) = mg +

q∑
β=1

fnβnβ +

q∑
β=1

fxβxβ +

q∑
β=1

fyβyβ (2.29)

τT
k+1(t+ ∆t) =

q∑
β=1

rβ × fnβnβ +

q∑
β=1

rβ × fxβxβ +

q∑
β=1

rβ × fyβyβ (2.30)

Step 5: Termination condition for the time-step iteration k.

30



After obtaining the total force and torque acting on the rock, the algorithm goes back to

Step 1 for the next time-step iteration. This iteration is terminated when the relative change

in the total force and torque from the previous time-step iteration is less than the desired

tolerance level ε1, i.e., ‖fTk+1 − fT
k‖2 ≤ ε1‖fTk‖2 and ‖τT k+1 − τT k‖2 ≤ ε1‖τT k‖2, and

the state variables of the rock are deemed to have converged at t+ ∆t. After convergence,

the algorithm proceeds to the next time integration step. The convergence of the algorithm

for each time-step iteration k is not guaranteed. If the number of time-step iterations k

exceeds a user defined number of iterations (say 100), the time-step is reduced and the

calculations are re-started for the reduced time step.

While it would be ideal for the algorithm to determine the contact force/impulse state

that is closest to the previous state of the system (i.e., at time t), our algorithm deter-

mines the contact force/impulse state that is closest to the previous iteration of the current

step (or the last iteration of the previous step if this is the first iteration of the current

step) to achieve faster and more reliable convergence. We have verified that the contact

force/impulse configuration closest to the previous state of the system is same as the one

closest to the previous step/iteration for simple geometries like 3-D rectangular blocks. We

have not yet been able to verify this for rocks due to convergence issues with finding the

contact force/impulse configuration closest to the previous state of the system.

2.2 Validation of the algorithm

For a rigid rectangular block placed on a rigid horizontal ground [Fig. 2.2(a)], Shenton

H. [95] obtained the relation between the horizontal ground acceleration and the coefficient

of friction required to initiate the response of the block in rocking, sliding, or coupled

rocking-sliding mode. Shenton H. [95] used force and moment balance equations to arrive

at the separatrix between the different response modes. Here, we consider an analogous

problem of a rigid rectangular block impacting a rigid horizontal ground. At the instant

before the impact, the block is assumed to be translating with a horizontal velocity (u̇x > 0)

and a vertical velocity (u̇y < 0) in the presence of gravitational acceleration. Under the

assumption that the impact between the block and ground is inelastic, i.e., e = 0, the block
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Figure 2.2: (a) Rigid rectangular block and ground (b) motion of block after it impacts the ground
as a function of initial velocity and coefficient of friction.

may come to rest, may start to rock, may slide, or may experience sliding coupled with

rocking after the impact. Therefore, an approach similar to Shenton’s method, involving

conservation of linear and angular momentum, may be used to arrive at the separatrix

between the different modes as a function of the translational velocities before impact (u̇x

and u̇y) and the coefficient of friction (µs = µd = µ) between the two surfaces [Fig. 2.2(b)].

The details of this calculation are presented in Appendix B. For example, the separatrix

between the rocking mode and the coupled rocking-sliding mode is given by:∣∣∣∣ u̇yu̇x
∣∣∣∣ =

4 + (h
b
)2 − 3µh

b

µ[1 + 4(h
b
)2]− 3h

b

(2.31)

For this analysis, the rigid block [Fig. 2.2(a)] considered has a half height h = 0.6 m, half

width b = 0.2 m, and mass m = 100 kg, and it may only come in contact with the ground

at points O1 and O2. The motion of the block after impact is governed by Lagrangian

mechanics with the reduced translational and rotational velocity of the center of mass after

inelastic impact as initial conditions. These velocities are also obtained by conserving

angular and linear momentum as shown in Appendix B. Here, we select two combinations

of |u̇y/u̇x| and µ corresponding to the rocking and the coupled rocking-sliding modes and

compare the solutions obtained from the rigid body dynamics algorithm with that obtained
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by time-integrating the equations of motion for the corresponding response modes.

2.2.1 Rocking mode

The block will experience rocking coupled with sliding after impact for u̇y = −2.8 m/s,

|u̇y/u̇x| = 1.5, and µ = 0.9. The angular displacement of the block (θ) is positive when

the block rotates about O2 and negative for rotations about O1. The non-linear equation of

motion for the rocking mode can be obtained by moment balance about the rocking points

O1 and O2:

Iθ̈ = mgRsin(α + θ) θ < 0 (2.32)

Iθ̈ = −mgRsin(α− θ) θ > 0 (2.33)

Here, α is a measure of the slenderness of the block [α = tan−1(b/h)], I is the moment

of inertia of the block about corner O1 or O2, and R is the distance of the contact points

from the center of mass of the block. In the current example, the block starts rocking about

cornerO1 after impact with the ground. Therefore, Eq. 2.32 is time integrated using the 4th

order Runge Kutta method with the rotational velocity of the block after impact [Eq. B.10]

as initial condition. The reduction in the rotational velocity on inelastic impact during

rocking, i.e., when point of rotation changes from O1 to O2 or vice versa, is modeled using

the expression presented by Kimura and Iida [64, 65] and Housner [52]:

θ̇+

θ̇−
=

1 + 3cos(2α)

4
(2.34)

Here, θ̇− and θ̇+ are the rotational velocities of the block before and after impact with the

ground. The resulting angular displacement time history [θ(t)] of the block can be easily

converted to arrive at the horizontal (x) displacement time history of the block’s center of

mass, which is then compared against that obtained from rigid body dynamics algorithm

Fig. 2.3(a). The good agreement in the results indicate that the rigid body dynamics algo-

rithm is capable of accurately predicting the response mode of the block and simulating the

subsequent rocking response of the block.
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Figure 2.3: Comparison of x displacement time history of center of mass given by the rigid body
dynamics algorithm against analytical solution for (a) rocking mode and (b) coupled rocking-sliding
mode. For the rocking mode, u̇y = −2.8 m/s, |u̇y/u̇x| = 1.5 and µ = 0.9. For the coupled rocking-
sliding mode, u̇y = −1 m/s, |u̇y/u̇x| = 1 and µ = 0.4.

2.2.2 Coupled rocking-sliding mode

The block will rock and slide after impact for u̇y = −1 m/s, |u̇y/u̇x| = 1 and µ = 0.4.

The angular displacement of the block (θ) is positive when the block rotates about O2 and

negative for rotations aboutO1. Ishiyama worked out the nonlinear equations of motion for

the coupled rocking-sliding mode (Eqs. 1-3 in [58]). These equations of motion are time

integrated using the 4th order Runge Kutta method to obtain horizontal (x) displacement

time history of the block’s center of mass. When the block stops sliding, i.e, when the

horizontal velocity of O1 is zero (within a tolerance), the subsequent rocking response of

the block is modeled using Eqs. 2.32-2.34. For the combination of velocities and friction

coefficient considered, the block stops sliding before the point of rotation changes from O1

to O2.

The horizontal (x) displacement time history obtained from these differential equa-

tions is compared with that obtained from the rigid body dynamics algorithm as shown in

Fig. 2.3(b). The results obtained using the rigid body dynamics algorithm agree well with

the analytical results.
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2.3 Summary

In this chapter, we developed an algorithm to simulate the interaction between the rock and

the pedestal. This algorithm is a fairly generic algorithm that is capable of modeling the

complex sliding and rocking response of the rock. Unlike the earlier algorithm developed

by Baraff, our algorithm is robust and is not sensitive to parameters external to the problem

description like the ordering of the points describing the contact interface and choice of

coordinate frame. The algorithm is validated against analytical results for the rocking and

coupled rocking-sliding response of a simple 2-D rectangular block.

This algorithm can be easily extended to model the interaction between multiple rigid

bodies with appropriate changes to the contact detection step. The computation time in-

creases with the number of the rigid bodies as the contact forces and impulses between

each pair of rigid bodies need to be estimated. Therefore, while this algorithm may be used

to model the response of a stack of rigid bodies, it may not be the best approach to model

interaction between thousands of rigid bodies like in granular mechanics simulations.
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Chapter 3

Toppling analysis of precariously
balanced rocks

3.1 Introduction

The presence of a precariously balanced rock (PBR) in a region is evidence for the fact

that earthquake shaking strong enough to overturn it has not occurred there during the

rock’s existence in that precarious condition. Therefore, the critical toppling intensity of

a PBR in conjunction with its age may provide an independent constraint on historic peak

ground motion, and, by extension, an estimate of future peak ground shaking in that region.

Brune [25] has conducted road surveys near major fault zones and cataloged hundreds of

PBRs in Southern California and Nevada. Using the minimum constant ground horizontal

acceleration, henceforth referred to as the quasi-static toppling acceleration asg, required to

overturn them, he has classified them as precarious (0.1 g ≤ asg ≤ 0.3 g) or semi-precarious

(0.3 g < asg ≤ 0.5 g). asg may be estimated by in-situ tilt tests [9]. A rough estimate of asg

may also be obtained from images of the rock [90].

Most PBRs in southern California and Nevada have evolved naturally through weather-

ing of a buried rock mass into corestones, followed by erosion of the overlying surface ma-

terials [72]. PBRs thus formed are not connected to their pedestals. The ages of these rocks

may be determined using surface exposure dating techniques like varnish microlamination

(VML) and cosmogenic 36Cl dating methods [15]. Bell et al. [15] analyzed the varnish on

the surfaces of several rocks in southern California and their supporting pedestals using the
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VML method. They concluded that most PBRs in southern California have been exposed

for at least 10,500 radiocarbon years, i.e., approximately 12,000 calendar years, without

significant alteration in their present shape.

The focus in this chapter is on estimating the critical toppling intensity of the PBRs.

The current practice relies entirely on the empirical expression developed by Purvance

et al. [88]. They numerically simulated the rocking and overturning response of sym-

metric and asymmetric blocks under synthetically generated random vibration excitations

and used these results to develop the empirical expression. This expression estimates the

overturning probability of a block as a function of its geometric parameters and various

ground motion intensity measures such as peak ground acceleration (PGA), the ratio of

peak ground velocity (PGV) to PGA (PGV/PGA), and spectral acceleration at 1 s (S1s
a ) and

2 s (S2s
a ).

The empirical equation, developed for 2-D rectangular blocks with two-point contact,

does not account for the 3-D form of the rock or the curved form of basal contact (with

multiple contact points) and predicts greater stability for the rock than what is observed in

the experiments. To correct for the multiple contact points, Purvance et al. [88] conducted

tilt tests on the rocks and adjusted the location of the two sharp contact points in the 2-D

block model based on the ratio of the quasi-static toppling acceleration asg to the acceler-

ation due to gravity. They validated this methodology by comparing the results from the

empirical relation with experiments on three rocks.

These results are a great starting point to understanding the dynamics of PBRs, but the

idealizations and assumptions inherent in these analyses could have a significant impact

on their critical toppling intensity. The empirical expression derived by Purvance et al.

[91] assumes the response of the object to be restricted to the plane of applied excitation.

While this is true for a rectangular block under uni-axial ground excitation, for most rocks

this may not be true owing to their 3-D geometry and complex rock-pedestal interface.

Moreover, non-destructive tilt tests need to be conducted to obtain realistic results from the

empirical relation. But the inaccessible locations of most PBRs make it difficult to perform

tilt tests.

Here, we present an alternate method to analyze the 3-D PBR models using the rigid
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body dynamics algorithm detailed in Chapter 2. We validate the algorithm with results

from the Purvance et al. [88] rock-on-shake-table experiments and estimate the ground

motions required to topple the Echo Cliff PBR [Fig. 3.1(a)] located near the western Santa

Monica mountains and the Pacifico rock [Fig. 3.1(b)] present near the San Andreas Fault.

The results from the analysis of these rocks are used as independent checks of the seismic

hazard map and synthetic ground motion simulations at these locations.

(a) (b)

Figure 3.1: A close-up picture of the (a) Echo Cliff PBR located near western Santa Monica moun-
tains and (b) the Pacifico rock located approximately 12 km from the San Andreas Fault.

3.2 Modeling the geometry of the PBR-pedestal system

The rigid body dynamics algorithm discussed in Chapter 2 assumes the rock and the

pedestal to be separate rigid bodies. The pedestal is assumed to have infinite mass and

mass moment of inertia, implying that it moves integral to the ground. We further assume

that the ground and the pedestal only translate, but do not rotate (i.e., rotational ground

motions are not considered). The input to the algorithm includes the coordinates of points

describing the surfaces of the pedestal and the rock, the volume, mass moment of iner-

tia and center of mass of the rock, and the coefficients of static and kinetic friction at the

rock-pedestal interface and coefficient of restitution between the rock and pedestal.

Two popular methods for obtaining the rock and pedestal surficial coordinates are pho-

togrammetry and more recently Terrestrial Laser Scanning (TLS). In the photogrammetry

method, pictures taken from different angles are combined to construct the 3-D point cloud
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describing the geometry of the rock and its pedestal. Any inexpensive digital camera may

be calibrated and used for this purpose. The pictures can be combined using commercial

(e.g., PhotoModeler [2]) or open source (e.g., Insight3D [1]) photogrammetry software

packages. This method captures the shape of the rock well, but the interface between the

rock and pedestal may need to be modified to ensure accurate contact modeling. Purvance

et al. [89] used PhotoModeler to create 3-D models of PBRs for use with RIGID.

Laser scanning techniques estimate the position of an object relative to the laser by

measuring the time taken for the light beam to reach the object and, upon reflection, travel

back to the sensor (which is typically embedded in the laser-emitting device). For imaging

a rock, a laser is mounted on a tripod and the laser beam is aimed at different regions

of the rock and its pedestal. This gives the coordinates of each point on the rock-pedestal

system with respect to the laser coordinate system. A powerful laser within close proximity

of the rock may thus be used to obtain an accurate geometric representation of the rock-

pedestal system, including details of the rock-pedestal interface. However, this technique

requires the use of moderately heavy and sophisticated equipment. The Echo-Cliff PBR

[Fig. 3.1(a)], located in the western Santa Monica mountains, was imaged by Hudnut et al.

[54] using TLS. This rock is approximately 14 m high and 10 m wide. The rock was

scanned from five surrounding locations and the data was combined to construct a single

point cloud describing the geometry of the rock and the pedestal [Fig. 3.2(a)].

The modeling of the rock-pedestal system involves the following steps (illustrated using

the Echo Cliff PBR-pedestal system as an example):

1. Identifying the rock-pedestal “initial interface plane”:

We start by taking a slice of the dense point cloud (obtained from TLS or photogram-

metry) that fully encloses the rock-pedestal interface [Fig. 3.2(b)]. This slice is se-

lected visually (spanning about 0.5 m along the Z axis for the Echo Cliff PBR). We

refer to the points within this slice as the “dense interface-point cloud”. In order to

stabilize our model under gravity, we assume that the initial contact between the rock

and pedestal occurs on the best-fitting plane to the dense interface-point cloud. This

“initial interface plane” is mathematically determined using the linear least squares
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Figure 3.2: Echo Cliff PBR: (a) The dense point cloud obtained from TLS. (b) The slice of points
that encloses the rock-pedestal interface (dense interface-point cloud). (c) The pruned coarse point
cloud. (d) Delaunay triangulation of the coarse point cloud. (e) Plan (x-y) view of the dense interface
point cloud. (f) Inner (green dots) and outer (blue line) loops enveloping the points in (e). The green
dots constitute the initial set of contact points.

method. The assumption of a planar contact area is not far from reality as evidenced

by the goodness of fit parameter R2 for the linear least square fit being close to unity.

2. Determining the physical properties of the rock:

The dense TLS point cloud is pruned to extract a coarser point cloud [Fig. 3.2(c)].

To minimize the processing time and computational resources needed, we use the

coarser point cloud to characterize the volume of the rock (and its physical properties)

and the undulating surface of the pedestal. The points in the coarse point cloud that

lie above the initial interface plane are classified as “rock” points and those that lie

below the pedestal are classified as “pedestal points”. This is followed by Delaunay

triangulation [36] on the coarsely spaced “rock” points, creating a void-free 3-D

polygon [Fig. 3.2(d)] formed by a collection of non-overlapping tetrahedrons. Under
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the assumption that the density of the rock is constant throughout, the basic physical

properties of the rock (mass m, mass moment of inertia I and center of gravity c.g.)

are calculated by combining the physical properties of all the tetrahedrons. If the

rock surface is more or less convex (as in the case of the Echo Cliff PBR), the 3-D

polygon model of the rock is a good geometric representation of the actual rock. If,

however, the surface of the rock is substantially concave, it may need to be divided

into smaller sub-domains, with a 3-D polygon constructed for each sub-domain. The

number and sizes of the sub-domains depend upon the curvatures present and the

desired precision in approximating the concave surface of the rock in its geometric

model.

3. Determining the initial contact points:

The points from the dense interface-point cloud are projected onto the initial inter-

face plane [Fig. 3.2(e)]. Two closed loops that enclose all the points are traced out

[Fig. 3.2(f)]. The outer loop is the convex envelope or the 2-D polygon circum-

scribing all the points in Fig. 3.2(e). The points belonging to the inner loop are

manually picked to remove any sharp protrusions and the resulting set of points are

then smoothed using a cubic spline. The area within the inner loop is where the rock

is initially in contact with the pedestal and the vertices of this polygon are the ini-

tial contact points. They are are appended to the “rock” points from step (ii). The

vertices of the outer polygon are appended to the “pedestal” points also from step

(ii). This ensures that the outward normal to the pedestal is unambiguously defined

at each of the initial contact points.

4. Identifying contact point candidates for future time steps:

The rigid body dynamics algorithm evaluates the rocking and sliding of the rock

on the pedestal by time-integrating the equations of motion, iteratively satisfying

dynamic equilibrium in the displaced configuration of the rock. The set of points on

the rock that are in contact with the pedestal is continuously updated in each iteration

of a time step. Smooth and accurate tracking of the rocking and sliding motion of

the rock is best achieved using a finely sampled rock surface with a closely spaced
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set of candidate contact points to choose from. The coarse cloud of points used in

the determination of the physical properties of the rock in step (ii) will not suffice. A

higher resolution of points is needed, especially near the rock’s base.

To obtain varying resolution of points, we create two 3-D rectangular grid of points,

a coarse grid spanning the entire height of the rock-pedestal system (with a grid

spacing of 0.6 m for the Echo Cliff PBR) and a finer grid spanning only the part of

the rock near its base (with a grid spacing of 0.1 m for the Echo Cliff PBR). The

finer grid extends to about 1 m above the highest initial contact point from step (iii).

The dense interface-point cloud from step (i) is combined with the “rock” points of

step (ii). Delaunay triangulation is performed on this set of points to obtain a second

3-D polygon in the same manner as in step (ii). The grid points from the finer 3-D

grid that lie inside or on this 3-D polygon are extracted. Likewise, the grid points

from the coarser 3-D grid that lie inside or on the 3-D polygon from step (ii) are also

extracted. Of these, the points at a given grid elevation (Z coordinate) constitute the

horizontal (X-Y) cross-section of the rock at that elevation. The outermost points

at each elevation are combined to describe the outer surface of the rock [Fig. 3.3].

These are all the points at which the rock may come in contact with the pedestal in

future time steps.

5. Constructing the pedestal surface:

A piecewise linearly interpolated pedestal surface is created from the “pedestal”

points of steps (ii) and (iii). On plan (horizontal), the pedestal surface forms a grid.

The outward normal to the pedestal surface at each grid point is calculated based on

the vertical elevation of the that grid point and its four closest neighbors. The coordi-

nates of the points constituting the pedestal surface and the outward normal at these

points constitute the final set of inputs to the rigid body dynamics algorithm.
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Figure 3.3: Final 3-D model with the pedestal surface and the points representing the nodes on the
outer surface of the rock.

3.3 Material properties of PBR-pedestal system

The approximation of the PBR and its pedestal to rigid bodies eliminates the need to char-

acterize stiffness-related properties such as Young’s modulus, shear modulus and bulk mod-

ulus, and strength-related properties such as fracture toughness and crushing (compressive)

strength. Also, the response of a rigid body depends not on the absolute, but on the relative

distribution of mass density. If the rock is further assumed homogeneous (i.e., the mass

density is uniform), then the dynamic response does not depend on the numerical value of

the mass density. The only material-related properties that need to be defined are the coef-

ficients of static friction, kinetic friction, and restitution between the PBR and its pedestal

so that relative sliding and impact may be modeled.

Byerlee [27] reviewed the results from friction experiments on different rock types

subjected to varying normal stresses. He inferred that the friction coefficient is independent

of rock type/material and varies between 0.6 and 1.0 for rocks under low normal stresses

(<5 MPa). The weight of a PBR divided by the area of contact with its pedestal is usually

less than 5 MPa. For example, the normal stress applied by the Echo Cliff PBR on its

pedestal is in the range of 1-1.5 MPa based on commonly encountered rock densities of

2000-3000 kg/m3. Therefore, the static and kinetic friction coefficients between a PBR and
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its pedestal may be assumed to be in the range of 0.6-1.0.

The rebound velocity of a rigid body upon impact is characterized by the coefficient

of restitution. In the shake experiments conducted by Purvance et al. [88], the rebound

velocity of the rock upon impact with the table was negligible. Therefore, the coefficient

of restitution between the PBR and its pedestal is assumed to be zero and rock-to-pedestal

collisions are assumed perfectly inelastic.

3.4 Validation of the rigid body dynamics algorithm

The rigid body dynamics algorithm has been validated against analytical solution of the

rocking-sliding-impacting of simple rigid-body assemblies such as a rectangular block on

a horizontal surface in Chapter 2. To validate the accuracy of the algorithm in analyzing

real rocks with complex 3-D shapes, we use the results from shake table tests of an actual

rock [Fig. 3.4(a)] labeled ‘K’ in [88]. Starting with multi-directional images of the rock,

obtained from Purvance (personal communication), we constructed the 3-D point cloud

describing the rock and its pedestal (a flat surface in this case) using Insight3D [Fig. 3.4(b)].

This software uses the paper targets with unique symbols to align the images precisely and

form the 3-D shape. The point cloud obtained using Insight3D does not have sufficient

resolution to capture the interface between the rock and the pedestal accurately. Therefore,

the points near the rock-pedestal interface need to be manually adjusted with the use of

the multi-directional images to ensure accurate contact modeling. Starting with this point

cloud, the 3-D geometry of the rock is created using the procedure outline earlier [Fig. 3.5].

Purvance et al. [88] subjected rock ‘K’ to scaled versions of ten single component

ground motion waveforms on the shake table. Of these, two are synthetically generated

and one is a 2 Hz full sine wave. The remaining ground motion histories are the strong

component of recorded ground motion from various earthquakes (N90E component of the

1999 Chi-Chi Earthquake recorded at station TCU074, N0E component of the 1985 Mi-

choacan Earthquake recorded at Caleta de Campos, N51E and N321E components of the

2002 Denali Earthquake recorded at Pump Station 10, N230E component of the 1979 Im-

perial Valley earthquake recorded at the El Centro Array Station 5, N90E component of
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(a) (b)

Figure 3.4: (a) An image of Purvance et al.’s rock ‘K’ and (b) the point cloud obtained by combining
the multi-directional images of rock ‘K’ using Insight3D.

Figure 3.5: 3-D model of Purvance et al.’s rock ‘K’ created from multi-angle images of the rock.

the 1999 Duzce earthquake recorded at Izmit, and N0E component of the 1999 Chi-Chi

Earthquake recorded at station TCU052). The ten waveforms were first normalized such

that their PGA is 1 m/s2. Then, they are scaled up in steps of 0.025 g from a PGA of 0.1 g

to a level at which the rock overturns. The peak ground displacement (PGD) of the records

was maintained below the 0.3 m displacement capacity of the shake table by applying a

low-frequency filter to the waveforms. The rock is placed on a roughened concrete slab

to preclude sliding. Ground motions are applied in the direction in which least PGA is

required to initiate rocking. The smallest PGA at which the rock overturns under the scaled

versions of the ten waveforms is shown plotted (black squares) as a function of the wave-

45



form PGV/PGA ratio in Fig. 3.6(a). While the PGV/PGA ratio of a waveform remains

unchanged under linear scaling, it does change when a low frequency filter is applied.

Therefore, the average PGV/PGA for each waveform is used in developing Fig. 3.6(a).

Here, the 3-D model of the rock is analyzed using the rigid body dynamics algorithm.

The pedestal is taken to be a flat horizontal surface as in the experimental setup. The no-slip

boundary condition is enforced through the use of a high value of 2.0 for both static and

kinetic friction coefficients between the rock and the pedestal. The rock model is analyzed

under the same set of scaled ground motion waveforms. The PGD is limited to 0.3 m

as in the experiment using a highpass butterworth filter. The smallest PGA at which the

rock model overturns under each scaled waveform is indicated by the red filled circles in

Fig. 3.6(a). Clearly, the results from the rigid body dynamics algorithm agree well with

those from experiments, with the differences in the minimum overturning PGA being less

than 0.1 g for most waveforms. The only waveform for which the mismatch exceeds 0.1 g

is the sine wave (PGV/PGA=0.09), which has a short duration of 0.5 s. It is unclear as to

why the results for the sine wave do not match. One possible reason may be that the rock

experienced sliding coupled with rocking. In the shake table experiment for a different

rock, sliding was observed at lower values of PGV/PGA, resulting in higher overturning

accelerations. It is difficult to judge from the shake table experiment videos whether this

rock also experienced sliding at lower PGV/PGA values as the rock’s base is not clearly

visible.

To verify the empirical expression that they had developed, Purvance et al. [88] approx-

imated the rock to a 2-D rectangular block with two points of contact [Fig. 3.6(b)]. First,

they took the two extreme points at which the rock is initially in contact with the concrete

slab as the contact points. Using their empirical equation, they estimated the gray region in

Fig. 3.6(a) as the combination of PGA and PGV/PGA for which the overturning probability

of the rock is between 0.05 and 0.95. It is clear that the shake-table tests demonstrate the

rock to be far more fragile than what the empirical equation predicts. Second, they used

tilt tests to correct for the positions of the two contact points and re-estimated the overturn-

ing fragility. They were able to improve the prediction significantly. Unfortunately, most

PBRs are located in difficult terrain and inaccessible locations. It is usually not possible
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Figure 3.6: (a) The minimum PGA required for Purvance et al.’s rock ‘K’ to overturn under scaled
versions of ten ground motion waveforms characterized by their PGV/PGA (black squares: exper-
iment; red circles: rigid body dynamics simulation. The gray region is the combination of PGA
and PGV/PGA for which the overturning probability of the rock is between 0.05 and 0.95 from
Purvance et al.’s empirical equation [88]. (b) The approximate 2-D block model of the rock used by
Purvance et al. with α1=0.32 and α2=0.30.

to perform tilt tests on them. In the absence of tilt tests, our algorithm should clearly be

preferred over the empirical equation.

3.5 Critical toppling intensity of the Echo Cliff PBR

Real world PBRs are quite unlike the laboratory-tested regularly shaped rock ‘K’ sitting on

a flat horizontal surface. The Echo-Cliff PBR is a case in point. It is asymmetric, resting

at the edge of a cliff on a downsloping (with a gradient of about 5◦) pedestal [Fig. 3.2(b)],

with an overhang of about 4 m (Fig. 3.7). Both the gradient and the overhang are oriented at

a counter-clockwise (CCW) angle of approximately 135◦ to the X axis. As a consequence,

the rock may be particularly vulnerable to sliding, rocking, or coupled rocking-sliding

along this direction, with gravity aiding the earthquake excitation in toppling the rock. Of

course, given the complex asymmetric geometry of the rock-pedestal system, its dynamic

response may be sensitive to the directionality of ground motion as well.

The effects of ground excitation direction and sliding are considered separately. To
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Figure 3.7: 3-D model of the rock and the pedestal. In the figure to the right, plan view of the initial
contact interface (blue circles) and the widest part of the rock’s base (green circles) are presented.
The overhanging part of the rock’s base is located around 135◦ CCW from the X axis.

isolate the effect of the direction of ground excitation, the static and kinetic coefficients of

friction between the rock and its pedestal are set to 1.0 (the upper limit of the range of fric-

tion coefficients seen in rocks). With friction coefficients being so high, the rock may be

expected to experience rocking predominantly with little or no sliding under ground exci-

tation. We estimate the overturning probability of the rock as a function of ground motion

parameters by subjecting it to an ensemble of 140 records from worldwide earthquakes

with magnitudes greater than 6 and source-to-site distances less than 100 km (see [89] for

the complete list of earthquakes).

The records are first normalized such that the PGA of the strong ground motion compo-

nent is 1 m/s2. The response spectra corresponding to the strong ground motion component

and the orthogonal horizontal component of these normalized earthquake records are pre-

sented in Fig. 3.8. The normalized records are scaled to yield records with PGA from

1 m/s2 to 19 m/s2 in steps of 1 m/s2. To study the effect of ground motion directionality,

3-component acceleration histories are applied to the pedestal with the strong horizontal

component oriented alternately in eight different directions, namely at 0◦, 45◦, 90◦, 135◦,

180◦, 225◦, 270◦, and 315◦ counter-clockwise to the X axis. Note that the pedestal accel-

erating in the 0◦ direction will invoke the rock to respond in the opposite direction, i.e., at
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Figure 3.8: Response spectra for the (a) strong ground motion component and (b) orthogonal hori-
zontal component of the 140 normalized ground motions.

180◦. The rock-pedestal system is analyzed under the 2660 PGA-scaled earthquake records

in each of the 8 directions. The overturning probability of the rock as a function of PGA

and PGV/PGA is shown in Fig. 3.9 for each of the eight excitation directions. These plots

are developed by binning the 140 scaled records at each PGA level into PGV/PGA bins of

0.05 s width. The overturning probability in each bin at each PGA level is the fraction of

records (in that bin and that PGA level) that overturn the model. The sampling of different

regions of the domain can be gauged by the thickness of each column. The thicknesses of

the columns along the PGV/PGA axis are proportional to the fraction of earthquake records

(out of 140) that are sampled in a given PGV/PGA bin. Regions with thinning columns are

regions that are sparsely sampled; obviously, the results there may not be as reliable as the

densely sampled regions. The colored contour lines correspond to overturning probabilities

of 0.1, 0.5, and 0.9.

The overturning probability of the rock is very low for PGA less than 3 m/s2 [Fig. 3.9].

The quasi-static toppling acceleration of the rock, i.e., the minimum constant ground accel-

eration that can overturn the rock, varies between 2-4 m/s2 depending on the direction of

ground excitation. In a few cases at least, it appears that the rock overturns at PGAs smaller

than the quasi-static toppling acceleration. For example, if we were to force the rock to top-

ple in the 315◦CCW direction, i.e., directly opposing the gradient of the pedestal, the quasi-

static toppling acceleration to be applied in the 135◦ direction would have to be 3.65 m/s2.
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Figure 3.9: Overturning probability of the Echo Cliff PBR as a function of PGA and PGV/PGA
under three-component pedestal excitation with the strong horizontal component oriented at (a) 0◦,
(b) 45◦, (c) 90◦, (d) 135◦, (e) 180◦, (f) 225◦, (g) 270◦, and (h) 315◦ counter-clockwise (CCW) to the
X axis. The upper and lower black lines, predicted by Purvance et al.’s empirical relation, represent
the PGA-PGV/PGA combinations corresponding to rock overturning probabilities of 1% and 99%,
respectively.

Yet, several ground motion records with PGAs around 2.5 m/s2 applied in the 135◦ di-

rection appear to overturn the rock [Fig. 3.9(d)]. This may be attributed to the absence

of strong directionality in the ground motion, causing rocking to initiate in other, perhaps

more vulnerable, directions. The histogram of PGAs in the orthogonal horizontal and the
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vertical directions for the 140 normalized records are shown in Figs. 3.10(a) and 3.10(b),

respectively. A PGA bin width of 0.2 m/s2 is used. These figures show that the orthogonal

horizontal component is almost as intense as the strong ground motion component for half

(70) of the earthquake records [Fig. 3.10(a)] and the vertical PGA is more than 0.6 m/s2 for

65 of the earthquake records [Fig. 3.10(b)]. Figs. 3.11(a) and 3.11(b) show traces of the

resultant horizontal ground acceleration at Lamont station from the 1999 Duzce earthquake

and at the Cholame station from the 1966 Parkfield earthquake, respectively. These records

belong to the set of 70 records whose resultant ground acceleration vectors have no pre-

ferred azimuthal direction and whose amplitudes at several azimuths are similar. In these

70 cases, the resultant horizontal PGA is likely to be appreciably larger than the compo-

nent PGA and may exceed the quasi-static toppling acceleration in the resultant direction,

initiating rocking motion in that direction. Alternately (or in concert with ground motion

resultant), rocking may initiate in directions in which the rock may have a substantially

lower quasi-static toppling acceleration.
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Figure 3.10: Histogram depicting the distribution of PGA of the (a) orthogonal horizontal ground
motion component and (b) the vertical ground motion component of the 140 normalized earthquake
records.

The absence of directionality in more than half the ground motion records results in

little differences in the overturning fragility maps for the eight different ground motion

orientations. Adding to that is the extra vulnerability of the rock in the overhang/pedestal-

downsloping direction (135◦ CCW to the X axis), where gravity aids the earthquake ex-

citation in toppling the rock. Fig. 3.12 shows the histogram of the toppling direction of
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Figure 3.11: The traces of the resultant horizontal ground acceleration at (a) Lamont station from
the 1999 Duzce earthquake and (b) Cholame station from the 1966 Parkfield earthquake.

the Echo Cliff PBR. The bins are of width 45◦ and are centered on 0◦, 45◦, and so on.

The height of a bin corresponds to the fraction of analysis cases out of 21280 (140 records

× 19 scaling factors × 8 orientations) where toppling occurs at the overturning angles

corresponding to that bin. The rock model overturns between 122.5◦ and 157.5◦ in approx-

imately 60% of the 21280 cases. Rocking could be initiated in any direction, but the rock

finds it easiest to topple in the vicinity of the 135◦ CCW direction, thanks to the presence

of the gradient and the overhang.
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Figure 3.12: Histogram depicting the overturning direction of the Echo Cliff PBR. The height of a
bin corresponds to the fraction of analysis cases out of 21280 where toppling occurs at the overturn-
ing angles corresponding to that bin.

The PGA required to overturn the rock decreases with increase in PGV/PGA [Fig. 3.9].

Purvance et al. [88] demonstrated that PGV/PGA correlates with the duration of the pre-
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dominant acceleration pulse. It follows therefore that as the duration of the acceleration

pulse increases, the amplitude required to overturn the rock decreases. To further compare

the results from our simulation against those obtained from the empirical relation derived

by Purvance et al. [88], we approximate the rock to a 2-D cross section balanced on a plane

at two contact points [Fig. 3.13(a)]. These contact points are estimated from the intersec-

tion of the direction of excitation with the inner loop of the contact interface [Fig. 3.13(b)].

The input to the empirical equation are the mass of the rock (m), distance of the two contact

points from the center of mass (R1 and R2), and the mass moment of inertia (I) of the rock

about the center of mass in the direction perpendicular to the ground excitation. The mass

and mass moment of inertia are taken from the 3-D rock model.
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Figure 3.13: (a) 2-D approximation of the rock-pedestal system for excitation applied in the x
direction and (b) contact points (black circles) for the 2-D model of the rock in different directions
of excitation. The blue circles indicate the initial contact interface between the rock and the pedestal.

The black lines in each subfigure of Fig. 3.9 are the predictions by Purvance et al.’s

empirical relation. The probability is 0.99 that PGA-PGV/PGA combinations above the

upper line would overturn the Echo Cliff PBR, whereas the probability is 0.01 that PGA-

PGV/PGA combinations above the lower line would overturn the rock. The empirical

equation is able to predict the PGA-PGV/PGA combinations required for lower overturn-

ing probabilities well, but fails to accurately predict the PGA-PGV/PGA combinations

required for higher overturning probabilities. In particular, the overturning probability is
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significantly under-predicted for ground excitation oriented at 135◦ and 315◦ CCW to the

X axis [Figs. 3.9(d) and 3.9(h)], the axis along which the pedestal gradient and the rock

overhang are present. The errors of prediction by the empirical equation may be attributed

to the rock’s motion being constrained to the 2-D plane in the direction of strong ground

excitation. That this is clearly not the case for this rock may be seen from an analysis of the

rock subjected to a simple idealized sawtooth velocity pulse with PGV of 5 m/s and time

period T of 3.5 s applied at 0◦ to the X axis (Fig. 3.14).
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Figure 3.14: 2-D and 3-D rock models subjected to 1-cycle idealized sawtooth waveform excitation
with T = 3.5 s and PGV = 5 m/s applied at 0◦ to the X axis. Trajectories of the center of mass
projected on to the X-Y plane for (a) 2-D rock model with 2-point contact (rock does not topple)
and (b) 3-D rock-pedestal model (rock topples).

The sensitivity of the overturning probability of the rock model to other ground mo-

tion parameters is explored by plotting it on the PGA-PGD [Fig. 3.15(a)] and the PGA-

PGV [Fig. 3.15(b)] planes. Only the results corresponding to the strong component of the

ground motion being oriented at 315◦ CCW to the X axis are presented here. The results

corresponding to the other directions are qualitatively similar [refer to Appendix C for the

full set of figures]. These figures are developed by binning the 140 scaled records at each

PGA level into PGD bins of 0.25 m width [Fig. 3.15(a)] and PGV bins of 0.25 m/s width

[Fig. 3.15(b)]. The overturning probability in each bin at each PGA level is the fraction of

records (in that bin and that PGA level) that overturn the rock model. It should be noted

that the PGA-PGD and PGA-PGV domains in Fig. 3.15 are not uniformly sampled by the

2660 scaled records. The sampling of different regions of the domain can be gauged by the
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varying thickness of each column (at each PGA level). The thickness of the column at each

PGA level in a given PGD or PGV bin is proportional to the fraction of points (out of 140)

being sampled in that bin. It can be seen from the figures that the overturning probability

is quite low for PGA, PGV, and PGD below 3 m/s2, 0.75 m/s, and 0.25 m, respectively. A

small fraction of records with PGA in the range of 10-15 m/s2 and PGV in the range of

0.25-0.5 m/s are able to overturn the rock model [Fig. 3.15(b)]. Similarly, a small fraction

of records in the PGA range of 13-15 m/s2 and PGD lower than 0.25 m are able to overturn

the rock model [Fig. 3.15(a)]. Also, the PGV required to overturn the rock increases grad-

ually with PGA (follow the red bins with overturning probability in the range of 0.8-1.0

in Fig. 3.15(b)). On the other hand, there is no discernible relation between the PGA and

PGD required to overturn the rock model.

Figs. 3.15(a) and 3.15(b) do not provide sufficient information on the dependence of the

overturning probability on ground motion parameters PGD and PGV. Therefore, a subset

of 2046 of the 2660 scaled earthquake records with PGV less than 3 m/s and PGD less than

3 m are used for developing Fig. 3.16. This figure shows the overturning probability of the

rock on the PGD-PGV plane. The 2046 records are divided into bins of width 0.25 m/s

in PGV and 0.25 m in PGD. The overturning probability in each bin is the fraction of

records (in that bin) that overturn the rock model. The varying thicknesses of the column

are proportional to the fraction of earthquakes (out of 2046) that are sampled in a given

PGV and PGD bin. Beyond a PGV of 0.5 m/s, the PGD required to overturn the rock

model decreases with increase in PGV.

The overturning of the rock is likely to be affected by the duration of the strong shaking,

defined as the length of the record (in seconds) within which 90% of the seismic energy

is contained. Here, we use Anderson’s energy integral formulation [8] to determine the

duration of the 140 earthquake records. In this method the square of the velocity time his-

tory is integrated to arrive at the energy of the record. Figs. 3.17(a) and 3.17(b) show the

overturning probability of the rock on the PGV-duration and PGA-duration planes, respec-

tively. Fig. 3.17(a) is developed similar to Fig. 3.16 by dividing the scaled earthquakes

records with PGV less than 3 m/s into bins of width 0.25 m in PGV and 5 s in duration.

Fig. 3.17(b) is developed similar to Fig. 3.9 by dividing the 140 earthquake records at each
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Figure 3.15: Overturning probability of the rock model as a function of (a) PGD and PGA, and (b)
PGV and PGA. Each column in the figures contains the results from 140 earthquake records scaled
to a specific PGA level. The varying thicknesses of the column are proportional to the fraction of
earthquakes (out of 140) being sampled in a given PGD or PGV bin.

PGA level into bins of width 5 s in duration. Fig. 3.17(a) shows that the PGV required

to overturn the rock model is more or less independent of the duration of the earthquake.

However, the PGA required to overturn the rock model decreases more or less uniformly

with duration with the exception of the first and last columns corresponding to duration

bins 5-10 s and 45-50 s. A low PGA of 4 m/s2 seems to suffice to overturn the rock under

ground motions with duration between 5 s and 10 s, whereas a high PGA of 7 m/s2 seems

to be needed to overturn the rock under ground motions with longer durations of 45-50 s.

This result is surprising. The tiny thickness of these end columns indicate that these regions
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Figure 3.16: Overturning probability of the rock model as a function of PGD and PGV. 2046 out of
the 2660 scaled earthquake records which have PGV and PGD less than 3 m/s and 3 m, respectively,
are used to create this figure. The 2046 earthquakes are divided into bins of width 0.25 m/s in PGV
and 0.25 m in PGD. The varying thicknesses of the column are proportional to the fraction of
earthquakes (out of 2046) that are sampled in a given PGV and PGD bin.

of the PGA-duration plane are sampled poorly (very few of the records have durations in

these ranges) and these outlier observations may not be reliable.

Next, we vary the rock-pedestal friction coefficients and compare the overturning prob-

abilities of the rock. For this analysis, we orient the strong ground motion component at

315◦ CCW to the X axis to get the base of the rock moving in its most vulnerable direc-

tion (at 135◦ CCW to the X axis along the pedestal gradient and rock overhang). Here

too, we assume the same coefficient for static and kinetic friction. We analyze the rock

under the 2660 scaled records for friction coefficients (µ) of 0.6 and 0.8, and compare the

results with that obtained earlier for µ = 1.0. When the PBR is subjected to earthquake

excitation, it can slide, rock, or exhibit sliding coupled with rocking. For a constant ground

acceleration, the response mode of the rock shifts from pure sliding to sliding coupled with

rocking and then to pure rocking with increase in the coefficient of friction. For a rigid

rectangular block placed on a rigid horizontal ground, Shenton [95] obtained the relation

between the constant horizontal ground acceleration and the coefficient of friction required

to initiate rocking, sliding, and coupled rocking-sliding of the block. He observed that

for a ground excitation amplitude greater than the quasi-static toppling acceleration of the

block, it can undergo pure sliding only for friction coefficients below its width to height
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Figure 3.17: Overturning probability of the rock model as a function of (a) PGV and duration, and
(b) PGA and duration. 2190 out of the 2660 scaled earthquake records with PGV less than 3 m/s and
duration less than 50 s are used for (a). The 2190 earthquakes are divided into bins of width 0.25 m/s
in PGV and 5 s in duration. The varying thicknesses of the column are proportional to the fraction
of earthquakes (out of 2190) that are sampled in a given PGV and duration bin. Each column in
the (b) contains 140 earthquake records scaled to a specific PGA level. The varying thicknesses of
the column are proportional to the fraction of earthquakes (out of 140) being sampled in a given
duration bin.

ratio. This observation, when applied to the 2-D cross-section of the PBR at 135◦ [sim-

ilar to Fig. 3.13(a)] shows that the rock can undergo pure sliding only if µ is less than

0.15. Though the gradual pedestal-gradient is not considered in this simple calculation, it

can be shown that the transition from sliding to sliding coupled with rocking will occur at

even lower values of friction coefficient when the gradient in contact interface is included.
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Therefore, for the range of friction coefficients observed in rocks (0.6-1.0), the PBR will

undergo either rocking or sliding coupled with rocking under earthquake excitation.

If the rock were to exhibit only sliding, the relative displacement of the contact points,

i.e., points belonging to the inner loop in Fig. 3.2(f), with respect to the pedestal can be used

as a measure of the sliding displacement. However, rocking in 3-D can also affect the rela-

tive displacements of the contact points with respect to the pedestal. Therefore, the effect of

sliding cannot be isolated when the rock exhibits sliding coupled with rocking. Moreover,

the alignment of the preferred overturning direction (direction of the overhang) of the rock

with the preferred sliding direction (gradient of the contact interface) makes it harder to

judge the contribution of sliding to the toppling of the rock model on a case by case basis.

However, comparison of the overturning probability of the rock model in the PGD-PGA,

PGV-PGA, and PGD-PGV planes for different friction coefficients provide qualitative in-

sights into the effect of sliding on the overturning of the rock model [Figs. 3.18(a) and

3.18(b)].
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Figure 3.18: Comparison of overturning probability of the Echo Cliff PBR taken from the PGD-
PGA, PGV-PGA, and PGD-PGV planes for (a) µ = 0.6 and (b) µ = 0.8 against that for µ = 1.0.
Each data point is a direct comparison between the overturning probability of a PGV bin at a given
PGA level (blue asterisk), PGD bin at a given PGA level (red circle), and PGD bin at a given PGV
range (magenta square) for µ = 0.6 and µ = 0.8 against µ = 1.0. Most of the data points are
contained within the solid black lines, which indicate that the overturning probability for µ = 0.6
and µ = 0.8 are within 0.3 of that for µ = 1.0.

The overturning probability from each cell of Figs. 3.15(a), 3.15(b), and 3.16 for mu =
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1.0 is compared against that for the same cell in the corresponding figures developed for

mu = 0.6 [Fig. 3.18(a)] and for mu = 0.8 [Fig. 3.18(b)]. Blue asterisks correspond to

overturning probabilities taken from the PGV-PGA plane, red circles from the PGD-PGA

plane, and magenta squares from the PGD-PGV plane. If the response of the rock was

independent of the coefficient of friction, all points would lie on the dashed black diagonal

line. The following observations can be made: (i) friction does play a role in the response

of the rock; (ii) a lower friction coefficient results in higher probability of overturning (most

points on Fig. 3.18(a) and a large majority of the points in Fig. 3.18(b) lie above the dashed

diagonal line); clearly, sliding makes the rock more susceptible to toppling over the cliff.

(iii) In general, the overturning probabilities for µ = 0.6 and µ = 0.8 are within ±0.3 of

those for µ = 1.0 (indicated by the solid black bounding lines in these figures).

All the analyses so far were conducted using 3-component ground motion. To under-

stand the effect of vertical ground motion on the overturning probability of the rock, we

analyze the rock model under just the horizontal ground motion components with the strong

component oriented at 315◦ CCW to the X axis. A friction coefficient of 1.0 is used for this

analysis. As for the friction study, the overturning probabilities of the rock taken from the

PGD-PGA, PGV-PGA, and PGD-PGV planes under 3-component ground motion are plot-

ted against the corresponding probabilities under 2-component ground motion (without the

vertical component) in Fig. 3.19. Once again, if the response of the rock was independent

of the vertical ground motion, all points would lie on the dashed black diagonal line. The

fact that they are scattered off the diagonal indicates that vertical ground motion does play

a role in the rocking-sliding response. However, the fact that they are secularly scattered

on either side of the diagonal indicates that vertical ground motion may aid or impede the

overturning of the rock. The overturning probabilities under 2-component ground motion

(without the vertical component) are well within 0.3 of those under 3-component ground

motion.
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Figure 3.19: Comparison of overturning probability of the Echo Cliff PBR taken from the PGD-
PGA, PGV-PGA, and PGD-PGV planes under 3-component ground motion are plotted against the
corresponding probabilities under 2-component ground motion (without the vertical component).
Each data point is a direct comparison of the overturning probability of a PGV bin at a given PGA
level (blue asterisk), PGD bin at a given PGA level (red circle) and PGD bin at a given PGV
range (magenta square) from the analysis using 3-component ground motion against that using
2-component ground motion. Most of the data points are contained within the solid black lines,
which indicate that the overturning probabilities under 2-component ground excitation are within
0.3 of that under 3-component ground motion.

3.5.1 Applications of fragility maps

The overturning fragility maps generated for the Echo Cliff PBR may be used to check the

ground motions predicted for this location (i) by the USGS seismic hazard maps and (ii)

by scenario earthquake simulations. Before using the fragility maps for such applications,

we first assess whether they can accurately predict the overturning probability of the rock

under other recent earthquakes. So, we analyze the rock-pedestal system under ground

motions recorded during the 2011 Christchurch earthquake at 20 stations located less than

20 km from the rupture [22]. Of the 20 ground motions considered, 10 records overturn the

rock [black asterisks in Fig. 3.20] and the rock does not overturn for the other 10 records

[black squares in Fig. 3.20]. A comparison between the overturning probability of the rock

(as a function of PGA and PGV/PGA) obtained from the fragility maps with the binary

overturning results of the rock obtained from the simulations is presented in Fig. 3.20. For

16 (out of 20) records, the results from the simulations are in good agreement with the

fragility maps. The records that overturned the rock have overturning probability in the
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Figure 3.20: Comparison between the results obtained from the rigid body dynamics simulation of
the rock under ground motions from 2011 Christchurch earthquake with the overturning probability
of the rock as a function of PGA and PGV/PGA obtained from the fragility maps generated ear-
lier. The black asterisks in the figure represent the PGA and PGV/PGA of the 10 ground motion
records for which the rock overturned in the simulation. The black squares represent the PGA and
PGV/PGA of the ground motion records for which the rock did not overturn.

0.2-0.6 range and the records that did not overturn the rock have overturning probability

below 0.2. For three records that overturned the rock, the overturning probability is below

0.2. The overturning probability is in the 0.2-0.4 range for one record that did not overturn

the rock. However, this disagreement occurs only very close to the transition region from

overturning probability of 0-0.2 to 0.2-0.4.

The 2008 USGS hazard maps [86] specify a PGA of 6.9 m/s2 and an S1s
a (the 5%

damped spectral acceleration at 1 s period) of 5.16 m/s2 for the Echo Cliff PBR location

at the hazard level of 2% probability of exceedance in 50 years (or an earthquake with a

2475-year return period). Because PGV and S1s
a are correlated, the Newmark-Hall rela-

tionship [Sa(1) = 1.056PGV ] may be used to obtain a PGV of 4.89 m/s. The correspond-

ing PGV/PGA works out to 0.7 s. By extrapolating the results from Fig. 3.9 to higher

PGV/PGA values, it can be seen that the rock will overturn for this PGA and PGV/PGA

combination. Therefore, the seismic hazard at this location may be over-predicted by the

USGS hazard maps. Design of buildings based on this level of shaking may be conservative

and not cost-effective. We should point out that the findings from this study for this rock

site cannot be extended to basin or soil sites.

Because the Echo Cliff PBR is located near the San Andreas fault, it can also be used
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Figure 3.21: An image of the Pacifico rock taken by Dr. Jim Brune and Dr. Richard Brune.

to check if the synthetic ground motion at this site from the Southern California ShakeOut

scenario violates the existence of the rock. The simulated ShakeOut scenario earthquake,

used in the Great California ShakeOut Exercise and Drill, is a Mw 7.80 rupture, initiating

at Bombay Beach and propagating northwest through the San Gorgonio pass, terminating

304 km away at Lake Hughes in the north. Using a source developed by Hudnut et al.

[53] and the SCEC-CVM wave-speed model [67, 77, 78], Graves et al. [43] simulated 3-

component long-period ground motion waveforms in the greater Los Angeles region. The

broadband version of the ground motion at the Echo Cliff PBR location was obtained from

Robert W. Graves (personal communication). The PGA, PGV, and PGD of this record are

0.32 m/s2, 0.07 m/s, and 0.2 m, respectively. As can be seen from Figs. 3.15(a), 3.15(b),

and 3.16, the rock will not overturn for this level of ground motion. Therefore, the synthetic

ground motion from the shakeout scenario does not violate the existence of the Echo Cliff

PBR at this location.

3.6 Pacifico Rock

Pacifico rock [Fig. 3.21] is one of the precariously balanced rocks identified by Brune

which is located approximately 12 km from the San Andreas Fault [92]. The proximity of

this rock to the San Andreas Fault and the time period for which the rock has been present

in this precarious configuration (approximately 12,000 years [15]) suggest that this PBR

may provide an independent constraint on the historic peak ground motion experienced by

this region, and, by extension the future ground shaking in this region.
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Purvance et al. [92] estimated the overturning probability of this rock as function of

PGA and PGV/PGA using the empirical expression derived by Purvance et al. [88]. For this

study, they approximated the rock to a 2-D block with 2 contact points (without using inputs

from tilt tests) and the resulting parameters of the equivalent 2-D rectangular block are

then used as input to the empirical expression. As discussed in Section 3.4, the empirical

equation under-predicts the overturning probability of the rock when the parameters for the

2-D block are not corrected using tilt tests. Therefore, the fragility estimates of the rock

obtained from this analysis may not be accurate. Here, we conduct 3-D dynamic analysis

on the rock-pedestal system to arrive at accurate fragility estimates for the rock and use it as

an independent test for the seismic hazard maps and synthetic ground motion simulations

rupturing parts of the San Andreas Fault.

3.6.1 Toppling analysis of Pacifico rock

Dr. Jim Brune and Dr. Richard Brune combined multi-angle images of the rock and

pedestal using PhotoModeler to arrive at the 3-D point cloud describing the geometry of

the rock and the pedestal. Here, we use this point cloud to estimate the physical proper-

ties of the rock and to construct the 3-D rock surface and pedestal surface as detailed in

Section 3.2. The 3-D geometric model of the rock and its pedestal [orthogonal view from

what is presented in Fig. 3.21] and initial contact interface between the two are shown in

Figs. 3.22(a) and 3.22(b), respectively. The initial contact interface Fig. 3.22(b) indicates

that the rock is very slender in one direction (along the X axis). Therefore, the rock is most

likely to exhibit rocking response in the X-Z plane. The rock is resting on a downward

sloping (with a gradient of about 8◦) pedestal oriented along 135◦ in the counter clockwise

direction (CCW) from the X axis. For high friction coefficients of 1.0 between the rock the

pedestal, the rock is not expected to slide. However, for lower friction coefficients of 0.6 or

0.8, the rock may exhibit sliding coupled with rocking.

We first assume the friction coefficient between the rock and pedestal to be 1.0 and

estimate the ground motion parameters required to overturn the rock. For this analysis,

we use the same 140 earthquake records as in Section 3.5. These ground motions are first
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Figure 3.22: (a) 3-D model of the rock-pedestal system and (b) initial contact interface between the
rock and its pedestal. The black circles indicate the contact points used to compare the results with
Purvance’s empirical equation.

normalized such that the PGA of the dominant strong ground motion component is 1 m/s2

and then scaled from PGA of 1 m/s2 to 20 m/s2 in steps of 1 m/s2. As the PBR is most

sensitive to rocking motion along the X axis, we consider two cases in which the strong

ground motion component is applied to the pedestal at: (i) 0◦ CCW from the X axis and

(ii) 180◦ CCW from the X axis. Note that the pedestal accelerating in the 0◦ direction

will invoke the rock to respond in the opposite direction, i.e., at 180◦. The overturning

probability of the rock as a function of PGA and PGV/PGA is shown in Fig. 3.23 for the

two different directions of ground excitation. These plots are developed similar to Fig. 3.9

by binning the 140 scaled records at each PGA level into PGV/PGA bins of 0.05 s width.

The colored contour lines correspond to overturning probabilities of 0.1, 0.5, and 0.9.

As can be seen from Fig. 3.23, the overturning probability of the rock is very low

for PGA less than 4 m/s2. It can also be seen from these figures that the PGA required

to overturn the rock increases with decrease in PGV/PGA and that the results for ground

excitation applied at 0◦ and 180◦ are qualitatively similar. A similar trend was also observed

in the Echo Cliff PBR [Fig. 3.9].

In order to compare the results from our simulation with those obtained from the empir-

ical relation derived by Purvance et al. [88], we approximate the rock to a 2-D cross section

balanced on a plane at two contact points as we did for the case of the Echo Cliff PBR. The
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Figure 3.23: Overturning probability of the Pacifico rock as a function of PGA and PGV/PGA
under three-component pedestal excitation with the strong horizontal component oriented at (a) 0◦

and (b) 180◦ counter-clockwise (CCW) to the X axis. The upper and lower black lines, predicted
by Purvance et al.’s empirical relation, represent the PGA-PGV/PGA combinations corresponding
to rock overturning probabilities of 1% and 99%, respectively.

black lines in each subfigure of Fig. 3.23 are the predictions by Purvance et al.’s empirical

relation. The probability is 0.99 that PGA-PGV/PGA combinations above the upper line

would overturn the Echo Cliff PBR, whereas the probability is 0.01 that PGA-PGV/PGA

combinations above the lower line would overturn the rock. It can be seen that the empirical

equation over-predicts the PGA-PGV/PGA combination required for the rock to overturn

even for this fairly simple rock, whose rocking response is more or less contained within

the X-Z plane.

To explore the dependence of the overturning probability of the rock model to other

ground motion parameters, the overturning probability on the PGA-PGD and the PGA-

PGV planes are shown in Figs. 3.24(a) and 3.24(b), respectively. Note that only the figures

corresponding to strong component ground motion applied to the pedestal at 0o are pre-

sented here. Figs. 3.24(a) and 3.24(b) are developed similar to Figs. 3.15(a) and 3.15(b)

by binning the 140 scaled records at each PGA level into PGD bins of 0.25 m width [for

Figs. 3.24(a)] and PGV bins of 0.25 m/s width [for Fig. 3.24(b)]. It can be seen from

Figs. 3.24(a) and 3.24(b) that the overturning probability is quite low for PGA and PGV

below 4 m/s2 and 0.5 m/s, respectively. A small fraction of records with PGA of 13 m/s2

and PGV in the range of 0.25-0.5 m/s are able to overturn the rock model [Fig. 3.24(b)].

Unlike PGA and PGV, even small PGDs less than 0.25 m are able to overturn the rock

[Fig. 3.24(a)]. In contrast to the observations made for the Echo Cliff PBR [Fig. 3.15(b)],

the PGV required to overturn the rock initially decreases with increase in PGA until 8 m/s2
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after which it is more or less independent of PGA [Fig. 3.24(b)].

Fig. 3.24(a) and 3.24(b) do not provide sufficient information on the dependence of the

overturning probability on ground motion parameters PGD and PGV. Therefore, a subset

of the 2660 scaled records with PGV less than 3 m/s and PGD less than 3 m are used for

developing Fig. 3.25, which shows the overturning probability of the rock in the PGD-PGV

plane. Beyond a PGV of 0.5 m/s, the PGD required to overturn the rock model decreases

with increase in PGV. A similar trend was seen in the case of the Echo Cliff PBR [Fig. 3.16].

Next, we explore the dependence of overturning probability on ground motion duration.

The ground motion duration is calculated as given in Section 3.5 using Anderson’s energy

integral formulation [8]. Figs. 3.26(a) and 3.26(b) show the overturning probability in the

PGV-duration and PGA-duration planes, respectively. As in the case of the Echo Cliff PBR

[Figs. 3.17(a) and 3.17(b)], the PGV required to overturn the rock model is more or less

independent of the duration of the earthquake. However, the PGA required to overturn the

rock model decreases more or less uniformly with duration.

Next, we vary the rock-pedestal friction coefficients and compare the overturning prob-

abilities of the rock. For this analysis, we apply the strong ground motion component to

the pedestal along 0o. We analyze the rock under the 2660 scaled records for static and

kinetic friction coefficient (µ) of 0.6 and 0.8 and compare the results with that obtained

earlier for µ = 1.0. As explained in Section 3.5, the contribution of sliding to the overturn-

ing of the rock cannot be isolated. However, comparison of the overturning probability of

the rock model in the PGD-PGA, PGV-PGA, and PGD-PGV planes for different friction

coefficients provides qualitative insights into the effect of sliding on the overturning of the

rock model [Figs. 3.27(a) and 3.27(b)].

The overturning probability from each cell of Figs. 3.24(a), 3.24(b) and 3.25 for µ =

1.0 is compared against that for the same cell in the corresponding figures developed for

µ = 0.6 [Fig. 3.27(a)] and for µ = 0.8 [Fig. 3.27(b)]. The following observations can be

made from these figures: (i) friction does play a role in the response of the rock, (ii) a lower

friction coefficient results in higher probability of overturning (most points on Fig. 3.27(a)

and a large majority of the points in Fig. 3.27(b) lie above the dashed diagonal line), (iii)

while the overturning probabilities for µ = 0.8 are more or less within ±0.3 of those for
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Figure 3.24: Overturning probability of the rock model as a function of (a) PGD and PGA, and (b)
PGV and PGA. Each column in the figures contain 140 earthquake records scaled to a specific PGA
level. The varying thicknesses of the column are proportional to the fraction of earthquakes (out of
140) being sampled in a given PGD or PGV bin.
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Figure 3.25: Overturning probability of the train model as a function of PGD and PGV. 2046 out of
the 2660 scaled earthquake records which have PGV and PGD less than 3 m/s and 3 m, respectively,
are used to create this figure. The 2046 earthquakes are divided into bins of width 0.25 m/s in PGV
and 0.25 m in PGD. The varying thicknesses of the column are proportional to the fraction of
earthquakes (out of 2046) that are sampled in a given PGV and PGD bin.

µ = 1.0 (indicated by the solid black bounding lines in these figures), the overturning

probabilities for µ = 0.6 are much higher than those for µ = 1.0 (indicated by the scatter

of data points along the y = 1 line). Sliding plays a bigger role in overturning the Pacifico

rock as compared to the Echo Cliff PBR. This may be attributed to higher gradient in the

Pacifico rock-pedestal interface as compared to that of the Echo Cliff PBR.

To test the effect of vertical ground motion on the overturning of the Pacifico PBR, the

overturning probabilities of the rock taken from the PGD-PGA, PGV-PGA, and PGD-PGV

planes under 3-component ground motion are plotted against the corresponding probabil-

ities under 2-component ground motion (without the vertical component) in Fig. 3.28. As

in the case of the Echo Cliff PBR, the points are secularly scattered on either side of the

diagonal indicating that vertical ground motion may aid or impede the overturning of the

rock.

3.6.2 Comparison with PSHA

As seen from Figs. 3.24(a), 3.24(b), and 3.25, the overturning probability of the rock de-

pends on multiple ground motion parameters, mainly a combination of PGV and PGA. It

cannot be characterized by a single ground motion intensity measure like PGA or PGV.
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Figure 3.26: Overturning probability of the rock model as a function of (a) PGV and duration,
and (b) PGA and duration. 2190 out of the 2660 scaled earthquake records which have PGV less
than 3 m/s and duration less than 50 s are used for figure [(a)]. The 2190 earthquakes are divided
into bins of width 0.25 m/s in PGV and 5 s in duration. The varying thicknesses of the column
are proportional to the fraction of earthquakes (out of 2190) that are sampled in a given PGV and
duration bin. Each column in the figures [(b)] contain 140 earthquake records scaled to a specific
PGA level. The varying thicknesses of the column are proportional to the fraction of earthquakes
(out of 140) being sampled in a given duration bin.
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Figure 3.27: Comparison of overturning probability of the Echo Cliff PBR taken from the PGD-
PGA, PGV-PGA, and PGD-PGV planes for (a) µ = 0.6 and (b) µ = 0.8 against that for µ = 1.0.
Each data point is a direct comparison between the overturning probability of a PGV bin at a given
PGA level (blue asterisk), PGD bin at a given PGA level (red circle) and PGD bin at a given PGV
range (magenta square) for µ = 0.6 and µ = 0.8 against µ = 1.0. Most of the data points are
contained within the solid black lines, which indicate that the overturning probability for µ = 0.6
and µ = 0.8 are within 0.3 of that for µ = 1.0.
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Figure 3.28: Comparison of overturning probability of the Pacifico PBR taken from the PGD-
PGA, PGV-PGA, and PGD-PGV planes under 3-component ground motion are plotted against the
corresponding probabilities under 2-component ground motion (without the vertical component).
Each data point is a direct comparison of the overturning probability of a PGV bin at a given PGA
level (blue asterisk), PGD bin at a given PGA level (red circle) and PGD bin at a given PGV
range (magenta square) from the analysis using 3-component ground motion against that using
2-component ground motion. Most of the data points are contained within the solid black lines,
which indicate that the overturning probabilities under 2-component ground excitation are within
0.3 of that under 3-component ground motion.
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The national seismic hazard maps only provide the rate of occurrence of one ground mo-

tion intensity measure and do not provide the joint rate of occurrence of two ground motion

intensity measures. Vector-valued probabilistic seismic analysis (VPSHA), which gives the

joint rate of occurrence of two or more ground motion intensity measures [14], can be used

to circumvent this problem.

In order to the assess the overturning of the PBR when exposed to numerous earth-

quakes in a earthquake rupture forecast (ERF), Purvance et al. [92] estimated the simul-

taneous occurrence rates of ground intensity measures PGA and PGV for all earthquakes

in the ERF that have occurred during the age of the PBR using the VPSHA method [14].

This method assumes that the PGA and PGV are log-normally distributed about the median

value given by ground motion prediction equations (GMPEs) like the Campbell-Bozorgnia

NGA ground motion model [28]. Then, for a forecast earthquake scenario with magnitude

Mw recorded at a site R km from the rupture (Boore-Joyner distance) with site conditions

S, the joint probability density function of PGA and PGV is given by:

f(PGA,PGV |Mw, R, S) = f(PGA|Mw, R, S)f(PGV |PGA,Mw, R, S) (3.1)

Here, f(PGA|Mw, R, S) is the probability density function (pdf) of PGA conditional on

Mw and R and site conditions S and is given by:

f(PGA|Mw, R, S) =
1

PGA σln PGA|Mw,R,S

φ

(
ln PGA− µln PGA|Mw,R,S

σln PGA|Mw,R,S

)

Here, φ(x) is the standard Gaussian pdf with zero mean and standard deviation of 1.

µln PGA|Mw,R,S and σln PGA|Mw,R,S are the mean and standard deviation of ln PGA (nat-

ural logarithm of PGA), respectively, obtained from GMPE.

The conditional pdf for PGV [f(PGV |PGA,Mw, R, S) in Eqn. 3.1] is given by:

f(PGV |PGA,Mw, R, S) =
1

PGV σln PGV |PGA,Mw,R,S

φ

(
ln PGV − µln PGV |PGA,Mw,R,S

σln PGV |PGA,Mw,R,S

)

The mean (µln PGV |PGA,Mw,R,S) and standard deviation (σln PGV |PGA,Mw,R,S) of the condi-
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tional distribution are given by:

µln PGV |PGA,Mw,R,S = µln PGV |Mw,R,S + ρPGA,PGV
σln PGV |Mw,R,S

σln PGA|Mw,R,S

(ln PGA− µln PGA|Mw,R,S)

σln PGV |PGA,Mw,R,S =
√

1− ρ2
PGA,PGV σln PGV,Mw,R,S

In the above equation, µln PGV |Mw,R,S and σln PGV |Mw,R,S are the mean and standard devia-

tion of ln PGV, respectively, obtained from GMPE. ρPGA,PGV is the correlation coefficient

between PGA and PGV, which can also be obtained from the GMPE.

Suppose there are K = I × J bins in PGA-PGV space with i = 1, ..., I bins in PGA

and j = 1, ..., J bins in PGV. Say the kth bin contains PGA in the range of a1
k − a2

k and

PGV in the range of v1
k − v2

k, then the probability of ground motion occurrence within

this bin is given by:

PO(a1
k ≤ PGA ≤ a2

k,v1
k ≤ PGV ≤ v2

k)

=

∫ a2k

PGA=a1k

∫ v2k

PGV=v1k
f(PGA,PGV |Mw, R, S) dPGA dPGV

The mean rate of occurrence of ground motion in this bin is the product of probability of

ground motion occurrence within this bin [PO(a1
k ≤ PGA ≤ a2

k, v1
k ≤ PGV ≤ v2

k)]

and the rate of occurrence (RT ) for this specific forecast earthquake scenario, i.e.,

RT (a1
k ≤ PGA ≤ a2

k, v1
k ≤ PGV ≤ v2

k) = RT × PO(a1
k ≤ PGA ≤ a2

k, v1
k ≤ PGV ≤ v2

k)

If there are n = 1, ..., N forecast earthquake scenarios in a ERF which produce ground

motions in the kth bin with occurrence rates RTn(a1
k ≤ PGA ≤ a2

k, v1
k ≤ PGV ≤ v2

k),

then the total occurrence rate of ground motions within this bin is given by:

RTN̄(a1
k ≤ PGA ≤ a2

k, v1
k ≤ PGV ≤ v2

k) =
N∑
n=1

RTn(a1
k ≤ PGA ≤ a2

k, v1
k ≤ PGV ≤ v2

k)

To apply this VPSHA method to the Pacifico rock, Purvance et al. employed the ERF used

to construct the 2002 USGS National Seismic Hazard Maps and various GMPEs like that
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Figure 3.29: (a) Ground motion occurrence rate at the Pacifico rock site estimated by VPSHA
methodology using the forecast earthquake scenarios from UCERF3 and (b) the overturning rate of
the Pacifico rock obtained by multiplying the overturning probability of the rock with the ground
motion occurrence rates in [(a)].

of Abrahamson and Silva (1997), Boore et al. (1997), Sadigh et al. (1997) and Campbell

and Bozorgnia (2003). Since this PBR is present close to San Andreas Fault, we use the

10445 plausible earthquake scenarios postulated by United California Earthquake Rupture

Forecast (UCERF3) [39] for accurately estimating the seismic hazard at this site. The

total rate of ground motion occurrence at the Pacifico rock site estimated by applying the

VPSHA methodology to the forecast earthquakes from UCERF3 is shown in Fig. 3.29(a).

V 30
s (shear wave velocity at 30 m) at the PBR site is estimated to be 760 m/s [92] and the

Campbell-Bozorgnia NGA ground motion models (2008) are used to calculate the PGA

and PGV experienced at the PBR site from the 10445 forecast earthquake scenarios.

The product of the ground motion rate of occurrence [Fig. 3.29(a)] with the overturning

probability of the Pacifico rock obtained in the previous section [Fig. 3.24(b)] gives the

overturning rate of the Pacifico rock [Fig. 3.29(b)] in the PGV-PGA plane. Summing over

all the bins in Fig. 3.29(b) gives the total overturning rate (ÔR) of the Pacifico rock to be

5.89× 10−4 yr−1 .

In UCERF3 and in standard probabilistic seismic hazard calculations, the distribution

of earthquakes is assumed to follow a time-independent Poisson model. Therefore, the

PBR fragility curve, which relates the time for which the PBR has been present at this site

(t) to the probability that the ground motion model would overturn it during this time, is
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Figure 3.30: Overturning probability of the Pacifico rock as a function of the age of the rock when
subjected to ground motions from UCERF3.

given by:

OP (t) = 1− exp(−ÔR t)

Fig. 3.30 gives the probability that the Pacifico rock would overturn as a function of the

age of the rock for the Campbell-Bozorgnia NGA ground motion model applied to the

forecast earthquakes from UCERF3. From this figure, it can be seen that the overturning

probability is greater than 0.9 if the age of the rock is greater than 4000 years. But Bell et

al. [15] estimated the age of the most of the PBRs present in Southern California to be at

least 12000 years. Therefore, the seismic hazard at the Pacifico PBR site is over-predicted

by the Campbell-Bozorgnia NGA ground motion model applied to UCERF3.

3.6.3 Comparison with synthetic ground motion simulations

Analyzing the Pacifico rock under synthetic ground motions from earthquake scenarios

rupturing several distinct segments of the San Andreas Fault can help in verifying that these

ground motions do not have characteristics that will overturn this PBR. Here, we use 10

earthquake scenarios generated by Mourhatch et al. [84] with Mw 7.89 rupturing different

segments of the San Andreas Fault. These ground motions were generated by mapping the

source from the 2002 Denali Earthquake onto the San Andreas Fault at 5 separate locations
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Figure 3.31: The black line indicates the part of the San Andreas Fault between Parkfield and
Bombay Beach. The segment between squares of same color indicate ruptured region of the fault in
each of the 5 earthquake scenarios. The black rhombus and circle indicate the location of the PBR
and the station nearest to the PBR.

along the southern section of the fault starting at Parkfield in Central California and ending

at Bombay beach in Southern California. Fig. 3.31 shows the different segments of the

San Andreas Fault ruptured in each of the 5 scenarios considered (region between squares

of same color). Two alternate rupture directions are considered at each of the 5 rupture

segments, north to south rupture and south to north rupture, thus arriving at 10 earthquake

scenarios.

The Pacifico rock is analyzed under 3-component ground motions experienced at the

station nearest to it [black circle in Fig. 3.31] in each of the 10 earthquake scenarios. The E-

W component of the ground motion is applied to the E-W orientation of the rock (along the

slender cross-section of the rock). The friction coefficient used for this analysis is 1.0. The

PBR rocks in response to the ground motion but does not overturn in any of the earthquake

scenarios. Figs. 3.32(a) and 3.32(b) show the ground acceleration time history in the E-W

direction and the center of mass displacement time history (with respect to ground) in the

same direction, respectively, for one of the earthquake scenarios. These figures show that

the PBR starts rocking when the strong ground motion pulse arrives at that location but the

rocking response of the rock damps out quickly. There is a small offset (approximately

2 cm) in the final location of rock’s center of mass which may be due to a small change in

the orientation of the rock while rocking about different contact points and/or sliding.
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Figure 3.32: (a) E-W ground acceleration time history and (b) E-W center of mass displacement
time history with respect to the ground for one of the 10 synthetic ground motion.

A similar reality check was conducted on the Southern California ShakeOut scenario

by analyzing the Pacifico PBR under ground motions from 296 sites located 10-15 km from

the fault and with the same site characteristics (Vs30) as the Pacifico PBR site. The PBR

did not overturn under any of these ground motions.

3.7 Summary

In this chapter, we have presented the methodology used to create 3-D models of PBRs and

their supporting pedestals and to analyze them under three-component earthquake ground

excitation. The accuracy of the rigid body dynamics algorithm used to analyze the rock

models is first established through comparisons against shake-table tests on rocks. Fragility

maps are then developed for the Echo Cliff PBR and the Pacifico rock by analyzing these

rocks under ground motions from 140 earthquakes.

The overturning probability of the Echo Cliff PBR is quite low for PGA, PGV, and PGD

below 3 m/s2, 0.75 m/s, and 0.25 m, respectively. Similarly, the overturning probability of

the Pacifico rock is quite low for PGA and PGV below 4 m/s2 and 0.5 m/s, respectively.

But PGDs lower than 0.25 m are also capable of overturning both the PBRs. While the

PGV required to overturn the Echo Cliff PBR gradually increased with PGA for the Echo
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Cliff PBR, the PGV required to overturn the Pacifico rock is more or less independent of

the PGA (beyond PGA greater than 8 m/s2). These results suggest that while a minimum

PGA is required to initiate rocking response of the PBR, the toppling of the rock is dictated

by the PGV of the ground motion record.

Additionally, we inferred that the PGV required to overturn the rocks does not depend

on the duration of ground excitation whereas the PGA required to overturn the rock models

decreases with increase in ground motion duration. Similarly, the PGA required to overturn

the rock models also decreased with increase in PGV/PGA. These inferences reinforce the

fact that overturning probability is most sensitive to PGV. The results from these analyses

are compared with those from the empirical relation developed by Purvance et al. [88] and

it is shown that the empirical relation under-predicts the overturning probability of the Echo

Cliff PBR as well as the much simpler Pacifico rock.

The effect of the directionality of ground excitation, rock-pedestal interface friction

coefficient, and vertical ground motion on the overturning probability of the Echo Cliff

PBR was also explored. The overturning probabilities and the direction in which the Echo

Cliff PBR overturned was more or less independent of the direction in which the strong

component of the ground motion was applied because of two reasons: (i) half of the records

selected for the study did not exhibit strong directionality and (ii) the pedestal on which the

rock rests has a downsloping gradient (of about 5◦) and a major fraction of the base of the

rock along the same direction extends beyond the edge of the cliff as an overhang. A lower

friction coefficient results in higher probability of overturning. However, the overturning

probabilities for µ = 0.6 and µ = 0.8 are within±0.3 of those for µ = 1.0. Vertical ground

motion does play a role in the rocking-sliding response. However, there is no systematic

relationship between vertical ground motion and the overturning probabilities, i.e., vertical

ground motion may aid or impede the overturning of the rock. The overturning probabilities

under 2-component ground motion (without the vertical component) are well within 0.3 of

those under 3-component ground motion.

The Pacifico rock is slender along one direction and therefore it is more susceptible to

rocking and overturning along that direction. The contact interface between the Pacifico

rock and its pedestal has a downward sloping gradient of about 8◦ near the preferred direc-
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tion of overturning. As the gradient in contact interface between the Pacifico rock is higher

than that of the Echo Cliff PBR, the effect of sliding was more pronounced in the Pacifico

rock than in the Echo Cliff PBR. However, as in the case of Echo Cliff PBR, there is no

systematic relationship between vertical ground motion and the overturning probabilities.

We use the fragility maps generated from this study to test the seismic hazard predic-

tions obtained at the PBR locations from the national seismic hazard maps (for the Echo

Cliff PBR) and vector-valued probabilistic seismic hazard analysis (for Pacifico rock). The

seismic hazard at both these locations is over-predicted. We also perform a reality check on

the Southern California ShakeOut scenario and other synthetic ground motion simulations

rupturing segments of the San Andreas Fault by verifying that the ground motions at the

location of the PBR do not topple the PBR.
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Chapter 4

Other Applications

The focus of the thesis until here has been on modeling the response of precariously bal-

anced rocks to earthquake excitation and using the results to place constraints on the types

of ground motions experienced by that region. In this chapter, we outline a methodology to

extract quantitative information about earthquake ground motion experienced by a region

from qualitative information about the rocking or sliding response of man-made objects

like train, battery-rack, and nuclear storage canister.

4.1 Lower bounds on ground motion at Point Reyes dur-

ing the 1906 San Francisco Earthquake from train top-

pling analysis

The 18th April, 1906 San Francisco earthquake (Mw 7.8) and the subsequent investigation

of this earthquake [69] marked the birth of modern earthquake science in the United States.

Mount Hamilton, at a distance of approximately 130 km from the San Andreas fault, was

the location closest to the source where ground motion was recorded (by a three-component

pendulum). Using this record as a constraint, Boore [21] and Lomax [74] located the earth-

quake hypocenter offshore (off the coast of San Francisco). Recently, efforts have also been

made to recreate strong ground motion from this earthquake using the limited observations

and inferences about the distribution of fault slip in that event [4, 98]. Given the sparsity

of recorded data, there is still significant uncertainty in the epicentral (and hypocentral)
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Figure 4.1: San Francisco- (south-) bound train which overturned at Point Reyes Station during the
1906 San Francisco earthquake [10].

location(s) and the intensity of near source ground motions during this earthquake.

A train, pulled by a narrow gauge locomotive (engine number 14, built in 1891 by

Brooks and scrapped in 1935 [37]), overturned near Point Reyes station during this earth-

quake. The train was traveling south toward San Francisco on a N-S oriented line. An

eye-witness account by a conductor documented by Jordan suggests that the train was ini-

tially stationary, lurched to the east then to the west, and fell off the track on to its side [62].

A photo of the overturned train, taken after the incident, is shown in Fig. 4.1 and a map

with the train location (black circle) in relation to the San Andreas fault (red line) is shown

in Fig. 4.2(a).

Estimating the ground shaking intensity (at least in the direction of toppling) needed to

overturn the train in the manner documented by Jordan can supplement the limited available

data from this earthquake. To this end, Anooshehpoor et al. [10] idealized the rocking

behavior of the train in 2-D to that of a rigid rectangular block of height 3.76 m and width

0.91 m supported on a rigid horizontal surface. The block was assumed to rock about two

corners [O or O′ on Fig. 4.2(b)] that correspond to the two sets of train wheels seated on

the tracks. Collisions between the wheel and the track during rocking were assumed to be

inelastic, i.e., it was assumed that bouncing did not occur upon impact. The fault-normal

(orthogonal to the N-S alignment of the train and the line) ground motion was idealized to

a full sinusoidal pulse. Their goal was to analytically determine a lower bound on the sine

wave amplitude (and the corresponding pulse period) required to overturn the train model

in the manner documented by Jordan. From moment balance about the contact pointO (and
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O′), the equation(s) of motion for the rocking response of a rectangular block subjected to

horizontal base excitation [üg(t)] is (are):

θ̈ + p2sin[−α− θ(t)] = −p2 üg(t)

g
cos[−α− θ(t)] θ(t) < 0 (4.1)

θ̈ + p2sin[α− θ(t)] = −p2 üg(t)

g
cos[α− θ(t)] θ(t) > 0 (4.2)

where m is the mass of the block, g is the acceleration due to gravity, R is the distance of

the contact point O or O′ from the center of mass (c.g.), I is the moment of inertia of the

block about either contact point, and p2 = mgR/I .

This equation of motion is nonlinear and discontinuous. The trigonometric terms caus-

ing the nonlinearity are often linearized so that an approximate analytical solution may be

obtained [10, 52, 99, 111]. Anooshehpoor et al. used the linearized form of Eq. 4.1 with

üg(t) = Asin(ωt + ψ) and estimated the minimum amplitude A of the sinusoidal ground

acceleration required to topple the train to be 0.35 g [3.4 m/s2], 0.5 g [4.9 m/s2], and 1.05 g

[10.3 m/s2] at frequencies of 1 Hz, 1.5 Hz, and 2 Hz, respectively. While the response of

the train model under idealized pulses did provide interesting insights into the dynamics of

the problem, Anooshehpoor et al. correctly recognized that the model’s response under an

earthquake excitation can be significantly different from that under an equivalent idealized

pulse [79,106]. So they sought to analyze the train model under two scaled accelerograms,

the Lucerne record from the 1992 Landers earthquake and a synthetic accelerogram at

Point Reyes from a hypothetical Mw 8 earthquake rupture propagating northwest on the

San Andreas fault with epicenter near the Golden Gate bridge (obtained from John Ander-

son through personal communication).

While the case of the simple full sine pulse excitation is amenable to solving analyti-

cally, this approach becomes intractable for complex excitation histories such as earthquake

ground motion. The discontinuity in the equation (Eqs. 4.1 and 4.2), which arises due to

a change in the point of rotation from O to O′ (or vice-versa) upon impact of the block

with the ground, is handled analytically by determining the times at which θ(t) goes to

zero, and switching between the solutions of the two equations at these times. In doing this

computation, the discontinuity arising out of the velocity reduction applied at impact to
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simulate perfectly inelastic collisions [52] must be honored as well. Another source of dis-

continuity in the equation of motion is the change in the equation of motion with the form

of the ground excitation. Even in the case of a block subjected to a full-sine wave, once this

excitation ends, two different equations of motion arise and the time of impact in relation

to the excitation period determines which equation of motion needs to be solved next. The

solution for θ(t) in all equations contains cosh and sinh terms and the time at which θ(t)

goes to zero, i.e., time of impact, cannot be solved analytically. Therefore, different cases

have to formulated based on whether impact occurs before or after excitation ends. If this

approach were to be employed for earthquake excitation discretized in a piece-wise linear

fashion, there would exist a separate equation of motion for each piecewise part of the ex-

citation and this coupled with the discontinuity in equation of motion arising due to impact

would result in analytically intractable number of cases.

The nonlinearity and discontinuity in the rocking dynamics of the rectangular block

also make it difficult to superpose analytical results obtained for simple ground excitations

such as sinusoidal pulses and impulses to estimate its response under complex excitation

histories such as earthquake ground motion (using Fourier series or other techniques). Rec-

ognizing these difficulties, Anooshehpoor et al. [10] numerically solved the equations of

rocking motion [Eqs. 4.1 and 4.2] for the rectangular train model under the two seismo-

grams, scaled to different levels. The Lucerne record scaled to a PGA level of 0.76 g

[7.5 m/s2] topples the train model, whereas the synthetic seismogram from the hypothet-

ical San Andreas fault earthquake scaled to a PGA level of 1.1 g [10.8 m/s2] topples the

model. They also used lowpass-filtered (with a corner frequency at 3 Hz) versions of these

accelerograms and found that high-frequency ground motion plays a significant role in ini-

tiating the rocking motion which can then be sustained with low-amplitude, low-frequency

ground shaking.

It has been shown that the solution to the equation of motion is sensitive to small varia-

tions in excitation frequency, phase, and amplitude of excitation [60,113]. Therefore, there

is a need to expand the types and number of earthquake records used in establishing the

toppling fragility characteristics of the train model in order to estimate the ground motions

experienced at Point Reyes station during the 1906 San Francisco earthquake. Furthermore,
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the Anooshehpoor et al. [10] analysis was conducted using a single horizontal component

of shaking. The effects of vertical ground motion were not considered. Yim et al. [113]

showed that vertical ground motion does not systematically affect the rocking response of

a rectangular block. However, this result was based on the linearized rocking equation of

motion. Here, we analyze the rectangular train model under both vertical as well as hor-

izontal ground motions from 140 worldwide earthquake records to obtain the overturning

fragility of the train as a function of ground motion parameters. We also analyze the train

model under the ground motions at Point Reyes station from 1906-like earthquake simula-

tions by Aagaard et al. [4] with ruptures initiating at four different locations [indicated by

the red stars in Fig. 4.2(a)] to arrive at independent constraints on the possible hypocenter

location of the 1906 San Francisco earthquake.

4.1.1 Overturning fragility of the train

There have been numerous analytical, numerical, and experimental studies on the rocking

response of a rectangular block under ground excitation [52,88,111,115]. Here, we use the

rigid body dynamics algorithm presented in Chapter 2 to analyze the rocking response of

the train model under earthquake excitation. While the algorithm is capable of simulating

three-dimensional response under 3-component ground motion, we limit ourselves to 2-D

analysis here. We concur with Anooshehpoor et al. that the train resting on rails may be

viewed as a very long rectangular block that will predominantly rock in its shorter direction,

i.e., perpendicular to the tracks. Some rolling may have occurred along the tracks, but the

response in the two directions may, for all practical purposes, be considered to be uncoupled

(given the far greater length of the locomotive compared to its width). We maintain the

assumptions of rocking only about the two points where the wheels come in contact with

the tracks (denoted by O and O′ in Fig. 4.2(b)) and perfectly inelastic collisions upon

impact between the wheels and the rails (when the point of rotation switches from O to O′

or vice versa). The latter assumption is realized by setting the coefficient of restitution to

zero. The rails prevent the train from sliding in the direction perpendicular to the rails. So,

a high value of 1.2 is used for static and kinetic coefficients of friction between the train
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Figure 4.2: (a) A map showing the San Andreas fault (red line) and Point Reyes Station (black
circle). The red stars indicate the hypocenter locations for four 1906-like San Francisco earthquake
simulations by Aagaard et al. [4]. The star near San Francisco corresponds to the widely accepted
hypocenter location. (b) 2-D rectangular block model of the train.
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model and the ground to prevent the model from sliding. The suspension system installed

in the train is assumed to be sufficiently stiff for the train to behave as a rigid body. This

assumption may not be valid for locomotive that have been designed and manufactured in

the recent years.

The 140 earthquake records used to analyze the train model come from worldwide

earthquakes with magnitudes greater than 6 and source-to-site distances less than 100 km

(see [89] for the list of earthquakes). The records are first normalized such that the peak

ground acceleration (PGA) of the strong ground motion component is 1 m/s2. The nor-

malized records are then scaled to yield records with PGA from 1 m/s2 to 19 m/s2 in steps

of 1 m/s2. Because differentiation is a linear operation, the peak ground displacements

(PGD) and the peak ground velocities (PGV) also scale by the same scaling factors as the

corresponding PGAs.

A total of 2660 time-history analyses of the train model are performed. In each instance,

the strong component of the horizontal ground motion is applied along the width of the

train model and the vertical ground motion is applied along its height. The overturning

probability of the train model on the PGA-PGD, the PGA-PGV, and the PGV-PGD planes

are shown in Figs. 4.3(a), 4.3(b), and 4.3(c), respectively. These plots are developed by

binning the 140 scaled records at each PGA level into PGD bins of 0.25 m width [for

Figs. 4.3(a) and 4.3(c)] and PGV bins of 0.25 m/s width [for Fig. 4.3(b)]. The overturning

probability in each bin at each PGA level is the fraction of records (in that bin and that PGA

level) that overturn the model. It should be noted that the PGA-PGD, the PGA-PGV, and

the PGV-PGD domains in Fig. 4.3 are not uniformly sampled by the 2660 scaled records.

The sampling of different regions of the domain can be gauged by the varying thickness

of each column (at each PGA level). The thickness of the column at each PGA level in a

given PGD or PGV bin is proportional to the fraction of points (out of 140) being sampled

in that bin. For e.g., 60 of the 140 records at a PGA level of 4 m/s2 have a PGD between

0 m and 0.25 m, whereas 20 of the 140 records at that PGA level have a PGD between

0.25 m and 0.5 m and so on. The thickness of the lower bin with PGD between 0 m and

0.25 m is proportional to 60/140 and the thickness of the upper bin with PGD between

0.25 m and 0.5 m is proportional to 20/140. Regions with thinning columns are regions
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that are sparsely sampled; obviously, the results there may not be as reliable as the densely

sampled regions.

The colored contour lines correspond to overturning probabilities of 0.1, 0.3, 0.5, 0.7,

and 0.9. It can be seen from these figures that a minimum PGA of 4 m/s2 is required for

the train to overturn. For comparison, the quasi-static acceleration needed to uplift one

corner of the train model and get it to start rocking is 2.5 m/s2. Beyond the PGA threshold

of 4 m/s2, the overturning probability is independent of the PGA, as indicated by the

horizontally aligned contours. We should point out that our records do not sample the low

PGA-high PGD or low PGA-high PGD regimes. It is possible that such records do end up

toppling the train model. We simply cannot tell from our dataset. From Figs. 4.3(a) and

4.3(b), it appears that the probability of overturning is quite low when the PGV and PGD

are below 1 m/s and 0.25 m, respectively, whereas the overturning probability goes up quite

rapidly when the PGV and PGD exceed these values. A small fraction of the records with

PGV in the range of 0.75-1.0 m/s and a PGA in the range of 5-10 m/s2 is able to overturn

the train model.

Next, we normalize and scale the ground motion records such that PGV of the strong

horizontal ground motion component takes values between 0.25 m/s and 5 m/s in steps

of 0.25 m/s. We repeat the analysis of the train model using these scaled ground motion

records in order to obtain its overturning probability as a function of PGD and PGV. The

scaling with respect to PGV (as opposed to using the results from PGA-scaled records)

allows us to populate the PGD-PGV plane more uniformly. The 140 earthquake records at

each PGV level are divided into PGD bins of width 0.25 m. The overturning probability

within each bin at each PGV level is calculated as the ratio of the number of records that

overturn the model to the total number of records in that bin at that PGV level. Fig. 4.3(c)

shows this overturning probability on the PGD-PGV plane. Unlike Figs. 4.3(a) and 4.3(b),

the contour lines in this figure are not horizontally oriented. Beyond the threshold of 1 m/s,

the greater the PGV, the smaller is the PGD needed to overturn the model. A small fraction

of the records with PGD in the range of 0-0.25 m/s and a PGV in the range of 1.5-2 m/s is

able to overturn the train model. Therefore, unlike PGV and PGA there is no real threshold

in PGD below which the the train does not overturn.

87



0 5 10 15 20
0

1

2

3

4

5

PGA (m/s
2
)

P
G

D
 (

m
)

 

 

0.3
0.5

0.7

0.9

O
v
e
rt

u
rn

in
g
 P

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

60/140

(a)

0 5 10 15 20
0

1

2

3

4

5

PGA (m/s
2
)

P
G

V
 (

m
/s

)

 

 

0.1
0.3
0.5
0.7
0.9

O
v
e

rt
u

rn
in

g
 P

ro
b

a
b

ili
ty

0

0.2

0.4

0.6

0.8

1

16/140

(b)

0 1 2 3 4 5
0

1

2

3

4

5

PGV (m/s)

P
G

D
 (

m
)

 

 

0.3

0.5
0.7

0.9

O
v
e
rt

u
rn

in
g
 P

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

54/140

(c)

Figure 4.3: Overturning probability of the train model as a function of (a) PGD and PGA, (b) PGV
and PGA, and (c) PGD and PGV. Each column in the figures contains 140 earthquake records scaled
to a specific PGA level [(a) and (b)] or PGV level [(c)]. The varying thicknesses of the column are
proportional to the fraction of earthquakes (out of 140) being sampled in a given PGD or PGV bin.
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The near-horizontal contours on Figs. 4.3(a) and 4.3(b) suggest that the train model is

not very sensitive to high-frequency parts of the ground motion spectrum beyond the PGA

threshold of 4 m/s2. To further explore the sensitivity of the overturning probability to the

frequency content of the ground motion, we consider three measures of ground motion time

period: (i) PGV/PGA, (ii) PGD/PGV, and (iii) the time period (T) that maximizes the pseu-

dovelocity response spectrum. Note that these time period measures do not change when

the records are scaled. The PGV/PGA (blue asterisks) and the PGD/PGV (red squares)

period measures for the 140 ground motion records are shown plotted as a function of T in

Fig. 4.4(a). While there appears to be a linear correlation between PGV/PGA and the time

period T that maximizes the pseudovelocity response spectrum, a strong correlation is not

observed between PGD/PGV and T.

Using the results from the records scaled to achieve various PGA levels, the overturning

probability as a function of PGA and PGV/PGA is shown in Fig. 4.4(b). As before, the 140

records at each PGA level are divided into PGV/PGA bins of width 0.05 s. The thicknesses

of the columns along the PGV/PGA axis are proportional to the fraction of earthquake

records (out of 140) that are sampled in a given PGV/PGA bin. Similarly, the overturn-

ing probability in the PGV-PGD/PGV and PGV-T planes are shown in Figs. 4.4(c) and

4.4(d), respectively. These are developed using the records scaled to achieve various PGV

levels. For these figures, the 140 earthquake records at each PGV level are divided into

PGD/PGV and T bins of width 0.15 s and 0.5 s, respectively. The PGA and PGV required

to overturn the train model decrease more or less monotonically with increasing PGV/PGA

and PGD/PGV [Figs. 4.4(b) and 4.4(c)]. However, the PGV required to overturn the train

model appears to share a parabolic relationship with T [Fig. 4.4(d)] with the records that

have periods near 1.6 s requiring the smallest PGVs to overturn the train model.

To better understand this sensitivity of the train model to time period, let us go back

to the equation of motion for the rocking response of the rectangular block [Eqn. 4.2].

Linearizing the equation of motion gives:
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Figure 4.4: (a) PGV/PGA and PGD/PGV of the 140 earthquake records as a function of T, the period
at which the peak of the pseudovelocity response spectrum occurs. (b), (c), and (d) Overturning
probability of the train model as a function of PGA and PGV/PGA, PGV and PGD/PGV, and PGV
and T, respectively. The PGA and PGV required to overturn the train model monotonically decreases
with increasing PGV/PGA and PGD/PGV, respectively, but decreases first and then increases with
increasing T, attaining a minimum at a T of about 1.6 s. Each row in these figures contain 140
earthquake records scaled to a given PGA [(b)] or PGV [(c) and (d)] level. The column thicknesses
are proportional to the fraction of earthquakes (out of 140) that are sampled in a given PGV/PGA,
PGD/PGV, or T bin.
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θ̈ − p2θ(t) = −p2[
üg(t)

g
− α] θ(t) > 0 (4.3)

The left hand side of the equation of motion is different from that of a spring mass

system undergoing simple harmonic motion (SHM) due to the negative sign accompanying

θ. As mentioned previously, the free vibration solution for θ is a linear combination of

non-periodic cosh and sinh functions. So rigid bodies do not have a natural propensity

to rock at a “natural frequency or period” unlike spring-mass oscillators. The time taken

to complete one cycle of rocking is dependent upon the amplitude of rocking [52], unlike

SHM where the period of oscillation is a function of the physical properties of the system

alone. Therefore, resonance cannot occur in rigid-body rocking driven by external excita-

tion and it is not expected that the rocking response of a rectangular block will be sensitive

to excitations with a particular time period.

The dependence of overturning probability on ground motion period (PGV/PGA) was

presented in Fig. 4.4. The ground motion duration, which specifies the duration of the

earthquake record that contains 90 % of the energy, could also affect the overturning prob-

ability. Here, we calculate the duration of the 140 earthquake records using the energy

integral formulation developed by Anderson [8]. This method calculates the cumulative

energy released by the earthquake by integrating the square of the velocity time history.

Figs. 4.5(a) and 4.5(b) show the overturning probability in the PGV-duration and PGA-

duration planes, respectively. For these figures, the 140 earthquake records at each PGA

or PGV level are divided into duration bins of width 5 s. Fig. 4.5(a) shows that the PGV

required to overturn the rock model is more or less independent of the duration of the

earthquake. However, the PGA required to overturn the rock model decreases more or less

uniformly with duration.

The train overturning fragility maps obtained here may be used to check whether the

synthetic ground motions from the 1906 San Francisco earthquake simulations by Aagaard

et al. [4] are realistic. They simulated several rupture scenarios using a source model de-

veloped by Song et al. [98] and a recently constructed 3-D seismic wave-speed model of
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Figure 4.5: Overturning probability of the train model as a function of (a) PGV and duration, and (b)
PGA and duration. Each row in these figures contain 140 earthquake records scaled to a given PGV
[(a)] or PGA [(b)] level. The column thicknesses are proportional to the fraction of earthquakes (out
of 140) that are sampled in a given duration bin.

northern California. Three of these scenarios involved the rupture of the same extent of

the northern San Andreas fault, but with rupture initiating at Bodega Bay (to the north

of San Francisco), offshore from San Francisco in the middle, and San Juan Bautista at

the southern end [Fig. 4.2(a)]. The ruptures nucleating at Bodega Bay and San Francisco

are bilaterally propagating ruptures, whereas the rupture originating at San Juan Bautista

propagates predominantly in a south-to-north direction. The three scenarios predict PGA

between 4.5 m/s2 and 6.0 m/s2, PGV between 0.8 m/s and 1.6 m/s, and PGD between 0.8 m

and 1.6 m at Point Reyes. For these ranges of ground motion intensities, the train overturn-

ing probability from the fragility maps ranges between 0.4 and 0.8. Thus, Aagaard et al.’s

simulations clearly do not over-estimate the ground motion intensities at Point Reyes. They

may, in fact, be quite realistic.

4.1.2 Hypocenter location of the 1906 San Francisco earthquake

The ground motion histories at Point Reyes (station SF432) from the three rupture scenar-

ios (with three hypocenter locations) may also be used to determine the most plausible of

the three hypocenter locations and could independently verify the estimates by Boore [21]

and Lomax [74]. Ground velocity time histories at the Point Reyes Station (station SF432)

are retrieved from a USGS repository of these simulations [5]. The train model is ana-

lyzed under each of these ground motion histories. The horizontal displacement response

histories of the center of mass of the train model with respect to the ground are given in
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Figure 4.6: Horizontal displacement time histories of the center of mass of the train with respect to
the ground when subjected to the synthetic ground motion histories at Point Reyes station from the
three 1906-like scenario earthquake simulations by Aagaard et al. [4] with hypocenter located at (a)
Bodega Bay (north of Point Reyes), (b) offshore from San Francisco (south of Point Reyes) and (c)
San Juan Bautista (further south of Point Reyes). Displacements to the east are positive.

Figs. 4.6(a) (hypocenter at Bodega Bay), 4.6(b) (hypocenter at San Francisco), and 4.6(c)

(hypocenter at San Juan Bautista). Displacements to the east are positive. All three ground

motions overturn the train model. However, only the scenarios with the hypocenter located

south of Point Reyes (i.e., offshore from San Francisco and San Juan Bautista) produce

ground motions that overturn the train in the manner documented by Jordan (the train first

lurching to the east and then overturning in the west). Therefore, our analysis places the

hypocenter of the 1906 earthquake to the south of Point Reyes station. This inference does

not conflict with the currently accepted hypocenter location near San Francisco [74].

4.2 Estimating PGA and PGV from the maximum sliding

displacement of a battery rack in Haiti

The M 7.0 Haiti earthquake, which occurred on 12th January, 2010, was not recorded by

any strong motion instruments in Haiti. Here, we estimate the near source peak ground

acceleration (PGA) and peak ground velocity (PGV) from qualitative observations about

the displacement of an industrial battery rack present at the Voila building [51]. The battery

racks shown in Fig. 4.7(a) have length l = 141 cm, height h = 172 cm, and width w =

56 cm with mass m = 3490 kg. Each battery rack was bolted to the tile floor using four

bolts before the occurrence of the earthquake. During the main shock event, two of the
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(a) (b)

Figure 4.7: (a) Battery rack located in the Voila building and (b) photograph of the scratches on
the tiles caused by sliding motion of the battery rack during the main shock of the 2010 Haiti
earthquake [51].

battery racks [labeled S andN in Fig. 4.7(a)] had displaced from their initial position. From

the field study conducted by Hough et al. [51], the bolts holding down rack S appeared to

have been pulled out while those holding down rack N appeared to have broken. All the

other racks in the room appeared to be undisturbed from their original positions. From

the limited data available from the field, Hough et al. inferred that the bolts holding down

rack S were most likely improperly installed and thus were pulled out during a strong

motion pulse and the collision of rack S with rack N caused the bolts of rack N to break.

The sequence in which the bolts holding down rack S were pulled out is unclear. The

movement of rack S is clearly marked on the ground [Fig. 4.7(b)]. However, if there was

a collision between rack N and rack S, then along with the earthquake ground motion,

this collision could have also contributed to the sliding of the battery rack. Hough et al.

made qualitative judgements based on the displacement traces of rack N and rack S and

estimated the maximum sliding displacement of the unbolted rack S in N-S (short) and E-W

directions caused primarily due to earthquake excitation to be in the range of 22 − 27 cm

and 24 cm, respectively. Additionally, the scratch marks on the ground indicate that the

rack did not rock after it was free to move.

Hough et al. [51] divided this problem into two independent parts: (i) estimating the

minimum PGA required to break the bolts, and (ii) estimating the range of PGA required to

cause a sliding displacement of 22− 27 cm in the unbolted battery rack. Since the ground
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motion was not strong enough to break the properly installed bolts, the minimum PGA

required to break the bolts is the upper limit to the PGA experienced at this location. It

should be noted that there may be other failure mechanisms which might cause the bolts

to break at lower PGAs. For the first part of the problem, Hough et al. [51] assumed the

nominal tensile strength of the 0.25 in diameter steel bolts to be σt = 4.14×108 Pa. Using

moment balance along the longer edge of the battery rack, they estimated the PGA required

to break the bolt to be 8.13 m/s2. However, this analysis does not take into account the

effect of vertical ground motion.

For the second part of the problem, Hough et al. used the results of a similar analy-

sis conducted by Taniguchi et al. [100] and estimated the range of PGA required to cause

the observed sliding displacement to be 2.94 − 6.86 m/s2. However, the upper bound on

the PGA may not be accurate due to the inherent difficulty in applying the results from

Taniguchi et al.’s work to this problem. The aim of the Taniguchi et al.’s work was to arrive

at a quick estimate for the maximum sliding displacement of a rectangular block placed

on a ground during an earthquake. For this analysis, they assumed the coefficient of fric-

tion between the block and the ground to be sufficiently low so that the block experiences

only sliding response. Using the equations of motion that correspond to the block’s sliding

mode of response, they obtained an analytical expression for the block’s maximum sliding

displacement as a function of the input horizontal sinusoidal pulse parameters. They also

obtained the block’s maximum sliding displacement under the dominant horizontal ground

motion from 104 Japanese earthquakes by solving the equation of motion numerically and

compared this displacement with that obtained using the equivalent sine wave. Here, the

amplitude of the equivalent sine wave is same as the PGA of the earthquake and the time

period is the one that maximizes the spectral acceleration of the earthquake. From this

comparison, they found that the block’s maximum sliding displacement during an earth-

quake is bounded from above (in approximately 93 of the 104 considered earthquakes) by

the displacement under the equivalent sine wave scaled up by a factor of 1.84. Since this

analysis only provides an upper bound on the block’s maximum sliding displacement under

an earthquake, this result cannot be directly extended to the reverse problem of estimating

the ground motion parameters given the observed sliding displacement of the block under
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an earthquake.

In order to apply Taniguchi et al.’s results to the second part of the battery rack prob-

lem, Hough et al. [51] first estimated the coefficient of friction between the battery rack

and the ceramic tile floor to be between 0.15 and 0.2 from established values of coeffi-

cient of friction between steel and slippery materials like teflon. They confirmed that the

unbolted battery rack can only undergo sliding response for this value of friction coeffi-

cient. Also, based on the recorded ground motions at the location of the battery rack from

the aftershocks, they estimated the predominant period of the main shock ground motion

to be between 0.5 s and 1.0 s. Next, from the analytical expression derived by Taniguchi

et al. [100] for the block’s maximum sliding displacement as a function of the sine wave

parameters, Hough et al. [51] calculated the amplitudes (PGAs) of sine waves with time

periods between 0.5 s and 1.0 s required to cause the observed sliding displacement scaled

down by a factor of 1.84. The range of PGA thus obtained is 2.94−6.86 m/s2 for µ between

0.15− 0.2. However, Taniguchi et al.’s work only implies that the battery rack’s maximum

sliding displacement under earthquakes with PGA and T belonging to this range is almost

always less than the observed displacement of the battery rack. Therefore, this range only

constitutes the minimum PGA and T combination required to cause the observed displace-

ment and is not the complete set of ground motion parameters that can cause the observed

displacement of the battery rack. Also, this analysis does not include the complete effect

of the vertical and the non-dominant component of the ground motion.

Here, we address the issues in the analysis conducted by Hough et al. [51]. We model

the battery rack from Haiti as a finite rectangular cuboid with the four corners as contact

points and subject it to 140 strong ground motion records (see [89] for the complete list)

from worldwide earthquakes with magnitude greater than 6 and distance from epicenter

less than 100 km. The dominant component of the ground motion is applied in the N-S

(short) direction of the rack. The ground motions are normalized such that PGA of the

dominant horizontal ground motion is 1 m/s2. The response spectra for these normalized

ground motions in the N-S and E-W direction are presented in Figs. 4.8(a) and 4.8(b),

respectively. In order to accurately estimate the minimum PGA required to break the bolts,

we include the vertical ground acceleration into the calculations performed by Hough et
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al. [51]. For each of the 140 normalized ground motions we estimate the scaling factor α

required to break the bolt using moment balance along the longer edge as follows:

mαAx
h

2
−m(g − αAy)

w

2
= 2σt(π

d2

4
)w (4.4)

Here, Ax and Ay are the horizontal (along N-S) and vertical ground acceleration, respec-

tively, at the time t which maximizes Ax(t)h + Ay(t)w, and g is the acceleration due to

gravity. The scaling factors obtained have a mean of 9.79 with a standard deviation of 2.4.

Therefore, the mean PGA required to break the bolt is 9.79 m/s2.

For the second part of the problem of estimating the PGA required to cause the ob-

served maximum sliding displacement of the battery rack, the normalized ground motions

are scaled from PGA = 1 m/s2 to 20 m/s2 in steps of 1 m/s2. The model of the rack is an-

alyzed under each of the scaled ground motion records. The coefficient of friction between

the battery rack and the tile floor is assumed to be between 0.15 and 0.2 [51] and this results

in pure sliding response of the battery rack on the tile floor. The maximum displacement

of the center of mass of the rack in the horizontal direction as a function of PGA is shown

plotted on a log scale in Figs. 4.9(a) and 4.9(b) for µ = 0.15 and µ = 0.2, respectively.

Here, the maximum displacement is the peak of the square root of sum of squares (SRSS)

of the center of mass displacement time-histories in the two horizontal directions. Based

on Hough et al. [51], the ground motion records with spectral acceleration peaks occurring

between periods of 0.5 s and 1.0 s, indicated by black lines on Figs. 4.8(a) and 4.8(b),

are of particular interest. The green filled circles in Figs. 4.9(a) and 4.9(b) represent the

maximum displacement for these earthquake records. For each PGA level, the displace-

ments are assumed to be log-normally distributed. This implies that the logarithm of the

displacements are normally distributed. Therefore, the mean (ν) and standard deviation (σ)

for the corresponding normal distribution can be obtained for the set of displacements at

each PGA level. The black line indicates the line joining the mean (eν) for each PGA, the

red solid and dashed lines correspond to mean ± one standard deviation (eν±σ) and mean

± two standard deviations (eν±2σ), respectively. For the normal distribution, the subset of

the displacements within two standard deviations from the mean account for 95.45% of
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the total set of displacements. Therefore, we consider the earthquake records that produce

displacement within two standard deviations of the mean response for obtaining the PGA

range. The gray shaded region corresponds to the range of observed sliding displacement

(32.5 cm − 36 cm). As can be seen from the Figs. 4.9(a) and 4.9(b), the ranges of the

PGA required to cause the observed displacement of 32.5 − 36 cm are 3.0 − 20.0 m/s2

and 4.0− 20.0 m/s2 for µ = 0.15 and µ = 0.2, respectively. The upper bound is in reality

greater than 20 m/s2 but PGA greater than 20 m/s2 are uncommon so the upper limit has

been truncated to 20 m/s2. These ranges do not change significantly when a subset of re-

sults from earthquake records with 0.5 s < T < 1.0 s (identified by green-filled circles in

Fig. 4.9) is considered. The above ranges are very wide and PGA as high as 20 m/s2 are

not realistic at a location. However, the PGA required to break the bolt can place a tighter

upper bound on PGA experienced at this location.
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Figure 4.8: Response spectra for the 140 normalized ground motions applied in the (a) N-S and
(b) E-W direction of the battery rack. The ground motions which have peak spectral acceleration
between 0.5 s < T < 1.0 s, indicated by black lines, are the ground motions which are more
probable at the Voila building location.

Combining the results from both parts of the problem, the PGA ranges that cause the

observed displacement of the battery rack without breaking the properly installed bolts are

3.0−9.79m/s2 and 4.0−9.79 m/s2 for µ = 0.15 and µ = 0.2, respectively. In comparison,

Hough et al. [51] estimate PGA to be in the 2.94 − 6.86 m/s2 range for the same values

of µ. The lower end of this range matches well with our results. As mentioned earlier, the

upper limit of the range obtained by Hough et al. is incorrect as their analysis gives only the
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minimum PGA and T combination required to cause the observed sliding displacement of

the battery rack. From the catastrophic collapse of the very poorly built buildings adjacent

to the Voila facility and significant non-structural and light structural damage to the well-

built Voila facility, Hough et al. [51] concluded the damage to be consistent with modified

Mercalli intensity scale (MMI) VIII. From correlations established between MMI and PGA

by comparing horizontal peak ground motions to observed intensities for eight significant

California earthquakes, MMI VIII and IX corresponds to PGA ranges of 3.33− 6.37 m/s2

and 6.37− 12.152 m/s2, respectively [107]. The results from our analysis agree well with

these results on the lower limit of the PGA, and the upper limit suggests that the MMI at

this location could have been VIII-IX.
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Figure 4.9: The maximum displacement of the battery rack when subjected to 140 earthquake
records scaled to different PGA levels for (a) µ = 0.15 and (b) µ = 0.2. The green filled cir-
cles are the maximum effective displacement from earthquake records with 0.5 s < T < 1.0 s.
The black line shows the line joining mean eν , the red solid and dashed lines correspond to mean
± one standard deviation (eν±σ) and mean ± two standard deviations (eν±2σ), respectively. The
gray shaded region represents the observed displacement (0.325− 0.36 m). The ranges of the PGA
required to cause the observed displacement are 3 − 20 m/s2 and 4 − 20 m/s2 for µ = 0.15 and
µ = 0.2, respectively.

To estimate the corresponding ranges for peak ground velocity (PGV), a similar analysis

is conducted by normalizing the 140 earthquake records such that PGV of the dominant

horizontal ground motion component is 1 m/s. These normalized ground motions are then

scaled from PGV = 0.5 m/s to 10 m/s in steps of 0.5 m/s. PGV = 0.25 m/s is also

considered. The maximum effective displacement of the rack under these scaled records is
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shown plotted as a function of PGV for µ = 0.15 and µ = 0.2 on Figs. 4.10(a) and 4.10(b),

respectively. As earlier, we consider earthquake records that produce displacements within

two standard deviations of the mean response for obtaining the PGV range. The range of

the PGV required to cause the observed displacement of 32.5− 36 cm is 0.5− 2.5 m/s and

0.5−3 m/s for µ = 0.15 and µ = 0.2, respectively. As for PGA, this range does not change

significantly when a subset of results from earthquake records with spectral acceleration

peaks occurring between 0.5 s < T < 1.0 s is considered. For these 140 PGV normalized

ground motions, we estimate the scaling factor α required to break the bolt using Eq. 4.4.

The mean PGV required to break the bolt is 1.75 m/s with a standard deviation of 1.14 m/s.

Due to the high standard deviation, this mean PGV required to break the bolt cannot be used

as the upper bound on the PGV experienced by this location. Therefore, the range of the

PGV required to cause the observed displacement of 32.5 − 36 cm is 0.5 − 2.5 m/s and

0.5 − 3 m/s for µ = 0.15 and µ = 0.2, respectively. This PGV range is very wide and

therefore the upper bound on the PGV is meaningless. The lower bound on PGV of 0.5 m/s

suggests that the modified mercalli intensity at this location is greater than VIII, which does

not conflict with the results obtained for PGA.

This analysis shows that the observed sliding displacement of the rack can only provide

meaningful lower bounds on ground motions experienced at a location. Higher friction

coefficients between the rack and tile floor, which may induce sliding coupled with rocking

of the rack, will not affect the lower bounds obtained from this analysis as higher PGA

or PGV would be needed to be cause the observed sliding displacements. The fraction of

the earthquake ground motion after which the battery rack becomes unbolted also does not

affect the lower bound. However, the contribution of the collision between the rack S and

N to the sliding displacement may alter the lower bounds.

The upper bounds obtained from the sliding analysis alone are unrealistically high.

Even though an upper limit is obtained for PGA from the acceleration required to break

properly installed bolts, this still results in a wide range for PGA and the analysis is able to

provide only as much insight into the ground motion experienced by the region as can be

obtained from MMI intensity of the earthquake.
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Figure 4.10: The maximum displacement of the battery rack when subjected to 140 earthquake
records scaled to different PGV levels for (a) µ = 0.15 and (b) µ = 0.2. The green filled circles
are the maximum effective displacement from earthquake records with 0.5 s < T < 1.0 s. The
black line shows the line joining mean eν , the red solid and dashed lines correspond to mean ±
one standard deviation (eν±σ) and mean ± two standard deviations (eν±2σ), respectively. The gray
shaded region represents the observed displacement (0.325− 0.36 m). The ranges of PGV required
to cause the observed displacement are 0.5− 2.5 m/s and 0.5− 3.0 m/s for µ = 0.15 and µ = 0.2,
respectively.

4.3 Estimating the minimum free-field PGA and PGV from

maximum sliding displacement of nuclear spent fuel

casks

(a) (b)

Figure 4.11: (a) Spent fuel casks at the North Anna nuclear power plant and (b) photograph depict-
ing sliding displacement of the cask after the 2011 Virginia earthquake [47].

The 2011 Mw 5.8 Mineral, Virginia earthquake caused 25 of the 27 spent fuel casks or

dry casks of type TN-32 stored at the North Anna nuclear power plant to slide 1 − 4.5 in
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or 0.025 − 0.115 m [Fig. 4.11(b)]. The storage casks are located approximately 18 km

from the epicenter of the earthquake. The nearest strong ground motion was recorded at

Unit 1 of the nuclear power plant using magnetic tape digital accelerographs. The recorded

ground motions at the containment deck and the basement of Unit 1 had peak accelerations

of 3.7 m/s2 and 2.5 m/s2, respectively, and peak velocities of 0.26 m/s and 0.13 m/s,

respectively [42]. Unit 1 of the nuclear power plant is situated approximately 2000 ft

from the location of the storage cask. Moreover, Unit 1 is founded on bedrock whereas

the storage casks are founded on fine sand with bedrock starting 40 − 67 ft beneath the

ground surface [93]. This difference in soil profile adds to the difficulty in estimating the

free-field ground motion at the location of the storage cask. In the absence of free-field

accelerograms, the sliding displacements of the dry casks are the sole constraints on the

minimum free-field PGA and/or PGV experienced at this site.

The dry casks [Fig. 4.11(a)] are cylindrical in shape, with height 5.874 m and base

radius 1.24 m, and are assumed to be rigid [76]. These casks rest on reinforced concrete

pads of dimensions 224′×32′×2′ [101] which are also assumed to be sufficiently rigid. The

coefficient of friction (µs = µd = µ) between the cask and the concrete pad is estimated to

be between 0.2 and 0.8 from experimental studies on friction coefficient between steel and

concrete [76]. Since the sliding displacements of casks were different, we only analyze the

cask with the maximum sliding displacement of 0.115 m to arrive at the minimum free-field

PGA and PGV. As we are interested in the minimum free-field PGA and PGV at this site,

we assume that the cask exhibited pure sliding response. A higher PGA and PGV would

be required to displace the cask if rocking/rolling about the edge is present. To prevent

the cask from rocking, we assume the coefficient of friction to be in the lower end of the

steel-concrete range (µ = 0.2 and µ = 0.3). The wide friction coefficient range of 0.2−0.8

between steel and concrete may have resulted in the different sliding displacements of the

25 casks. The base of the cask is discretized along the circumference into 4 equally spaced

points, as this is sufficient to capture the sliding response. We analyze the model of the cask

under the same set of 140 strong ground motion records as for the battery rack example.

To estimate the PGA range, the ground motion records are normalized and scaled such that

PGA varies from 1 m/s2 to 20 m/s2 in steps of 1 m/s2. Unlike, the example of the battery
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rack where the PGA required to break the bolts constrained the maximum PGA experienced

by the location, we do not have any additional information to constrain the upper limit of

the PGA. Therefore, we can only obtain realistic lower bounds on the ground motion at this

location. Shown in Figs. 4.12(a) and 4.12(b) are the maximum displacements of the storage

cask as a function of PGA. Here, the maximum displacement is the peak of the square root

of sum of squares (SRSS) of the center of mass displacement time-histories in the two

horizontal directions. As in the battery rack example, we consider earthquake records

that produce responses within two standard deviations of the mean response (dashed red

line) for obtaining the PGA and PGV values. The minimum PGAs required to cause the

observed displacement of 0.115 m (dashed black line) are 3.5 m/s2 and 5 m/s2 for µ = 0.2

and µ = 0.3, respectively.
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Figure 4.12: The maximum displacement of the storage cask when subjected to 140 earthquake
records scaled to different PGA levels for (a) µ = 0.2 and (b) µ = 0.3. The black line shows the
line joining mean eν , the red solid and dashed lines correspond to mean ± one standard deviation
(eν±σ) and mean ± two standard deviations (eν±2σ), respectively. The dashed black line is the
observed displacement of 0.115m. The minimum PGA required to cause the observed displacement
is 3.5 m/s2 and 5 m/s2 for µ = 0.2 and µ = 0.3, respectively.

The analysis described above assumes that the concrete pad is rigid and that the ground

motion is not amplified due to soil-structure interaction. However, in a parametric finite

element analysis conducted by Bjorkman [19], for a concrete pad thickness of 2′, clayey

silt soil of 100 ft depth with shear wave velocity in the range of 500−900 m/s and concrete

pad under full loading, the maximum amplification in the PGA experienced by the center
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of mass of the cask with respect to the free-field PGA was 1.15. Since the pad thickness

and soil conditions at the North Anna storage cask location are similar and the concrete pad

was near maximum loading, we use the same amplification factor to get back the free-field

PGA from our analysis. Therefore, the minimum free-field PGAs at the location of the

storage casks required to cause the maximum observed sliding displacement of 0.115 m

are 3 m/s2 and 4.34 m/s2 for µ = 0.2 and µ = 0.3, respectively.

In order to compare the free-field PGA at the storage cask location with the nearest

ground motion recorded at the basement of Unit 1, we correct the free-field PGA for the dif-

ference in soil profiles. When an earthquake wave moves from bedrock to a lower velocity

soil layer, the amplitude of the wave is in general amplified. We estimate this amplification

factor using the equivalent linear method implemented in DEEPSOIL [46]. This program

requires the depth of the soil layer, shear wave velocities and unit weight of the rock and

soil layers as input. The values used for the depth, shear wave velocity and unit weight of

the soil layer are 18.2 m, 500 m/s and 18.07 kN/m3, respectively. The shear wave velocity

and unit weight used for the rock layer are 1500 m/s and 25.14 kN/m3, respectively. Addi-

tionally, the in-built shear modulus and damping ratio curves (Seed and Idriss mean limit

1991) are used for the soil layer. The amplification in PGA for 13 different ground motions

are obtained and mean amplification factor of 1.38 is used for this analysis. This mean

amplification factor relates the PGA at the soil layer to the PGA at the rock layer, which

is same as the PGA at Unit 1. Therefore, the minimum free-field PGA at Unit 1 from our

analysis is 2.17 m/s2 and 3.14 m/s2 for µ = 0.2 and µ = 0.3, respectively, which agrees

well with the PGA of 2.5 m/s2 recorded at the basement of Unit 1 [42].

To estimate the PGV at the storage cask location, we normalize the 140 ground mo-

tion records and scale them to PGV levels of 0.5 m/s − 10.0 m/s in steps of 0.5 m/s.

PGV = 0.25 m/s is also considered. We analyze the cask model under these scaled

records. Shown in Figs. 4.13(a) and 4.13(b) are the maximum effective displacements of

the storage cask as a function of PGV. The minimum PGV required to cause the observed

displacement (dashed black line) of 0.115 m is 0.5 m/s and 0.75 m/s for µ = 0.2 and

µ = 0.3, respectively. Assuming that PGV amplifies similar to PGA due to soil-structure

interaction and concrete pad flexibility, the minimum free-field PGV at the location of the
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Figure 4.13: The maximum displacement of the storage cask when subjected to 140 earthquake
records scaled to different PGV levels for (a) µ = 0.2 and (b) µ = 0.3. The black line shows the line
joining mean eν , the red solid and dashed lines correspond to mean± one standard deviation (eν±σ)
and mean± two standard deviations (eν±2σ), respectively. The dashed black line corresponds to the
observed displacement of 0.115m. The minimum PGV required to cause the observed displacement
is 0.5 m/s and 0.75 m/s for µ = 0.2 and µ = 0.3, respectively.

storage cask is 0.44 m/s and 0.65 m/s for µ = 0.2 and µ = 0.3, respectively. To compare

the PGV obtained with the recorded PGV at the basement of Unit 1, we estimate the mean

amplification in PGV using DEEPSOIL. This amplification factor is 1.39. Therefore, the

free-field PGV at Unit 1 from our analysis is 0.32 m/s and 0.47 m/s for µ = 0.2 and

µ = 0.3, respectively. The recorded PGV of 0.13 m/s at the basement of the Unit 1 is

lower than our estimates. This difference suggests that the limits obtained on the free-field

PGV may not be accurate.

4.4 Summary

In this chapter, we explore the problem of estimating the ground motion experienced at

a region from qualitative information about the response of an object. For this study, we

considered three different real world examples.

The first example was that of a train that overturned at Point Reyes station during the

1906 San Francisco earthquake. We obtained lower bounds on the ground motion experi-

enced at the Point Reyes station during this earthquake by estimating the ground motion
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parameters required to overturn a rectangular block model of this train. The minimum

PGA, PGV, and PGD required to overturn the train are 4 m/s2, 1 m/s, and 0.25 m, respec-

tively. The probability of overturning is quite low when the PGV is below 1 m/s but goes up

quite rapidly when the PGV exceeds this value. The train model is also seen to be sensitive

to earthquake records with predominant time periods near 1.6 s. It was also observed that

the PGV required to overturn the rock model is more or less independent of the duration of

the earthquake. However, the PGA required to overturn the rock model decreases more or

less uniformly with duration.

The fragility (overturning probability) maps for the train model are used to perform a

reality check on the synthetic ground motion at Point Reyes from the 1906-like San Fran-

cisco earthquake simulations by Aagaard et al. The maps indicate overturning probabilities

of 0.4-0.8 for the train model under the predicted ground motion intensities from three rup-

ture scenarios (with hypocenters in Bodega Bay to the north of Point Reyes and offshore

from San Francisco and San Juan Bautista, both to the south of Point Reyes). Clearly,

the predictions by the Aagaard et al. simulations are quite realistic. Time history analysis

of the train model under synthetic ground motion histories at Point Reyes from the three

scenarios shows the train model overturning in all three cases. However, only the ground

motions from the two scenarios with the hypocenter to the south of Point Reyes reproduce

the eye-witness account of the train lurching to the east and then to the west before top-

pling. We conclude that the hypocenter for the 1906 San Francisco earthquake must lie to

the south of Point Reyes, perhaps offshore from San Francisco as widely believed.

In the next example, we analyzed a battery rack that underwent sliding during the Haiti

earthquake of 2010 and estimated the lower bound on the PGA experienced at this loca-

tion to be 3 m/s2 and 4 m/s2 for friction coefficients of 0.15 and 0.2, respectively. The

corresponding estimates for the lower bounds on the PGV experienced at this location are

0.5 m/s2 for friction coefficients of 0.15 and 0.2. We showed that realistic upper bounds on

PGA or PGV cannot be obtained from the sliding analysis of the battery rack.

In the last example, we analyzed a nuclear storage canister that underwent sliding dur-

ing the 2011 Mineral, Virginia earthquake and estimated the minimum free-field PGA ex-

perienced at that site to be 3 m/s2 and 4.34 m/s2 for friction coefficients of 0.2 and 0.3,
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respectively. These PGA values compare well with the nearest recorded ground motions.

From this analysis, we conclude that only lower bounds on the ground motions expe-

rienced at a region can be obtained from sliding displacement or overturning of an object

under earthquake excitation.
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Chapter 5

Conclusions and future work

5.1 Conclusions

This dissertation has been motivated by the prospect of using precariously balanced rocks

(PBRs) to provide an independent constraint on historic peak ground motion experienced

by a region. To achieve this goal the critical toppling intensity of a PBR needs to be accu-

rately estimated. Earlier approaches to estimate this critical toppling intensity approximate

the 3-D rock-pedestal geometry to a simple 2-D geometry resting on a plane at two con-

tact points. An empirical equation [88] is then applied to the parameters of the 2-D rock

geometry to obtain overturning probability of the rock as a function of ground motion in-

tensity measures. Shake table experiments suggest that this approach under-predicts the

fragility of most rocks, accentuating the need for dynamic analysis of 3-D rock-pedestal

models. To this end, we have developed a methodology to create 3-D models of PBRs and

their supporting pedestals and to analyze them under three-component earthquake ground

excitation.

We approximated the rock and pedestal to two separate 3-D rigid bodies and we de-

veloped an algorithm to simulate the interaction between the rock and the pedestal. This

algorithm is a fairly generic algorithm that is capable of modeling the complex sliding

and rocking response of the rock. Constraint based method is used to model the contact

between the rock and the pedestal, with external accelerations being balanced by contact

forces. Thus, rock-pedestal interpenetration (to within a user-specified tolerance) is au-

tomatically avoided even without the use of spring-damper assemblies. The algorithm is
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validated against analytical results for the rocking and coupled rocking-sliding response of

a simple 2-D rectangular block.

The accuracy of the rigid body algorithm in analyzing the 3-D rock models is then

established through comparisons against shake-table tests on rocks conducted by Purvance

et al. [88]. Fragility maps are then developed for the Echo Cliff PBR and the Pacifico

PBR by analyzing the rock under ground motions from 140 earthquakes. The Echo Cliff

PBR is located in the Western Santa Monica mountains and the Pacifico PBR is located

approximately 12 km from the San Andreas Fault. The fragility maps generated from

this analysis contain information about the dependence of the overturning probability of

the rocks on the ground motion intensity measures like peak ground acceleration (PGA),

peak ground velocity (PGV), peak ground displacement (PGD), and duration of ground

excitation. From this analysis, we infer that the overturning probability of the Echo Cliff

PBR is quite low for PGA and PGV below 3 m/s2 and 0.75 m/s, respectively. Similarly, the

overturning probability of the Pacifico rock is quite low for PGA and PGV below 4 m/s2

and 0.5 m/s, respectively. But PGDs lower than 0.25 m are also capable of overturning both

these rocks.

The effect of the directionality of ground excitation and rock-pedestal interface friction

coefficient on the overturning probability of the two PBRs was also explored. The over-

turning probabilities and the direction in which both the PBRs overturned was more or less

independent of the direction in which the strong component of the ground motion was ap-

plied because of two reasons: (i) half of the records selected for the study did not exhibit

strong directionality and (ii) both the rocks have a preferred direction of overturning. The

preferred overturning direction for the Echo Cliff PBR is governed by a major fraction of

the base of the rock extending beyond the edge of the cliff as an overhang. The Pacifico

rock, on the other hand, is slender along one direction and this governs the direction of over-

turning for this rock. Both the rocks rest on a downward sloping pedestal which is more or

less aligned with the preferred overturning direction of the rock. Therefore, lower friction

coefficient of 0.6 between the rock and pedestal led to higher overturning probabilities in

both rocks when compared to friction coefficient of 1.0.

We use the fragility maps generated from this study to test the seismic hazard predic-
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tions obtained at the PBR locations from the national seismic hazard maps (for the Echo

Cliff PBR) and vector-valued probabilistic seismic hazard analysis (for Pacifico rock). The

seismic hazard at both these locations are over-predicted. We also perform a reality check

on the Southern California ShakeOut scenario and other synthetic ground motion simula-

tions rupturing segments of the San Andreas Fault by verifying that the ground motions at

the location of the PBR do not topple the PBR.

Apart from analyzing the response of PBRs to ground excitation, we also estimate

the ground motion experienced at a region from qualitative information about the rock-

ing/sliding response of an object. A train overturned at Point Reyes station during the 1906

San Francisco earthquake. We obtained lower bounds on the ground motion experienced at

the Point Reyes station during this earthquake by estimating the ground motion parameters

required to overturn a rectangular block model of this train. The minimum PGA, PGV,

and PGD required to overturn the train are 4 m/s2, 1 m/s and 0.25 m, respectively. The

fragility (overturning probability) maps for the train model were also used to perform a re-

ality check on the synthetic ground motion at Point Reyes from the 1906-like San Francisco

earthquake simulations by Aagaard et al. Time history analysis of the train model under

synthetic ground motion histories at Point Reyes from the three scenarios (with hypocen-

ters in Bodega Bay to the north of Point Reyes and offshore from San Francisco and San

Juan Bautista, both to the south of Point Reyes) shows the train model overturns in all three

cases. However, only the ground motions from the two scenarios with the hypocenter to

the south of Point Reyes reproduce the eye-witness account of the train lurching to the

east and then to the west before toppling. We conclude that the hypocenter for the 1906

San Francisco earthquake must lie to the south of Point Reyes, perhaps offshore from San

Francisco as widely believed.

Finally, we analyze the sliding response of objects like battery racks (which underwent

sliding during 2010 Haiti earthquake) and nuclear storage canister (which underwent slid-

ing during 2011 Mineral, Virginia earthquake) to estimate the lower bounds on ground

motions experienced at these regions. We found that the lower bound on PGA was quite

sensitive to the friction coefficient. For example, the lower bound experienced at the site of

the battery rack was 3 m/s2 and 4 m/s2 for friction coefficients of 0.15 and 0.2, respectively,
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between the battery rack and the floor. Similarly, the lower bounds on PGA at the nuclear

storage canister site was 3 m/s2 and 4.34 m/s2 for friction coefficients of 0.2 and 0.3, re-

spectively. The lower bounds on PGV, on the other hand, were not significantly affected by

the friction coefficients.

Earlier research on PBRs concluded that the rocking response of PBRs and the rect-

angular train model can provide constraints on PGA at that location. From this study, we

conclude that the overturning probability of the rock/rectangular block is most sensitive

to PGV. A minimum PGA is required to initiate rocking response of the rock/rectangular

block but if the PGV is less than a threshold, then the rocking response damps out quickly.

We also concluded that overturning analysis of train and sliding analysis of battery rack

and canister provide only lower bounds on ground motion experienced at the region. Since

the PBRs have not yet overturned, they provide an upper bound instead of lower bound on

the peak historic ground motion at that location.

5.2 Future Work

The approach presented in this dissertation can be extended to create accurate fragility

maps for the many rocks cataloged by Brune et al. [26] in order to obtain region-wide

seismic hazard assessment for Southern California. The comparisons with vector-valued

probabilistic seismic hazard analysis detailed in Section 3.6.2 may also be employed to

test the accuracy of the different ground motion prediction models. We have used the

Campbell-Bozorgnia NGA ground motion attenuation model [28], but the same analysis

can be repeated using other NGA attenuation relations like those developed Abrahamson

and Silva [6], Boore and Atkinson [20], Idriss [55], and so on. Note that this approach can

only judge whether the ground motion model is consistent with the existence of the PBR.

Apart from the use of the rigid body dynamics algorithm to analyze precariously bal-

anced rocks, this algorithm may be used to simulate the falling of rocks. Any rock-fall

simulation involves modeling the rolling, sliding and bouncing of rocks on a slope. This

analysis is further complicated by the irregular shape of the rock. The algorithm developed

for the analysis of PBRs is well suited to solve this problem. The results from this simula-
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tion might help in judging the appropriate height and location of fence required to prevent

the rock from rolling onto a road.

The existing rigid body dynamics algorithm may also be extended to model the response

of multi-body systems such as the stacked column structures found in Greece and linked

structures such as robotic arms.
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Appendix A

Feasibility of LCP

In this appendix, we demonstrate that the LCP in Eq. 2.16 is feasible, i.e., there exists a

jn
p+1 satisfying all the inequality constraints. Say, the normal vector nα (size 1× 3) at all

contact points (α = 1, 2, .., q) are arranged into the matrix J of size q × 3. Similarly, say

the row vectors rα × nα (size 1 × 3) at all contact points are arranged into the matrix K.

Then, from the definition of the Cnn in Eq. 2.15, Cnn can be rewritten as:

Cnn =
1

m
JJT + KI−1KT (A.1)

Now, from Farkas’s alternative [38], either there exists a non-negative jn
p+1 satisfying

jn
p+1Cnn+d′n ≥ 0, or there exists a positive row vector h (size 1×q) satisfying−hCnn ≥

0 and h · d′n < 0 (where · represents element-wise multiplication). Say there exists a h

meeting the specified requirements. Since h is a positive vector,−hCnnhT ≥ 0. However,

Cnn is positive semi-definite. Therefore, hCnnhT = 0. Now substituting for Cnn from

Eq. A.1, we get:

hCnnhT = 0 =⇒ h(
1

m
JJT + KI−1KT )hT = 0

=⇒ 1

m
hJJThT + hKI−1KThT = 0

=⇒ 1

m
‖JThT‖2 + (KThT )T I−1(KThT ) = 0
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Since moment of inertia, I, is positive definite:

hCnnhT = 0 =⇒ JThT = 0; KThT = 0

From the definition of J:

JThT = 0 =⇒
q∑

α=1

nα
Thα = 0

Here, hα is the αth element of the vector h. In the types of problems we are considering,

the vertical component (i.e., global Z) of the outward normal vector to the pedestal surface

at all contact points is positive. Since h is also a positive vector,
∑q

α=1nα
Thα can never be

zero. Therefore, a positive vector h (size 1×q) satisfying−hCnn ≥ 0 and h ·d′n < 0 does

not exist. The non-existence of h mandates the existence of a non-negative jn
p+1 satisfying

jn
p+1Cnn + d′n ≥ 0, thereby ensuring the feasibility of the LCP.
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Appendix B

Analytical solution for block’s response
mode

Say a rigid rectangular block of mass m [Fig. B.1(a)] impacts the ground. Let u̇y and u̇x

be the vertical and horizontal translational velocities of the block’s center of mass, respec-

tively, just before impacting the ground. Assuming that the coefficient of restitution (e)

between the block and the ground is zero, the block may come to rest, may start to rock,

may slide, or may experience sliding coupled with rocking after impact with the ground.

Here, we derive the conditions on the initial velocities (u̇y and u̇x) and the friction coef-

ficient (µ) between the block and the ground required to initiate response of the block in

each mode. For all calculations performed in this section, the static and kinetic friction

coefficients are assumed to be the same and the block is assumed to have negative vertical

velocity and positive horizontal velocity before impact, i.e., u̇y ≤ 0 and u̇x ≥ 0, respec-

tively.

Say u̇+
y and u̇+

x are the vertical and horizontal translational velocities of the block’s

center of mass, respectively, after impact with the ground. Similarly, let ω− = 0 and ω+

be the angular velocity of the block before and after impact, respectively, about the z axis

passing through its center of mass. Let jn1 and jn2 be the normal impulses acting at contact

points O1 and O2, respectively, and jx1 and jx2 be the frictional impulses acting at contact

points O1 and O2, respectively.
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Figure B.1: (a) Rigid rectangular block and ground (b) motion of block after it impacts the ground
as a function of initial velocity and coefficient of friction.

Case 1: Impact to rest

If the block comes to rest after impact, then u̇+
y , u̇+

x , and ω+ are zero. Conservation of

linear and angular momentum gives:

mu̇+
y = mu̇y + jn1 + jn2 =⇒ jn1 + jn2 = −mu̇y (B.1)

mu̇+
x = mu̇x + jx1 + jx2 =⇒ jx1 + jx2 = −mu̇x (B.2)

Iω+ = b(jn1 − jn2) + h(jx1 + jx2) =⇒ jn1 − jn2 = −h
b

(jx1 + jx2)

Solving these equation gives:

jn1 = −1

2
mu̇y +

h

2b
mu̇x

jn2 = −1

2
mu̇y −

h

2b
mu̇x

For u̇y < 0 and u̇x > 0, the normal impulse at contact point O1 is greater than that at

O2, i.e., jn1 > jn2. Since the normal impulses can only push the block and ground away

from each other and not pull them towards each other, we require the normal impulses to
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be non-negative. This gives:

jn2 ≥ 0 =⇒ − u̇y
u̇x
≥ h

b
=⇒

∣∣∣∣ u̇yu̇x
∣∣∣∣ ≥ h

b

Next, the friction impulses should satisfy Coulomb’s friction law, i.e., |jx1| ≤ µjn1 and

|jx2| ≤ µjn2. Assume that both the friction impulses oppose the horizontal tangential

velocity of the block, i.e., jx1 ≤ 0 and jx2 ≤ 0. The Coulomb’s friction cone constraint

combined with Eqs. B.1 and B.2 yields:

mu̇x = |jx1|+ |jx2| ≤ µ(jn1 + jn2) = −µmu̇y

=⇒ 1

µ
≤
∣∣∣∣ u̇yu̇x
∣∣∣∣

Now, say jx2 ≥ 0 and jx1 ≤ 0, then the Coulomb’s friction cone constraint combined with

Eqs. B.1 and B.2 gives:

jx2 +mu̇x = |jx1| ≤ µjn1 =⇒ jx2 ≤ µjn1 −mu̇x
jx2 ≤ µjn2

 =⇒ 1

µ
≤
∣∣∣∣ u̇yu̇x
∣∣∣∣

The same constraint is obtained when jx2 ≥ 0 and jx1 ≤ 0. Therefore, the conditions on µ

and |u̇y/u̇x| required for the block to come to rest after impact are:

1

µ
≤
∣∣∣∣ u̇yu̇x
∣∣∣∣ ; h

b
≤
∣∣∣∣ u̇yu̇x
∣∣∣∣

Case 2: Impact to sliding

If the block slides after impact, then u̇+
y and ω+ are zero, whereas u̇+

x is positive. Conser-

vation of linear and angular momentum gives:

mu̇+
y = mu̇y + jn1 + jn2 =⇒ jn1 + jn2 = −mu̇y (B.3)

mu̇+
x = mu̇x + jx1 + jx2 =⇒ jx1 + jx2 = m(u̇+

x − u̇x) (B.4)

Iω+ = b(jn1 − jn2) + h(jx1 + jx2) =⇒ jn1 − jn2 = −h
b

(jx1 + jx2) (B.5)
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Now, Coulomb’s friction law requires that the friction impulses oppose the translational

velocity of the block and lie on the friction cone, i.e., jx1 = −µjn1 and jx2 = −µjn1.

Solving Eqs. B.4 and B.5 along with the relations from the friction law gives:

jn1 = −1

2
mu̇y

(
1 + µ

h

b

)
jn2 = −1

2
mu̇y

(
1− µh

b

)

As earlier, the normal impulses jn1 and jn2 have to be non-negative. The above expressions

show that jn1 > jn2 for u̇y < 0. Therefore:

jn2 ≥ 0 =⇒ µ ≤ b

h

Next, Eqs. B.3 and B.4 combined the relations from the friction law may be used to calcu-

late u̇+
x . The resulting equation for expression for u̇+

x is:

u̇+
x = u̇x + µu̇y > 0 =⇒ 1

µ
>

∣∣∣∣ u̇yu̇x
∣∣∣∣

Therefore, the conditions on µ and |u̇y/u̇x| required for the block to slide after impact are:

µ ≤ b

h
;

1

µ
>

∣∣∣∣ u̇yu̇x
∣∣∣∣

Case 3: Impact to rocking

If the block rocks after impact, then u̇+
y and u̇+

x are positive whereas ω+ is negative. Since

the block starts rocking about O1, the contact impulses at the O2 are zero, i.e., jn2 = 0 and

jx2 = 0. Conservation of linear and angular momentum gives:

mu̇+
y = mu̇y + jn1 =⇒ u̇+

y = u̇y +
1

m
jn1 (B.6)

mu̇+
x = mu̇x + jx1 =⇒ u̇+

x = u̇x +
1

m
jx1 (B.7)

Iω+ = bjn1 + hjx1 =⇒ ω+ =
1

I
(bjn1 + hjx1) (B.8)
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Here, the moment of inertia, I , for the block about its center of mass is m(b2 + h2)/3.

Additionally, the block rocking about O1 implies that the horizontal and vertical velocities

of that contact point after impact, u̇x1 and u̇y1, respectively, are zero. These velocities are

given by:

u̇x1 = u̇+
x + hω+ = 0 =⇒ u̇+

x = −hω+

u̇y1 = u̇+
y + bω+ = 0 =⇒ u̇+

y = −bω+

These above equations along with Eqs. B.6-B.8 can be solved simultaneously to arrive at:

jx1 =
m

4(b2 + h2)
[3bhu̇y − (4b2 + h2)u̇x]; jn1 =

m

4(b2 + h2)
[3bhu̇x − (b2 + 4h2)u̇y]

u̇+
x =

3h

4(b2 + h2)
(bu̇y + hu̇x); u̇+

y =
3b

4(b2 + h2)
(bu̇y + hu̇x) (B.9)

ω+ =
3

4(b2 + h2)
(bu̇y + hu̇x) (B.10)

The above solutions for jx1 and jn1 should satisfy the static Coulomb friction law and

jn1 ≥ 0. The solution for jn1 shows that it is always positive for u̇x ≥ 0 and u̇y ≤ 0.

Similarly, the solution for jx1 shows that jx1 ≤ 0. The static friction cone constraint gives:

|jx1| ≤ µjn1 =⇒
4 + h

b

2 − 3µh
b

µ(1 + 4h
b

2
)− 3h

b

≤
∣∣∣∣ u̇yu̇x
∣∣∣∣

The solution for ω+ should be negative. This gives:

ω+ < 0 =⇒
∣∣∣∣ u̇yu̇x
∣∣∣∣ < h

b

Therefore, the conditions on µ and |u̇y/u̇x| required for the block to rock after impact are:

4 + h
b

2 − 3µh
b

µ(1 + 4h
b

2
)− 3h

b

≤
∣∣∣∣ u̇yu̇x
∣∣∣∣ ; ∣∣∣∣ u̇yu̇x

∣∣∣∣ < h

b
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Case 4: Impact to sliding coupled with rocking

If the block slides as well as rocks after impact, then u̇+
y and u̇+

x are positive whereas ω+ is

negative. Since the block starts rocking about O1, the contact impulses at the O2 are zero,

i.e., jn2 = 0 and jx2 = 0. Conservation of linear and angular momentum gives:

mu̇+
y = mu̇y + jn1 =⇒ u̇+

y = u̇y +
1

m
jn1 (B.11)

mu̇+
x = mu̇x + jx1 =⇒ u̇+

x = u̇x +
1

m
jx1 (B.12)

Iω+ = bjn1 + hjx1 =⇒ ω+ =
1

I
(bjn1 + hjx1) (B.13)

Here, the moment of inertia, I , for the block about its center of mass is m(b2 + h2)/3.

Additionally, the block rocking and sliding about O1 implies that the vertical velocity of

that contact point after impact, u̇y1, is zero. The velocities of contact point O1 are given by:

u̇x1 = u̇+
x + hω+

u̇y1 = u̇+
y + bω+ = 0 =⇒ u̇+

x = −hω+ (B.14)

The friction impulse at O1 should oppose the horizontal velocity of the contact point and

should lie on the friction cone, i.e., jx1 = −µjn1. Substituting this information into

Eq. B.14 gives:

jn1 = − m(b2 + h2)

4b2 + h2 − 3µhb
u̇y

The normal impulse should be non-negative. This gives:

jn1 ≥ 0 =⇒ 4b2 + h2

3hb
≥ µ
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The solution for the normal impulse can be used to solve for the other unknown quantities:

u̇+
x = u̇x −

µ(b2 + h2)

4b2 + h2 − 3µhb
u̇y; u̇+

y =
3b

4b2 + h2 − 3µhb
(b− µh)u̇y (B.15)

ω+ =
3

4b2 + h2 − 3µhb
(b− µh)u̇y (B.16)

u̇x1 = u̇x +
µ(b2 + 4h2)− 3bh

4b2 + h2 − 3µhb
u̇y

The rotational velocity of the block after impact (ω+) is negative and the horizontal velocity

of the contact point O1 (u̇x1) after impact is positive. This gives:

ω+ < 0 =⇒ b

h
≤ µ

u̇x1 > 0 =⇒
4 + h

b

2 − 3µh
b

µ(1 + 4h
b

2
)− 3h

b

>

∣∣∣∣ u̇yu̇x
∣∣∣∣

There are two bounds for µ. The upper and lower bounds for µ are obtained from jn1 ≥ 0

and ω+ < 0, respectively. However, for a h/b of 3 considered in the example above, the

upper bound on µ is above 1. So, it does not play a significant role in constraining the

region where sliding coupled with rocking occurs in the in µ − |u̇y/u̇x| space. Therefore,

the conditions on µ and |u̇y/u̇x| required for the block to slide and rock after impact are:

4 + h
b

2 − 3µh
b

µ(1 + 4h
b

2
)− 3h

b

>

∣∣∣∣ u̇yu̇x
∣∣∣∣ ; b

h
≤ µ
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Appendix C

Supplemental figures for Echo Cliff PBR
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Figure C.1: Overturning probability of the Echo Cliff PBR as a function of PGV and PGA for
dominant horizontal ground motion applied to the pedestal at (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦,
(e) 180◦, (f) 225◦, (g) 270◦, and (h) 315◦ CCW from the X axis. Each column in these figures
contain 140 earthquakes scaled to a given PGA level. The varying thicknesses of the column are
proportional to the fraction of earthquakes (out of 140) that are sampled in a given PGV bin.
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Figure C.2: Overturning probability of the Echo Cliff PBR as a function of PGD and PGA for
dominant horizontal ground motion applied to the pedestal at (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦,
(e) 180◦, (f) 225◦, (g) 270◦, and (h) 315◦ CCW from the X axis. Each column in these figures
contain 140 earthquakes scaled to a given PGA level. The varying thicknesses of the column are
proportional to the fraction of earthquakes (out of 140) that are sampled in a given PGD bin.
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Figure C.3: Overturning probability of the Echo Cliff PBR as a function of PGD and PGV for
dominant horizontal ground motion applied to the pedestal at (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦, (e)
180◦, (f) 225◦, (g) 270◦, and (h) 315◦ CCW from the X axis. 2046 out of the 2660 scaled earthquake
records which have PGV and PGD less than 3 m/s and 3 m, respectively, are used for these figures.
The 2046 earthquakes are divided into bins of width 0.25 m/s in PGV and 0.25 m in PGD. The
varying thicknesses of the column are proportional to the fraction of earthquakes (out of 2046) that
are sampled in a given PGV and PGD bin.
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Figure C.4: Overturning probability of the Echo Cliff PBR as a function of PGA and duration for
dominant horizontal ground motion applied to the pedestal at (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦, (e)
180◦, (f) 225◦, (g) 270◦, and (h) 315◦ CCW from the X axis. Each row in these figures contain 140
earthquake records scaled to a given PGA level. The column thicknesses are proportional to the
fraction of earthquakes (out of 140) that are sampled in a given duration bin.
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Figure C.5: Overturning probability of the Echo Cliff PBR as a function of PGV and duration
for dominant horizontal ground motion applied to the pedestal at (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦,
(e) 180◦, (f) 225◦, (g) 270◦, and (h) 315◦ CCW from the X axis. 2190 out of the 2660 scaled
earthquake records which have PGV less than 3 m/s and duration less than 50 s are used for these
figures. The 2190 earthquakes are divided into bins of width 0.25 m/s in PGV and 5 s in duration.
The varying thicknesses of the column are proportional to the fraction of earthquakes (out of 2190)
that are sampled in a given PGV and duration bin.
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