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Abstract

The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely

sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly

conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and

equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells

designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections.

Despite their drawbacks, these approaches have been used for more than half a century.

This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial

compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally

symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections

(wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary

algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of ge-

ometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach

can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindri-

cal shells. It is also found that these shells have superior mass efficiency to almost all previously reported

stiffened shells.

Experimental studies on a design of composite wavy shell obtained through the proposed method are

presented in this thesis. A method of making composite wavy shells and a photogrametry technique of mea-

suring full-field geometric imperfections have been developed. Numerical predictions based on the measured

geometric imperfections match remarkably well with the experiments. Experimental results confirm that the

wavy shells are not sensitive to imperfections and can carry axial compression with superior mass efficiency.

An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells

subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch

wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient

algorithm has been developed to implement the modified Bloch wave method. This method is applied in

buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened

aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very

high accuracy and require much less computational time than linear and nonlinear analyses of detailed full

finite element models.
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This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e.,

polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization

methods have been developed to further improve the performance of pseudo-spherical shells under external

pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations

are much higher than the spherical shells and not sensitive to imperfections.
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Chapter 1

Introduction

1.1 Overview

Cylindrical shells have been widely used over decades in many engineering fields such as civil, oil, marine,

and aerospace industries, etc. For example, storage tanks, as shown in Fig. 1.1 (a), are the most commonly

seen cylindrical shells, and cylindrical pipelines are key structural components in oil and natural gas industry.

Due to the lightness and high load-carrying capability of cylindrical shells, they have been extensively used

as aerospace structures such as airplane fuselages and rocket shells, as shown in Fig. 1.1 (b) and (c).

(a) (b) (c)

Figure 1.1: (a) Water storage tank (image credit: CST Industry). (b) Boeing 787 composite fuselage. (c)
Space Shuttle Atlantis (image credit: NASA/KSC).

Spherical shells also have very wide structural applications in engineering. For example, spherical shells

can be used as storage tanks, as seen in Fig. 1.2 (a); the spherical submarine in Fig. 1.2 (b) is a typical

example of spherical shells under hydrostatic pressure. A portion of a complete spherical shell, i.e., spherical

cap, is also often used. The most common applications of spherical caps are concrete roofs such as the roof

of the Kresge Auditorium in Fig. 1.2 (c).

Cylindrical and spherical shells are often subject to destabilizing loads such as axial compression, bending,

torsion, and external pressure. In order to achieve high mass efficiency, cylindrical and spherical shells are

very thin compared to their overall structural dimensions (e.g., radius, length, and span). Therefore, buckling
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(a) (b) (c)

Figure 1.2: (a) Spherical storage tanks (image credit: BBB Tank Services). (b) Triton submarines (image
credit: Sandra Edwards/South Florida Dive Journal). (c) MIT Kresge Auditorium (from Wikipedia). Its
concrete roof is one-eighth of a complete sphere.

is an important and sometimes critical consideration in designing thin cylindrical and spherical shells.

Among the destabilizing loading conditions, axial compression for cylindrical shells and external pressure

for spherical shells are the most destructive ones because their buckling is extremely sensitive to geometric

imperfections. Typical examples of axially compressed cylindrical shells and externally pressurized spherical

shells are rocket shells under self-weight and submarine pressure hulls under hydrostatic pressure, respec-

tively. A small geometric imperfection can drastically reduce the buckling loads of those shells, significantly

impairing their mass efficiency in carrying loads. This extreme imperfection-sensitivity has been one of the

major obstacles in designing axially compressed cylindrical shells and externally pressurized spherical shells.

1.1.1 Axially Compressed Cylindrical Shells

Motivated by the development of aerospace industry, axially compressed cylindrical shells have been exten-

sively studied since the space age. Large discrepancies between theoretically predicted and experimentally

measured buckling loads for axially loaded cylindrical shells were first observed in the 1930s. It was found

that thin cylindrical shells under axial compression may buckle at loads as low as only 20% of the theo-

retically predicted buckling loads (Brush and Almroth, 1975). It was subsequently established in the 1940s

that this disagreement between theories and experiments is due to the extreme imperfection-sensitivity of

buckling of cylindrical shells under axial compression.

In practice an empirical lower bound of knockdown factors is used to consider the reduction in buckling

loads of axially compressed cylindrical shells due to imperfections (Jones, 2006). Cylindrical shells are

designed for much larger theoretical buckling loads to ensure that, when the knockdown factor is applied,

they still meet their design requirements. The empirical lower bound on the knockdown factors was derived

from many tests conducted over 50 years ago, and it is still currently used to design axially loaded cylindrical

shells. It has been argued that the knockdown-factor method cannot provide a rational basis for modern

designs and tends to produce overly conservative and heavy shells (Jones, 2006; Nemeth and Starnes, 1998).

NASA Langley is currently developing new knockdown factors for the Space Launch System by performing

subscale and full-scale buckling tests (Hilburger, 2012; Hilburger et al., 2012b).
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Closely stiffened cylindrical shells, shells reinforced by stringers, corrugations, and rings, as shown in

Fig. 1.3, are used to mitigate the severe imperfection-sensitivity. It has been found that the knockdown factors

of closely stiffened shells could be between 0.7 and 0.95, indicating a much lower imperfection-sensitivity than

unstiffened monocoque cylindrical shells (Card and Jones, 1966). This architecture is currently established

as the premiere efficient aerospace structure (Singer et al., 2002b). However, stiffened shells are still sensitive

to imperfections, although the sensitivity is not as extreme as monocoque cylindrical shells. It should also be

noted that the stiffened cylindrical shells are very expensive due to their complex manufacturing processes.

(a) (b)

Figure 1.3: (a) Saturn V. (image credit: Ron Crain). (b) A corrugated graphite-epoxy ring-stiffened cylin-
drical shell (Davis, 1982).

1.1.2 Externally Pressurized Spherical Shells

The buckling behavior of spherical shells under external pressure has been extensively investigated since

the 1960s. Both theoretical and experimental studies have confirmed the severe imperfection-sensitivity of

externally pressurized spherical shells. The analytical predictions obtained by Hutchinson (1967) and Koga

and Hoff (1969) showed that an imperfection with amplitude of half shell thickness could drastically reduce

the buckling pressure by 50% to 60%. The experiments performed by Krenzke (1962) showed that the

measured buckling pressure could reach only 50% to 70% of the predicted values of perfect spherical shells.

Empirical knockdown factors are used in practice to design spherical shells under external pressure; see

references NASA-SP-8032 (1969) for spherical caps and Krenzke and Kiernan (1963) for complete spherical

shells. Similar to the knockdown-factor method of cylindrical shells, using the empirical knockdown factors

of spherical shells leads to overly conservative and heavy shells which are still very sensitive to imperfections

(Nemeth and Starnes, 1998).

Stiffened spherical shells are less commonly used in engineering than stiffened cylindrical shells, and inves-

tigations on externally pressurized stiffened spherical shells, especially on complete stiffened spherical shells,

are very scarce and hardly available (Singer et al., 2002b; Ventsel and Krauthammer, 2001). Krenzke and

Kiernan (1963) performed experimental studies on stiffened hemispherical shells and concluded that stiffen-

ing could not be effective unless the stiffeners are closely spaced and in both circumferential and meridional
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directions. The analytical and numerical studies by Öry et al. (2002) showed that stiffened spherical shells

under hydrostatic pressure could still be rather sensitive to imperfections. Therefore, considerable theoretical

and experimental studies are required in order to find the efficient stiffening configurations.

1.2 Objective and Scope

The two main methods of designing axially compressed cylindrical shells and externally pressurized spherical

shells have drawbacks. First, the knockdown-factor method essentially provides conservative safety factors

without changing the behavior of shell buckling. Second, although stiffening cylindrical shells by equally

spaced stringers, rings, and corrugations can mitigate the imperfection-sensitivity, stiffened cylindrical shells

are still sensitive to imperfections and are very expensive. In addition, the effects of stiffening spherical shells

are not clear.

The objective of this dissertation is to propose novel methods of designing imperfection-insensitive axially

compressed cylindrical shells and externally pressurized spherical shells that have high load-carrying capa-

bility. Conventional cylindrical and spherical shells have axial symmetry, high-order rotational symmetry,

or spherical symmetry. The methods proposed in this dissertation use structural optimization to search for

optimal symmetry-breaking shapes that maximize the critical buckling loads and at the same time reduce

imperfection-sensitivity. The behavior of the novel symmetry-breaking shells designed through the proposed

methods is fundamentally different from the highly symmetric shells obtained from the knockdown-factor

method and stiffening method.

This dissertation is mainly focused on axially compressed cylindrical shells. The method of designing

imperfection-insensitive axially compressed cylindrical shells was first developed and then used to produce

several composite and metal shells. Experimental studies were preformed on a design of composite shell in

order to validate the method. A fast computational method for buckling analysis of axially loaded stiff-

ened/corrugated cylindrical shells was developed, and could be potentially used to reduce the computational

costs of optimization. The idea of breaking symmetry was then applied in designing imperfection-insensitive

metal spherical shells under external pressure. All the shells presented in this dissertation were assumed to

be linearly elastic.

1.3 Layout of Dissertation

This dissertation consists of seven chapters. After this introductory chapter, Chapter 2 presents brief reviews

on the essential background to the current study. The first part of the chapter focuses on axially compressed

cylindrical shells, including the theories for buckling of cylindrical shells, details of current design methods,

mass efficiency, manufacturing and testing methods, and current methods for analyzing buckling of stiff-

ened/corrugated shells. The second part of the chapter reviews the theoretical and experimental studies of



5

externally pressurized spherical shells.

Chapter 3 first describes a method for obtaining imperfection-insensitive axially loaded cylindrical shells.

Several symmetry-breaking shells (wavy shells) designed through the method are then presented. The results

are then analyzed and compared to other alternative shells, including sinusoidally corrugated shells and Aster

shell. The mass efficiency of wavy shells is then calculated and compared to currently existing stiffened shells.

Chapter 4 presents experimental studies of the best composite wavy shell obtained in Chapter 3. The

chapter begins with a method of making composite wavy shells. A novel method of measuring full-field

geometric imperfections is then presented. Based on measured imperfections, the experimental behavior of

the wavy shells is predicted. The last part of the chapter shows the measured experimental behavior of the

wavy shells.

Chapter 5 presents a highly efficient computational tool for predicting the onset of buckling of corrugated

or stiffened cylindrical shells under axial compression. The computational tool is a modification of the

traditional Bloch wave method for two or three dimensional infinite structures. The chapter first explains

how the Bloch wave method is modified for corrugated and stiffened cylindrical shells. The numerical

implementation of the modified method, including the finite element implementation and algorithm, is then

described. Several numerical examples are then analyzed to validate the modified Bloch wave method. The

results and computational time of the modified Bloch wave method are then compared to linear and nonlinear

finite element analyses based on full detailed finite element models.

Chapter 6 presents parametric studies on several pseudo-spherical shells, i.e., polyhedral shells. Several

optimization methods of design imperfection-insensitive pseudo-spherical shells under external pressure are

then described. Chapter 7 concludes the dissertation.
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Chapter 2

Background and Literature Review

This chapter consists of two parts: literature reviews of axially compressed cylindrical shells and exter-

nally pressurized spherical shells. There is a huge body of literature on the buckling of linear-elastic thin

cylindrical and spherical shells. This chapter is focused on the essential background to the present study.

The interested reader is referred to the extensive reviews compiled by Brush and Almroth (1975), Elishakoff

(2012), Hutchinson and Koiter (1970), Jones (2006), Singer et al. (2002a), Singer et al. (2002b), and Bushnell

(1985).

2.1 Reviews of Axially Compressed Cylindrical Shells

2.1.1 Theories and Design Methods

2.1.1.1 Effects of Imperfections on Cylindrical Shells

The first major contribution to the present understanding of the effects of initial imperfections on the buckling

of circular cylindrical shells was made by Von Kármán and Tsien (1941), who analyzed the postbuckling

equilibrium of axially compressed cylindrical shells. Donnell and Wan (1950) analyzed initially imperfect

cylindrical shells and obtained equilibrium paths as sketched by the dash line in Fig. 2.1, where P and Pcl

are the compressive load and the classical bifurcation buckling load, respectively. Figure 2.1 shows a sharply

dropping second equilibrium path and thus indicates that an initially imperfect shell buckles at the limit

point B instead of reaching the bifurcation point A. Koiter (1963) analyzed the influence of axisymmetric

imperfections coinciding with the axisymmetric buckling mode of a perfect cylindrical shell. His results,

summarized in Fig. 2.2, show that imperfections with even a small amplitude can dramatically reduce the

buckling load.

A more general analysis of the influence of initial imperfections (Koiter, 1945) was based on an analysis

of the potential energy of the loaded structure in a general buckled equilibrium configuration. This analysis

is applicable to asymmetric imperfections and shells of arbitrary shape (Brush and Almroth, 1975), and

provides an approximate solution to the secondary equilibrium path for a perfect structure, with a single
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A

B

O

Pcl

Pcr

axial shortening

P

Figure 2.1: Sketch of equilibrium paths for axially compressed, geometrically perfect cylindrical shells (solid
line, from Von Kármán and Tsien (1941)) and imperfect cylindrical shells (dash line, from Donnell and Wan
(1950)).

0
0 1

Pcr

Pcl

imperfection ratio

1

Figure 2.2: Sketch of influence of imperfection amplitude (ratio of imperfection amplitude to shell thickness)
on buckling load Pcr of imperfect shells, based on Koiter (1963).
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buckling mode associated with the first bifurcation point:

λ0 ≡ P

Pcl
= 1 + a1δ + a2δ

2 + ..., (2.1)

where a1, a2, ... are constants and δ is a measure of the lateral displacement amplitude. This solution is

shown by means of solid lines in Fig. 2.3. In case I a1 ̸= 0 and for small values of δ the secondary equilibrium

path is approximated by a straight line. For the other two cases a1 = 0, resulting in quadratic secondary

equilibrium paths: a2 < 0 for case II and a2 > 0 for case III.

The corresponding equilibrium paths for imperfect structures are shown by dash lines in the figure. λ±

are ratios between the buckling loads of imperfect structures with positive/negative imperfections and the

perfect structure. Cases I and II represent structures that are sensitive to imperfections, because the buckling

loads of the imperfect structures (λ− for case I and λ± for case II) are lower than 1. In case I different signs

of imperfections lead to different types of imperfection-sensitivity.

1 11 λ0

λ+λ−

δ δ δ

Figure 2.3: Three types of post-buckling equilibrium paths for perfect and imperfect structures, from Brush
and Almroth (1975) and Koiter (1945).

2.1.1.2 Design of Cylindrical Shells Against Buckling

The current approach for the design of axially compressed monocoque cylindrical shells against buckling

accounts for buckling load reductions due to imperfections through the knockdown-factor method. The

actual buckling load of a cylindrical shell is estimated from:

Pcr = γPcl (2.2)

where γ is the knockdown factor and Pcl is given by (Brush and Almroth, 1975):

Pcl =
2πEt2√
3(1− ν2)

, (2.3)

where E, ν, and t are the Young’s modulus, Poisson’s ratio, and shell thickness, respectively.

A widely used expression for γ is the empirical curve provided in NASA SP-8007 (Peterson et al., 1965)

and shown in Fig. 2.4. Given a radius to thickness ratio R/t, this curve provides a lower bound to a large
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dataset of experimentally derived knockdown factors and hence can be used to predict the buckling load

using Eq. 2.2.

Designs obtained from the knockdown factor method are required to achieve a theoretical buckling load

Pcl high enough that the reduced buckling load Pcr obtained from Eq. 2.2 satisfies the design requirements.

Fundamentally, the knockdown-factor design method accepts highly imperfection-sensitive shell designs, but

limits the maximum load that can be applied to keep them safe.

R/t

1.0

0.6

0.2

0

0.8

0.4

0 400 600 800

γ

16

1

t

R
−

γ = 1−0.901(1−e         )

Figure 2.4: Experimentally measured values of knockdown factor and empirically defined lower bound curve,
as a function of the radius to thickness ratio (Jones, 2006).

An alternative structural form to the imperfection-sensitive monocoque cylinder is the stiffened cylin-

drical shell. Although it is difficult to make a general comparison, as there are many different potential

configurations for the stiffeners, as an example it can be noted that experiments on 12 longitudinally stiff-

ened cylindrical shells with internal or external, integral or Z-stiffeners provided knockdown factors in the

range 0.7 to 0.95, indicating a much lower imperfection-sensitivity than monocoque cylindrical shells (Card

and Jones, 1966).

2.1.1.3 Manufacturing Imperfection Signature Method

The empirically derived lower bound on the knockdown factor in Fig. 2.4 was derived from many tests

conducted over a long period of time and recently it has been argued that the manufacturing, loading, and

boundary conditions for this large set of shells are not sufficiently well-known to provide a rational basis

for modern design. Also, most data points correspond to metallic shells, whereas fiber-reinforced composite

shells are not well represented (Jones, 2006; Nemeth and Starnes, 1998). Hence, it has been argued by several

authors that the knockdown-factor approach tends to provide overly conservative designs because it allows

for the worst possible imperfections, which is not a reasonable assumption for modern, precision-made shells.

An emerging alternative design approach is based on the “signature” of the manufacturing imperfection,

which is a statistical representation of geometric imperfections based on measurements (Rotter et al., 1992;

Teng, 1996; Hilburger and Starnes Jr, 2001; Hilburger et al., 2006; Jones, 2006). This imperfection signature
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is then applied in the analysis to accurately predict the actual buckling load. Hilburger et al. (2006) obtained

the buckling loads of six graphite-epoxy cylindrical shells subject to combined axial compression and torsion

by using five imperfection shapes, including the actual measured imperfections of test specimens, mean

imperfection shape, mean imperfection shape plus or minus one standard deviation, and the critical-buckling-

mode imperfection shape. The predicted and measured buckling loads of a composite shell with an axially-

stiff laminate [±45/02]s are summarized in Fig. 2.5, where it should be noted that the measured amplitude

of imperfection was in the range +1.27t to −1.54t.
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Eigen-mode 
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Figure 2.5: Predicted buckling loads for axially stiff shells under combined axial compression and torsion
(Hilburger et al., 2006). Pcr and Tcr are the axial and torsional buckling loads of imperfect shells; Pcl and
Tcl are the corresponding bifurcation buckling loads of perfect shells; σ is the standard deviation of the
imperfection.

Figure 2.5 shows that the buckling loads predicted using an imperfection based on the critical eigenmode,

or using the SP-8007 data (Peterson et al., 1965) are both much lower than the measured buckling load,

indicating that using these two approaches can lead to rather conservative designs. Note that the buckling

load predicted with the imperfection-signature approach closely matches the measurements.

2.1.1.4 Alternative Approaches: Aster Shell, Pseudo-Cylindrical Shell, and Ramm’s Method

Jullien and Araar proposed an intuitive design for imperfection-insensitive cylindrical shells (Jullien and

Araar, 1991; Araar, 1990; Araar et al., 1998). Having noted that in a cylindrical shell under axial com-

pression the inward imperfections become amplified, whereas the outward imperfections maintain a constant

amplitude, these authors considered a cross-sectional shape that is everywhere convex apart from symmetri-

cally distributed, localized kinks. This cross-sectional shape, shown in Fig. 2.6, is obtained from the critical

eigenmode of the shell, by taking the mirror image of all concave arcs. The resulting fluted shell, called

the “Aster” shell, is a precursor of the solution proposed in this thesis. A knockdown factor of 0.77 was

experimentally demonstrated for an Aster shell with R = 75 mm, t = 153 µm, and a deviation of +2.3 mm

from the circle.
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Figure 2.6: Cross-sections of dominant eigenmode of circular shell (solid and dashed arcs) and Aster shell
(solid line) with R/t = 490.

Following Yoshimura (1951), Knapp (1974, 1977) proposed another intuitive shell design, pseudo-cylindrical

shell, which approximates the buckled pattern under axial compressing by using flat polyhedral elements, as

shown in Fig. 2.7. This concept is based on the assumption that, if a cylindrical shell is fabricated following

the pattern in Fig. 2.7, it is more stable than the imperfection-sensitive circular geometry. However, Knapp

did not study the imperfection-sensitivity of pseudo-cylindrical shells. Simulations carried by the author of

this thesis show that the pseudo-cylindrical shell has a high knockdown factor of 0.9 and its buckling load is

30% lower than the perfect circular shell with the same radius, length, and material.

Figure 2.7: A buckled pattern approximated by flat polyhedral elements (from Yoshimura (1951)).

A general shape optimization method for thin shell structures was proposed by Reitinger et al. (1994) and

Reitinger and Ramm (1995). Instead of considering only the buckling loads of perfect candidate structures,

as in conventional structural optimization, these authors considered both perfect and imperfect structures

in the evaluation of the objective function. This fundamental difference avoids convergence towards highly

imperfection-sensitive designs.

The method consists of four steps linked in an optimization loop. First, the buckling load of the perfect

structure, P0, and the corresponding eigenmode, Φ, are computed. Second, the eigenmode is scaled by a

prescribed amplitude and is adopted as imperfection shape; it is then superposed to the perfect geometry to

define an imperfect shape. Third, the critical buckling load, Pcr, for the imperfect structure is calculated.
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Finally, the minimum among P0 and Pcr is chosen as the value of the objective function.

Applications of this method to the design of concrete shell roofs, stiffened panels, and free-form shells

were presented by Reitinger and Ramm (1995); Ramm and Wall (2004).

2.1.1.5 Efficiency Chart

Quantitative comparisons of different structural designs require the use of suitable metrics. In the present

case, the buckling performance of monocoque, stiffened, or any other kinds of cylindrical shells can be

compared by considering the weight and load indices (Peterson, 1967; Agarwal and Sobel, 1977; Nemeth and

Mikulas, 2009), which are defined as follows:

Weight index :
W

AR

Load index :
Nx

R

(2.4)

Here W , A, and R are the total weight of the shell, the surface area, and radius of the cylinder, respectively,

and

Nx =
Pcr

2πR
(2.5)

denotes the (axial) critical buckling stress resultant. The surface area of the shell is A = 2πRL, where L is

the length of the cylinder. Note that the weight and load indices are dimensional, this is the form commonly

used by shell designers.

For circular monocoque cylindrical shells, the relation between weight and load indices can be found as

follows. Begin by substituting W = ρAt into the weight index expression, which gives

W

AR
=
ρt

R
(2.6)

Then, solve Eq. 2.3 for t to obtain:

t =

√
Pcl

√
3(1− ν2)

2πE
(2.7)

Then, substitute Eq. 2.7 into Eq. 2.6 and replace Pcr/γ for Pcl, from Eq. 2.2, to obtain:

W

AR
=
ρ

R

√
Pcr

√
3(1− ν2)

2γπE
(2.8)

Further substitution of 2πRNx for Pcr , from Eq. 2.5, and simplification gives:

W

AR
= ρ

√√
3(1− ν2)

γE

Nx

R
(2.9)
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Figure 2.8 shows a plot of W/AR vs. Nx/R. The inclined straight line in the figure represents perfect

(γ = 1) monocoque aluminum shells; the horizontal line corresponds to lightly-loaded shells which are subject

to a minimum thickness constraint. The data points included in the plot represent (a) shells with integral-

orthogonal stiffeners under axial compression (Katz, 1965), (b) z- and integrally-longitudinally stiffened

shells under axial compression (Card, 1964a), (c) a corrugated graphite-epoxy ring-stiffened cylinder under

bending (Davis, 1982), (d) ring-stiffened corrugated cylinders under axial compression (Peterson, 1967), and

(e) z-stiffened shells subject to bending (Card, 1964b). Note that for structures subjected to bending the

critical axial stress resultant used in the calculation of the load index was the peak axial stress resultant due

to the critical bending moment, obtained from simple bending theory.

Shells closer to the right-bottom corner of the chart are the most efficient, as they can carry larger loads

using less material. The chart shows that most stiffened cylindrical shells have higher efficiency than even

perfect monocoque circular cylindrical shells. However, it should be noted that the reduced imperfection-

sensitivity of stiffened cylindrical shells is countered by their complex manufacturing process. Machining

from thicker stock and special forgings are the main manufacturing methods for metallic shells (Singer et al.,

2002b). In 1986 the cost of a 320 mm diameter steel shell stiffened in one direction was on the order of

$3,500, and of $15,000 for a similar, orthogonally stiffened shell (Scott et al., 1987; Singer et al., 2002b).
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Figure 2.8: Performance chart for stiffened cylindrical shells described in Section 2.1.1.5 (data provided by
Dr. M.M. Mikulas) and including plot of Eq. 2.9 for perfect (γ = 1) monocoque cylinders.

2.1.2 Experimental Methods

2.1.2.1 Manufacture of Cylindrical Shells for Research

Electroforming was one of the main methods of making monocoque metal cylindrical shells for research

in the 1960s; see for examples Almroth et al. (1964); Arbocz and Babcock Jr (1968); Babcock (1962);

Sendelbeck (1964). Electroformed shells were usually plated on wax mandrels sprayed with a thin layer of
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conductive paint in electrolyte baths. The shells were removed from mandrels by melting the wax after

plating. Extreme care was required to avoid damaging or warping the shells because the wax significantly

expanded when it was heated to the melting point (Babcock, 1962). Electroformed shells usually have large

imperfections due to the initial stresses generated in the plating processes (Singer et al., 2002b). In the 1980s

and 90s, Jullien and his co-workers (Jullien and Araar, 1991; Araar, 1990) significantly improved the quality

of electroformed shells by plating cooper or nickel on accurately machined duraluminum mandrels which

were then chemically dissolved for separation of shells. Despite those improvements, it has been warned

by Singer et al. (2002b) that electroforming remains a very difficult method that requires high skill and

experience to produce consistently good specimens.

Machining from thicker stock and special forgings is usually used to make monocoque metal cylindrical

shells when high accuracy is required and it is also the primary method to make high-quality integrally

stiffened cylindrical shells (Singer et al., 2002b). For non-integrally stiffened cylindrical shells, stiffeners

are welded or riveted to unstiffened cylindrical shells or flat plates which are then rolled onto a cylindrical

mandrel; see for example Dowling and Harding (1982) and Card and Jones (1966). The fabrication processes

of stiffened shells are very expensive. In 1986 the cost of a 320 mm diameter steel shell stiffened in one

direction was on the order of $3,500, and of $15,000 for a similar, orthogonally stiffened shell (Scott et al.,

1987; Singer et al., 2002b).

Composite materials have been increasingly used in aerospace structures because of their high stiffness,

high strength, and low density. The fabrication procedure of composite cylindrical shells for research usually

consists of a laminate lay-up process and an autoclave curing process. Graphite-epoxy shells made by

Hilburger et al. (2006) are typical examples of small-scale monocoque composite cylindrical shells, which

were laid up on a cylindrical mandrel, vacuum bagged and cured in an autoclave. Large composite shells

can also be assembled from cylindrical panels which are warped from initially flat panels. For example, the

3-meter-diameter graphite-epoxy corrugated cylindrical shell in Johnson (1978) was assembled from three

segments which were laid up and cured on a flat corrugated mold and then wrapped to the cylindrical shape.

This approach is feasible for fabricating composite shells with flexible thin walls and a relatively large radius

(Johnson, 1978).

2.1.2.2 Methods of Measuring Imperfections

The three-dimensional survey is currently the main method of measuring shell imperfections. A typical 3D

survey instrument consists of a scanning rig and a data recording system (Verduyn and Elishakoff, 1982;

Singer et al., 2002b). In a 3D survey procedure a shell surface is scanned by a probe, and the axial and

circumferential positions of the probe tip are recorded. The probe moves along the axial direction of a shell,

and the shell rotates around its axis so that the shell surface can be fully surveyed. For some 3D survey

systems the scanning probe also moves in the circumferential direction of a shell which is fixed on the rig;

see for example Arbocz and Williams (1977).
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Shell imperfections are calculated by comparing the scanned shell surface to an imaginary perfect cylinder.

The position of the perfect cylinder is determined by finding the best-fit cylinder to the measured data (Singer

et al., 2002b). The method of least squares is usually used to minimize the sum of the squares of the normal

distances from the measured points to the imaginary perfect cylinder by varying the rigid-body translations

and rotations of the perfect cylinder (Arbocz and Babcock Jr, 1968; Cartalas et al., 1990; Hilburger et al.,

2006). The solution of the minimization problem is the position of the best-fit perfect cylinder. The radial

deviations of the measured surface with respect to the best-fit perfect imaginary cylinder are computed as

imperfections.

Measured imperfections can be represented by Fourier series in order to analyze and compare the compo-

nents of different imperfections. A commonly used form of Fourier series for decomposing initial imperfections

is the half-wave cosine Fourier expansion (Arbocz and Babcock Jr, 1968; Singer et al., 2002b):

ω(x, θ) = tnom

M∑
k=0

M∑
l=0

cos(
kπx

L
)[Aklcos(lθ) +Bklsin(lθ)] (2.10)

where L and tnom are the shell length and nominal thickness, respectively. x and θ denote the axial and

circumferential coordinates. k and l are the wave numbers of axial half-cosine waves and circumferential

full-waves, respectively. The Fourier coefficients are given by Cartalas et al. (1990):

A00 =
1

2πLtnom

∫ L

0

∫ 2π

0

ω(x, θ) dx dθ

Ak0 =
1

πLtnom

∫ L

0

∫ 2π

0

ω(x, θ) cos(
kπx

L
) dx dθ, k > 0

A0l =
1

πLtnom

∫ L

0

∫ 2π

0

ω(x, θ) cos(lθ) dx dθ, l > 0

Akl =
2

πLtnom

∫ L

0

∫ 2π

0

ω(x, θ) cos(
kπx

L
) cos(lθ) dx dθ, k > 0, l > 0

Bk0 = 0, k ≥ 0

B0l =
1

πLtnom

∫ L

0

∫ 2π

0

ω(x, θ) sin(lθ) dx dθ, l > 0

Bkl =
2

πLtnom

∫ L

0

∫ 2π

0

ω(x, θ) cos(
kπx

L
) sin(lθ) dx dθ, k > 0, l > 0

(2.11)

The amplitude of a component of an imperfection can be computed by:

ξk,l =
√
A2

kl +B2
kl (2.12)

2.1.2.3 Measurement of Shell Deformation and Recording of Buckling Behavior

Three-dimensional survey systems were commonly used for measuring shell prebuckling and postbuckling

deformations in early shell buckling experiments; see for examples Arbocz and Babcock Jr (1968); Yamaki
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and Otomo (1973); Araar (1990); Limam et al. (1991). The loads in those experiments were incrementally

increased and stopped at each value of interest so as to scan the shell surface. Strain gages were usually

used to measure shell strains. Recently, three-dimensional digital image correlation (DIC) systems have

been utilized to measure shell deformations in buckling experiments of both small-scale (Wu et al., 2013)

and large-scale shells (Hilburger et al., 2012a). The DIC is a non-contact technique that can measure shell

deformations and strains without interrupting the testings. They can also provide full-field high-resolution

measurements at a much higher speed than three-dimensional survey systems.

High-speed photography is required in order to record the behavior of shells during buckling because

buckling is a very short dynamic procedure. So far most of the high-speed photography recordings for shell

buckling experiments used film speeds of 1500 to 8000 frames per second (Singer et al., 2002b). Although

modern high-speed cameras can operate at a very high film speed, the corresponding total recording time

is very short. For example, the Phantom V310 high-speed camera (Vision Research, 2014) can only record

for approximately 2 seconds at the film speed of 6000 frames per second with a resolution of 0.5 megapixels.

Thus the timing for triggering high-speed cameras is very challenging and requires extreme care to capture

the onset of buckling. However, if the shells can buckle at virtually the same load, the high-speed camera

can be synchronized with the initiation of buckling (Singer et al., 2002b).

2.1.3 Computational Methods

2.1.3.1 Overview on Methods for Buckling Analysis of Corrugated/Stiffened Cylindrical Shells

Although current commercial finite element codes allow us to analyze the buckling behavior of corrugated

and stiffened cylindrical shells, detailed simulations are computationally intensive. Typically, the overall

dimensions of a cylindrical shell are much larger than the space between stiffeners or the wavelength and

amplitude of corrugations. For example, a corrugated shell designed by Johnson (1978) had a diameter

of 3 m, with a corrugation wavelength and amplitude of only 11.4 and 1.1 cm, respectively. Therefore, it

would be necessary to use very small shell elements to accurately mesh the shell geometry and hence to

obtain accurate results, leading to lengthy computations. This high computational effort has been the major

constraint on the use of finite element analysis in the optimization of corrugated/stiffened shells (Bisagni

and Vescovini, 2009).

A variety of methods have been introduced to reduce the computational effort required for the buckling

analysis of corrugated and stiffened shells. A common approach is to replace their actual shell cross-section

with a smooth shell surface that has equivalent stiffness properties. The smeared-out method is a simple

method to compute the equivalent properties, and it has been used in the buckling analysis of both corrugated

and stiffened shells since the 1960’s (Block et al., 1965; Amazigo and Hutchinson, 1967; Simitses, 1971;

Johnson, 1978). In this method discrete stiffeners or corrugations are distributed over the original shell

surface by adding an equivalent continuous layer, and then the analysis is performed on a uniform but
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anisotropic shell (Calladine, 1989).

Motivated by recent studies on corrugated morphing wings, various homogenization methods have been

developed to obtain more rigorous equivalent stiffness properties than those provided by the smeared-out

method, see Refs.Yokozeki et al. (2006); Thill et al. (2010); Briassoulis (1989); Liew et al. (2007); Xia et al.

(2012); Ye et al. (2014). In the homogenization methods strains and curvatures are applied independently on

a single corrugation (unit cell) and, exploiting the periodicity of corrugated shells, the corresponding reaction

forces and moments at the boundaries of the unit cell are computed either analytically or numerically. The

equivalent stiffness properties are then calculated through the load-displacement relations.

Both the smeared-out and homogenization methods are effective in reducing significantly the computa-

tional effort required by a finite element analysis because a much coarser mesh can be utilized, due to the

simple geometry of the equivalent shells. However, these two methods are valid only when the buckling of

the shell is global, i.e., only if the wavelength of the buckling mode is much larger than the wavelength of the

corrugations or the space between stiffeners (Calladine, 1989; Bisagni and Vescovini, 2009). These methods

cannot be used to capture local skin or stiffener buckling or to calculate stresses in the shell (Lamberti et al.,

2003).

An alternative approach to the buckling and vibration analysis of corrugated and stiffened shells was

developed in the 1980s by Williams and co-workers. These authors developed a stiffness matrix method that

treated a shell as an assemblage of flat plates connected along their common longitudinal edges (Wittrick

and Williams, 1974; Anderson et al., 1983; Williams and Anderson, 1983; Williams et al., 1990). In this

method, the stiffness matrix for each plate is computed from the flat plate theory, and the buckling loads

and modes are obtained by solving an eigenproblem. The program VIPASA was developed based on the

stiffness matrix method, and it was found that VIPASA was much more efficient than general-purpose finite

element programs (Singer et al., 2002b; Williams et al., 1990). VIPASA can analyze both flat and cylindrical

corrugated and stiffened shells.

A unique feature of the stiffness matrix method is that, based on the periodicity of corrugated or stiff-

ened shells, the buckling mode of a repeating portion can be expressed as a product of a complex-valued

exponential term times the buckling mode of any repeating portion (Williams, 1986a,b). This relation makes

it possible to condense the full stiffness matrix of the whole shell into a smaller matrix related to only a

single repeating portion. However, this method can only analyze corrugated/stiffened shells consisting of flat

plates. Shells with curved walls, e.g., sinusoidally corrugated shells, must be approximated by a series of flat

panels. In addition, it should be noted that the buckling modes are assumed to vary sinusoidally along the

corrugations/stiffeners in this method. Therefore, this method could provide inaccurate results if the shells

are short and/or clamped in the longitudinal direction.

Another alternative approach of exploiting structural periodicity was the Bloch wave method for pre-

dicting the onset of buckling of infinitely periodic two ro three dimensional structures, which was developed

in the 1990s by Triantafyllidis and co-workers (Geymonat et al., 1993; Triantafyllidis and Schnaidt, 1993;
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Triantafyllidis and Schraad, 1998). Their method has been one of the major tools for the buckling analysis

of cellular structures such as honeycombs (Lpez Jimnez and Triantafyllidis, 2013), porous solids (Bertoldi

et al., 2008), and foams (Gong et al., 2005). The Bloch wave method is based on the fact that the buckling

modes of an infinitely periodic structure follow the form of the Bloch wave propagation, which is the product

of a complex-valued plane wave exponential term times a function with the periodicity of one repetitive

unit cell (Kittel and McEuen, 1976). The buckling loads and corresponding eigenmodes can be computed

by performing eigenvalue analyses on a single unit cell whose boundaries are coupled by the Bloch relations

rather on the whole structure, resulting in a significant reduction of computational effort.

2.1.3.2 Stiffness Matrix Method

A buckling problem can be expressed as an eigenvalue problem:

Kc(λc)Ũc = 0 (2.13)

where Kc is the tangent stiffness matrix of the complete structure, Ũc is its eigenvector, which is also the

buckling mode of the structure, and λc is the buckling load corresponding to the buckling mode Ũc.

For a rotationally periodic structure, such as the ones shown in Fig. 2.9, with N repeating portions, Ũc

can be partitioned into N subsets:

Ũc = [Ũ1, Ũ2, Ũ3, ..., ŨN ]T (2.14)

where Ũq is the eigenvector of the qth portion of the structure. The stiffness matrix of a rotational periodic

structure has the following form (Williams, 1986a):

Kc =



K1 K2 K3 . . . KN

KN K1 K2 . . . KN−1

KN−1 KN K1 . . . KN−2

...
...

...
...

...

K2 K3 K4 . . . K1


(2.15)

where Kq is the stiffness matrix corresponding to the qth portion of the structure. Let the number of degrees

of freedom of each repeating portion be J , then Kq is a J × J matrix.

Hence, Eq. 2.13 can be written as a set of m equations:

ΣN
q=1KqŨm+q−1 = 0, m = 1, 2, 3, ...N (2.16)

where

Ũq+N = Ũq (2.17)
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Figure 2.9: (a) Rotationally periodic 2D truss structure with 6 repeating portions, ψ = 2π/6 is the angle
subtended by the repeating portion. (Williams, 1986b) (b) Rotationally periodic corrugated shell subject
to axial compression. The top edge “B” is clamped to a rigid plate. The boundary conditions on all nodes
along edges “A” or “B” are identical.

The most general solution to Eqs. 2.16 and 2.17 is (Williams, 1986a)

Ũq = Ũ1 exp[i(q − 1)nψ], n = 0, 1, 2, 3, ...N (2.18)

with i =
√
−1, n = 0, 1, 2, ..., N , and ψ = 2π/N . Substituting Eq. 2.18 into Eq. 2.16 and dividing it by

exp[imnψ], we can formally reduce the set of m equations to the single equation:

(ΣN
q=1Kq exp[i(q − 1)nψ])Ũ1 = 0, n = 0, 1, 2, 3, ...N (2.19)

which still needs to be solved to for each value of n in order to find the smallest value of λc.

It should also be noted that, because it is equivalent to define the buckling modes in either an anti-

clockwise or clockwise sense around the structure,

exp[i(q − 1)(N − n)ψ] = exp[−i(q − 1)nψ] (2.20)

n and N − n are not independent and the range of n can be reduced to n = 1, 2, 3, ...{N/2}, where {N/2}

is the largest integer no larger than N/2.

Thus it has been shown that the eigenvalue problem in Eq. 2.13, posed in terms of the tangent stiffness

matrix of the complete structure, Kc, is equivalent to {N/2}+1 J-dimensional eigenvalue problems posed in

terms of the ΣN
q=1Kq(λc) exp[i(q− 1)nψ], where J is the size of the stiffness matrix for the repeating portion

of the structure.

However, note that the displacement vector Ũi is complex-valued and hence in general both the real and
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imaginary parts of Ũi are possible buckling modes. When n = 0 or n = N/2 for even N , the exponential

term in Eq. 2.18 is a real value and hence there is only one buckling mode corresponding to these two cases.

The critical buckling load is the lowest one among the buckling loads for all n’s.

λcrit = min
n=0,1,...,{N/2}

(λc(n)) (2.21)

It is common for rotationally periodic structures to have “axis nodes”, i.e., nodes shared by all the

repeating portions or have the same translational and rotational deformation with respect to the axis. For

example, stiffened or corrugated cylindrical shells subject to axial uniform end-shortening have “axis nodes”

on their two ends, as shown in Fig. 2.9 (b). Let ŨZq be the displacement w.r.t axis Z of the “axis nodes” of

the qth portion, and substitute it into Eq. 2.18:

ŨZq = ŨZ1 exp[i(q − 1)nψ], n = 0, 1, 2, 3, ...{N/2} (2.22)

Because the nodes are “axis nodes”, ŨZq must satisfy ŨZq = ŨZ1. Therefore, ŨZq is always zero for n > 0.

2.1.3.3 Bloch Wave Method

The Bloch wave method is a robust and efficient way of predicting the onset of buckling for 2-dimensional

and 3-dimensional infinitely periodic structures (Geymonat et al., 1993; Triantafyllidis and Schnaidt, 1993;

Triantafyllidis and Schraad, 1998; Gong et al., 2005; Lpez Jimnez and Triantafyllidis, 2013; Bertoldi et al.,

2008). In this section we use a two-dimensional, infinitely periodic structure, as shown in Fig. 2.10, to briefly

review the Bloch wave method.

n
1
=0.5

n
2
=0.5

(a) (b)

λ λ
c

y
x

Figure 2.10: (a) Schematic of a 2D infinitely periodic porous structure subject to compression in y-direction.
(b) A buckling mode and its corresponding buckling load λc.

When the compressive load λ is smaller than the buckling load, the periodicity of the structure is still one

unit cell in both x- and y-directions, as shown in Fig. 2.10 (a). If the compressive load reaches the buckling
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load λc, the original periodicity could be broken and the new repeating pattern could involve several unit

cells. Fig. 2.10 (b) shows a buckling mode with a periodicity of 2 unit cells in both x- and y-directions. It

has been proved that the buckling modes of a 2-dimensional infinite periodic structure have the following

form (Geymonat et al., 1993; Triantafyllidis and Schnaidt, 1993; Triantafyllidis and Schraad, 1998):

Ũc(x, y) = Pu(x, y) exp[2πi(
n1
L1
x+

n2
L2
y)] (2.23)

where Lj and nj , j = 1, 2 are respectively the lengths of the unit cell and the wave numbers. Ũc denotes

the displacement of the complete infinite structure. Pu(x, y) is a periodic function with a periodicity of one

unit cell:

Pu(x, y) = Pu(x+m1L1, y +m2L2) (2.24)

where m1 and m2 are integers. Note that both Pu and Ũc are complex-valued functions.

The exponential term in Eq. 2.23 is essentially a wave propagation term that controls the propagation of

Pu. For example, if n1 = 0.5 and n2 = 0.5, the imaginary part of the exponential term follows the sinusoidal

waves, as shown in Fig. 2.10 (b), whose wavelength is 2 unit cells in both x- and y-directions. Since the

periodicity of Pu is one unit cell, the buckling mode corresponding to n1 = n2 = 0.5 has a periodicity of

two unit cells in both x- and y-directions. Therefore, each value for the wave number n1 or n2 represents a

buckling mode for the structure in Fig. 2.10 (a). Eq. 2.23 is also called the Bloch wave propagation function

and is what the Bloch wave method is named after.

The buckling problem of the complete infinite structure can be written as an eigenvalue problem:

Kc(λc)Ũc = 0 (2.25)

where Kc is the tangent stiffness matrix of the complete structure and λc is the buckling load. The above

eigenvalue problem cannot be solved due to the infinity of the structure. However, the condition of buckling

corresponding to a single unit cell in Fig. 2.11 can be separated from Eq. 2.25 and written as:

K(λc)Ũ = F̃ (2.26)

where Ũ and F̃ are respectively a buckling mode and force vector of a unit cell. K(λc) denotes the tangent

stiffness matrix of the unit cell corresponding to the buckling load λc. It should be noted in the present

case that F̃ is not zero because we are considering only a piece of the structure, and hence non-zero nodal

forces need to be applied at the periodic boundaries. Eq. 2.26 is not an eigenvalue problem and it cannot

be directly solved.

According to the buckling mode in Eq. 2.23, the displacements in regions “a” and “b” are not independent.
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Figure 2.11: Schematic of a buckled unit cell of a 2D infinitely periodic porous structure. A, B, C, and D
are four points on the corners of the unit cell. Region “a” includes edges AD, AB, and point A; region “b”
includes edges CD, BC, and points B, C, and D.

For example, the displacements on edges AD and BC are coupled by the following relation:

ŨBC = exp[2πin1]ŨAD (2.27)

Edges AB and CD also follows the similar coupling relation. Eq. 2.27 is called displacement Bloch relation.

The force vector in Eq. 2.26 also follows the Bloch wave propagation function (Geymonat et al., 1993;

Triantafyllidis and Schnaidt, 1993; Triantafyllidis and Schraad, 1998):

F̃c(x, y) = Pf (x, y) exp[2πi(
n1
L1
x+

n2
L2
y)]. (2.28)

where Pf (x, y) is a periodic function with the periodicity of one unit cell. Therefore, the force vectors on

edges AD and BC are also coupled:

F̃BC = − exp[2πin1]F̃AD (2.29)

The negative sign is because the reaction forces on edges AD and BC are in opposite directions. Eq. 2.29 is

the force Bloch relation. The details of the Bloch relations are presented in Appendix A.

The dependent displacements can be eliminated by defining a coupling matrix Q:

Ũ = Q[Ũi, Ũa]
T (2.30)

where i and a denote the internal nodes and nodes in region “a” , respectively, as shown in Fig. 2.11. Q

contains the exponential terms in the Bloch relations, and hence it is a function of the wave numbers n1 and

n2. The derivation of Q is presented in Appendix A.

Substituting Eq. 2.30 into Eq. 2.26 and pre-multiplying by QT , we obtain:

QTK(λc)Q[Ũi, Ũa]
T = QT F̃ (2.31)
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It can be shown that the right-hand-side of Eq. 2.31 is zero because of the conditions enforced by the force

Bloch relations. Hence, we can define the reduced stiffness matrix:

K̂(n1, n2, λc) = QTK(λc)Q (2.32)

and write Eq. 2.31 as

K̂(n1, n2, λc)[Ũi, Ũa]
T = 0 (2.33)

Therefore, the buckling load and mode can be obtained by solving the eigenvalue problem of matrix K̂.

It should be noted that K̂ also depends on n1 and n2; hence, the buckling load factor λc is a function of n1

and n2. The critical buckling load is obtained by finding the lowest λc for all possible n1 and n2:

λcrit = min
n1,n2

(λc(n1, n2)) (2.34)

There are infinite values of n1 and n2 for an infinite structure. Therefore, the Bloch wave method is

used to find the buckling loads corresponding to the modes with short wavelength. For infinite periodic

structures, the buckling modes with very large wavelength are usually analyzed by homogenization method.

Note that the Bloch wave relations and the displacement vectors are complex-valued functions. However,

most finite element packages, including Abaqus, cannot handle complex-valued fields. Many authors have

formulated the stiffness matrices K and K̂ analytically, and had to carry out lengthy derivations or develop

special purpose software.

Gong et al. (2005) generated K with the finite element package Abaqus and then obtained K̂ from

algebraic manipulations. Aberg and Gudmundson (1997) proposed an alternative technique for studying the

wave dispersion relations of infinite periodic structures that used two identical meshes in Abaqus to split

the complex-valued fields into real and imaginary parts. The boundaries of the two meshes were coupled in

order to satisfy the Bloch relations. Following Aberg and Gudmundson (1997), Bertoldi et al. (2008); Shim

et al. (2013) introduced this technique in the buckling analysis of porous periodic elastomeric structures.

Recently, the Bloch wave method was introduced in the buckling analysis of stiffened cylindrical shells

by Wang and Abdalla (2015). These authors used the Bloch wave method to find the local buckling loads

and modes of stiffened shells (the global buckling modes were analyzed through a homogenized stiffness

model). The Bloch wave method for 2-dimensional infinite periodic structures was used without considering

the boundary conditions for the shell, hence assuming the shell to be infinitely long. The constraints of

rotational periodicity on the buckling mode were also neglected.

2.1.3.4 Comparison between Stiffness Matrix Method and Bloch Wave Method

The stiffness matrix method for rotationally periodic structures and the Bloch wave method for infinitely

periodic structures have similar features. First, both methods achieve significant reductions in computational
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effort by partitioning the eigenproblem for the whole structure into a series of smaller eigenproblems that

involve stiffness matrices with the same dimension as the matrix of a single unit cell. Second, the assumed

buckling mode relations among repeating portions of the structure in the stiffness matrix method (Eq. 2.18)

are essentially the same as the Bloch wave relations in Eq. 2.27.

However, these two methods formulate the eigenproblems in different ways. The stiffness matrix method

involves the stiffness matrices of all the repetitive portions of a rotationally periodic structure, as shown in

Eq. 2.19. The stiffness matrix in the Bloch wave method involves only a single unit cell, and the boundaries

of the unit cell are coupled by the Bloch wave relations to transform the buckling condition (Eq. 2.26) for a

unit cell into an eigenproblem, as seen in Eq. 2.33.

2.2 Reviews of Externally Pressurized Spherical Shells

This section briefly reviews the theoretical and experimental studies on the imperfection-sensitivity of com-

plete spherical shells under external pressure. Extensive reviews can be found in references Bushnell (1985),

Kaplan (1974), and Singer et al. (2002b).

2.2.1 Analytical and Numerical Studies

The first contribution to the understanding of the discrepancies between measured and theoretically pre-

dicted buckling pressures of spherical shells under external pressure was also made by Von Kármán and

Tsien (Von Kármán and Tsien, 1939; Tsien, 1942). They assumed the buckling mode of an externally pres-

sured sphere was a localized dimple. Instead of only considering infinitesimal deformations, they introduced

nonlinear finite displacements in their analyses and found that the postbuckling equilibrium path dropped

sharply, which was similar to the postbuckling path of a cylindrical shell subject to axial compression. Their

work suggested that the buckling of externally pressurized spherical shells were sensitive to imperfections.

Later, Thompson included initial imperfections in his analyses and confirmed the imperfection-sensitivity

(Thompson, 1962, 1964a,b).

Several authors have investigated the influence of initial geometric imperfections on the buckling pressure

of spherical shells under external pressure. Sabir (1964) assumed that the effect of an initial imperfection

was equivalent to that of a concentrated load causing that imperfection. Based on this assumption, Sabir

calculated the relation between the critical buckling pressure and imperfection amplitude. Hutchinson (1967)

investigated the imperfection-sensitivity based on Koiter’s initial postbuckling theory. He used shallow

shell theory, so he considered a shallow region and neglected the continuity with the rest of the sphere

(Kaplan, 1974). Koiter (1969) modified the analyses by Hutchinson and conducted extensive investigations

on complete spherical shells with several radius to thickness ratios. Bushnell (1967) investigated the influence

of imperfections with local radius of curvature of up to 6 times of shell radius. Koga and Hoff (1969) used

a nonlinear shell theory in the deflected region of a sphere and a linear theory in the undeformed region.
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Two types of imperfections, dimpled imperfection and flattened imperfection similar to Bushnell (1967),

were investigated in his study. The relations between buckling pressures and amplitudes of imperfection

obtained in the above analyses are summarized in Fig. 2.12. Although the results of these studies are

different due to the differences in assumptions, theories, and shapes of imperfections, it can be found that

the imperfection-sensitivity of externally pressurized spherical shells is very high.

Figure 2.12: Imperfection-sensitivity of complete spherical shells (from Kaplan (1974)).

2.2.2 Experimental Studies

The experimental buckling behavior of complete spherical shells under external pressure has been extensively

investigated since the 1960s. Comprehensive reviews on the experiments can be found in references Kaplan

(1974) and Singer et al. (2002b). Here only brief reviews of experiments performed by Krenzke (1962)

are provided because they proposed an empirical equation to estimate the buckling pressures of imperfect

spherical shells and the equation is still being used (Pan and Cui, 2010).

Krenzke (1962) preformed tests on 26 carefully machined hemispheres. Krenzke simulated the behavior

of complete spherical shells by supporting the hemispherical shells on ring-stiffened cylindrical shells which

provided membrane boundary conditions. Based on the measured buckling pressures, he assumed that the

elastic buckling pressure was approximately 70% of the classical value, i.e.:

PE = 0.7Pcl (2.35)
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where PE and Pcl are estimated and classical buckling pressures, respectively. Pcl can be obtained by a

linear elastic buckling analysis and has the following form (Timoshenko and Gere, 1961):

Pcl =
2E√

3(1− ν2)
(
t

R
)2 (2.36)

where E, ν, t, and R are respectively the Young’s modulus, Poisson’s ratio, thickness and radius of spherical

shell. Therefore, Eq. 2.35 can be written as:

PE = 0.84E(
t

R
)2 (2.37)

Krenzke also included the effect of plasticity and modified the above equation to consider the reduction of

buckling pressure due to plasticity:

PE = 0.84
√
EsEt(

t

R
)2 (2.38)

where Es and Et are the secant and tangent moduli, respectively.

Krenzke and Kiernan (1963) performed exploratory experimental studies on stiffened hemispherical shells

and concluded that stiffening could not be effective unless the stiffeners are closely spaced and in both hoop

and meridional directions of the shell. They found that the buckling pressures of stiffened spherical shells

were not as great as those of unstiffened spherical shells with the same weights. Therefore, they argued

that considerable theoretical and experimental investigations were required in order to find the efficient

configurations of stiffened spherical shells.
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Chapter 3

Design of Imperfection-Insensitive
Cylindrical Shells

This chapter presents a method for designing imperfection-insensitive axially compressed cylindrical shells

and some designs that are produced through this method. These designs are compared to each other and to

some alternative shell designs. The mass efficiency of the designed shells and the effects of shell length are

also discussed.

It is assumed that the material of the shells in this chapter is linearly elastic; hence, the strength of

the material is not considered. It is also assumed that the shells in this chapter collapse due to buckling.

However, structural collapse due to material failure will be considered in the experimental validations in the

next chapter.

3.1 Methodology

We have adopted the method of Ramm and co-workers (Reitinger et al., 1994; Reitinger and Ramm, 1995) to

search for the cross-sectional shape of imperfection-insensitive monocoque linear-elastic cylindrical shells with

maximal buckling load. This section presents the methodology to parameterize the shape of the cross-section

and to formulate the design problem; the implementation of the design process is also presented.

3.1.1 Parametrization of Cross-Section

The improved buckling load and decreased sensitivity to imperfections of the Aster shell motivated us to

explore corrugated shells with general cross-sectional shapes and to introduce the concept of the wavy shell,

shown in Fig. 3.1.

The cross-section of the wavy shell is defined by a set of control points, with a NURBS (Non-Uniform

Rational B-Spline) interpolation creating a smooth curve through the control points. The NURBS is given
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by (Hughes et al., 2009):

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi, (3.1)

where Ni,p is a piecewise base function and Bi is a vector of control points. ξ, p, and n denote a parametric

coordinate, the order of NURBS, and the number of base functions, respectively. The base functions are

recursively defined as (Hughes et al., 2009):

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3.2)

For p = 0:

Ni,0(ξ) =

 1 if ξi ≤ ξ ≤ ξi+1,

0 otherwise
(3.3)

where ξi is the ith knot in the knot vector Ξ = (ξ1, ξ2, ..., ξn+p+1). In the present study, 3rd degree

NURBS with uniform knots, i.e., Ξ = (1, 2, ..., n + 4), were chosen. These base functions are periodic,

which guarantees that the closed cross-section generated by this NURBS has smooth slope and curvature

everywhere.

The wavy shell is defined to be axially uniform, so that the longitudinal stress resultant is the dominant

one. A varying cross-section would induce shear and possibly even bending when the shell is loaded under

axial compression, resulting in a decrease in the axial stiffness of the shell and its buckling load.

R

ri

Outer limit

Reference circle

Inner limit

rmin

rmax

Figure 3.1: Definition of wavy shell geometry showing also several control points.

Two main geometric constraints were introduced to narrow down the design space. First, the control

points were defined to be circumferentially equally spaced and radially within a distance ∆r from a reference

circle of radius R, see Fig. 3.1. This radial limit avoids excessive curvature of the wavy cross-section. The

circumferential position of the ith control point in the first quadrant, θ1,i, is given by

θ1,i =
π(i− 1)

2(N − 1)
, (3.4)

where N is the total number of control points in the first quadrant, including any control points lying on

the x- and y-semi-axes.
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Figure 3.2: Cross sections with (a) mirror-symmetry and (b) 4-fold symmetry. rq,i denotes the radial position
of the ith control point in the qth quadrant.

Second, to further narrow down the design space, the wavy section was assumed to be either mirror-

symmetric with respect to the x- and y-axes, as shown in Fig. 3.2 (a), or 4-fold rotationally symmetric as

shown in Fig. 3.2 (b). In the first case there are only N control points in the first quadrant (of which two

lie on the x and y-axes) that divide it into N − 1 sectors subtending equal angles. In the second case only

N − 1 control points are needed (of which one lies on the axis) and all other points are obtained by rotation

operations. Note that the two symmetry schemes with N and N −1 control points result in the same spatial

resolution for the wavy cross-section.

Thus, the cross-section is defined by:

C =

 C(r1,1, r1,2, ..., r1,N ) mirror-symmetry,

C(r1,1, r1,2, ..., r1,N−1) 4-fold symmetry
(3.5)

3.1.2 Formulation of Optimization Problem

For every candidate cross section, C, the objective function is defined as the minimum among the following

three buckling loads:

• the bifurcation buckling load, P0, of the geometrically perfect structure;

• the buckling load, P+, of a geometrically imperfect structure obtained by superposing an imperfection

of positive sign onto the perfect structure; and

• the buckling load, P−, of a structure with an imperfection of negative sign.

The imperfection shape was chosen as the first (critical) buckling mode, for the following reasons. First,

finding the actual imperfection shape that leads to the lowest buckling load is, after many years of research,
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still an open issue; a widely used approach is to use the critical buckling mode; see for example Ramm and

Wall (2004), Hilburger et al. (2006) and Jones (2006). Second, tests and analyses carried out by Hilburger

et al. (2006) and reviewed in Section 2.1.1.3 have shown that the critical-mode imperfection leads to lower

buckling load predictions than the actual values, indicating that it is a conservative choice that provides a

lower bound on the buckling loads that can be expected in practice. Third, we have carried out a detailed

optimization study of wavy cylinders in which the first four critical modes were used to define the imperfection

shape. Compared with the designs obtained using only the first critical mode, the reduction in the buckling

loads with the additional imperfections was only 3%. In conclusion, the critical buckling mode is adequate

for the present study. Figure 3.3 shows the geometrically perfect structure and one of the two imperfect

structures that were analyzed at one step of the optimization process.

+ =

(a) (b) (c)

Figure 3.3: (a) Wavy shell with perfect geometry, C0(r1,1, r1,2, ...); (b) imperfection shape based on critical
buckling mode, µΦ, with µ = 10t for clarity; (c) imperfect wavy shell, C+ = C0(r1,1, r1,2, ...) + µΦ.

The imperfection amplitude was set equal to the shell thickness. According to Fig. 2.2 this amplitude

will cause a five-fold decrease in the buckling load and hence provide a significant challenge for the present

search for imperfection-insensitive designs. Of course, the actual amplitude of the imperfections depends

on the manufacturing processes that are adopted; the effects of imperfection amplitudes larger than t are

analyzed in Section 3.3.3.

Regarding the sign of the imperfections, both positive and negative imperfection signs need to be con-

sidered in order to capture the different types of imperfection-sensitivity discussed in Section 2.1.1.1.

In summary, the optimization problem was formulated as follows:

Maximize : min (P0, P+, P−)

among all wavy shells with either mirror-symmetric or 4-fold symmetric

cross-sections, defined by the control variables:

r1,i, i = 1, 2, 3, ...

that are subject to :

|r1,i −R| ≤ ∆r, i = 1, 2, 3, ....

(3.6)

where:
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• P0, P+, and P− are respectively the buckling loads of wavy shells with perfect geometry, imperfect

geometry with positive imperfection, and imperfect geometry with negative imperfection;

• the positive imperfection is +tΦ and the negative imperfection is −tΦ, where Φ is the critical-mode

imperfection.

3.1.3 Numerical Implementation

Our implementation of the design optimization problem was based on existing software, including commercial

computer-aided design (CAD) and finite-element analysis (FEA) software, and an open-source optimizer,

all run by a Matlab script. This section describes the three softwares that were used and how they were

interfaced.

The NURBS-based CAD software Rhino 3D (version 5.0) was used to create CAD models of the cross-

sections of the perfect wavy shells. The NURBS interpolation solver embedded in Rhino 3D was used to

read a text file containing the positions of the control points and to create the cross-section geometry, which

was then exported as an Initial Graphics Exchange Specification (.IGS) file. This process was automated by

means of a Python script. This Python scripting interface has been successfully used in the papers by the

present author (Ning and Pellegrino, 2012, 2013, 2015a,b).

The optimization process requires FEA software that can be automated through a scripting interface to

set up analysis models and run non-linear buckling analyses. There exists some very efficient finite element

formulations for axisymmetric shells, such as shell elements based on Fourier analysis for the buckling

analysis of cooling towers (Combescure and Pernette, 1989). This formulation can also be used to analyze

the influence of Fourier mode imperfections on the non-linear buckling behavior of an axisymmetric shell;

however, it is not applicable to the present situation.

The general purpose package Abaqus 6.11 was chosen. Abaqus/CAE was used to read the .IGS file, set

up three structural models (the first model with the perfect geometry and the two others with imperfect

geometries based on either positive or negative imperfections), and compute the buckling load for each model.

For each candidate design, a Python script set up an Abaqus/Standard model of the shell with perfect

geometry. A linear eigenvalue buckling analysis was carried out on this initial model to compute the critical

eigenmode, Φ. Next, the displacements of the nodes according to the first eigenmode were extracted from

the Abaqus/Standard output file and were scaled with the maximum transverse displacement equal to the

shell thickness.

Two FEAmodels of imperfect shells were obtained by superposing the scaled displacements on the mesh of

the perfect shell. For the perfect geometry and also for each of the imperfect geometries, the critical buckling

load was computed by carrying out a load-displacement arc-length incrementation non-linear analysis, using

the Riks solver in Abaqus/Standard.

Figure 3.4 shows plots of the relationship between axial load vs. axial displacement, obtained from non-
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linear analyses of the perfect shell and both imperfect shells. In each load-displacement curve, the first limit

load has been taken as the buckling load. The Abaqus/Standard Riks solver may turn back at the first limit

load and fail to compute the post-buckling behavior. This was not an issue in the present case, since only

the buckling load value is of interest. The increments in the arc-length were automatically determined by

the solver, and the first limit loads were usually reached after 10 to 30 increments. The maximum number

of increments was set to 50, which was sufficient to reach the first limit load in all examples presented in

this thesis.

The results of our simulations were checked by changing the maximum allowed increments from a large

value (typically, 1 kN) down to a small value (100 N); the differences between these two cases were found to

be within 1%. It should be noted that Abaqus automatically reduce the increment as the non-linearity of

the response increases. It was found that a typical increment was less than 5 N when the applied loads are

close to the bifurcation points.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14

Displacement [mm]

L
o

a
d

 [
K

N
]

 

 

Perfect

Imperfect, positive imperfection

Imperfect, negative imperfection

P0

P+ P-

Figure 3.4: Schematic of equilibrium diagrams for geometrically perfect and imperfect shells, showing defini-
tion of limit loads. In the example shown the load-displacement curves for the perfect shell and the imperfect
shell with negative imperfection turn back at the first limit load.

Fully-integrated quadrilateral thin-shell elements (element S4) were used for all the Abaqus models in

this chapter. In order to obtain mesh sensitivity, we performed buckling analyses on a perfect composite

sinusoidal shell with 40 waves using various sizes of elements and the simulation techniques described above.

The geometry, material, and boundary conditions of this sinusoidal shell can be found in Section 3.4.1. The

buckling loads and computational time are summarized in Table 3.1. The analyses were run on a Xeon

X5680 server with 12 CPUs on a single motherboard, and all the 12 CPUs were used for each simulation.

The buckling load converged to 14.70 kN as the size of elements decreased. The computational time increased

significantly when the element size was reduced to 0.5 mm from 1 mm. Therefore, the element size of 1 mm

was chosen because it provided sufficient accuracy at a low computational cost.

Lastly, the Evolution Strategy with Covariance Matrix Adaption (CMA-ES) (Hansen et al., 2003) and
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Table 3.1: Buckling loads and computational time obtained from Abaqus models with various element sizes.

Element size [mm] 3 2.5 2 1.5 1 0.5
P0 [kN] 15.54 15.36 15.21 14.82 14.69 14.70

Time [minutes] 4 4 4 9 12 20

Hansen (2011) open source algorithm (Hansen, 2012) was used as the optimizer. The background to this

choice is that the optimization problem in Eq. 3.6 does not have an explicit mathematical expression and, due

to the highly non-linear relationship between shape and buckling loads, the objective function is expected

to be non-convex. Therefore, evolutionary optimizers were evaluated and CMA-ES was selected for its

efficiency, see Bäck (1996) for a review of basic concepts.

An initial population of eight wavy shells was randomly chosen. Shells with higher min(P0, P+, P−)

were ranked higher. The top 4 designs in the population of each generation were selected as parents and

their design variables were recombined and mutated to create 8 offspring structures for the next generation.

The critical loads, P0, P+, and P−, of the best design in each generation were recorded. After running the

optimization for a set number of iterations, typically 150, the structure with maximal min(P0, P+, P−) was

taken as the final solution.

The simulations were run on a Xeon X5680 server with 12 CPUs on a single motherboard. Tests showed

that simultaneously running 4 jobs on 3 CPUs for each job minimized the average simulation time. A

population size that is a multiple of 4 can best use this computational resource and, due to the small number

of design variables considered in the present study, the population size was chosen as 8. The total simulation

time to evaluate (P0, P+, P−) for a population of 8 structures was about 1 hour.

3.2 Wavy Shell Designs

Four imperfection-insensitive carbon-fiber composite shells with a common set of dimensions and material

properties, loaded under axial compression and clamped at both ends are presented.

3.2.1 Dimensions and Material Properties

Typical applications of cylindrical shells under axial compression are intertanks and interstages of rockets.

Although rockets are long compared to their diameter, they consist of several short fuel tanks and stages

that are connected by short intertanks or interstages. For example, the length-to-diameter ratios of the

intertanks/interstages of Saturn V, the external tank of the Space Shuttle, Ares V Heavy, and Delta IV are

0.66, 0.82, 1.35, and 1.80, respectively (NASA, 1968; Lockheed Martin Company, 2009; Sleight et al., 2011;

United Launch Alliance, 2009). Recently, the NASA Shell Buckling Knockdown Factor project performed

buckling tests on three full-scale cylindrical shells with length-to-diameter ratios of 0.75 and 0.73 in order
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to obtain new knockdown factors for the Space Launch System (Hilburger, 2012; Hilburger et al., 2012b).

Therefore, many practical cylindrical shells under axial compression have length-to-diameter ratios ranging

approximately from 0.6 to 2. The length-to-diameter ratio is commonly chosen to be one for small-scale

shells for research; see for example Arbocz and Babcock Jr (1968), Davis (1982), and Hilburger et al. (2006).

The length-to-diameter ratio is one for most shells in the present study. Longer shells will also be briefly

discussed in Section 3.6.

The dimensions presented in Table 3.2 were chosen, for practical considerations. More details for the

reasons of choosing the following these dimensions will be presented in Chapter 4.

Table 3.2: Dimensions of wavy shell designs

Thickness, t 180 µm
Radius, R 35 mm
Length L 70 mm

Maximum deviation from circle, ∆r 1.5 mm

A symmetric six-ply laminate, [+60◦,−60◦, 0◦]s was adopted, where the 0◦ direction of the laminate is in

the axial direction of the shell. It consisted of 30 µm thick unidirectional laminae of T800 carbon fibers and

ThinPreg 120EPHTg-402 epoxy, provided by the North Thin Ply Technology company, with a fiber volume

fraction of approximately 50%. The following lamina properties were measured: E1 = 127.9 GPa, E2 = 6.49

GPa, G12 = 7.62 GPa, and ν12 = 0.354, where E1 is the modulus along the fiber direction.

The stiffness of a composite plate or shallow shell can be described by the “ABD” matrix (Daniel and

Ishai, 2006): 



Axx Axy Axs Bxx Bxy Bxs

Ayx Ayy Ays Byx Byy Bys

Asx Asy Ass Bsx Bsy Bss

Bxx Bxy Bxs Dxx Dxy Dxs

Byx Byy Bys Dyx Dyy Dys

Bsx Bsy Bss Dsx Dsy Dss







ϵox

ϵoy

γos

κx

κy

κs


=



Nx

Ny

Ns

Mx

My

Ms


, (3.7)

or, in brief,  A B

B D

 ϵo

κ

 =

 N

M

 , (3.8)

where ϵo and κ are the mid-plane strains and curvatures, respectively. N and M denote the mid-plane

forces per unit length and the moments per unit length. The A matrix is the extensional stiffness matrix,

relating in-plane loads to in-plane strains; the D matrix is the bending stiffness matrix, relating moments

to curvatures. The B matrix couples the curvatures to the in-plane forces and the in-plane strains to the

moments. Using the classical lamination theory (Daniel and Ishai, 2006), the ABD matrix of the laminate
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was calculated:

ABD =



9.919× 106 2.670× 106 0 0 0 0

2.670× 106 9.919× 106 0 0 0 0

0 0 3.625× 106 0 0 0

0 0 0 0.0108 0.0099 0.0034

0 0 0 0.0099 0.0373 0.0081

0 0 0 0.0034 0.0081 0.0125


, (3.9)

where the units of the A and D matrices are N/m and Nm, respectively.

3.2.2 Reference Cylindrical Shell

A buckling analysis of a reference circular shell, made from the laminate selected in Section 3.2.1 and with

the geometric properties defined in Table 3.2, was carried out. The assumed geometric imperfection was

based on the critical buckling mode, shown in Fig. 3.5, with amplitude µ = t. The buckling loads were 4.153,

1.137, and 1.137 kN, respectively, for the geometrically perfect shell and the shell with positive and negative

imperfections.

The knockdown factor is calculated from

γ =
min(P+, P−)

P0
(3.10)

which gives 0.274. The critical stress is calculated from:

σcr =
min(P0, P+, P−)

lpt
, (3.11)

where lp and t are the arclength of the (wavy) center line and the thickness of the shell. Its value is

28.724 MPa.

Circumferential Position [radian]

A
x
ia

l 
P

o
s
it
io

n
 [
m

m
]

 

 

0 2 4 6
0

20

40

60

0

+1

-1

Figure 3.5: Critical buckling mode of reference (circular) cylindrical shell.
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3.2.3 Mirror-Symmetric Shells

Two mirror-symmetric wavy shells with N = 11, 16 were designed. The optimization was first run for the

case N = 16 and, since this initial run had converged long before the 150th generation, all other optimizations

were also run for 150 generations. The evolution of the buckling loads (divided by the buckling load of the

perfect, reference cylindrical shell) for the perfect and imperfect candidate designs for these two cases is

shown in Fig. 3.6. An optimum design for the case N = 11 occurred at the 66th generation, with buckling

loads of 11.017, 10.145, and 11.420 kN, respectively, for the perfect shell and the imperfect shells with

positive and negative imperfections. The optimum for the case N = 16 occurred at the 126th generation,

with buckling loads of 14.981, 14.908, and 14.897 kN, respectively.
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Figure 3.6: Evolution of buckling loads for mirror-symmetric wavy shells with (a) N = 11 and (b) N = 16.
The loads are normalized by the buckling load of the perfect, reference cylindrical shell.
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Note that in Fig. 3.6(a) P− is almost always larger than P0, which is in turn larger than P+, suggesting

that the majority of candidate designs considered during this optimization behave according to Case I in

Fig. 2.3. Also note in the enlargement of Fig. 3.6(b) that after the 37th generation the candidate designs

have slightly lower buckling loads for the imperfect cases than for the perfect shell, indicating that in this

case the candidate designs behave according to Case II.

The cross-sections obtained for the two cases are shown in Fig. 3.7, and the optimal radial positions of

the control points are presented in Table 3.3.

(a) (b)

Figure 3.7: Cross-sections of mirror-symmetric wavy shells with (a) N = 11 and (b) N = 16.

Table 3.3: Radial deviations, ri −R, (in mm) of control points of mirror-symmetric shells.
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N=11 1.5 -1.5 1.5 -1.5 1.5 -1.5 1.5 1.5 -1.5 1.5 0
N=16 -1.5 1.5 -1.5 -1.5 1.5 0 1.5 -1.5 -1.5 1.4 -1.5 -1.2 1.5 -1.5 1.1 1.4

The knockdown factor is calculated from Eq. 3.10, which gives 0.921 and 0.994 for the cases N =

11, 16, respectively. The critical stress is calculated from Eq. 3.11, which gives 224.639 and 310.494 MPa,

respectively, for N = 11, 16.

3.2.4 4-Fold Symmetric Shells

4-fold symmetric wavy shells were also designed. These designs are also denoted as N = 11, 16, although

the actual numbers of independent control points used in the optimization were in fact 10, 15, respectively,

as explained in Section 3.1.1.

The evolution of the buckling loads is plotted in Fig. 3.8 where it can be seen that both cases converge

to the Case II buckling. The best design for the case N = 11 was obtained at the 49th generation, with

buckling loads of 10.587, 9.325, and 9.310 kN for the perfect shell and for imperfect shells with positive

and negative imperfections, respectively. The best design for the case N = 16 was obtained at the 127th

generation, with buckling loads of 13.609, 13.534, and 13.536 kN, respectively. The knockdown factors for

the two cases were 0.879 and 0.994 and the corresponding critical stresses 208.224 and 281.712 MPa.
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Figure 3.8: Evolution of buckling loads for 4-fold symmetric wavy shells with (a) N = 11 and (b) N = 16.
For the case N = 16 P± is slightly lower than P0 after the 72nd generation. The loads are normalized by
the buckling load of the perfect, reference cylindrical shell.
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Figure 3.9 shows the cross-sections of the two 4-fold symmetric cross-sections obtained from this study.

The optimal radial deviations of the control points from the reference circle are presented in Table 3.4.

(a) (b)

Figure 3.9: Cross-sections of 4-fold symmetric wavy shells with (a) N = 11 and (b) N = 16.

Table 3.4: Radial deviations of control points, ri −R, (in mm) of 4-fold symmetric shells.
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N=11 1.5 1.5 -1.5 1.5 0 1.5 -1.5 1.5 1.3 -1.5 1.5
N=16 1.5 -1.5 1.5 0 -1.5 1.4 1.5 -1.5 -1.5 1.4 -1.5 -1.5 1.5 0 -1.5 1.5

3.3 Comparison and Analysis of Wavy Shell Designs

Starting with a comparison of the predicted performance of the four shell designs obtained in the previous

section, a deeper insight into the proposed approach is then obtained by considering the component wave-

lengths of each design. Also, an analysis of the effects of increasing the amplitude of imperfections in wavy

cylinders confirms the robustness of the present approach.

3.3.1 Comparison

The knockdown factor and the critical stress for each wavy shell design presented in Sections 3.2.3-3.2.4,

calculated from Eqs. 3.10-3.11, are presented in Table 3.5.

Table 3.5: Length of center line, knockdown factor, and critical stress for 180 µm thick carbon-fiber composite
shells with reference radius of 35 mm.

Symmetry N lp [mm] γ σcr [MPa]

Mirror
11 250.897 0.921 224.639
16 266.547 0.994 310.494

4-Fold
11 248.373 0.879 208.244
16 266.900 0.994 281.712

Circular N/A 219.911 0.274 28.724

Note that the knockdown factor and the critical stress of the mirror-symmetric shell with N = 16 are
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respectively 7.9% and 38.2% higher than for the shell with N = 11 and the same type of symmetry; for 4-fold

symmetric shells, these values increase respectively by 13.1% and 35.3% when N is increased from 11 to 16.

These results show that increasing the number of control points leads to decreased imperfection-sensitivity

and improved critical stresses. Compared with mirror-symmetric wavy shells, 4-fold symmetric wavy shells

have lower critical stresses and smaller or equal knockdown factors, suggesting that mirror symmetry is a

better choice.

Compared to the reference circular shell presented in Section 3.2.2, the critical stress of the best wavy shell

design (N = 16 and mirror-symmetric) is 981% higher and the knockdown factor is 263% higher. This result

indicates that the introduction of wavy cross-sections has dramatically reduced imperfection-sensitivity, and

the critical stress has also been significantly improved.

3.3.2 Analysis of Shell Cross-Sections

A better understanding of the wavy shell designs generated in Sections 3.2.3-3.2.4 can be obtained by de-

composing each cross-section profile into a series of periodic waveforms. We used the Fast Fourier Transform

function in Matlab to compute these components, to obtain the coefficients of the decomposition:

A(k) =

m−1∑
n=0

ane
−i2πk n

m , k = 0, 1, 2, ..., m− 1 (3.12)

where k is the wave number and m is the number of sampling points, chosen as 1000. an is the radial

deviation of the nth sample point from the reference circle:

an = rn −R. (3.13)

The results are plotted in Figs 3.10-3.11, for the range k = 0, 1, . . . , 49.
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Figure 3.10: Components of mirror-symmetric wavy shells.
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Figure 3.11: Components of 4-fold symmetric wavy shells.

Comparisons between different designs can be made more easily if we define the peak wave number,

equal to the wave number k corresponding to the maximum amplitude A(k), and the bandwidth of the

distribution. equal to the maximum wave number whose amplitude is no less than 10% of the amplitude of

the peak component. It can be noted in Figs 3.10-3.11 that both the peak wave number and the bandwidth

increase as the number of control points is increased from N = 11 to N = 16.

The peak wave number and the bandwidth of all wavy shells obtained in the present study are presented

in Table 3.6. These results, along with the knockdown factors and the critical stresses in Table 3.5, indicate

that higher peak wave numbers and wider bandwidths tend to lead to higher critical stresses and knockdown

factors. The spatial component distributions for each particular type of symmetry show that the shell designs

with the largest knockdown factor and critical stress tend to have several components with large amplitudes

rather than a single peak, suggesting that an optimal combination of several different components is desirable.

Table 3.6: Peak wave number and bandwidth of wavy cylinder designs.
Symmetry N Peak Wave

Number
Bandwidth

Mirror
11 18 23
16 22 39

4-Fold
11 12 25
16 20 37

3.3.3 Effects of Imperfection Amplitude

In the previous optimization study the amplitude of the imperfections was assumed to be equal to one shell

thickness. Because there are many factors that affect this parameter (Singer et al., 2002b), and even recent

studies (Hilburger et al., 2006) have reported imperfections larger than t, it is desirable to study the effects

of a range of imperfection amplitudes.
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Instead of re-running the optimization study with different imperfection amplitudes, we took the wavy

shell geometries obtained in Section 3.2, superposed the critical-buckling-mode imperfection with amplitudes

of ±0.5t, ±2t on the perfect geometry, and calculated the corresponding buckling loads, P±, using the Riks

solver in Abaqus/Standard. Equation 3.10 was then applied to calculate the knockdown factors for these

shells and the results are presented in Table 3.7. The general data shown by the data is that the knockdown

factor decreases when µ increases. The reduction is largest for the mirror-symmetric shell with N = 11 for

which the knockdown factor decreases by 11.13% for µ increasing from 0.5t to 2t, so this particular design

is rather sensitive to the imperfection amplitude. However, for the other three designs the reduction is quite

small. In particular, note that both designs with N = 16 show a reduction of only 2% for µ increasing from

0.5t to 2t .

Table 3.7: Sensitivity of knockdown factors to imperfection amplitude.
Symmetry N µ = 0.5t µ = t µ = 2t Overall

Reduction
%

Mirror
11 0.952 0.921 0.846 11.13
16 0.999 0.994 0.979 2.00

4-Fold
11 0.908 0.879 0.854 5.95
16 0.997 0.994 0.977 2.01

3.4 Comparison to Alternative Shell Designs

Here we compare the symmetry-breaking cross-section designs obtained in Section 3.2 with alternative de-

signs, based either on a sinusoidally corrugated shape or on the fluted shape of the Aster shell.

3.4.1 Sinusoidally Corrugated Shells

Shells with a periodic cross-section were obtained by superposing a sinusoidal wave on the reference circle:

r(θ) = R+∆r sin(kθ), (3.14)

where k is the total number of waves and ∆r their amplitude. The dimensions and material properties of

the shell were unchanged from Section 3.2.

The buckling loads of sinusoidally corrugated shells with three different amplitudes of the corrugation,

∆r, and a perfect geometry are plotted in Fig. 3.12. The trend is that the buckling load increases as the wave

amplitude increases beyond a transition number of waves, k, and the transition occurs at smaller values of

k for larger ∆r’s.

Both perfect and imperfect sinusoidally corrugated shells were also analyzed for the case ∆r = 1.5 mm,

which coincides with the maximum deviation from the reference circle allowed in Section 3.2. As in Sec-
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Figure 3.12: Buckling loads of geometrically perfect sinusoidally corrugated shells with corrugations of three
different amplitudes.

tion 3.2, the geometry of the imperfect shells was obtained by superposing the scaled critical buckling mode

on the perfect geometry:

C±(k) = C0(k)± µΦ, (3.15)

where C0(k) and C±(k) are the shapes of the perfect and imperfect shells, respectively; Φ is the critical

eigenmode obtained from a linear eigenvalue analysis, and the amplitude of the imperfection µ = t. The

buckling loads of the perfect and imperfect shells, P0 and P±, were obtained, as before, from non-linear

arc-length controlled simulations, for sinusoidal shells with k = 8, . . . , 40.

Then the knockdown factor and the critical stress for each value of k were calculated from Eqs 3.10-

3.11; their values are plotted in Fig. 3.13. The plot of knockdown factors, Fig. 3.13(a), shows an initial

region of rapid increase as k increases from 8 to ≈ 10, followed by a dip and a region of much less rapid

increase for k > 15. The plot of critical stress, Fig. 3.13(b), shows a rapid increase in the range k = (8, 15),

followed by an asymptotic increase toward 220 MPa. Together, these plots indicate that, for the specific case

R = 35 mm that is being considered, sinusoidally corrugated shells with around 10 corrugations are effective

in decreasing the imperfection sensitivity; however, there is a diminishing return for further increasing the

number of corrugations. In fact, it will be seen in Section 3.5 that the mass efficiency actually begins to

slightly decrease beyond k ≈ 15.

The knockdown factor and the critical stress of the wavy shells in Section 3.2 are also plotted in Fig. 3.13,

using in each case the peak wave number as the characteristic value of k. These plots show that the wavy

shell designs are significantly more effective in increasing both values. However, it should be noted that

the sinusoidal shells require only two design variables (wave number and amplitude), leading to simpler

designs and potential simplification in manufacturing than the proposed wavy shells. Figure 3.13(b) shows a

significant increase in the critical stress as the number of control points is increased from 11 to 16. It would



44

(a)

(b)

5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

Wave Number, k

C
ri
ti
c
a

l 
S

tr
e

s
s
 [
M

P
a

]

 

 

Sinusoidal shells

N=11, mirror symmetry

N=16, mirror symmetry

N=11, 4−fold symmetry

N=16, 4−fold symmetry

5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

Wave Number, k

K
n

o
c
k
d

o
w

n
 F

a
c
to

r

 

 

Sinusoidal shells

N=11, mirror symmetry

N=16, mirror symmetry

N=11, 4−fold symmetry

N=16, 4−fold symmetry

Figure 3.13: Comparison of (a) knockdown factor and (b) critical stress of sinusoidally-corrugated shells and
wavy shell designs obtained in Sections 3.2.3-3.2.4.
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be interesting to further explore this trend and establish at what value of N a limit may be reached.

A comparison of the critical buckling modes of the different shell designs that have been considered

provides further insights. At k = 15 the critical mode of sinusoidally corrugated shells switches from a

helical sequence of inward and outward dimples (Fig. 3.14(a)) to much larger, circumferentially arranged

inward dimples with axial wavelength equal to the length of the shell (Fig. 3.14(b)). This switch marks the

change in behavior that has been highlighted by the two different trends seen in Fig. 3.13.

Figure 3.15 shows the critical buckling mode of the mirror-symmetric wavy shell with N = 16. In this

case the mode is localized along a narrow axial strip.
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Figure 3.14: Typical critical buckling modes of sinusoidally corrugated shells with (a) k ≤ 15 and (b) k > 15.
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Figure 3.15: Critical buckling mode of mirror-symmetric wavy shell with N = 16.

These results suggest that the optimized behavior achieved in our best designs is related to the symmetry-

breaking feature of the wavy cross-sections, which delays the transition of local buckling modes into global

modes.
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3.4.2 Aster Shell

The Aster shell, described in Section 2.1.1.4, was the first imperfection-insensitive corrugated shell design

to be tested experimentally. Jullien and Araar (1991) designed, built, and tested a nickel shell with 22

corrugations and radius, length, and thickness given by R=75 mm, L=120 mm, and t=153 µm. A reference

circular cylindrical shell with thickness of 150 µm was also built and tested. The values of the modulus and

Poisson’s ratio of these nickel shells, provided in Araar (1990), are E = 162 GPa, ν = 0.3. Both shells were

clamped at the ends and tested under axial compression; the measured buckling loads were 14.2 kN and

11.0 kN, respectively, for the Aster shell and the circular shell.

A study of the buckling loads of both structures was carried out using the same approach used throughout

this thesis: namely, an imperfection based on the critical buckling mode scaled to an amplitude of one

thickness was applied in a geometrically non-linear, arc-length controlled simulation to estimate the limit

load. In this way, estimates were obtained for the buckling loads of the geometrically perfect structures,

and also for imperfect structures with imperfections of both positive and negative signs. The resulting sets

of values were 18.328, 16.405, and 16.418 kN for the Aster shell and 14.606, 5.295, and 5.294 kN for the

circular cylinder; these values were used to estimate the theoretical knockdown factor from Eq. 3.10 and the

theoretical critical stress from Eq. 3.11. The values obtained in this way are presented in Table 3.8. Note

that the “simulation” results were obtained by the author of the thesis and the “Test” results were obtained

by Jullien and Araar (1991).

A competing wavy cylinder design with a mirror-symmetric cross-section with N = 11 control points was

obtained, considering the best set of P0, P+, and P−. The maximum allowed deviation from the reference

circle was ∆r = 3 mm. The CMA-ES algorithm was run with 8 individuals in each generation and, the

analysis was run for 150 generations. The knockdown factors and critical stresses for this new design are

shown in Table 3.8, in the column labelled “Simulation”. This design was not tested experimentally and

hence in the table there is no corresponding value under “Test”.

Table 3.8: Knockdown factors and critical stresses for circular shell, Aster shell, and wavy shell, all made of
nickel.

Shells Knockdown Factor Critical Stress [MPa]
Simulation Test Simulation Test

Circular 0.362 0.753 74.895 155.618
Aster 0.895 0.774 216.174 187.118
Wavy 0.948 N/A 246.146 N/A

The critical stress values presented in Table 3.8 require some explanation. First, it can be seen that the

“Test” value of the knockdown factor for the circular shell is unusually high, and in fact much higher than

our estimate in the “Simulation” column. This suggests that the cylindrical shell was built very accurately,

as confirmed by the measured imperfection amplitude of 0.1t (Araar, 1990). Second, the “Test” value of the

knockdown factor for the Aster shell was 14% lower than the expected value in the “Simulation” column.
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This suggests that that there were significant imperfections in the as-built Aster shell, which is confirmed

by the measured imperfection amplitude of ∼ 3t (Araar, 1990). Third, a comparison of the “Simulation”

values of the knockdown factor for the Aster shell and our wavy shell design shows a 6% increase, even for a

wavy shell design with only N = 11. In conclusion, this comparison indicates that Aster shells are difficult

to build accurately and in any case our present design approach has even greater potential of eliminating

imperfection sensitivity.

3.5 Mass Efficiency

A rational comparison between different architectures for cylindrical shell structures can be made in terms

of the weight and load indices introduced in Section 2.1.1.5. For circular cylinders the relationship between

weight index and load index is provided by Eq. 2.9. For general cylindrical shells subject to axial compression,

the relationship has the form:

W

AR
=

1
√
η

√
Nx

R
(3.16)

where η is defined as the efficiency factor of the shell. Note that a larger value of η results in a higher load

index for the same weight index.

The efficiency factor for monocoque cylindrical shells is obtained by comparing Eq. 3.16 with Eq. 2.9,

and hence is given by:

η =
γE

ρ2
√
3(1− ν2)

(3.17)

Equation 3.16 plots as a straight line of slope 0.5 in the log-log plot of weight index vs. load index, first

shown in Fig. 2.8. Shells of equal efficiency lie on the same line, and therefore lines of slope 0.5 in this plot

are called iso-efficiency lines.

Figure 3.16 is a revised version of Fig. 2.8 that shows, in addition to the original data, several results

of the present study. The mirror-symmetric wavy shell with N = 16, which is the most efficient wavy shell

design obtained so far, is shown in this plot together with its (dotted) iso-efficiency line. The mass of this

wavy shell is 5.1 grams, which is computed based on the measured density of the composite material, 1,510

kg/m3. The efficiency factor for this design is 4.05 times that of perfect aluminum monocoque shells, and

it can be seen in the plot that there are only three data points to the right of this line. Therefore, there are

only three stiffened shells that beat the design N = 16: the fact that this design has higher efficiency than

most existing stiffened shells is remarkable.

Several sinusoidally corrugated shells have also been included in Fig. 3.16. It is interesting to note that

the data points corresponding to k = 8, 10, 15 go horizontally from left to right, but points corresponding to

larger values of k lie on an iso-efficiency line and points corresponding to even larger values of N are further

away from the line. It was already observed in Section 3.4.1 that there is a diminishing return in increasing
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Figure 3.16: Revised version of Fig. 2.8 showing additional data points corresponding to mirror-symmetric
wavy shell design with N = 16, sinusoidally corrugated shells, and Aster shell.

k beyond 15, but it has now been shown that beyond k = 15 the mass efficiency actually begins to decrease.

3.6 Effects of Shell Length

In the previous sections the length-to-diameter ratios of the composite and nickel wavy shells were 1 and 0.8,

respectively, i.e., the shells were short. This section investigates the influence of shell length on the buckling

loads, modes, and knockdown factors of the wavy shells. This section is focused on composite shells. First,

parametric studies of shell lengths were performed on the wavy composite shells with the optimal cross-

section in Fig. 3.7 (b). Second, the method described in Section 3.1 was used to obtain an optimal composite

wavy shell with length-to-diameter ratio of two.

3.6.1 Parametric Studies on Shell Lengths

The wavy cross-section in Fig. 3.7 was mirror-symmetric and obtained from an optimization with N = 16

control points. It was found that it was the best composite wavy shell with the length-to-diameter ratio of

one in the present study. In the parametric studies the shell cross-section was unchanged and only the shell

length was varied. These shells have the same material and boundary conditions as those in Section 3.2.

We used the same simulation technique as that described in Section 3.2 to obtain the buckling loads

of perfect wavy shells and imperfect wavy shells with positive and negative amplitudes. The shape of

imperfection was chosen to be the critical buckling mode. The buckling loads and knockdown factors are

summarized in Table 3.9. The knockdown factors were computed by Eq. 3.10. In general, the buckling loads

of the perfect and imperfect shells and the knockdown factors decrease as the shell length increases.

The buckling modes are shown in Fig. 3.17. The buckling mode is highly localized for the shell with L/D
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Table 3.9: Buckling loads and knockdown factors of composite wavy shells with various lengths.
L/D 1 1.1 1.2 1.3 1.4 1.5 2
P0 14.981 12.353 11.191 10.225 9.413 9.691 7.967

min(P+,P−) 14.897 12.359 10.223 9.665 9.151 8.395 5.642
Knockdown factor 0.994 1.000 0.914 0.945 0.972 0.866 0.708

of 1.1. However, the buckling modes switch to global modes as the shell length increases, and the buckling

loads and knockdown factors decrease in general. These observations conform with the previous ones in

Section 3.4 that local buckling modes are more favorable than global modes.

(a)
(b)

(c)

Figure 3.17: Critical buckling modes of shells with L/D of (a) 1.1, (b) 1.2, and (c) 2.

3.6.2 Optimization of Composite Shell with Length-to-Diameter Ratio of Two

In the parametric studies of the previous section the cross-section was unchanged and chosen to be the one

that was optimal for the length-to-diameter ratio of one. In this section we used the method described in

Section 3.1 to find the optimal cross-section for the composite shell with length-to-diameter ratio of two.

We used mirror symmetry and 16 control points to formulate shell cross-sections. The material, boundary

condition, and radius in this optimization were the same as those in Section 3.2. The maximum displacement

of the control points is also 1.5 mm. The shell length is twice of the diameter, i.e., L = 140 mm for the shells

in this optimization.

The optimization was run for 125 generations and it was found that it has converged. The evolution of

buckling loads during the optimization is plotted in Fig. 3.18. The optimal design was found at the 23rd

generation. The buckling loads of the optimal design are 8.636 kN, 8.576 kN, and 8.577 kN for the perfect

geometry, imperfect geometry with positive and negative imperfections, respectively. The knockdown factor

of the optimal design is 0.993.

A reference circular cylindrical shell with the same length, diameter, material and boundary conditions

as the optimal wavy shell was also analyzed. The buckling loads for the reference shell are 4.128 kN, 1.663

kN, and 1.663 kN, respectively for the perfect geometry and imperfect geometry with positive and negative
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imperfections. The knockdown factor of the reference circular shell is 0.403.

The buckling load of the optimal wavy shell (min(P+, P−)) is 107.8% and 415.7% higher than the perfect

and imperfect buckling loads of the reference circular shell, respectively. The knockdown factor of the optimal

wavy shell is 146.4% higher than the reference circular shell. The cross-section and critical buckling mode of

the optimal wavy shell are shown in Fig. 3.19. The buckling mode of the optimal design is highly localized,

also confirming with the observations in the previous sections that local buckling modes are more desirable.

0 20 40 60 80 100 120

1.5

2

2.50

Generation Number

 

 

P0, perfect structure

P+, positve imperfection amplitude 

P−,  negative imperfection amplitude 

min(P0,P+,P−) 

P0,P+,P-

Pcyl

Figure 3.18: Evolution of buckling loads for mirror-symmetric shells with N = 16 and L/D = 2. The loads
are normalized by the buckling load of the perfect, reference circular cylindrical shell with L/D = 2.

(a) (b)

Figure 3.19: (a) Cross-section of optimal design. (b) Critical buckling mode of optimal design.
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3.7 Discussion

A novel symmetry-breaking structural form for cylindrical shells subject to axial compression has been pro-

posed and an optimization technique to obtain geometric shapes that maximize the minimum between the

buckling loads of the geometrically perfect structure and geometrically imperfect structures with positive

and negative imperfections has been implemented. It has been shown that shell designs developed with this

approach can achieve very high critical stress while also being practically insensitive to geometric imperfec-

tions.

Note that, because the critical buckling stress of an axially loaded cylindrical panel is inversely propor-

tional to its radius of curvature, R, through σcl ≈ 0.6Et/R, the large increase in the critical buckling stress

that has been achieved by changing the cross-section of the shell from circular to either wavy or sinusoidally

corrugated can be simply explained by the achieved reduction in the local radius curvature of the new designs.

A highlight of the present results is our design for a mirror-symmetric composite wavy shell with 16

independent control points, which has a knockdown factor 3.6 times that of a circular cylindrical shell with

the same material properties and dimensions, and a critical buckling stress 10.8 times that of the circular

cylindrical shell. Another highlight is that the present approach was able to generate a wavy nickel cylinder

design with knockdown factor and critical stress, respectively, 1.06 and 1.14 times those of a theoretical

Aster shell based on Jullien and Araar (1991). It has also been shown that designs based on the present

approach are comparable to the most efficient stiffened shell designs that have been developed during the

past decades. These results appear very promising and justify further development of the proposed concept.

The composite and nickel wavy shells in this thesis show that our method is applicable for both anisotropic

and isotropic materials. The composite material in the present study was chosen due to the availability of

material and practical considerations of experiments. The laminate configuration, [+60◦,−60◦, 0◦]s, was

fixed for all the optimizations. However, the properties of composite material can be tailored by varying the

angles of fibers, offering us more design freedom. It would be interesting to add the properties of composite

material in the design variables for optimizations in the future.

A comparison between the critical buckling modes of shell designs obtained from the present approach

with the buckling modes of periodically corrugated shells has shown that optimized wavy cross-section

designs are tuned to achieve highly localized modes, and this feature leads to superior performance. Our

Fourier decompositions of each optimized cross-section into a series of periodic components indicate that

wavy shells with better performance have both higher peak frequency and wider bandwidth, as well as more

frequency components with larger amplitude. These results suggest that a systematic study of shell designs

with increasing numbers of control points may be justified. It may lead to general trends in behavior that

relate the relative magnitudes of the components with different wave numbers of the cross-section deviation

from the reference circle to optimal or semi-optimal performance. These further development could then

be exploited to develop future designs without going through a detailed optimization. Such follow-on work
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may also be advantageous in developing scaling techniques for shells with larger diameters, and particularly

those with larger values of R/t.

A challenge associated with shells with larger diameters is that they will require cross-sections with a

larger number of corrugations, in order to fully achieve their efficiency potential. It is possible, of course,

to apply the present analysis technique to such structures, but the number of nodes in the finite element

analysis will scale linearly with the shell diameter, if the component wavelengths incorporated in the shell

cross-section designs are not increased.

Two last points should be noted. First, due to the non-convexity and lack of a mathematical expression

for the present optimization problem, there is no guarantee that even a state of art optimizer for non-

convex problems will converge to a global minimum. We have confirmed that our optimal design for a

mirror-symmetric wavy shell with N = 16 is a local minimum by carrying out an additional gradient-based

optimization with the fmincon function in MATLAB that used the CMA-ES optimum as an initial value. The

improvement in the buckling load was less than 0.04%. Using a larger population size for the CMA-ES could

increase the probability of obtaining global minima, but at the cost of increasing the computational time.

A potential method to avoid a prohibitive increase in computations is to reduce the number of parameters

needed to define the shape of the cross-section. Instead of using a NURBS interpolation through N control

points, the cross-section could alternatively be described in terms of its Fourier spatial components, which

would require fewer parameters than the 11 or 16 control points in the present study. As a result, the number

of design variables in the optimization would be reduced and the probability of finding the global optimum

would be increased, without increasing the population size.

Second, the present study has made an intuitive assumption that shells with non-straight walls along axial

direction were less efficient than those with uniform cross-sections in axial direction. It would be interesting

to further investigate this assumption and to study shells with corrugations in both circumferential and axial

directions.
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Chapter 4

Validation Experiments:
Imperfection-Insensitive Cylindrical
Shells

This chapter presents the experimental studies on the wavy shell in Fig. 3.7 (b), which is the best composite

shell obtained from the method proposed in the previous chapter. This chapter begins with a method for

making composite wavy shells, followed by a method for measuring geometric imperfections. The predicted

and measured experimental behavior of wavy shells under axial compression is then presented.

In the previous chapter only structural buckling was used in formulating the method for designing

imperfection-insensitive cylindrical shells. This chapter considers the strength of the material in order to

predict structural collapse.

4.1 Manufacture

This section presents the fabrication technique developed for wavy shells, followed by a potting technique that

provides clamped boundary conditions for the wavy shells. Three composite wavy shells and two composite

circular shells were made.

4.1.1 Fabrication

As discussed in Section 2.1.2.1, a composite cylindrical shell can be made from a single piece of laminate or

by assembling several segments. The latter method is suitable for large shells. Therefore, the shells in the

present study were made from a single piece of laminate. The wavy cross-section was obtained by laying

the composite material on a wavy steel mandrel (shown in Fig. 4.1) and curing in an autoclave. The steel

mandrel was made on a wire-cut EDM machine.

One of the main difficulties in making wavy shells, compared to circular cylindrical shell, was the sepa-

ration of cured shells from the mandrel. To facilitate the separation, we added a layer of 12.5-micron thick
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Figure 4.1: Mandrel made on a wire-cut machine.

Kapton film on the laminate, as shown in Fig. 4.2. The Kapton film remained bonded to the shell after

curing; however, it was much thinner and softer than the composite material. Calculations showed that the

change of buckling loads due to the Kapton film was less than 0.1%. Therefore, the influence of the Kapton

film was ignored. The blue film in Fig. 4.2 was a perforated release film that helped release excessive epoxy

during curing.

Release Film
Kapton

Laminate

Figure 4.2: Laminate and films that facilitate release of cured shell.

We used pressure-sensitive tape to keep the laminate on the mandrel during lay-up and curing, as shown

in Fig. 4.3. The complete lay-up is shown in Fig. 4.4. The mandrel, Kapton film, laminate, and release film

were then covered with a breather blanket. The laminate, mandrel, and all wrapping materials were then

put in a vacuum bag and cured in an autoclave. The laminate was held under vacuum through the entire

curing process. Before separating the shell from the mandrel after curing, we used blade and sand paper to

trim and grind the two ends of the shell to ensure that they were as flat as the two ends of the mandrel.

This made the ends of the shell flat and parallel to each other. Three wavy shells were made by using this

method. We also made two circular cylindrical shells that had the same length (L = 70 mm), radius (R = 35

mm), and material as the wavy shells. The composite wavy and circular shells are shown in Fig. 4.5.
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Tape

Laminate

Mandrel

Figure 4.3: Lay-up.

Figure 4.4: The laminate is laid up on the mandrel. This figure shows that the laminate is kept on the
mandrel surface by the tape.

(a) (b)

Figure 4.5: Cured composite (a) wavy shell and (b) circular shell.
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4.1.2 Potting

Clamped boundary conditions were obtained by potting the shells into room temperature cured epoxy. We

developed a potting technique to obtain flat and parallel potted ends to ensure proper boundary and loading

conditions.

The epoxy was poured into a plastic cup with open ends held on a piece of flat glass, as shown in Fig. 4.6.

The glass guaranteed that the cured epoxy has a flat bottom surface. Tapes were used to fix the plastic cup

on the glass and to prevent leakage of the epoxy. The glass was covered by a layer of Frekote release agent to

facilitate the removal of cured epoxy. The epoxy used was EpoxAcast 650, a mineral filled general purpose

casting epoxy made by Smooth-On, Inc. It has a low shrinkage and a low mixed viscosity for minimal bubble

entrapment.

Glass Covered by 

Release Agent

Tape

Plastic Cup

with Two 

Open Ends

Figure 4.6: Glass and plastic cup for potting.

To avoid deformations of the shells during potting, we used a fixture consisting of a base, supporting

structure, shaft, and arm (shown in Fig. 4.7), to facilitate potting. The mandrel with the shell was connect

to the arm by a screw. We put the glass on the base and adjusted the glass to the horizontal position. The

bottom surface of the mandrel was also adjusted to be horizontal to ensure that the axis of the mandrel and

shell is perpendicular to the cured epoxy end.

The epoxy was poured into the plastic cup until its depth reached the 10 mm marker on the plastic cup.

The shell was then slowly slid down into the epoxy while keeping the mandrel unmoved. This can guarantee

that the shell was not deformed during the potting so that large imperfections can be avoided. It took about

6 hours for the epoxy to completely cure. After removing the shell from the mandrel, the cured epoxy base

was separated from the glass and the plastic cup was also removed from the epoxy base.

Potting on the second end was done without using the mandrel. A hole was drilled on the first epoxy

base so as to release the air inside the shell when potting the second end. Similar to the previous step, the

glass covered by a layer of release agent was put on the fixture base, and the epoxy was poured into the

plastic cup until it reached the 10 mm marker. The shell was then slowly put into the epoxy. Since both
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Figure 4.7: Fixture with mandrel, composite shell, flat glass, and plastic cup for potting. The epoxy has
been poured in the plastic cup.

ends of the shell were trimmed and polished to be flat and parallel, the second end of the epoxy base was

guaranteed to be parallel to the first end. The two circular cylindrical shells were also potted by using the

above method. The shells with the two potted end are shown in Fig. 4.8.

(a) (b)

Figure 4.8: (a) Wavy shell and (b) circular shell with potted ends.

4.2 Imperfection Measurement

Although the three-dimensional survey technique is currently the main method for measuring shell imperfec-

tions, it is not feasible for our wavy shells due to two reasons. First, since our shells are very small and there

are small corrugations on the surfaces, a very small scanning probe is required in order to scan the complete

shell surface. Second, the pressure applied by the probe may introduce deformations, resulting in inaccurate

measurements. Therefore, we have developed a non-contact photogrammetry technique to measure the shell
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imperfections. This section presents the methods and results of imperfection measurements.

4.2.1 Method of Imperfection Measurement

The commercial photogrammetry software Photomodeler 6 EosSystems (2004) was used with two types of

targets. Coded targets are black circular spots surrounded by black segments of rings, as seen in Fig. 4.9.

The shape of these rings was non-repetitive such that each coded target can be uniquely detected by the

software. The coded targets were attached to the top and lateral surfaces of the cured epoxy base. Non-coded

targets were regular dots projected onto the shell surface by means of an LCD projector. A very thin layer

of white paint was sprayed on the shell surface to facilitate the detection of the non-coded targets.

Coded 

target

Non-coded 

target

Figure 4.9: Coded and non-coded targets.

The setup for measuring the shell geometry is shown in Fig. 4.10. There are four steps involved in

a measurement. In the first step the coded targets were photographed and correlated to define a global

coordinate system. Only one camera was used in this step, and it was higher than the shell so as to record

the targets on the top surface of the epoxy base. The shells were rotated between 18 and 23 times such

that all coded targets can be photographed by the camera. The photos were processed with Photomodeler

6. All photos included the coded targets on the top surface of the epoxy base, to act as fiducials in the

final correlation of all data. Three non-collinear coded targets on the top surface were picked to define the

o− x− y plane, and the distance between two of these points provided a scale for the measurements.

The second step obtained the positions of the non-coded targets projected on the shell surface. We

used three cameras pointed in different directions to photograph the shell surface, as shown in Fig. 4.10.

Photomodeler 6 was used to correlate the coded and non-coded targets in these three photos with all the

photos taken in the first step to calculate their coordinates in the global coordinate system. We projected

the non-coded targets onto a narrow rectangular area, as seen in Fig. 4.9. Therefore, the shell was rotated

multiple times to obtain the complete geometry. The coordinates of the non-coded targets obtained from a

measurement were exported to a text file for post-processing.
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(a)

(b)

Camera

Camera

Shell

Projector

Shell

Figure 4.10: Camera setup for (a) defining a global coordinate system (step 1) and (b) measuring positions
of non-coded targes (step 2)

The third step was to combine the points obtained in the previous step to obtain the complete shell

surface. Rhino 3D, a CAD software package, was employed to read the text files containing the coordinates

of the targets and to combine these points into a single cluster of points.

The fourth step was to compute the shell imperfections. We followed the method discussed in Section

2.1.2.2 to find the best-fit position of the measured points. A three-parameter transformation was defined

in terms of translations in the x and y directions and rotation with respect to the z-axis, and the square

of the distance between measured and designed shapes was computed. The coordinate transformation

was determined by minimizing the square distance with Covariance Matrix Adaptation Evolution Strategy

(CMA-ES):

Minimize :

Np∑
p=1

e2p

Subject to : (1) |Tx| ≤ 10 mm

(2) |Ty| ≤ 10 mm

(3) |Rz| ≤ π

2

(4.1)

where ep, Tx, Ty and Rz are the normal distance, translations in the x and y directions, and rotation with
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respect to the z-axis, respectively. Np denotes the total number of measured points. This process that

provides the best-fit measured points is shown in Fig. 4.11. Before running the above minimization problem,

we manually moved the measured cluster of points to a position close to the imaginary perfect wavy shell in

order to achieve faster convergence.

y

xo

Figure 4.11: Schematic of finding the best-fit position of measured shells. ep is the normal distance between
the pth measured point and the corresponding point on the perfect shell.

4.2.2 Distributions of Thickness and Mid-Plane Imperfections

The thickness distributions were measured using a micrometer before potting. We measured thickness at the

heights of 0 cm, 2 cm, 5 cm and 7 cm on each hill, valley, as well as the middle points between the hill and

valley of each corrugation. The thickness at the height of 3.5 cm on the middle points between the hill and

valley of each corrugation was also measured. Fig. 4.12 shows the thickness distributions of the three wavy

shells. The results obtained from the photogrametry measurements are outer-surface imperfections. The

mid-plane imperfection was computed by subtracting the non-uniformity of thickness from the outer-surface

imperfections. The mid-plane imperfections are plotted in Fig. 4.13. The imperfection amplitudes were

2.98tnom, 2.08tnom and 2.53tnom for wavy shells 1, 2 and 3, respectively. The mean and standard deviations

for the thickness and imperfection amplitudes are listed in Table 4.1. Note that the average thicknesses of

wavy shells were around 166 µm, 7.8% thinner than the nominal thickness 180 µm.

Shells Thickness [µm] Imperfection Amplitude [µm] µ
Wavy shell 1 166±16 536 2.98
Wavy shell 2 166±22 374 2.08
Wavy shell 3 165±19 455 2.53

Table 4.1: Measured thickness and imperfections of circular and wavy shells. µ is the ratio between the
imperfection amplitude and nominal shell thickness 180 µm.
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Figure 4.12: (a), (b), and (c) are thickness distributions of wavy shells 1, 2, and 3, respectively.
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Figure 4.13: (a), (b), and (c) are mid-plane imperfection ratio (imperfection divided by nominal thickness)
distributions of wavy shells 1, 2, and 3, respectively.
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4.2.3 Components of Imperfections

The mid-plane imperfections in Fig. 4.13 were decomposed into half-cosine Fourier components: ω(x, θ) =

tnom
∑M

k=0

∑M
l=0 cos(

kπx
L )[Aklcos(lθ)+Bklsin(lθ)]. The Fourier coefficients and amplitude of each component

were computed by Eqs. 2.11 and 2.12. The imperfection amplitudes for components k = 0, k = 1, and l = 0

to l = 50 are plotted in Fig. 4.14. The amplitudes of k ≥ 2 components were much smaller than k ≤ 1, and

thus they are not shown in the figure.
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Figure 4.14: (a), (b), and (c) are the Fourier components of the mid-plane imperfections of wavy shells 1, 2,
and 3, respectively.

The peak, second, and third imperfection components of wavy shell 1 are respectivelyA0,0, A0,24cos(24θ)+

B0,24sin(24θ), and A0,22cos(22θ)+B0,22sin(22θ), indicating that the major imperfection components of wavy

shell 1 are uniform along the axial direction. The k = 0, l = 22 and k = 0, l = 24 components are among

the largest three imperfection components of wavy shell 2. However, both wavy shell 2 and 3 have large

axial half-cosine (k = 1) imperfections.

4.3 Predicted Behavior of Axially Loaded Wavy Shells

We predicted the behavior of wavy shells subject to axial compression based on critical-mode imperfections,

measured thickness distributions, and measured mid-plane imperfections by using finite element models.

The simulation methods and results are presented in this section.

4.3.1 Adjusted Material Properties

The material properties in Eq. 3.9 were computed based on the nominal shell thickness 180 µm. However,

the measured average shell thickness for wavy shells was 166 µm. It is necessary to modify the ABD matrix

to consider the reduction in shell thickness. We followed Ref. Hilburger and Starnes Jr (2001) which assumed
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that any variations in the shell thickness resulted from a variation in epoxy volume only rather than the fiber

volume and used the rule of mixture to adjust lamina properties for measured shell thickness. We derived

the modified lamina properties, shown as follows:

Vf =
Vf,nom
α

E1 =
1

α
E1,nom

E2 =
α(1− Vf,nom)

α− Vf,nom
E2,nom

G12 =
α(1− Vf,nom)

α− Vf,nom
G12,nom

ν12 = ν12,nom

(4.2)

where α is the ratio between the measured and nominal laminate thickness, and α is 0.922 for the wavy shells

tested in the present study. Using the classical lamination theory, the modified ABD matrix for α = 0.922

was calculated as:

ABD(α = 0.922) =



9.928× 106 2.668× 106 0 0 0 0

2.668× 106 9.928× 106 0 0 0 0

0 0 3.630× 106 0 0 0

0 0 0 0.0093 0.0084 0.0029

0 0 0 0.0084 0.0317 0.0069

0 0 0 0.0029 0.0069 0.0106


(4.3)

where the units of the A and D matrices are N/m and Nm, respectively.

4.3.2 Finite Element Models

The bottom edge of the shell is fully clamped in the FEA models. The only degree of freedom of the top edge

is the displacement in the axial direction. However, there are two ways to apply axial compression: uniform

axial load and uniform end-shortening, as shown in Fig. 4.15. Both loading conditions were analyzed in this

section. However, uniform end-shortening is considered to be a better representation of experiments than

uniform axial load. Therefore, simulations based on uniform end-shortening were used to compare to the

experiments.

In order to obtain the uniform end-shortening and clamped boundary condition in simulations, a rigid

plate was employed and a concentrated axial load was applied to the rigid plate through a reference point

as illustrated in Fig. 4.15 (b). The rigid plate can only move axially without any transverse displacements

or rotations, i.e., Uy = Uz = Rx = Ry = Rz = 0. The top edge of the shell was constrained to the rigid

plate by the “tie constraint” in the Abaqus CAE/Standard, which can guarantee that the top edge has the
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Figure 4.15: Abaqus models for (a) uniform axial load and (b) uniform end-shortening.

same translational displacements and rotations as the rigid plate. Therefore, the top edge of the shell can

only move along the axial direction. The bottom edge of the shell was fully clamped, i.e., Ux = Uy = Uz =

Rx = Ry = Rz = 0.

The buckling loads were computed by carrying out a load-displacement arc-length incrementation non-

linear analysis, using the Riks solver in Abaqus CAE/standard. The first limit load of the load-displacement

curve was taken as the buckling load. The increments of the axial load in the analysis were limited between

50 N and 100 N. The Abaqus models consisted of around 30,000 reduced integrated quadrilateral thin-shell

S8R elements.

4.3.3 Buckling Loads Based on Uniform Thickness and Critical-Mode Imper-

fections

Using the measured average shell thickness 166 µm, the buckling loads of imperfect wavy shells were com-

puted. The imperfection shape was the critical buckling mode, which was obtained by running a linear

eigenvalue buckling analysis in Abaqus/Standard. The finite element model discussed in Section 4.3.2 was

used. The imperfection was introduced in the finite element model by superposing the critical buckling mode

on the mesh of the perfect shell and modifying the positions of its nodes in the model. Imperfections with

both positive and negative amplitudes were considered.

We run simulations on both uniform axial load (Fig. 4.15 (a)) and uniform axial end-shortening (Fig. 4.15

(b)) using the modified ABD matrix in Eq. 4.3. The buckling loads of geometrically perfect shell and

imperfect shells of various imperfection amplitudes are summarized in Tab. 4.2.

The buckling loads of the perfect shells subject to uniform axial load and uniform end shortening were

computed as 10.461 kN and 10.437 kN, respectively. The buckling loads for those two loading conditions

are very close. The knockdown factors for the shell subject to uniform axial load are at least 0.991 even for

large imperfections. The buckling loads of the imperfect wavy shells subject to uniform end shortening are
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P0 [kN] µ min(P+,P−) [kN]

Uniform axial load 10.461
2 10.378
2.5 10.366
3 10.392

Uniform end shortening 10.437
2 13.063
2.5 12.983
3 12.911

Table 4.2: Summary of computed buckling loads for the wavy shells to be tested. µ is the imperfection
amplitude divided by the nominal shell thickness, tnom = 180 µm.

higher than the perfect shell. The results obtained for both loading conditions showed that the wavy shell

was not sensitive to imperfections. The uniform end-shortening can better represent the experiments, and

it was used as the loading condition for all simulations showed in the following sections.

4.3.4 Buckling Loads Based on Measured Non-Uniform Thickness and Imper-

fection

We incorporated the measured thickness and imperfection distributions shown in Figs. 4.12 and 4.13 in finite

element models to further improve the accuracy of analyses. The non-uniform thickness was introduced in

the finite element models by assigning the modified local ABD matrix to the shell sections in the analyses.

The shell in the FEA model was partitioned into around 600 patches. We assumed that the thickness at

each patch is uniform and equal to the local average thickness within the patch. The ratio between the local

average thickness and nominal thickness, α, was first computed, and the lamina properties were adjusted by

Eq. 4.2. The local ABD matrix was calculated by using the classical lamination theory and then assigned

to the corresponding patch in the FEA model.

The buckling loads of the imperfect shells with both non-uniform thickness and mid-plane imperfections

were computed, and the results are summarized in Tab. 4.3. The buckling load of the perfect wavy shell is

10.437 kN. Therefore, the buckling loads were increased after introducing the imperfections. These results

showed that the wavy shells were not sensitive to imperfections.

Shells
Non-uniform thickness +
mid-plane imperfection

Wavy shell 1 13.125 kN
Wavy shell 2 12.853 kN
Wavy shell 3 12.581 kN

Table 4.3: Buckling loads based on measured thickness and mid-plane imperfection distributions.

Typical load versus end shortening curves are plotted in Fig. 4.16. Note that the perfect shell in the

plot is the shell with uniform thickness of 166 µm and no mid-plane imperfection. The load-end shortening

curve for the imperfect shell was computed based on the measured non-uniform thickness and mid-plane

imperfection of wavy shell 3. The perfect shell buckles at 10.437 kN as the axial load drops to 10.290 kN
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when it reaches the first limit load. However, the non-linearity due to imperfections leads to a smooth

load-end shortening curve and prevents the decrease in axial load at around 10.437 kN, resulting in a higher

buckling load than the perfect wavy shell.
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Figure 4.16: Load versus end shortening curves for perfect shell and imperfect wavy shell 3.

4.3.5 Estimation of Material Strength and Structural Failure Analysis

4.3.5.1 Material Strength

The composite material used in this study consists of 30 µm thick unidirectional laminae of T800 carbon

fibers and ThinPreg 120EPHTg-401 epoxy with a fiber volume fraction of 50%. The laminate configuration

is [+60◦,−60◦, 0◦]s, where 0◦ is the shell axial direction. Due to the material availability, the strength of

the lamina was estimated based on the properties of the ThinPreg 120EPHTg-401 epoxy provided by the

North Thin Ply Company and measured fiber misalignment. The interlaminar shear strength for ThinPreg

120EPHTg-401 reinforced by T700 with a volume fraction of 58% is 94.9 MPa (The North Thin Ply Company,

2013). Assuming the material is transversely isotropic, it is reasonable to use the interlaminar shear strength

as the in-plane shear strength F6. The in-plane shear strength of the unidirectional composite based on matrix

shear failure can be predicted by (Daniel and Ishai, 2006):

F6 =
Fms

kτ
(4.4)

where Fms is the matrix shear strength and kτ is the shear stress concentration factor. kτ is given by (Daniel

and Ishai, 2006):

kτ =
1− Vf (1−Gm/G12)

1− (4Vf/π)1/2(1−Gm/G12)
(4.5)

where Vf , Gm, and G12 are the fiber volume fraction, shear modulus of matrix and fiber, respectively.

Assuming Gm is much smaller than G12, Eq. 4.5 can be written as:

kτ =
1− Vf

1− (4Vf/π)1/2
(4.6)
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kτ for the unidirectional composite consisting of ThinPreg 120EPHTg-401 and T700 fibers with a volume

fraction of 58% is calculated as 2.991 by Eq. 4.6.

The in-plane shear strength for the unidirectional composite consisting of ThinPreg 120EPHTg-401 and

T800 fibers can be estimated by:

F6,T700kτ,T700 = Fms = F6,T800kτ,T800 (4.7)

The local fiber volume fraction of the composite can be modified by thickness through:

Vf,T800 =
Vf,nom
α

, (4.8)

where α is the ratio between the measured local thickness and nominal thickness (180 µm). The in-plane

shear strength can be calculated by Eqs. 4.7 and 4.8:

F6,T800 =
1− (4Vf,nom/(απ))

1/2

1− (Vf,nom/α)
F6,T700kτ,T700, (4.9)

where Vf,nom = 0.5, F6,T700 = 94.9 MPa, kτ,T700 = 2.991.

The longitudinal compressive strength can be estimated by using the initial fiber misalignment (Daniel

and Ishai, 2006):

F1c =
F6

ϕ
(4.10)

where ϕ is the initial fiber misalignment that was measured as 1.9◦ for the composite used in the present

study. Therefore, the longitudinal compressive strength can be estimated by:

F1c,T800 =
1− (4Vf,nom/(απ))

1/2

1− (Vf,nom/α)

F6,T700kτ,T700

ϕ
(4.11)

The transverse compressive strength F2c,T800 was not able to estimated. However, F2c is usually about

200 to 228 MPa for carbon/epoxy unidirectional composite (Daniel and Ishai, 2006). Therefore, we assume

F2c,T800 = 200 MPa.

4.3.5.2 Failure Analysis

We used the maximum stress theory to estimate the failure load of the wavy shells. The lamina principal

stresses can be computed by (Daniel and Ishai, 2006):

[σ]k1,2 = [T ]k([Q]kx,y[ε
o]x,y + z[Q]kx,y[κ]x,y) (4.12)
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where [T ]k and [Q]kx,y are the transformation matrix and transformed stiffness matrix of the kth layer:

[T ]k =


cos2θk sin2θk 2cosθksinθk

sin2θk cos2θk −2cosθksinθk

−cosθksinθk cosθksinθk cos2θk − sin2θk

 (4.13)

[Q]kx,y = [T−1]k


E1

1−ν12ν21

ν12E1

1−ν12ν21
0

ν12E1

1−ν12ν21

E2

1−ν12ν21
0

0 0 G12

 [T ]k (4.14)

θk denotes the fiber angle of the layer k. [εo]x,y and [κ]x,y are the transformed mid-plane strain and curvature.

z is the distance between the mid-plane of the kth layer and the laminate mid-plane.

The shell is subject to axial compression, and hence we assume that the critical region is at the element

where the longitudinal compressive strain is maximum. The failure analyses were carried out only on the

critical element in the FEA model, and the procedure is illustrated in Fig. 4.17. The strains and curvatures

at the critical region at load P were obtained in the analyses in Section 4.3.4 based on the measured thickness

and mid-plane imperfections. The principal stresses of each layer were calculated by Eq. 4.12 using the local

ABD(α). Local F1c and F6 were also obtained by Eqs. 4.10 and 4.9, and F2c was assumed to be 200 MPa.

The principal stresses |σ1|, |σ2|, and |τ | at each layer were compared to F1c, F2c, and F6. The analysis was

repeated until any principal stress reached the corresponding strength.

Load: P

Strain & 

Curvature

Principal stresses for each 

layer, based on local ABD(α)

Check if reach material 

strength for each layer  

First ply failure? P+∆P

Stop

Yes No

Start

Figure 4.17: Flow chart of the failure analysis on the critical region.

The ratio between the principal stresses and strengths on the critical region of the wavy shell 1 are

plotted in the Fig. 4.18. All laminae are subject to compression in both longitudinal and transverse direction.
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Fig. 4.18 shows that layer 5 (−60◦) failed first by shearing at about 11.9 kN.
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Figure 4.18: The ratio between the stress and the corresponding strength for each layer of laminate of wavy
shell 1. Layer 1 is on the outer surface of the shell.

The stresses of wavy shells 2 and 3 were also computed. It was found that wavy shell 2 failed by shearing

in layer 5 (−60◦) at 11.65 kN and wavy shell 3 failed by shearing in layer 6 (60◦) at 11.78 kN.

The difference between the buckling load and failure load of the wavy shell should be clarified. The

material strength was not considered in all buckling analyses, i.e., in computing the load-displacement curves

shown in Fig. 4.16. The buckling loads were chosen to be the first limit loads on the load-displacement curves.

Due to the nearly stable post-buckling behavior of the perfect wavy shell, the imperfect wavy shells can carry

higher loads than the buckling load of the perfect wavy shell. Therefore, the wavy shells are not sensitive to

imperfections, i.e., imperfections cannot reduce the buckling loads.

Failure loads are the ones that correspond to the structural collapse due to material failure. The analyses

described above show that the imperfect wavy shells collapse due to material failure, and the failure loads

are approximately 10% lower than the buckling loads of the imperfect wavy shells. However, the failure loads

of the imperfect wavy shells are approximately 10% higher than the buckling load of the perfect wavy shell

(10.437 kN). Successful experimental validations should show that the measured compressive loads of the

wavy shells can reach 100% of the buckling load of the perfect wavy shell (10.437 kN). Since the failure loads

are higher than 10.437 kN, it is expected that material strength does not affect the feasibility of experimental

validations.
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4.4 Experiments

This section presents the test setup and experimental behavior of three wavy shells. Two circular shells were

also tested and compared to the wavy shells.

4.4.1 Test Setup

Fig. 4.19 shows the setup for compression tests. The Instron 5500 Series materials testing machine with a

50 kN load cell was employed to conduct the compression tests. The displacement rate was 1mm per minute

and the tests took about 30 seconds. A Vic3D digital image correlation (DIC) system was used to record

shell deformations before structural collapse. A Phantom v310 high speed camera was used to capture the

process of shell collapse. The high speed camera was pointed toward the critical region predicted in the

analyses in Section 4.3. The film speed was 2000 to 3000 frames per second. The total recording time was

about 10 seconds and the recording was manually triggered when the compressive loads reached 9.5 kN.

Instron tes�ng 

machine

Microphone

DIC cameras

Lamp 1

High-speed 

camera

Lamp 2

Figure 4.19: Experimental setup for compression tests.

4.4.2 Experimental Behavior of Wavy Shells

The buckling loads of the perfect wavy shell, predicted and measured failure loads, and knockdown factors

of the wavy shells are summarized in Table 4.4. All wavy shells collapsed at loads higher than the buckling

load of the perfect shell, indicating that our design was imperfection-insensitive. The measured failure loads

were very close to the predicted loads. The failure loads were very consistent as the maximum load was only

3.4% higher than the minimum one.

The load-time curves of the three wavy shells are plotted in Fig. 4.20. The compressive loads of wavy shells



72

Failure Load [KN] Knockdown Factor
Perfect Prediction Test

Wavy Shell 1
10.437

11.90 11.475 1.099
Wavy Shell 2 11.65 11.680 1.114
Wavy Shell 3 11.78 11.302 1.083

Table 4.4: Predicted and measured failure loads and knockdown factors for wavy shells. The buckling load
of the perfect wavy shell was computed based on the uniform thickness of 166 µm, which is the measured
average thickness.

1 and 3 increased monotonically until they collapsed. The compressive load of wavy shell 2 monotonically

increased to 11.58 kN, and the load dropped to 11.52 kN and then to 11.51 kN before ramping up to the the

failure load,11.68 kN.

The acoustic emissions of the three wavy shells during loading were recorded and plotted in Fig. 4.21. The

acoustic emission technique is very convenient to study damage initiation and progression (Agarwal et al.,

2006). There is only one high-amplitude event in the acoustic emission of wavy shells 1 and 3, respectively,

and the event corresponds to the structural collapse. The acoustic emission of wavy shell 2 shows three

high-amplitude events. The third event was due to the structural collapse. The first and second events

correspond to the two decreases in load in the load-time curve of wavy shell 2 shown in Fig. 4.20. It is

generally accepted that the fracture of fibers could result in high-amplitude events (Agarwal et al., 2006).

Therefore, there may be two local fiber-failure events before the final structural collapse for wavy shell 2.

These two local failures did not propagate immediately, and the shell was able to carry higher compressive

load until the structural collapse. For wavy shell 2, the load corresponding to the third high-amplitude event

(structural collapse) was chosen to be the failure load.
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Figure 4.20: Load-time curve for wavy shells.

Shell deformations were recorded by the 3D DIC system and a typical out-plane deformation field is

plotted in Fig. 4.22. The shell expanded outward when the axial load was small (around 4 kN); however,
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Figure 4.21: Acoustic emissions of wavy shells 1, 2, 3 are plotted in (a), (b), and (c), respectively.

waves along the axial direction appeared as the load increased. Fig. 4.22 (b) shows that there were wavy

deformations even when the axial loads were smaller than the buckling loads of perfect shell, and the waves

remained when the loads ramped beyond the perfect buckling load (Fig. 4.22 (c)) until the shells failed.

These phenomena suggest that for our imperfection-insensitive wavy shells imperfections lead to a stable

post-buckling behavior, conforming with the observed failure loads shown in the Tab. 4.4.

The typical failure process recorded by the high-speed camera was plotted in Fig. 4.23. Fig. 4.23 (b)

shows that the shell failed at a local region, which led to the collapse of the whole structures (Fig. 4.23 (c)).

Significant delamination was observed when the shell was unloaded. These observations conform with the

failure predictions in Section 4.3.

The predicted critical regions where the axial compressive strains are maximum, along with the observed

kind band, are shown in the circles in Fig. 4.24. The initial failure region of wavy shell 1 was not captured

by the high-speed camera, but its kink band went through the critical regions predicted from simulations.

The initial failure region of wavy shell 2 was on the same corrugation and at about the same height as the

predicted critical region. Three initial failure regions of wavy shell 3 were observed, and two regions were

on the same corrugation as the predicted critical region. The predicted critical region is about 1 cm higher

than the observed initial failure regions.
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-0.001-0.015-0.029 0.069-0.014-0.1 0.0980.042-0.2

Figure 4.22: Out-plane deformations of wavy shell 2 when the axial load was (a) 3.985 kN, (b) 9.536 kN,
and (c) 11.626 kN

   

(a) (b) (c)

Figure 4.23: Three consecutive images recorded by the high speed camera when the shell was (a) before
collapse, (b) during collapse, and (c) after collapse. The initial failure region is in the rectangle in (b).
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Figure 4.24: Comparison of the critical regions between experiments (top) and simulations (bottom) for
wavy (a) shell 1, (b) shell 2, and (c) shell 3. The simulations show the axial compressive strain fields.
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4.4.3 Experimental Behavior of Circular Cylindrical Shells

Two composite circular cylindrical shells of the same radius and length as the wavy shells were made and

tested. The thickness and imperfection distributions were measured before the compression tests. The results

are summarized in Tabs. 4.5 and 4.6. Although the thicknesses of circular shells are more uniform and the

imperfection amplitudes are smaller than the wavy shells, the measured buckling loads were much lower than

the buckling load of the perfect circular cylindrical shell. The average buckling load is 2.209 kN, only 19.3%

of the average failure load of the wavy shells. The highest knockdown factor is only 0.589, indicating a large

imperfection-sensitivity.

Shells Thickness [µm] Imperfection Amplitude [µm] µ
Circular shell 1 176±9 257 1.43
Circular shell 2 176±13 394 2.19

Table 4.5: Measured thickness and imperfections of circular shells.

Shells Buckling Load (perfect) [kN] Measured Buckling Load [kN] Knockdown factor
Circular shell 1

4.058
2.392 0.589

Circular shell 2 2.025 0.499

Table 4.6: Measured buckling loads and knockdown factors of circular shells..

Fig. 4.25 shows the typical buckling shape of the circular shells. It can be seen that the circular shells

buckled into the classical diamond shape. No material failure was observed after unloading, indicating that

the circular shells cannot fully utilize the capacity of the composite materials.

Figure 4.25: Typical buckling shape for circular shells.
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4.5 Summary

We have developed a fabrication technique which was able to make cylindrical shells with intricate wavy

cross-sections. We have also developed a potting technique which can obtain clamped boundary conditions

without introducing large imperfections. Instead of using traditional three-dimensional survey systems, we

developed a photogrammetry technique to measure the geometric imperfections of our shells. Three wavy

cylindrical shells and two circular cylindrical shells were fabricated and tested in this study.

We predicted the behavior of the wavy shells under axial compression based on the measured thickness

and mid-plane imperfection distributions. The buckling load of the perfect wavy shell, i.e., a wavy shell

with uniform thickness of 166 µm and without mid-plane imperfections, was calculated as 10.473 kN. The

mid-plane imperfections and non-uniformity of thickness were then incorporated in the finite element models

to compute the buckling loads of imperfect wavy shells. The predicted buckling loads of the three imperfect

shells with measured imperfections were between 12.581 and 13.125 kN, larger than the buckling load of the

perfect wavy shell. This confirmed that the wavy shells were not sensitive to imperfections. The material

strength was estimated and we conducted failure analyses based on the maximum stress theory. It was

predicted that the three wavy shells can reach the material strength and collapse at 11.90, 11.65, and 10.78

kN, respectively, due to the shearing in the ±60o layers. The initial failure regions were also predicted.

We carried out compression tests on three wavy shells and two circular cylindrical shells. A DIC system,

high-speed camera, and microphone were employed to record the shell responses during the tests. The

three wavy shells collapsed at compressive loads of 11.302 kN, 11.475 kN, and 11.680 kN, respectively.

The difference among the three failure loads was only 3.4%, and discrepancy between the measured and

predicted failure loads was less than 4.1%. The shell deformations obtained by the DIC system showed that

axial waves appeared at a low load and remained until the shells collapsed. The high-speed camera was able

to capture the initial failure regions of wavy shells 2 and 3. The kink band of wavy shell 1 went through the

predicted critical region; the positions of the initial failure regions matched well with the predicted critical

regions. Significant delamination was observed after unloading for all the wavy shells. The measured average

buckling load of the circular cylindrical shells was only 19.3% of the average failure load of the wavy shells.

The highest knockdown factor of the circular shells was only 0.589. Comparisons between the wavy shells

and circular shells showed that introducing optimal symmetry-breaking wavy cross-section can significantly

reduce imperfection-sensitivity and improve the load-bearing capability of cylindrical shells.
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Chapter 5

Buckling Analysis of
Corrugated/Stiffened Shells Using
Modified Bloch Wave Method

This chapter presents a fast computational method for the buckling analysis of corrugated and stiffened

cylindrical shells under axial compression. The method is first described and several computational examples

are then presented to validate the method.

5.1 Methodology

A modification of the Bloch wave method that exploits the stiffness matrix method for rotationally periodic

structures has been developed. We present the modified Bloch wave method in this section by using an

example of corrugated cylindrical shell. It should be noted that our method is also applicable to the buckling

analysis of stiffened cylindrical shell under axial compression.

5.1.1 Bloch Wave Method for Rotationally Periodic Structures under Axial

Compression

Consider, for definiteness, a corrugated cylindrical shell under axial compression. It is periodic only in the

circumferential direction and is compressed by the application of a uniform end-shortening on one of its ends,

as shown in in Figs. 2.9 (b) and 5.1 (a).

The Bloch wave method for 2-dimensional infinite periodic structure cannot be directly used for the

buckling analysis of axially loaded rotationally periodic structures due to the following issues. First, the

shell is not infinitely long in the longitudinal direction. Second, the Bloch wave method for 2-dimensional

infinite periodic structures cannot capture the effects of clamped boundary conditions on edges A and B

in Fig. 2.9 (b). Third, corrugated or stiffened shells have finite number of corrugations or stiffeners in

the circumferential direction, leading to finite values of wave numbers in the circumferential direction, as
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discussed in Section 2.1.3.2.
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Figure 5.1: (a) Cross-section of corrugated cylindrical shell. (b) Schematic of a complete corrugation. ϕ and
z are the circumferential and axial directions, respectively. The four edges of the corrugation are denoted as
edges 1 to 4.

In order to consider the finite length of the shell and the boundary conditions, a complete corrugation,

as shown in Fig. 5.1 (b), is considered. Edge 1 is fully clamped and edge 3 is clamped to a rigid plate and

subject to uniform end-shortening. Due to the rotationally periodicity, the following Bloch wave propagation

functions are used:

Ũ(z, ϕ) = Pu(z, ϕ) exp(inϕ)

F̃ (z, ϕ) = Pf (z, ϕ) exp(inϕ)
(5.1)

z and ϕ denote the shell axial coordinate and angular position in the circumferential direction; n is the wave

number. Pu and Pf are rotationally periodic functions with periodicity of one unit cell (one corrugation).

Note that there is only one wave number n corresponding to the wave propagation in circumferential direction

in the exponential terms. According to Eq. 5.1, edges 2 and 4 are coupled by the following displacement and

force Bloch relations:

Ũ4 = Ũ2 exp(i
2π

N
n)

F̃4 = −F̃2 exp(i
2π

N
n)

(5.2)

where N is the total number of unit cells, i.e., corrugations or longitudinal stiffeners, along the circumferential

direction. We define a coupling matrix Q(n) to eliminate the dependent displacements:

Ũ = Q Uind (5.3)
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where Uind is the independent displacements and Ũind = [Ũi, Ũ1, Ũ2, Ũ3]
T . Q involves the exponential terms

in Eq. 5.2 and is a function of wave number n. Similar to the discussion in Section 2.1.3.3, the buckling

conditions of a single unit cell can be transformed into the following eigenvalue problem by using the coupling

matrix Q:

QTK(λc)QUind = K̂(n, λc)Uind = QT F̃ = 0 (5.4)

where λc is the buckling load corresponding to a wave number n. More details are presented in Appendix

A.

Two features of the stiffness matrix method can be incorporated into the modified Bloch wave method.

First, the feasible values of wave number n are the same as those in the stiffness matrix method:

n = 0, 1, 2, ..., {N/2} (5.5)

where {N/2} is N/2 for even N and (N − 1)/2 for odd N . The displacement relation in Eq. 5.2 has the

same form as Eq. 2.18. Therefore, n and N − n are the same mode propagating in opposite directions and

only one of them is necessary in the analysis. The critical buckling load is the lowest among the buckling

loads for all values of n:

λcrit = min
n=0,1,2,...,{N/2}

(λc(n)) (5.6)

Second, as discussed in Section 2.1.3.2, the eigenmode has zero displacement on the edge 3 in Fig. 5.1 for

n > 0. Edge 3 is clamped to a rigid plate and subject to uniform end-shortening. Therefore, all nodes on

edge 3 have the same displacements. The only condition that satisfies the displacement relation in Eq. 5.2

for n > 0 is U3 = 0. Edge 1 is always fully clamped and U1 is zero in all analyses.

5.1.2 Buckling and Natural Frequency Analysis

Operationally, the eigenvalue analysis of the buckling problem in Eq. 5.4 is solved by analyzing the cor-

responding natural frequency problem. This is based on the fact that buckling happens when the lowest

natural frequency decreases to zero as the load magnitude is increased (Virgin, 2007).

The equation of motion for a single corrugation is

M ¨̃u+Kũ = F̃ (5.7)

where M and K are mass and stiffness matrices, respectively. ũ is the complex-valued displacement field

and ¨̃u denotes its second derivative with respect to time t. The displacement can be written as

ũ = Ũeiωt (5.8)

where ω is the angular frequency. Substitute Eq. 5.8 into 5.7, multiply it by QT , use the relation in Eq. 5.3,
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and eliminate the exponential term to obtain the relation:

QT (K − ω2M)QŨa = 0 (5.9)

Equation 5.9 is an eigenvalue problem, and the eigenvalue ω2 and eigenvector Ũ are respectively the

square of the natural frequency and the corresponding vibration mode.

If the lowest natural frequency is zero, i.e. ω2 = 0, Eq. 5.9 degenerates into the eigenproblem in Eq. 5.4.

Therefore, the buckling problem can be solved through the natural frequency problem by finding the load

at which the lowest natural frequency is zero. The vibration mode of the frequency problem in this case is

also the buckling mode.

When the eigenvalue ω2 is positive, the angular frequency ω is a real value. Then, ũ can be written as

ũ = Ũeiωt = Ũ(cos(ωt) + i sin(ωt)) (5.10)

However, when ω2 < 0, ω is a complex value and eiωt exponentially grows with time, leading to an unstable

structure. Therefore, ω2 = 0 corresponds to the onset of buckling and this relation is exploited to facilitate

the implementation of the Bloch wave method in Abaqus.

5.2 Numerical Implementation

Most of the current commercial finite element packages, including Abaqus, cannot deal with complex-valued

fields. We modified the technique developed by Aberg and Gudmundson (1997), Bertoldi et al. (2008); Shim

et al. (2013), and Shim et al. (2013) to apply our modified Bloch wave method in Abaqus. Our technique

is first presented in this section, followed by an efficient algorithm of finding the critical buckling loads and

modes.

5.2.1 Finite Element Implementation

The complex-valued fields can be separated into real and imaginary parts, and the equation of motion of a

corrugation (Eq. 5.7) can be written as

 K 0

0 K

− ω2

 M 0

0 M

 ŨRe

Ũ Im

 =

 F̃Re

F̃ Im

 (5.11)

where ŨRe, Ũ Im, F̃Re, and F̃ Im are the real and imaginary parts of the displacement and force fields of a

unit cell. The complex Bloch relation of displacements in Eq. 5.2 can be separated into two equations, each
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of which represents the real or imaginary relation:

ŨRe
4 = ŨRe

2 cos(
2π

N
n)− Ũ Im

2 sin(
2π

N
n)

Ũ Im
4 = ŨRe

2 sin(
2π

N
n) + Ũ Im

2 cos(
2π

N
n)

(5.12)

Eq. 5.12 can be represented by two identical meshes in a single analysis in Abaqus whose boundaries are

coupled by the *MPC (Multi-Point Constraint) function in Abaqus, as shown in Fig. 5.2. Nodes A and B

have the same axial and circumferential coordinates. Their displacements are input into Eq. 5.12 to calculate

ŨRe
4 . The displacements of node C are enforced to be ŨRe

4 by the *MPC. The imaginary part of the Bloch

relations can also be realized in the same way.

Real Part

1

2

3

4

Imaginary Part

1

2

3

4

[S]U[C]UU Im

2

Re

2

Re

4

~~~
−=

B
A

C

Figure 5.2: Schematic of two identical meshes coupled by the *MPC function in Abaqus. [S] and [C] are
the sine and cosine terms in Eq. 5.12, respectively. Only the real part of the Bloch relation is shown in this
figure.

Similar to previous discussions, the coupling relations give the following eigenvalue problem:

QT

 K 0

0 K

− ω2

 M 0

0 M

Q Ũind = 0 (5.13)

where Ũind is independent displacements and Q is the coupling matrix. More details can be found in

Appendix A.

The calculation of ω2 consists of two steps: a nonlinear static analysis (pre-buckling analysis) and a

frequency analysis (eigenvalue analysis). In the static analysis the pre-buckling deformation of cylindrical

shell has a periodicity of one unit cell, i.e., ŨRe
2 = ŨRe

4 and Ũ Im
2 = Ũ Im

4 . Edge 1 is fully clamped and

the shell is compressed by applying a uniform axial end-shortening on edge 3, i.e., ŨRe
1 = Ũ Im

1 = 0 and

ŨRe
z,3 = Ũ Im

z,3 = Uz. Therefore, the load parameter λ in the previous discussion is λ = |Uz|.

In the frequency analysis edges 2 and 4 are coupled by the Bloch relations Eq. 5.12. Edge 1 is fully

clamped. As discussed in the previous section, ŨRe
3 and Ũ Im

3 are zero when n > 0 in order to satisfy the
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Bloch relations. For the case n = 0, the real and imaginary parts are not coupled and the only free degree

of freedom of edge 3 is the uniform translational displacement in the z (axial) direction. |Uz| corresponding

to zero ω2 is the buckling load λc for the wave number n.

5.2.2 Algorithm for Finding Critical Buckling Load

In principle, we need to run {N/2} + 1 simulations in order to find the lowest buckling load according to

Eq. 5.6:

λcrit = min
n=0,1,2,...,{N/2}

(λc(n))

This process could be computationally expensive. We developed an algorithm to reduce the number of

simulations required to find the lowest buckling load. Our algorithm consists of four steps which are shown

in Fig. 5.3.

Start

Find λ
c
for n=0

Find the possible 

cri!cal mode n=p
i

Find λ
c
for n=p

i

Check if n=p
i
 is 

the cri!cal mode 

Finish

Yes

No

Step 1

Step 2

Step 3

Step 4

Figure 5.3: Flow chart of the algorithm of finding the critical buckling mode and load.

5.2.2.1 Step 1: Find the Buckling Load for n = 0 mode

In the nonlinear static step, the shell is compressed by applying incremental uniform end-shortening. The

bifurcation point B0 of mode n = 0, as shown in the schematic Fig. 5.4, is found when the eigenvalue

ω2 obtained from the frequency analysis are zero. Operationally, coarse increments are first used and the

increment containing the bifurcation point is further refined until the required accuracy is achieved.

Both the pre-buckling deformation and buckling mode for n = 0 have the periodicity of one unit cell,

i.e., ŨRe
2 = ŨRe

4 and Ũ Im
2 = Ũ Im

4 . Therefore, the structure can be loaded into the postbuckling state in

the nonlinear static step. Four possible situations could happen if the compressive load is larger than the
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buckling load λc(n = 0), and the methods of finding λc(n = 0) for these cases are discussed as follows.

o

B0

A

Axial End-Shortening

Load

3

2
1

Figure 5.4: Schematic of possible post-buckling branches. B0 is the bifurcation point corresponding to the
branch of n = 0.

Even though the nonlinear analysis is used for the static step, it is still possible that the shell stays on

the primary branch B0 −A when the load exceeds the bifurcation point. The shell is in an unstable state in

this case. The shell is also not stable if it is loaded into the branch B0 − 1. Therefore, the eigenvalue ω2 of

the loading state on branches B0 − A and B0 − 1 are negative, whereas ω2 is positive before buckling. For

these two cases, B0 can be accurately found by checking the change of sign of ω2.

The branch B0 − 2 is also unstable. The shell is subject to displacement-control loading (λ = |Uz|) in

the static step and the compressive end-shortening incrementally increases. Hence, the shell can never reach

the branch B0−2. The increments of the nonlinear static analysis are set to automatically decrease in order

to find the equilibrium state. Therefore, the shell can reach a loading state that is very close to B0. The

last point on the primary branch is used as the bifurcation point in this case.

B0 is relatively difficult to find for the case of stable post-buckling branch B0−3 because its eigenvalues are

still positive and B0 cannot be found by checking the change of signs of eigenvalues. Two signatures are used

to determine if the shell is in the stable post-buckling state. First, the eigenvalue decreases dramatically when

the load is close to the bifurcation point and it increases from zero when the load exceeds B0 and goes onto

branch B0 − 3. Second, the slope of the load-displacement curve is different for the primary and secondary

branches. We use the point with largest slope change, i.e. largest curvature, on the load-displacement curve

O−B0 − 3 as the bifurcation point, instead of finding the point with zero eigenvalue which is operationally

very difficult for this case.

5.2.2.2 Step 2: Find the Possible Critical Mode pi

Instead of sequentially computing the buckling loads for n = 1, 2, ..., {N/2}, we always find the possible

critical mode n = pi and calculate the corresponding buckling load λc(pi) in each iteration, where i denotes

the ith iteration. The structure loaded at λc(pi−1) is used to find pi. λc(n = 0) is used in the first iteration

i = 1. The procedure is described as follows.

First, frequency analyses corresponding to the modes in the search domain were performed on the struc-

ture loaded at λc(pi−1). The search domain is the set of buckling modes which contains the critical one, and
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it is n = 1, 2, ..., {N/2} for the first iteration i = 1. The search domain is updated in Step 4 for iterations

i > 1.

If the eigenvalue ω2 is positive for a certain mode n = n+, then the buckling load corresponding to

n = n+ is larger than λc(pi−1). The reason is that the structure needs to be compressed more in order to

reduce ω2 to zero. Although the buckling load of mode n = n+ is unknown, it is sure that n = n+ is not a

critical mode. Therefore, all modes with positive ω2 at the stress state of λc(pi−1) are discarded in future

analyses.

Second, only the modes with negative eigenvalues are defined as search domain for future analyses. The

mode with lowest negative value is likely to be the critical one and it is chosen to be the possible critical

mode pi.

5.2.2.3 Step 3: Find the Buckling Load for pi

The structure is compressed incrementally in a nonlinear static step, and a frequency analysis step is then

used to find the load at which ω2 is zero. In the nonlinear static step, the deformation of the shell is enforced

to have the periodicity of one unit cell, i.e. ŨRe
2 = ŨRe

4 and Ũ Im
2 = Ũ Im

4 ; however, the buckling mode of

n = pi has different periodicity according to the Bloch relations (Eq. 5.12). Therefore, the structure stays

on the primary path of mode n = pi during the loading in the static step. As a result, the eigenvalue ω2 is

negative when the load exceeds the bifurcation point of n = pi, and the buckling load λc(pi) can be found

by checking the change of sign of ω2. Operationally, coarse increments are first used and the increment

containing the bifurcation point is further refined until the required accuracy is achieved.

5.2.2.4 Step 4: Check if pi is the Critical Mode

If n = pi is the critical mode, then the eigenvalues corresponding to the stress state at λc(pi) for the other

modes are all positive. Therefore, the search domain is empty for the next iteration and the program is

stopped in this case. If there exist some modes with negative eigenvalues at the stress state at λc(pi), then

n = pi is not the critical mode. The updated search domain consists of these modes with negative eigenvalues

and the program goes back to Step 2 for the next iteration.

This algorithm can reduce computational effort due to three reasons. First, it always finds the buckling

load of the possible critical mode rather than sequentially searches n = 0, 1, 2, ..., {N/2}. Hence, it can find

the critical mode as soon as possible. Second, coarse increments are first used and the increment containing

the bifurcation point is then refined in the static analysis. This can reduce the number of nonlinear analyses

which are time-consuming. Third, most of the frequency analyses are are independent with each other and

they are parallel carried out, further reducing the computational time.
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5.3 Numerical Examples

We applied our analysis method to several corrugated cylindrical shells and a stiffened cylindrical shell in

order to validate both the method formulation and the implementation techniques. For each problem, two

additional solutions were obtained by carrying out both linear and nonlinear buckling analyses using full

finite element models. Note that a linear buckling analysis is an eigenvalue analysis of an unloaded structure,

and a nonlinear buckling analysis is an eigenvalue analysis of a loaded structure whose stress state is obtained

by a nonlinear static analysis. The results and computational time required for these two full solutions are

compared to the modified Bloch wave method.

5.3.1 Corrugated Composite Cylindrical Shells

5.3.1.1 Shell Geometry and Material

The corrugations are sinusoidal and the cross-sections were obtained by superposing a sinusoidal wave on a

reference circle:

r(ϕ) = R+∆r sin(Nϕ), (5.14)

where N is the total number of corrugations and ∆r their amplitude. In this thesis, the number of corruga-

tions N is chosen to be N = 12, 13, 16, 17, 19, 22, 23, 34, 25, 26, 29, 30, 31, 37, 40

The shells were chosen to have a square aspect ratio. The dimensions presented in Table 5.1 were chosen.

Table 5.1: Dimensions of wavy shell designs

Thickness, t 180 µm
Radius, R 35 mm
Length L 70 mm

Maximum deviation from circle, ∆r 1.5 mm

A symmetric six-ply laminate, [+60◦,−60◦, 0◦]s was adopted, and 0◦ direction is shell axial direction.

It consisted of 30 µm thick unidirectional laminae of T800 carbon fibers and ThinPreg 120EPHTg-402

epoxy, with a fiber volume fraction of approximately 50%. The following lamina properties were measured:

E1 = 127.9 GPa, E2 = 6.49 GPa, G12 = 7.62 GPa, and ν12 = 0.354, where E1 is the modulus along the fiber

direction. The ABD matrix of the laminate was calculated from these properties, using classical lamination
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theory:

ABD =



9.919× 106 2.670× 106 0 0 0 0

2.670× 106 9.919× 106 0 0 0 0

0 0 3.625× 106 0 0 0

0 0 0 0.0108 0.0099 0.0034

0 0 0 0.0099 0.0373 0.0081

0 0 0 0.0034 0.0081 0.0125


(5.15)

where the units of the A and D matrices are N/m and Nm, respectively.

5.3.1.2 Buckling Loads and Modes

Around 1,500 S4 fully integrated shell elements were used for a corrugation in the Bloch wave method.

Both linear and nonlinear analyses of detailed full finite element models were carried out. The full finite

element models have the same element size as the models in the Bloch wave method. All simulations of these

examples were run on a Xeon X5680 server with 12 CPUs on a single motherboard.

The linear eigenvalue analysis *Buckle function of Abaqus was used for linear buckling analysis. Abaqus

offers the Lanczos and the subspace iteration eigenvalue extraction methods. It was found that the Lanczos

method was much slower than the subspace method and it failed to solve the eigenvalue problem for the

shells with more than 23 corrugations. Therefore, the subspace method was used for the linear buckling

analysis. As discussed in the previous sections, there are two coincident buckling modes for the cases n > 0.

It was found that the subspace method could provide an inaccurate second buckling mode if the number

of extracted eigenvalues is too small. Therefore, we extracted the first 10 eigenmodes although we are only

interested in the first two buckling modes. We found that this setup was able to provide accurate second

buckling modes.

The nonlinear analyses of full detailed finite element models consisted of two steps, similar to the Bloch

wave method, that are a nonlinear static analysis and a frequency analysis. The shells were first compressed

by applying a uniform end-shortening at one end, and then a frequency step was carried out to find the

eigenvalue ω2 corresponding to this stress state. The critical buckling load was found when the eigenvalue

ω2 decreased to zero. Coarse increments in the nonlinear static step were first used and the increment

containing the bifurcation point was then refined. The frequency analyses are independent of each other so

they were performed in a parallel way.

The critical axial end-shortening obtained from the modified Bloch wave method, nonlinear, and linear

full finite element analyses are plotted in Fig. 5.5. The buckling loads are plotted in Fig. 5.6. In the

linear eigenvalue analysis only one parameter can be used in extracting the eigenvalue, i.e., the critical end-

shortening and critical buckling load cannot be obtained by the eigenvalue analysis at the same time. In

the present study, the end-shortening was extracted as the eigenvalue. Therefore, the critical loads were
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not obtained for linear eigenvalue analysis. One could use load as the parameter for the linear eigenvalue

analysis if it is of interest; however, the critical end-shortening cannot be obtained in this case.

The results obtained from the Bloch wave method and the linear full finite element analyses are compared

to the ones obtained from the nonlinear full finite element analyses. Figs. 5.5 and 5.6 show that the results

obtained from the three methods are very close to each other. It was found that the differences were less

than 0.5% for all the corrugated shells studied in this thesis.
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Figure 5.5: Critical end-shortening obtained from the modified Bloch wave method, nonlinear, and linear
full FEA models.

10 20 30 40
5

10

15

20

25

Number of Corrugations

L
o

a
d

 [
k

N
]

 

 

Bloch Wave Method

Nonlinear Full FEA

Figure 5.6: Critical buckling loads obtained from the modified Bloch wave method, nonlinear, and linear full
FEA models.

The buckling modes obtained from the modified Bloch wave method, linear, and nonlinear full model

analysis for N = 13, 31, 40 are plotted in Figs. 5.7, 5.8, and 5.9. The buckling modes in Fig. 5.7 are typical

for shells with N <= 30 corrugations. Each corrugation has several half waves in the axial direction and

two half waves in the circumferential direction. Compared to the size of a unit cell (a corrugation in this

case), the wavelength in both axial and circumferential directions is small. Therefore, the buckling modes
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are local for N <= 30. Fig. 5.7 shows that both the modified Bloch wave method and linear full FEA model

can accurately capture the local buckling mode.

Figs. 5.8 (a) and (b) are typical buckling modes for shells with N >= 31 corrugations. There is only

one half wave in the axial direction. The most significant component of the buckling mode is a uniform

expansion in the radial direction. Therefore, the buckling modes for N >= 31 are global. Fig. 5.8 shows

that, compared to the nonlinear full FEA model, the modified Bloch wave method can obtain accurate

buckling modes. However, the linear FEA model produced a local mode for N >= 31. Fig. 5.9 shows the

global buckling modes for the shell with N = 40 corrugations. Both the modified Bloch wave method and

linear full FEA model were able to give accurate buckling modes.

Figs. 5.7, 5.8, and 5.9 show that the modified Bloch wave method can capture both local (short wave-

length) and global (long wavelength) buckling and the buckling modes match the results obtained from the

nonlinear full model analyses. However, although the linear full FEA models can provide accurate buckling

loads, they could find inaccurate buckling modes in some cases, as seen in Fig. 5.8 (c).

5.3.1.3 Computational Time

The computational time for the three sets of simulations is plotted in Fig. 5.10. It can be seen that the

computational time of the nonlinear full FEA models increased linearly with respect to the number of

corrugations. For linear full FEA analysis, the computational time increased faster for larger number of

corrugations and it was slightly faster than the nonlinear analysis for N = 40. However, the computational

time of the Bloch wave method did not scale up as the number of corrugations increased.

5.3.2 Large-Scale Orthogonally Stiffened Aluminum Cylindrical Shell

5.3.2.1 Shell Geometry and Material

We applied the modified Bloch wave method to compute the buckling load and mode for a large-scale

orthogonally stiffened aluminum cylindrical which was recently constructed by NASA Langley for the Shell

Buckling Knockdown Factor project (Hilburger et al., 2012b). The stiffeners are on the internal side of the

shell and consist of longitudinal stringers and circumferential rings. The geometry of stiffeners is presented in

Fig. 5.11. The dimensions are listed in Tab. 5.2. The shell has 75 longitudinal stringers and 18 circumferential

rings. The material is aluminum, and the modulus and Poisson’s ratio used in this study are 68.9 GPa and

0.3, respectively.

5.3.2.2 Buckling Loads, Modes, and Computational Time

A unit cell shown in Fig. 5.12 was used in the modified Bloch wave method. Edge 1 was full clamped;

edge 3 was clamped to a rigid plate and subject to uniform end-shortening. Edges 2 and 4 had the same

displacement in the nonlinear static analysis step and were coupled by the Bloch relations Eq. 5.12 in the
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Figure 5.7: Buckling modes of the shell with N = 13 corrugations obtained from (a) modified Bloch wave
method, (b) nonlinear full FEA model, and (c) linear full FEA model.



91

Circumferential Position [radian]

A
x

ia
l 

P
o

si
ti

o
n

 [
m

m
]

 

 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

0

1

Circumferential Position [radian]

A
x

ia
l 

P
o

si
ti

o
n

 [
m

m
]

 

 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

0

1

Circumferential Position [radian]

A
x

ia
l 

P
o

si
ti

o
n

 [
m

m
]

 

 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

−1

0

1

(a)

(b)

(c)

Figure 5.8: Buckling modes of the shell with N = 31 corrugations obtained from (a) modified Bloch wave
method, (b) nonlinear full FEA model, and (c) linear full FEA model.
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Figure 5.9: Buckling modes of the shell with N = 40 corrugations obtained from (a) modified Bloch wave
method, (b) nonlinear full FEA model, and (c) linear full FEA model.
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Figure 5.10: Computation time for the modified Bloch wave method, linear, and nonlinear full FEA models.

Axial 

direction

Figure 5.11: Schematic of stiffeners (from Hilburger et al. (2012b)).

Skin thickness, t 0.100
Stiffener height, H 0.400
Stiffener height, h 0.300

Space between stringers, bs 4.00
Stringer thickness, ts 0.100

Space between rings, br 4.00
Ring thickness, tr 0.100
Shell radius, R 48.0
Shell length, L 72.0

Table 5.2: Dimensions of stiffeners. The unit is in inches.
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frequency analysis step. Around 1,100 S4 fully integrated shell elements were used for a unit cell in the

modified Bloch wave method.

Axial 

direction

1
2

3

4

Figure 5.12: Schematic of a unit cell used in the modified Bloch wave method.

The computational setup for the linear and nonlinear full FEA models was the same as that of the

corrugated cylindrical shells in Section 5.3.1. The full FEA models had the same element type and size as

the modified Bloch wave method. All simulations of these examples were run on a Xeon E5410 desktop with

8 CPUs.

The buckling loads obtained from the three simulations and their computational time are presented in

Tab. 5.3.2.2. Compared to the full nonlinear FEA model, the errors in the critical end-shortening obtained

from the modified Bloch wave method and linear full FEA model are within 0.3%. The difference between

the buckling loads of the full nonlinear FEA model and the modified Bloch wave method is within 0.6%.

Although the full nonlinear FEA model was most accurate, it required significant computational effort and

the simulation took 16 hours to finish. However, the modified Bloch wave method and full linear FEA model

were much more efficient and the computational time was 0.5 and 1 hour, respectively.

Critical End-Shortening [mm] Critical Axial Load [kN] Computational Time [hour]
Modified Bloch wave method 3.3546 2719 0.5

Full nonlinear FEA 3.3554 2702 16
Full linear FEA 3.3458 N/A 1

Table 5.3: Buckling loads and computational time of stiffened shell.

The buckling modes obtained from the modified Bloch wave method and nonlinear full model analysis

for the stiffened shell are plotted in Figs. 5.13 (a) and (b). It can be seen that the modified Bloch wave

method can produce accurate buckling mode. The buckling mode has 5 half waves in the axial direction.

There are 15 waves in the circumferential direction and each circumferential full wave spans over 5 stringers.

Compared to the size of a grid in Fig. 5.11, the wavelength in both axial and circumferential directions is

large. The full linear FEA model also produced a mode with 15 full waves in the circumferential direction;

however, the mode has 7 half waves in the axial direction. Therefore, although the linear full FEA model

can obtain accurate buckling load with high computational efficiency, it cannot produce accurate buckling
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mode.

5.4 Summary

We have developed an efficient computational method for the buckling analysis of corrugated and stiffened

cylindrical shells which builds on the Bloch wave method and the stiffness matrix method of rotationally

periodic structures. The traditional Bloch wave method is applicable for the buckling analysis of infinitely 2-

or 3-dimensional periodic structures. We modified the Bloch wave method in order to analyze the buckling

of rotationally periodic shell structures subject to axial compression. Following the work by Aberg and

Gudmundson (1997) and Bertoldi et al. (2008); Shim et al. (2013), we implemented our modified Bloch wave

method in the commercial finite element code Abaqus. We also developed a highly efficient algorithm of

performing the modified Bloch wave method.

We used our modified Bloch wave method to analyze the onset of buckling for several small corrugated

composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Both linear

and nonlinear analyses based on detailed full finite element models were also performed in order to validate

our method. It was shown that our modified Bloch wave method can obtain highly accurate buckling loads.

Compared to the nonlinear full FEA models, the errors of the buckling loads obtained by the modified Bloch

wave method are smaller than 0.6% for all the shells studied in this thesis.

Numerical examples also showed that the modified Bloch wave method can produce the same buckling

modes as those obtained from the nonlinear full FEA models and that it can accurately capture local (short

wavelength) and global (long wavelength) buckling modes. Comparisons between the buckling modes of

linear and nonlinear full FEA models showed that, although the linear full FEA model can produce accurate

bucking loads, the buckling modes obtained from the linear FEA model could be inaccurate.

In the examples of corrugated cylindrical shells, the computational time required by the modified Bloch

wave method did not scale up as the number of corrugations increased. However, both linear and nonlinear

full FEA models required much higher computational time than the Bloch wave method for heavily corru-

gated shells. For a shell with 40 corrugations, the computational time of the modified Bloch wave method

is only 7% of the computational time of the linear and nonlinear full FEA models. For the stiffened cylin-

drical shell, the computational time of the modified Bloch wave method is respectively 50% and 3% of the

computational time of the linear and nonlinear full FEA models.
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Figure 5.13: Buckling modes of the stiffened shell obtained from (a) modified Bloch wave method, (b)
nonlinear full FEA model, and (c) linear full FEA model.
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Chapter 6

Imperfection-Insensitive
Pseudo-Spherical Shells

This chapter describes the studies of imperfection-insensitive pseudo-spherical shells under external pressure.

It has been shown in the previous sections that breaking the rotational symmetry of axially compressed

cylindrical shells can improve buckling loads and make the shells insensitive to imperfections. This idea of

breaking symmetry is used to design imperfection-insensitive shells under external pressure. Specifically, the

exact spherical symmetry is abandoned and polyhedra are used instead.

This chapter starts with the buckling analyses of several commonly seen designs, including an icosahedron

and two geodesic shells. Then each face of an icosahedron was replaced by a pyramid, creating triambic

icosahedra (Wenninger, 1974). Parametric studies were performed to investigate the effects of the heights of

the pyramids. The best triambic icosahedron was then chosen as the initial design for further optimizations.

6.1 Icosahedron and Geodesic Shells

An icosahedron was chosen as the starting design of this study for two reasons. First, regular polyhedra

have simple geometry and the icosahedron has larger volume than the other regular polyhedra with the

same radius of a circumscribed sphere. Second, the faces of an icosahedron can be subdivided to create

geodesic shells, which approach to a sphere as the order of subdivision increases. Assuming the radius of

the circumscribed sphere is constant, the only parameter required to define a geodesic shell is the order of

subdivision. Therefore, it is easy to parameterize the geometry of a geodesic shell.

6.1.1 Geometry and Material

An icosahedron has 20 equilateral triangular faces, 30 edges, and 12 vertices, and it has 5 equilateral triangular

faces at each vertex. Fig. 6.1 shows a model of icosahedron and its 2D folding pattern.

A geodesic sphere is obtained by subdividing the faces of an icosahedron and then projecting the inter-

mediate vertices onto the circumscribed sphere. Fig. 6.2 shows half of a geodesic shell. The blue lines in
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(a) (b)

A

B

Figure 6.1: (a) Icosahedron. (b) The 2D folding pattern of an icosahedron.

Fig. 6.2 represent the original topology of an icosahedron, and the red lines are new edges created through

the subdivision. The solid dots are the original vertices of the icosahedron, and the empty dots are the

intermediate vertices obtained by subdividing the faces of the icosahedron.

Figure 6.2: A second order geodesic sphere. Note that only half of the shell is shown in the figure for clarity.
(Image from www.instructables.com)

Fig. 6.3 explains the method of creating a geodesic shell. The triangle in Fig. 6.3 (a) corresponds to a

face of an icosahedron. The second order subdivision splits each edge into two equal segments and creates

four equilateral triangles (Fig. 6.3 (b) ) . Similarly, the nth order subdivision divides each edge of a face of

an icosahedron into n equal segments and creates n2 equilateral triangles. The intermediate vertices (empty

dots in Fig. 6.3 (b) and (c)) are then projected on the circumscribed sphere along the radial direction, while

keeping them connected by straight lines. The new triangles are the faces of geodesic shells.

In the present study, the radius of the circumscribed sphere of the icosahedron was chosen to be 0.5

m, and the shell thickness was 0.5 mm. Aluminum was used as the material, and it was assumed to be

linear-elastic. The Young’s modulus and Poisson’s ratio were 68.9 GPa and 0.3, respectively.



99

(a) (b) (c)

Figure 6.3: Schematic of subdividing a face of icosahedron into faces of a geodesic sphere. (a) A face of
icosahedron. (b) Second order subdivision. (c) Third order subdivision.

6.1.2 Simulation

The simulation method used in this section is the same as that of the cylindrical shells under axial compression

in Section 3.1.3 except the type of shell elements, the boundary and loading conditions, and the solver for

calculating buckling pressures. The general purpose finite element package Abaqus 6.11 was used to calculate

the buckling pressure. Fully-integrated triangular thin shell elements (element S3) were used for the Abaqus

models. The size of each element was chosen as 0.02 m, and there were around 20,000 elements in the model.

All the six degrees of freedom of the lowest vertex A, as shown in Fig. 6.1, were fixed in the simulation. The

highest vertex B can only move downward and its other degrees of freedom were fixed. The shell was subject

to uniform external pressure.

The nonlinear static analysis solver of Abaqus/Standard was used to calculate pressure-displacement

curves. It was found that the Riks solver of Abaqus/Standard often crashed before the structure actually

buckled. Therefore, the Riks solver was not used in all simulations of shells under external pressure. The

external pressure was incrementally increased until it reached the first maximum value. Therefore, the

simulation was load-controlled. Since the pressure always increased, the simulation was stopped at the first

limit point of the external pressure and it was chosen to be the buckling pressure. The postbucklng behavior

was not able to be found due to the nature of this nonlinear static solver. The increments of external pressure

were automatically determined by the solver. The maximum and minimum increments allowed were 4 kPa

and 0.4 Pa, respectively.

Similar to Section 3.1.3, both perfect and imperfect models were used in the simulations. The shape of

the imperfections was the first buckling mode obtained by a linear eigenvalue solver. The amplitudes of the

imperfections were chosen to be ±t, where t is the shell thickness, 0.5 mm.

6.1.3 Results

The simulation method in 6.1.2 was use to analyze an icosahedron, a second order geodesic shell, and a

third order geodesic shell. A complete spherical shell with the same radius (0.5 m), thickness (0.5 mm), and

material (aluminum) as icosahedron was also analyzed. The results are summarized in Tab. 6.1. P0, P+, and
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P− are the buckling pressures of the perfect shell and imperfect shells with positive and negative amplitudes

of imperfections, respectively. γ is the knockdown factor defined in Eq. 3.10.

Table 6.1: Buckling pressure of icosahedron shell and geodesic shells.
Shell P0 [kPa] min(P+ , P−) [kPa] γ
Icosahedron 44.280 44.726 1.010
2nd order geodesic 30.296 30.779 1.016
3rd order geodesic 24.810 24.819 1.000
Sphere 83.641 25.304 0.303

The perfect spherical shell has the highest bucking pressure among the above shells. The buckling

pressure of the perfect spherical shell obtained from the simulation is only 0.3% higher than the theoretical

value, 83.4 kPa, which was calculated by Eq. 2.36. However, its knockdown factor is only 0.303, indicating

an extreme imperfection-sensitivity. The buckling pressures of all the three perfect polyhedron shells are

smaller than that of the spherical shell. The knockdown factors of the polyhedron shells are close to one,

i.e., they are not sensitive to imperfections. The buckling pressure of the imperfect icosahedron is higher

than the imperfect geodesic shells and the spherical shell. Note that the buckling pressures decrease as

the order of subdivision increases. The results show that the icosahedron has better performance than the

geodesic shells and spherical shell. Therefore, the icosahedron was chosen to be the initial design for further

parametric studies.

6.2 Triambic Icosahedron

A triambic icosahedron is obtained by replacing each triangular face of a regular icosahedron with a pyramid.

Fig. 6.4 (a) shows a model of triambic icosahedron. A trambic icosahedron has 60 identical triangular faces.

The height of pyramid, i.e., the distance between the pyramid apex and the base face, was changed in the

present parametric studies.

(a) (b)

Figure 6.4: (a) Top view of a triambic icosahedron (from Wikipedia). (b) The solid lines correspond to the
folding pattern of an icosahedron, and the dash lines are projections of the edges of pyramids on the faces
of icosahedron.
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17 equally spaced values of heights of pyramids between −2H0 and 2H0 were analyzed in the present

study. H0 is the distance between the center of an icosahedral face and the circumscribed sphere. Therefore,

the pyramid apexes are on the circumscribed sphere if the height is H0. Negative heights correspond to

concave pyramids. The results are summarized in Fig.6.5.
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Figure 6.5: Buckling pressures of triambic pyramids with various heights of pyramids.

The buckling pressures of the imperfect shells are very close to those of the perfect shells. Therefore,

the triambic icosahedra are not sensitive to imperfections. The shell with pyramid height of 1.75H0 has the

highest buckling pressures: P0 = 149.970 kPa, P+ = 149.965 kPa, and P− = 150.105 kPa. Its buckling

pressure is 79% and 493% higher than the buckling pressures of the perfect and imperfect spherical shells,

respectively. The knockdown factor is 1.000, 230% higher than the knockdown factor of the spherical shell.

The buckling modes of triambic icosahedra with convex and concave pyramids are different, as shown in

Fig. 6.6. The buckling modes of triambic icosahedra with concave pyramids are localized on several faces.

The buckling mode of the icosahedron is more global and each face has a half wave. However, as the heights

of pyramids increase to a large positive value, the wavelength of the buckling modes decreases. The buckling

mode of triambic icosahedron with H = 1.75H0 has a full wave on each face.

6.3 Optimization

The triambic icosahedron with pyramid height of 1.75H0 was chosen as the starting design of optimizations.

It was found that each simulation of externally pressurized shells required around 30 minutes, much slower

than the axially compressed cylindrical shells. Therefore, only a small number of design variables was used

in the present study to reduce the total computational time of optimizations. The simulation technique used

in optimizations was the same as that presented in Section 6.1.2. The optimization algorithm was CMA-ES.
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(a) (b) (c)

Figure 6.6: Buckling modes of (a) triambic icosahedron with H = −H0, (b) icosahedron, and (c) triambic
icosahedron with H = 1.75H0. Red regions represent outward deformation.

6.3.1 Optimization 1: Positions of Pyramid Apexes

6.3.1.1 Design Variables

The height of a pyramid, i.e., the distance between its apex and base, was 1.75H0 and remained unchanged

during this optimization. The position of the apex of each pyramid was uniquely defined by the position of

its projection on the base. Fig. 6.7 explains the method for parameterizing the geometry. The point Oi is

the projection of the ith pyramid apex on the corresponding triangular bases.
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Figure 6.7: Parametrization of shell geometry. This figure is the 2D pattern of the bases of pyramids, and
only 8 triangular bases are shown here.

The position of O1 can be found if the lengths of line segments BC and AO1 are known. Two geometric

constraints were introduced to reduce the number of design variables. First, a mirror symmetry along the

1-direction was used to find the positions of projections of apexes. For example, the projections O2 and O1

are mirror-symmetric with respect to BC. The positions of O3 and O4 can be found following the same
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rule of mirror symmetry. The red arrows represent the sequence of mirroring the positions of projections.

Second, a translational symmetry along the 2-direction was used. For example, the relative position between

O5 and its triangular base was the same as that between O1 and its triangular base. Therefore, the only

design variables in this optimization were the lengths of BC and AO1.

6.3.1.2 Results

Similar to the optimizations in Chapter 3, min(P0, P+, P1) was maximized by CMA-ES. Four individuals

were used for each generation in this optimization, and the program was run for 100 generation. The

evolution of buckling pressures and design variables during optimization was plotted in Fig. 6.8. X1 and X2

are normalized lengths of BC and AO1, i.e., X1 = BC/AB and X2 = AO1/AC.
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Figure 6.8: Evolution of (a) buckling pressures and (b) design variables during optimization 1.

The optimum was found at the 47th generation. The corresponding buckling pressure, min(P0, P+, P1),

and knockdown factor are 164.444 kPa and 0.976, respectively. Compared to the triambic icosahedron with

pyramid height of 1.75H0, the buckling pressure was increased by 9.656%. The knockdown factor was very

close to one, indicating that the optimal shell was not sensitive to imperfections. The optimal design variables

are X1 = 0.500 and X2 = 0.650. Note that the center of the triangular base is at X1 = 0.500 and X2 = 2/3.

Therefore, the optimal design is very close to the triambic icosahedron.

6.3.2 Optimization 2: Positions and Heights of Pyramid Apexes

The positions and heights of pyramid apexes were optimized. The method of defining the positions of Oi

was the same as that in the Section 6.3.1. The heights of all pyramids were the same. Therefore, there were

three design variables in this optimization: X1, X2, and height H. The height is constrained to be between

0 and 2H0, i.e., the pyramids were always convex. Six individuals were used in each generation and the

program was run for 50 generations. The results are shown in Fig. 6.9.
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Figure 6.9: Evolution of (a) buckling pressures and (b) design variables during optimization 2. Note that
the height is normalized by H0.

The optimum was found at the 42nd generation. The corresponding buckling pressure, min(P0, P+, P1),

and knockdown factor are 169.254 kPa and 0.993, respectively. Compared to the triambic icosahedron with

pyramid height of 1.75H0, the buckling pressure is increased by 12.860%. The optimal design is not sensitive

to imperfections. The optimal design variables are X1 = 0.518, X2 = 0.686, and H = 1.806H0. The position

of projection of pyramid apex was close to the center of the triangular base. However, the height was larger

than the best triambic icosahedron with H = 1.75H0.

6.3.3 Optimization 3: Constrained Positions and Heights of Pyramid Apexes

In the optimization in Section 6.3.1 O1 was able to move in two directions within the triangular base. In the

optimization of this section O1 was constrained to move only in the vertical direction. X1 was set as 0.5.

Fig. 6.10 explains the method of parameterizing the geometry. The point Oi is the projection of apexes of

the ith triangular bases.

The projections Oi can only move along the dash lines which are perpendicular bisectors of the triangular

bases. The distance between Oi and Ai was X2. A translational symmetry along the 2-direction was used.

The relative position between O5 and its triangular base was the same as the one between O1 and its

triangular base. The design variables in this optimization were X2 and pyramid height H.

Four individuals were used in each generation and the program was run for 50 generations. The results

are shown in Fig. 6.11. The optimum was found at the 39th generation. The corresponding buckling pressure,

min(P0, P+, P1), and knockdown factor are 161.950 kPa and 0.998, respectively. The buckling pressure is

slightly smaller than the shell obtained in Section 6.3.2. The optimal design is not sensitive to imperfections.

The optimal design variables are X2 = 0.649 and H = 1.809H0.
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Figure 6.10: Parametrization of shell geometry. This figure is the 2D pattern of the bases of pyramids, and
only 8 triangular bases are shown here.

(a) (b)

0 10 20 30 40 50
40

60

80

100

120

140

160

180

Generation Number

C
ri

ti
ca

l P
re

ss
u

re
 [

k
P

a
]

 

 

Perfect Structure

Imperfect Structure, positve amplitude

Imperfect Structure, negative amplitude

Objective

0 10 20 30 40 50
0

0.5

1

1.5

2

Generation Number

D
e

si
g

n
 V

a
ri

a
b

le
s

 

 

X2

Hight

Figure 6.11: Evolution of (a) buckling pressures and (b) design variables during optimization. Note that the
height is normalized by H0.
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6.4 Summary

Pseudo-spherical shells, i.e., polyhedral shells, were analyzed and optimized in this chapter. The buckling

pressures and knockdown factors of an icosahedron and two geodesic shells were first computed. It was

found that the buckling pressures of both perfect and imperfect geodesic shells decreased as the order of

subdivision increased. Triambic icosahedra with various heights of pyramids were then studied. It was found

that the triambic icosahedron with pyramid height of H = 1.75H0 had highest buckling pressure.

A series of optimizations were performed with the best triambic icosahedron as the initial design. The

best design was obtained in the optimization with the positions and heights of pyramid apexes as design

variables. The buckling pressure of this optimal design is 102% and 569% higher than the perfect and

imperfect spherical shells, respectively. The optimal designs obtained in this chapter were very close to the

best triambic icosahedron with H = 1.75H0. Compared to the best triambic icosahedron, the best optimal

design improved the buckling pressure by 12.86%. All the pseudo-spherical shells in this chapter were not

sensitive to imperfections.
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Chapter 7

Conclusion

This thesis has presented a novel method to design imperfection-insensitive symmetry-breaking (wavy) cylin-

drical shells subject to axial compression. The method employs an optimization technique to obtain geometric

shapes that maximize the minimum between the buckling loads of the geometrically perfect structure and

geometrically imperfect structures with positive and negative imperfections.

It has been shown that the wavy cylindrical shells developed with this approach can achieve very high

critical stress while also being practically insensitive to geometric imperfections. It has also been shown that

designs based on the present approach are comparable to the most efficient stiffened shell designs that have

been developed during the past decades.

Comparisons between the optimal wavy shells obtained from the present approach and the periodically

corrugated shells have shown that the optimized wavy designs can achieve higher buckling stresses and

knockdown factors. It has been found that the mass efficiency of periodically corrugated shells cannot

exceed a certain limit even with a large number of corrugations. In contrast, the optimal wavy shells are

more efficient than this limit value of the periodically corrugated shells. These comparisons have justified that

breaking the symmetry of cylindrical shells through optimization can significantly improve the performance

of axially compressed cylindrical shells.

The method of obtaining imperfection-insensitive wavy cylindrical shells has been validated by exper-

iments on three composite wavy shells. A fabrication technique was developed to make composite wavy

cylindrical shells, and a novel photogrammetry technique was developed to measure the full-field geometric

imperfections. The experimental behavior of composite wavy shells was predicted based on measured thick-

ness and mid-plane imperfections. The predictions have shown that the postbuckling of wavy shells is nearly

stable, leading to the imperfection-insensitive feature of the wavy shells. The predictions have also shown

that the wavy shells collapse due to material failure rather than buckling.

Compression tests on three wavy shells and two circular cylindrical shells have been carried out. It has

been found that all three wavy shells were able to reach 100% of the buckling load of a perfect wavy shell

and then continue to carry higher load. The difference among the failure loads of the wavy shells was only

3.4%, and discrepancy between the measured and predicted failure loads was less than 4.1%. Significant
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delamination was observed after unloading for all wavy shells. This observation and the videos recored

by high-speed camera confirmed that the wavy shells collapsed due to material failure. The measured

average buckling load of the circular cylindrical shells was only 19.3% of the average failure load of the

wavy shells. The highest knockdown factor of the circular shells was only 0.589. Comparisons between

the experiments of the wavy shells and circular shells have shown that introducing optimal symmetry-

breaking wavy cross-section can significantly reduce the imperfection-sensitivity and improve the load-bearing

capability of cylindrical shells.

This thesis has demonstrated the effects of breaking the symmetry of cylindrical shells by using wavy

cross-sections with uniform thickness. It would be interesting to study other ways of breaking symmetry

such as using unequally spaced stiffeners for stiffened shells. Recently, the development of variable angle tow

technology has enabled us to construct composite shells with variable material properties. This technology

permits us to investigate the effects of breaking the symmetry of material distribution.

It should be noted that our proposed method did not consider the effects of material failure. It would

be interesting to include the limit of material strength in optimizations in the future. This thesis is mainly

focused on cylindrical shells under axial compression because the imperfection sensitivity for axial compressed

cylinders is higher than the other loading conditions. An important direction for the future work is to extend

the current design method to external pressure, shearing, bending, and combined loading conditions.

This thesis has proposed an efficient computational method for the buckling analysis of corrugated and

stiffened cylindrical shells that builds on the Bloch wave method and the stiffness matrix method of rota-

tionally periodic structures. The traditional Bloch wave method for infinitely 2- or 3-dimensional periodic

structures has been modified in order to analyze the buckling of rotationally periodic shell structures subject

to axial compression. A highly efficient algorithm has been developed to implement the modified Bloch wave

method.

The modified Bloch wave method was used to analyze the onset of buckling for several small corrugated

composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Compared

to the nonlinear full FEA models, the errors of the buckling loads obtained by the modified Bloch wave

method are smaller than 0.6% for all the shells studied in this thesis. Numerical examples have also shown

that the modified Bloch wave method can produce the same buckling modes as those obtained from the

nonlinear full FEA models and that it can accurately capture local (short wavelength) and global (long

wavelength) buckling modes. It has been found that for a shell with 40 corrugations the computational time

of the modified Bloch wave method is only 7% of the computational time of the linear and nonlinear full

FEA models. For the stiffened cylindrical shell, the computational time of the modified Bloch wave method

is respectively 50% and 3% of the computational time of the linear and nonlinear full FEA models.

A major constraint that prevented us from optimizing large-scale cylindrical shells was the high compu-

tational time. The high computational efficiency of the modified Bloch wave method shows it is promising to

use it in the optimization of large-scale cylindrical shells with many corrugations or stiffeners. It should be
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noted the modified Bloch wave method is applied on a repeating unit portion such as a single corrugation.

However, practical imperfections are usually not periodic and their wavelength may be much larger than a

repeating unit portion. Therefore, it is worth investigating the Bloch wave method for imperfect or nearly

perfect structures in the future.

This thesis has performed parametric studies on a series of externally pressurized pseudo-spherical shells,

i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Optimizations have

also been performed in order to further improve the performance of pseudo-spherical shells under external

pressure. It has been shown that the buckling pressure of the best design obtained through the optimizations

is 102% and 569% higher than the perfect and imperfect spherical shells, respectively. It has also been found

that all the pseudo-spherical shells in this thesis are not sensitive to imperfections.

It should be noted that the numbers of design variables were chosen to be very small in all the optimiza-

tions of pseudo-spherical shells in order to reduce the computational time. Therefore, the search space for

the optimizations was highly constrained. Expanding the search space would possibly further improve the

results of optimizations. For example, the height and positions of each tetrahedron could be independent

design variables. In the present study all the designs were based on an icosahedron. It would be interesting

to investigate other polyhedra in the future. So far, only numerical studies were performed in this study. An

important follow-on work would be the development of manufacturing technique for pseudo-spherical shells

and their experimental studies. A potential application of this study is lighter-than-air vehicle with internal

vacuum, i.e. vacuum balloon. This would be an interesting direction for the future work.
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Appendix A

Bloch Method for
Stiffened/Corrugated Cylindrical
Shells

This appendix provides the details of the derivations of the modified Bloch wave method for stiffened/corrugated

cylindrical shells.

A.1 Bloch Relations and Coupling Matrix of a 2-Dimensional In-

finite Periodic Structure

Ũ and F̃ in Eq. 2.26 can be separated into the values on boundary and internal nodes:

Ũ = [Ũi, Ũa, Ũb]
T

F̃ = [F̃i, F̃a, F̃b]
T

(A.1)

where i, a and b denote the internal nodes, nodes in regions “a” and “b”, respectively, as shown in Fig. 2.11.

Therefore, the displacements and forces of regions “a” and “b” are:

Ũa = [Ũ(AD), ŨA, Ũ(AB)]
T

F̃a = [F̃(AD), F̃A, F̃(AB)]
T

Ũb = [ŨB , Ũ(BC), ŨC , Ũ(CD)]
T

F̃b = [F̃B , F̃(BC), F̃C , F̃(CD)]
T

(A.2)

The notation (∗) means edges without their end nodes.

Using Eqs. 2.23 and 2.28, we can obtain the following Bloch relations for the displacements on the
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boundary nodes:

UB = µ1UA; U(BC) = µ1U(AD); UC = µ1UD; UC = µ2UB; U(CD) = µ2U(AB); UD = −µ2UA (A.3)

where µ1 = exp(2πin1) and µ2 = exp(2πin2). Similarly, the forces on the boundaries have the following

Bloch relations:

FB = −µ1FA; F(BC) = −µ1F(AD); FC = −µ1FD; FC = −µ2FB ; F(CD) = −µ2F(AB); FD = −µ2FA

(A.4)

Using Eq. A.3, the displacements can be written as:

[Ũi, Ũ(AD), ŨA, Ũ(AB), ŨB, Ũ(BC), ŨC , Ũ(CD)]
T = Q[Ũi, Ũ(AD), ŨA, Ũ(AB)]

T (A.5)

where the transformation matrix Q is defined as:

Q =



I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 [µ1] 0

0 [µ1] 0 0

0 0 [µ1µ2] 0

0 0 0 [µ2]



(A.6)

The notation [∗] represents a diagonal submatrix with entries equal to *.

A.2 Bloch Relations and Coupling Matrix of a Rotationally Peri-

odic Structure

Ũ and F̃ in Eqs. 5.3 and 5.4 can be separated into the values on boundary and internal nodes:

Ũ = [Ũi, Ũ(1), Ũ[2], Ũ(3), Ũ[4]]
T

F̃ = [F̃i, F̃(1), F̃[2], F̃(3), F̃[4]]
T

(A.7)

The notations (∗) and [∗] represent edges respectively without and with their end nodes. The equilibrium

equation of a corrugation on the point of buckling is

K(λc)[Ũi, Ũ(1), Ũ[2], Ũ(3), Ũ[4]]
T = [F̃i, F̃(1), F̃[2], F̃(3), F̃[4]]

T (A.8)
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The stiffness matrix K(λc) and force vector [F̃i, F̃(1), F̃[2], F̃(3), F̃[4]]
T in Eq. A.8 can be assembled into the

global stiffness and force vector of the whole corrugated shell, and the following eigenproblem is then obtained:

Kc(λ)Ũc = F̃c = 0 (A.9)

where Kc and Ũc are the global stiffness matrix and the eigenvector of the whole structure.

F̃c is zero when the structure buckles. Note that the force vectors Fi, F(1), and F(3) remain unchanged

when they are assembled into the force vector in Eq. A.9 because the edges (1), (3), and internal nodes do

not interact with the nodes in other corrugations. Therefore, Eq. A.8 can be written as:

K(λ)[Ũi, Ũ(1), Ũ[2], Ũ(3), Ũ[4]]
T = [0, 0, F̃[2], 0, F̃[4]]

T (A.10)

The incremental displacements on edge 4 can be eliminated by means of the relation:

[Ũi, Ũ(1), Ũ[2], Ũ(3), Ũ[4]]
T = Q[Ũi, Ũ(1), Ũ[2], Ũ(3)]

T (A.11)

where Q is

Q =



I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 [exp(i 2πN n)] 0


(A.12)

Letting [Ui, U(1), U[2], U(3)]
T = Ũind, and proceeding in analogy to Eqs 2.31-2.33, we obtain the following

eigenproblem:

QTK(λ)QŨind = K̂(n, λ)Ũind = QT F̃ = 0, n = 0, 1, 2, ..., {N/2} (A.13)

where λ is the loading factor.
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The transformation matrix Q can also be separated into real and imaginary parts based on Eq. 5.12.

URe
i

URe
(1)

URe
[2]

URe
(3)

URe
[4]

U Im
i

U Im
(1)

U Im
[2]

U Im
(3)

U Im
[4]



= Q


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(A.14)

where Q matrix is 

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 [cos( 2πN n)] 0 0 0 −[sin( 2πN n)] 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

0 0 [sin( 2πN n)] 0 0 0 [cos( 2πN n)] 0



(A.15)

The Bloch relations of forces are:

F̃Re
[4] = −(F̃Re

[2] cos(
2π

N
n)− F̃ Im

[2] sin(
2π

N
n))

F̃ Im
[4] = −(F̃Re

[2] sin(
2π

N
n) + F̃ Im

[2] cos(
2π

N
n))

(A.16)

We can also obtain the following relation by multiplying Eq. 5.11 by QT and using the above force Bloch
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relations and Fi = 0, F(1) = 0, and F(3) = 0:

QT

 K 0

0 K

− ω2

 M 0

0 M

Q
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= QT
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= 0 (A.17)
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Appendix B

Matlab Functions for Optimization
Program

This appendix provides the details of the Matlab scripts used in the optimizations.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function for Running Rhino

function modelstatus=RunRhino(RhinoFolder)

rhinostatus=0; % reset status into initial state for next loop

fid = fopen(’rhinostatus.txt’, ’w’);

fprintf(fid, ’%d’,rhinostatus);

fclose(fid);

start=[RhinoFolder ’/RunScript="-RunPythonScript Run_rhino.py"’];

[status result]=dos([start ’&’]);

[status result] = dos([’taskkill /IM ’ ’cmd.exe’], ’-echo’);

% wait for the completion of model generating

load rhinostatus.txt

while rhinostatus==0

disp(’Running Rhino’)

pause(1)

load rhinostatus.txt

end

rhinostatus=0; % reset status into initial state for next loop

fid = fopen(’rhinostatus.txt’, ’w’);

fprintf(fid, ’%d’,rhinostatus);

fclose(fid);

% Close Rhino window
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Rhino_exe = ’Rhino.exe’;

[status result] = dos([’taskkill /IM ’ Rhino_exe], ’-echo’);

disp(’*************Finish Generating Model*************’)

modelstatus=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function for creating input files

function FEAstatus=RunAbaqusInpFiles_nonlinear(AbaqusFolder)

disp(’************* Writing Inp Files *************’)

[status result] = dos(AbaqusFolder{1}, ’-echo’);

[status result] = dos(AbaqusFolder{2}, ’-echo’);

abaqus=[AbaqusFolder{3} ’cae noGUI=Run_AbaqusInpFiles_nonlinear.py’];

[status1 result1] = dos(abaqus, ’-echo’);

disp(’************* Finish Writing Inp Files *************’)

FEAstatus=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function for submitting Input files for Abaqus to analysis

function SubmitJob_nonlinear(PerStatus,ind,AbaqusFolder,FOLDER,cpunumber)

if PerStatus==1

Jobname_buckle={[’Ind_’ num2str(ind) ’_Perfect_buckle’]...

,[’Ind_’ num2str(ind) ’_Perfect_Nlbuckle’]};

else

Jobname_buckle={[’Ind_’ num2str(ind) ’_Imperfect_pos_buckle’]...

, [’Ind_’ num2str(ind) ’_Imperfect_neg_buckle’]};

end

jobperm=randperm(5);

if jobperm(2)<jobperm(4)

Jobname_first=Jobname_buckle{1};

Jobname_second=Jobname_buckle{2};

else
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Jobname_first=Jobname_buckle{2};

Jobname_second=Jobname_buckle{1};

end

disp(’************* Running jobs *************’)

%%%%%%%%%%%%%%%%%%

[status result] = dos(AbaqusFolder{1}, ’-echo’);

[status result] = dos(AbaqusFolder{2}, ’-echo’);

abaqus=[AbaqusFolder{3}...

’job=’ ,Jobname_first,’ ’,cpunumber,’ int memory="90 %" output_precision=full double=both’];

[status1 result1] = dos(abaqus, ’-echo’);

%%%%%%% check odb files

Odb1name=[Jobname_first ’.odb’];

datafilestatus1=FileFind(Odb1name,FOLDER);

Odb1name_f=[Jobname_first ’.odb_f’];

datafilestatus1_f=FileFind(Odb1name_f,FOLDER);

if datafilestatus1_f==1 || datafilestatus1==0

% Incomplete odb files exist or good odb files are missing

[status result] = dos(AbaqusFolder{1}, ’-echo’);

[status result] = dos(AbaqusFolder{2}, ’-echo’);

abaqus=[AbaqusFolder{3}...

’job=’ ,Jobname_first,’ ’,cpunumber,’ int memory="90 %" output_precision=full double=both’];

[status1 result1] = dos(abaqus, ’-echo’);

end

%%%%%%%%%%%%%%%%%%

[status result] = dos(AbaqusFolder{1}, ’-echo’);

[status result] = dos(AbaqusFolder{2}, ’-echo’);

abaqus=[AbaqusFolder{3}...

’job=’,Jobname_second,’ ’,cpunumber,’ int memory="90 %" output_precision=full double=both’];

[status1 result1] = dos(abaqus, ’-echo’);

%%%%%%% check odb files
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Odb2name=[Jobname_second ’.odb’];

datafilestatus2=FileFind(Odb2name,FOLDER);

Odb2name_f=[Jobname_second ’.odb_f’];

datafilestatus2_f=FileFind(Odb2name_f,FOLDER);

if datafilestatus2_f==1 || datafilestatus2==0

% Incomplete odb files exist or good odb files are missing

[status result] = dos(AbaqusFolder{1}, ’-echo’);

[status result] = dos(AbaqusFolder{2}, ’-echo’);

abaqus=[AbaqusFolder{3}...

’job=’,Jobname_second,’ ’,cpunumber,’ int memory="90 %" output_precision=full double=both’];

[status1 result1] = dos(abaqus, ’-echo’);

end

str = sprintf(’***************** Finish FEA of Individual %d ***************’,ind);

disp(str);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function for reading data from odb files

function Datastatus=RunAbaqusData_nonlinear(AbaqusFolder)

disp(’************* Reading Data *************’)

[status result] = dos(AbaqusFolder{1}, ’-echo’);

[status result] = dos(AbaqusFolder{2}, ’-echo’);

abaqus=[AbaqusFolder{3} ’cae noGUI=Run_abaqusData_nonlinear.py’];

[status1 result1] = dos(abaqus, ’-echo’);

disp(’************* Finish Reading Data *************’)

Datastatus=1;
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Appendix C

Python Interface for Optimization
Program

This appendix provides the details of the Python scripts used in the optimizations for generating geometry

and for structural analyses by Abaqus.

C.1 Main Functions for Generating Geometry in Rhino 3D

import rhinoscriptsyntax as rs

import time

import math

rs.Command("_-SelAll")

rs.Command("_-Delete")

tol=rs.UnitAbsoluteTolerance(0.00000000001)

##### Function to read coordinates

def nodepoints(nodeFile):

def node(text):

items = text.strip("()\n").split(",")

x = float(items[0])

y = float(items[1])

z = float(items[2])

return x, y, z

node_p = [node(line) for line in nodeFile]

return node_p

###### Main function for NURBS interpolation and creating wavy geometry

# path: path to save igs files
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# L: Shell length

# R=float(Rfile[0])

# Nxy: number of control points

# Nz: levels to extrude cylinders

# Nfile: Number of individuals

for ind in range(1,Nfile+1):

Loftcurve=[]

for i in range(1,Nz+1):

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(i) +’.txt’

file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)

loft=rs.AddInterpCurve(nodes,degree=3, knotstyle=3)

Loftcurve.append(loft)

if i==Nz:

loadlength=rs.CurveLength(loft)

#print loadlength

out_file=open(’Ind_’+str(ind)+’_Per_edgelength.txt’,’w’)

out_file.write(str(loadlength))

out_file.close()

PerCyl=rs.AddLoftSrf(Loftcurve)

rs.SelectObjects(PerCyl)

rs.Command("_-Export " + path +"Ind_"+ str(ind)+ "_Shell_perfect" +".igs _Enter")

rs.UnselectObjects(PerCyl)

C.2 Main Functions for Setting Abaqus Models

# Do not delete the following import lines

from abaqus import *

from abaqusConstants import *

from odbAccess import *

from sys import argv,exit

import testUtils
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testUtils.setBackwardCompatibility()

from abaqusConstants import *

#import displayGroupOdbToolset as dgo

from textRepr import prettyPrint

from numpy.oldnumeric import array, Int32, Float64

import sketch

import part

import material

import section

import assembly

import step

import load

import regionToolset

import mesh

import job

import interaction

import connectorBehavior

import math

import sys

import os

import stat

import time

import shutil

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# functions

def nodepoints(nodeFile):

def node(text):

items = text.strip("()\n").split(",")

x = float(items[0])

y = float(items[1])

z = float(items[2])

return x, y, z

node_p = [node(line) for line in nodeFile]

return node_p

def copyFile(filename1,filename2):
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print ’Copying ’ + filename1 + ’ to ’ + filename2 + ’...’

shutil.copyfile(filename1, filename2)

print ’done.’

def createModel(ABD_vector,Density,Meshsize,MeshFactor, Jobname1_per,ind,FOLDER):

myModel = mdb.Model(name=’Model-1’)

a = myModel.rootAssembly

### Create geometry

shellname=FOLDER+’Ind_’+str(ind)+’_Shell_perfect.igs’

shellfile=mdb.openIges(shellname, msbo=False, trimCurve=DEFAULT,

topology=SHELL, scaleFromFile=OFF)

myshell=myModel.PartFromGeometryFile(name=’myshell’, geometryFile=shellfile,

combine=False, stitchAfterCombine=False, stitchTolerance=1.0,

dimensionality=THREE_D, type=DEFORMABLE_BODY, topology=SHELL,

convertToAnalytical=1, stitchEdges=1)

myShellInstance=a.Instance(name=’ShellInstance’, part=myshell, dependent=ON)

### Create material

### Create & Assign Shell Section

myModel.GeneralStiffnessSection(name=’Section-1’,

referenceTemperature=None, stiffnessMatrix=(ABD_vector), applyThermalStress=0,

poissonDefinition=DEFAULT, useDensity=ON, density=Density)

# Assign section

f = myshell.faces

region = regionToolset.Region(faces=f)

myshell.SectionAssignment(region=region, sectionName=’Section-1’, offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# Orientation

coord=myshell.DatumCsysByThreePoints(name=’Datum csys-1’, coordSysType=CYLINDRICAL,

origin=(0.0, 0.0, 0.0), point1=(1.0, 0.0, 0.0), point2=(0.0, 1.0, 0.0))

region = regionToolset.Region(faces=f)

orientation = myshell.datums[coord.id]

myshell.MaterialOrientation(region=region,

orientationType=SYSTEM, axis=AXIS_2, localCsys=orientation,

fieldName=’’, additionalRotationType=ROTATION_NONE, angle=0.0,

additionalRotationField=’’)

### Create Mesh
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myshell.seedPart(size=Meshsize, deviationFactor=MeshFactor)

elemType1 = mesh.ElemType(elemCode=S4, elemLibrary=STANDARD,

secondOrderAccuracy=OFF, hourglassControl=DEFAULT)

elemType2 = mesh.ElemType(elemCode=S3, elemLibrary=STANDARD,

secondOrderAccuracy=OFF)

pickedRegions =(myshell.faces, )

myshell.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2))

myshell.generateMesh()

myModel2 = mdb.Model(name=’Model-2’, objectToCopy=mdb.models[’Model-1’])

myModel3 = mdb.Model(name=’Model-3’, objectToCopy=mdb.models[’Model-1’])

Models=[myModel,myModel2,myModel3]

return Models

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def createBuckle(myModel,F,L,R,ind):

# Create Step

myModel.BuckleStep(name=’Step-1’, previous=’Initial’, numEigen=5,

eigensolver=LANCZOS, minEigen=0.0, blockSize=DEFAULT,

maxBlocks=DEFAULT)

### Create loads and bc

file = open(’Ind_’+str(ind)+’_Per_edgelength.txt’, ’r’)

elfile = file.readlines()

file.close()

linelength=float(elfile[0])

l_load=F/linelength

a = myModel.rootAssembly

mypartinstance=a.instances[’ShellInstance’]

edges = mypartinstance.edges

faces = mypartinstance.faces

file = open(’Nz.txt’, ’r’)

Nzfile = file.readlines()

file.close()

Nz=int(Nzfile[0])

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(Nz) +’.txt’
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file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)

edge1_1 = edges.findAt((nodes[1],)) # random point at edges

edge1_2 = edges.findAt((nodes[3],))

if edge1_1[0].index==edge1_2[0].index:

regionload = regionToolset.Region(side1Edges=edge1_1)

else:

edge1_3 = edges.findAt((nodes[5],))

regionload = regionToolset.Region(side1Edges=edge1_3)

myModel.ShellEdgeLoad(name=’Load-1’, createStepName=’Step-1’,

region=regionload, magnitude=l_load, distributionType=UNIFORM, field=’’,

localCsys=None)

# Create BC

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(1) +’.txt’

file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)

edge2_1 = edges.findAt((nodes[1],)) # random point at edges

edge2_2 = edges.findAt((nodes[3],))

if edge2_1[0].index==edge2_2[0].index:

regionbc1 = regionToolset.Region(edges=edge2_1)

else:

edge2_3 = edges.findAt((nodes[5],))

regionbc1 = regionToolset.Region(edges=edge2_3)

myModel.DisplacementBC(name=’BC-1’, createStepName=’Step-1’,

region=regionbc1, u1=0.0, u2=0.0, u3=0.0, ur1=0, ur2=0, ur3=0,

amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName=’’, localCsys=None)

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(Nz) +’.txt’



134

file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)

edge3_1 = edges.findAt((nodes[1],)) # random point at edges

edge3_2 = edges.findAt((nodes[3],))

if edge3_1[0].index==edge3_2[0].index:

regionbc2 = regionToolset.Region(edges=edge3_1)

else:

edge3_3 = edges.findAt((nodes[5],))

regionbc2 = regionToolset.Region(edges=edge3_3)

myModel.DisplacementBC(name=’BC-2’, createStepName=’Step-1’,

region=regionbc2, u1=0.0, u2=0.0, u3=UNSET, ur1=0, ur2=0, ur3=0,

amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName=’’,

localCsys=None)

# Output Variables

myModel.FieldOutputRequest(name=’F-Output-1’,

createStepName=’Step-1’, variables=(’SE’, ’SF’ ,’U’, ’RF’, ’S’))

return myModel

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def createNonlinear_buckle(myModel,F,L,R,ind):

# Create Step

myModel.StaticRiksStep(name=’Step-1’, previous=’Initial’, maxLPF=500.0,maxNumInc=50, nlgeom=ON)

### Create loads and bc

file = open(’Ind_’+str(ind)+’_Per_edgelength.txt’, ’r’)

elfile = file.readlines()

file.close()

linelength=float(elfile[0])

l_load=F/linelength
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a = myModel.rootAssembly

mypartinstance=a.instances[’ShellInstance’]

edges = mypartinstance.edges

faces = mypartinstance.faces

file = open(’Nz.txt’, ’r’)

Nzfile = file.readlines()

file.close()

Nz=int(Nzfile[0])

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(Nz) +’.txt’

file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)

edge1_1 = edges.findAt((nodes[1],)) # random point at edges

edge1_2 = edges.findAt((nodes[3],))

if edge1_1[0].index==edge1_2[0].index:

regionload = regionToolset.Region(side1Edges=edge1_1)

else:

edge1_3 = edges.findAt((nodes[5],))

regionload = regionToolset.Region(side1Edges=edge1_3)

myModel.ShellEdgeLoad(name=’Load-1’, createStepName=’Step-1’,

region=regionload, magnitude=l_load, distributionType=UNIFORM, field=’’,

localCsys=None)

# Create BC

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(1) +’.txt’

file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)
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edge2_1 = edges.findAt((nodes[1],)) # random point at edges

edge2_2 = edges.findAt((nodes[3],))

if edge2_1[0].index==edge2_2[0].index:

regionbc1 = regionToolset.Region(edges=edge2_1)

else:

edge2_3 = edges.findAt((nodes[5],))

regionbc1 = regionToolset.Region(edges=edge2_3)

myModel.DisplacementBC(name=’BC-1’, createStepName=’Step-1’,

region=regionbc1, u1=0.0, u2=0.0, u3=0.0, ur1=0, ur2=0, ur3=0,

amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName=’’, localCsys=None)

nodename=’Ind_’+str(ind)+’_Per_node_level_’ + str(Nz) +’.txt’

file = open(nodename, ’r’)

nodeFile = file.readlines()

file.close()

nodes=nodepoints(nodeFile)

edge3_1 = edges.findAt((nodes[1],)) # random point at edges

edge3_2 = edges.findAt((nodes[3],))

if edge3_1[0].index==edge3_2[0].index:

regionbc2 = regionToolset.Region(edges=edge3_1)

else:

edge3_3 = edges.findAt((nodes[5],))

regionbc2 = regionToolset.Region(edges=edge3_3)

myModel.DisplacementBC(name=’BC-2’, createStepName=’Step-1’,

region=regionbc2, u1=0.0, u2=0.0, u3=UNSET, ur1=0, ur2=0, ur3=0,

amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName=’’,

localCsys=None)

# Output Variables

myModel.FieldOutputRequest

(name=’F-Output-1’, createStepName=’Step-1’, variables=(’SE’, ’SF’ ,’U’, ’RF’, ’S’))

return myModel

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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def analyzeBuckle(myModel,Jobname,NumCpu):

# Create Job

Job1 =mdb.Job(name=Jobname, model=myModel, description=’’, type=ANALYSIS,

atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,

memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,

explicitPrecision=SINGLE, nodalOutputPrecision=FULL, echoPrint=OFF,

modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine=’’,

scratch=’’, multiprocessingMode=DEFAULT, numCpus=NumCpu, numDomains=NumCpu)

mdb.jobs[Jobname].writeInput(consistencyChecking=OFF)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def analyzeNonlinear_buckle(myModel,Jobname,NumCpu):

# Create Job

Job1 =mdb.Job(name=Jobname, model=myModel, description=’’, type=ANALYSIS,

atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,

memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,

explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,

modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine=’’,

scratch=’’, multiprocessingMode=DEFAULT, numCpus=NumCpu, numDomains=NumCpu)

mdb.jobs[Jobname].writeInput(consistencyChecking=OFF)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def createInpfiles_Imperfect(Jobname_source,Jobname_imp,ind):

Inp_source=Jobname_source+’.inp’

file = open(Inp_source, ’r’)

sourceFile = file.readlines()

file.close()

Inpname_imp_pos=Jobname_imp[0]+’.inp’

Inpname_imp_neg=Jobname_imp[1]+’.inp’

# clear files

Inp_impFile_pos = open(Inpname_imp_pos,’w’)

Inp_impFile_pos.close()
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Inp_impFile_neg = open(Inpname_imp_neg,’w’)

Inp_impFile_neg.close()

# create files

Inp_impFile_pos = open(Inpname_imp_pos,’w’)

Inp_impFile_neg = open(Inpname_imp_neg,’w’)

Inp_impFile_pos_Filelist=[]

Inp_impFile_neg_Filelist=[]

Ptname_pos=’Ind_’+str(ind)+’_perturbation_pos.txt’

file = open(Ptname_pos, ’r’)

nodeFile = file.readlines()

file.close()

perturbation_pos=nodepoints(nodeFile)

Ptname_neg=’Ind_’+str(ind)+’_perturbation_neg.txt’

file = open(Ptname_neg, ’r’)

nodeFile = file.readlines()

file.close()

perturbation_neg=nodepoints(nodeFile)

changeind=0

addpertstatus=-1

for i in range(0,len(sourceFile)):

if cmp(sourceFile[i],’*Node’+’\n’)==0 or cmp(sourceFile[i],’*Element, type=S4’+’\n’)==0:

addpertstatus=-1*addpertstatus

if cmp(sourceFile[i],’*Node’+’\n’)!=0 and addpertstatus==1:

items = sourceFile[i].strip("()\n").split(",")

numb= int(items[0])
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x = float(items[1])

y = float(items[2])

z = float(items[3])

dataline_pos=str(numb)+’,’+str(x+perturbation_pos[changeind][0])+

’,’+str(y+perturbation_pos[changeind][1])+’,’+str(z+perturbation_pos[changeind][2])+’\n’

dataline_neg=str(numb)+’,’+str(x+perturbation_neg[changeind][0])+

’,’+str(y+perturbation_neg[changeind][1])+’,’+str(z+perturbation_neg[changeind][2])+’\n’

Inp_impFile_pos_Filelist.append(dataline_pos)

Inp_impFile_neg_Filelist.append(dataline_neg)

changeind=changeind+1

else:

Inp_impFile_pos_Filelist.append(sourceFile[i])

Inp_impFile_neg_Filelist.append(sourceFile[i])

Inp_impFile_pos.writelines(Inp_impFile_pos_Filelist)

Inp_impFile_neg.writelines(Inp_impFile_neg_Filelist)

Inp_impFile_pos.close()

Inp_impFile_neg.close()

C.3 Main Functions for Reading Data from Abaqus Odb Files

# Do not delete the following import lines

from abaqus import *

from abaqusConstants import *

from odbAccess import *

from sys import argv,exit

import testUtils

testUtils.setBackwardCompatibility()

from abaqusConstants import *

import sketch
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import part

import material

import section

import assembly

import step

import load

import regionToolset

import mesh

import job

import interaction

import connectorBehavior

import displayGroupMdbToolset as dgm

import visualization

import xyPlot

import displayGroupOdbToolset as dgo

import math

import sys

import os

import stat

import time

import shutil

import numpy as np

# Generate output data

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def copyFile(filename1,filename2):

print ’Copying ’ + filename1 + ’ to ’ + filename2 + ’...’

shutil.copyfile(filename1, filename2)

print ’done.’

def nodepoints(nodeFile):

def node(text):

items = text.strip("()\n").split(",")

x = float(items[0])

y = float(items[1])

z = float(items[2])
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return x, y, z

node_p = [node(line) for line in nodeFile]

return node_p

def geteigenvalue(odbName):

odb = openOdb(odbName+’.odb’)

step = odb.steps[’Step-1’]

eigname_des=’eigval_des_’+odbName+’.txt’

out_file=open(eigname_des,’w’)

out_file.write(str(step.frames[1].description))

out_file.close()

out_file=open(eigname_des,’r’)

mode = out_file.readlines()

out_file.close()

mode_split=mode[0].split()

eigval_cr=mode_split[-1]

eigname=’eigval_’+odbName+’.txt’

out_file=open(eigname,’w’)

out_file.write(str(eigval_cr))

out_file.close()

odb.close()

print ’First eigenvalue is’, eigval_cr

def getPerturbation(odbName,A,ind):

odb = openOdb(odbName+’.odb’)

Assembly = odb.rootAssembly

instance = Assembly.instances[’SHELLINSTANCE’]

# Displacement

displacement = []

dispmegn=[]

pertub_u=[]
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pertub_v=[]

displacement_append = displacement.append

Displacement = ’U’

isDisplacementPresent = 0

step = odb.steps[’Step-1’]

allFields = step.frames[1].fieldOutputs

if (allFields.has_key(Displacement)):

isDisplacementPresent = 1

dispSet = allFields[Displacement]

for value in dispSet.values:

u1 = value.dataDouble[0]

u2 = value.dataDouble[1]

u3 = 0

pertub_u.append(u1)

pertub_v.append(u2)

displacement_append(u1)

displacement_append(u2)

dispmegn.append(sqrt(u1**2+u2**2))

odb.close()

max_dis=max(dispmegn)

print ’Maximum displacement is:’, max_dis

scale= A/max_dis

purtline_pos=[]

purtline_neg=[]

for pertind in range(0,len(pertub_u)):

dataline_pos=str(scale*pertub_u[pertind])+’,’+str(scale*pertub_v[pertind])+’,0’+’\n’

purtline_pos.append(dataline_pos)

dataline_neg=str(-scale*pertub_u[pertind])+’,’+str(-scale*pertub_v[pertind])+’,0’+’\n’

purtline_neg.append(dataline_neg)
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Ptname_pos=’Ind_’+str(ind)+’_perturbation_pos.txt’

purtFile_pos = open(Ptname_pos,’w’)

purtFile_pos.writelines(purtline_pos)

purtFile_pos.close()

Ptname_neg=’Ind_’+str(ind)+’_perturbation_neg.txt’

purtFile_neg = open(Ptname_neg,’w’)

purtFile_neg.writelines(purtline_neg)

purtFile_neg.close()

def Critical_load_nonlinear(odbName,direction,L,R):

odb = openOdb(odbName+’.odb’)

step = odb.steps[’Step-1’]

Assembly = odb.rootAssembly

instance = Assembly.instances[’SHELLINSTANCE’]

# Create force region Nodeset

nodelabels = ()

error=1E-5

for node in instance.nodes:

coords = node.coordinates

if abs(L-coords[2]) < error+0.001:

nodelabels = nodelabels + (node.label,)

break

print odbName

#print Assembly.nodeSets

allNodeSets=Assembly.nodeSets

if not allNodeSets.has_key(’EDGENODES’):

Assembly.NodeSetFromNodeLabels(nodeLabels=((’SHELLINSTANCE’, nodelabels),), name=’EDGENODES’)

Assembly.nodeSets[’EDGENODES’]

displacement = []

displacement_append = displacement.append

critical_load=-1
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recordstatus=1

LPFname=’LPF_’+odbName+’.txt’

out_file=open(LPFname,’w’)

out_file.close()

xyLPF = xyPlot.XYDataFromHistory(odb=odb,

outputVariableName=’Load proportionality factor: LPF for Whole Model’, steps=(’Step-1’, ) ,)

for i in range(0,len(step.frames)):

Displacement = ’U’

allFields = step.frames[i].fieldOutputs

dispSet = allFields[Displacement]

dispSet = dispSet.getSubset(region=Assembly.nodeSets[’EDGENODES’])

value=dispSet.values

#u=value.data[direction]

u=value[0].dataDouble[direction]

displacement_append(u)

out_file=open(LPFname,’a’)

data2=xyLPF[i][1]

if data2<0:

break

data1=abs(u)

out_file.write(str(data1)+’,’+str(data2)+’\n’)

out_file.close()

if critical_load<= data2 and recordstatus==1:

critical_load=data2

else:

recordstatus=-1

eigname=’eigval_’+odbName+’.txt’

out_file=open(eigname,’w’)

out_file.write(str(critical_load))

out_file.close()

odb.close()
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