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Abstract

An exciting frontier in quantum information science is the integration of otherwise “simple” quantum ele-

ments into complex quantum networks. The laboratory realization of even small quantum networks enables

the exploration of physical systems that have not heretofore existed in the natural world. Within this con-

text, there is active research to achieve nanoscale quantum optical circuits, for which atoms are trapped near

nano-scopic dielectric structures and “wired” together by photons propagating through the circuit elements.

Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and

thereby enable the capability of building quantum networks component by component. Toward these goals,

we have experimentally investigated three different systems, from conventional to rather exotic systems :

free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate

measurement-induced quadripartite entanglement among four quantum memories. Next, following the land-

mark realization of a nanofiber trap, we demonstrate the implementation of a state-insensitive, compensated

nanofiber trap. Finally, we reach more exotic systems based on photonics crystal devices. Beyond conven-

tional topologies of resonators and waveguides, new opportunities emerge from the powerful capabilities of

dispersion and modal engineering in photonic crystal waveguides. We have implemented an integrated op-

tical circuit with a photonics crystal waveguide capable of both trapping and interfacing atoms with guided

photons, and have observed the collective effect, superradiance, mediated by the guided photons. These

advances provide an important capability for engineered light-matter interactions, enabling explorations of

novel quantum transport and quantum many-body phenomena.
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Chapter 1

Introduction

1.1 Quantum networks

In quantum information science, quantum networks provide a broad frontier of scientific opportunities [1],

including quantum computation [2, 3], communication [4], and metrology [5]. Quantum networks are com-

posed of quantum nodes where quantum information is generated, processed and stored locally, and these

nodes are linked by quantum channels to transfer the quantum information. From a different point of view,

a quantum network can be viewed as a quantum ‘simulator’, enabling one to investigate the evolution of

quantum many-body systems arising from interactions among the nodes mediated by the channels [6, 7].

The physical realization of quantum networks requires dynamical systems capable of generating and storing

entangled states among multiple quantum memories, and efficiently transferring stored entanglement into

quantum channels with high fidelity for distribution across the networks.

While photons are ideal carriers for transporting quantum information faithfully over long distances as

flying qubits, atoms can be used to process and store quantum information as stationary qubits. The major

challenge of distributing quantum states across a quantum network is to reversibly map quantum states be-

tween photons and atoms. The coherent control of the atom-photon interaction at the single-photon level

provides a basis for quantum networks, which leads to successful operation of many quantum information

protocols, including entanglement generation and swapping between two distant atoms, and implementation

of elementary quantum gates. In order to create such efficient quantum interfaces, the realization of strong

atom-photon interaction is a long-standing goal of both fundamental and technological significance.
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Figure 1.1: Schematics of cavity QED with a single atom and of the DLCZ protocol with an atomic
ensemble. (a) A two-level atom with ground state |g〉 and excited state |e〉 couples to the high finesse cavity
with a coupling rate g. The condition for the observation of coherent dynamics reads g > (κ,Γ), where
the decay rate out of the cavity κ and the atomic decay rate Γ. (b) A schematic of DLCZ building block.
Initially, all the atoms are prepared in the ground state |g〉. A weak ‘write’ pulse induces spontaneous Raman
transitions to the metastable state |s〉, resulting in the emission of a photon ‘field 1’ together with the storage
of a collective excitation. After a programmable delay, a strong ‘read’ pulse retrieves the single excitation to
another photonic mode ‘field 2’ with high efficiency due to the collective interaction.

1.2 Conventional strong atom-photon interaction

Strong atom-photon interaction is essential for successful operation of quantum information protocols [8].

However, a single atom does not interact with photons easily in free space due to the diffraction of a tightly

focused beam. There are two well-known approaches to enhance the atom-photon coupling rate: (i) cavity-

enhanced interaction and (ii) collectively enhanced interaction of an atomic ensemble.

1.2.1 Cavity QED with a single atom

One approach for enhancing the atom-photon coupling is to use a high finesse cavity where the photon is

spatially confined and trapped [9–11]. The atom-photon coupling is enhanced by the number of bounces the

photon makes between the two mirrors before being lost from the cavity. The “strong-coupling” regime of

cavity QED is achieved when the coupling rate g of absorption or emission of a single photon by the atom

is larger than both the decay rate κ out of the cavity and the atomic decay rate Γ, typically characterized by

a single-atom cooperativity parameter C ≡ (2g)2

2κΓ > 1. The optical nonlinearity arises from the saturation

of atomic absorption since the single atom can absorb or emit only one photon at a given time. A large

cooperativity C > 1 ensures that even a single photon can modify the response of a single atom inside

the cavity. Such single-atom cavity QED systems have been used to demonstrate a variety of nonlinear

effects (i.e., nonlinear phase shifts with single photons [12, 13] and generation of non-classical state of light

[14]) and their application to elementary quantum networking between two quantum nodes [15]. In the
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microwave regime, significant progress has been made by using Rydberg atoms in high-Q cavities [16], and

superconducting circuits as artificial atoms [17].

1.2.2 Collective atom-photon coupling with atomic ensembles

An alternative approach is to prepare a collective state of N atoms (i.e., Dicke state or superradiant state

[18]) that exhibits enhanced coupling to a single electromagnetic mode. As illustrated in Fig. 1.1(b), for

three-level atoms with two stable ground states |g〉 , |s〉, the collective state |s̄ε〉 1√
N

∑N
i=1 |g · · · si · · · g〉ε can

be viewed as a spin wave, where a single excitation is shared among N atoms. This single excitation can

be efficiently converted into a propagating photon by applying a strong phase-matched beam. A remarkable

protocol for scalable quantum networks, the so-called “DLCZ” protocol, provides a new avenue for entan-

glement distribution by way of quantum-repeater architecture [4]. The DLCZ protocol is a probabilistic but

heralded scheme based on entanglement generation among atomic ensembles via detection events of single

photons in which the sources are intrinsically indistinguishable. Furthermore, the protocol is designed to be

robust against experimental imperfections, including losses in propagation and detection, and detector dark

counts. Indeed, the scheme functions with “built-in entanglement purification” and enables entanglement to

be extended beyond the separation of two ensembles in an efficient and scalable fashion.

Based on the DLCZ protocol, remarkable experimental progresses has been achieved in demonstration

of single-photon sources [19, 20], storage and retrieval of single photon [21–23], entanglement generation

between two atomic ensembles [24, 25], and deterministic mapping of photonic entanglement into and out of

atomic ensembles [26]. Later, the storage time of the quantum memory for single excitations is significantly

improved to & 1 s by suppressing the dephasing induced by the atomic motion [27–30]. These progresses

are important steps towards the realization of long-distance quantum networks.

Despite its inherently multipartite nature, entanglement has been studied primarily for bipartite systems

[2]. Beyond diverse bipartite systems, multipartite W states with a single photon shared among four optical

modes has been unambiguously verified [31, 32]. Based on this entanglement verification technique, we have

demonstrated measurement-induced entanglement of spin waves among four quantum memories, which is a

promising advance towards multipartite quantum networks (Chapter 2) [33].
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1.3 Integration of atoms and nanophotonics

An exciting frontier in quantum information science is the integration of otherwise “simple” quantum ele-

ments into complex quantum networks. Despite the remarkable advances in both cavity-QED-based networks

and networks implemented using the DLCZ protocol, free-space approaches are unfavorable for large-scale

quantum networks due to the technical complexities. Therefore, the laboratory realization of even small

quantum networks enables the exploration of physical systems that have not heretofore existed in the natu-

ral world. Within this context, there is active research to achieve lithographic quantum optical circuits, for

which atoms are trapped near micro- and nano-scopic dielectric structures and “wired” together by photons

propagating through the circuit elements.

1.3.1 Cavity QED with micro- and nanoscopic cavities

Nano- and microscale optical systems have shown great progress towards realizing efficient and scalable

quantum interfaces through enhanced atom-field coupling in cavity QED systems, including microtroidal and

microsphere resonators [34–36], bottle micro-resonators [37], fiber cavities [38, 39], and photonic crystal

cavities [40]. Most recently, the Lukin group demonstrated a photonics phase gate by using a single trapped

atom evanescently coupled to the photonics crystal cavity with precise control of the position of the atom

[41, 42]. Instead of using atoms, which have a drawback of finite trap lifetime in the cavity, it is also possible

to use “artificial atoms” in a solid-state system, such as quantum dots [43–45] and nitrogen vacancy centers

in diamond [46–48]. Such artificial atoms consist of effective two-level systems that have been used to

demonstrate a variety of nonlinear effects similar to the “real” atom cavity QED systems [43–45, 49, 50].

1.3.2 Waveguide QED

Recently, there has been great effort to achieve the “strong coupling” regime in 1D waveguide systems,

meaning that the Purcell factor P ≡ Γ1D

Γ′ is larger than unity, where the decay rate into the guided mode Γ1D

and into all the other channels Γ′, as illustrated in Fig. 1.2. Waveguide-QED systems benefit from the sub-

wavelength confinement of light field inside the 1D waveguide, which couples to nearby atoms or embedded

artificial atoms. Compared to cavity-QED systems, the key difference in the waveguide QED system is that
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Figure 1.2: A schematic of a single atom coupled to a 1D waveguide. (a) A single atom couples to a
waveguide mode with a coupling rate Γ1D, while it also emits photons into all the other channels with a decay
rate Γ′. The “strong coupling” regime in waveguide QED is categorized by the Purcell factor P ≡ Γ1D

Γ′ > 1.

the atoms couple to a continuum of guided modes. This relaxes the restriction of working with a narrow cavity

bandwidth and avoids the complex tuning to match the cavity and the atomic resonances. 1D waveguide-QED

systems are emerging as promising candidates for quantum information processing, motivated by tremendous

experimental progress in a wide variety of systems, including plasmonic nanowires [51], hollow core fibers

[52, 53], tapered nanofibres [54], quantum dot or diamond nanowires [55–57], and 1D open superconduting

transmission lines [58–60].

In 2010, Rauschenbeutel group has demonstrated trapping and interfacing ∼ 2000 atoms by using a

tapered nanofiber [61, 62], which has opened a new field of waveguide-QED with cold atomic ensembles.

Following this landmark realization of the nanofiber trap, we switched our gear from free-space ensembles

to fiber-coupled atomic ensembles. We have proposed and implemented a state-insensitive and compensated

trap, with an optical depth per atom d1 ' 0.08, improved by a factor of > 10 (Chapter 4 and 5)[63–65]

compared to the pioneering work [61, 62]. However, due to the surface potential, it is practically difficult

to trap atoms closer to the nanofiber, resulting in a small single-atom coupling rate Γ1D/Γ
′ ∼ 0.04 � 1.

Despite the small coupling rate, there have been many advances, including directional spontaneous emission

into the guided mode [66] and detection of a sub-Poissonian atom number distribution [67], with the help of

a large number of trapped atoms coupled to the guided mode.

1.4 New avenue with photonic crystal waveguides

Around 2012, we began to collaborate with Painter’s group to achieve both single-atom “strong coupling”

P > 1 and interfacing ensembles of atoms by using lithographically patterned photonic crystal waveguides
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(PCWs). Beyond conventional topologies of resonators and waveguides, powerful capabilities for disper-

sion and modal engineering in photonic crystal waveguides provide new opportunities to study nonlinear

interactions between the atoms and the 1D guided mode. For example, the edge of a photonic band gap

aligned near an atomic transition strongly enhances single atom emission into the one-dimensional PCW due

to a van-Hove singularity at the band edge, i.e., a slow-light effect, which has been intensively studied in

quantum-dot systems [68–70]. Because the Bloch function for a guided mode near the band edge approaches

a standing-wave, symmetric optical excitations can be induced in an array of trapped atoms, resulting in su-

perradiant emission. Finally, we made a rudimentary but crucial advance toward scalable quantum networks

and quantum phases of light and matter by trapping and interfacing multiple atoms and observing cooperative

emission mediated by the guided mode (Chapter 7).

1.4.1 Many-body physics with strongly interacting photons

Over the past few years, a single atom strongly coupled to a 1D waveguide has been studied extensively in

theory [71–77]. Based on the strong nonlinear interactions between the atom and the guided mode, there have

been many interesting proposals, including photon-photon bound states [72, 73], single-photon switches [74–

76], and generation of long-distance entanglement [77]. Most proposals envision to generate single photons

and control interactions between individual photons by controlling individual atoms, enabling one to generate

highly correlated states of light.

On the other hand, correlated states can emerge from the simultaneous interaction among multiple atoms

mediated by guided photons [8]. Early proposals considered an array of interacting cavities containing the

atoms [78–80]. The competition between the tunneling interaction of photons between cavities and the on-

site interaction of photons occupying the same cavity is predicted to induce quantum phase transitions, i.e.,

superfluid-to-Mott-insulator transition. Recent works study transport properties of photons along 1D cold

atomic gas, where the photon-photon interactions are induced using single-atom nonlinearities [81] or strong

interactions between atoms in Rydberg states [82, 83].

In the PCWs, remarkable phenomena arise when atomic frequencies can be tuned into photonic band

gaps, including the ability to control the range, strength, and functional form of optical interactions between
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atoms [84–86]. For example, atoms trapped near perfect photonic crystal structures can act as dielectric

defects that seed atom-induced cavities [87] and thereby allow atomic excitations to be exchanged with prox-

imal atoms [85]. The atom-induced cavities can be dynamically controlled with external lasers, enabling

the realization of nearly arbitrary long-range spin Hamiltonians and spatial interactions (such as an effective

Coulomb potential mediated by PCW photons) [87], which is a promising tool to perform quantum simula-

tions. Furthermore, control over PCW dispersion is also expected to facilitate novel atomic traps based upon

quantum vacuum forces [88].

1.5 Thesis outline

The work in this thesis begins with free-space quantum interfaces where we have demonstrated measurement-

induced entanglement among four atomic ensembles, and then transitions into the development and imple-

mentation of interfacing atoms with optical nanofibers. The recent work with a 1D photonic crystal waveguide

has focused on enhancing single-atom coupling rate to study photon-mediated interaction between multiple

atoms. Below, we briefly summarize topics covered in each chapter:

• In Chapter 2, we describe a systematic study of the generation and storage of quadripartite entangled

states of spin-waves among four atomic ensembles, as well as of the coherent transfer of the entangled

components of the atomic state into individual photonic channels. We observe transitions from fully

quadripartite entangled to unentangled via controlled spin-wave statistics of the atomic memories.

• In Chapter 3, we discuss the underlying physics of of atom-photon interactions along a 1D waveguide.

First, we describe photon transport properties in the presence of a single atom, including reflection and

transmission spectra, saturation behavior, and photon correlation. Then, we consider the cooperative

effects that emerge with multiple atoms coupled to the guided mode.

• In Chapter 4, we propose a robust method of trapping single Cesium atoms with a two-color state-

insensitive evanescent wave around a dielectric nanofiber. Specifically, we show that vector light shifts

induced by the inherent ellipticity of the forward-propagating evanescent wave can be effectively sup-

pressed by a backward-propagating evanescent wave. Furthermore, by operating the trapping lasers at



8

the magic wavelengths, we remove the differential scalar light shift between ground and excited states,

thereby allowing for resonant driving of the optical D2 transition.

• In Chapter 5, we describe the experimental realization of an optical trap that localizes single Cs atoms'

215 nm from surface of a dielectric nanofiber. By operating at magic wavelengths for pairs of counter-

propagating red- and blue-detuned trapping beams, differential scalar light shifts are eliminated, and

vector shifts are suppressed by ≈ 250. We thereby measure an absorption linewidth Γ/2π = 5.7± 0.1

MHz for the Cs 6S1/2, F = 4 → 6P3/2, F
′ = 5 transition, where Γ0/2π = 5.2 MHz in free space.

Optical depth d ' 66 is observed, corresponding to an optical depth per atom d1 ' 0.08.

• In Chapter 6, we present the development of an integrated optical circuit with a photonic crystal capable

of both localizing and interfacing atoms with guided photons. From reflection spectra measured with

average atom number N̄ = 1.1 ± 0.4, we infer that atoms are localized within the PCW by optical

dipole forces. The fraction of single-atom radiative decay into the PCW is Γ1D/Γ
′ ' (0.32 ± 0.08),

where Γ1D is the rate of emission into the guided mode and Γ′ is the decay rate into all other channels.

• In Chapter 7, we discuss our observations of superradiance for atoms trapped in the near field of a PCW.

By fabricating the PCW with a band edge near the D1 transition of cesium, we observe a superradiant

emission rate scaling as Γ̄SR ∝ N̄ · Γ1D for average atom number 0.19 . N̄ . 2.6 atoms, where the

peak single-atom decay rate Γ1D/Γ0 = 1.1± 0.1.

• In Chapter 8, we discuss the outlook of our experiment to integrate ultracold atoms and nanophotonic

waveguide and cavities.
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Chapter 2

Entanglement of spin waves among four
quantum memories

2.1 Introduction

Diverse applications in quantum information science require coherent control of the generation, storage,

and transfer of entanglement among spatially separated physical systems [1–4, 6, 7]. Despite its inherently

multipartite nature, entanglement has been studied primarily for bipartite systems [2], where remarkable

progress has been made in harnessing physical processes to generate ‘push-button’ [89, 90] and ‘heralded’

entanglement [24, 25, 91, 92], as well as to map entangled states to and from atoms, photons, and phonons

[26, 93].

For multipartite systems, the ‘size’ of a physical state, described by the system’s density matrix ρ̂N ,

grows exponentially with the number of subsystems N and makes the entangled states exceedingly difficult

to represent with classical information. Importantly, this complexity for ρ̂N increases the potential utility of

multipartite entanglement in quantum information science, including for quantum algorithms [2, 3] and sim-

ulation [6]. Redundant encoding of quantum information into multipartite entangled states enables quantum

error correction and fault-tolerant computation [2, 3]. Intricate long-range correlation of many-body systems

is intimately intertwined with the behavior of multipartite entanglement [94, 95]. In addition, mobilizing

multipartite entanglement across quantum networks could lead to novel quantum phase transitions for the

network [7].

This chapter is largely based on Ref. [33].
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Counterposed to these opportunities, the complex structure of multipartite entanglement presents serious

challenges both for its formal characterization and physical realization [2, 95–97]. Indeed, there are relatively

few examples of laboratory systems that have successfully generated multipartite entanglement [32, 98–102].

Most works have considered the entanglement for spin systems, notably trapped ions [98, 99], which are

applicable to the matter nodes of quantum networks. But the methodologies for verifying multipartite entan-

glement are problematic for infinite-dimensional bosonic systems of the quantum channels (e.g., multipartite

quadrature [100, 101] and number-state [32] entanglement for optical modes). A posteriori multipartite en-

tanglement has been inferred from a small subset of preferred detection events of photons from parametric

downconversion [102].

In addition to the characterization of multipartite entanglement, an important capability for quantum

networks is provided by quantum interfaces capable of generating, storing, and dynamically allocating the

entanglement of matter nodes into photonic channels (see ref. [103] and references therein). As illustrated in

Fig. 2.1a, we introduce here such a quantum interface for quadripartite entangled states based upon coherent,

collective emission from matter to light. We present a systematic study of the generation and storage of

quadripartite entangled states of spin-waves in a set of four nodes of atomic memories, as well as of the

coherent transfer of the entangled components of the material state into individual photonic channels. We

observe transitions of M to (M − 1)-partite entangled states via controlled spin-wave statistics of the atomic

memories, as well as the dynamic evolution of multipartite entanglement in a dissipative environment, from

fully quadripartite entangled to unentangled.

2.2 Generation and characterization of W -state

2.2.1 Experimental procedure

Our experiment proceeds in four steps. First, in step (1) an entangled state ρ̂(A)
W of four atomic ensem-

bles is generated by quantum interference in a quantum measurement show in Fig. 2.1b [4, 24]. Given a

photoelectric detection event at Dh, the conditional atomic state is ideally a quadripartite entangled state
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Figure 2.1: Overview of the experiment. a, Quantum interfaces for multipartite quantum networks. Inset i, a fluores-
cence image of the laser-cooled atomic ensembles {a, b, c, d} that become entangled (see details in Section 2.5.2). b,
Entanglement generation. A weak write laser is split into four components to excite the atomic ensembles via parametric
interactions Ûwrite, leading to Raman scattered fields γ1 = {a1, b1, c1, d1} emitted by the ensembles. Entangled state
ρ̂

(A)
W for four atomic ensembles ε = {a, b, c, d} in Eq. (2.1) is heralded by a projective measurement Π̂h at detector
Dh, derived from quantum interference of four fields γ1 in the heralding interferometer. c, Quantum-state exchange and
entanglement verification. Read lasers are applied to the ensembles to coherently transform the atomic entangled state
ρ̂

(A)
W into quadripartite entangled beams of light ρ̂(γ)

W in Eq. (2.2) via quantum-state transfers, Ûread, with each beam prop-
agating through quantum channels γ2 = {a2, b2, c2, d2}. (U) Upper panel for yc-measurement − The quantum statistics
{qijkl} for the individual modes of ρ̂(γ)

W with i, j, k, l ∈ {0, 1} photons are measured with projectors {Π̂(s)
i } at detectors

Da,b,c,d. (L) Lower panel for ∆-measurement − Mutual coherences for ρ̂(A)
W are accessed with projectors {Π̂(c)

i } from
detection statistics {pijkl} at Da,b,c,d. Further details are given in Section 2.5.4.

ρ̂
(A)
W = |W 〉

A
〈W | with

|W 〉
A

= 1
2 [(|sa, gb, gc, gd〉+ eiφ1 |ga, sb, gc, gd〉) + eiφ2(|ga, gb, sc, gd〉+ eiφ3 |ga, gb, gc, sd〉)],

(2.1)

whose single quantum spin-wave |sε〉 is coherently shared among four ensembles ε = {a, b, c, d}. These

entangled states are known as W -states, comprised of atomic ground states |gε〉 = |g · · · g〉ε and single

collective excitations |sε〉 = 1√
NA,ε

∑NA,ε
i=1 |g · · · si · · · g〉ε, where NA,ε is the number of atoms in ensemble

ε.

After the heralding event, step (2) consists of storage of ρ̂(A)
W in the ensembles for a user-controlled time

τ . At the end of this interval, step (3) is initiated with read beams to coherently transfer the entangled atomic

components of ρ̂(A)
W into a quadripartite entangled state of light ρ̂(γ)

W = |W 〉γ〈W | via cooperative emissions
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[4] (Fig. 2.1c), where

|W 〉γ =
1

2
[(|1000〉+ eiφ

′
1 |0100〉) + eiφ

′
2(|0010〉+ eiφ

′
3 |0001〉)]. (2.2)

This photonic state is a mode-entangled W -state [32, 104], which shares a single delocalized photon among

four spatially separated optical modes γ2 = {a2, b2, c2, d2}.

Finally, in step (4) we characterize the heralded entanglement for ρ̂(γ)
W from complementary measurements

of photon statistics and coherence shown in Fig. 2.1c [32, 104]. In particular, we consider a reduced density

matrix ρ̂r = p0ρ̂0 + p1ρ̂1 + p≥2ρ̂≥2 containing up to one photon per mode, which leads to a lower bound for

the entanglement of the actual physical states {ρ̂(A)
W , ρ̂(γ)

W }. Here, {p0, p1, p≥2} are the probabilities for 0 and

1-photon ρ̂0,1, and higher-order subspaces ρ̂≥2, which can be populated for any realistic system. As illustrated

in the upper panel of Fig. 2.1c, we characterize the statistical contamination for ρ̂(γ)
W due to {ρ̂0, ρ̂≥2} with a

normalized measure [104], namely yc ≡ 8
3

p≥2p0
p21

, ranging from yc = 0 for a single excitation to yc = 1 for

balanced coherent states, by detecting the photon statistics qijkl of γ2 at the output faces of the ensembles.

We also quantify the mutual coherences for ρ̂(γ)
W by measuring photon probabilities {p1000, p0100, p0010,

p0001} at the outputs of the verification (v) interferometer. We determine the sum uncertainty ∆ ≡ ∑N=4
i=1

〈(Π̂(c)
i )2 − 〈Π̂(c)

i 〉2〉 for the variables {Π̂(c)
i } = {|Wi〉v〈Wi|}, which project ρ̂r onto a set of four orthonor-

mal W -states {|Wi〉v} with phases {β1, β2, β3}v selected by the actively stabilized paths in the verification

interferometer (see details in Section 2.5.1). Hence, for the ideal W -state in Eq. (2.2) with βi = φ′i, we have

∆ = 0 associated with p1000 = 1 and p0100 = p0010 = p0001 = 0, as observed in the bar plots of the lower

panel of Fig. 2.1c for yc = 0.04 ± 0.01. In contrast, mixed states with no phase coherences would result in

balanced probabilities (p1000 = p0100 = p0010 = p0001 = 1/4) and ∆ = 0.75.

The pair {∆, yc} thereby defines the parameter space for the multipartite entanglement employed in our

experiment, with the entanglement parameters {∆, yc} serving as a nonlocal, nonlinear entanglement witness

[104]. Our criterion for ‘genuine’ M -partite entanglement takes the most stringent form of non-separability

[96] and excludes all weaker forms of entanglement. Specifically, for a given value of yc, we determine

the boundary ∆
(M−1)
b for the minimal uncertainty possible for all states containing at most (M − 1)-mode
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entanglement and their mixtures (see details in Section 2.5.4). For our quadripartite states with N = 4,

we derive {∆(3)
b ,∆

(2)
b ,∆

(1)
b } for tripartite, bipartite entangled, and fully separable states, as functions of yc.

Thus, a measurement of quantum statistics yc and the associated coherence ∆ with ∆ < ∆
(1,2,3)
b manifestly

confirms the presence of genuineM = 4 partite entanglement [32, 104]. Furthermore, we can unambiguously

distinguish genuine M and (M −1)-partite entangled states for anyM ≤ N by observing ∆ below ∆
(M−1)
b .

2.2.2 W -state among four atomic ensembles

Figure 2.2 presents our results for quadripartite entanglement for storage time τ0 = 0.2 µs. We first inves-

tigate off-diagonal coherence for the purportedly entangled atomic and photonic states, {ρ̂(A)
W , ρ̂

(γ)
W }, in Fig.

2.2a. As the bipartite phase β2 is varied, we observe interferences in {p1000, p0100, p0010, p0001}, and hence

a variation in ∆ that results from the coherence between the bipartite entangled components of ρ̂(γ)
W for the

modes {a2, b2} and {c2, d2}. Furthermore, for optimal settings of β2, the observed values of ∆ fall below

the bounds {∆(3)
b ,∆

(2)
b ,∆

(1)
b } (red, green, purple bands) for yc = 0.06 ± 0.02, and signal the generation

of a fully quadripartite entangled state. The observed quadripartite entanglement arises from the intrinsic

indistinguishability of probability amplitudes for one collective excitation |sε〉 among the four ensembles.

We also present results from a control experiment with a ‘crossed’ state ρ̂(A)
× (orange points) that consists of

an incoherent mixture of entangled pairs {a, b} and {c, d} (see details in Section 2.5.5).

Next, we characterize ρ̂(γ)
W (and ρ̂(A)

W ) over the full parameter space {∆, yc}. In a regime of weak excita-

tion (ξ � 1) for the ensemble-field pairs {ε, γ1}, the heralded state ρ̂(A)
W is approximately

ρ̂
(A)
W (τ = 0) ' (1− 3ξ)|W 〉

A
〈W |+ 3ξρ̂

(A)
≥2 +O(ξ2), (2.3)

where ρ̂(A)
≥2 includes uncorrelated spin-waves with two or more quanta in the set of four ensembles due to

atomic noise. For ξ → 0, a heralding event at Dh leads to a state with high fidelity to |W 〉
A

stored in the four

ensembles. However, for increasing ξ, ρ̂(A)
≥2 becomes important, leading to modifications of the spin-wave

statistics for ρ̂(A)
W and thereby to the entanglement parameters {∆th, yth

c }. Hence, by varying ξ via the overall

intensity for the write beam, we adjust the quantum statistics yc and coherence ∆ of the entangled states
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Figure 2.2: Quadripartite entanglement among four atomic ensembles. a, Quantum interference between the bi-
partite entangled pairs of the full quadripartite state (black points) as a function of bipartite phase β2. b, Exploring the
entanglement space {∆, yc} for quadripartite states. By controlling the spin-wave statistics, we observe transitions from
quadripartite, to tripartite, to bipartite entangled states, and to fully separable states (black points). We also display our
results for the ‘crossed’ quantum state ρ̂(A)

× (orange points), as further described in Section 2.5.5. Inset, expanded view
of entanglement parameters {∆, yc}. Results for entanglement thermalization {∆(T ), y

(T )
c } of the spin systems ρ̂(H)

G

(ρ̂(LMG)
G ) are shown by the red dashed (blue dash-dotted) line. The red, green, and purple bands represent the minimum

uncertainties for 3-mode (∆(3)
b ) and 2-mode entanglement (∆(2)

b ), and for fully separable states (∆(1)
b ), with thicknesses

of the bands from the central lines corresponding to ±1-s.d. of the bounds {∆(3)
b ,∆

(2)
b ,∆

(1)
b }. In all cases, error bars

for the data reflect the statistical and systematic uncertainties.

{ρ̂(A)
W , ρ̂

(γ)
W }.

This procedure is employed in Fig. 2.2b to parametrically increase {∆, yc} in tandem. As yc is raised

from yc ' 0 in the quantum domain to the classical regime with yc ' 1, we observe transitions of the

directly measured photonic states ρ̂(γ)
W (black points) from fully quadripartite entangled (∆ < ∆

(3)
b ) to tripar-

tite entangled (∆(3)
b < ∆ < ∆

(2)
b ), to bipartite entangled (∆(2)

b < ∆ < ∆
(1)
b ), and finally to fully separable

states (∆(1)
b < ∆). As shown by the curves, our observations correspond well to a theoretical model for
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entanglement generation, transfer, and verification. In comparison to the former work on coherent splitting

of a photon [32], the heralded atomic and photonic W -states {ρ̂(A)
W , ρ̂

(γ)
W } offer qualitatively richer statistical

passages through the entanglement spaces delineated by {∆, yc}. Here, the quantum coherence ∆ is intrin-

sically linked to the statistical character yc due to quantum correlations between the heralding fields γ1 and

the excitation statistics of the ensembles.

For ξ � 1, the coherent contribution ρ̂(A)
c of the delocalized single quantum strongly dominates over any

other processes for the full quadripartite state ρ̂(A)
W in Eq. (2.3). With a heralding probability ph ' 3× 10−4

(ξ ' 5 × 10−3), we achieve the smallest entanglement parameters ∆min = 0.07+0.01
−0.02 and ymin

c = 0.038 ±

0.006 for the generated quadripartite entangled states. These parameters are suppressed below the closest 3-

mode boundary ∆
(3)
b by ten standard deviations. Furthermore, because the local mapping of quantum states

from matter to light cannot increase entanglement [24], our measurements of ρ̂(γ)
W unambiguously provide

a lower bound of the quadripartite entanglement stored in ρ̂(A)
W . Therefore, the observed strong violation

of the uncertainty relations for {∆min, ymin
c } categorically certifies for the creation of measurement-induced

entanglement of spin-waves among four quantum memories, as well as for the coherent transfer of the stored

quadripartite entangled states to an entangled state of four propagating electromagnetic fields.

In terms of state fidelity, our approach for heralded multipartite entanglement generation compares favor-

ably to matter systems utilizing local interactions (e.g., trapped ions [98, 99]). Despite the intrinsically low

preparation probability, the resulting quadripartite entangled state ρ̂(A)
W stored in the four ensembles has high

fidelity with the ideal W -state, namely F (A) = A〈W |ρ̂
(A)
W |W 〉A. As discussed in Section 2.5.7, we estimate

a lower bound for the unconditional entanglement fidelity F (A) ≥ 0.9 ± 0.1, as compared to the theoretical

fidelity F (A)
th = 0.98 derived for the parameters in our experiment.

Apart from the creation of novel multipartite entangled spin-waves, an important benchmark of a quantum

interface is the transfer efficiency λ of multipartite entanglement from matter to light [26]. Since no known

measure applies to our case, we tentatively define the entanglement transfer λ = F (γ)/F (A), with physical

fidelity F (γ) = γ〈W |ρ̂
(γ)
W |W 〉γ for the photonic state ρ̂(γ)

W . In particular for ξ � 1, we obtain F (γ)
th '

ηreadF
(A)
th , which thereby gives λth ' ηread = 38± 4% dictated by the retrieval efficiency ηread. While fidelity

is an often used measure, we emphasize that F (γ) cannot be used to set a threshold for entanglement, since
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Figure 2.3: Dissipative dynamics of atomic entanglement. a, Dynamic evolution of entanglement parameters
{∆(τ), yc(τ)} for the multipartite quantum state. We observe crossing of the boundaries defined by 3-mode (red surface,
∆

(3)
b ), 2-mode (green surface, ∆

(2)
b ) entangled states, and separable states (purple surface, ∆

(1)
b ). We indicate various

entanglement orders for quadripartite (black), tripartite (red), bipartite entangled (green) states, and fully separable states
(purple) for the data points and the curve. The projections of the data points into the planes (yc, τ) and (∆, τ) display
the individual passages of {∆(τ), yc(τ)}. b, Projection of entanglement dynamics onto the (∆, yc) plane. The curves in
a and b are from a theoretical model including motional dephasing. Error bars for the data represent the statistical and
systematic uncertainties.

ρ̂
(γ)
W can exhibit multipartite entanglement for any F (γ) > 0.

2.3 Dissipative dynamics of atomic entanglement

To investigate the dynamical behavior of the observed quadripartite entangled states, we study the tempo-

ral evolution of multipartite entanglement stored in the atomic ensembles as a function of a storage time τ .

Decoherence for the atomic W -state is governed by motional dephasing of spin-waves [105], in which the

imprinted atomic phases in |sε〉 evolve independently due to thermal motion, thereby transforming the initial

collective state into a subradiant state uncorrelated with the heralding fields γ1. The net effect is an increase

of both entanglement parameters {∆, yc} with a time-scale τm ' 17 µs (see details in Section 2.5.3). Even-

tually, the growth in {∆(τ), yc(τ)} leads to time-dependent losses of entanglement, marked by successive

crossings of the boundaries set by {∆(3)
b ,∆

(2)
b ,∆

(1)
b }.

We examine the dissipative dynamics of multipartite entanglement for the quantum memories of four

ensembles via the evolution of both {∆, yc} in Fig. 2.3a. We observe the passage of the initial quadripartite

entangled state ρ̂(A)
W (τ0) at τ0 = 0.2 µs through various domains, progressively evolving from M -partite

entanglement to (M − 1)-partite entanglement at memory times τ = τ
(M−1)
m , with the final state ρ̂(A)

W (τf )
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measured at τf = 36.2 µs. The crossings of the bounds {∆(3)
b ,∆

(2)
b ,∆

(1)
b } occur at τ (3)

m = 15 µs, τ (2)
m = 21

µs, and τ (1)
m = 24 µs, respectively. In addition, the measured entanglement parameters evolve in qualita-

tive agreement to the simulated dynamics derived for ρ̂(A)
W (τ) from our theoretical model (solid line), with

deviations (especially for ∆th). Fig. 2.3b displays the parametric losses of entanglement via {∆(τ), yc(τ)}.

Finally, an interesting extension is to relate the characterization of multipartite entanglement via {∆, yc}

to the relaxations of entanglement in quantum many-body systems [94, 95]. We consider two ferromagnetic

spin models (Heisenberg-like and Lipkin-Meshkov-Glick Hamiltonians ĤH, ĤLMG) as well as their thermal

entanglement {∆(T ), y
(T )
c }. Results of our analysis are shown in the inset of Fig. 2.2b by the red dashed

(blue dash-dotted) lines for the Gibbs thermal equilibrium states ρ̂(H)
G

(ρ̂(LMG)
G

) of ĤH (ĤLMG). The statistical

character of ρ̂(A)
W for our system of four ensembles follows the thermalization of ρ̂(H)

G
(ρ̂(LMG)
G

) for yc . 0.2,

whereby ρ̂(A)
≥2 is thermally populated. This comparison suggests that our method for entanglement character-

ization could be applied to access the link between off-diagonal long-range order and multipartite entangled

spin-waves in thermalized quantum magnets [94, 95].

2.4 Conclusion and outlook

In conclusion, our measurements explicitly demonstrate a coherent matter-light quantum interface for mul-

tipartite entanglement by way of the operational metric of quantum uncertainty relations [32, 104, 106].

High-fidelity entangled spin-waves are generated in four spatially separated atomic ensembles and coherently

transferred to quadripartite entangled beams of light. The quantum memories are individually addressable

and can be readily read-out at different times for conditional control of entanglement [4]. With recent ad-

vances by other groups, the short memory times obtained in Fig. 2.3 could be improved beyond 1 s (see

details in Section 2.5.8).

Further possibilities include the creation of yet larger multipartite entangled states with efficient scal-

ing [4] for the realization of multipartite quantum networks. For example, quadripartite entangled states

of ensemble sets {a, b, c, d} and {a′, b′, c′, d′} could be extended by swapping between {a, a′} to prepare

a hexapartite entangled state for {b, b′, c, c′, d, d′}. Generalization of such processes will prepare a single
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macroscopic entangled state for observing entanglement percolation [7] and extreme non-locality ofW -states

[107], as well as for studying phase transitions in strongly-correlated systems [94, 95]. Finally, the entangled

spin-waves can be applied for quantum metrology to detect a phase shift of π on an unknown component of

ρ̂
(A)
W with efficiency beyond any separable state (see details in Section 2.5.9).

2.5 Experimental details

2.5.1 Preparation of cold atomic ensembles

The experiment consists of a 22 ms preparation stage and a 3 ms period for operating the quantum interface

in Fig. 2.1 with a repetition rate 40 Hz and a duty cycle Dc = 3/25. For the preparation, we load and laser-

cool Cesium atoms (peak optical depth ≈ 30) in a magneto-optical trap for 18 ms, after which the atoms

are released from the trap with dynamically compensated eddy-currents. The atoms are further cooled in an

optical molasses (Tt ' 150 µK) for 3.8 ms, and optically pumped to |g〉 for 0.2 ms. During this time, a phase-

reference laser (F = 3 ↔ F ′ = 4′ transition) also propagates through the atomic ensembles for the active

stabilization of the verification interferometer in Fig. 2.1c via ex-situ phase-modulation spectroscopy [32],

which does not affect the operation of the quantum interface. Concurrently, dense Cesium atoms in paraffin

coated vapor cells located at the heralding and verification ports are prepared to the respective ground states

|g〉 (|s〉) for filtering the coherent-state lasers scattered into the quantum fields γ1 (γ2).

2.5.2 Quantum interface

For the quantum interface to function during the 3 ms window, in step (1) 20-ns writing (red-detuned

δ = 10 MHz from |g〉 − |e〉 transition) and 100-ns repumping (resonant with |s〉 − |e〉) pulses are applied se-

quentially to the ensembles ε, synchronized to a clock running at Rc ' 2 MHz. This process creates pairwise

correlated excitations [4] between the collective atomic modes |sε〉 of the ensembles ε and the optical fields

γ1 (δ = 10 MHz below |s〉 − |e〉). Photodetection of a single photon for the combined fields γ1 at the output

of the heralding interferometer effectively erases the which-path information for γ1, and imprints the entan-

gled spin-wave ρ̂(A)
W in Eq. (2.3) onto the ensembles {a, b, c, d} via Trh(Π̂hÛ

†
writeρ̂

(A)
g Ûwrite). The heralding
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event at Dh triggers control logic in Fig. 2.1a which deactivates intensity modulators of the writing (IMwrite),

repumping and reading lasers (IMread) for the quantum storage of ρ̂(A)
W in step (2). After a user-controlled

delay τ , step (3) is initiated with 20-ns strong read pulses (Rabi frequency 24 MHz, resonant with |s〉 − |e〉)

that address the ensembles in Fig. 2.1c and coherently transfer the entangled atomic components {a, b, c, d}

of ρ̂(A)
W (τ) one-by-one to propagating beams γ2 = {a2, b2, c2, d2}, comprising the entangled photonic state

ρ̂
(γ)
W (τ), via the operation ρ̂(γ)

W = TrA(Û†readρ̂
(A)
W Ûread). Here, TrA traces over the atomic systems which are

later shelved into the ground states |gε〉. The retrieval efficiency ηread is collectively enhanced for large NA

(ref. [4]), leading to ηread = 0.38 ± 0.06 in our experiment. The average production rate for the atomic

quadripartite entanglement with {∆min, ymin
c } is rp = RcDcph ' 60 Hz, while the actual rate during the 3

ms operating window is rq = Rcph ' 500 Hz. The atomic level diagrams for entanglement generation and

quantum-state exchanges are shown as insets to Figs. 1b and 1c. States |g〉, |s〉 are hyperfine ground states

F = 4, F = 3 of 6S1/2 in atomic Cesium; state |e〉 is the hyperfine level F ′ = 4 of the electronic excited

state 6P3/2.

2.5.3 Spin-wave quantum memories

The quantum information of the entangled state for Eq. (2.1) is encoded in the quantum numbers of spin-

waves (collective excitations) for the pseudo-spin of the hyperfine ground electronic levels 6S1/2 (F =

3, F = 4) in atomic Cesium. The fluorescence images shown in the inset of Fig. 2.1a depict the collective

atomic modes of ensembles ε = {a, b, c, d} for exciting the entangled spin-waves ρ̂(A)
W with 1 mm separations

and 60 µm waists. The geometry of the collective excitations for the four ensembles {a, b, c, d} is defined by

the spread functions of the imaging systems for the fields {γ1, γ2}, consisting a cold cloud of NA,ε ≈ 106

Cesium atoms. We use an off-axial configuration [108] for individually addressing each ensemble ε with an

angle θ = 2.5◦ between the classical and nonclassical beams, which creates spin-waves |sε〉 associated with

wave-numbers δ~k = ~kwrite − ~kγ1 for each ε. These spin-waves are analogous to other types of collective

excitations in many-body systems, such as magnons and plasmons, and the spin-waves can be converted to

dark-state polaritons for the coherent transfer Ûread of entanglement. For the phase-matching configuration

and temperature of our ensembles, the memory times {τ (3)
m , τ

(2)
m , τ

(1)
m } in Fig. 2.3 are dominantly determined
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by the motional dephasing of the spin-waves |sε〉 (ref. [105]). With thermal velocity of vt ' 14 cm/s, we

estimate a memory time τm ' 0.85 µm
4π sin(θ/2)vt

= 17 µs. On the other hand, the ground-state dephasing due to

inhomogeneous broadening is expected to be > 50 µs in our experiment, inferred from two-photon Raman

spectroscopy.

2.5.4 Quantum uncertainty relations and genuine multipartite entanglement

In order to verify the entanglement by way of {∆, yc}, we first evaluate the photon statistics {p0, p1, p≥2}

for the yc-measurement. Operationally, this is accomplished by measuring the individual probabilities qijkl

for i, j, k, l ∈ {0, 1} photons to occupy the respective optical modes γ2 = {a2, b2, c2, d2} at the output faces

of the ensembles via photoelectric detections {Π̂(s)
i }. For the ∆-measurement, we quantify the off-diagonal

coherence d of ρ̂(γ)
W by pairwise interferences of all possible sets of modes α, β ∈ {a2, b2, c2, d2} with the

verification interferometer. The photon probabilities {p1000, p0100, p0010, p0001} at the output modes of the

verification interferometer thereby result from the coherent interferences of the four purportedly entangled

fields γ2 that depend on the phase orientations {β1, β2, β3}v of {Π̂(c)
i }.

Our conclusion of genuine multipartite entanglement for the atomic and photonic states {ρ̂(A)
W , ρ̂

(γ)
W } does

not rely on weaker conditions based on the non-separability along any fixed bipartition of {ρ̂(A)
W , ρ̂

(γ)
W }. The

genuine M -partite entangled states created from our experiment can only be represented as mixtures of pure

states that all possessM -partite entanglement, as for the case of genuine ‘k-producibility’ in multipartite spin

models [94, 95]. We take caution that our entanglement verification protocol cannot be applied for verifying

the absence of entanglement for the physical state ρ̂(γ)
W in an infinite dimension [109]. Finally, we emphasize

that our analysis makes use of the full physical state {ρ̂(A)
W , ρ̂

(γ)
W } including the vacuum component ρ̂0 and

higher order terms ρ̂≥2, and does not rely upon a spurious post-diction based upon a preferred set of detection

events.

2.5.5 Generation and characterization of a ‘crossed’ quantum state

As a control experiment, we reconfigure the heralding interferometer such that path-information could in

principle be revealed up to the bipartite split of the ensemble pairs {a, b} and {c, d} by analyzing the polar-
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ization state of the heralding photon γ1. In this case, the heralding measurement Π̂× prepares a ‘crossed’

atomic state ρ̂(A)
× with no coherence shared between {a, b} and {c, d}. Thus, we observe an absence of inter-

ference in Fig. 2.2a (orange points). However, this modified Π̂× preserves the bipartite entanglement within

{a, b} and {c, d}, which explains our observation of the uncertainty ∆ reduced below the 1-mode bound

∆
(1)
b for yc = 0.07± 0.01. Similarly, we also detect the statistical transition of the bipartite entanglement to

fully separable states for the ‘crossed’ state in Fig. 2.2b, despite the disentanglement for the bipartition (|) of

{a, b}|{c, d}.

2.5.6 Relationship between quantum uncertainty and off-diagonal coherences.

We derive here the general expression for the upper bound of the sum uncertainty ∆ as a function of the

coherence d. First, we note that ∆ is only sensitive to the 1-excitation subspace ρ̂1 of ρ̂r with

ρ̂1 =




s1000 dab dac dad

d∗ba s0100 dbc dbd

d∗ca d∗cb s0010 dcd

d∗da d∗db d∗dc s0001




,

normalized such that Tr(ρ̂1) = s1000 + s0100 + s0010 + s0001 = 1. Here, the diagonal elements ~s1 =

{s1000, s0100, s0010, s0001} of ρ̂1 are related to the 1-photon probabilities ~q1 = {q1000, q0100, q0010, q0001} at

the faces of the ensembles via p1~s1 = ~q1. By transforming ρ̂1 into the basis spanned by {|Wi〉v}, we find

the expressions for the normalized output photon probabilities {p1000, p0100, p0010, p0001} of the verification

interferometer as functions of ~s1 and dαβ . The sum uncertainty ∆ is then expressed as ∆ = 3
4 − {(|dab| +

|dcd|)2 +(|dac|+ |dbd|)2 +(|dad|+ |dbc|)2}. Thus, we obtain ∆ . 3
4 (1−16d

2
). The average value of the six

unique off-diagonal elements is d = 1
6

∑
α,β |dαβ | with 0 ≤ d ≤ 1/4, and the effective interference visibility

is given by Veff = 4d.
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2.5.7 Derivation of entanglement fidelity

We obtain here the expression for the lower bound unconditional entanglement fidelity F (A) = p̃1F1, where

p̃1 is the probability for a single spin-wave ρ̂(A)
1 in the heralded state ρ̂(A)

W , and F1 = 〈W1|ρ̂(A)
1 |W1〉 is

the conditional fidelity for ρ̂(A)
1 . We start by noting that the projective measurement Π̂

(c)
i for ∆ gives the

conditional fidelity F1 of ρ̂r onto one of four orthonormal W -states, |Wi〉v = |W1〉v , for example, |1000〉+

eiβ1 |0100〉 + eiβ2(|0010〉 + eiβ3 |0001〉). Hence, we can define ∆ = 1 − F 2
1 −

∑4
i=2 F

2
i in terms of the

respective overlaps Fi. Because of the orthonormality
∑4
i=1 Fi = 1, the sum uncertainty is bounded by

∆ ≥ 1− F 2
1 − (1− F1)2, whereby we obtain F1 ≥

√
1
2 ( 1

2 −∆) + 1
2 . Finally, by combining the probability

p̃1 for exciting one spin-wave distributed among the four ensembles, we access the lower bound fidelity

F (A) ≥ p̃1(
√

1
2 ( 1

2 −∆) + 1
2 ) obtained unconditionally for the heralded atomic state ρ̂(A)

W . In principle, the

imbalances in the interferometer can rotate the projectors into non-orthonormal sets [104]. However, the

measured losses and the beam-splitter ratios are sufficiently balanced such that any changes in F (A) due to

modified projectors are well within the uncertainties of the data, as evidenced by the close-to-unity projection

fidelity F (π) = 99.9+0.1
−0.2%. In the experiment, p̃1 and F1 are determined from the inferences of the spin-wave

statistics (via yc), and of the coherences (via ∆), respectively.

2.5.8 Prospects for improving memory time and matter-light transfer efficiency

By operating the clock speed at Rc → 10 MHz and τ (3)
m ≈ 20µs, we could prepare hexapartite (M = 6) en-

tanglement with probability 3zηreadp
2
h/8 ≈ 10−5 by connecting two quadripartite states ρ̂(A)

W for {∆min, ymin
c },

with enhancement factor z = 400 (ref. [110]), thereby giving a local production rate of rq ≈ 50− 100 Hz, or

an average rate rp ≈ 5− 10 Hz with our current duty cycle Dc. The most challenging aspect of verifying the

hexpartite entangled states is the quantification of the higher-order contamination ρ̂≥2, which we estimate∼ 1

event per 10 hr. This integration rate is feasible with our current system. More generally, M1 and M2-partite

entangled states can be fused together by entanglement connection to create a M = (M1 +M2 − 2)-partite

entangled state. However, the memory times {τ (3)
m , τ

(2)
m , τ

(1)
m } in Fig. 2.3 and the entanglement transfer λ

from matter to light limit our capability to scale the multipartite entanglement beyond M > 6 by way of

conditional control and connection of entanglement [110, 111] with our current experimental parameters.
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The prerequisite storage techniques for suppressing both the internal and motional spin-wave dephasings

can be extended for τm with advances in ensemble-based quantum memories [27, 28, 112]. Recent experi-

ments with single ensembles have achieved coherence times up to τm ' 1.5 seconds in quantum degenerate

gases [29, 30] albeit with efficiencies . 1%. The transfer efficiency can also be increased to λth ' 0.9 by en-

closing the ensembles with high finesse cavities [105]. System integrations by way of atom-chip technology

and waveguide coupling [61, 113] hold great potential for scalability given the strong cooperativity and the

long coherence [114]. At this level, two or more heralded processes of multipartite entanglement generations

can be made ‘on-demand’ on time scales of τdet ∼ 1
Rcph

= 1 ms, with τm � τdet (refs. [110, 111]).

Realistically, the expansion of multipartite entangled states ρ̂(A)
W will be limited by the intrinsic degrada-

tions of the entanglement parameters {∆, yc} that inevitably increase with each step of entanglement connec-

tion [111], and by the specific quantum repeater architecture implemented on ρ̂(A)
W . The latter is an extremely

rich area of research in view of the large classes of methods for connecting multipartite entangled states,

making it premature to specify a particular architecture for multipartite entanglement expansion. However,

our experiment will hopefully stimulate theoretical studies of complex repeater architectures for multipartite

systems, beyond traditional one-to-one networks [115].

2.5.9 Quantum-enhanced parameter estimation with entangled spin-waves

We describe a quantum-enhanced parameter estimation protocol whereby a phase shift on a single ensemble

εi of the quadripartite state εi ∈ {a, b, c, d} can be detected with efficiency beyond that for any separable state.

Specifically, we consider a π-phase shift Ûπ,εi = exp(iπn̂εi) applied on an unknown spin-wave component

εi ∈ {a, b, c, d} (n̂εi = Ŝ†εi Ŝεi ) of the atomic state ρ̂(A)
W , or on a spatial field mode γ2i ∈ {a2, b2, c2, d2}

of the photonic state ρ̂(γ)
W (n̂γ2i = â†γ2i âγ2i ). Our goal is to find the π-phase shifted ensemble εi (optical

mode γ2i), in a single-measurement under the condition that an average of one spin-wave is populated in

total; i.e.,
∑
iTr(n̂εi ρ̂

(A)
W ) = 1 (or

∑
iTr(n̂γ2i ρ̂

(γ)
W ) = 1 for optical modes). As a quantum benchmark,

we consider an average success probability Ps = 1
4

∑
εi

Tr(Π̂(u)
εi Û

†
π,εi ρ̂

(A)
W Ûπ,εi) (failure probability Pf =

1 − Ps) for distinguishing the phase shifted ensemble εi (mode γ2i) among the four possibilities {a, b, c, d}

({a2, b2, c2, d2}) by way of unambiguous quantum-state discrimination {Π̂(u)
εi } (refs. [116–119]).
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First, we consider an idealW -state |W 〉o = |W 〉A (or |W 〉γ2 ) with atomic phases φi ∈ {φ1, φ2, φ3} (pho-

tonic phases φ′i ∈ {φ′1, φ′2, φ′3}). In this case, the π-phase shifted entangled W -states |Wεi〉f ∈ {|W (π)
a 〉f ,

|W (π)
b 〉f , |W

(π)
c 〉f , |W (π)

d 〉f} can be detected deterministically, because |W (π)
εi 〉f = Ûπ,εi |W 〉o forms an or-

thonormal complete set that spans the state-space ρ̂1, resulting from the underlying symmetry of |W 〉o with

respect to any rotation Ûπ,εi on a generalized Bloch sphere. Operationally, we set the verification phases

β1,2 − φ′1,2 = 0 and β3 − φ′3 = π. Then, the π-phase shifted ensemble εi can be unambiguously dis-

criminated because the otherwise balanced output photon probabilities ~pv = {p1000, p0100, p0010, p0001} =

{0.25, 0.25, 0.25, 0.25} of the verification interferometer will be transformed to ~pv = {1, 0, 0, 0} for a π-

phase induced on ensemble a, to ~pv = {0, 1, 0, 0} on ensemble b, to ~pv = {0, 0, 1, 0} on ensemble c, and to

~pv = {0, 0, 0, 1} on ensemble d, each with success probability P (ent)
s = 1.

For fully separable states |Ψ〉o = |ψa〉a|ψb〉b|ψc〉c|ψd〉d with |ψεi〉εi =
∑∞
n=0 c

(n)
εi |n〉εi , we displace

the resulting π-phase shifted state |Ψ(π)
εi 〉f = Ûπ,εi |Ψ〉o with a local unitary transformation V̂εi |ψεi〉εi =

|0〉εi . The overall process V̂aV̂bV̂cV̂dÛπ,εi maps the initial product state |Ψ〉o into V̂aÛπ,a|ψa〉a|0〉b|0〉c|0〉d

(phase shift on ensemble a), |0〉aV̂bÛπ,b|ψb〉b|0〉c|0〉d (ensemble b), |0〉a|0〉bV̂cÛπ,c|ψc〉c|0〉d (ensemble c),

and |0〉a|0〉b|0〉cV̂dÛπ,d|ψd〉d (ensemble d), with only one εi containing 〈n̂εi〉 > 0 excitations. Thus, we can

unambiguously identify the phase shifted ensemble εi given a photodetection, albeit with a failure probability

Pf = 1
4

∑
εi
|εi〈0|V̂εiÛπ,εi |ψεi〉εi |2 = 1

4

∑
εi
|εi〈ψεi |Ûπ,εi |ψεi〉εi |2 arising from inconclusive null events

(i.e., |0000〉〈0000|). We derive the maximum success probability P (max)
s = 1−P (min)

f and the optimal state

|Ψ〉o = |Ψ〉opt by minimizing P (min)
f over all possible realizations of c(n)

εi satisfying
∑
εi
〈ψεi |n̂εi |ψεi〉εi = 1.

Specifically, we find that an optimal (pure) separable state |Ψ〉opt =
∏
εi

(
√

3/4|0〉εi +
√

1/4|1〉εi) can be

used for the parameter estimation protocol to infer εi with P (max)
s = 0.75. Similarly, maximum success

probability P
(coh)
s can be derived for multimode coherent states

∏
εi
|αεi〉εi , giving a classical bound of

P
(coh)
s = 1− 1/e.

Finally, we consider the upper bound P
(max)
s for mixed separable states ρ̂(sep)

o with pure state de-

compositions ρ̂(sep)
o =

∑
m pm|Ψm〉o〈Ψm|. Generally, the transformations V̂εi , as discussed above, do

not exist for ρ̂(sep)
o , excluding the possibility of an unambiguous state discrimination. Thus, the success

probability Ps(ρ̂
(sep)
o ) is upper bounded by the convex combinations of {|Ψm〉}, thereby Ps(ρ̂

(sep)
o ) ≤



25
∑
m pmPs(|Ψm〉o〈Ψm|) ≤ P

(max)
s = 0.75. Importantly, the maximum success probability P (max)

s = 0.75,

attainable for any ρ̂(sep)
o , is less than P (ent)

s = 1 for entangled states |W 〉o. Thus, the entangled spin-waves

in the experiment can be applied for sensing an atomic phase shift beyond the limit for any unentangled state.

Comprehensive analysis of our protocol including experimental imperfections (e.g., detection efficiency) as

well as other measurement strategies will be discussed elsewhere.
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Chapter 3

Atom-light interactions: waveguide
QED

3.1 Introduction

In this chapter, we describe the underlying physics of atom-photon interactions along a 1D waveguide. First,

we describe photon transport properties in the presence of a single photon, including reflection transmission

spectra, saturation behavior, and photon correlation. Then we discuss the collective effects that emerge with

two atoms coupled to the waveguide mode. Depending on the distance between atoms, the collective effects

change from superradiance to dipole-dipole interaction. We further considerN atom coupled to the 1D PCW,

which can separate these two collective effects across the band edge of the PCW and introduce finite-range

dipole-dipole interaction inside the band gap of the PCW.

3.2 Single atom coupled to a 1D waveguide

3.2.1 System Hamiltonian

We consider a simple system where a two-level atom, consisting of ground state |g〉 and excited states |e〉

separated by transition frequency ω0, couples to a 1D continuum waveguide mode. The corresponding Hamil-

tonian is described by a term denoting the energy levels of the atom Hatom, freely propagating photons in a
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Figure 3.1: Schematic of a single atom coupled to a 1D waveguide. A two-level atom, consisting of ground
state |g〉 and excited state |e〉, couples to the 1D waveguide with a decay rate Γ1D and to all the other channels
with a decay rate Γ′.

waveguide Hph, and dipole-interaction term Hint with the rotating-wave approximation as [71, 74],

Htot/~ = Hatom +Hph +Hint (3.1)

= ω0σee +

∫
dkωka

†
kak +

∫
dkg

(
σegake

ikx + h.c.
)
, (3.2)

where σij = |i〉 〈j|, ak is the annihilation operator for the mode with wavevector k, and the frequency ωk of

the propagating mode. While the atom couples to the waveguide mode with the dipole-coupling amplitude g,

the atom also emits photons into all the other mode (i.e. free space) with the decay rate Γ′. The evolution of

the atom is described by a master equation for an atomic density operator ρ,

ρ̇ =
1

i~
[Htot, ρ] + L[ρ], (3.3)

where the Lindblad term is given by,

L[ρ] = −Γ′

2

∑

j

(
σjegσ

j
geρ+ ρσjegσ

j
ge − 2σjgeρσ

j
eg

)
. (3.4)

From Eq. (3.2), we obtain Heisenberg-Langevin equations for the atomic operators, which are useful for

studying photon transport properties under large coherent excitation (see details in Appendix A).

3.2.2 Basic rates of a single atom

Figure 3.1 illustrates the basic rates of a single atom coupled to the waveguide: the decay rate into the guided

mode Γ1D and the decay rate into all the other modes Γ′. The decay rate into the guided mode is written by



28

(see Appendix A),

Γ1D =
4πg2

vg
=

1

2

c

vg

σ0

Am
Γ0, (3.5)

where Γ0 is a Einstein A coefficient in free space, σ0 is a cross section of the atom, and Am is an effective

mode area. Here, the group velocity is defined as vg ≡
∣∣∂ω
∂k

∣∣ = c
ng

where a group index is ng ' 1.5 of a

SiO2 nanofiber and ng ' 2.0 of a SiN waveguide. The Purcell factor is defined as a ratio of the decay rate

into the guided mode Γ1D to that into all the other channels Γ′,

P ≡ Γ1D

Γ′
, (3.6)

which quantifies how the atomic excitation decays: in the limit P → ∞, all the excitation will decay into

the guided mode. For a typical 1D waveguide considered here (i.e., nanofiber and double nano beam), the

decay rate into all the other channels is Γ′ ∼ Γ0 without significant suppression [120]. A large Purcell

factor can be achieved by enhanced Γ1D via small effective mode area, Am ≤ σ0, and a small group velocity

vg � c. On resonance, the atom has a maximal scattering cross section that is proportional to the square of

the wavelength, σ0 ≈ λ2, requiring the sub-wavelength confinement Am ≤ λ2. We will discuss an enhanced

group index ng � 1 via slow light effect of the PCW near the band edge in Section 3.4.

3.2.3 Coherent field transport

We consider a single atom, excited by right-going coherent state with a field amplitude, ER,in = E0, and

calculate the reflectivity of a single atom. The equations of motion for the operator mean values of slowly-

varying variables, sge = 〈σ̃ge〉 , sz = 〈σ̃z〉, are written by

ṡge =

(
i∆− Γtot

2

)
sge + i2

√
2πgE0sz, (3.7a)

ṡz = −Γtot

(
sz +

1

2

)
− i
√

2πg (E0seg − E∗0 sge) , (3.7b)
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where the total decay rate Γtot = Γ1D + Γ′ and the detuning ∆ = ωL − ω0 with a probe frequency ωL. The

equations above can be cast into a compact and convenient form as,

ṡ = D · s + f , (3.8)

with a time-independent matrix D and a vector f ,

s =




sge

seg

sz



, D =




i∆− Γtot

2 0 2iΩc

0 −i∆− Γtot

2 −2iΩ∗c

iΩ∗c −iΩc −Γtot



, f =




0

0

−Γtot

2



, (3.9)

where the Rabi frequency of the input field Ωc =
√

2πgE0. This D matrix enables us to calculate higher-

order correlation functions using the quantum regression theorem (see Section 3.2.4). Then, the steady-state

values s̄ = s(t→∞) are obtained by,

s̄z = − Γ2
tot + 4∆2

2(Γ2
tot + 4∆2 + 8|Ωc|2)

, s̄ge =
2∆− iΓtot

Γ2
tot + 4∆2 + 8|Ωc|2

2Ωc. (3.10)

Given the steady-state atomic coherence s̄ge, one can compute the transmission and reflection by using the

input-output relation (Appendix A). The reflected (left-going) field amplitude is written by

EL,out = −i
√

Γ1D

2vg
s̄ge. (3.11)

Then, the steady-state reflectivity of a single atom is expressed as [58, 74],

r1(∆,Ωc) =
EL,out

ER,in
= −Γ1D

Γtot

1 + i 2∆
Γtot

1 + 4∆2

Γ2
tot

+ 8|Ωc|2
Γ2
tot

. (3.12)

For a resonant incident field (∆ = 0), a single atom is saturated at a Rabi frequency Ωc ∼ Γtot, suggesting

that the saturation intensity Isat ∝ Ω2
c is proportional to Γ2

tot. Figure 3.2 shows saturation dependence of

transmission T = |1 + r1(∆,Ωc)|2 and reflection spectra R = |r1(∆,Ωc)|2 with various values of Ωc.
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Figure 3.2: Saturation dependence of transmission and reflection spectra. The transmission (dashed)
and reflection spectra (solid curves), with Ωc/Γ0 = 0.01 (black), 0.1 (blue), 1 (green), and 10 (red), where
Γ1D = Γ′ = Γ0.

In the weak excitation limit Ωc → 0, the reflectivity of a single atom is simplified to

r1(∆) = − Γ1D

Γ1D + Γ′ − 2i∆
. (3.13)

One can easily show that the reflectivity of the single atom with incident single photon is identical to that

with the weak coherent state [71, 74].

3.2.4 Photon correlation for coherent incident field

The nonclassical properties of photons scattered by a single atom are evident in photon correlation. They are

often characterized by the normalized second-order correlation function in the steady state (t→∞),

g
(2)
` (τ) =

〈a†`,out(t)a
†
`,out(t+ τ)a`,out(t+ τ)a`,out(t)〉ss
〈a†`,out(t)a`,out(t)〉2ss

, (3.14)

where ` = R for transmission (right-going) field and ` = L for reflection (left-going) field. In the weak

excitation limit, by solving Eq. (3.8) for higher-order correlation functions, the normalized second-order
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(a) (b)

Figure 3.3: Normalized second-order correlation function g(2)
` in the weak excitation regime (Ω/Γ0 =

0.01). (a) g(2)
L for the reflected (left-going) field as a function of normalized time Γ0t, (b) g(2)

R for the
transmitted (right-going) field, with Γ1D/Γ0 = 0.5 (black), 1 (blue), 1.5 (green), and 2 (red), where Γ′ = Γ0.

correlation functions for the reflected and transmitted fields are approximately given by,

g
(2)
L (τ) ≈ e−Γtotτ

(
1− e−Γtotτ/2

)2

, (3.15a)

g
(2)
R (τ) ≈ e−Γtotτ

(
ξ2
0 − e−Γtotτ/2

)2

, (3.15b)

where ξ0 = Γ1D

Γ′ . As shown in Fig. 3.3 (a), g(2)
L (τ) shows the anti-bunching at τ = 0, regardless of the

magnitude of the coupling rate ξ0 = Γ1D

Γ′ , since the reflected field purely comes from the scattered field of the

atom [74, 77]. Figure 3.3 (b) exhibits the unique photon correlation of transmitted fields, which arises from

the quantum interference between the scattered and incident fields, as shown in Eq. (3.15b). As increasing

ξ0 at ξ0 < 1, g(2)
R (0) decreases further and the initial antibunching gets strongest at ξ0 = 1. For ξ0 � 1,

pronounced bunching is predicted at τ = 0, where two and higher-order photon components of the coherent

state are transmitted with increased probability while the single-photon component is reflected. Then the

pronounced bunching is followed by anti-bunching at a subsequent time τ0 = 4 log ξ0
Γ1D

[74, 77]. In the case of

two-photon transport, a two-photon bound state is predicted to pass through the single atom as a composite

photon. Thus, effective attractive or repulsive interaction between photons could be induced by the presence

of the single atom [72, 121].

Beyond the weak excitation limit, the saturation behavior is included by using the exact expression of Eq.

(3.14). Figure 3.4 displays the saturation dependence of photon correlation g(2)
R/L, which indeed approaches
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(a) (b)

Figure 3.4: Staturation behavior of g(2)
` . (a) g(2)

L for the reflected field as a function of normalized time
Γ0t, (b) g(2)

R for the transmitted field, with Ωc/Γ0 = 0.01 (black), 0.1 (blue) 1 (green), and 10 (red), where
Γ1D = Γ′ = Γ0.

unity for the strong incident fields (Ωc � Γ0).

3.2.5 Transfer matrix in the weak excitation limit

For a linear system, we can define a transfer matrix which relates the field amplitudes on the left-side of

an optical element to the field amplitudes on the right-side, instead of relating the outgoing modes to the

incoming ones, as illustrated in Fig. 3.5. The advantage of the transfer matrix method is that it is easy

to scale up a system: the transfer matrix of a composite system is just the product of the matrices of its

components [122].

In the weak excitation limit, where atomic saturation is ignored, the response of a single atom is linear,

enabling us to determine the transfer matrix of a single atoms. As described in Appendix A, the input-output

Optical element

Figure 3.5: Diagram of a transfer matrix. A transfer matrix M relates the field amplitudes on the left-side
(ER,in, EL,out) of an optical element to the field amplitudes on the right-side (ER,out, EL,in).
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relations for incident coherent fields from both sides read

ER,out = ER,in − i
√

Γ1D

2vg
s̄ge, (3.16a)

EL,out = EL,in − i
√

Γ1D

2vg
s̄ge, (3.16b)

and the steady-state coherence is given by,

s̄ge = i

√
2Γ1Dvg

Γ1D + Γ′ − 2i∆
(ER,in + EL,in) . (3.17)

Thus, the input-output relation can be transformed to transfer matrix representation as,



ER,out

EL,in


 = Matom



ER,in

EL,out


 , (3.18)

with a transfer matrix of the single atom for incident coherent fields

Matom =




1 + iξ iξ

−iξ 1− iξ


 , (3.19)

where

ξ = − ξ0
i+ δ

, ξ0 =
Γ1D

Γ′
, and δ =

2∆

Γ′
. (3.20)

The transfer matrix in Eq. (3.19) is consistent with the one derived from the 1D Helmholtz equation in Ref.

[123].

3.3 Multiple atoms coupled to the 1D waveguide

Next, we study the collective effects induced by photon-mediated interactions between atoms. Depending

on the distance between the atoms, the exchange of real or virtual photons between atoms gives rise to
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(b) (c)(a)

Figure 3.6: Schematic energy level diagram for two atoms interacting with a 1D waveguide. (a) Two
atoms interact with a 1D waveguide at a separation ϕ = k|x1 − x2|. (b) Superradiance at ϕ = π between
two atoms. ER,in (red arrow) represents a weakly-exciting guided mode, which only drives the superradiant
emission via the bright state |B〉. The dark state |D〉 cannot be driven directly from the ground state |gg〉. (c)
Dipole-dipole interaction with ϕ = π/2. The energy levels of |B〉 and |D〉 states are shifted by ±Γ1D/2 by
exchanging virtual photons. Both |B〉 and |D〉 states are driven by the guide mode ERin.

superradiance or dipole-dipole interaction.

3.3.1 Interacting spin Hamiltonian

The dynamics of N atoms is equivalently described by an non-hermitian Hamiltonian in the quantum jump

description of an open system (Appendix A) [124, 125] as

Heff/~ = −
∑

j

(
∆ + i

Γ1D + Γ′

2

)
σ̃jee −

∑

j

Ωc
(
σ̃jege

ikxj + h.c.
)
− iΓ1D

2

∑

j′ 6=j
σ̃jegσ̃

j′
gee

ik|xj−xj′ |, (3.21)

where xj is the position of the j-th atom. To illustrate the basic properties of “waveguide QED”, we consider

two examples: (i) superradiance of two atoms separated by ϕ = k|x1 − x2| = π and (ii) dipole-dipole

interaction between two atoms separated by ϕ = π/2 [126–128]. For simplicity, we set x1 = 0 and kx2 = ϕ.

We obtain more transparent form of the effective Hamiltonian by introducing the dressed-state operators,

σ̃Bge =
−σ̃(1)

ge + σ̃
(2)
ge√

2
, σ̃Dge =

σ̃
(1)
ge + σ̃

(2)
ge√

2
, (3.22)

which decouples the dynamics of atoms into bright and dark states, as we will see in the following sections.
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3.3.1.1 Two atoms: superradiance at the separation ϕ = π

The effective Hamiltonian at the separation ϕ = π is given by Heff = HB
eff +HD

eff with

HB
eff/~ = −

(
∆ + i

2Γ1D + Γ′

2

)
σ̃Begσ̃

B
ge +

√
2Ωc

(
σ̃Beg + σ̃Bge

)
, (3.23a)

HD
eff/~ = −

(
∆ + i

Γ′

2

)
σ̃Degσ̃

D
ge, (3.23b)

where the jump operators of HB and HD describe the superradiance with 2Γ1D + Γ′ and subradiance with

Γ′, respectively. Eq. (3.23b) indicates that the dark state |D〉 cannot be driven directly from the ground state

|gg〉 by guided-mode fields. Thus, in the weak-excitation regime, atoms are driven to the bright state |B〉,

resulting in the superradiance, as illustrated in Fig. 3.6 (b). On the other hand, when the atoms are driven

identically (i.e., external illumination with the same phase), the driving term of the Hamiltonian is given by

Hex ∝
(
σ̃Deg + σ̃Dge

)
, leading to the excitation of the subradiant state |D〉.

3.3.1.2 Two atoms: dipole-dipole interaction at the separation ϕ = π/2

In the case of ϕ = π/2, each effective Hamiltonian is written by

HB
eff/~ = −

(
∆ +

Γ1D

2
+ i

Γ1D + Γ′

2

)
σ̃Begσ̃

B
ge + Ωce

i 3π4
(
σ̃Beg + σ̃Bge

)
, (3.24a)

HD
eff/~ = −

(
∆− Γ1D

2
+ i

Γ1D + Γ′

2

)
σ̃Degσ̃

D
ge + Ωce

iπ4
(
σ̃Deg + σ̃Dge

)
. (3.24b)

The energy levels of |B〉 and |D〉 states are shifted by ±Γ1D/2 due to the exchange of photons, as illustrated

in Fig. 3.6 (c). Both states are driven by the guide mode with the equal amplitude of Rabi frequency Ωc.

While the frequency difference between |B〉 and |D〉 is Γ1D, the linewidth of both states are larger, Γ1D + Γ′,

meaning that we cannot distinguish two resonances even with large Γ1D by using a guided mode.

3.3.2 Field response in the weak-excitation limit

Once we obtain the atomic response from the Heisenberg-Langevin equations, we can reconstruct the field

response via the input-output relation. In the weak excitation regime, the equation of motion for the operator
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(a) (b)

Figure 3.7: Reflection spectra with N = 2 atoms in the weak excitation limit. (a) the reflection spectrum
R = |r2(π)|2 (red) of two atoms separated by ϕ = π and single atom spectrum |r1|2 (blue). Here, Γ1D =
Γ′ = Γ0. (b) the reflection spectrum R = |r2(π/2)|2 (red) of two atoms separated by ϕ = π/2 and single
atom spectrum (blue). Due to the destructive interference, the reflectivity of two atoms is smaller than that of
the single atom.

mean value, sjge =
〈
σ̃jge
〉
, is written as

ṡjge =

(
i∆− Γ1D + Γ′

2

)
sjge − iΩceikxj −

Γ1D

2

∑

j′ 6=j
sj
′
gee

ik|xj−xj′ |. (3.25)

To study the field response (i.e., reflection spectrum), we again consider the same examples: (i) two-atom

superradiance at the separation ϕ = π and (ii) dipole-dipole interaction at the separation ϕ = π/2.

3.3.2.1 Superradiance at the separation ϕ = π

By using the input-output relation (Appendix A), the reflected field amplitude is given by

EL,out = −i
√

Γ1D

2vg

(
s̄(1)
ge + eiπ s̄(2)

ge

)
, (3.26)

where the steady-state coherence s̄jge = sjge(t→∞). From Eq. (3.25), we obtain the steady-state coherence

s̄jge as

s̄(1)
ge = eiπ s̄(2)

ge = − i2Ωc
2Γ1D + Γ′ − 2i∆

. (3.27)



37

Thus, the reflectivity of two atoms at ϕ = π is expressed as

r2(π) =
EL,out

ER,in
= − 2Γ1D

2Γ1D + Γ′ − 2i∆
, (3.28)

where the linewidth is enhanced by the superradiance, 2Γ1D + Γ′ shown in Fig. 3.7 (a). In the case of N

atoms, we can see the cooperative decay rate, (N − 1)Γ1D, from the last term of Eq. (3.25), leading to the

total decay rate Γtot = NΓ1D + Γ′. The reflectivity in Eq. (3.28) is consistent with the intuitive picture given

by the interacting spin Hamiltonian in Section 3.3.1.1.

3.3.2.2 Dipole-dipole interaction at the separation ϕ = π/2

Similarly, the reflectivity of two atoms at ϕ = π/2 is obtained by

r2(π/2) = −i
[

Γ1D

Γ1D + Γ′ − 2i(∆− Γ1D/2)
− Γ1D

Γ1D + Γ′ − 2i(∆ + Γ1D/2)

]
. (3.29)

The reflectivity consists of two Lorentzians with a linewidth Γ1D + Γ′ and frequency shift ±Γ1D

2 . Due to the

destructive interference of these two modes, the peak reflectivity is smaller than the single atom reflectivity

shown by blue curve in Fig. 3.7. Note that one can get the same results for both ϕ = π and π/2 by using

the transfer matrix method. For N ≥ 3 at ϕ = π/2, the atomic response is a mixture of superradiance

and dipole-dipole interaction, resulting in a complicated reflection spectrum. We will discuss an alternative

approach to study dipole-dipole interaction of N ≥ 3 atoms with the help of photonics crystal waveguides in

Section 3.4.

3.4 Photonic crystal waveguide near the band edge

In practice, the atoms must be trapped at ∼ 200 nm away from the surface of the SiO2 nanofiber, to protect

atoms from the surface potential in the trapping scheme of Refs. [61, 64]. Due to the atom-photon coupling

via evanescent fields, the projected coupling rate is only Γ1D/Γ
′ = 0.04 for Cs D2 line transition [120]. As

shown in Eq. (3.1), the enhanced coupling rate Γ1D can be achieved via slow light effect, vg � c, due to
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(a) (c)(b)

Figure 3.8: Schematic of a 1D photonic crystal waveguide and dispersion relation. (a) A typical disper-
sion relation of the 1D photonic crystal waveguide (PCW), illustrating the guided mode frequency ω versus
the Bloch wavevector k in the reduced first Brillouin zone near the band edge (kBE = π/a at ωBE). (b)
A schematic image of superradiance for N atoms near the band edge of the PCW (ωatom . ωBE). (c)
A schematic image of finite-range atom-atom interaction mediated by virtual photons inside the band gap
(ωatom & ωBE).

the flat dispersion relation of the Bloch modes near the band edge of a photonic crystal waveguide (PCW),

illustrated in Fig. 3.8 (a) [68].

Near the band edge, the PCW separates two collective effects, superradiance and dipole-dipole interac-

tion, either inside or outside of the band gap as illustrated in Fig. 3.8 (b,c). Outside the band gap, ω0 . ωBE,

because the Bloch function for a guided mode near the band edge approaches a standing-wave, symmetric op-

tical excitations can be induced in an array of trapped atoms, resulting in superradiant emission [18, 129]. On

the other hand, inside the band gap, ω0 & ωBE, the emitted field forms the localized mode with an exponen-

tially decaying envelope, leading to the finite-range dipole-dipole interaction between atoms by exchanging

virtual photons without dissipation into the waveguide [87].

3.4.1 Outside the band gap: Superradiance

Near the band edge ωatom . ωBE, the Bloch function for a guided mode approaches a standing-wave,

resulting in the effective spin Hamiltonian given by

Heff/~ = −
∑

j

(
∆ + i

Γ1D + Γ′

2

)
σ̃jee − i

Γ1D

2

∑

j 6=j′
(−1)j−j

′
σ̃jegσ̃

j′
ge, (3.30)

where we assume that atoms are localized at the center of each unit cell. The last term of Eq. (3.30) describes

the correlated decay between N atoms. Here, we introduce a dressed-state operator for N atoms as σ̃BNge =

1√
N

∑
j(−1)j σ̃jge. Then, in the weak excitation limit, the equation of motion for the operator mean value,
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sBNge =
〈
σ̃BNge

〉
, is simply written as

ṡBNge =

(
i∆− N · Γ1D + Γ′

2

)
sBNge − i

√
NΩc, (3.31)

where all the other modes are not driven by the guided mode due to the symmetric excitation near the band

edge. Therefore, the reflectivity of N atoms reads,

rN (∆) = − N · Γ1D

N · Γ1D + Γ′ − 2i∆
, (3.32)

which illustrates a superradinance of N atoms with enhanced total decay rate N · Γ1D + Γ′.

3.4.2 Inside the bandgap: Finite-range dipole-dipole interaction

Inside the band gap ωatom & ωBE, assuming that atoms are localized at the center of each unit cell, the

effective spin Hamiltonian is written by

Heff/~ = −
∑

j

(
∆− Γ1D

2
+ i

Γ′

2

)
σ̃jee +

Γ1D

2

∑

j 6=j′
(−1)j−j

′
σ̃jegσ̃

j′
gee
−κ|xj−xj′ |, (3.33)

where the single-atom coupling rate turns into the frequency shift Γ1D

2 inside the band gap. The last term

describes the finite-range dipole-dipole interaction parametrized by the decay constant κ. For simplicity, we

define a dimensionless interaction length Leff ≡ 1
κ|xj−xj+1| = 1

κa . Here, we consider a limiting case with

infinite-range interaction, Leff → ∞. In the weak excitation limit, the equation of motion for the dressed

operator, sBNge , is given by,

ṡBNge =

[
i

(
∆− N · Γ1D

2

)
− Γ′

2

]
sBNge , (3.34)

which shows an additional frequency shift of (N − 1) · Γ1D/2, relative to a localized case at Leff → 0.



40

Chapter 4

Design of a state-insensitive,
compensated nanofiber trap

4.1 Introduction

The development of a matter-light quantum interface using cold atoms and optical fibers has been an

active field of research over the past years [1]. Recent advances towards this goal include the observation

of electromagnetically induced transparency and the loading of ultracold atoms in hollow-core optical fibers

[52, 130–132], as well as the trapping and probing of atomic ensembles via the evanescent fields surrounding

tapered nanofibers [61, 133–135]. While prominent examples of off-resonant interaction between evanescent

waves and matter have used a plane dielectric geometry for atom optics and interferometry [136, 137] as well

as for surface traps of quantum degenerate gases [138–140], recent progress of atom-light interactions with

optical waveguides [52, 132–135] sets the stage for the fiber integration of free-space quantum systems in

a quantum network via quantum-state transfer between matter and light [26, 112, 115, 141] and for strong

coupling of single atoms and photons trapped near microcavities [34, 113, 142–145]. Furthermore, these

effective 1-dimensional (1D) systems may be applied for investigating quantum many-body phenomena in

low dimensions with long-range interactions mediated by the waveguide [74, 146–148].

One major drawback of many optical traps is that spatially inhomogeneous energy shifts U(r) generally

depend on the atomic electronic state, limiting long-lived trap and coherence times necessary for repeated

This chapter is largely based on Ref. [63], now corrected in Ref. [65].
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coherent operations [149]. This is traditionally alleviated by constructing a state-insensitive optical trap

designed to decouple atomic transition frequencies from the spatially varying potential of each electronic

state [150]. Specifically, at the “magic” wavelength conditions, the differential response of the dynamic

scalar polarizabilities α(0)(ω) for the ground and excited states α(0)
|g〉 , α

(0)
|e〉 at the optical frequency ω can be

tailored such that both levels are perturbed identically with α(0)
|g〉 = α

(0)
|e〉 . This leads to a vanishing differential

atomic level shift δUscalar = 0 [150–152]. Differential shifts for the hyperfine ground states can be minimized

by using far off-resonant beams, whereas Zeeman coherence can be conveniently protected by using linearly

polarized light in which the vector light shifts are zero.

Although such magic wavelengths can be used for nanofiber traps [153], the strongly guiding nature of the

waveguide inevitably leads to non-negligible longitudinal electric fields Ez in the evanescent region, which

are out of phase with the transverse field E⊥ = (Ex,Ey). Here, z refers to the direction parallel to the fiber

axis, while x and y are the coordinates perpendicular to the fiber axis. The resulting local polarization at lo-

cation r is in general elliptical even for linearly polarized input beams, and induces vector shifts Uvector. The

differential vector shift δUvector in turn manifests itself as a “fictitious magnetic field”, leading to inhomoge-

neous Zeeman broadening [154]. Furthermore, the spatially varying elliptical polarization of the evanescent

field on a scale δr < λ renders it difficult to cancel δUvector using bias fields, resulting in increased heating

rate [149] and limited coherence time [155].

Building upon the recent realization of a nanofiber trap as proposed in Ref. [156] and demonstrated in

Refs. [61, 62], we propose a promising strategy for a state-insensitive evanescent field trap. Differential scalar

shifts δUscalar between |g〉 and |e〉 are canceled using “magic” wavelength conditions. The inhomogeneous

Zeeman broadening δUvector caused by a forward propagating blue-detuned field E(fwd) is canceled by a

backward propagating field E(bwd) with a small relative frequency detuning δfb. Thus, our scheme can com-

pensate for the light shifts of the strongly guided evanescent waves to the first order in the space external to

the dielectric fiber, leading to favorable parameters for the realization of a long-lived fiber-integrated quantum

memory and resonant coupling to ultra-high quality micro-cavities based on optically trapped atoms.

This chapter is organized as follows: Section 4.2 presents our scheme for generating a state-insensitive

nanofiber trap. We start by introducing the general Hamiltonian for the atom-light dipole interaction (Sec-



42

tion 4.2.1); we next describe in details the spatially-varying electric field polarization of the evanescent wave

(Section 4.2.2) and then discuss the principle of evanescent optical traps around a nanofiber (Section 4.2.3).

We finally show how to cancel the subsequent vector (Section 4.2.4) and scalar (Section 4.2.5) light shifts in-

duced on the D2 transition of cesium. In Section 4.3 the benefits of using our proposed scheme are shown. We

first describe the total Hamiltonian used for calculating the trapping potentials (Section 4.3.1). We then plot

the adiabatic potentials obtained with our scheme and an estimate of residual differential shifts is provided

(Section 4.3.2). We proceed to our concluding remarks in Section 4.4.

4.2 A state-insensitive nanofiber trap

In this section, we discuss a calculation of the optical nanofiber trap for atomic cesium. We show that the light

shifts caused by the elliptically polarized components of the fiber’s evanescent field are not negligible. We

then propose a scheme to cancel these shifts and generate a two-color, state-insensitive, three-dimensional

trap for Cs atoms along the nanofiber.

4.2.1 AC Stark shift Hamiltonian

We start by considering the Hamiltonian for an atom interacting with an electric field E in the dipole approx-

imation:

Hls = −d ·E, (4.1)

where d is the electric dipole operator and E is the electric field operator. Taking into account the atomic

hyperfine structure, this Hamiltonian can be decomposed into its Cartesian components parameterized by the

dynamic polarizability α(ω) (see the explicit expressions in Appendix B) [65, 157, 158]:

Hls = H0 +H1 +H2

= −α(0)E(−) ·E(+) − iα(1) (E(−)×E(+))·F
2F

−∑
µ,ν

α(2)E
(−)
µ E

(+)
ν

3
F (2F−1)

[
1
2 (FµFν + FνFµ)− 1

3F
2δµν

]
,

(4.2)
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where α(0), α(1), and α(2) are the scalar, vector, and tensor atomic dynamic polarizabilities, E(+) and E(−)

are the positive and negative frequency components of the electric field, F = I+J is the atomic total angular

momentum operator, with I and J the nuclear and electronic angular momentum operators, µ, ν ∈ {x, y, z}

are components in the Cartesian basis, and H0, H1, and H2 are the terms associated with the scalar, vector,

and tensor light shifts, respectively.

For two-level atoms with ground and excited states |g〉, |e〉, the scalar shift Uscalar can be approximated

by Uscalar ∝ |E|2/δ for detunings δ = ω − ωa large compared to the excited state decay rate Γ, where ω

is the electric field angular frequency and ωa is the |g〉 → |e〉 transition frequency. The ground state will

experience a repulsive potential for blue-detuned (δ > 0) electric fields, and an attractive potential for red-

detuned (δ < 0) electric fields. The scalar dynamic polarizability α(0) is in general different for the states

|g〉 and |e〉, resulting in a differential scalar shift and a mismatch of the ground and excited state potentials.

For the typically anti-trapped excited state, near-resonant driving of the transition by an additional beam with

frequency ω2 ' ωa can cause significant heating of a trapped atom [149]. This situation can be remedied by

the use of “magic” wavelengths for which α(0)
|g〉 = α

(0)
|e〉 [150, 152].

The vector term H1 of Eq. (4.2) induces a Zeeman-like splitting proportional to a projection of the

total atomic angular momentum F and arises from a so-called “fictitious magnetic field” proportional to the

ellipticity of the electric field [154]. In the case of a free-space plane wave propagating along the z axis, H1

can be expressed in terms of the Stokes operators S = (S0, Sx, Sy, Sz) as [159]:

H1 ∝ α(1)(ω)ε
Fz
F
, (4.3)

where ε = 〈Sz〉/〈S0〉 = |E+1|2−|E−1|2
|E+1|2+|E−1|2 is the ellipticity of the electric field. For an elliptically polarized

beam, the vector shift can be as large as the scalar shift, and can, for example, be used to cancel the differential

light shifts of Rubidium atoms confined in a 3D optical lattice [160].

The last term H2 in Eq. (4.2) represents the tensor shift. It vanishes for atoms with total angular momen-

tum F = 1/2 [159]. In the case of the D2 transition of Cs that we consider here, it will depend only on the

electronic angular momentum J for detunings large compared to the 6P3/2 excited state hyperfine structure,
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Figure 4.1: Electric field intensity of HE11 mode. (a) An input beam is shown by red thick arrow with its
polarization indicated by the thin arrow along the x axis. The gray shaded structure represents a nanofiber.
(b) Field intensity |E|2 in the plane transverse to the fiber for a single, x-polarized beam at λ = 935 nm. |E|2
is normalized to the intensity just outside the fiber I0 = |E(r = a+, φ = 0)|2, with a radius a = 250 nm and
a+ = a+ |r − a| , r → a. The red dashed arrow indicates the input polarization.

and vanish for J = 1
2 [157, 158]. It will therefore only act on the excited state of the Cs D2 transition,

inducing shifts on the Zeeman mF ′ sublevels proportional to m2
F ′ .

4.2.2 HE11 mode - Electric field distribution and polarization

When the radius a of an optical fiber is reduced well below the propagating field wavelength λ, the resulting

cladding-to-air waveguide supports only the “hybrid” fundamental mode HE11 [133, 161]. Here, we consider

an infinite SiO2 cylindrical waveguide of radius a = 250 nm. In this strongly guiding regime, a significant

fraction of energy of the HE11 mode is carried in the form of an evanescent wave outside of the nanofiber.

The fundamental mode HE11 is often referred to as “quasi-linear” when excited with a linearly polarized

input beam. However, for a dielectric waveguide in the strong-guiding regime with indices of refraction

n1 ≈ 1.5 inside the waveguide and n2 ≈ 1.0 outside, the HE11 mode actually exhibits a significant ellipticity

for a . λ/2, leading to vector shifts of the Zeeman sublevels. Formally, for a linearly polarized input, the

evanescent field E = (Ex, Ey, Ez) of the fundamental mode propagating in the fiber can be expressed as
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follows for r ≥ a [133, 161, 162]:

Ex(r, φ, z, t) = Alin
β11J1(h11a)

2q11K1(q11a)
(4.4a)

×[(1− s11)K0(q11r) cos(ϕ0) + (1 + s11)K2(q11r) cos(2φ− ϕ0)]ei(ωt−β11z),

Ey(r, φ, z, t) = Alin
β11J1(h11a)

2q11K1(q11a)
(4.4b)

×[(1− s11)K0(q11r) sin(ϕ0) + (1 + s11)K2(q11r) sin(2φ− ϕ0)]ei(ωt−β11z),

Ez(r, φ, z, t) = iAlin
J1(h11a)

K1(q11a)
K1(q11r) cos(φ− ϕ0)ei(ωt−β11z), (4.4c)

with

s11 =

[
1

(h11a)
2 +

1

(q11a)
2

] [
J ′1(h11a)

h11aJ1(h11a)
+

K ′1(q11a)

q11aK1(q11a)

]
, (4.5a)

h11 =
√
k2

0n
2
1 − β2

11, (4.5b)

q11 =
√
β2

11 − k2
0n

2
2. (4.5c)

Here, (r, φ) denote the cylindrical coordinates in the transverse plane (x,y) (Fig. 4.1(b)), ϕ0 indicates the

polarization axis for the input polarization relative to the x axis, n1 and n2 are the indices of refraction inside

and outside the waveguide, β11 is the mode propagation constant, 1/h11 is the characteristic decay length

for the guided mode inside the fiber, 1/q11 is the characteristic decay length for the guided mode outside the

fiber, Alin is the real-valued amplitude for the linearly polarized input, Jl is the l-th Bessel function of the

first kind, and Kl is the l-th modified Bessel function of the second kind.

It is clear from Eq. (4.4) that the electric field intensity |E|2 = |Ex|2 + |Ey|2 + |Ez|2 is not azimuthally

symmetric. For a incident beam linearly polarized along the x axis, i.e., ϕ0 = 0, the intensity at the fiber’s

outer surface is maximum for φ = 0, π and minimum for φ = ±π/2, as shown in Fig. 4.1(b). This azimuthal

asymmetry can be used to confine atoms along azimuthal direction.

Notably, the evanescent modes of the nanofiber have a significant longitudinal component Ez along the

fiber propagation direction, which is π/2 out-of-phase with the transverse components (Ex, Ey) (Eq. (4.4c)).

At the outer fiber surface, Ez is maximum for φ = ϕ0, ϕ0 + π (i.e., along the input polarization axis), and
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(a) (b) (c)

Figure 4.2: Time-dependent electric field of a single incident beam. Electric field E(x, y, z, t) of a single
propagating beam in the plane y = 0. The input beam is x-polarized. The electric field Re[E(x, y, z, t)], with
E(x, y, z, t) defined as in Eq. 4.4, is shown by the blue arrows. The red arrow indicates the beam propagation
direction. The field is shown for (a) ωt = 0, (b) ωt = π/2, and (c) ωt = π.

vanishes for φ = ϕ0 ± π/2. For an x-polarized input at 935 nm and a nanofiber of radius a = 250 nm,

|Ez|2
|E|2 (r = a+, φ = 0) ' 20%. As a consequence, the polarization of a single propagating beam will be

elliptical everywhere except for φ = ϕ0 ± π/2. The ellipticity of the beam will be maximum for φ =

ϕ0, ϕ0 + π as illustrated in Fig. 4.2, giving rise to significant vector shifts. We can rewrite Eqs. (4.4) as

follows:

Ex(r, φ, z, t) = Aei(ωt−β11z), (4.6a)

Ey(r, φ, z, t) = Bei(ωt−β11z), (4.6b)

Ez(r, φ, z, t) = iCei(ωt−β11z), (4.6c)

where A, B, and C are real functions of r and φ. In particular, if one combines a forward-propagating beam

E(fwd) expressed as Eq. (4.6c) with a backward-propagating beam of same amplitude and input polarization

E(bwd) = Aei(ωt+β11z)ex + Bei(ωt+β11z)ey − iCei(ωt+β11z)ez with the unit vectors (ex, ey, ez) in the

Cartesian basis, the total field can be expressed as,

E(tot) = E(fwd) + E(bwd) = 2 [A cos(β11z)ex +B cos(β11z)ey + C sin(β11z)ez] · eiωt. (4.7)

The resulting electric field E(tot) = E(fwd) + E(bwd) forms an optical lattice with spatially rotating linear
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(a) (b) (c)

Figure 4.3: Time-dependent electric field of a standing wave Total electric field E(x, y, z, t) for two
counter-propagating beams in the plane y = 0. The input beams are x-polarized. The electric field
Re[E(x, y, z, t)] is shown by the blue arrows. The red arrows indicate the beams propagation directions.
The electric field is shown for (a) ωt = 0, (b) ωt = π/4, and (c) ωt = π. As opposed to Fig. 4.2, the
polarization of the electric field is linear at any point |r| > a (i.e., the polarization vector has no ellipticity
and E does not rotate in time at a given position r).

polarization, as illustrated in Fig. 4.3.

4.2.3 3D nanofiber trap

By appropriately combining blue- and red-detuned fields Ered and Eblue in an optical nanofiber, an atomic

trapping potential can be engineered from the evanescent electric fields, in the presence of van der Waals

potential [156]. The red-detuned field Ered, as well as the van der Waals force, attract the atoms towards

the nanofiber, while the blue-detuned field Eblue repels the atoms from the nanofiber, preventing atoms from

crashing onto the nanofiber surface. Because of the different radial decay lengths of the red- and blue-detuned

evanescent fields, one can find a radial potential minimum at ∼ 200 nm away from the nanofiber surface

by appropriately choosing the respective powers. The longitudinal confinement along the nanofiber axis

is achieved by launching an additional counterpropagating red-detuned field, which generates a 1D optical

lattice. Both blue- and red-detuned fields are linearly polarized along the x axis at the waveguide input to

ensure azimuthal confinement for trapped atoms.

4.2.4 Cancellation of the vector shifts

The scheme that we propose makes use of four beams with parallel linear input polarizations along the x axis

shown in Fig. 4.4. As discussed in Section 4.2.2, the vector shifts of both the ground and excited states can
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Figure 4.4: Trap scheme for cancellation of the vector shifts. Red (blue)-detuned beams are shown by red
(blue) thick arrows. Input polarizations are shown by the thin arrows along the x axis.

be canceled for both the red and blue-detuned fields by using pairs of counter-propagating beams. In the x-z

plane, the vector shift for each pair becomes H1 ∝ (α(1)(ω(fwd))− α(1)(ω(bwd)))
Fy
F with ω(fwd) ' ω(bwd),

where ω(fwd,bwd) are the angular frequencies for the forward and backward propagating beams, and δ±δfb/2

are their detunings from the atomic transition frequency ωa, with two-photon detuning δfb = ω(fwd)−ω(bwd).

For an atom in the x-z plane, the total electric field is also contained in the x-z plane, such that the scalar

product
(
E(−) ×E(+)

)
· F in Eq. (4.2) is proportional to Fy .

In the case of the red-detuned lattice, ω(fwd)
red = ω

(bwd)
red and H

(red)
1 = 0, precisely as in Ref. [61].

Adding a blue-detuned lattice with δfb = 0 would result in two superimposed lattices with unmatched spatial

periods 2π/βred
11 , 2π/βblue

11 . To avoid this effect, the interference between the counter-propagating blue-

detuned fields E
(fwd)
blue and E

(bwd)
blue can be averaged over times that are short compared to the time scale of

the motional and internal dynamics of a trapped atom by offsetting the frequencies of the two fields by

δfb � (ωtrap, δhfs), where ωtrap and δhfs are the trap angular frequency and the hyperfine splitting for the

ground state, respectively. This will also suppress spurious two-photon processes (e.g., two-photon Stark

shift [163]) as well as parametric heating due to intensity modulation [164].

For ω(fwd,bwd)
blue = ωa + (δ ± δfb/2), we achieve a vector shift cancellation for the blue-detuned field to

the first order in 1/δ, namely

H
(blue)
1 ∝ δfb

δ2

Fy
F

+O(1/δ3). (4.8)

For typical values of δ = 85 THz and δfb = 30 GHz, δfb/δ = 3.5× 10−4.
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Figure 4.5: Magic wavelengths of the Cs D2 line. We display the light shift Uls for a linearly polarized beam
with constant intensity 2.9 × 109W/m2 around (a) the blue-detuned magic wavelength at λblue ' 685 nm,
and (b) red-detuned magic wavelength at λred ' 935 nm (as corrected in Ref. [65]).

4.2.5 Magic wavelengths for an evanescent field trap

To make the nanofiber trap state-insensitive, it is necessary to cancel the differential scalar shift δUscalar of

the 6S1/2 and 6P3/2 states by operating the trap at the magic wavelengths, as proposed in Ref. [153], in

which only the effects of the scalar and tensor shifts were considered. Here we deal with the full complexity

of the vector field E(r) and the resulting vector light shifts. We numerically determine the red-detuned

and blue-detuned magic wavelengths for the 6S1/2 → 6P3/2 transition [150, 152, 157, 158, 165, 166].

The calculation includes the contributions of all the hyperfine levels F and Zeeman sublevels mF of the

electronic states {6S1/2, · · · , 15S1/2}, {6P1/2, · · · , 11P1/2}, {6P3/2, · · · , 11P3/2}, {6D3/2, · · · , 11D3/2},

and {6D5/2, · · · , 11D5/2}, given in Table I and II in Ref. [65]. Further complete table of higher electronics

states can be found in Ref. [158] and these contributions are discussed in Appendix B.2. The effect of the

tensor shifts on the 6P3/2 excited state is manifest in the quadratic splitting of the mF ′ sublevels (Fig. 4.5).

We find a red-detuned magic-wavelength located around 935nm, in accordance with the previously published

values [152, 166]. In the next sections, we will use the value λred = 935 nm, which is determined by the

average over magic wavelengths for different mF ′ where δUls for the 6P3/2 excited state |F ′ = 4,mF ′〉 is

canceled [65]. We choose F ′ = 4 due to its relevance to coherent two-photons processes [26, 112, 141].

There are several blue-detuned magic wavelengths [153, 166]. For our trap, we use the magic wavelength

λblue at approximately 685 nm, determined in the same fashion as red-detuned magic wavelength [65, 153].
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Since this is the second closest blue-detuned magic wavelength to 852 nm, it has the second highest ground-

state polarizability and therefore requires the second lowest optical intensity to generate the required trapping

potential (we do not consider the magic wavelength at 792 nm, as it is too close to the 8S1/2 to 6P3/2

transition at 794 nm).

We have neglected higher order processes in our analysis, including two-photon and electric quadrupole

transitions, near 685 nm [167].

4.3 Numerical results: Trapping potentials

Using the atomic interaction Hamiltonian in the dipole approximation with the actual polarization profile of

the evanescent field, we proceed to analyze the adiabatic potentials for the nanofiber trap for a Cs atom in its

6S1/2 ground and 6P3/2 excited states.

4.3.1 Total potential

For a specific atomic state of Cs, the total atomic trap potential Utrap consists of the total light-shift potential

Uls calculated from the full Stark shift Hamiltonian (Eq. (4.2)), as well as the surface interaction potential of

an atom with the dielectric waveguide Usurface, namely

Utrap = Uls + Usurface. (4.9)

The Casimir-Polder interaction between the atom and dielectric surface has a significant effect on the

atomic motion at distance scales near 100 nm [144, 168–171]. The surface potential of a ground state Cs

atom near a planar dielectric surface can be reasonably approximated by the van der Waals potential, which

decays as d−3, where d = r − a:

Usurface = −C3

d3
, (4.10)

where we use C3(6S1/2)/h = 1.16 kHz µm3 [145]. Because the retarded Casimir-Polder forces (d−4 scal-

ing) decrease faster away from the surface than the van der Waals forces, using Usurface overestimates the
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Figure 4.6: Trap potential along the radial direction. Radial dependence of the trapping potentials of the
ground and excited states using the magic wavelengths and the configuration shown in Fig. 4.4. All beams
are polarized along φ = 0 (i.e., ϕ0=0). The 935 nm beams each have a power of 0.95 mW. The 685 nm
beams each have a power of 16 mW. (a) Radial potentials along φ = 0 (i.e., ϕ0 = 0). The trap minimum for
6S1/2 is located about 200 nm from the fiber surface. Both electronic ground and excited states are trapped,
with residual splittings of the excited states due to the tensor shifts. (b) Radial potential along φ = π/2 (as
corrected in Ref. [65]).

surface interaction at the trap location d ≈ 200 nm. Additionally, the curvature of the nanofiber cylindrical

geometry reduces the potential strength even further [145, 172]. The d−3 scaling of the van der Waals expres-

sion for a planar surface is therefore an overestimate of the actual surface potential. We use it for simplicity in

the calculations presented here, with more complete expressions for Cs presented in Ref. [145]. Furthermore,

we neglect any dependence on the mF ′ sublevels of the excited state 6P3/2 for the Casimir-Polder shift, and

simply approximate C3(6P3/2) ≈ 2 C3(6S1/2) [173].

We calculate the adiabatic potential of Eq. (4.9) by diagonalizing the total interaction Hamiltonian

H = Hls + Hsurface at each point in space, where Hsurface is the scalar surface Hamiltonian. At each

point r(r, φ, z), we obtain a set of eigenstates and the corresponding eigenenergies. These eigenstates are

superpositions of the |F,mF 〉 bare Zeeman sublevels. Due to the complex polarization of the trapping fields,

the energy eigenstates are not necessarily eigenstates of any projection of the angular momentum operator.

4.3.2 State-insensitive trapping potential

Now, we analyze our proposed “magic compensation” scheme (as illustrated in Fig. 4.4), demonstrating how

using magic wavelength beams and compensating the trap ellipticity can reduce inhomogeneous broadening
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Figure 4.7: Trap potential along the azimuthal direction. Azimuthal dependence of the trapping potential
of the ground and excited state for the “magic compensated” trap with the parameters used in Fig. 4.6, for
r − a = 200 nm. The effect of the compensation beam in Fig. 4.4 is to suppress the vector shifts and to
reduce the ground-state splittings δνφ in the transverse plane for φ 6= 0, π (as corrected in Ref. [65]).

of the Zeeman sublevels in a nanofiber trap. For this trap, we use a pair of counter-propagating x-polarized

(ϕ0 = 0) red-detuned beams Ered = E
(fwd)
red + E

(bwd)
red (Pred = 2 × 0.95 mW) at the “magic” wavelength

λred = 935 nm, forming a 1D optical lattice. Counter-propagating, x-polarized blue-detuned beams at the

second magic wavelength λblue = 685 nm are used with a power Pblue = 2 × 16 mW. The resulting

interference is averaged out by detuning the beams by δfb = 30 GHz, as explained in section 4.2.4, leading

to a first-order cancellation of vector light shifts as expressed by Eq. (4.8). The beam intensities are chosen to

generate a trap of similar depth as the one demonstrated in Ref. [61]. The resulting adiabatic potential Utrap

allows for state-insensitive 3D confinement of cold Cs atoms around a SiO2 nanofiber of radius a = 250 nm.

In Fig. 4.6, we show the radial trapping potential Utrap(r, φ, z) of the ground and excited states for z = 0,

φ = 0 (x-axis) in Fig. 4.6 (a) and for z = 0, φ = π/2 (y-axis) in Fig. 4.6(b). Because the trapping fields

are now effectively linearly polarized, the ground states are degenerate at both φ = 0 and φ = π/2. In

contrast to a non-magic wavelength trap, the excited states are trapped with gradients that closely map that

of the ground states. The sublevels of 6P3/2 are still non-degenerate due to the tensor shifts. For Pred, Pblue

specified above, we find that the trap depth is Udepth = −0.4 mK, located at r − a ' rtrap − a = 200 nm

and φ = 0, π.

The azimuthal confinement of the atoms is shown by Fig. 4.7. The inhomogeneous Zeeman broadening

from the ellipticity of Eblue is greatly reduced thanks to the compensation scheme of Fig. 4.4. It is non-zero,
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Figure 4.8: Trap potential along the axial direction. Axial dependence of the trapping potentials of the
ground and excited states for the “magic compensated” trap with the parameters used in Fig. 4.6 for r − a =
200 nm. (a) Longitudinal potential along φ = 0. (b) Longitudinal potential along φ = π/2 (as corrected in
Ref. [65]).

however, as expressed by Eq. (4.8). The remaining splitting of the F = 4 ground state is δν ≈ 700 Hz,

limiting the coherence time to τ . 1/δν = 1.4 ms. In the case of perfect cancellation of the vector shift with

δfb = 0, a residual non-zero ground state splitting δνφ would still arise from the different scalar dynamic

polarizabilities of the 6S1/2 F = 3 and F = 4 ground states [157]. For atoms in their azimuthal motional

ground state |n〉φ = |0〉φ, the single-atom distribution half-width is σrφ ' 30 nm (or σφ ' 4◦) with

azimuthal trap frequency νtrapφ ' 44 kHz obtained from a harmonic fit of the potential around φ = π.

We estimate a spin-wave coherence time τm = 1/∆ (δνφ) ≤ 30 ms, coming from the spread ∆ (δνφ) =

δνφ (φ = π) − δνφ (φ = π + σφ) ≈ 30 Hz of the atomic ground states for the F = 3 → F = 4 transition

frequency. We note that the longest achievable coherence time in the “magic compensated” adiabatic potential

in the absence of ground-state splitting δνφ would be limited by spontaneous Raman scattering driven by the

trapping beams [152].

Finally, we also plot the axial potentials in Fig. 4.8, showing the confinement for both the ground and

excited states. Due to the magic wavelengths, the excited states are trapped in all directions. This results in

greatly suppressed dipole-force fluctuations, allowing for on-resonance driving of the optical transition.
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4.4 Conclusion

We have proposed and analyzed in detail a scheme for a state-insensitive optical nanofiber trap which utilizes

realistic experimental parameters. The “magic” trapping wavelengths of 935 nm and 685 nm for Cs atoms

are readily available using semiconductor laser sources, and require a reasonable power for trapping. Tapered

optical fibers can be made with sub-wavelength diameters and high transmission, as has been demonstrated

experimentally [174, 175]. In Ref. [64] we describe an experiment for trapping Cs using Fig. 4.4 configura-

tion and explicitly demonstrate features of the “compensated magic” trap for a nanofiber.

Furthermore, extension to other nanoscopic dielectric waveguides [176] would make evanescent optical

trapping possible in integrated hybrid quantum devices [177]. It is worthwhile to note that the compensation

scheme of the vector shift would work at any wavelength, increasing the ground state coherence time in a

straightforward manner.

The proposed “magic compensated” scheme allows for in-trap resonant processes, increasing the trap

lifetime under near-resonant driving of the transition, such as optical pumping. The scattering rate in this

trap is similar to the one obtained with the parameters of Ref. [61], but the mismatch between the ground

and excited states potentials could lead to large heating in Ref. [61]. However, it is not clear that the “magic

compensated” trap will be more robust to experimental fluctuations, and experimental studies will be required

to investigate the possible limitations of the trap lifetime. An important advantage of the proposed scheme

is the large reduction of the splitting of the ground state manifolds compared to the scheme used in Ref.

[61], therefore leading to increased ground state coherence time. These properties will make quantum-state

engineering more feasible in such a trap, allowing for a wide range of experiments including creating quantum

memories, coupling of single atoms and ensembles to optical or mechanical resonators, and studying 1D spin

chains.
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Chapter 5

Demonstration of a state-insensitive,
compensated nanofiber trap

5.1 Introduction

An exciting frontier in quantum information science is the integration of otherwise “simple” quantum el-

ements into complex quantum networks [1]. The laboratory realization of even small quantum networks

enables the exploration of physical systems that have not heretofore existed in the natural world. Within this

context, there is active research to achieve lithographic quantum optical circuits, for which atoms are trapped

near micro- and nano-scopic dielectric structures and “wired” together by photons propagating through the

circuit elements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear opti-

cal circuits and thereby the capability to build quantum networks component by component.

Creating optical traps compatible with the modal geometries of micro- and nano-scopic optical resonators

and waveguides [176, 178] is a long-standing challenge in AMO physics [179–181]. ‘Optical tweezers’ with

tight focussing have succeeded in trapping single atoms within small volumes ∼ λ3 [182], but the focal

geometries of conventional optical elements are not compatible with atomic localization ' 100 nm near

microscopic photonic structures [178, 183]. Moreover, spatially inhomogeneous energy shifts U(r) on a sub-

wavelength scale generally depend on the atomic internal state, limiting long-lived trap and coherence times

due to single-photon scattering events with energy much larger than the recoil energy and to spatially depen-

dent frequency shifts for the components of atomic superpositions [63, 149, 184]. Nevertheless, important

This chapter is largely based on ref. [64], as corrected in Ref. [65].
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advances have been made by loading ultracold atoms into hollow-core optical fibers [52, 131, 132, 185, 186]

and by trapping atoms in the evanescent fields of nanoscale waveguides [61, 62, 120, 134, 135, 156, 187–189].

Following the landmark realization of a nanofiber trap [61, 62, 189], in this chapter, we describe the

implementation of a state-insensitive, compensated nanofiber trap for atomic Cesium, as illustrated in Fig.

5.1 [63, 65]. For our trap, differential scalar shifts δUscalar between ground and excited states are eliminated

by using magic wavelengths for both red- and blue-detuned trapping fields [150]. Inhomogeneous Zeeman

broadening due to vector light shifts δUvector is suppressed by way of pairs of counter-propagating red- and

blue-detuned fields as described in Chapter 4

The compensation of scalar and vector shifts results in a measured transition linewidth Γ/2π = 5.7± 0.1

MHz for Cs atoms trapped 215 nm from the surface of an SiO2 fiber of diameter 430 nm, which should be

compared to the free-space linewidth Γ0/2π = 5.2 MHz for the 6S1/2, F = 4→ 6P3/2, F
′ = 5 Cs transition.

Probe light transmitted through the 1D array of trapped atoms exhibits an optical depth dN = 66± 17. From

the measurements of optical depth and numberN of atoms, we infer a single-atom attenuation d1 = dN/N '

0.08. The bandwidth ΓR for reflection from the 1D array is observed to broaden with increasing N , in direct

proportion to the entropy for the multiplicity of trapping sites.

5.2 Trap potential with state-insensitive, compensated scheme

Our trapping scheme is based upon the analyses [120, 134, 156, 187] and the demonstrations in Refs. [61, 62,

189]. A dielectric fiber in vacuum with radius a smaller than a wavelength supports the “hybrid” fundamental

mode HE11, which carries significant energy in its evanescent field [161]. For linear input polarization

at angle φ0, an appropriate combination of attractive and repulsive HE11 fields creates a dipole-force trap

external to the fiber’s surface with trap minima at φ− φ0 = 0, π.

Following these principles, we have designed a “magic compensation” scheme that traps both ground

and excited states and greatly reduces the inhomogeneous broadening for atomic sublevels as described in

Chapter 4. By contrast, uncompensated schemes do not provide a stable trapping potential for excited states

and suffer large dephasing between ground states over a single vibrational period [61, 62, 189].
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Figure 5.1: Adiabatic trapping potential Utrap for a state-insensitive, compensated nanofiber trap for
the 6S1/2, F = 4 states in atomic Cs outside of a cylindrical waveguide of radius a = 215 nm. Utrap
for the substates of the ground level F = 4 of 6S1/2 (excited level F ′ = 5 of 6P3/2) are shown as black
(red-dashed) curves. Due to the complex polarizations of the trapping fields, the energy levels are not the
eigenstates of the angular momentum operators, but rather superposition states of the Zeeman sublevels).
(a)(i) azimuthal Utrap(φ), (ii) axial Utrap(z), and (b) radial Utrap(r−a) trapping potentials. Input polarizations
for the trapping beams are denoted by the red and blue arrows in the inset in (b).

As shown in Fig. 5.1, our trap consists of a pair of counter-propagating x-polarized red-detuned beams

at the near magic wavelength [150] λred = 937 nm to form an attractive 1D optical lattice. A second pair

of beams at the “magic” wavelength λblue = 686 nm with detuning δblue provides a repulsive contribution to

Utrap, thereby protecting the trapped atoms from the short-ranged attractive surface interaction. To avoid a

standing wave incommensurate with that at 937 nm, the blue-detuned beams have a relative detuning δfb =

382 GHz and effectively yield linearly polarized light at all positions, where vector light shifts are suppressed

by δfb/δblue ' 4× 10−3 [63]. The resulting potential Utrap allows for state-insensitive, 3D confinement of Cs

atoms along a SiO2 nanofiber for the 6S1/2 ground and 6P3/2 excited states. Note that we didn’t use the exact
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Figure 5.2: Schematic of the setup for a state-insensitive, compensated nanofiber trap. VBG: Volume
Bragg Grating, DM: Dichroic mirror, PBS: Polarizing beamsplitter, and APD: Avalanche photodetector. The
inset shows a SEM image of the nanofiber for atom trapping.

magic wavelength, 685 nm and 936 nm for 6S1/2, F = 4 → 6P3/2, F
′ = 5 transition in our experiment,

since we used the incorrect values of the lifetime and wavelength of the higher excited states, leading to the

slightly different evaluation of the magic wavelength by 1nm (as corrected in Ref. [65]).

We calculate the adiabatic potential Utrap in Fig. 5.1 from the full light-shift Hamiltonian (i.e., scalar,

vector, and tensor shifts), together with the surface potential for Casimir-Polder interactions with the dielectric

[63, 65]. The red-detuned beams each have power 0.4 mW, while the blue-detuned beams each have power 5

mW. The trap depth at the minimum is Utrap = −0.27 mK located about 215 nm from the fiber surface, with

trap frequencies {νρ, νz, νφ}/2π = {199, 273, 35} kHz.

5.3 Experimental procedure

An overview of our experiment is given in Fig. 5.2. A cloud of cold Cesium atoms (diameter ∼ 1 mm)

spatially overlaps the nanofiber. Cold atoms are loaded into Utrap during an optical molasses phase (∼ 10 ms)

and are then optically pumped to 6S1/2, F = 4 for 0.5 ms. The red- and blue-detuned trapping fields are

constantly ‘on’ throughout the laser cooling and loading processes with parameters comparable to those in

Fig. 5.1.

For the transmission and reflection measurements, the trapped atoms are interrogated by a probe pulse

(1 ms) with frequency ωP , optical power Pprobe ' 0.1 pW, and detuning δ = ωP − ωA relative to the

F = 4 ↔ F ′ = 5 transition frequency ωA. The probe pulse is combined with the forward propagating

trapping fields by a pair of Volume Bragg Gratings (VBGs) at the fiber input. The strong trapping beams are



59

then filtered by a pair of VBGs at the fiber output, with the transmitted probe pulse monitored by a single-

photon avalanche photodiode. The polarization of the probe laser is aligned along the trapping beams in order

to maximize the overlap with the trapped atoms. We then shelve the atoms to F = 3 with a depumping pulse,

and probe the fiber transmission with a reference pulse to determine the input power of the probe pulse.

As described in Section 5.7.1, the polarizations of the trapping and probe beams are aligned by obser-

vations of Rayleigh scattering [189]. From a simple model described in Section 5.7.1, we infer a transverse

polarization vector ~Ein(z = 0) = (Ex, iEy) with β = arctan(Ey/Ex) ' 12 ± 3◦ for the probe beam. The

principal axes of the polarization ellipse rotate in an approximately linear fashion along z in the trapping

region by an angle φ(z) ' φ0 + (dφ(z)/dz)δz, where φ0 ' 16◦ and dφ(z)/dz ' 12◦/mm. These results

are incorporated into our analysis of the measured transmission and reflection spectra of the trapped atoms

(see details in Section 5.7.2).

5.4 Transmission spectroscopy of trapped atoms

The lifetime for atoms in our nanofiber trap is determined from the decay of the resonant optical depth

dN ' Nσ0/Am as a function of storage time τ . Here, N is the number of trapped atoms, σ0 = λ2/(2π)

is the resonant absorption cross-section, and Am = Pprobe/Iprobe(~rmin) is the effective optical mode area of

the probe’s evanescent wave. We observe that dN decays exponentially with time constant τ0 = 12 ± 1 ms.

With pulsed polarization-gradient cooling, the lifetime is extended to τPG = 140 ± 11 ms. We are currently

characterizing the intensity and polarization noise spectra of the trapping fields to reduce parametric heating

[164] with the goal of extending the trap lifetime towards the limit τr ∼ 30 s set by recoil heating.

Fig. 5.3(a) displays the transmission spectra T (N)(δ) for the 1D atomic array. The linewidth Γ/2π =

5.8 ± 0.5 MHz is determined from a model (solid black line) incorporating fiber birefringence and linear

atomic susceptibility (see details in Section 5.7.2) in the low density regime (τ = 299 ms). The fitted line

profile (solid red line) yields a maximum resonant optical depth dN = 66 ± 17 at τ = 1 ms. Significantly,

our magic, compensated scheme has no discernible shift of the transition frequency ∆A/2π ' 0± 0.5 MHz

relative to the free-space line center. The measured linewidths from 4 data sets average to Γ/2π ' 5.7± 0.1
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Figure 5.3: Transmission spectroscopy of trapped atoms. (a) Probe transmission spectra T (N)(δ) for N
trapped atoms as a function of detuning δ from the 6S1/2, F = 4 → 6P3/2, F

′ = 5 transition in Cs for
x-polarized input. From fits to T (N)(δ) (full curves), we obtain the optical depths dN at δ = 0 and linewidths
Γ from a model that incorporates the polarization measurements in Fig.5.2 (b),(c). T (N)(δ) (i) at τ = 299 ms
with dN = 1.2± 0.1 and Γ/2π = 5.8± 0.5 MHz and (ii) at τ = 1 ms with dN = 66± 17. (b) Measurement
of the power Pabs absorbed by the trapped atoms as a function of input power Pin, together with the associated
optical depth dN = 18 ± 2 from curve (ii) (red line) of the inset, allow an inference of N = 224 ± 10. The
linewidth Γ/2π = 5.5± 0.4 MHz and dN = 1.1± 0.1 are determined from curve (i) (black line) of the inset.

MHz, as compared to the free-space radiative linewidth Γ0/2π = 5.2 MHz for the 6S1/2 ↔ 6P3/2 transition.

By contrast, for a non-compensated scheme without magic wavelengths for Cs [189], the transition frequency

is shifted by ∆A/2π ' 13 MHz and the linewidth is broadened to Γ/2π ' 20 MHz.

The broadening of the absorption linewidth above Γ0 is predicted for our nanofiber trap because of the

enhanced atomic decay into the forward and backward modes of the nanofiber at rate Γ1D [120]. We estimate

that an atom at the minimum of Utrap decays into the fiber at rate Γ(th)
1D /2π ' 0.35 MHz, leading to a predicted

linewidth Γtot/2π ' 5.3 MHz. Additional broadening arises from the tensor shifts of the excited 6P3/2, F
′ =



61

5 manifold (' 0.7 MHz) and Casimir-Polder shifts (' 0.1 MHz), as well as technical noise of the probe laser

(' 0.3 MHz). While each of these contributions is being investigated in more detail, the spectra in Fig. 5.3

provide strong support for the effectiveness of our state-insensitive, compensated trapping scheme [63, 65].

To determine the number of trapped atoms, we carry out a saturation measurement at a storage time τ = 1

ms with δ = 0 MHz. As shown in Fig. 5.3(b), we measure the power Pabs absorbed by the trapped atomic

ensemble in the limit of high saturation s = P/Psat � 1 [189]. As described in Section 5.7.3, the fitted curve

(blue solid line) yields a number of trapped atoms N = 224± 10. Together with the optical depth dN = 18,

we find an optical depth per atom d1 = (7.8 ± 1.3) × 10−2 for Fig. 5.3(b). A similar measurement in the

SM with dN = 43± 10 and N = 564± 92 yields d1 = (7.7± 2.2)× 10−2. These measurements of d1 and

Γtot were separated by four months and yield consistent results for the nanofiber trap. We thereby estimate

Γ1D/2π ' 0.2 MHz [124], similar to Γ(th)
1D .

5.5 Reflection spectroscopy of trapped atoms

The reflection from the 1D atomic array results from backscattering of the electromagnetic field within the

1D system [124]. The randomness in the distribution of N atoms among nsite trapping sites can greatly affect

the reflection spectrum RN (δ). For each random arrangement Λ of atomic occupation along the nanofiber

(e.g., Λ = {1, 0, 0, · · · 1, 1, 0}), there is a unique narrow reflection spectrum whose resonance frequency δΛ

is shifted from δ = 0. δΛ depends sensitively on the configuration Λ due to the intricate interplay between

coherent interference and dispersive phase shifts during the quantum walk of the probe field along the 1D

atom array with non-integer klattice/kprobe, where klattice (kprobe) is the propagation constant for the lattice

(probe) field. An ensemble average over Λ thus leads to a reflection spectrum RN (δ) that is significantly

broadened relative to the transmission spectra in Fig. 5.3.

In Fig. 5.4(a), we observe RN (δ) from the 1D atomic array, where the measured Lorentzian linewidth

ΓR is significantly broadened from Γ0 for large N (with N � nsite). The solid curves are for RN (δ) from

Monte-Carlo simulations for the atomic distribution based on the transfer matrix formalism [123]. In order

to quantify the microscopic state of disorder for the system, we define an entropy S for the 1D atomic array
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Figure 5.4: Reflection spectroscopy of trapped atoms. (a) Normalized reflection spectra RN (δ)/RN (0)
from the 1D atomic array with N = 14 ± 2 atoms (green points), N = 79 ± 13 atoms (blue points) and
N = 224±10 atoms (red points) randomly distributed across nsite ' 4000 sites. The solid lines are the spectra
obtained from Monte Carlo simulations forN � nsite. (b) Simulated linewidth ΓR of the reflection spectrum
as a function of entropy S. The error bars for the red, blue and green data points include both statistical
and systematic uncertainties. The black points are the results of a simulation with error bars representing
numerical uncertainties. The solid line is a linear fit to the simulation points.

by S = lnW , where W = nsite!
N !(nsite−N)! is the multiplicity for the atomic distribution in the 1D lattice. In Fig.

5.4(b), we find that the measured reflection linewidth ΓR (colored points) as well as the linewidth Γth
R (black

points) from the numerical simulation are proportional to the entropy S of the site-population statistics. These

results demonstrate the strong modification of RN (δ) due to randomness in the atomic distribution.
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5.6 Conclusion and outlook

In conclusion, we have trapped atoms along a nano-fiber by using a state-insensitive, compensated optical trap

[63, 65] to achieve an optical depth dN ' 66. Compared to previous work with hollow-core and nano-fibers,

the atoms are trapped with small perturbations to dipole-allowed transitions. Our scheme is thus well-suited

to various applications, including the creation of 1D atomic mirrors for cavity QED and investigations of

single-photon nonlinearities and quantum many-body physics in 1D spin chains [124], as well as precision

measurements of Casimir-Polder forces near a dielectric waveguide [190].

Currently, the maximum filling factor for sites over the 1 mm loading region is ∼ 19%, which can be

improved with adiabatic loading and elimination of collisional blockade [191]. The vibrational ground state

for axial motion in Utrap can be reached by introducing Raman sidebands on the 937 nm trapping fields [192].

The strong axial confinement in our trap implies the presence of a large anharmonicity in the vibrational

ladder, which could provide a tool for experiments with single phonons. Furthermore, the design principles of

our magic, compensated trap can be extended from simple ‘nanowires’ to complex photonic crystal structures

[176].

5.7 Experimental details

5.7.1 Polarization characterization

The set-up and procedure for measuring and optimizing the polarization state of the nanofiber-guided fields

are illustrated in Fig. 5.5 [62, 189]. The angular distribution of the Rayleigh scattered light emitted from

the nanofiber is observed by a CCD camera aligned perpendicular to the fiber axis. For the radiation pattern

I(ϕ) ≈ sin2(ϕ) of a dipole induced by linearly polarized light, no light should be detected along the direction

that the dipoles oscillate (ϕ = 0, π). Since the HE11 mode has a non-transversal polarization along the fiber

axis z, a polarizer (PBS) is placed in front of a CCD camera to block z-polarized light. By rotating the

angle θ for the input polarization of the probe field with the half-waveplate (λ/2) shown in Fig. 5.5(a), a

sinusoidal modulation of the scattered intensity I(z, θ) is observed along the z axis of the fiber. From I(z, θ),

we determine the visibility V (z) = Imax(z,θ)−Imin(z,θ)
Imax(z,θ)+Imin(z,θ)

as a function of z along the nanofiber as shown in Fig.
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Figure 5.5: Guided-mode polarization characterization. (a) Setup for polarization characterization of the
fields along the nanofiber. (b) Intensity I(z, θ) of scattering from the nanofiber as a function of the angle θ
of a half-waveplate for the incident probe field and of distance z along the fiber axis. (c) Spatially resolved
visibility V as a function of axial position z.

5.5(c).

To describe these measurements, we use a simple model based upon z-dependent birefringence in the

fiber that results in elliptical polarization for the transverse fields Ex,y along z. From Fig. 5.5(b) in the region

of the atom trap, we deduce that the principal axes of the polarization ellipse rotate along z by an angle

φ(z) ' φ0 +(dφ(z)/dz)δz, where φ0 describes a possible offset from the symmetry axes of the trap (i.e., the

direction φ = 0 in Fig. 5.1) and (dφ(z)/dz) = 12◦/mm gives the variation from this offset along z. From

fits to transmission spectra described in the next section, we find that φ0 ' 16◦.

Fig. 5.5(c) makes clear that there is a wide range of visibility values V (z) for the probe beam along

z. For our simple model, we determine the ellipticity of the transverse polarization vector ~Ex,y(z) =

(Ex(z), iEy(z)), which we describe by the phase β(z) = arctan(Ey(z)/Ex(z)). Absent of trapped atoms,

the principal axes for the polarization ellipse also rotate by an angle φ(z) along the nanofiber. From fits to

transmission spectra, we find that fixed β(z) = β0 provides an adequate description of our measurements,

with β0 ' 12± 3◦ determined along the high-visibility region in Fig. 5.5(c).
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Figure 5.6: Optical depth estimation with polarization offset. Measured transmission spectra T (N)
x (red

points) and T (N)
y (black points) for x, y polarizations of the probe beam as functions of the detuning δ from

the |F = 4〉 ↔ |F ′ = 5〉 transition. From theoretical fits of our model (full curves) that include the interplay
of spatially varying birefringence (as in Fig. 5.5) and of atomic absorption and dispersion along the nanofiber,
we infer an optical depth dN = 18± 2 with polarization offset φ0 = 16◦ ± 3◦ and β0 = 12◦.

5.7.2 Optical depth estimation

To model the combined effects of the linear atomic susceptibility (i.e., absorption and dispersion) together

with the spatially varying birefringence along the nanofiber, we divide the region 0 6 z 6 L into M ‘cells’

each of length δz = L/M . Propagation through a cell at zj − δz/2 6 zj 6 zj + δz/2 is generated by

the product of two transfer matrices: (1) R̂(φ(z)) produces rotation of the polarization axes from φ(zj) to

φ(zj) + δφ, with δφ = (dφ(z)/dz)δz, and (2) T (δ, dM ) specifies the propagation of Ex(zj), Ey(zj) through

the trapped atoms with detuning δ and optical depth dM for the x, y polarizations [62]. Here dM = dN/M

is the optical depth of a single cell, and dN is the optical depth for the entire sample of N atoms. For each

cell, we take the ratio of resonant optical depths to be d0,x/d0,y = 2.5 at the trap minimum rmin = 215 nm,

given by the asymmetry of the evanescent HE11 fiber mode [62], where x, y refer to the coordinates for the

trap axis as in Fig. 5.1.

In correspondence to the results from Fig. 5.5(b, c), the input polarization to this sequence of cells

is set to be elliptically polarized with angle β0 and offset φ0. After propagation through the fiber in the

absence of atoms, our experimental procedure is to compensate the state of the output polarization with the

transformation matrix R̂out to maximize the polarization contrast for the photo-detection after a polarization
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beamsplitter aligned along x, y. Hence, in our model, a final rotation R̂out follows propagation through the

M cells before projection of the output fields to obtain intensities Iout
x , Iout

y .

Figure 5.6 displays measured transmission spectra T (N)
x,y together with fits to the spectra by way of our

model. The input parameters for the theoretical spectra are the polarization angle β0, offset φ0, and optical

depth dN . Typically, we fix β0 = 12◦ from our measurements of visibility and perform a least-square

minimization over φ0 and dN .

From fits to the data in Fig. 5.6, we find dN = 18 ± 2 and φ0 = 16◦ ± 3◦ for β0 = 12◦. The quoted

uncertainty for dN includes the contributions from the statistical uncertainty from the photoelectric detection

statistics. A second example comparing measured and theoretical transmission spectra is given in Figure 5.7,

now for the x polarization at high optical density. From fits to the data in Fig. 5.7, we find dN = 43± 10 and

φ0 = 16◦ ± 9◦ for β0 = 12◦.

The theoretical fits to the transmission spectra shown in Fig. 5.3 have been obtained by applying this

model. From these and other fits to the measured transmission spectra, we have consistently found that

φ0 ' 16◦ ± 2◦ with fixed β0 = 12◦. Numerically, we find that small variations in φ0 can be compensated by

corresponding changes in β0 around the optimal values found from the fits.

5.7.3 Atom number estimation

A generalized Beer’s law [61, 189],

dP (z)

dz
= −nz

σ0

Am

P (z)

1 + P (z)/Psat
, (5.1)

describes the saturation behavior of a trapped atom. Here, the saturation power is Psat = IsatAm = 49.6 pW,

effective optical mode area is Am = 1.8 µm2, σ0 is the resonant absorption cross-section, and nz = N/L is

the atomic line density for a sample length L = 1 mm.

For measurements as in Fig. 5.3 (a), the number of trapped atoms N = 224± 10 is deduced by fitting the

data with the solution of the generalized Beer’s law, Eq. 5.1. Together with the optical depth dN = 18 ± 2

from the curve (ii) of Fig. 5.3 (b), we infer an optical depth d1 = (7.8± 1.3)× 10−2 for a single atom.

Similar measurements taken in conjunction with the transmission spectrum T
(N)
x in Fig. 5.7 lead to an
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Figure 5.7: Transmission spectroscopy and saturation measurement. Measured transmission spec-
trum T

(N)
x (red points) for x polarization of the probe beam as a function of the detuning δ from the

|F = 4〉 ↔ |F ′ = 5〉 transition. From a theoretical fit of our model (full curve) that includes spatially
varying birefringence (as in Fig. 5.5) and atomic absorption and dispersion along the nanofiber, we infer an
optical depth dN = 43 ± 10 with polarization offset φ0 = 16◦ ± 9◦ and β0 = 12◦. The inset shows the
measurement of the power Pabs absorbed by the trapped atoms as a function of input power Pin, with the
number of trapped atoms, N = 564± 92.

estimate N = 564± 92 for the number of atoms trapped along the nanofiber. Together with the total optical

depth dN = 43± 10 from Fig. 5.7, we infer an optical depth d1 = (7.7± 2.2)× 10−2 for a single atom.
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Chapter 6

Atom-light interactions in photonic
crystals

6.1 Introduction

Localizing arrays of atoms in photonic crystal waveguides with strong atom-photon interactions could pro-

vide new tools for quantum networks [1, 194, 195] and enable explorations of quantum many-body physics

with engineered atom-photon interactions [74, 84–88, 124, 127, 147, 196–202]. Bringing these scientific pos-

sibilities to fruition requires creation of an interdisciplinary ‘toolkit’ from atomic physics, quantum optics,

and nanophotonics for the control, manipulation, and interaction of atoms and photons with a complexity

and scalability not currently possible. Important initial advances to integrate atomic systems and photonics

have been made within the setting of cavity QED with atom-photon interactions enhanced in micro- and

nanoscopic optical cavities [34, 38, 40, 178, 203–205] and waveguides [61, 62, 64, 67]. At a minimum, the

further migration to photonic crystal structures should allow the relevant parameters associated with these

paradigms to be pushed to their limits [40] and greatly facilitate scaling. For example, modern lithographic

processing can create nanoscopic dielectric waveguides and resonators with optical quality factors Q > 106

and with efficient coupling among heterogeneous components [183, 206–210].

A more intriguing possibility that has hardly been explored is the emergence of completely new paradigms

beyond the cavity and waveguide models, which exploit the tremendous flexibility for modal and dispersion

engineering of photonic crystal waveguides (PCWs). For example, the ability to tune band edges near atomic

This chapter is largely based on Ref. [193].



69

transition frequencies can give rise to strongly enhanced optical interactions [211–215]. This enables a single

atom to exhibit nearly perfect emission into the guided modes (Γ1D � Γ′) and to act as a highly reflective

mirror (e.g., reflection |r1| & 0.95 and transmission |t1| . 0.05 for one atom [216]). The entanglement

of photon transport with internal states of a single atom can form the basis for optical quantum information

processing [1, 194, 195] with on-chip quantum optical circuits. At the many-body level, the strong interplay

between the optical response and large optical forces of many atomic “mirrors” can give rise to interesting

opto-mechanical behavior, such as self-organization [202].

In this chapter, we describe advances that provide rudimentary capabilities for such a ‘toolkit’ with atoms

coupled to a PCW. As illustrated in Fig. 6.1, we have fabricated an integrated optical circuit with a photonic

crystal whose optical bands are aligned with atomic transitions for both trapping and interfacing atoms with

guided photons [216, 217]. The quasi-1D PCW incorporates a novel design that has been fabricated in

silicon nitride (SiN) [217, 218] (see details in Section 6.5.1) and integrated into an apparatus for delivering

cold cesium atoms into the near field of the SiN structure. From a series of measurements of reflection spectra

with N̄ = 1.1± 0.4 atoms coupling to the PCW, we infer that the rate of single-atom radiative decay into the

waveguide mode is Γ1D ' (0.32±0.08)Γ′, where Γ1D is the emission rate without enhancement or inhibition

due to an external cavity and Γ′ is the radiative decay rate into all other channels. The corresponding single-

atom reflectivity is |r1| ' 0.24, representing an optical attenuation for one atom greater than 40% [124, 216].

For comparison, atoms trapped near the surface of a fused silica nanofiber exhibit Γ1D ' (0.04 ± 0.01)Γ′

[61, 62, 64, 67], comparable to observations with atoms and molecules with strongly focused light [219, 220].

By comparing with numerical simulations, our measurements suggest that atoms are guided to unit cells of

the PCW by optical dipole forces.

6.2 Design and characterization of 1D photonics crystal waveguide

Turning to our experiment, we begin with an SEM image of a small section of our 1D photonic crystal waveg-

uide shown in Fig. 6.1a. The device consists of two parallel nanobeams with sinusoidal modulation at the

outer edges (an ‘alligator’ PCW or APCW). A challenge in the fabrication of PCWs for atomic physics is
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Figure 6.1: Design and characterization of 1D photonic crystal waveguide. a, SEM image of the ‘al-
ligator’ photonic crystal waveguide (APCW) made from 200 nm thick (along z-axis) silicon nitride (SiN).
Arrows indicate radiative processes of an atom (green circle) coupled to an incident electric field Ein. Scale
bar, 500 nm. b, Calculated band structure of fundamental TE-like modes E1, E2 (red solid lines), with
dominant electric field polarized in the y-direction. The dashed lines mark the frequencies ν1 and ν2 of the
cesium D1, D2 lines, respectively. (νA, νD) mark near the band edge. The gray solid line marks the light
line. c, Measured reflection spectrum with fast fringe removed (see Section 6.5.3) around the band gap shown
in b. d, |E|2 cross sections of E2 mode near ν2, and e, E1 mode near ν1 within a unit cell calculated with
the MPB software package (see Section 6.5.1). Both modes are polarized with their primary electric field
component in the in-plane y direction. f, Simulated relative density ρ̃(~r) of atoms in the x = 0 plane of d,
with the optimal excitation of the blue-detuned E1 mode at kx = π/a (see text).

placement of the band edges near relevant atomic transition frequencies. Our APCW design facilitates this

juxtaposition by fine-tuning the gap between the parallel nanobeams and the amplitude of sinusoidal modu-

lation in the APCW. Figure 6.1b shows the band structure of two fundamental transverse electric (TE-like)

modes calculated based on the dimensions measured from SEM images as in Fig. 6.1a [221]. The two blue

dashed lines correspond to the transition frequencies of the Cs (D1, D2) lines at (ν1 = 335, ν2 = 351) THz

[(895, 852) nm] which straddle the band edge frequencies (νD, νA) at kx = π/a for the lower (dielectric) and
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upper (air) TE bands, respectively. To validate these results, we measure the reflection spectrum R(ν) versus

the input frequency ν for the actual device used in the reported experiments; see Fig. 6.1c. The large reflec-

tivity (R ∼ 0.35) from νD to νA corresponds to the band gap for the APCW, while the vertical lines mark

(ν1, ν2) just outside the band gap. Absent propagation loss to and from the APCW, we infer Rgap ' 0.99

from measurements and numerical simulation.

Beyond band-edge placement, another requirement for realizing strong atom-light interactions in PCWs

is to localize atoms in a region of high mode intensity within a unit cell. The use of two bands enables

the separate engineering of the modes for trapping (lower band) and control of spontaneous emission (upper

band). The blue-detuned E1 mode excited at ν1 in Fig. 6.1e can guide atoms into the center of the vacuum

space near regions of large |E2|2, with then a field near ν2 serving as a probe mode.

The efficacy of this strategy is supported by trajectory calculations of free-space atoms surrounding the

APCW (see details in Section 6.5.5). As shown in Fig. 6.1f, atoms are guided from free space into the region

of high |E2|2, resulting in a density approximately 30% of the remote free-space density. For the simulations,

the Casimir-Polder potential UCP (~r) for the structure in Fig. 6.1a is computed numerically following Ref.

[216]. The optical dipole potential is calculated using a guided mode E1(~r) at kx = π/a with total power of

1 µW and 10 GHz blue-detuning from the F = 4↔ F ′ = 4 transition frequency of the D1 line.

An overview of the integrated APCW device is presented in Fig. 6.2, and shows the optical pathways

for excitation to and from the APCW, as well as the supporting structures of the SiN device to a silicon

substrate. The entire APCW contains 260 unit cells with a lattice constant a = 371 nm, and is terminated on

each end by a mode matching section of 40 cells with tapered sinusoidal modulation and a transition section

from a double- to a single-nanobeam waveguide. Input to and output from the device is achieved through an

optical fiber butt-coupled to one of the single-nanobeam waveguides [218] (see details in Section 6.5.1). The

one-way efficiency for propagation from the APCW to the fiber mode is Twf ' 0.6.

To integrate the device into a cold-atom apparatus, the silicon chip in the inset of Fig. 6.2a and its coupling

optical fibers are mounted on a vacuum feedthrough with linear translation and rotation stages and inserted

into a UHV chamber. Cesium atoms are delivered to the region surrounding the APCW by a three-stage

process of transport and cooling (see details in Section 6.5.6). The resulting atomic cloud has a peak number
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Figure 6.2: Overview of the integrated APCW device. a SEM image of the silicon chip showing an inte-
grated optical fiber (orange box) coupled, via a SiN nanobeam waveguide, to the APCW region (purple and
green boxes). The APCW is located within a 1×3 mm through window (black region without dielectrics)
where free-space atoms and cooling lasers are introduced. Inset shows a picture of the chip and the optical
fibers glued to a vacuum-compatible holder. Scale bar, 0.5 mm. b Detailed schematic of the suspended SiN
waveguide. Light enters the system via the optical fiber (I) butt-coupled to the free end of the waveguide (II)
which is supported by a tether array (III). Near the center of the through window, the waveguide transitions
into a double-nanobeam, followed by tapering (IV) and APCW (V) sections, and again tapers out to terminate
into the substrate (VI). Two parallel rails are added symmetrically to support the structure (one rail is illus-
trated in VII). The insets, corresponding to the purple and green boxes in a, show SEM images of segments
of the tapering (IV) and APCW (V) sections, respectively. Scale bars in IV and V, 2 µm.

density of ρ0 ' 2× 1010 /cm3 at temperature T ' 20 µK measured via time-of-flight absorption imaging.

6.3 Atom-light coupling in the APCW

6.3.1 Reflection measurements at on- and off-resonant cavity

We study atom-light interactions in the APCW by first shutting off the cooling laser, followed by a delay of

0.1 ms, and then interrogating the APCW with atoms by sending a guided probe pulse Eprobe of frequency

νp in the E2 mode, with typical power ' 1 pW and measuring a reflected pulse of rEprobe; see Fig. 6.3a and

Section 6.5.6. Reflection spectra R(∆p) are recorded for 1 ms with a single-photon avalanche photodiode as

a function of detuning ∆p = νp − ν2a, where ν2a is the free-space F = 4↔ F ′ = 5 transition frequency of

the D2 line. For 10 ms following termination of the probe pulse, the atom cloud disperses, and then reference

spectra R0(∆p) are recorded for a second probe pulse for 1 ms. For all experiments, the guided mode E1 is

driven continuously with power ' 0.6 µW at 10 GHz blue-detuning from the F = 4↔ F ′ = 4 transition of

the D1 line.

In the ideal case of a single atom in an infinite PCW, an incident probe beam would be reflected with
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amplitude coefficient |r1| = Γ1D/(Γ1D + Γ′) [124], where Γ1D refers to emission into the guided mode of

the APCW from the F = 4↔ F ′ = 5 transition of the Cs D2 line. Strong spontaneous decay into the guided

mode (and hence large |r1|) results from the small area over which the guided mode is concentrated together

with a reduced group velocity. These two effects are incorporated into an effective mode area for an atom

at location ~r within the APCW, namely Am(~r) = ngσ0Γ0/2Γ1D(~r), where ng ' 2 is the measured group

index at ν2, σ0 = 1.4 × 10−9 cm2 is the free-space atom-photon cross section for an unpolarized atom, and

Γ0 is the free-space rate of decay. For unpolarized atoms located at the center of a unit cell ~r = (0, 0, 0)

in the APCW, we expect Am(0) = 0.24 µm2, and hence |r1| ' 0.39, where Γ′ ' 0.9Γ0 from numerical

calculations (see details in Section 6.5.2) [216].

In the case of our actual device, the finite lengths of the taper sections lead to imperfect mode matching

into the APCW near the band edge. As illustrated in Fig. 6.3a, the matching sections partially reflect an

incident probe pulse and form a low-finesse (F ' 2) cavity around the APCW. These weak cavity resonances

in the reflection spectrum near ν2 are shown in Fig. 6.1c (without atoms) and complicate the spectra taken

with atoms relative to the ideal case, as discussed below.

In Figs.6.3b,c, we measure distinctive reflection spectra with cold atoms under two configurations of the

APCW. Figure 6.3b displaysRon(∆p)/R
on
0 (∆p) acquired near a resonance for the matching cavity where the

reflectivity with no atoms, Ron
0 , is very small (see Section 6.5.4). We observe an increased peak reflectivity

Ron/Ron
0 ' 1.27 ± 0.02. By comparison, with the matching cavity excited midway between two cavity

resonances where the reflectivity with no atoms Roff
0 , we observe decreased reflectivity with a minimum

Roff/Roff
0 ' 0.75± 0.01 in Fig. 6.3b.

These reflection spectra are in accord with those for a low-finesse Fabry-Perot (FP) cavity containing

a frequency-dependent intracavity absorber (Fig. 6.3a). In Fig. 6.3b with input frequency resonant with

the FP cavity and no atoms, the transmission is high, and there is very small reflection. Atoms inside the

PCW reduce light build up by frequency dependent atomic absorption, resulting in an increased reflectivity

Ron/Ron
0 > 1. By contrast, in Fig. 6.3c without atoms, the device reflectivity is larger Roff

0 > Ron
0 due to the

off-resonant drive of the FP and is reduced by intracavity atomic absorption, Roff/Roff
0 < 1.

The reflection spectra in Figs.6.3b, c represent strong evidence for atomic interactions with the guided
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Figure 6.3: Atom-light coupling in the photonic crystal waveguide section. a, Simplified schematic of a
fiber-coupled photonic crystal waveguide for reflection measurements with atoms (green dots). Dashed lines,
marked as M1 and M2, illustrate the effective low-finesse F ' 2 cavity formed by the tapered matching
sections. b, c Measured reflection spectra (circles) with b, an on-resonant cavity and c, an off-resonant
cavity in the APCW. Solid lines are Lorentzian fits with b, linewidth of 15.2±1.8 MHz, peak reflectivity
Ron/Ron

0 = 1.27 ± 0.02 where the reflectivity with no atoms Ron
0 and frequency shift ∆0 = −2.5 ± 0.6

MHz, and c, linewidth of 11.5±1.1 MHz, Roff/Roff
0 = 0.75 ± 0.01 where the reflectivity with no atoms

Roff
0 and ∆0 = −3.7 ± 0.3 MHz. Error bars for the data points reflect 1 s.d. estimated from the statistical

uncertainties. d, Simulated ξ(~r) = ρ̃(~r) × Γ1D(~r)/Γ1D(0) in the x = 0, e, x = a/2, and f, y = 0 planes,
with a guided potential ofmF = 0 using the experimentally excited blue-detunedE1 mode at kx = 0.99π/a.
Due to the deviation from the band edge, a small bump in the optical potential at the center of the unit cells
leads to atomic localization near the maxima of ξ(~r) in d and f; see text for details. Masked areas in gray
represent the APCW.

mode E2 of the APCW. Although the cavity formed by the matching sections has a low finesse, R(∆p)

nevertheless depends on the cavity detuning as predicted, i.e., exhibiting approximately Lorentzian profiles

for increased (decreased) Ron(off)(∆p)/R
on(off)
0 (∆p) for ν2a coincident with (mid-way between) the weak

cavity resonances.
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Figure 6.4: Measured reflection spectra and theoretical fit for the APCW. Measured reflection spectra
(circles) with free-space atomic cloud densities ρ/ρ0 = 1 (a), and 0.75 (b) where the reflectivity with no
atoms Roff

0 . The full curves are fits with a model derived from transfer matrix calculations. Error bars for the
data points reflect 1 s.d. estimated from the statistical uncertainties. We deduce that (Γ1D/Γ

′, N̄ , δ0/Γ0) '
(0.35±0.1, 1.0±0.1, 0.33±0.06) (a) and (0.36±0.1, 0.76±0.13, 0.48±0.07) (b). Here, ρ0 = 2×1010/cm3;
Γ0/2π = 5.2 MHz (decay rate in free space). The shaded band gives the uncertainty arising from the position
of the matching cavity (see details in Section 6.5.7).

Moreover, our numerical simulations as in Fig. 6.3d, 6.3e, and 6.3f suggest that the blue-detuned E1

mode performs three functions of excluding atoms from the exterior of the APCW, as in Fig. 6.3e, guiding

atoms into regions of large E2 probe intensity near the center of the unit cells, as in Figs.6.3d and 6.3f, and

expelling atoms from the vicinity of other parts of the waveguide, e.g., the single-nanobeam regions in Fig.

6.3a, leaving only the APCW region with significant atom-field interactions. Together, these considerations

enable us to infer quantitatively the single-atom emission rate absent reflections from the tapered sections, as

we now describe.
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6.3.2 Reflection measurements and theoretical fit

To obtain quantitative information about atom-light coupling in the APCW region, we compare our measure-

ments with a model based on transfer matrix calculations of the optical pathway to and from the APCW as

illustrated in Fig. 6.3a. Details of the optical elements, including the coupling fiber, the supporting structures,

and the APCW, are described in Section 6.5.4 and Ref. [217]. Absent atoms, the optical characteristics of

these various elements can be deduced from measurements of reflection spectra (c.f., Fig. 6.1c and Fig. 6.9).

With atoms, free parameters are the average atom number N̄ within the APCW, the ratio Γ1D(~0)/Γ′ for an

atom at the center of the probe modeE2, and the frequency shift δ0 of the line center ν0 relative to free-space,

δ0 = ν0 − ν2a. Here atoms are drawn from a Poisson distribution and placed randomly along the APCW.

Comparisons between measurements and our model for Roff(∆p)/R
off
0 (∆p) are given in Fig. 6.4. For

these data, the weak cavity formed by the matching sections has a small detuning ∆c ' 50 GHz from the

midpoint between two resonances (free spectral range ∼600 GHz). With atoms, the cavity detuning results

in asymmetric, dispersive-like reflection spectra, which is captured by our model. From fits to the measured

reflection spectra in Fig. 6.4, we deduce that Γ1D/Γ
′ ' 0.35 ± 0.1 and N̄0 ' 1 ± 0.1 for loading from a

free-space cloud of density ρ0.

The inferred value of Γ1D allows us to determine Am(~reff) for the atom-field interaction in our experi-

ment, namelyAm(~reff) ' 0.44 µm2 for an unpolarized atom. Together with theE2 mode profile, the value of

Am suggests that atoms are distributed in narrow regions around ~reff ' (0, 0,±130) nm, which is consistent

with our numerical simulations (Fig. 6.3d,e,f).

The large ratio Γ1D/Γ
′ ' 0.35 implies a single-atom reflectivity |r1| ' 0.26, which is sufficient to give

a nonlinear dependence of Roff(∆p)/R
off
0 (∆p) on the atom number N observed in the measured spectra.

We are thereby able to disambiguate the product N̄ × Γ1D into separate parameters in fitting our model to

measurement.

6.3.3 Saturation measurement

To further investigate the nonlinear dependence of the reflection spectra on atom number, we measure reflec-

tion spectra for increasing values of probe power P in the E2 guided mode for various values of N̄ . Figure
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Figure 6.5: Scaled reflection minimum as a function of averaged probe power inside the APCW. The
saturation spectra (circles) are measured with four free-space densities ρ/ρ0 = 1 (red), 0.81 (blue), 0.75
(green), 0.44 (magenta), and rescaled to a common free-space density ρ0 ' 2×1010/ cm3; see text. The inset
shows the saturation data without scaling. An empirical fit (solid curve) gives a saturation power of 22.7±
2.2 pW. Error bars for the data points are 1 s.d. estimated from the statistical uncertainties and uncertainties
of the fit to the model. The gray area shows 95% confidence band.

6.5 presents results for Roff(∆p)/R
off
0 (∆p)|min from a series of measurements as in Fig. 6.4 for increas-

ing P with the plotted points corresponding to the minima of Roff/Roff
0 versus ∆p for each spectrum. The

inset of Fig. 6.5 displays four sets of measurements showing that saturation of the atomic response (i.e.,

Roff/Roff
0 → 1 with increasing P ) requires higher power as the density is increased (i.e., increasing N̄ ).

The observed saturation behavior can be scaled into a common curve using the dependence of cooperative

atomic emission on atom number N̄ . We assume that Roff(P ) = Roff(P/Psat) and that the saturation power

Psat depends on the average total decay rate as Psat ∝ (Γ′ + N̄Γ1D)2 with Γ1D/Γ
′ = 0.35 ± 0.1, as

determined from our measurements in Fig. 6.4 with P → 0. We rescale the probe power (horizontal axis)

for each density in the inset of Fig. 6.5 to a common density ρ0. Likewise, Roff(P )/Roff
0 (vertical axis) is

rescaled using the density dependence derived from our transfer matrix model (Methods), with N̄ ∝ ρ. The

approximate convergence of the data to a common curve in Fig. 6.5 supports our rudimentary understanding

of the underlying atom-field interactions in the APCW, including that the observed line shapes for the data in

Fig. 6.5 taken at higher power (not shown) are predominately homogeneously broadened.

To estimate the saturation power in the APCW, we adopt an empirical form for the saturation behavior

Roff(P, N̄)/Roff
0 = exp{−γ(N̄)/[1 + P/Psat(N̄)]}. From the fit in Fig. 6.5, we determine Psat(N̄0) =
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22.7 ± 2.2 pW and γ(N̄0) = 0.22 ± 0.01. Combining with the measured effective mode area, we find the

saturation intensity Isat = Psat/Am ' 5.2 mW/cm2, close to the expected value Is0× (Γ′+ N̄0Γ1D)2/Γ2
0 '

4.0 mW/cm2, where Is0 = 2.7 mW/cm2 is the free-space saturation intensity.

6.4 Conclusion and outlook

We have realized a novel APCW device for interfacing atoms and photons. The measured coupling rate Γ1D

(quoted absent Purcell enhancement and inhibition due to an external cavity) is unprecedented in all current

atom-photon interfaces, whether for atoms trapped near a nanofiber [61, 62, 64, 67], one atom in free-space

[219], or a single molecule on a surface [220]. For example, in Ref. [40] a drop in transmission ' 0.02 is

observed for single atoms trapped outside a photonic crystal cavity. In our work without trapping, we observe

a dip in reflection ' 0.25 for N̄ ' 1 since atoms are channeled to near the peak of the probe mode in the

center of unit cells with stronger interactions. Further improvements to the APCW include active tuning of

the band edge to near an atomic resonance to achieve an increase & 50 fold in Γ1D [216, 222], although we

are mindful of challenges prevented by disorder-induced localization [223, 224]. Other opportunities could

be tuning to place the atomic resonance within the band gap to induce long-range atom-atom interactions

[84–87]. By optimizing the power and detuning of the E1 trap mode, we should be able to achieve stable

atomic trapping and ground state cooling [216, 225, 226]. By applying continuous on-site cooling to N � 1

atoms, we expect to create a 1D atomic lattice with single atoms trapped in unit cells along the APCW,

thus opening new opportunities for studying novel quantum transport and many-body phenomena [74, 85–

87, 124, 127, 147, 196–202].

6.5 Experimental details

6.5.1 Design principle

An ‘alligator’ photonic crystal waveguide (APCW) is designed on a chip in order to observe strong atom-light

interactions, as illustrated in Fig. 6.6. The APCW interacts with a cloud of atoms trapped in a magneto-optical
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Figure 6.6: Schematic image of the suspended SiN device. (a) A schematic of the Si-chip and optical
fiber mounted on the V-groove.(b) Probe light enters the system via optical fiber (I) and couples into the free
end of a tapered SiN waveguide (II). The guided light transmits through the supporting tether array (III). At
the center of the window, the waveguide is tapered into a double-nanobeam, and then tapered (IV) into the
nominal APCW section (V) where atom-light interaction occurs. At the end of the window, the waveguide is
tapered out and terminated into the substrate (VI). Two support rails are added symmetrically parallel to the
APCW for structural integrity (one rail is illustrated in VII). The insets at the bottom are SEM images of (IV)
the tapered section, and (V) the ‘alligator’ photonic crystal. Scale bars in (IV) and (V), 2 µm and 500 nm,
respectively.

trap (MOT) which is centered on the photonic crystal. The APCW (see inset V of Fig. 6.6) consists of two

parallel nanobeams with sinusoidal corrugations on the outer edges [217]. The atoms are guided into the

center of the two nanobeams by a scheme which takes advantages of the TE-like modes (y-polarized) near

the band edges [227]. Their highly symmetric mode profiles near the dielectric and air bands at frequencies

(νD, νA) and the proximity to the resonant frequencies (ν1, ν2) of the cesium D1, D2 lines allow us to create

strong dipole potentials with small optical power (< 10 µW) in the E1 mode, while achieving large atom-

photon coupling in the E2 mode. See Figs. 6.1d, e for calculated mode profiles.

The corrugations in the APCW are used rather than the more traditional holes because the corrugation

amplitude can be patterned more accurately than hole radii, resulting in more accurate alignment of the

band gaps and better adiabatic tapers. The outside-corrugated double-beam design used in this work allows

superior band-edge positioning by placing the modulation of the dielectric away from the strong-field region

in the center of the waveguide, thereby reducing the sensitivity of band-edge frequencies to the modulation

geometry parameter imprecision. This design also avoids enclosed hole-based geometry, which is difficult to

fabricate using available lithography and etching techniques. The design also enables us to build vanishingly

small amplitude modulations required for the gradual tapers. The waveguide is made from 200 nm thick

stoichiometric silicon nitride (SiN) with index n = 2.0 [217]. SiN is a widely used material in standard
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silicon-based fabrication processes, which we have chosen for its low absorption for the Cs D-line transition

wavelengths where Si itself is opaque. Its high intrinsic stress and Young’s modulus makes it mechanically

robust, and therefore it was chosen instead of the also low-loss SiO2. The degrees of freedom for the APCW

are the gap g, lattice constant a, width w (inner-edge to center of peaks), and tooth amplitude A. The APCW

has 260 cells, a gap 250 nm, a width 173 nm, and tooth amplitude 132 nm. The photonic crystal is tapered

on both sides into an unpatterned (translationally invariant) double-nanobeam. The length and profile of the

tapering determines the reflections from the edges of the APCW. The taper used here has 40 cells, and is

carefully designed such that the band gap symmetrically opens about 873 nm, which is between the D1 and

D2 lines. The profile and the unpatterned double waveguide width are chosen to minimize reflections from

the APCW edge.

In order to provide optical access for the trapping and cooling laser beams, the silicon nitride (SiN)

waveguides are suspended across a 1 mm long, 3 mm wide through window on the chip, shown in Fig.

6.2a, and the APCW (the inset (D,E) of Fig. 6.6) is positioned at the center. The suspended waveguide

extends beyond the window into a V-groove etched into the Si substrate and then reduces in width for efficient

coupling to a conventional optical fiber [218] (sections I-II of Fig. 6.6). The silicon anisotropic etch that

forms the window also forms the V-shaped groove, which serves to center the fiber to the waveguide. The far

end of the waveguide is extended to a fan shape and terminated into the substrate to minimize reflection (VI).

6.5.2 Atom-photon coupling

To characterize the strength of atom-photon coupling, we calculate the effective mode area for an atom at ~rA:

Am(~rA) =

∫
ε(~r′)|E2(~r′)|2d3r′

aε(~rA)|E2(~rA)|2 , (6.1)

where a is a lattice constant of 371 nm and the integration runs over the space occupied by a unit cell. Figure

6.7 shows Am(~rA) plotted at the central x = 0 plane. For single atoms channeled to the center of unit cells,

we have Am(0) = 0.24 µm2.

To estimate the atomic emission rate into the guided mode, we use Γ1D(~r) = Γ0ngσ0/2Am(~rA), where
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Figure 6.7: Calculated effective mode area Am(~rA) for an atom at ~rA = (0, y, z) at the central x =
0 plane of a unit cell. Masked areas in gray represent dielectric regions of the APCW. The dashed line
represents Am(~reff) ∼ 0.44 µm2, which we extract from measurements shown in Fig.4.

Γ0 is the atomic decay rate in free space, σ0 the radiative cross section, and ng the group index at ν2. When

the band edge frequency νA is placed near ν2, we expect ng � 1 due to the slow light effect [216]; ng =

c
2LPhc∆ν ' 2 for the current device where c the speed of light, ∆ν the distance between neighboring resonant

dips and LPhc the length of APCW (See Fig. 6.6 (b)). Note that due to our small band gap (∆ω/ω0 ∼ 0.04),

we would have to operate much closer to the band gap than in our current experiment in order to observe a

significant slow light effect (e.g., ng > 10). For atoms guided to the center of unit cells and driven by the

F = 4,mF = 0 ↔ F ′ = 5,mF ′ = 0 transition, σ0 ' 5/9 × 3λ2/2π, where λ = 852 nm is the free-space

wavelength of the Cs D2 line, with then Γ1D/Γ0 ' 0.4ng; for unpolarized atoms, we calculate an averaged

Γ1D/Γ0 ' 0.29ng .

6.5.3 Device characterization

Figure 6.8 (a) shows a schematic of the setup for device characterization. The reflection spectrum near the

band gap is measured by sending a broadband light source into the device via the coupled optical fiber, and

then recording the reflection signal with an optical spectrum analyzer. The signal is then normalized by the

power spectral density of the light source after considering the loss of each optical element. Finer reflection

spectra around the D1 and D2 lines are measured by scanning the frequency of narrow bandwidth diode

lasers. The polarization in the device is aligned to the TE-like mode by observing the polarization dependent

scattering from the first tether in the coupler, or equivalently by maximizing the reflected signal, since the
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Figure 6.8: Device characterization. (a) Schematic of the setup for device characterization. FBS: fiber
beam splitter with T = 50% and R = 50%. HWP: half waveplate. QWP: quarter waveplate. OSA: optical
spectrum analyzer. PD: photodetector. (b) Measured reflection spectrum near the band gap. Gray and red
curve show the original data and smoothed data, respectively. Blue dashed lines correspond to the Cs D1 and
D2 resonances. (c) Measured reflection spectrum near the Cs D2 line (black curve) and envelope fit (gray
curve).

transverse magnetic (TM-like) mode band gap is located at a higher frequency.

Figure 6.8 (b) shows the measured reflection spectra around the band gap. The gray curve shows the

original data which has a fast fringe (free spectral range ∼ 50 GHz) resulting from the (parasitic) etalon

formed from the cleaved fiber end-face and the first matching taper. The red curve shows the smoothed

reflection spectrum which approximately represents the response of the APCW without the influence of the

reflection from the fiber end-face.
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Figure 6.9: Schematic of a 1D transfer matrix model of the device. Forward- and backward propagating
waves in the structure are coupled to each other through partial reflection from the fiber end-face, tether, and
matching mirrors, and also evolve under propagation losses. Their effect on the total reflected and transmitted
fields (Er, Et) can be modeled through a set of four independent transfer matrices Mfiber, Mtether, M1, and
M2 (depicted by the dashed lines), which together determine the transfer matrix Mtot of the entire system.

6.5.4 Device model

Due to imperfection of the adiabatic tapering, the terminal regions of the APCW form a low finesse cavity.

When atoms couple to light in the APCW, the reflected spectrum depends on the position of the frequency ν2

on the cavity fringe and can take on dispersive line shapes. Further complicating the picture is the presence

of a fast ∼50 GHz fringe due to the parasitic etalons formed by the fiber end-face, tethers, and the APCW

band edges near νD, νA. In order to fit the reflected atomic signals, a full model that incorporates all of

these elements is developed using the transfer matrix method [227, 228] as show in Figure 6.9. A transfer

matrix represents each element, and the reflection, transmission, and loss coefficients are determined by both

experiment and FDTD simulations [229].

The light is coupled into the device by matching the modes of a 780HP single mode fiber (mode field

diameter 5 µm) to a 130 nm wide rectangular SiN waveguide (I-II in Figs. 6.6 (b)). The fiber end-face

reflects 3.8% power due to the index mismatch. A 90 nm wide tether anchors the coupling waveguide 5 µm

from the free (input) end of the waveguide, which has a theoretical transmission of 87% and reflection 0.8%.

The waveguide width tapers to 200 nm over 300 µm in order to better confine the light to the dielectric, and

then the light propagates through the region of the support rails (III in Fig. 6.6 (b)) to the APCW at the center

of the window. Our numerical simulations show that the taper, support rails, and guide should have negligible

loss and reflection. The loss in these sections is measured to be 22% per mm for a similar device. The details

of loss mechanism is currently under investigation. The total loss from the fiber face to the waveguide can

be estimated experimentally by measuring the reflected signal for frequencies within the band gap, assuming
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that the reflectivity of the APCW from numerical simulations is ∼ 99%. By fitting our model to the envelope

of the reflection spectrum inside the band gap, we obtain the overall transmission efficiency from the internal

face of the fiber to the input of the APCW to be Tt ' 0.60, including propagation losses in the nanobeam.

The tapers of the APCW (represented by the matching mirrors in Fig. 6.9) also reflect near the band

edge. There is also loss inside the APCW due to fabrication disorder and absorption. Near the Cs D2 line,

as shown in the Fig. 6.8 (c), the fitted spectrum (solid gray line) yields the reflection and transmission of

the matching sections of the APCW, (Rpc = 0.28, Tpc = 0.72), the slope of the reflection of the APCW

dRpc/dλ = 0.082/nm, and the one-way transmission inside the APCW, TAPCW = 0.40± 0.02.

At the bottom of the fast fringe, for the experiment presented in Fig. 3b, measured reflection without

atoms is Ron
0 = |Er|2/|Ein|2 ' 0.3% and reflection in front of M1 estimated from the device model is

<on
0 ' 9%; in Fig. 3c, Roff

0 = 3% and estimated reflection in front of M1, <off
0 ' 41%.

6.5.5 Simulations of relative density

To estimate a relative atomic density near the APCW with a guiding potential, we calculate a relative density

ρ̃(~r) = ρ(~r)/ρ0, where ρ0 is a free-space cloud density, with a Monte Carlo simulation of 5×106 trajectories

of thermal atoms with a temperature of 20 µK [135]. For the simulations, the Casimir-Polder potential

UCP(~r) for the APCW is computed numerically following Ref. [216], with an example cut shown in Fig.

6.10 (a). The dipole potential Udipole(~r) of the blue-detuned guided mode E1(~r) near ν1 is calculated by

using the mode function obtained with MIT Photonic-Band package [221]. Trajectories are obtained by

numerically solving the equation of motion with force of ~F = −~∇Utot(~r) = −~∇(UCP(~r) + Udipole(~r)).

The relative density is inferred from atomic flux crossing each grid. Note that velocity-dependent forces of

polarization-gradient cooling (PGC) are not included in the simulations.

In Figs.6.1f and Fig. 6.10 (b), we use a guided mode E1(~r) at the band edge kA,x = π/a at νD with

total power of 1 µW and 10 GHz blue-detuning from F = 4 ↔ F ′ = 4 transition frequency of D1 line,

which has zero intensity at the center of unit cells of the APCW. Thus, atoms are channeled into unit cells by

the combination of Casimir-Polder and optical dipole force. The relative density at the center of unit cells is

ρ̃(0) ∼ 0.3.
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Figure 6.10: Guiding potential for Cs F = 4 hyperfine ground state. (a) Casimir-Polder potential UCP(~r)
and (b, c) total potential Utot(~r) = UCP(~r) + Udipole(~r) are plotted at ~r = (0, y, z) at the central x = 0
plane of a unit cell. The dipole potential Udipole(~r) is calculated for mF = 0 state, using the E1 mode at
(b) kA,x = π/a with total power of 1 µW and (c) k1,x = 0.99kA,x with total power of 0.6 µW, and both
with 10 GHz blue-detuning from F = 4↔ F ′ = 4 transition frequency of the D1 line. The curved arrow in
(b)[(c)] illustrates a characteristic trajectory of an atom (solid circle) guided into the trap center [reflected off
the bump] in the total potential between the gap.

In Figs.6.3d, 6.3e, 6.3f, and 6.10 (c), we use experimentally excited E1(~r) with k1,x near ν1 (Cs D1 line),

which is ∼ 1% below the band edge kA,x. Due to the small deviation from the band edge, the intensity of the

mode fieldE1(~r) near ν1 has a small bump at the center of unit cells, which for blue detuning, prevents atoms

from being channeled to the center. In addition, the intensity ofE1(~r) has a longitudinal componentEx along

the propagation direction, which is π/2 out-of-phase with the transverse components. As a consequence, the

polarization of E1(~r) is elliptical everywhere except for the central y = 0 plane of unit cells due to TE

symmetry. The resulting guiding potential has vector shifts due to the ellipticity of E1(~r), which lead to mF

dependent guiding potentials. Since the center of guiding channel for |mF | 6= 0 states moves from y = 0 to

|y| > 0 due to a stronger fictitious magnetic field (along z) closer to the structure, the guiding efficiency from

optical dipole forces is reduced as |mF | increases.

Figure 6.3d, 6.3e, and 6.3f display ξ(~r) = ρ̃(~r)×Γ1D(~r)/Γ1D(0), where ρ̃(~r) is simulated relative atomic

density with a guided potential for mF = 0, and Γ1D(0) is a decay rate into the APCW at the center of unit

cells. Due to the small deviation from the band edge and the resulting potential ‘bump’, atoms are localized

around > 100 nm from the center of unit cells.

We note that, in the case of Fig. 6.10 (c), adding to Udipole the dipole potential from a weak red-detuned

E2(~r) mode can help overcome the potential bump in the gap center and can create a stable trapping condition.
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Figure 6.11: Transporting a cloud of atoms near the APCW, measured by absorption imaging. (a) First,
we prepare a cloud of cold atoms about 1cm away from a silicon chip. (b) After cooling atoms in the moving
frame toward the APCW and shutting off the cooling beams, a cloud of atoms freely propagates toward the
APCW. (c) By turning on additional MOT beams at the time atoms fly near the APCW, propagating atoms
are cooled and recaptured.

6.5.6 Experimental procedure

To prevent cesium contamination of the APCW due to the background vapor pressure, our vacuum system

consists of a source chamber and a science chamber, connected via a differential pumping stage. The source

chamber runs in a standard MOT loaded from the background Cs vapor. From the source MOT, a pulsed push

beam extracts a flux of cold atoms that is slow enough to be recaptured in a science MOT located in the UHV

region [230]. We load a science MOT for 1 s and compress it for a duration of 50 ms [231]. We then obtain

a cloud of cold atoms with a peak density of ∼ 1× 1011 /cm3 and a temperature of 40 µK about 1 cm away

from the APCW of a silicon chip.

In order to transport cold atoms near the APCW, we cool atoms in the moving frame toward the APCW

by abruptly changing the center of magnetic quadrupole field [232], as shown in Fig. 6.11. After shutting off

cooling beams, a cloud of atoms freely propagates toward the APCW. By turning on additional MOT beams

at the time atoms fly near the APCW, we cool and recapture propagating atoms with an efficiency of ∼ 40%.

After applying PGC, we obtain a cloud of cold atoms with a peak number density of ρ0 ∼ 2 × 1010 /cm3,

spatially overlapped with the APCW.

An overview of reflection measurements in our experiment with cold atoms near the APCW is given

in Fig. 6.12. A blue-detuned guiding beam with power ∼ 0.6µW and detuning of +10 GHz from D1

(F = 4 ↔ F ′ = 4) at k1,x = 0.99kA,x is sent into the device, which is kept on throughout the experiment.
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Figure 6.12: Schematic of the setup for reflection measurements. VBG: volume Bragg grating. FBS: fiber
beam splitter with T = 99% and R = 1%. HWP: half waveplate. QWP: quarter waveplate. APD: avalanche
photodetector.

The probe pulse is combined with the guiding beam by a volume Bragg grating (VBG) and then couples to

the APCW via a fiber beam splitter with T = 99% and R = 1%. The reflected probe signal from the APCW

is efficiently picked up by the fiber beam splitter through the transmission path. An additional VBG at the

output reflects the return probe beam, which allows us to measure the probe pulses with the guiding beam on.

A pair of λ/2 and λ/4 waveplates in each path is used for aligning the polarization to only excite the TE-like

mode.

To maximize the signal-to-noise ratio, we perform reflection measurements with atoms after aligning the

bottom of the fast fringe to the Cs D2 line, where the probe field is maximized inside the parasitic cavity

formed by the fiber end-face and the APCW region; see Fig. 6.13 (a). The alignment of the fast fringe can

be tuned by sending an additional few µW of heating beam to heat up the device and adjust the optical path

length between the fiber end-face and the APCW region. The heating beam runs at frequency ν > νD inside

the band gap and is ' 5 nm detuned from the D1 line, thus does not interfere with atomic-light interaction in

the APCW region.

6.5.7 Model of reflection spectrum of atoms

Reflection spectra of guided atoms are obtained by including transfer matrices for atoms [123] in the device

model described in Section 6.5.4. Guided atoms inside the APCW are drawn from a Poisson distribution

with mean atom number N̄ and randomly placed at the center of unit cells along the APCW. Each of the two

matching sections that terminate the APCW partially reflects light near the band edge, as depicted in Fig. 6.9.

Together the matching sections form a cavity around the APCW (denoted by M1,M2 in Fig. 6.9), whose
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Figure 6.13: Reflection measurements and theoretical fit. (a) Simulated reflection spectrum of the optical
pathway to and from the APCW derived from the transfer matrix calculation. Blue dashed line shows the Cs
D2 line. (b, c) Measured reflection spectra (circles) with free-space density of ρ0 ∼ 2× 1010 /cm3, where the
reflectivity with no atoms Roff

0 ' 3%. These are the data same as Fig.3c. Error bars for the data points reflect
1 s.d. estimated from the statistical uncertainties. The full curves are fits with (b) uniform-absorption model
(i) and (c) losses localized to the matching mirrors (ii). From the fits, we deduce (b) (Γ1D/Γ

′, N̄ , δ0/Γ0) '
(0.31 ± 0.05, 1.5 ± 0.2, 0.56 ± 0.06) and (c) (Γ1D/Γ

′, N̄ , δ0/Γ0) ' (0.41 ± 0.04, 0.9 ± 0.1, 0.25 ± 0.06).
The shaded band gives uncertain arising from the position of the matching cavity.

cavity length has a frequency dependence. We incorporate the uncertainty of the location of the matching

mirrors and resulting cavity relative to the APCW into our model. This uncertainty gives rise to a variation

in the reflection spectra from our model, which is given by the thickness of the lines shown in Fig. 6.13.

The wave vector of probe frequency kp,x is ' 2% from the band edge at kA,x = π/a as shown in Fig.

6.1b. In the case of more than one atom coupled to the APCW, the mismatch between kA,x and kp,x causes
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dephasing since the accumulated phase between atoms is not an integer multiple of π. Due to the moderate

one-way transmission of TAPCW ' 0.40 inside the APCW as described in Section III, the cooperative effect

of two atoms is sensitive to how loss occurs inside of the APCW. Here, we consider two limiting cases: (i)

uniform absorption along the APCW, and (ii) loss at the first matching mirror.

In the case of (i), due to uniform loss along the APCW, only nearby atoms interact equally with the probe

field. Thus, cooperative effects survive despite of the mismatch of kp,x and kA,x. On the other hand, in the

case of (ii), all atoms contribute equally and cooperative effects are washed out due to the phase mismatch

for propagation with kp,x as compared to kA,x for the unit cell. Given our current limited knowledge of the

microscopic details of the loss mechanisms within the APCW, the models (i, ii) provide a means to estimate

the uncertainties in our inferences of Γ1D/Γ
′ and average atomic number N̄ based upon comparisons of our

data with the models.

For the cases shown in Fig. 6.13, the model fits lead to the following: (i) Γ1D/Γ
′ = 0.31 ± 0.05 and

average atom number N̄ ' 1.5± 0.2 in (b), and (ii) Γ1D/Γ
′ = 0.41± 0.04 and N̄ ' 0.9± 0.1 in (c). From

four sets of data as in Fig. 6.13, taken for comparable atomic densities, we make fits based upon the two

models (i) and (ii). We average results for parameters determined from the fits to arrive at the values quoted,

namely Γ1D/Γ
′ = 0.32± 0.08, N̄ = 1.1± 0.4, and δ0/Γ0 = 0.13± 0.27.
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Chapter 7

Superradiance for atoms trapped along
a photonic crystal waveguide

7.1 Introduction

Interfacing light with atoms localized near nanophotonic structures has attracted increasing attention in recent

years. Exemplary experimental platforms include nanofibers [61, 64, 67], photonic crystal cavities [40],

and waveguides [193, 217]. Owing to their small optical loss and tight field confinement, these nanoscale

dielectric devices are capable of mediating long-range atom-atom interactions using photons propagating in

their guided modes. This new paradigm for strong interaction of atoms and optical photons offers new tools

for scalable quantum networks [1], quantum phases of light and matter [78, 79], and quantum metrology [5].

In particular, powerful capabilities for dispersion and modal engineering in nanoscopic photonic crystal

waveguides (PCWs) provide opportunities beyond conventional settings in AMO physics within the new field

of waveguide QED [60, 61, 64, 74, 193, 234]. For example, the edge of a photonic band gap aligned near an

atomic transition strongly enhances single-atom emission into the one-dimensional (1D) PCW due to a van-

Hove singularity at the band edge (i.e., a ‘slow-light’ effect [68, 216, 235]). Because the Bloch function for a

guided mode near the band edge approaches a standing-wave, symmetric optical excitations can be induced

in an array of trapped atoms, resulting in superradiant emission [18, 129] into the PCW. Superradiance has

important applications for realizing quantum memories [4, 236–239], single photon sources [19, 240], laser

cooling by way of cooperative emission [241, 242], and narrow linewidth lasers [243]. Related cooperative

This chapter is largely based on Ref. [233].
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effects are predicted in nano-photonic waveguides absent an external cavity [126], including atomic Bragg

mirrors [124] and self-organizing crystals of atoms and light [123, 202, 244].

Complimentary to superradiant emission is the collective Lamb shift induced by proximal atoms virtually

exchanging off-resonant photons [245–248]. With the atomic transition frequency placed in a photonic band

gap of a PCW, real photon emission is largely suppressed. Coherent atom-atom interactions then emerge

as a dominant effect for QED with atoms in bandgap materials [84, 85, 87, 249–251]. Both the strength

and length scale of the interaction can be ‘engineered’ by suitable band shaping of the PCW, as well as

dynamically controlled by external lasers [87, 251]. Exploration of many-body physics with tunable and

strong long-range atom-atom interactions are thereby enabled [87, 251].

In this chapter, we present an important advance for the field of waveguide QED. We describe an ex-

periment that cools, stably traps, and interfaces multiple cold atoms along a quasi one-dimensional PCW.

Through precise band edge alignment and guided-mode (GM) design, we achieve strong radiative coupling

of one trapped atom and a GM of the PCW, such that the inferred single-atom emission rate into the GM is

Γ1D/Γ0 = 1.1 ± 0.1, where Γ1D is the peak single-atom radiative decay rate into the PCW guided mode

and Γ0 is the Einstein-A coefficient for free space. With multiple atoms, we observe superradiant emission

in both time and frequency domains with measurements of transient decay following pulsed excitation and

steady-state transmission spectra, respectively. We infer cooperative, superradiant coupling with rate Γ̄SR

that scales with the mean atom number N̄ as Γ̄SR = ηN̄ · Γ1D over the range 0.19 . N̄ . 2.6 atoms, where

η = 0.34± 0.06.

7.2 Trapping atoms along the APCW

Our experimental platform is based on trapped cesium atoms near a 1D alligator photonic crystal waveguide

(APCW) [193, 217]. The APCW is formed by two parallel SiN nanobeams separated by 238 nm with periodic

corrugations at the outer edges (Fig. 7.1 (a)). The APCW consists of 150 identical unit cells with lattice

constant a = 371nm (length L ' 55.7µm) and is terminated at either end by 30 tapered cells for mode

matching to parallel nanobeams without corrugation. Photons can be coupled into and out of the APCW
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Figure 7.1: Trapping and interfacing atoms with a 1D photonic crystal waveguide. (a) A side-
illumination (SI) beam is reflected from an ‘alligator’ photonic crystal waveguide (APCW) to form a dipole
trap to localize atoms near the APCW (gray shaded structure). The red shaded region represents trapped
atoms along the APCW. An incident field Ein excites the TE-like fundamental mode and thereby trapped
atoms couple to this guided mode (GM). The transmitted tEin and reflected rEin fields are recorded. The
inset shows an SEM image of the APCW and corresponding single-atom coupling rate Γ1D along the x axis
at the center of the gap (y = 0). (b) Normalized intensity cross section of the total intensity Itot resulting
from the SI beam and its reflection, which form an optical dipole trap. Trap locations along the z axis at
y = 0 are marked by zi. Masked gray areas represent the APCW. (c) The single-atom coupling rate into the
TE guided mode Γ1D(0, y, z) normalized to the free-space decay rate Γ0 for the cesium D1 line.

from conventional cleaved-fibers at either end of the structure. Design principles, fabrication methods, and

device characterization of the APCW can be found in Section 7.5.1 [193, 217].

For the APCW used here, we align the band edge of the fundamental guided mode (electric field predom-

inantly transverse-electric (TE) polarized in the plane of the waveguide) near the cesium D1 line at 894.6 nm,

with a mode-matched TE input field Ein tuned around the 6S1/2, F = 3→ 6P1/2, F
′ = 4 transition. Near

the band edge, the atom-photon coupling rate is significantly enhanced by the group index ng , as well as by

reflections from the tapering regions that surround the APCW. From the measured transmission spectrum of

the device absent atoms, we estimate a group index ng ' 11 and an intensity enhancement EI ∼ 4 from the
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taper reflections, including the propagation loss (see details in Section 7.5.1).

To trap atoms along the APCW, we create tight optical potentials using the interference pattern of a side-

illumination (SI) beam and its reflection from the surface of the APCW [40]. The polarization of the SI

beam is aligned parallel to the x-axis of the 1D waveguide to maximize the reflected field. Figure 7.1(b)

shows the calculated near-field intensity distribution in the y-z plane [252]. With a red-detuned SI beam,

cold atoms can be localized to intensity maxima (e.g., positions z−1, z1, z2 in Fig. 7.1(b)). However, because

of the exponential falloff of the GM intensity, only those atoms sufficiently close to the APCW can interact

strongly with guided-mode photons of the input field Ein, Fig. 7.1(c). The trap site with the strongest atom-

photon coupling is located at (y1, z1) = (0, 220) nm, closest to the center of the unit cell and ∆z ∼ 120

nm from the plane of the upper surfaces of the APCW. Other locations are calculated to have coupling to

the fundamental TE-like mode less than 1% of that for site z1 (e.g., the sites at z−1, z2 have intensity ratios

I(z−1)/I(z1) = 0.01, I(z2)/I(z1) = 0.005).

Along the x axis of the APCW, the dipole trapU(x, 0, z1) is insensitive to the dielectric corrugation within

a unit cell and is nearly uniform to within < 2% around the central region of the APCW. By contrast, atom

emission into the fundamental TE-like mode is strongly modulated with Γ1D(x, 0, z1) ' Γ1D cos2(kx) due

to the Bloch mode function near the band edge of the APCW (k ≈ π/a), as shown in the inset of Fig. 7.1(a).

Thus, even for atoms uniformly distributed along the x axis of the trapping potential, only those close to the

center of a unit cell can strongly couple to the guided mode, greatly facilitating phase-matched symmetric

excitation of the atoms. In our experiment, we have chosen a 50 µm waist for the SI beam to provide weak

confinement along the x axis, with atoms localized near the central region (∆x ' ±10 µm) of the APCW

for the estimated temperature ∼ 50µK from a time-of-flight measurement in free space. The SI beam for

dipole trapping is 220 GHz red-detuned with respect to the D2 line and has a total power of 50 mW for all

measurements reported.

Cold atoms from a MOT that surrounds the APCW [193] are loaded into the dipole trap during an optical

molasses phase (∼ 5 ms) and then optically pumped to 6S1/2, F = 3 for ∼1 ms. Atoms are held in the

dipole trap for time thold relative to the end of the loading sequence, and then free-space absorption imaging

is initiated over the interval (thold, thold + ∆tm) with ∆tm = 0.2 ms. We introduce the measured time
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Figure 7.2: Lifetime of trapped atoms near the APCW. (a) 1/e-lifetime of τfs = 54± 5 ms is determined
using free-space absorption imaging of the trapped atom cloud. (b) 1/e-lifetime of τGM = 28 ± 2 ms is
observed from the normalized transmission T/T0 of resonant GM probe pulses.

tm = thold + ∆tm/2, centered in the measurement window. As shown in Fig. 7.2(a), we measure a trap

lifetime τfs = 54 ± 5 ms and find a peak density ρ0 ≈ 2 × 1011 cm−3 near the APCW. The atom density

ρ near the APCW can be adjusted over a wide range 0.06 . ρ/ρ0 6 1 by varying the duration of the MOT

loading cycle while keeping all other procedures identical.

To determine the lifetime for trapped atoms near the APCW, we again hold atoms for thold, and then

launch Ein as a resonant GM probe in measurement interval tm ± ∆tm/2 with ∆tm = 5 ms. From the

recorded transmitted signals, we compute T/T0, where T0 is the transmission without atoms. During the

probe period, we also apply free-space repump beams, tuned to the D2, 6S1/2, F = 4 → 6P3/2, F
′ = 4

resonance, to remove population in the 6S1/2, F = 4, since the probe excites an open transition. Fig. 7.2(b)

shows T/T0 gradually recovering to T/T0 = 1 as tm increases, with a fit to the data giving a 1/e−time

of τGM = 28 ± 2 ms (see details in Section 7.5.3). τGM is consistently shorter than τfs from free-space

imaging, which might be attributed to increased heating from the stronger light intensity near the APCW, the

effect of surface potentials, or outgassing from the silicon chip and structures that support the APCW. These

contributions are being investigated in more detail.
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7.3 Observation of superradiance for trapped atoms

Next, we describe our observations of superradiant emission in both time and frequency domains with mea-

surements of transient decay following pulsed excitation and steady-state transmission spectra, respectively.

7.3.1 Superradiant emission in time domain

Our principal investigation of superradiance involves observation of the transient decay of emission from an

array of atoms trapped along the APCW. For a collection ofN > 1 atoms, superradiance is heralded by a total

decay rate Γtot = ΓSR + Γ
(1)
tot that is enhanced beyond the total rate of decay for one atom Γ

(1)
tot = Γ1D + Γ′.

ΓSR is the N -dependent superradiant rate operationally determined from Γtot and Γ
(1)
tot. Here, Γ′ is the

radiative decay rate into all channels other than the TE-like GM of the APCW. We numerically evaluate

Γ′/Γ0 ≈ 1.1 for an atom at the trap site z1 in Fig. 7.1(b) along the APCW, with Γ0 the free-space decay

rate for the D1 transition [216, 253]. Cooperative level shifts |Hdd| � Γ1D are neglected for the current

configuration of our experiment (see Section 7.5.2).

We record the temporal profiles of atomic emission into the fundamental TE-like GM following short-

pulse (∼10 ns FWHM), resonant excitations via Ein. To ensure small population in the excited state, we

choose a pulse intensity well below the saturation intensity (I/Isat < 0.1). After a time thold the excitation

cycle is repeated every 500 ns for ∆tm = 6 ms, and detection events are accumulated for the reflected

intensity |rEin|2 by an avalanche photodiode (APD). We consider decay curves of GM emission at 15 ns <

te < 70 ns after the center of the excitation pulse (i.e., after the excitation pulse is sufficiently extinguished,

te > 15 ns, and while the background counts are negligible compared to the atomic emission, te . 70 ns).

The total decay rate Γ̄tot is extracted by simple exponential fits as shown in the inset of Fig. 7.3(a). The

deviation from the exponential fit at te & 60 ns is due to the spatially varying coupling rate Γ1D cos2(kx),

which is captured by a detailed model discussed later (see details in Section 7.5.4).

Enhanced total decay rate with increasing atom number is clearly evidenced in Fig. 7.3(a), where the atom

number can be adjusted by varying trap hold time thold prior to the measurement. At the shortest measurement

time tm = 3 ms with thold = 0 ms (i.e., the maximum number of trapped atoms), the measured total decay

rate is largest at Γ̄tot/Γ0 ≈ 2.9. At tm = 63 ms much longer than the trap lifetime τGM = 28 ± 2 ms,
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Figure 7.3: Decay rate and atom number dependence. (a) Fitted total decay rate Γ̄tot normalized with free-
space decay rate Γ0 (circles) as a function of measurement time tm. The solid line is a simple exponential fit to
determine the superradiant decay rate Γ̄SR/Γ0 = 1.1±0.1 and the single-atom decay rate Γ̄

(1)
tot/Γ0 = 2.0±0.1

with τSR = 17 ± 3 ms. The inset shows the temporal profiles of normalized guided-mode emission Ip/Ip0

(circles) with Ip0 the peak emission. Exponential fits (solid curves): tm = 3 ms (red), 13 ms (green), and
63 ms (blue). The black dashed curve shows a exponential decay with free-space decay rate Γ0. (b) Fitted
total decay rate Γ̄tot normalized with Γ0 as a function of mean number of trapped atoms N̄ from a detailed
model (see Section 7.5.4). We adjust N̄ by changing the trap hold time (red circles) or atom loading time
(blue circles). The black line is a linear fit to the combined data sets, giving Γ̄SR = η · N̄ · Γ1D with
η = 0.34± 0.06.

the total decay rate settles to Γ̄tot/Γ0 ≈ 2.0. This asymptotic behavior suggests that Γ̄tot at long hold time

corresponds to the single-atom decay rate Γ̄
(1)
tot.

To determine quantitatively the superradiant and single-atom emission rates from our measurements of

decaying GM emission, we present two different analyses that yield consistent results. The first is a sim-

ple and intuitive analysis applied to Fig. 3(a) in which we employ an empirical exponential fit, Γ̄tot(tm) =

Γ̄SRe
−tm/τSR + Γ̄

(1)
tot, with the superradiant Γ̄SR, single-atom Γ̄

(1)
tot, and τSR characterizing decay of super-

radiance due to the atom loss. The fit yields the maximum superradiant rate Γ̄SR/Γ0 = 1.1 ± 0.1 with
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τSR = 17 ± 3 ms, and a reasonable correspondence to the measured decay rates Γ̄tot, as shown by the

red curve in Fig. 7.3(a). The asymptote Γ̄
(1)
tot/Γ0 = 2.0 ± 0.1 gives the total single-atom decay rate. With

Γ′/Γ0 ≈ 1.1 determined numerically for an atom at trap site z1 along the APCW (Fig. 7.1(b)), we deduce

Γ̄1D/Γ0 = 0.9± 0.1 for the single-atom decay rate into the GM of the APCW.

To substantiate this simple empirical model, our second analysis is a detailed numerical treatment based

upon transfer matrix calculations (see Section 7.5.4). Decay curves are generated for a fixed number of atoms

N distributed randomly along the x-axis of the APCW with uniform probability density but with spatially

varying coupling Γ1D(x) ' Γ1D cos2(kx). These N -dependent, spatially-averaged decay curves are further

averaged over a Poisson distribution with mean atom number N̄ , capturing the variation of atom number N

as we repeat experiments for data accumulation. Fitting to this model, we extract Γ1D/Γ0 = 1.1 ± 0.1 for

measurements at long hold time (e.g., at tm = 63ms in Fig. 7.3(a)). Since the intensity of the fluorescence

from a single atom is spatially modulated by cos4(kx), only an atom near the center of a unit cell can strongly

couple to the GM, resulting in the small difference between averaged Γ̄1D and peak Γ1D. Also, the decay

curve for GM emission at tm = 3 ms can be well fitted with N̄ = 2.6± 0.3 atoms. The red points in Fig. 7.3

(b) display the total decay rate Γ̄tot as a function of N̄ extracted from fits of the transfer matrix model to the

measured decay curves, which clearly shows that superradiance emission rate is proportional to N̄ .

The value Γ1D/Γ0 = 1.1± 0.1 from our measurements agrees reasonably well with the theoretical value

Γ1D/Γ0 ≈ 1.2 determined by FDTD calculations [254], despite several uncertainties (e.g., locations of trap

minima relative to the APCW with uncertainty below 10 nm). The agreement validates the absolute control

of our fabrication process (including the negligible effect of loss and disorder along the APCW), as well as

the power of the theoretical tools that have been developed [87, 216, 251].

We confirm that the variation of Γ̄tot in Fig. 7.3(a) is not due to the heating of atomic motion during the

trap hold time. To see this, we adjust N̄ via different MOT loading times and measure the decay rate at the

shortest hold time (tm = 3 ms), as shown by blue points in Fig. 7.3(b) . These observations are consistent

with those from varying the trap hold time (red points in Fig. 7.3(b)), and lead to an almost identical single-

atom decay rate Γ̄
(1)
tot/Γ0 = 2.0±0.1 at the shortest loading time, corresponding to ρ/ρ0 = 0.16 and N̄ � 1.

The data and our analysis related to Fig. 7.3 strongly support the observation of superradiant decay for
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Figure 7.4: Steady-state transmission spectra T (∆) and fitted atomic linewidth Γ̄m. (a) T (∆) with
∆ = 0 corresponding to the free-space line center. The three sets of points are measured at relative densities
ρ/ρ0 = 0.12 (black), 0.24 (blue), and 1 (red), where the transmission without atoms is T0. Solid curves are
Lorentzian fits to determine the linewidth Γ̄m. Each point in the spectra is an average over 10 experiment
repetitions. (b) Fitted linewidths (circles) normalized to Γ0 as a function of ρ/ρ0. The solid line is a linear fit
with intercept of Γ̄

(1)
m /Γ0 = 2.1± 0.1.

atoms trapped along the APCW. Assuming Γ̄tot = Γ̄SR + Γ̄
(1)
tot and fitting Γ̄tot linearly with N̄ , as shown in

Fig. 7.3(b), we find that the superradiant rate is given by Γ̄SR = η · N̄ ·Γ1D with η = 0.34± 0.06. The slope

η is reduced below unity by the random distribution of atoms along the x-axis.

7.3.2 Superradiant emission in frequency domain

This observation of superradiant decay is complemented by line broadening for steady-state transmission

spectra T (∆) measured at tm = 3 ms with ∆tm = 5 ms, as show in Fig. 7.4. The measured linewidths

Γ̄m are significantly broader than the free-space width (FWHM) Γ0/2π = 4.56 MHz [253], predominantly

due to cooperative atomic coupling to the GM of the APCW. We also observe a significant drop in T/T0 at

line center due to strong atom-photon coupling. Indeed, in Fig. 7.4 (a), we measure T/T0 ' 0.30 (i.e., a
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70% attenuation of the GM flux |Ein|2) for maximum density ρ0, and T/T0 ' 0.95 at the lowest density

investigated, ρ/ρ0 ≈ 0.06.

No clear density dependent shift is observed in Fig. 7.4(a), in support of our neglect of cooperative energy

shifts |Hdd| (see Section 7.5.2). The shift in line center for T (∆) from ∆ = 0 in free space to ∆ = 14 MHz

for atoms trapped along the APCW is induced by the dipole trap. Furthermore, trapped atoms should suffer

small inhomogeneous broadening in the spectra shown in Fig. 7.4, since the FORT shift is small (< 1 MHz)

for the 6P1/2, F = 4′ excited state, and atoms are well localized around the trap center due to their low

temperature T ∼ 50µK, corresponding to a small range of light shifts . 1MHz for atoms in the ground state.

In Fig. 7.4 (b), we plot the linewidths Γ̄m extracted from T (∆) as a function of ρ/ρ0. Γ̄m/Γ0 ≈ 3.4 is

largest at ρ/ρ0 = 1, and reduces to Γ̄m/Γ0 ≈ 2.1 at ρ/ρ0 = 0.06. From linear extrapolation, the single-atom

linewidth is estimated to be Γ̄
(1)
m /Γ0 = 2.1 ± 0.1. With inhomogeneous broadening absent, we expect that

Γ̄
(1)
m = Γ̄1D + Γ′. With the calculated Γ′/Γ0 ≈ 1.1, the single-atom coupling rate can be simply deduced

as Γ̄1D/Γ0 ≈ 1.0 ± 0.1. A simple estimate of the maximum mean number of atoms then follows from

N̄m = (Γ̄m(ρ0)− Γ′)/Γ̄1D ' 2.4± 0.4 atoms. Note that N̄m is defined from Γ̄m(ρ) = N̄mΓ̄1D + Γ′ for an

approximate estimate of the number of atoms.

7.4 Conclusion and outlook

In conclusion, we have used an integrated optical circuit with a photonic crystal waveguide to trap and inter-

face atoms with guided photons. Superradiance for atoms trapped along our APCW has been demonstrated

and a peak single-atom emission rate into the APCW of Γ1D/Γ0 = 1.1 ± 0.1 inferred. Our current uniform

trap along the APCW is a promising platform to study optomechanical behavior induced by the interplay

between sizable single-atom reflectivity and large optical forces (e.g., self organization [202, 244]). By op-

timizing the power and detuning of an auxiliary guided mode field near the air band of the APCW, it should

be possible to achieve stable atomic trapping and ground state cooling [225, 226] at trap sites centered within

the vacuum gap, thereby increasing Γ1D five-fold [216]. Opportunities for new physics in the APCW arise by

fabricating devices with the atomic resonance inside the band gap to induce long-range atom-atom interac-
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tions [85, 87, 251], thereby enabling investigations of novel quantum transport and many-body phenomena.

7.5 Experimental details

7.5.1 Device characterization

A schematic of the alligator photonic crystal waveguide (APCW) is illustrated in Fig. 7.5(a). The waveguide

is made from 200-nm thick stoichiometric SiN with refractive index n = 2.0 [217]. The dimensions of the

nominal photonic crystals are the following: lattice constant a = 371 nm, gap g = 238 nm, width w = 157

nm, and tooth amplitude A = 131 nm, as shown in Fig. 7.5(b). The nominal photonic crystal section consists

of Ncell = 150 unit cells, terminated by 30 tapered cells on each side to provide ‘mode-matching’ to and

from double nanobeams sections.

The APCW is characterized by measuring the transmission spectrum T0(ν) without atoms. The resonant

structure around frequencies νi displayed in Fig. 7.6 arises from reflections in the tapered sections at the

two ends of the APCW. The free spectral range ∆νi = νi+1 − νi between resonances decreases as the band

edge frequency νBE is approached, which is a signature of an increasing group ng index near νBE, with

ng ∝ 1/∆νi for an ideal structure.

Our experiment is operated around the frequency νA of the D1: 6S1/2, F = 3 → 6P1/2, F
′ = 4

transition in atomic Cs, with νBE aligned near νA by absolute control of the fabrication process at a level of

10−3. Fine tuning for ν1 = νA is achieved by way of a guided-mode (GM) heating beam with a wavelength

Ein 

rEin  

tEin

APCW

(a) 

taper

taper
xy 

z 
 

500 nm (b) 

Figure 7.5: Schematic of the APCW and an SEM image. (a) An incident field Ein excites the TE-like
fundamental mode, and the intensities fro the transmitted tEin and reflected field rEin are recorded for device
characterization. (b) SEM image of APCW with lattice constant a, gap g, width w, and tooth amplitude A.
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of 850 nm and optimum power, typically P ≥ 100µW. In addition, we turn on a strong GM heating beam

∼ 700µW input power and∼ 2nm blue-detuned from D2 transition for 100 ms at the end of each experimental

cycle in order to keep the device clean by desorbing Cs from the APCW.

In order to estimate the group index ng , single-taper reflectivity Rt, and intensity loss e−2ζ , we use a

model based on the transfer matrix formalism for a periodic system to fit the transmission spectrum [122],

which we now briefly describe. The dispersion relation for the wavevector k(ν) near the band edge is ap-

proximated by the fitting function [122],

k(ν) = k0


1−

√
(ν0 − ν(1 + iκ))

2 −∆2
g

ν2
F −∆2

g


 , (7.1)

where the wavevector at the band edge is k0 = π/a. Here, fitting parameters are the frequency at the center

of the band gap ν0, the size of the band gap 2∆g , the asymptotic group velocity far from the band edge

2πνF/k0, and the loss parameter κ. The loss parameter κ comes from using perturbation theory to add a

small imaginary component to the dielectric constant of the material, resulting in an imaginary propagation

constant that is approximately given by

Im[k(ν)] ≈ 2πν

vg
κ. (7.2)

It provides a convenient way to model losses that scale with inverse group velocity.

Next we consider the weak cavity formed by the taper reflectionsRt. The single-pass phase accumulation

φ and single-pass power transmission e−2ζ through the cavity are written by

φ = NcellaRe[k] and ζ = Ncella Im[k], (7.3)

where Ncell is the number of unit cells of the APCW and a is the lattice constant. Then, the transmission

through a symmetric cavity with mirrors Rt is given by

Tcavity =
1

1 + L+ F sin2[φ]
, (7.4)
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Figure 7.6: Transmission spectra of the APCW and fitted group index ng . (a) Measured transmission
spectrum T0(ν) for the APCW (black) around the edge of the dielectric band and the model fit (red). The
dashed lines mark the resonant frequencies νi from reflections in the taper sections and the solid line marks
the band edge frequency νBE. (b) Estimated group index ng (green) and taper reflection Rt (blue) from the
fitted model. For the reference, the transmission spectrum T0(ν) is overlaid. At the first resonance ν1 marked
by the dashed line, the group index is ng ≈ 11, and the taper reflection is Rt ≈ 0.48.

where the coefficient F and loss coefficient L are given by

L =

(
1−Rt e−2ζ

)2

e−2ζ (1−Rt)2
− 1 and F =

4Rt
(1−Rt)2

. (7.5)

In order to fit this model to the measured transmission spectrum, first we use the dispersion model (Eq.

(7.1) with κ = 0) to fit the positions of the cavity resonances. Second, we fit Eq. (7.4) with no loss (L = 0)

to the transmitted spectrum by using the fitted dispersion model to find φ and by using a fitting function for

F [122], namely

(F )−1/2 = A1(dν/∆g) +A2(dν/∆g)
2 +A3(dν/∆g)

3, (7.6)

where dν is the distance in frequency from the band edge. Finally, we find the loss parameter ζ that makes

the on-resonant peak heights of the model best match our measurement.

Figure 7.6 (a) shows the measured transmission spectrum (black curve), overlaid with the model fit (red

curve). The fitted parameters for the dispersion model are 2∆g = 14.44 THz, νF/ν0 = 0.60, and ν0 = 342.8

THz. The fitted parameters for F are A1 = 9, A2 =-48, and A3 = 128. The fitted loss parameter is κ =

1.5 × 10−5. At the first resonance ν1, the model linewidth is 55 GHz, in reasonable agreement with the
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measured linewidth of 66 GHz. The fitted dispersion relation is used to estimate the group index, and the

fitted cavity model is used to estimate Rt and the single pass transmission e−2ζ , as shown in Fig. 7.6 (b). At

the first resonance, the group index is ng ≈ 11, and the single-pass transmission is e−2ζ ≈ 0.89, the taper

reflection is Rt ≈ 0.48, resulting in a peak intensity enhancement EI ≈ 4 including the propagation loss

[122]. Since the propagation loss in the APCW is reasonably small, we ignore the loss in our analysis in the

following sections.

7.5.2 Finite different time domain calculations for collective coupling rates

Due to strong coupling to the TE-like GM in the APCW, trapped atoms experience both enhanced atomic

decay rates as well as collective Lamb shifts. To estimate the size of these effects, we perform FDTD cal-

culations and Fourier analysis as described in Ref. [216] to obtain the two-point Green’s tensor G(r1, r2, ω)

for the APCW shown in Fig. 7.5. We then evaluate dissipative and coherent coupling rates, respectively, as

[255–257]

Γ(r1, r2) =
2µ0ω

2
a

~
d · Im[G(r1, r2, ωa)] · d (7.7)

J(r1, r2) = −µ0ω
2
a

~
d · Re[Gsc(r1, r2, ωa)] · d, (7.8)

where d is the transition dipole moment, ωa the transition frequency, µ0 the vacuum permeability, and ~

Planck’s constant divided by 2π. Here, Gsc = G−G0 is the scattering Green’s tensor, in which the vacuum

contribution G0 is subtracted from the total Green’s tensor G; Im[.] and Re[.] represent imaginary and real

parts, respectively. The coupling rate Γ̃ = Γ/2 + iJ controls collective excitation dynamics of trapped atoms

along the APCW.

We obtain single-atom rates by setting r1 = r2 = ra at the location of a trapped atom, and evaluate the

single-atom total decay rate Γ
(1)
tot(νa) = Γ(ra, ra, νa) and excited state level shift J (1)(νa) = J(ra, ra, νa).

Figure 7.7(a) shows the calculation for ra = (0, 0, z1) nm at the center of the trap shown in Fig. 7.1(b). Here

the total decay rate Γ
(1)
tot = Γ1D + Γ′ (black curve) includes the contribution from the GM of interest (Γ1D),

which strongly depends on the atomic resonant frequency νa = ωa/2π and position ra, as well as the coupling
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Figure 7.7: Calculated total decay rate of a single atom and cooperative decay rate of two atoms. (a)
Single-atom decay rate Γ

(1)
tot (black circles) and excited state level shift J (1) (red circles) at ra = (0, 0, z1) nm.

Vertical dashed lines mark the frequencies of the first two guided mode resonances, ν1 and ν2, near the band
gap (frequency range νa & νBE = 335.5 THz where Γtot appears constant) that are supported by the finite
length of the APCW. Horizontal dashed line indicates Γ′/Γ0 = 1.1, estimated from the constant Γ

(1)
tot in

the band gap region. (b) Dissipative coupling rate Γdd(x) ≡ |Γ(ra, ra + xx̂)| between two trapped atoms
separated by x, with their resonant frequencies at either νa = ν1 (solid circles) or νa = 336 THz > νBE

inside the band gap (open circles), respectively. Solid line is an analytical calculation considering actual finite
size of the APCW (Fig. 7.5).

rate to all other modes (Γ′). Γ′ can be estimated from Γ
(1)
tot(νa) inside the band gap ( νa & νBE); Γ′/Γ0 ≈ 1.1

remains constant over a broad frequency range. Coupling rate to the TE-like GM, Γ1D = Γ
(1)
tot − Γ′, can be

obtained from this analysis with Γ1D/Γ0 = 1.2.

In Fig. 7.7 (a), we calculate a small excited state level shift |J (1)|/Γ0 < 0.4 over a frequency range

around ν1 = 335 THz. For our experimental configuration, with νa ≈ ν1, we find |J (1)(νa)|/Γ0 ∼ 0. This

also suggests that the collective level shift for two trapped atoms, |Hdd(x)| ≡ |J(ra, ra+xx̂)| � (Γ0,Γ1D),

is negligible, where x is the atomic separation. Indeed, we do not see clear evidence of N -dependent level

shifts in the steady-state transmission spectra shown in Fig. 7.4 (a).

Figure 7.7 (b) shows Γdd(x) ≡ |Γ(ra, ra + xx̂)| for two trapped atoms located at the center of unit

cells (x/a ∈ Z) and with resonant frequencies at νa = ν1 or νa > νBE inside the band gap, where

Γ
(1)
tot − Γ′ ∼ 0. For |x| > a, Γdd(x) can be used to estimate the dissipative coupling rate between two

atoms. When νa = ν1 and |x|/a > 2, Γdd(x) slowly drops from Γdd(0) − Γ′ = 1.2 Γ0 to smaller values

as |x| becomes comparable to the size of the APCW (black circles). This is caused by interference with

reflections from the tapering regions surrounding the APCW. Solid line in Fig. 7.7(b) shows an analytical
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Figure 7.8: Lifetime measurements of trapped atoms along the APCW. (a) Normlaized transmission
spectrum. Black curve shows the fit to Eq. (7.9) at tm = 2.5 ms with θ = −0.6 ± 0.1, C0 = 0.24 ± 0.1,
Γ = 8.2±0.6 MHz and ∆0 = 9.3±0.3 MHz. (b) Normalized transmission T/T0 as a function of the holding
time, measured by the on resonant guided-mode probe with ∆ = 10.5 MHz. By fitting the measured data to
Eq. (7.9) with fitted parameters extracted in Fig. 7.8 (a), we obtain the lifetime of τGM = 28 ± 2 ms (black
curve).

calculation Γdd(x) = (Γdd(0) − Γ′) cos(π|x|/Neffa) that compares to the numerical result, where the fitted

effective number of cells Neff = 162 ± 9 is larger than Ncell due to the leakage of the fields into the taper

regions. Small variations between the analytical and numerical calculations are due to residual coupling

via other channels. On the other hand, when νa > νBE inside the band gap, Γdd(x) quickly drops below

0.1Γ0 at |x|/a > 2. This is expected because, inside the band gap, atoms can only cooperatively decay via

photonic channels that contribute to Γ′, which are either weakly-coupled or are lost quickly into freepace

within distances |x| < 2a.

7.5.3 Lifetime of trapped atoms along the APCW

To characterize the lifetime of trapped atoms near the APCW, we measure the normalized transmission T/T0

as a function of the measurement time tm, as shown in Fig. 7.2 and replotted in Fig. 7.8. During the lifetime

measurement, the frequency νa of the D1 transition for the probe field Ein is located between the first and

second taper resonances, which leads to the dispersive spectrum shown in Fig 7.8 (a). In order to estimate the

lifetime of the trap with off resonant cavity, we employ the steady-state equation [258],

T/T0 = (1 + θ2)/

[(
1 +

2C(tm)

1 + δ2
m

)2

+

(
θ − 2C(tm)δm

1 + δ2
m

)2
]
, (7.9)
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where the normalized detuning from the light shifted resonance ∆0 is δm = ∆−∆0

Γ , the cooperativity pa-

rameter is C(tm) = C0 exp(−tm/τGM) with peak cooperatively C0, lifetime τGM, and normalized detuning

from taper resonance θ. First, we fit the measured spectrum at tm = 2.5 ms to Eq. (7.9) and obtain the fitted

parameters, θ = −0.6 ± 0.1, C0 = 0.24 ± 0.1, Γ = 8.2 ± 0.6 MHz and ∆0 = 9.3 ± 0.3 MHz as shown in

black curve in Fig. 7.8 (a). Then, to estimate the lifetime τGM, the measured data for ∆ = 10.5 MHz in Fig.

7.8 (b) are fitted to Eq. (7.9) with fitted parameters from Fig. 7.8 (a). We obtain the lifetime of τGM = 28±2

ms shown in black curve in Fig. 7.8 (b).

7.5.4 Model for superradiance of trapped atoms

Our model of superradiance of trapped atoms is obtained by including transfer matrices for atoms in the

device model described in Section 7.5.1 [74, 122–124]. Since the first resonance of the taper reflections is

aligned to the D1 transition for the probe Ein, the wavevector of the probe mode is k =
(

1− 1
Neff

)
π
a with

number of cells Neff , and the probe field inside the unit cell forms a nearly perfect standing wave due to the

Bloch-periodic function. In addition, atoms are trapped near the central region of the APCW along the x axis

(∆x = ±10 µm). Thus, we ignore the dephasing between atoms and envelope from the taper reflections due

to the small mismatch of the wavevector ∆k = 1
Neff

π
a relative to k0 = π

a at the band edge. In the following,

we set the wavevector k = k0 = π
a and will discuss effects due to the ∆k mismatch later.

The reflection of N atoms randomly distributed at the location xi with the coupling rate Γ1D cos2(kxi)

is given by,

rN (δ) =
iξN

1− iξN
where ξN = − ξ0

i+ δ

∑

i

cos2 (kxi) , (7.10)

where the single-atom fractional coupling rate is ξ0 = Γ1D/Γ
′ and normalized detuning is δ = 2∆/Γ′ with

Γ′/Γ0 ≈ 1.1 from the numerical simulation in Section 7.5.2 [216]. The temporal profile of superradiance

from N atoms is obtained by Fourier transforming rN (δ) to yield rN (t), and taking the convolution of rN (t)

with a Gaussian pulse of the half width σ ∼ 5 ns for the excitation pulse Ein(t). Furthermore, the temporal
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profile at t > 2σ can be approximated by

IrconvN
(t) = |rconv

N (t)|2 ∝
(

Γ1D

∑

i

cos2 (kxi)
)2

· exp

[
−
(∑

i

Γ1D cos2 (kxi) + Γ′
)
t

]
. (7.11)

Considering the assumed random locations of atoms with uniform probability density in the unit cells

along x, the spatially averaged temporal profile is obtained by integrating Eq. (7.11) along x, yielding

IN (t) = γ2e−(Nγ+Γ′)t · I0 (γt)
N−2 ·

[
N(N + 1)

4
I0 (γt)

2 −
(
N

4γt
+
N2

2

)
I0 (γt) I1 (γt) +

N(N − 1)

4
I1 (γt)

2

]
, (7.12)

where Ik(z) is a modified Bessel function of the first kind and γ = Γ1D/2. In addition, the number of trapped

atoms along the APCW is drawn from a Poisson distribution p(N̄ ,N) with mean number of atoms N̄ . The

total decay curve then becomes

Itot(t) = c0
∑

N

p(N̄ ,N) · IN (t) + IBG, (7.13)

where c0 is a constant. Here, the background intensity IBG is measured separately without atoms and is given

by the black circles in Fig. 7.9. As shown in Fig. 7.3, the total decay rate asymptotes to Γ̄
(1)
tot/Γ0 = 2.0± 0.1

at the longer hold times, which suggests that atomic decay at tm = 63 ms mostly originates from a single

atom for mean atom number N̄ � 1. Thus, we fit the decay curve at tm = 63 ms to Eq. (7.12) with N = 1,

and obtain ξ0 = Γ1D/Γ
′ = 1.0 ± 0.1 shown in Fig. 7.9 (a). Then, by using the fitted ξ0, the shortest hold

time data (tm = 3 ms) is reasonably well fitted to Eq. (7.13) with N̄ = 2.6± 0.3, as shown in Fig. 7.9 (b).

We also numerically estimate the contribution of the envelope from the taper reflections and dephasing

between atoms along the APCW. We employ the transfer matrix model with k = k0 −∆k, which includes

the coupling rate Γ1D(x) ' Γ
(0)
1D cos2(k0x) cos2(∆kx) along the x-axis of the APCW and propagation phase

∆k · δx between atoms separated by δx. Here, Γ
(0)
1D denotes the peak coupling rate of both the unit cell and

the envelope from taper reflections. The position of the atoms is generated from a normal distribution with

σx = 10 µm at the temperature of 50µK. Then we numerically generate the decay curve and extract the total
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Figure 7.9: Atomic emission into the GM and the model fit. (a) Temporal profiles of atomic emission into
the GM at tm = 63 ms with and without atoms, shown in cyan and black circles, respectively. The blue curve
shows Eq. (7.12) fitted for a single atom with Γ1D/Γ

′ = 1.0± 0.1. (b) Temporal profiles of atomic emission
into the GM at tm = 3 ms with and without atoms, shown in pink and black circles, respectively. The red
curve shows Eq. (7.13) fitted to yield with N̄ = 2.6± 0.3. The background level of (a) is higher than (b) due
to the drift of the intensity modulator during the 5 times longer data accumulation time.

decay rate, suggesting that Γ1D extracted from Eq. (7.12) with N = 1 is underestimated by ∼ 10% and N̄

from the fits to Eq. (7.13) by ∼ 15%. Note that we do not incorporate these corrections in our estimation

of Γ1D and N̄ , since the temperature of the atoms trapped along the APCW could be different from the

measured temperature in free space. Indeed, the calculated trap potential combined with Casimir-Polder

potential suggests that atoms trapped along the APCW could be much colder (. 20 µK) than the measured

temperature for the free-space FORT (∼ 50 µK) due to the smaller trap depth near the APCW, leading to a

smaller correction of Γ1D and N̄ due to tighter localization of the atoms around the center of the APCW. The

distribution of atoms along the APCW is being investigated in more detail.

To support our assumption of N̄ -dependent superradiance, Γ̄tot = Γ̄SR + Γ̄1D with Γ̄SR = η · N̄ · Γ1D,

we generate the decay curve from Eq. (7.13) with Γ1D/Γ0 = 1.0 and various N̄ , and extract Γ̄tot by fitting to

an exponential. The dashed curve in Fig. 7.10 shows the calculated Γ̄tot, overlaid with measured hold time

(red circles) and loading time (blue circles) dependence and the linear fit (solid black line). Although the

dashed curve generated from the model deviates from the linear dependence at N̄ < 1, the linear fit captures

the N̄ dependence reasonably well. As clearly seen in the inset of Fig. 7.10, the nonlinear dependence on

N̄ at N̄ � 1 is due to the “conditional” character of decay rate measurements, meaning that the decay curve

consists mostly of fluorescence from a single atom, despite N̄ � 1. Due to the negligible background counts
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Figure 7.10: Fitted total decay rate Γ̄tot normalized by Γ0 as a function of the mean number of trapped
atoms N̄ . The dashed curve shows the calculated Γ̄tot from the model, overlaid with results measured for
various hold times (red circles) and for loading times (blue circles). A linear fit to the combined data (solid
black line) gives Γ̄SR = η · N̄ · Γ1D with η = 0.34 ± 0.06. The inset shows a log-log plot of the curve
generated from the model.

in our measurements, single detection events at N̄ � 1 herald the presence of single atoms.

The linear fit to the combined data sets gives Γ̄SR = η · N̄ · Γ1D with η = 0.34 ± 0.06, consistent with

the model for N̄ & 0.7. A qualitative understanding of this value of η is the following. Due to the random

distribution of atoms along the APCW, the intensity of atomic emission into the GM is spatially modulated

by cos4(kx) as shown in Eq. (7.11), meaning that both GM excitation of atoms and emission into the GM

are proportional to cos2(kx), resulting in cos4(kx) dependence. With the spatial averaging along the x-axis

of the APCW, the superradiant decay rate is then reduced by a factor of roughly η ∼ 3/8 (i.e., the average of

cos4(kx) over a unit cell).
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Chapter 8

Outlook

After exploring several systems, we believe that photonic crystal devices have a great potential endowed by

the capabilities for dispersion and modal engineering. Most recently, we have achieved a rudimentary but

crucial first step of observing a dissipative cooperative effect, superradiance, mediated by guided photons

near the band edge of the PCW. The next important step is to demonstrate a dispersive cooperative effect,

dipole-dipole interaction, mediated by exchange of virtual photons inside the band gap. These cooperative

effects provide two major directions this project could take.

The first promising direction is to study many-body physics with strongly correlated photons, inspired

by recent progress in quantum simulation realized with ultracold atoms [259] and ions [260]. Recently,

there have been many efforts to introduce strong long-range dipole-dipole interactions by using ultracold

polar molecules [261], dipolar atoms [262, 263], and Rydberg atoms [264]. While the interaction strengths

in those systems are determined by atomic properties, the capabilities for dispersion engineering in PCWs

enable the creation of dipole-dipole interactions whose range and strength are tunable [87, 251].

Another direction is the application to quantum information processing. Instead of minimizing the cou-

pling to the environment, engineering the interaction with the reservoir can induce quantum correlations

between atoms with dissipation. In contrast to DLCZ protocol, this dissipation-based approach is determin-

istic and unconditional, and has been experimentally proven to be advantageous to generate entanglement

between atomic ensembles [265]. Recent proposals are predicted to yield steady-state entanglement under

continuous pumping due to the dissipative collective coupling mediated by guided photons [266–268].
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Appendix A

Atom-light interaction along a 1D
waveguide

A.1 Hesienberg-Langevin equations and input-output relation

Here, we briefly describe the basic formalism for the atoms coupled to the waveguide as discussed in Ref [74,

124, 125, 202, 269–273]. Specifically, to calculate the mean values of atomic operators using the Heisenberg-

Langevin equations, the strategy is to write down the equations of motion for both atomic and photonic

operators, and then to integrate out the photonic degree of freedom, yielding a set of first-order differential

equations for only atomic operators. Then, one can solve the coupled equations and obtain the steady-state

values of the atomic response. Substituting these values back into the formal solution of the field gives the

photonic response. We briefly describe the derivation in the following. The evolution ofN atoms is described

by a master equation for the density operator ρ,

ρ̇ =
1

i~
[H, ρ] + L[ρ], (A.1)

where the Hamiltonian is composed of a term denoting the energy levels of the atoms Hatom, freely propa-

gating photons in a waveguide Hph, and the interaction between guided-mode photons and atoms Hint,

H = Hatom +Hph +Hint

=
∑

j

~ω0σ
j
ee +

∫
dk~ωka†kak +

∑

j

∫
dk~gk

(
σegake

ikxj + h.c.
)
, (A.2)
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with the dipole-coupling amplitude gk = d
√

ωk
4πε0~Am

assumed to be identical for all atoms, while phases

depend on the position of atoms. The Lindblad term is given by,

L[ρ] = −Γ′

2

∑

j

(
σjegσ

j
geρ+ ρσjegσ

j
ge − 2σjgeρσ

j
eg

)
, (A.3)

where Γ′ is the decay rate into all the channels other than the related guided mode.

First, we linearize the dispersion relation of the photon in the waveguide around the atomic frequency

ω0 with the corresponding wave vector ±k0. One approximates ωk around ±k0 as ωk ≈ vg|kR/L|, where

R and L denote a right-going and left-going mode. Since we are only interested in a narrow bandwidth in

the vicinity of the atomic transition ω0, we can extend the range of kR/L to (−∞,+∞) and replace gk by a

constant g. For later convenience, we introduce the field operators in real space by Fourier transformation,

akR(L)
=

1√
2π

∫
dxe−ikxaR(L)(x), (A.4)

where a†R(L)(x) creates a right (left) going photon at x. After linearizing the dispersion, we rewrite the

Hamiltonian in real space as

H/~ =
∑

j

ω0σ
j
ee +

∫
dx

{
−ivga†R(x)

∂

∂x
aR(x) + ivga

†
L(x)

∂

∂x
aL(x)

}

+
√

2πg

∫
dx
∑

j

δ(x− xj)
(
a†R(x)σjge + σjegaR(x) + a†L(x)σjge + σjegaL(x)

)
. (A.5)

The Heisenberg equations of motion for the fields can be formally integrated to yield the solutions of photonic

operators,

aR(x, t) = aR,in(x− vgt)− i
√

2πg

vg

∑

j

σjge

(
t− x− xj

vg

)
θ(x− xj),

aL(x, t) = aL,in(x+ vgt)− i
√

2πg

vg

∑

j

σjge

(
t+

x− xj
vg

)
θ(xj − x). (A.6a)
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Next, one substitutes these formal solutions into the equations of motion for the atomic operators σjge,

σ̇jge = −
(
iω0 +

Γ′

2

)
σjge + i

√
2πg

(
σjee − σjgg

)atot(xj , t)− i
√

2πg

vg

∑
j′
σj
′
ge

(
t− |xj − xj

′ |
vg

)+ F jge, (A.7)

where a total input field atot(x, t) = aR,in(x − vgt) + aL,in(x + vgt) and an associated noise operator

F jge which arises from the system-reservoir interaction [274]. For simplicity, we define the slowly varying

variables in the rotating frame as σ̃jge = σjgee
iωLt and F̃ jge = F jgee

iωLt. Furthermore, we assume that σ̃ge

is slowly varying, σ̃jge(t − ε) = σ̃jge(t)e
iω0ε, with Markov approximation, meaning that we neglect the

retardation of atomic response. Then, we can rewrite Eq. (A.7) in the rotating frame,

˙̃σjge =

(
i∆− Γ′

2
− 2πg2

vg

)
σ̃jge + i

√
2πg

(
σ̃jee − σ̃jgg

)
atot(xj)

+
Γ1D

2

∑

j′ 6=j

(
σ̃jee − σ̃jgg

)
σ̃j
′
gee

ik|xj−xj′ | + F̃ jge, (A.8)

where a detuning ∆ = ωL−ω0. Here, we have identified Γ1D = 4πg2

vg
= 1

2
c
vg

σ0

Am
Γ0 as the single-atom decay

rate into the guided mode. Similarly, we obtain the equation of motion for σ̃jz =
σ̃jee−σ̃jgg

2 as

˙̃σjz = −Γtot

(
σ̃jz +

1

2

)
− i
√

2πg
(
σ̃jegatot(xj)− a†tot,in(xj)σ̃

j
ge

)

−Γ1D

2

∑

j′ 6=j

(
σ̃jegσ̃

j′
gee

ik|xj−xj′ | + σ̃j
′
egσ̃

j
gee
−ik|xj−xj′ |

)
+ F̃ jz , (A.9)

where an associated noise operator F̃z with 〈F̃z〉 = 0 [274] and total decay rate Γtot = Γ1D + Γ′. By using

the solution of Eq. (A.8) and (A.9), one can find an input-output relation,

aR,out(x) = aR,in(x)− i
√

Γ1D

2vg

∑

j

σ̃jge(t)e
ik(x−xj), (A.10a)

aL,out(x) = aL,in(x)− i
√

Γ1D

2vg

∑

j

σ̃jge(t)e
−ik(x−xj), (A.10b)

where the output field is defined outside of the distribution of atoms (for the right (left)-going field, x >

xN (x < x1)). Considering the interaction with a right-going coherent field with the field amplitude E0, the

input field operator atot is mapped to atot + E0 via a displacement operator [74, 269]. The transformation
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maps the initial coherent state to a classical Rabi frequency, while mapping the initial photonic state to

vacuum. Then, the equation of motion for the operator mean values sji = 〈σ̃ji 〉 with a right-going coherent

input E0 are given by

ṡjge =

(
i∆− Γtot

2

)
sjge + i2Ωce

ikxj sjz + Γ1D

∑
j′ 6=j

sj,j
′

z,gee
ik|xj−xj′ |, (A.11a)

ṡjz = −Γtot

(
sjz +

1

2

)
− iΩc

(
sjege

ikxj − sjgee−ikxj
)
− Γ1D

2

∑
j′ 6=j

(
sj,j
′

eg,gee
ik|xj−xj′ | + sj

′,j
eg,gee

−ik|xj−xj′ |
)
,

(A.11b)

where a Rabi frequency Ωc =
√

2πgE0, expectation values of higher-order correlators sj,j
′

z,ge = 〈σ̃jzσ̃j
′
ge〉 and

sj
′,j
eg,ge = 〈σ̃j′egσ̃jge〉. Here, we explicitly write down the differential equation only for sjge and sjz , although the

total number of differential equations is 4N − 1. In the weak excitation limit, one can simplify Eq. (A.11) by

using 〈σ̃jmσ̃j
′
n 〉 = 〈σ̃jm〉〈σ̃j

′
n 〉, allowing to evaluate steady state solutions easily.

A.2 Effective spin Hamiltonian: waveguide

One can reconstruct an open, interacting spin model that only involves the internal degree of freedom of the

atoms [124]. The atomic dynamics is equivalently described by a master equation for an atomic operator ρ,

ρ̇ =
1

i~
[Htot, ρ] + Ldd[ρ] + Lind[ρ], (A.12)

where the interacting spin Hamiltonian is

Htot/~ =
∑

j

[
−∆σ̃jee − Ωc

(
σ̃jege

ikxj + h.c.
)]

+
Γ1D

2

∑

j′ 6=j
sin(k|xj − xj′ |)σ̃jegσ̃j

′
ge, (A.13)

and Limblad term for collective emission and independent emission are,

Ldd[ρ] = −Γ1D

2

∑

j,j′

cos(k|xj − xj′ |) ·
(
σ̃jegσ̃

j′
geρ+ ρσ̃jegσ̃

j′
ge − 2σ̃j

′
geρσ̃

j
eg

)
,

Lind[ρ] = −Γ′

2

∑

j

(
σ̃jegσ̃

j
geρ+ ρσ̃jegσ̃

j
ge − 2σ̃jgeρσ̃

j
eg

)
. (A.14)
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The infinite-range interaction between a pair of atoms j, j′ in the last term of Eq. (A.13) is due to the

propagation of a mediated photon between a pair of atoms with a propagation phase. We also see that we can

derive Eq. (A.8) and (A.9) from a non Hermitian effective Hamiltonian,

Heff/~ =
∑

j

[
−∆σ̃jee − Ωc

(
σ̃jege

ikxj + h.c.
)]
− iΓ1D

2

∑

j,j′

σ̃jegσ̃
j′
gee

ik|xj−xj′ | − iΓ
′

2

∑

j

σ̃jee, (A.15)

which can be used for a quantum jump description of the atomic dynamics in an open system. The effective

Hamiltonian accurately describes the dynamics provided that the thermal energy kBT � ~ω0 where kB is

the Boltzmann constant.

A.3 Effective spin Hamiltonian: photonic crystal waveguide

Near the band edge ωatom . ωBE, the Bloch function for a guided mode approaches a standing-wave,

resulting in the effective spin Hamiltonian given by

Heff/~ = −
∑

j

(
∆ + i

Γ1D + Γ′

2

)
σ̃jee − i

Γ1D

2

∑

j 6=j′
cos(kxj) cos(kxj′)σ̃

j
egσ̃

j′
ge, (A.16)

where the position of the atom xj and the wavevector near the band edge k = π/a with a lattice constant a.

The last term of Eq. (A.16) shows the correlated decay of N atoms with position-dependent coupling rate.

On the other hand, inside the band gap ωatom & ωBE, the effective spin Hamiltonian is written by

Heff/~ = −
∑
j

(
∆− Γ1D

2
+ i

Γ′

2

)
σ̃jee +

Γ1D

2

∑
j 6=j′

cos(kxj) cos(kxj′)σ̃
j
egσ̃

j′
gee
−κ|xj−xj′ |, (A.17)

where the single-atom coupling rate turns into the frequency shift Γ1D

2 and the last term of Eq. (A.16) shows

the collective frequency shift of N atoms with position-dependent coupling rate.
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Appendix B

Atomic polarizability

B.1 Formalism of the light shift Hamiltonian

Here, we briefly summarize atomic polarizability for ac stark shift based on the derivation of Refs. [65, 157,

158] and express explicitly the polarizability tensor. At the end of this appendix, we attach the correction of

our calculation [65]. When the light field is far off resonant from the atomic transition, the second-order ac

Stark shift of an atomic state |i〉 is given by

δU
(2)
i = −|E|

2

~
∑

i6=j

( 〈i|ε∗ · d|j〉〈j|ε · d|i〉
ωji − ω

+
〈i|ε · d|j〉〈j|ε∗ · d|i〉

ωji + ω

)
,

where ε and d are the polarization vector and the electric dipole operator, respectively, and ωji = ωj − ωi is

the transition frequency between atomic states |i〉 and |j〉. In turn, we can consider that the light shift comes

from the expectation values δU (2)
i = 〈i|Hls|i〉, where the light shift Hamiltonian is written by

Hls = |E|2
{

(ε∗ · d)R
(+)
i (ε · d) + (ε · d)R

(−)
i (ε∗ · d)

}
, (B.1)

with a resolvent operator R(±)
i = − 1

~
∑
j 6=i

|j〉〈j|
ωji∓ω . After decoupling polarization vectors dipole operators,

and transforming from the spherical coordinates to Cartesian coordinates, the light shift Hamiltonian for an
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atom in the hyperfine state |n, J, F 〉, parameterized by the dynamic polarizability α(K), is then rewritten by

Hls = −α(0)E(−) ·E(+) − iα(1) (E(−)×E(+))·F
2F −∑

µ,ν
α(2)E

(−)
µ E

(+)
ν

3
F (2F−1)

[
1
2 (FµFν + FνFµ)− 1

3F
2δµν

]
.

(B.2)

The dynamic polarizabilities are given explicitly by

α(0)(n, J, F ) =
∑

n′J′F ′

d2
nJn′J′

3
(2F ′ + 1)

{
J J ′ 1

F ′ F I

}2

G
(0)
FF ′

α(1)(n, J, F ) = 2
∑

n′J′F ′

(−1)F+F ′d2
nJn′J′

√
3F (2F + 1)

2(F + 1)

{
1 1 1

F F F ′

}
(B.3)

×(2F ′ + 1)

{
J J ′ 1

F ′ F I

}2

G
(1)
FF ′

α(2)(n, J, F ) =
∑

n′J′F ′

(−1)F+F ′d2
nJn′J′

√
10F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2

F F F ′

}
(B.4)

×(2F ′ + 1)

{
J J ′ 1

F ′ F I

}2

G
(2)
FF ′ . (B.5)

where the dipole matrix element dnJn′J′ and the rank-dependent propagator G(K)
ij are given by

d2
nJn′J′ = | 〈n, J ||d||n′, J ′〉 |2 =

3πε0~c3

ω3
nJn′J′

2J ′ + 1

τnJn′J′
(B.6)

G
(K)
ij =

1

~

{
1

ωji − ω
+

(−1)K

ωji + ω

}
. (B.7)

Note that we neglect the mixing of energy levels between different hyperfine states since typically, the hy-

perfine splitting is much larger than the ac Stark shift. In general, Hls is not diagonal in |nJ, F,mF 〉 basis,

suggesting that mF is not a good quantum number. Therefore, we need to diagonalize the light shift Hamil-

tonian to obtain the eigenvalues and eigenbasis.
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Figure B.1: Scalar polarizabilities around the magic wavelengths. We display the scalar polarizabilities
(a) near the blue-detuned magic wavelength and (b) the red-detuned magic wavelength with the parameters
described in the Appendix B.2 (the ground state 6S1/2: solid black, the excited state 6P3/2: solid red). and
with the parameters used in Fig. 4.5 (6S1/2: dashed black, 6P3/2: dashed red). The polarizabilities are given
in the atomic unit.

B.2 Contribution of higher excited states

Next, we consider the contribution of higher excited states to the polarizability around the magic wavelengths.

The calculations for the polarizability αg,full of the ground state 6S1/2 and αe,full of the excited state 6P3/2

incorporate the couplings 6S1/2 ↔ (6−42)P3/2, and 6P3/2 ↔ (7−40)S1/2 and 6P3/2 ↔ (5−42)D1/2,3/2,

respectively. The energy levels and the reduced matrix elements are taken from the Appendix. D in Ref.

[158]. The contribution of the core polarizability, 15.8 a.u., is added to the results for the scalar polarizabilities

[166], where the core polarizability is given in the atomic unit.

Figure B.1(a) shows the scalar polarizabilities, α(0)
g,full (solid black) and α(0)

e,full (solid red), around the

blue-detuned magic wavelength, overlaid with the scalar polarizabilities with the parameters used in Fig. 4.5

(the ground state: dashed black, the excited state: dashed red). Clearly, the higher excited states contribute to

both the ground and excited state polarizabilties around the blue-detuned magic wavelength, which suggests

that the blue-detuned magic wavelength αg,full(λblue) = αe,full(λblue) is λblue ∼ 686.3 nm, marked by the

solid cyan line in Fig. B.1. We also find that the higher excited states’ contribution to the red-detuned magic

wavelength (∼ 935 nm) is negligible due to the larger detuning as shown in Fig. B.1 (b).
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Several errors in Refs. [1, 2] are corrected related to the optical trapping potentials for a state-
insensitive, compensated nanofiber trap for the D2 transition of atomic Cesium. Section I corrects
our basic formalism in Ref. [1] for calculating dipole-force potentials. Section II corrects erroneous
values for a partial lifetime and a transition wavelength in Ref. [1]. Sections III and IV present
corrected figures for various trapping configurations considered in Refs. [1] and [2], respectively.

I. FORMALISM

The light shifts calculated in Ref. [1] are based upon
Eq. (2) in Ref. [1]. The text states that the basis for
Eq. (2) is ‘spherical’ (i.e., irreducible spherical tensors).
In fact, the basis for Eq. (2) is actually a Cartesian basis
(i.e., x, y, z), which we used to perform all calculations in
Ref. [1].

In Eq. (2) of Ref. [1], α(0),α(1) and α(2) are the scalar,
vector and tensor atomic dynamic polarizabilities defined
in Ref. [3]. The dipole matrix element in Ref. [1] is

d2JJ ′ = | 〈J ||d||J ′〉 |2 = 3πε0~c3
ω3

J′J

2J′+1
2J+1

1
τJ′J

, as defined in

Ref. [4]. However, as Ref. [3] only considered light shifts
of the ground states, the definition for dJJ ′ in Ref. [4]
becomes problematic when defining dJJ ′ for the excited
states. J and J ′ are defined with respect to states of
lower to higher energy, respectively, rather than with re-
spect to initial and final states. This notation is therefore
ambiguous if the initial state is an excited state. Also,
the counter-rotating term was not taken into account in
Ref. [3]. Therefore, we follow the formalism in Refs. [5–
7], in which case Eq. (2) of Ref. [1] should be rewritten
as follows:

Ĥls = −α(0)Ê(−) · Ê(+) − iα(1) (Ê(−)×Ê(+))·F̂
2F −∑

µ,ν
α(2)Ê

(−)
µ Ê

(+)
ν

3
F (2F−1)

[
1
2 (F̂µF̂ν + F̂ν F̂µ)− 1

3 F̂
2δµν

]
, (1)

where the dipole matrix element in Refs. [5–7] is d2JJ ′ =

| 〈J ||d||J ′〉 |2 = 3πε0~c3
ω3

J′J
(2J ′+1) 1

τJ′J
, where (J, J ′) are for

(lower, upper) levels, respectively. α(0), α(1), and α(2)

of Eq. (1) include counter-rotating terms. However, in
Ref. [1], we made an error in the definition of the vector
polarizability, α(1), by neglecting the rank dependence

of the counter-rotating terms. In this errata, we correct
the definition of α(1) to incorporate the rank dependence
of the counter-rotating terms in our calculations of light
shifts [5–7].

The dynamic polarizabilities are then given by

α(0)(J, F ) =
∑

nJ′F ′

d2JJ ′

3
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

G
(0)
FF ′ (2)

α(1)(J, F ) = 2
∑

nJ′F ′

(−1)F+F ′d2JJ ′

√
3F (2F + 1)

2(F + 1)

{
1 1 1
F F F ′

}

×(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

G
(1)
FF ′ (3)

α(2)(J, F ) =
∑

nJ′F ′

(−1)F+F ′d2JJ ′

√
10F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2
F F F ′

}

×(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

G
(2)
FF ′ , (4)
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where G
(K)
ij is the rank-K propagator defined as

G
(K)
ij =

1

~

{
1

ωji − ω
+

(−1)K

ωji + ω

}
. (5)

We note that the counter-rotating term gains an overall
minus sign for K = 1 in the expression for the vector

propagator G
(1)
FF ′ . We have confirmed that our corrected

formula for the dynamic polarizabilities (i.e., Eqs. (1-5))
is now consistent with the expressions in Ref. [5].

II. PARTIAL LIFETIMES AND TRANSITION
WAVELENGTHS

In addition to corrections to our formalism discussed
above, we correct two numerical errors for the atomic
data used to calculate the light shifts in Refs. [1, 2].
These errors stem from a mistake for a partial lifetime
τ and from an error for a transition wavelength λ. All
values for τ and λ of Ref. [1] were taken from Tables
7.1–7.3 of J. McKeever’s Ph.D Thesis [8]. The specific
errors are as follows:

1. The wavelength for the transition 7S1/2 ↔ 6P3/2 in
Table 7.2 of Ref. [8] is listed as 469.5 nm, whereas
the correct value is 1469.5 nm.

2. The partial lifetime for the transition 7D3/2 ↔
6P3/2 in Table 7.3 of Ref. [8] is listed as 709.7
µs, but instead should be 0.7097 µs.

The corrected values for Tables 7.1–7.3 of Ref. [8] are
highlighted with green color in Tables I and II of this
errata.

The partial lifetimes and wavelengths from Table 7.1–
7.3 of Ref. [8] were obtained from Refs. [9, 10] with the
exception of the values for 6P → 6S from Ref. [11] and
6D → 6P from Ref. [12].

To further confirm the accuracy of the corrected values
from Ref. [8], we refer to Tables V and VI of Arora et
al. [13] (heretofore, labelled as ‘Clark’). Tables I and II
in this errata compare the corrected tables from Ref. [8]
to Tables V–VI of Ref. [13]. Our values agree well with
those from Ref. [13].

We note that all previous publications prior to Ref. [1]
from our group, including Ref. [14], have used the cor-
rect values in Tables I–II and not those from McKeever’s
thesis [8]. Furthermore, these earlier results are for lin-
early polarized trapping fields for which the contribution
of the vector term α(1) vanishes. Therefore, these earlier
results from our group stand without revision.

Using the revised formalism from Section I and based
on the corrected numerical values in Tables I–II from
Section II, we present corrected figures to replace those
in Refs. [1, 2] as described in the following sections.

III. CORRECTED FIGURES FOR REF. [1]

The figure numbering in this errata mirrors that of
Ref.[1] with corrected figures given here in Roman nu-
merals. Fig. VI[1] relates to magic wavelengths for the
Cs D2 line and replaces Fig. 6 in Ref. [1]. The magic
wavelength in this note is defined by the weighted average
of the Zeeman sublevels mF (i.e., not by α(0) alone).

As in Ref. [1], we include a surface interaction poten-
tial of an atom with the dielectric nanofiber in our calcu-
lation of the total atomic trap potential. The surface po-
tential of the ground state Cs atom near a planar dielec-
tric surface can be approximated by the van der Waals
potential−C3

d3 , where d = r−a and C3/~ = 1.16 kHz µm3

[1, 15].
In Figs. VII[1], VIII[1], and IX[1], the two-color evanes-

cent trap from Ref. [16] is constructed from a pair of
counter-propagating x-polarized (ϕ0 = 0) red-detuned
beams (Pred = 2× 2.2 mW) at λred = 1064 nm, forming
an optical lattice, and a single repulsive y-polarized (ϕ0 =
π/2) blue-detuned beam (Pblue = 25 mW) at λblue = 780
nm. The SiO2 tapered optical fiber has radius a = 250
nm in the trapping region. Figs. VII[1],VIII[1], IX[1]
replace figures of Fig. 7, 8, 9 of Ref. [1].

For the magic, compensated trap in Figs. X[1], XI[1],
XII[1], we use a pair of counter-propagating x-polarized
(ϕ0 = 0) red-detuned beams (Pred = 2 × 0.95 mW)
at the magic wavelength λred = 935.3 nm. Counter-
propagating, x-polarized blue-detuned beams at a sec-
ond magic wavelength λblue = 684.9 nm are used with a
power Pblue = 2 × 16 mW. The resulting interference is
averaged out by detuning the beams to δfb = 30 GHz.
Figs. X[1], XI[1], XII[1] replace Figs. 10, 11, 12 of Ref.
[1].

IV. CORRECTED FIGURES FOR REF. [2]

Because of the errors described in Sections I and II,
our experiment in Ref. [2] used red- and blue-detuned
beams at wavelengths λred = 937.1 nm and λblue = 686.1
nm instead of the correct values of λred ' 935.7 nm and
λblue ' 684.8 nm calculated in the same fashion as Fig.
VI[1] but now for F = 4 of 6S1/2 to F ′ = 5 of 6P3/2.
Fig. A[2] shows the trapping potentials for the ground
and excited states for the correct magic wavelengths of
λred ' 935.7 nm and λblue ' 684.8 nm for this transition.

For the actual wavelengths λred = 937.1 nm and
λblue = 686.1 nm used in our experiment [2], Fig.1 and
Fig. SM5 of Ref. [2] are here replaced by Figs. B[2]
and C[2], respectively, which incorporate the revisions
described in Sections I and II.

V. CONCLUSION

Our emphasis has been to correct the formalism (Sec-
tion I) and atomic data (Section II and Tables I, II) that
are the basis for our calculations in Refs. [1, 2]. Recently
a more extensive set of atomic data than in Tables I and
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II has become available [7]. We have confirmed that these
data with our formalism in Eqs. (1-5) reproduce Figs. (4,
5) from Ref. [7].

However, the expanded set of atomic levels and life-
times in Ref. [7] lead to small differences between
Figs. (4, 5) [7] and corresponding figures computed from
our Tables I, II. These differences are most pronounced
around 685nm (e.g., our Fig. VI(a)) principally due to
excited-state contributions up to n ∼ 25, which are not
included in Tables I, II. We therefore recommend that

the data set from Ref. [7] be employed for the calcula-
tion of ac Stark shifts for the D2 line in atomic Cesium
rather than the less extensive data in our Tables I, II.
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Level nS λMcKeever λClark τMcKeever τClark

(nm) (nm) (µs) (µs)

6 852.4 852.35 0.03051 0.0306

7 1469.5 1469.89 0.07529 0.0749

8 794.4 794.61 0.2599 0.2319

9 658.8 658.83 0.5533 0.4759

10 603.4 603.58 0.9924 0.8374

11 574.6 1.607

12 557.3 2.428

13 546.3 3.49

14 538.5 4.809

15 532.9 6.431

TABLE I: Comparison between corrected partial lifetimes in Ref. [8] with Ref. [13] for 6P3/2 → 6S1/2 [11] and
nS1/2 → 6P3/2 for n = 7− 15 [9]. Partial lifetime (τMcKeever) and wavelength (λMcKeever) are from Ref. [8] with the
corrected value highlighted in green. τClark and λClark are from Ref. [13]. The conversion from d to τ from Ref. [13]

is done using Eq. (7.8) in Ref. [8].

Level nD λ3/2 McKeever λ3/2 Clark τ3/2 McKeever τ3/2 Clark λ5/2 McKeever λ5/2 Clark τ5/2 McKeever τ5/2 Clark

(nm) (nm) (µs) (µs) (nm) (nm) (µs) (µs)

5 3612.7 3614.09 10.09 9.2931 3489.2 3490.97 1.433 1.3692

6 921.1 921.11 0.3466 0.3497 917.2 917.48 0.0587 0.0604

7 698.3 698.54 0.7097 0.7061 697.3 697.52 0.1198 0.1203

8 621.7 621.93 1.284 1.2884 621.3 621.48 0.217 0.1566

9 584.7 2.131 584.5 0.3587

10 563.7 3.29 563.5 0.5527

11 550.4 4.807 550.3 0.8063

TABLE II: Comparison between corrected partial lifetimes in Ref. [8] with Ref. [13] for nD(3/2,5/2) → 6P3/2.
Partial lifetime (τ(3/2,5/2) McKeever) and wavelength (λ(3/2,5/2) McKeever) are from Ref. [8] with the corrected value
highlighted in green. τ(3/2,5/2) Clark and λ(3/2,5/2) Clark are from Ref. [13]. The conversion from d to τ(3/2,5/2) from

Ref. [13] is done using Eq. (7.8) in Ref. [8].
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FIG. VII[1]: Replacement for Fig. 7 in Ref. [1]. Radial dependence of the trapping potential of the ground and
excited states for the parameters used in Ref. [16] at z = 0. The polarization configuration is the same as Fig. 1(b)
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black curves, and the F ′ = 4 sublevels of the electronically excited state (6P3/2) are shown as red dashed curves. (a)

Radial potential along φ = 0. The trap minimum is located at about 230 nm from the fiber surface. (b) Radial
potential along φ = π/2.
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excited states using the magic wavelengths and the compensated configuration shown in Fig. 1(d) of Ref. [1]. All

beams are polarized along φ = 0 (i.e., ϕ0 = 0). The 935.3 nm beams each have a power of 0.95 mW. The 684.9 nm
beams each have a power of 16 mW. (a) Radial potentials along φ = 0 (i.e., ϕ0 = 0). The trap minimum for 6S1/2 is
located at about 200 nm from the fiber surface. (b) Radial potential along φ = π/2. (c), (d) Expanded views of (a)

and (b) around the trap mininum.
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FIG. XI[1]: Replacement for Fig. 11 in Ref. [1] for the magic, compensated scheme with λred = 935.3 nm and
λblue = 684.9 nm. Azimuthal dependence of the trapping potential of the ground and excited states for the

parameters used in Fig. X[1]. r − a = 200 nm and z = 0. (b) Expanded view of (a) near a trap minimum at φ = π.
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FIG. XII[1]: Replacement for Fig. 12 in Ref. [1] for the magic, compensated scheme with λred = 935.3 nm and
λblue = 684.9 nm. Axial dependence of the trapping potential for the ground and excited states for the parameters
used in Fig. X[1]. (a) Longitudinal potential along φ = 0. The distance from the fiber surface is set to r − a = 200

nm at the trap minimum. (b) Longitudinal potential along φ = π/2. The distance from the fiber surface is again set
to 200 nm.
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FIG. A[2]: The magic, compensated scheme with a pair of counter-propagating x-polarized (ϕ0 = 0) red-detuned
beams (Pred = 2× 0.4 mW) at λred = 935.7 nm and counter-propagating, x-polarized blue-detuned beams

(Pblue = 2× 5 mW) at λblue = 684.8 nm. The distance from the fiber surface is set to 207 nm. (a) Azimuthal
Utrap(φ), (b) axial Utrap(z), (c) radial Utrap(r − a). Each black and red line corresponds to different energy

eigenstates of the ground state (6S1/2, F = 4) and excited state (6P3/2, F
′ = 5), respectively.
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FIG. B[2]: Replacement for Fig. 1 in Ref. [2] for the actual wavelengths used in our experiment [2]. We used a pair
of counter-propagating x-polarized (ϕ0 = 0) red-detuned beams (Pred = 2× 0.4 mW) at λred = 937.1 nm, and

counter-propagating, x-polarized blue-detuned beams (Pblue = 2× 5 mW) at λblue = 686.1 nm in our experiment [2].
The resulting interference is averaged out by detuning the beams to δfb = 382 GHz. Adiabatic trapping potential
Utrap for a state-insensitive, compensated nanofiber trap for the 6S1/2, F = 4 states in atomic Cs outside of a

cylindrical waveguide of radius a = 215 nm. Utrap for the substates of the ground level F = 4 of 6S1/2 (excited level
F ′ = 5 of 6P3/2) are shown as black (red-dashed) curves. (a)(i) azimuthal Utrap(φ), (ii) axial Utrap(z) and (b)
radial Utrap(r − a) trapping potentials. The trap minimum for 6S1/2 is located at about 215 nm from the fiber
surface. Input polarizations for the trapping beams are denoted by the red and blue arrows in the inset in (b).
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FIG. C[2]: Replacement for Fig. SM5 in the supplemental material of Ref. [2] for actual wavelengths used in our
experiment [2]. We used a pair of counter-propagating x-polarized (ϕ0 = 0) red-detuned beams (Pred = 2× 0.4 mW)
at λred = 937.1 nm, and counter-propagating, x-polarized blue-detuned beams (Pblue = 2× 5 mW) at λblue = 686.1
nm in our experiment [2]. Expanded view of the insets in Fig. B[2]. The distance from the fiber surface is set to 215

nm. (a) Azimuthal Utrap(φ), (b) axial Utrap(z), (c) radial Utrap(r − a). Each black and red line corresponds to
different energy eigenstates of the ground state (6S1/2, F = 4) and excited state (6P3/2, F

′ = 5), respectively.
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[188] D. Chang, J. Thompson, H. Park, V. Vuletić, A. Zibrov, P. Zoller, and M. Lukin, “Trapping and Manip-
ulation of Isolated Atoms Using Nanoscale Plasmonic Structures,” Physical Review Letters, vol. 103,
p. 123004, 2009.

[189] E. Vetsch, Optical interface based on a nanofiber atom-trap. PhD thesis, Johannes Gutenberg-
Universitat, 2010.

[190] J. Obrecht, R. Wild, M. Antezza, L. Pitaevskii, S. Stringari, and E. Cornell, “Measurement of the
Temperature Dependence of the Casimir-Polder Force,” Physical Review Letters, vol. 98, p. 063201,
2007.

[191] T. Grünzweig, A. Hilliard, M. McGovern, and M. F. Andersen, “Near-deterministic preparation of a
single atom in an optical microtrap,” Nature Physics, vol. 6, p. 951, 2010.

[192] A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Cooling to the Ground State of Axial Mo-
tion for One Atom Strongly Coupled to an Optical Cavity,” Physical Review Letters, vol. 97, p. 083602,
2006.

[193] A. Goban, C. L. Hung, S. P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung,
K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom–light interactions in photonic crystals,”
Nature communications, vol. 5, p. 3808, 2014.

[194] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distri-
bution among distant nodes in a quantum network,” Physical Review Letters, vol. 78, p. 3221, 1997.

[195] L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted inter-
actions,” Physical Review Letters, vol. 92, p. 127902, 2004.

[196] J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional
waveguides,” Optics letters, vol. 30, p. 2001, 2005.

[197] F. Le Kien, S. D. Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between
two distant atoms,” Physical Review A, vol. 72, p. 063815, 2005.

[198] N. Bhat and J. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive
structured media,” Physical Review A, vol. 73, p. 063808, 2006.



140
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