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ABSTRACT

In this thesis the supersonic source flow over a thin sharp-
edged airfoil is formulated as a linearized problems A new potential
equation is derived, using a system of spherical coordinates csenbtered
at the source; as a simplification only wings symmetrical sbout the
z axis are considered, and of these only the limiting cases of ring-
and annular- airfoils are treated.

After transforming to cheracteristic coordinates in the hodograph
plane, the potential equation (which has variable coeffiéients) is
shown to be approximeted by two classical equations -»bone holding for
the ring wing and the other applying to the annuler wings The flow
over o spocific anmulsr wing is computed by an application of the
Riemann method to the telegraph equation, which is the appropriate
approximation to the governing equation for this cass,.

The linearized potential equation is also solved by the Method of
Characteristics, using a numerical equivalent of the longe procedure
for quasilinear pertial differential equations.‘.& complote set of
competibility equations is exhibhited, alloﬁing'the computation of the
perturbation velocity components at any point of the zone of~inflqen¢e
of an airfoil set in the supersonie source flow, Two numerical ox-
emples are presented, illusﬁratihg the application to the comyutation
of the flow over each of & ring- and anmnular- wing.ﬂ

Finaliy, in an appendix the usually powerful method of separation
of variables is shown to be unsuitable as a procedure for solwving the

potential equation governing the present probleme
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I. INTRODUCTION

1. BAn important restriction of conventiongl wing theory is the as-
sumed uniformity of the undisturbed flow in which the airfoil is im=
mersod. |

The assumption of uniform flow is not valid in sevseral important
cases, of which obvious instances are

a) @ wing spanning an open jet wind tunnel,

b) a wing in a propeller slipstream,

¢) a tail surface behind a supersonic winge
To solvenproblemsvsuch as these several authors‘(Refs. 1, 2, 3) have
nodified the existing stendard wing theory by weakening or discarding
the hypothesis of strictly uniform flow.

However, studies of non-uniform flow generally have retained the
assumption of rectilinear motion of the undisturbed fluid: for subsonic
flow the streamlines ars presumed parallel at infinity, end in all of
the supersonic cases, including the flow about yawed péinted bodies of
revolution (Refs. 4, 5, 6, 7)s the streamlines are assumed to bs par-
allel up to the zone of influénce of the obstructing body, although
the flow between the atbtached shock front and a yawed pointed body of

rovolution is not rectilinear.

2. One of the reasons for this general attention to rectilineer une
disturbed flows is a consequence of the most important spplication of
supersonic flow theory, which is to the design of aircraft expected to

fly at supersonic speeds through a relatively motionless atmosphere.



Since the viewpoint that the gircraft has a supersonic speed in still
air is equivalent to that in which the aircraft is at rest in en air
flow moving at the same bub oppositely signed speed, it is reasonable
to assume that when the air strosm enters the zone of influence of the
aircraft it has 2 uniform velocity which is the negative of the actual
velocity of the aircrafte. Thus, for the seronautical engineer, recti-
linear flows are the most significant.

The consideration of rectilinear flows is also attractive for the
reason that in this case the linearized différenti#i equation setisfied
by the pertu?bation potential has constent coefficients snd is rela-
tively easy to solve. When the undisturbed flow is not reotilinéar
the analogous perturbation potential equation will have variable
- coefficients.

Furthermore, for the most exhaustively explored problem =~ two
dimensional linearized supersonic airfoils in & uniform rectilinear
supersonic flow -; it is very easy to satisfy the boundary condition
of outgoing waves by choosing one of the two general solutions of the
governing differential equation to stand for each of the two surfaces.
In genersl the condition of outgoing waves cannot be satisfied in this
simple manner, and this is another of the reasons why the theory of

airfoils in other than rectilinear flows hes not been pursued.

%s Of problems in the supersonic flow of a fluld over a submerged
object, in which it is not possible to ascribe a rectilinear motion to
the undisturbed stream, perhaps the one of most practical importance

is the case in which the gaseous combustion products of a rocket are



exhausted pest a small wing or vene (Fige 1). Such a wing would

ps /,////MW
////////////m?\m

Fig. 1 = A Small Supersonic Wing in a Rockst Hozzle

function to deflect the exhaust gases from their initially undisturbed

direction, causing a nonsymmetrical flow; the component of the resulte

ant force normal to the motor axis would act to deflect the rocket, or

any rigidly attached vehicle, from its course. In this way, & small

wing set in & rocket exhaust could be the meens of controlling the

flight of a rocket powered aircraft.

4, In its most highly developed form, the theory of steady compressi=

ble fluid flow is based on the following assumptions:

2)
b)

c)
a)

f)

g)

The effbcﬁ of body forces can be neglected,

No heat is added to or subtracted from any portion of the

fluid, o

Within the streaming fluid the thermal processes are isentropic,
The working fluid is a perfect gas,

The viscosity is zero, |

Thé undisturbed flow is initially irrotational,

Before entering the zone of influence of a small obstruction

the fluid has a uniform, rectilinear motion,



h) BAn obstacle in the stream changes the vélocities in the un=

disturbed fluid only slightly.

In the present problem, in Which the rocket exhasust is the primary
flow, all of these assumptions, with the exception of (g), will be
retsined.” In place of (g) the motion of the gas forming the rocket
exhaust is now assumed to be approximated to by & supersonic source
flow.

Thus, this thesis has for its purpose the calculstion of the steady
flow field downstreem of a small wing, set at a slight angle of attack,
in & non-viscous, non-heat conducting, compressible supersonie perfect

ges issuing isentropically, without rotation, from a source.

5 The equations governing the steady motien of a non-viscous, non-
conducting compressible perfect gas, free of body forces, and subject

to only isentropic processes are

ERA R A | (1.2)
v(93)=0 (1.2)
P= K E’Y (103)

*  Underlying {(c) is the assumption that the working fluid is a
homogeneous system of non-reacting fluids, which will be trus if the
combustion is completed in the rocket chamber. This is certainly not
the case for present day rockets. However, in the history of Fluid
Mechanics, the introduction of new features in the subject has had to
be balanced by simplifications in snother direction. There are enough
inherent difficulties in treating a problem in non-uniform flow with-
out adding to the complications by discarding the simplifying assump-
tion of isentropic flow., Further, esny other postuleted thermal process
probably would be no more sccurate then that of isentropiec flow; hence,
in the present investigation, the thermal processes will be assumed to
have their simplest nature, given in (o).



where pqm% are respectively the local density, pressure and velocity
at = point in the fluid, K is a constant, end 7 is the (constant)
ratio of the two specific heats of the gase

For an isentrople process,

Vp=a'vp, (1e4)
where 0. is the speed with which an infinitesimal disturbance is
propageted in the fluid.

Combining all three of (i.l), (162), (1e3) and meking use of
(144), it is seen that the motion of the fluid is described by the
single (scalar) equation

‘%-[i-v%]--dv-'cg. (1.5)

The assumption of irrotationality is now employed, for the purpose
of which it is helpful to put equation {1.5) into a more convenient
form by use of the identity

%V(%-i) = %-V%%—%X(Vx%)_ (1.8)
Setting (1.6) into (1.5) results in
13 [0 p-2gxepl-av g (L7)
The postulate of no rotation implies that the velocity components’can
be obtained as derivatives of a single-valued potential function $,
or that

§=V§.

Since'% is now the gradient of a scalar, the term ix(in) in (1.7)

vanishes, and that equation takes the fomm

$vé-[v v2-ve|=a V'3, e

the "potential equation" of motion of & perfect compressible fluid.



In general orthogonal curvilinear coordinates ¢,,%:.,s equation

(1.8) becomes

3. 3 X3 y (38 V) _
5o R & ]

& [a (@1@3 _a__§;)+ © (00.32), 2 (40, éi)},

Q\Q1Q3 6%. Q\ 6‘6\ a%l Qz 3%1 3%3 Q3 3%3
wherse
ax \*, (34 V2, (32Y _
Q= (B (B GR) ) k=,

are the coefficients of the line element of arc length in the orthogo=-

nal QP B space.



II. PURE SUPERSONIC SOURCE FLOW OF A PERFECT

COMPRESSIBLE FLUID

6. The coordinate system sppropriate to a source flow is that one

called spherical (Fig. 2),‘ for which the equations of transformation

Fig. 2 - Spherical Polar Coordinates

to cartesian coordinates are given by
X=1rsinb cosy
Y=Y sin ) sin @ (2.1)

2= v cos©.

Referred to spherical polar coordinates r,6,¢ the potential

equation of motion (1.8) becomes, with the use of (2.1), |

(a.l— §:)§W+(a~2 )§96 [ 1 éerére §9 ]2 § +a* c t6§e +

2r2 r*
(‘— By )_g_.?; [§L+ cos 8 ase.é_"_ ( 3 Qcpée«p]_gﬂ_ o) (2.2)

risin'@/risin® " | ¥ | risn© —0lrisin’e “P Yism6 |risin®



7. In Hydrodynamics e source is a hypothetical point from which fluid
is imagined to issue uniformly with regard to direction; on each sphere
centered at the source bhe fluid properties are constant, depending
only on the radius. To deduce the velocities, pressures, €ic., et eny
point in the field of & perfect compressible fluid welling from e
source, the potential of (2.2) is specialized to ¢(r) , where Y is

the disteance from the source, resulting in the equation
[#0 - ] Pt - E aim $n=o. (243)

Bnother form of the potentiaml equation {243) which is convenient
for later use is obtained by introducing into that equation the local

Mech nurber in the source flow,

_ P
M) = E—;(—;') )
leading to
Mio-1] ¢ -2 Sn=o0. (244)

A third form of the potential equation of motion of a supersonic
compressible source flow is obtained by consideration of the energy

equation, which here has the form
ai(r) = ay- Z;_-—' ¢'n, ' (245)
where a, is the speed of sound in the fluid at stagnation conditions

and is constant when the flow field is isentropic. Substitution of

(245) into (2.3) results in
[Vin -alvin - 285 vn [1-vin] =o, (2.6)

where V(n= $r) /c s in which ¢ is the meximum possible speed the

fluid can sttain (at v=o0 ) and A'= :‘; : s a constante




8¢ [Bquation (2.8) can be integrated to
2

7-1
YEvir) [\.— Vz(r)] = Ay, (2.7)
“where A, is 2 constant of integration, which is essentially the
continmuity equatione. A more convenient form of (2+7) is obtained by
using the "oritical speed of sound", et which the local fluid and
sound spoeds have a common value Qy, to construct the dimensionless

speed ratio
ME) = @m/ay =VIN[A, (2.8)

called the “cfitical Mach numbex".*
The use of @4 rather then some other quentity which is constant
_in the entire flow field, say a,, is justified on tﬁe basis that it is
the ocut which’separates the subsonic and supersonic speeds, for by
definition
the flow is subsonic when o0¢« 4>'m {ax
the flow is supersonic when ay< &(r).

After substituting (2.8) into (2.7) and rearranging, there results

L

- 2 "
* 207D
{— = M ) 1= N Mg (v ).l (‘2.'9)

where A': A’,'/,\ o For air at ordinary conditions V=140 and A=1/6,

80

4 -128
({“)1\ =M, ("'I)z[‘— “’MSm] ’ (2.9)a

*  Since ay is & constant for the entire field of flow, MI(r)
is directly proportional to the local fluid speed; on the other hend,
Ms(v) is & complicated function of v
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A graphical representation of formula (2.9)a is given in Fig. 3.

9, From the elementery theory of mexime end minime it is easy to see
that for eny velue of A the right hand member of (2.9) has e real
minimm when MY(r) is unity, or, using (2.8), when V=A . Tho mini=-

mn velue of _Ar_ is given by

(B, = (2,
thus, there is & sphérical boundary on which the local spéed of the
fluid is sonic, and the supersonic flow outside of the sp_heré cennot
be continued into the interior.

This same result could have been forseen from an examination of
(244), for M (=1 is a reguler singular point of the differential
equation, and thus there are two solutions, one in the renge M;(r)>)
and another in the renge 0<M (r)4| ; one solvbion cannot be continued

analytically into the other.

10, The well known relations (Ref. 8, p. 25) between the critical and

locel Mach numbers becoms, for the source flow,

2
M?(Y) = — l 1 (2010)
MG
and
MY
Ms(r) = & 32t (2.11)

(NS Vi
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'11. Por the purposs of calculating pressures in the compressible

source flow field, the relation (2,9) is rewritten as

1
Alr *t 1200
;‘-?T&_—; = (\— X"M,«, LV)] . (2.9)'

Since the working fluid has been assumed to be a perfect gas
subjected to only isentropic changes, the pressure ratio p;/fo has

the form (Refs 8, Do 26)
£ ~
B = [i-xmseo]™ (2.12)
(]

Then, comparing (2.9)! and (2.12), the pressures in the compress=-
ible source flow are seen to be ‘given by the formule |
2
‘pr; = K-%é:-l—) Y, (2.13)
The values of M: (v) corresponding to a given —f; for 7=140 are
obtained from Fige 3e
The dynamic pressure in the source flow,
g =&,
cen be rewrittien as
g4, =57Fs Mﬁv)

)

or, using (2.11) and (2.12), as

z
7 M: 49}

B= % v P (21)
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ITI., RESTRICTION TO AXIALLY - SYMMETRIC MOTIONS

AND LINEARIZATION OF THE RESULTING EQUATICN

12, Now it is assumed that o wing is set into the perfect, irrotational
compressible fluid issuing from the supersonic source. In the zone of
influence, the part of the flow field to which are confined the dis-
turbances due to the wing, the fluid motion is deranged from the’strictly
radial stream which is the mark of & purely source flow. Instead, in
the general case, throughout the action zone the motion of the fluid can
be described only as a function of three independeht space variables,

Problems in the three dimensional motion of a peifect fluid possess
gréat inherent difficulties, due primarily to the complexity of the
differential equations, which for steady flows have three independent
variables. Steady, supersonic plane potential rectilinear flows can
be reduced to the discussion of the two-dimensional wave equation, which
has been intensively §tudie&, ﬁut for general three-dimensional prob-
lems no such highly developed mathemsticel structure existse

Thus, it is eppropriate fo reduce the mathematicel difficulties
by consideration of a special case of the general three;dimensional
problem,.

As a first approach to the spatial source-wing problem the case
in which the deranged flow caused by the wing is symmetrical sbout one
of the cartesien axes, say the z-axis, Wwill be investigated. Then, in
21l plenes containing the (z) exis of symmetry the flow will be the
same; such planes are defined by the coordinate v hence the fluid

motion will be independent of ¢ and can be studied in any one
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moridinal plane.
In the sequel attention will be confined to such axially symmetric
flows, for which the potential & of (2+2) is specialized to &(r,6) ,

cauging that equation to assume the form

G SEMRE % 2% SINELC L IDIES L R

13 The present state of mathemetical knowledge does not include &
general approach toward en exaot solution of the highly non-linear
pertial differentisl equation (3+1)s representing the axially-symmetric
disturbed source flow of a perfect compressible fluid past a wing which
so alters the velocities that no longer cen they be derived from the
simple potential of the source,

However, the changes in velocity will not be large when the air-
foil is thin, with sharp lesding end treiling edges, and the angle of
attack is small, For meny similer situations in the thecry end prac-
tice of the high speed flow of compressible fluids it is not the
veloeitykof the fluid (or the velocity potentisl, the rigorous solution
of the potentisl equation of motion from which the veloeity can be de-
rived) which is of interest, so much as the variations produced in the '
velocity of the undisturbed flow by obstacles in the stream. Such
attention to the "velocity perturbations" rather than to the veloeci-
ties themselves leads to an elegent method of investigating the con-
sequence of & small obstruction set in a moving fluid possessing e
simple flow pattern. Msny importent seronautical problems are approxi-

meted by this combination of smell obstacle and simple flow,
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This notion of concentrating on the slight changes produced in the
flow pattern by a week disturbsnce, rather than attempting to determine
the cheracter of the existing derangad flow, is the basis of the
"method of smell perturbations." In the present investigation this
methed can be employed, since the wing will be supposed thin, with
sharp leading end trailing edges, set at a slight angle of attack to
the flow. Presuming such e diminutive wing, with consequent srell dis=
turbance to the source flow, the non-linear differential equation (3.1)
cen be linearized after resteting the supposition of & small wing in
the following way:

It is assumed that compared to the local velocity ¢'(v) of the

mein (source) flow the locel changes in the velocity components

provoked by the wing are so small that they can be regarded as

perturbations added to the primary velecity.

14, A thin, sharp edged wing will ceuse an exially symmetric flow
slightly deranged from the original source flow when it has sxiel sym=
metry. end is approximately on the lateral surface of a right circuler
truncated cone with vertex at the source (see Fige 4).

There are two extreme cases, distinguished by the order of magni-
tude of the coordinate © o ¥When © is small, of the order of 6° or so,
the airfoil will be called & ring wing -- here it is not importent
whether the surface from which the ring wing departs slightly is con-
sidered to\ be the lateral surface of & cone or the lateral surface of &
right circular cylinder with z as its axis of symetry (see Fige 5)e

On the other hand, when B is close to 1'?:- the eirfoil will be called an
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annular wing -~ here the proper surface to use in approximetions is

the x,y plene (see Fige 6)e

2z

~ 3
x : ,
Fige 4 - Truncated Conical Airfoil in a Supersonic
Source Flow

Z

e ’

Fig. 5 = Ring Wing in a Supersonic Source Flow

Fige 6 = Anmular Wing in a Supersonic Source Flow
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For other trunceted conicel wings the coordinate © will have
values intermediate between "smell" end "close to Z ". It will be
seen later that when & is small or clese to T it is possible to
Justify cortain simplifying approximations, snd hence it is convenient
to restrict the airfoils in the source flow to juét tﬂe ring and annue
lar wings. The genersal case of the truncated cone wing will not be
considered.

This investigation may be applied to a small Wiﬁg, and hence so
far as the snnular wing is concerned the interest here is in a part of
the annulus cut out by two planes normal to the X,y plane. The
perticular shape of the tips is not importent, beceuse the theory is
only able to account for the flow over‘the central portion of the wing,
between the Mach cones which have their vertices at the outermost point

on the leading edge (Fige 7).

SOURCE

Fige 7 = Planform of an Annulsr Wing. The Theory Neglects
Tip Effects and so cen be Applied only to the Shaded Portions
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For the ring wing, it is clear that in all plenes containing the
z=axis (of symmetry) the streamline patterns will be identical. How=
ever, for the smnular wing as delineated above, in half planes which
begin at the z-axis the flow will be of two types, depending on whether
or not the plane cuts the central part of the wing, between the Mach
cones due to the tips: |

a) When the helf plene intersects the sheded portion of the wing:
- supersonic fluid motion axially-symmetrically perturbed
from the source flow due to the’presence of the wing.

b) Vhen the half plane does not intersect the shaded portion of
the wing: = disturbed supersonic source flow with no axial-
symmetry.

Case {a) only is of interest, because here the flow is deranged
in an axially symmetric way from its initielly Qimple characters. Agein,
in ell planes which are interrupted by the shaded portion of the wing
the fluid motions are identicael and independent of the coordinate ¢

defining the plane, requiring examination in only one such plane.

15, The purely source flow is obviously irrctational, and in section
4 %he thermel processes were assumed to be isentropic, which means that
the fluid pressure is a function of the density only, and so the
Lagrange theorem (Ref. 9), that a perfect fluid in irrotational motion
remeins permenently without rotation, holds. Thus, since a velocity
potential exists for every portion of the undisturbed source flow, the
disturbed fluid also possesses a velocity potential, which may be
jdentified with P(r,8) of Ege (3+1)e

In the silent zone the wvelocities can be derived from the simple
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velocity potential of e compressible source, while in the action zone
the rflcw patterns are deranged by reason of the disturbing influence
of the wing. Hence, in the actuel existing flow, in the zone of influ=-
ence, the velocities differ fundamentally from those in the pure

source flow.

However, by assuming that the disturbing effect of the wing is
small -~ that is, by postulsting thet in the zone of influence the
streamline pattern differs only slightly from the compressible source
flow which would there 'exist but for the wing -=- it is possible to
employ the method of perbturbations to calculate approximately the.
disturbed fluid motion., With this supposition of slight distortion,
the velocity potential of the actual flow is assumed to be o linear
combination of two potentisals:

1) ¢(r) s representing the main (source) flow, and

2) £(r,6) , & "perturbation potential®, charecterizing the amount

by which the wing distorts the primary flow.

‘Than is, the small wing is methemstically introduced into the flow
governed by Ege (3.1) when the velocity potential is teken to be

H(Y,8) = P(r) + &1, 8). (342)

The velocity components &, and {&e , representing the wing, as
well as their derivatives, are assumed to be small,; so that produdts
of the perturbed velocities with one another and with their derivetives
will be neglected in comparison with the first order terms, and hence
the theory \subsequently developed is a first approximation to the actual
state of affairs.

For consistency, the speed of sound a(v,8) in the perturbed flow
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mist be writien in @ linearized form; when the undisburbed fluid is 8

supersonic source flow the linearized speed of sound is

| af(8) = @3 ()~ (1) H(n) Ey. (5.3),
When (3.2) and (3.3) are set into equation (3.1), after discarding

the zero order terms, which vanish identically by (2.3), and retaining

only first order terms in the perturbation velecities, there remeins
[Eﬁtv%c#'fr)] Eve + a5 E?—f- +[%{a§ (1) ~(7-1) z#’fr)} (1) dtr) cp"(_r)]&, ras () %? Eg=0. (3.4)

The coefficient of &, in (3.4) can be put into a more convenient

form, for from (2.3),

2 12
' u . 2as(t) &

and so

4 2
(1) M U4 M0 +1
Mle) =1

{-{a;m-o’_\) & ZT)} ~) SN = -2 (345)

After multiplication of (3.4) by r* and the use of the right hand
member of (3.5) as the coefficient of £, the final form of the lineer-

ized equation of motion is obteined:

() M;(rn- Msz(rH-I

M;‘(v)-l éy-cot B Eg =0. (306)

r’[Mlev)—\] Evr ~€gg +2r

16 From physical considerstions, when a solid body is set into the
supersonic source flow, the resulting disturbed fluid motion must
satisfy the following boundary conditions:

a) TWhere the body exists the perturbation velocity vector, with
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components (&, &o/p) s is tangent to the surface;
b) The perturbation velocities vanish identically upstream of
(and on) the spherical surfece s* centered at the source and
lying wholly in the field of supersonic flow, which passes
through the leeding edge of the body; and & related condition,
¢) Waves leaving the surface must be outgoing; that is, must be
directed downstream of the body. |
If OA in Fig. 8 is a streamline from the origin of the coordinate

system (the sburce) to a point A on either the ring or annular eirfoils,

Fig' 8

then, whp’cher A is on the upper or lower surface, the velocity com=
ponents in the disturbed flow will be
#tr)+ €» in the radial direction, end
-/ in the angular directione.
Hence, if o is the angle of attack of the surface at A to the primary

source flow,

o/

tan o = —¢,(T)+&

* In a plane of symmetry the trace of this spherical surface will be
an arc of a circle.
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or
+£9/r =— ¢>ILY) tand. (3.7)
Thus the boundery condition (&) is expressed in the form of & condition

on the velocity perturbation in the angular direction.

17, Summerizing, the boundary value problem which describes the fluid
motion deranged from the basic source flow due to the presence of
(either a ring- or snmular-wing cen be formlated as follows: The

governing differential equation is

7-) MI + M3+
@) M)+ Ms(r ‘E\,—cotefe o
M3tr) -\ ‘

v [Msn-1] €y - Epp +2r

and the boundary conditions are given by ‘
a) Eg/r = - H() tans;
b) (In eny plane of symmetry) £, end fe/r venish identically on
a circular arc, with center at the source, which passes through
the leading edge of the airfoil; and a related conditiom,

¢) Waves leaving the body must be directed downstream.

& boundary vealue problem‘in which the partial differential eques
tion is hyperbolic possesses a unique solution if three conditions -=-
cne on a time-~like curve and two on a space=-like curve -- are pre-
scribed (Ref. 10, ps 85)s A direction is called time=-like if it
separates the characteristics; the surface of the airfoil is such a
time~-like direction, and one datum (a), is prescribed there. If both
characteristiecs through a given point lie on one side of a given curve

thet curve is called space-like. Clearly, the circular arc, centered

at the source, which passes through the leading edge of the airfoil,
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is space-like; and on this curve two conditions (b), on £y &nd Eé/r s
are prescribed.

Thus, the three conditions of (a) and (b) ere sufficient to pro-
vide & unique solution to the boundary value problem describing the
axially symmetric disturbed flow which is the result of iﬁtroducing a
thin supersonic ring- or ennular-wing, st & slight sngle of attack,

intc a supersonic source flow.

18, When the perturbation potential £(v,6) of equation (3.6) is known,
the perturbation velocities, and hence the local fluid pressures, can
be calculated.

| For the purpose of determining the pressures in the field of per=-

+urbed flow it is convenient to first define

£ svmf:< to be the radial component of the perturbation in the

ax
source flow critical Mach number M’;(v) s 8nd

fo/r

2 me to be the angular component of the perturbation in the
*

m

source flow critical Mech number M’;(r) °
Retaining only first order terms, the critical Mach number M¥ or

the perturbed flow is related to Mi() by

M¥ =m¥w [14 mE/mEm]. (348)

Since the flow is isentropic, the local pressure p in the
dersnged flow is given by (Refe 8, pe 26)
]%.—

p= po[l-/\"M*l (345)

Setting (3.8) into (3.9) and lineaz‘izing, there remains
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. :
7 Mg () * Y
P=p, [‘- "’a%n TP ™ ], (3.10)

where p, is the local pressure in the source flow, given by equation

(2+12).

18, By introducing an.airfoil intc & supersonic source flow, & pres=

sure coefficient Cp can be defined as

Cpg = P;SPS ) (3011)

where 9, is the local dynamic pressure in the primary source flow,
given in equation (2.14).

From the definition (3.11), using (3.10) end (2.14),

*
=25
Cp=-2 M:(r)) (5012)

which is identical in form with the pressure coefficient for uniform

rectilinear isentropie flow.

20. The pressure coefficient calculated from (3.13) will be compared
with the pre ssure coefficient for "linearized locally rectilinear flow",
where the formmlas of rectilinear supersonic flow theory are empioyed.
Thus, when & wing is set into a supersonic soures flow the critical
Mach number of the perturbed flow is given by linearized locally recti=-

linear flow theory as

X N
m¥ = m¥ 2 M) tang (3.13)

s )
\IM;(V) -1
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where o is the sngle of atteck of the airfoil surface and the (+) and
(=) signs are used with the upper and lower surfaces, respectively.
From {Ref. 8, pe 145) the pressure coefficient for linearized

rectilinesar flow has the value

Cp, = - _2tand (3.14)

T NMIm Y
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IV. REDUCTION OF THE PERTURBATION POTENTIAL BEQUATION TO CERTAIN

CLASSICAL FORMS. APPLICATION TO A NUMERICAL EXAMPLE,

21. The fundamental equation (3.6) can be condensed to

[ Mim-1]e] - 2rMimer - g F5 (o sing) =0 (4.1)
and then further reduced by writing the coefficients in terms of the
potantial &(r) representing the supersonic source flow, From equation

(2.4),

¢(r)

min-1] =2r S

and

- /
2] = P(r)
2rMlr) = Z[T-fl ey 2

so equation (4.1) becomes

d>(r) @lr) 1
%{r ¢“(Y) ] (Y +2 - "(Y) ) £ ;s._r;-e_ 39 (Ee sin 9) Q. (4‘2)

In the hodograph plene, with indepsndent variables (v, 8) , where

V(= ¢r) /c , the differential equation (4.2) has the form

{

o5 39 2 (ggsine) = 0. (443)

VeV, €, -VE, -
By agein using the potential equation of the source flow, this time in
the form (2.6), from which

vi(1i-v?)
eV V() = 2N ——S—-L)

A
and meking the obvious substitution
W=V | C (4.4)
equation (4.3) bocomss
zw(n—w) 2w [2X0-w) - (w-2) ] \
&N Eww * [ oyt Ew - Sone 36 (Ee Sme) (o} (4.5)
From the definition of X as Ll » for a real gas 04 X< | e

741
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The partial differential equation (4.4) is elliptic when
OSW< N
and hyperbolic when
NaWe.
From (4.4) W=X corresponds to a local Mach number of unity end in the
field of supersonic flow

Aaws

22, The differential equations of the charescteristics of (4.5), which

are defined as

Wi dw
* 446 = }\T\'\%(T\%/: - (4.68)

can be integrated (Ref. 8, pe 192) to yield
8, = & 1 fw),

where
. 2w (k) y w1
F(w)e—k{arc sm—-—;,_—__—‘———-'—‘{-]+ arc sin _X’:\—(_—_+%’ (4.7)

with the initial condition that

B=9| ) W.'—'Al.

By introducing the "characteristic coordinates", defined through

§= 8+ 4 F(w)
. (4.8)
VL = 6“ i_{'(w))
equation (4.5) is put into the ceanonicel form
O @EDw-R et - cot 8 _
2o ax (W-X)¥2(1-w)¥z (g5-€,) +=5= (g5 + &) =0 (4.9)
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23 From (4.8)9
0=7(5+n)

W= arc § {215-*0};
and hence equation (4.9) can be written as
25, — P(5-n) (£§—E.l) + (341 )(€; +€q)= 0. (4.10)
With the further substitution
X=§, Y= §4%,

from which it is clear that

X=%{uw
(4.11)
4= 28,
equation (4.10) becomss
with
L @RI (W)
pix) = B Lw—;\’)al?-(\—w)"‘ (4.13)
and
gly)=Leote =4 c.o't.‘g-. (4.14)

The “normal form" of equation (4.12) is obtained by eliminating

the -first derivatives by use of the substitution
£063) = E(xy) exp "-‘;_-j‘ peodx+g(y) dy |, (4.15)

resulting in
/ /
Exe—Eyy —% Prasgpoo-{4g' e+ 3‘(3)}1?: =o. (4416)
Since p is given explicitly as a function of w, the first of

equations (4.11) can be used in writing

Jewrax = [pexy L #lwy dw,
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and thus

o @R OW-R)E 22 (1-0Y)
Jrowdx = AN J W (W-2) (=-W) W,

which integrates to

s % ~(-3)/4 A}
jpmdx = ln ¥, w™Hw-a) (1-w) ) (4,17)
where K, is a constant of the integration which cen be taken as unity.
Further,
j%q)d% = jcot ($/2)d(3/2) = - ln K, sin(y/2), (4.18)
where K, is an integration congtant which can be given the value one,
Wth (4.17) end (4.18),

+ o 0-3a)/eA*
exp[— 0 Sp(x)du- 5] dg] = \Isih(\alz) W (W-AY)  (-w) . (4.19)

24, Using (4.13) and (4.14) the full form of equation (4.16) is

Exx ~Egy + (£420)

E=0.

2 LI 2 ' :
&\ fr3cetd) ;ﬁz{(lh‘-‘)(w-h‘) +z>~“(l-x‘)}+%W{(zx‘—t)(w-x‘)n,\*(‘-x)-s)"@w)]
s+ 5 cot 5-)—
el (W- X3 (-w)

In Pige 9 the function

. 2 2
N r‘;ﬁ{(’-f“‘)(w' 2)sz A*(,-»)}’;l:‘_}b.w{(u‘-\)(w-)") r23(-X) -sx'-w)}
C : (W-X)*(1-w)

(4.21)

is plotted as a function of W for )?'=%, (or 7=140) .
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25, For a given value of ¥(orN) equetion (4+20) can be quite closely
approximated to by certain classical equations over a considerable
range of values of Ms(r) or M;*(f) .

The function of (4.21) has & minimum velue of about 0,624, and so
in the case of the amnular wing, for which % ig close to w/2, the
i‘; Cotz-z‘f- is negligible compared to the other term in the coefficisnt of
E + Then for the annular wing equation (4.20) cean be written as

Exx—Eyy +GE =0, ' (4.22)

where D may vary considersbly in value, &s seen from Fige. 9, in
passing from the leading to the treiling edge. If o doesvnot vary too
groatly, so that it is essentially constant (4+22) becomes the "tele~
graph equation”,

With the ring wing 4 is the angle 8 measured from the (2) sxis

of symetry and will be small, so that
A cot? ~
weot (4fz) = 2'3;:
and hence equation (4.20) can be approximated by
L2 1
EXl_Ea‘& ‘\'[b +‘4‘3?]E =0, (4025)
Equation {4.23) can be approximated to by two forms, depending on the

size of D e When b is small compared to l/43", the equation can e

written as
Exx—Elaa*';'—a;.E -"~—b1EJ ' ‘ (4024)
and when © is large compared to 1 /4y equation (4.23) is put into
1
Exx"'E§§+bte ="‘4_3'zE- (4.25)

26, Each of the equations (4.24) and (4.25) can be in principle solved

by an iteration procedure (Refs 11); in either case the differential
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equetion with right hand side zero is first considered -~ these have

the respective forms

Exx— Eyy =z§§z E =0 (4.24)(1)
EXX"' E“% '\'sz =0. (4.25) (1)

Tt will be shown below that it is possible to solve each of (4.24)(L)
and (4.25)(1) (which is identioal in form with (4.22)) exactly, in-
cluding the boundary conditions, by en application of the classical
Riemenn method of integrating hyperbolic linear partial differential
equations in two independent varisbles (ses Refs. 12, 13, 14, 15, 16, 17).
The appropriste iteration method will not be deteiled here since
only the first approximations will be discussed. However, in a complete
treatment of the solution by iteration the question of convergence

would have to be investigated.

27, Eguabtion (4,24)(1) is valid when b* is close to its minimum value,
sey between 0.7 and 0.€24, or for the range
05971 £ W% 0.364.

When 7=140 this corresponds to the case of an airfoil for which the
critical Mach numbers at the leading and trailing edges are

M: (fLe) =359

M3 (rre) = 513;
for such & wing M¥(r) et the trailing edge is 43.3% greater then ot
the leading edge, which is a significant variation.

In characteristic coordinates equation (4.24)(1) becomes

t/4 E =0

E sz ¥ )t )

where
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o= X-3
T= X+ :
The Riemann function is a solution of this equation which has the value
zero on the two characteristics §=a and t=b
By the method deteiled in section 50 of Ref. 18 the desired

Riemann function U depends upon the variable

g = TEb)
(a.—b)(ﬂ-t)
and satisfies the differential equation

£(1-2)U“(4) +(1-2£) V(L) + L U(4) =o.

The Riemann function is therefore a hypergeomstric function,

v(z) = F(E, VT 052) (4.26),
for negative values of 4 alternative Riemenn functions are
(11V2) - -
v =m0y (R N (2:20),
and
02 v -
u() =0-4) F(= \F,\, ‘i) (4028) 5

For uniform rectilinear flow about slender bodies of revolution
the analogous Riemenn functions can be identified with the complete
elliptic functions of the first and second kinds, but the hypergeo-
metric functions (4.26)1,2’3 are not related to any known special
functions, |

Now thet the Riemann function of (4.24)1) is known the solution
in the Aform of an integral equation can be obtained by use of the
general te;hnique detailed in Refs. 12 - 17. However, this ;olution

will not be further pursued, and it will be considered sufficient to
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detail the solution of equation (4.22) =nd to illustrate the procedure

by a numerical example.

28, In Appendix I of Ref. 19 the partial differential equation

e : e 2 4
B, cosu — Py, W a+  tanu =0 (4+27)
where « is the Mach angle, is solved by an application of the Riemenn
methode With/¢=4afﬁthis differontial equation becomes formally iden=
tical with equations (4.22) and (4¢25)(1) when b° is & constant, since

then (4.27) can be written as

e
?x’( - %yy + F %'— a (4027)'
Equation (4.27)! is integrated over a region bounded by the Mach wave
leading from the nose of the asirfoil, a right running characteristic,

and the portion of the upper airfoil surface between the nose and the

intersection with the characteristic, as shown in Fige 10,

gy UrPER RArero/t SuRFACE
o 7777 7777777 77777

Fig. 10 = Region of Integration of Equation (4.27)" by the
Riemenn Method
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The solution® is shown to be

B(x,0)=- [ J, [@«(x-x.)](-g-fg-)gzodx (4.28)

where Jo is the Bessel function of the first kind of order zero and

B

o is prescribed along the chord of the airfoil,
This solution can be adapted to the present equations, (4.22) and
(4025)(1) » when (4.11) ié employed so that those equations take the
form
Eiewy 1ewy ~E2020 b'E {%FL‘”): 26} =0, (4.29)
where b is constent. The choice of the value of bz will be considered
in section 30, wheore a numerical exsmple is exhibited.

The solution of equation (4.29) will be illustrated for the case
of the snnular wing when b is large compared to ‘/4‘3". It should be
noted that in the case of the ring wing, when b is large, the magni=-
tude of the slope of the function (4.21) plobted in Fige 9 will be

‘ z
very great, and hence if b is to be considered constant the variation

in W mast be small, implying a wing of very short chord.

29, Equation (4.29) applies to the annular wing when the boundary

* If the region of integration of (4.27)' consisted of the lower
head Mach wave, & left running characteristic, and the lower surface
of the airfoil, the solution would be identical except for a change
in sign. Therefore, it is appropriate to write (4.28) as

C ®(x,0) = +j JOU"O'(X-X\)]( 33):-0 X, (4428) 1
where the (=) and (+) signs a.pply respectively to the upper and lower
surfaces of the sirfoil. This approximation must thus neglect differ=
ences (except for sign) in the perturbations on the top and bottom of
the airfoile
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condition of tangent surfece flow is‘imposed on the plane r

rather than directly on the wing, &s in Fig. 11 below,

F4
FPLaneg
T
SovecE Ve
< , a,, <oc

Fige 11 = For the Annular Wing the Boundary Condition of
Tangent Surface Flow is Applied on the Plane
to which the Wing Approximetes

s Which first

Then the enslog of(b£> in (4.28) is (2E >
Yy=0 5(29) &=
must be expressed as & function of &, (r,a) » the actuasl boundary con=
dition on the airfoile For the ennular wing 5( y) in (4.15) may be
approximeted by zero. Then, through the relation (4.15) between & (v,6)

end [E £ w), zs] s the boundary condition on the wing has the form

* ‘ % = (1307 fre
£ [éf(w)/’]:— Ly (w-2)" (-w % - (4.30)

co EZ)
: ¥
where & is the spproximately constant angle of atteck, and £ = E/ﬂ*,
*
is the analog of /# (t,6) as defined in section 18,

In the neighborhood of the sonic line the linearized theory is not
valid, and so the leading edge must be sufficiently far removed from
W=2° , at which the function # venishes. By placing the leading edge
at X< W g ¢/ o for which #(W.c)#C, the perturbation vanishes up to

]
this point and formls (4.28) becomes
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-ﬂw-) (XAt

/4
l{(.wl. E)
where now the (4) and (=) signs apply to the upper and lower surfaces,

respsctively.

In forrmlas (3.8) and (3.13) the critical Mach number M* of the
perturbed flow end the pressure coefficient were shown to be dependent
only upon the ratio of the radial component of the perturbation in the
source flow critical Mach number to the source flow critical Mach
number. Therefore, it is desirable to compute the value of m:/M:(T\)
along the aiffoil surface. The relation between this quantity and

X
E {-‘-4(\".),1} is readily seen to be

+ -‘h\"
R 00 ) amio
o =Aw, (w‘ 2w [E {‘ﬂ‘”-’ w5 E*{z“‘”""‘ﬂ s (4.32)

where pPx) is defined in (4.13). From equation (2.9)

. 5/2 @r-1)/z(7-1)
dmiy _ 2 mMim [i- 2M¥n)
dr A ?‘\ -1
Vo 3 @70 /z(7-1)
23 Ww-w)
A w‘../\’- )

using (4.4). Further, by Leibniz's formuls, Ef“ w, 18 given from
. 2 A

(4.32) as
113_)\: L ftw) v‘:.
E izﬂw\h“} +—°‘-[r|W. (- x‘) w) " s bjrw =R 1ow) [b{Lﬂw)-lﬂw.)}] d—‘-ﬂw)].
1w g)

Thus, the quantity to be compufed is given by
7+2
4(7"") 3/? \/4

W Lart (W) | S
=% l:bI'(WJ—P(Wl)Io(WJ 0 W, (W= X) (-wy) ) (4.33)

MIR) T A w4
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where

Pz p), where x=3fw),

AL Lt
3/? |/4 - "gN .
T = [rw (weX) 0D g fo- prol] d g o,
l‘if(wl..t-) .
li{(\ﬂ\) - ﬁ_&
e V4 N
I|(w\) = X YW (W-A") (\"W) \)\ {b&“i‘F(w)" "%_"F(W\)}l d "i«F(w) .
‘!i{'(wL.ﬁ-)

30. As a numerical exsmple* the values of M* and cp, will be computed
from formila (4.31) for a zero thickness ennular wing which has its
leading and trailing edges on spherical surfaces 60 and 70 units, re-
speactively, from the supefsonic sourco. At the leading edge the local
Mach number is assumed to be
Ms(rLe)=V2°!
and ¥ is chosen to have the value 1.40" '; then, from equation (2.10),
M (re) = 1304,
With this pair of values of v and M:L\') the value of A is computed
from equation {2.9)a to be 45.,083. At the trailing edge the local and

critical Mach numbers are

* The same nunmerical data used in this example are employed later
(section 42), in an illustration of the use of the Method of Characteristics
{see Chepter V) since it will be of interest to compare the results given
by thess two distinet methods.

*%  Since the theory is & linear one the particular value of ¥ is not of
predominant importance end in & numerical example its size can be based on
convenience; 1l.40 is chosen so that certain published tables, which are
computed for only this value of 7 , can be used. '
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M (1 )= .37,

M3 (r ) = 1.574,
or 32.6 and 20,2 percent, respectively, greater than their valués at
the leading edge, showing that there is a significent veriation iﬁ
Mach number over the winge

The annular wing will be assumed to have the form of the lateral

surface of a truncated right cirecular cone with e somi-vertex angle of
of 84°, having its leading edge in the x,§ plane. At a given point on
the wing the angle of attack o will be the angle between. the %,y plene
and the streamline to the point (see Fige 12), and wi}.l vary between 6°

at the leading edge and 509' et the trailing edge; however, within the

Z

70

~ 60 — -
-

—16°

Fig., 12 = Trace of the Annular Wing of the Numerical Example

freme of the linearized theory o can be considersd constant and squel
to some value along the airfoil chord. In this example & will be 69,
the value at the leading edgee. Further, at the lsading edge
f(w_g )=- 03212,
and st the trailing edge
¥ (Wye)=-0.28026.
From Fige 9, when v=60 the coefficient b of E in eguation (4423)

has the value 2,392; and when v=70 , ©v=L15b , For points w, on the
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airfoil close to the leading edge tho maximum values of the arguments
of Jo will be very small, end so Jo will be essentially unity, irre-
spsctive of the value assiénéd to D s Hence, one might expeet the best
overall results to be obtained for a value of b which corresponds to
a point somewhere between the leading and trailing edges. To gain some
ides of the influence of b on my/M¥(r), the computetions were carried
out for four values of v, corresponding to

1) b=0

2) b=12392 , at the leading edge,

3) b=1429 , st the mid-chord,

4) b=115b s 8t the trailing edge.

The integrals T,(w\) and I\Lw.)k of (4.33) were computed by
Simpson's one-third rule for eleven stations spaced equidistantly along
the chord, sterting st the leading edge. In Fig. 13 the functions
Pow), (1w /v B e)  row w1704 w0 ¥® | and the
integrals I,(w,) and T (w,) are plotted ;‘s functions of the distance
v, from the source along the airfoil chord. With these curves the
computation of mt / Mf(r) is direct and leads to a set of curves, for
the different values of v, showing that expression as a function of
Y, » 28 in Fig. 14, From that figure it is clear that for this partic-
ular example the results are only slightly influenced by the value
(0 = 2,392) assigned to De |

Figure 14 also contains the value of mt /MEr)  computed by the
Method of Characteristics for this same emnuler wings The Method of
Characteristics must be considered as & standard for comparison, since

its accuracy can be indefinitely improved by iteration. From the



: F}‘ IS NP O s oSN Vit 1 S

1)
SRS
84
EEA 7.
i 4 44

£

S eEiE R
A/:,
L&

o7 OF

AV

kA
IR i

BT HE N

A













o

ZV;*‘Z? i

AW

-
L

o

AT an s

7

iRy

L EOR| THE| NUMERIEAL. EXAN




L _SAISIITIIERD A0

e SO NN o W N = i ) T
A.Nu,/f/.//./.“xa\\s%wwh 7/ ZRR RN

(4),°

NIOHE ™ OETF 8] OV &W WIVY | 7N TR~ TN

E RARY (o s B .4 CIRED O O A T AT I

;, . ;‘ :
R - , BReN ‘ , ‘ w w !/m;;m
ALLINEDO TWHE FH ] g 0 SFRTEA THLIAZS o7 (0 MOL27E | . . NN

SO COHLTIN FHL AT DILNGND LVHL HLUM GIadiod MOZ) /

 INITILITY ATTIVIOT QIZIWINLT NI TTANEXT TEISTNIIN  THL SO

‘ \//// t

DN ETINNE IR Jﬂ&w SO LOYT i Bl




43

comparison it can be seen that the numerical procedure deteiled in
this chapter does not give results which agree too well with those
obtained by the Method of Charactsrigtics. Hovever, the results of
this section are wery close tohthose computed for a wing in linearized
locally rectilinear flow, which is not surprising, since when b=0
equation (4.22) becomes the two dimensional wave equation, which
governs linearized rectilinear flow, and it has besn showm that a value
of 0¢£b<239z is at most a sscondary influence on the solution.
Hence, it appears that formula (4.33), which gives a very good approx=
imation to the results for linesrized locelly rectilinear flow, is not
of muich practicsl value (at least for the numerical example of this
section), since formulas (3,13) and (3.14) will give the sams answers

in sabout one per cent of the time and efforte



V. SOLUTION OF THE PERTURBATION POTENTIAL EQUATION

BY THE METHOD OF CHARACTERISTICS

3le The Method of Characteristics was originated in 1929 by Prandtl
and Bugemsnn (Refs. 21, 22) to solve problems in plane, steady, super=
sonic potential flows. In recent years the ideas have been extended
by numerous suthors (Refs. 23 - 26) to axially symmetric space flows
and even to fully three dimensional motions about bodies of revolu=-
tion at small angles of attack (Ref. 6).

As usually employed in the approximate solution of the hyperboliec
partial differential equations of supersonic flow theory, the Method
of Characteristics is in prinecipls & numerical, graphical, or numer=-
jcal and graphical, equivalent of Monge's method of solving such
equations, This affinity is highly significant, because for the solu-
tion of second order "gquasi-linear"™ partial differential equations
one of the most impqxtant general analytical procedures is that due
to the French geometer; hence the lMethod of Characteristics will proe

vide a highly general approximate solution.

32, Monge's method is applied to the important class of equations with
the generic form

R4:2,20,29) Zu S(x,g,i,2,,2,)Zx3+T(x,3,z,ix,za)Z“-V(x,g.z,z,,z.s)zo, (5.1)

where X,y are the independent variables, and 2(x,§) is the dependent

variable.

*  Linear in the highest order derivatives.
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Now, most of the well known methods of attackiné partial differ=-
ential equaticﬁs of the form (501) aim to discover the functional re-
lation

4(x,4,2) =0, %ﬁ— %0, (542)
which identicaily satisfies the equation. MNongs's suggested procedurse,
hoﬁever, is not designed to produce directly the solution (5.2) of
(5.1), but instead undertakes to discover & pair of intermedisate inte=
grals » of the form

fi(xy,2,2x,29) =0
(5.3)
f. (00 2,2x,2y)=0,
each satisfying the differential equation (5.1). In principle, the
two intermediate integrals -0 and f,=0 may be consideored as & pair
of simltaneous equations in #x and Zy end solved to give
2x=2Zx(%Y,2)
(6+4)
-Z'\3= 2%0(,3,2).

It is just because Monge's method applied to equation (5.,1) leads
to the relations (504), and does not waste itself in a direct effort
to solve that very difficult equation, that it is a valuable pro-
cedure for the solution of the supersonic pot,ential flow equationss,
Por, in the problems of gas dynamics the wanted quantities are usually
the velocities, the first order derivatives of the dependent variable,
which is exzacily what the Mongs method provides.

The first phase of longe's procedure requires the concommitent
solution of the equations "subsidiary" to (5.1):

Rdy*- Sdxdy +Tdy* =0 - (545)



Bdz,dy + Tdeydx — Vdxdy= O (5.6)

In texts on Partial Differential Equations {section 76, Ref. 27)
equation (5.1) is shown to be satisfied by any functional relation

similtansously satisfying (5.5) and (5.8)e Equation (5.5)'raprasents,

in differentisl form, the characteristics of the parent equation (5.1).

33, In the supersonic region of the compressible source flow the

differential egquations of the Mach lines are given as

—_— 567
ar \mz (r) —/ (6.7)

For, moving from one point /. +to its neighbor /e: along & segment of a

Mech line which is short enough to be considered straight (Fige 15),

Y
zZ o
—_— ”L//VE %
%)’ ) Mﬁc N
—r—3 = A A &
~ I -
R 1 ») i e f——
S N -
Y
N 4
wY mew Lo

Figo 15

the reletion between the changes AY end A€ in the coordinates r and

& is seen to be

((+AY)AB _ + ppop
Av A

In the limit, as AY and A9 sapproach zero,

rd & _
. 7;’7—_ tton u, (5+8)
where '
s’ . fan £ ; | (549)
~ AT JHZCI-1 ’
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combining (5.8) and (5.9) gives the differential equation (5.7) of
the Mach lines.

Equation (3.6) will now be solved by the Method of Characteristics.
For this purpose it is convenient to write the differsntial equation in
the form

7=1) M € M2 +1
M) -1

r2[Ms-1] &y - Ege +2r Ey -V cot® £g=0, (3.6)'

where »=1 for the ring wing; and the equation representing the annular
wing, for which @=~T/2 , is epproximated by choosing »=0. The

differential equations of the characteristics are

yde _+__ L. (5.7)"

dr T\l

the "left running®" characteristic has the positive sign and the "right

running"

characteristic has the negetive sign.

Comparing (57) with (5¢7)' it is clear that the differentisl
equations of the cheracteristics of the linearized periurbation poten-
tial equation (3.6) are the séme as the differential equations of the
Mach lines in the source flow. Since the characteristics of (3.6) are
elso the Mach lines in the fléw, end conversely, the characteristics
- in the derenged source flow will be identical with the characteristics
of the undisturbed flow, That is, the characteristics of the equation

(3+6) to which the solution is sought are precisely the known charace

teristics (Mach lines) of the known source flow,

34. The characteristics cen be readily constructed, since the Mach
number Mglr) of the source flow is known from (2.9) es a function of v

and M:(Y) is known as a function of Mg(r) from (2.11)s The constant
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A is fixed in size by prescribing en initisl condition: a velue of
Mg >l (or m< L)  corresponding to en arbitrarily assigned value of
¥ » That is, the initial condition is imposed on & spherical surface
centered at the source, on which the Mach number Ms(v) is constant;
in a plane of symetry the trace of the spherical surface is a circular
arce On this sphere (or circular arc) the streamlines are redial,

Since the source flow is completely known, that part of the field
described by the source potential has no interest hére » 2nd so the
initial conditions ars chosen as far downstream as possible, on the
spherical surface passing through the leading edge of the wing. Ex-
copt at the leading edge the flow downstream of this surface is for
some distence undisturbed; then it enters the zone of action, in which
are confined the disturbsnces due to the wing {(sc the initial con=
dition is really applied at only the nose of the wing)es The region
of influence of the wing is the only one of interest here, end all
computetions will begin at the leading edge.

For the purpose of actually constructing the charscteristics de-

fined by‘(5.?) the set of curves in Fig. 16 is convenient and accursaste.

35, Vhen applied to (3.6) the second of Monge's equations, (5.6), is

@M MM
M -1

v*[M5 (1] dedé, -drde, +[2.r E -veot® eg]drde=o, (5410)

a differentisl relation between €y and &g , the first derivatives of
the perturbetion potential E£(,0) , at every point of the flow field.
Dividing (5.1C) by dr , associsting d6 and dr by way of the relation

(5+7), which holds only along the characteristics, and finelly
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s there results

s s |
maltiplying b '
Prying v NMZm -

4 2
\ (7-1) Mg (¥) +Mg () 4] 1X:)
tdéy - d { S -ptoty 6=0.
’ rVn;m-n € +2 Mg (r)-t Er ”r\lp\;m-\ €0|d®=0. (5.11)

For economy in writing set

S '
Str) = Ym?(-x—)_—" : (5012)
4 z
(DM A M5 () +)
R(r) = 2 M;'(Y)-'l . (5013)

With these abbreviations (5.11) becones
idsr - S(Y) dEo +[R(Y) Ef"’ y S(Y) COt 9 Ee]de :OJ (5‘14) '
the so called "competibility equations," each representing in differ-
ential form a first integral of (3.6) along its cheracteristics.
Dividing (5.14) by a,(#0) leads to a form of the compatibility equations
in which mt and m: are employed:
* * * -t * '
2dwmy -S(r) d(rmg) +‘_Rmmr -V B (r)cot Omg ]de: o, (5614)

where

-—-‘ .
\IM;'LV)-\'
A streightforward attempt at an exact integration of equations

F-'(” = ¢S = (50185)
(5.14)° m@at fail because the variation of m’: and {m’: with v and ©
is not known. However, these difficulties sre regolved if exact tech-
niques are abandoned and the continuous web of characteristics is
approximeted to by a finite member of polygonal curves across which
the fluid properties suffer finite, though small, changes. The differ-
ential equat'ions‘ (5+14) ! are thus replaced by difference equations,
ench integrated stepwise along one set of characteristics.

Because of the epproximete nature of the calculations the fluid
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properties are known at only & set of isolated points, the intersections

of the two families of characteristicse.

36, It is now assumed that thev characteristics of equetion (3.6), de=
fined by (5.7), have been constructed in the form of a network of lines,
with the leading edge of a wing at a nodel pointe Since the ring- and
ennular airfoils have been assumed to be the only disturbing influences
which cause a smell axially symmetric derangement of & supersonic source
flow, one or the other of these wings can be the only solid boundery in
the flow, except for possible walls to contain the fluide Unless other-
wise noted, the analysis to follow applies equally to the ring- and
annular-wings.

The two cheracteristics which interséct at the leading edge will
be tormed the "head characteristics" or "head waves"., Upstream of
the head waves the fluid potion is a pure sﬁpersonic source flow, so
vattex-rbion is confined to A't:he‘ downstrean région, in which the fluid dis-
turbed by the wing is contained (see Fig. 17 for a representation of
the characteristic net above “Ehe surfece of a wing; the lower net is

similar) ?

37, The two simlteneous equetions (5.14)' are now integrated step by
step, starting with the assumed known flow conditions at the two nodal
points U(upper) and L(lower), not on the same charscteristic, the

g at the point of

object being to determine the values of \m’f and m
intersection (1) of the right-running characteristic through U and the

loft-running characteristic through L .



52

On the right running cherscteristic the negative sign in (5.14) !

applies, and integrating from V to | there results
i I i -1 *
.j dm: —fsu)d(rm:) +f [R(r) m’: -vB (rlcot® ma‘_\da =0. (5015)R
v v v

Similarly, 'in.tegra,ting along the left running characteristic from L

to |,
ofdmy _ ‘smd(rm*)-\—f‘ R(T) My vﬁ'('v)cotem*}de-o
fL 'fL J L[( v 8 }d6=0. (5+15)L

Since the small wing is & solid boundery in a supersonic stream
the flew over the upper surfece is not influenced by the fluid moving
over the lower surface. Hence the computetions in the characteristic
nets sbove and below the wing mey be carried out independently of one
enother.

For convenience, in computing mt and m: at points (1) in the
perturbed flow the computations are separated into six classifications,
according as the points (1) ere

a) Boundary points: on the upper surface of the wing,

b) Semi-interior points: on the first left running chearecteristic

behind the upper head wave,

c) Interior points: those remeining in the upper characteristic

net after the exclusion of (a) and (b);
d, e, ) Three similar groupings for the lower characteristic net.

*
In each of these cases dW, is an exact differential, and therefore

[}
-_/;dm: m:,‘— m: (5.16)R

i

1 X ‘
+f dm, my - m::_. - (Be16)L
[

1
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The difference between boundary, semi-interior and interior points
enters into the several ways in which ﬁxe remaining integrals of (5.15)R
and (5.15)L are evaluated.

The variation in v and © bebtween adjacent lattice points is very
small, so at the penalty of a slight decreass in acouracy it is permis-

sible to set

B T R
B,=PL =B s Y,= =Y, Ry=R.=R,, S,=5 =5, cotBy=cotB =cot 8.

38¢ VWhen point | in the upper characteristic net is a boundary point,
the value of mg‘ is determined by the boundary condition of tangent
surface flow,
m;: = -« M:(r.). | (5017)
The valus of m’r‘: is obtained by inte_gra‘bing along the right running
characteristic, using (5.15)R, to obtain

m:‘ =-g" [1-(8y-8))(Ri4vcot 6.)]m:| +[\- R|(Bu—6.)] (m;'u*a;“'“:u)- (5.28)
This result simplifiss when U is on the upper head wave, for then

m:., = “‘;u =0, (5419)

and i,xi the formaile for m: the lagt term vanishes.

39, When point | is on the first left running characteristic downe
stream of the upper head wave the integration of (5.15)L along the
left running characteristics offer no difficulty end is easily seen
to yield
[eRi(6-80]mE -, [140(8,-8L) cot B mg, =me - Bi'ma..  (5.20)L
The integration of (5s15)R along the right running characteristic

mist be considered in some detail, however, because of the condition



(5.19) which applies. In the usual two dimensional supsrsonic wing
theory the head wave is assumed to be 2 line across which abrupt
changes in fluid properties occurs. The propertiss actually changs
gradually, across a Prandtl-Meyer fan, snd the accurscy of the formilas
can be improved by teking into aecoﬁnt this more nearly correct feature
of the flowe

Now, close to the leading edge the Prandil-lieyer expansion is
completed over a small fraction of the distance along the right running
characteristic bebtween U and |, and the disbance which mist be trav-
ersed by the fluid to ensure complete expansion inoréases ag the points
U ares teken farther from the leading edge; finally, the sxpansion will
be so gradual that it will be complete exactly at some point, not
necessarily a lattice poihta on the right running characteristic through
U , Although along the right rumning characteristics between U and |
the mf and m§ change radically, from b on the head wave to non=-zero
velues at | , they are small in magnitude, so that some reasonable sim-
plifying assumption about their approximaie behavior may be made. TQ
make the caiculations very simple and definite it will be assumed that
over the Prandtl-Meyer fan the perturbation-velocity components

1) increase in absolute value linearly from O to the proper

values at the completion of the expansion, snd
2) on the characteristic betwesn U and | are constant between
the end of the Prendtl-Meysr fen end lattice point | .

Thet is, along the right running charactoristic between U and |, as
the upper point occupies successively (1b), (1e¢), (1d),..., (see

Fige 17) the 1lst; 2nd, 3rd, ..., lattice points, on the upper head wave
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romoved from the leading edge, the variation of Wn: and.vn: will appsar

as in Fige 18:

m* m* m* : *

*
Fige 18 = m* is either My or Mg

This assumed behavior of vy end My over the right running charac-
teristics from U, on the head weve, to |, on the first left rumning

characteristic downstream of the upper heed wave, is given symbolie

form by writing

| :
[y do=—kemy (8,-0), % ks &I
%
' , (5021)
fm; do=-kKemy (8,-6,), 7 ko <1; '
v
for simplicity take
k'f =‘ ](6 —_-I(, é < k £ 1 (5.22>
Thus, when the point | at which Tﬂ: and wn; ars to be computed

is on the first left running characteristic downstream of the upper
head wave the compatibility equation (5.15)R is particularized te

~rn =3 ma - Rikmy (6,-6) +vkp, cot 6 m§ (8,-8)= 0. (5.23)R
Combining terms yislds |

[ 1+k R, (QU_Q,)]M: +ﬁ:‘ [ - Vk cot 6, (9U49.)]‘YYT; = OJ

~ and solving for‘rn; results in
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ry, = g [-K(Bu-8) (Rt v cot e |me, (5024)R
after neglecting terms in which 0y-6, , whigh is «\ ; enters with an
exponent greater than one.

It is most convenient to employ & constant Mesh angle, and in that
“event ©,-6, and 6,-8, will be equal except when L 1is on the upper
surface of the wing and is not & lattice point., For that (single) cage
it is not worth while to solve equations (5.20)L and (5.24)R simultane=-
ously for my end my o However, for all other situations U,L and |
will be latbice points and
| 0,-6,=8,-8, = Ab

then the values of my and m§ &re given as

e - |
b =4 (1= (e (Riaw cot 8)](my, ~pi' mgy ) (6028) ¢
g, =4 B[ 1= (- B Ry ot 8) | (me -g'md, ). (6.25) @

40, VWhen ' is an interior poi.ﬁt of the upper characteristic net the
several integrals in (5¢15)L and (5.15)R are approximately evaluated

by the Mean Value Theorem for Integrals to give

[1+R(Bu-B Ttk + 1 [1-1(8u-8,) cot 6'1"‘; = + B me’: (5026)R

[1+Ri(8y-e )]y, - @' [1+v (8- 8y) cot®|mg = my - f'me, (6+26)L

In the upper characteristic net there will be one pair of points U
and L for which L is on the upper eirfoil surface, For that case, if

L is not a latbtice point, the general equations (5.26)R and (5.26)L are
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solved for 'm: and ”m: ®
However, when L is a lattice point, and for all other points in
the interior of the upper characteristic net,
6,—6,=6,~6,=A 6,
as before, and the compatibility equations are readily solved to yield

* X -1

m m

rm: = Tug 7L (l_ R'A 9) + éz_l_ (W:U_W;L) : (5027) Y
e mpy Vet

vn:' = —%—& + = ('mju - fm:l_) , (5.27) o

after neglecting second order end higher terms in A6 and discarding

A,
Tz R,Ae('m;u~'m;),

which will be negligible compared to the other terms in (B5.27)7 .

41, VWith the sams approximetions as those employed in the derivation
of the compatibility equations for the upper characteristic net it is
easy to establish the following results for the lower characteristic
nets

e) Vhen | is & boundary point
my =~ @ M5 (1)
'Y‘n’.';' = B.—' [ 1-(8,-6,)(R, -V cot e, ] 'm:;‘ +[I—R’. (e,-al)] (,M:L __ﬂ:u’mzl)'

The formmla for 'm,’.f simplifies when L is on the lower head
wave, for then
’th = ’Yﬂ:'_ =0
b) When  is on the first right running characteristic downstream
of the lowsr head wave
'm: +/8, [1-(Ri+vcot 8))(6,-6))] mp = [1-Ri (8,-0))] (w3, +/3, Mg,

wmy ~ A [1- K (R -y cot 8)(8,-6)] mg, =0, (% £K%2)).
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These equations are readily solved when U, L, | are lattice

points, for which

then,

mi =3 [l+(1—k)é2§ (R,~vcot 8)](m5, +/s’_.'"m§u)

mo, =% L1+ (1+k) 42 (Ri-v cot B) ] (¥, + BT M3, ).

¢) When ! is an interior point of the lower charactefistic net
the compatibility equations (5,26)R and (5.26)L are solved for
7": and WW; s For the case where U , L, | are lattice
points the compatibility equations are readily solved to yield

(5427)y 8nd {5.27)6 , the sams as for the upper net.

42, As numerical examples of the Method of Characteristics the line-
arized supersonic source flow over each of a ring- and annular=-wing
will be computed. So that the results for the annular wing can bs com=
pared with those obtained by the use of the Riememn method, the numeri-
eal data of section 30 will be assumed.

The ring wing is chosen to have zero thiclmess and to have the
form of the lateral surface of a right circular cylinder, its axis
collinear with the symmetry axis of the rocket motore. Then at a given
point on the wing the angle of attack is actually the angle O between
the axis of symmetry end the streamline to the point. The streamline
that intersects the leading edge makes en angle of 6° with the ring axis,

In section 30 the annular wing is described.
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4%, The characteristics of the disbturbed flow, which were shown to be
the characteristics of the source flow, are readily constructed by the
use of Fige 11, using a mesh angle of 15' for part of the wing and e
mesh engle of 30! for the rest., This is considered to be sufficiently
fine to obviate the necessity of iterating to improve the results.
Actusally, only the lattioce points on the head waves need be claculated,
all other latbice points being determined by construction, sinece Ms(v)
andbhence the Mach angle U are constant over spherical surfaces with
centers at the source.

In Figse 19 and 21 the network of characteristics surrounding the
trace of the ring wing of the numerical example are exhibited, and
Figs. 20 and 22 show the characteristic net constructed about the annu=-
lar wing of the numerical example. From the figures it is clear that
in the two exeamples the orientations of the surfaces to the supersonic
sourée flow are identical.

The chord of the ring wing is not so great, however, that the head
wave interior to the fing will reflect off of the symetry axis and
intersect the wing (see Fig, 21); so interference with the interior
surface is avoided.

Although with the annular wing the possibility of interferencs due
to waves reflected from the axis of symmetry does not exist, there is
the chance that waves reflectad from the nozzle walls cen strike the
airfoile Of course, this type of interference can also occur when the
ring wing is in the main stream. To eliminate the possibility that
waves reflected from the walls will intersect either the ring- or ammu-

lar- wing of the examples the upper characteristic nets in both cases
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have as their highest lattice points the intersection of the upper head
wave with the redial streemline which is at an angle of 92 to the nozzle
axis. This is equivalent to assuming that each type of sirfcil is set
in a nozzle with en expansion half=sngle of 9%, which is sbout the
optimum, When the ring- and anruler- wings of the numerical exemples
have 10-unit chords, the leading edge head wave reflected from the

nozzle walls will just graze the trailing edgese.

44, TFor the upper charecteristic net when U is on the upper hesd wave,
and for the lower cheracteristic net when L is on the lower hesd wave,
the values of K ag & function of position on the head wave will be

assumed as below.

Point on Hesd Vave Value of K

Upper Lower
1b 28 1.0
lc 3a 0.9
14 4a 008
1le 152 0T
ir . 6a 06
lg Ta 0e5
1lh Ba 0.7
1i Sa 0s6
1j 10a Oeb

The results of the computations are not too sensitive to the value
assigned to K , for K always enters the compatibiliby equations as a
coefficient of 6,-6, , or 6,-6, , which are of the order of 0,004, which

is then added to or subtracted from unity.

45, For the purposes of computing the perturbed supersonic source flow

about the ring- and snmmler- wings of the numerical examples the curves
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in Figs. 23 = 26 are useful.

As has been noted previcusly, the difference in the ring- and
snnuler- airfoils shows up in the comparative values of cot6 , which
are large for the ring wing and negligibly small for the ennuler wing.
The seme competibility equations are used for the two cases, except
that when the ring wing is considered, V=! , which requires the com~
putetion of cot 6 ; when the annuler wing is in the source flow, v=0 4

which allows the cot © +term to be neglected.

46, Figures 27 = 31 contain the end results of the numerical worke. The
first Figure (27) exhibits m, on both surfeces of either the ring- or
snmuler- airfoils of the numerical example, computed from the boundary
condition

e = -0 Ms (1)
where ¢ is the angles of attack (6°) at the leading edge. In Fig. 28
the values of sz on the upper and lower surfaces of the ring- end
ennuler- wings are shown, together with a comparison of the anelogous

quantity,
*x
+ a Ms (r) |
IR

3

A ML (=

from the theory of linearized locally rectilinear flows The third

| Figure (30) presents the critical Mach number M* of the disturbed flow
on the upper and lower surfeces of the ring- and snnulsr=- wings os @
function of the distance from the source, as computed from formilae (3.8)
with the use of Fige 29. In the same Figure there is shown, for com-

parison, the value of M given from (3.13) for linearized locally
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rectilinear flow, Figure 31 offers the pressure coefficients, based on
the local dynemic pressure in the source flow, of the ring- and annular=-
wings of the numericel exemples for comparison with that of the sams
wing in a linesarized locally rectilinesar flow. In the lest Figure, 31,
the pressure coefficient based on the stagnation pressure is shown for

the same three cases of the three preceding Figures.
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APPENDIX

ATTEMPT AT A SOLUTION OF EQUATION (3.6) BY THE METHOD OF

SEPARATION OF VARIABLES

In the solution of squation (3.6) the method of separation of
variebles is not e useful technique because of the difficulty of ap-
plying the boundery conditions, especially on the surféce of the wing.
The procedure is briefly discussed in this Appendix in order that the
difficulties may be exhibited.

The method of separation of vwarisbles is employed to solve equation
(3.6) when a solution is sought in the form of e product of a function
R of W alcne end a function T of 6 alone; that is, when it is
assumed that

£ (w, 8) = R(w) T(6), (K1)
with R(W) end T(6) to be determined. When the assumed solution (A.1)
is set into (3.6) the left and right hand members sre by definition

identiecal and there results, after dividing by R(w)T(6),

8A%w2(1-w) F?"(w)+ 2wl 0-w-(w-A)] R'ow) i d
w-A*% R (W) w- At R(w) 2T(8)smbdb

(Ti@sm®) 2

The common value of the two members of (Re2) is a2 constent, say

- 7’_1_(3211) 5 hence in place of the single linear partial differentisal

equation (3.6) two linear ordinary differentiel equetions ere obteined:

die (T'® simb) + m(m+1) simb T(e) =6, - (Ke3)
AW R'w) 4w ]2 A Rion + T (e p®) R (w) = 6. (Bet)
a4 4 16 A®
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Equation (8.3) is the wellknomm Legendre differential equation,
with the linearly independent solutions (7 is a positive integer or
zero)

Py (cos 8), Qm (cos 6),
the legendre functions of the first and second kinds, respectively, of
index " o Hence the solution of (A.3) is
T(e)=c, P, (cos 8) + C; @ (cos6). (Ke5)

Equation (A.4) is of the form
wHW-) R (W) +w [ (X +8-) + (a+b+)W] R'(W) + ab( - o;j'é) Row) =0, (hoa)t
with regular singulaer points at O, |, o, and so it can be antic-
ipated that the solution of equetion (Me4)' is relsted to the hyper=
geometric functione

To obtain one solution of equation ( A.,4)! first make the sub-
stitution |

Row)= WS, (w);
the differential equation satisfied by S, (W) is then
w-w) 5 (w) + [(c=A+ 1)~ (a+a+b+o+1)w] S (w)- (a+a)(b+a) S,(w)=0,
the hypergeometric equation of Gauss, with one solution given by
S, (w)= F(at+a, b+o; a-A+1; w),
and so & solution of {M.4)! is the function
Ri(w)= WIF (a+ax, btoa; -4 +1; w).

A second solution of equation (Ae4)! i§ obtained by use of the

substitution
R (w) = W"S, (w)

the differentisl equation setisfied by Sz(wW) is

w (1=w) S5 (W) + [(B—C(+l)— (a+B+b+B+1)w] S, (w) ~ (a+p)(b+3) S, (w)=0,
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which is also the hypergeomstric equation, one solution of which is

S, (w)= Fla +4, ,b+7/s’; B-0+1;w),
and hence the second solution of (Be4)! is the function
R, (W)= WﬂF(&+ﬁ, b+a; A-a+i; w).
Then o(#/ end of-/3 is not & positive integer (which is the case
here) the general soluticn of equation (A,4)! is
R w)= caw®™ Fata,b+i;a-a+1;w)+CaW F (i, bip; f-0+1;w) . (KeB)
From (&.6),‘ by comparing the coefficients of equations (A.4) and

(A.4)?, the solution of the former differentisl equation is given b
g y

Rw)=CoW *Flar 3, b-1 572043 ) + C4W?F(0»+""T*', b+ 0l 2145 ) (Be?)

2 A 4 4
where .
1-2A
a+b= 437
- YI('W‘*") (&o&)
16 A*

Since the general solutions of the ordinary differsntial equations
in the separsted engular end radial varisbles are known in (A.5) and

(A.7) respectively, the general solution of equation (3.6) is given by

E(W,B)fng; [C. P (cose)+c, Q,,(cosg)][gw-:f:(a-f, b-%; 'Z:+33w)+C4W%F(a+’;—“, b Z"{—s;w)] (A.9)

with o and b defined through (A.8).

In order to apply the boundary conditicn over the surfece of the
wing it is necessary to establish an orthogonality relation which cen
be used to evaluete some of the arbitrary constents of (4.2)s For
either the ring or annuler wing this boundary condition is employed in
the usual manner, not on the wing itself but on some simple approximating

A surface, in this instance on & surface with constent eangle 6, for the
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range of valueg assumed by W between the leading snd trailing edges.
In the case of the ring wing this constent sngle 6, gives the conical
surfacs, with vertex at the source, to which the ring is presumed to
approximate; for the annular wing 6, = Z , sc thet the boundary con=-
dition is epplied on the X,y plane.

As will appear, en orthogonality condition cennot be constructed
in the usual mamner end hence it is not possitle to apply the required
boundary condition,

Eo (W, 8,) =Tax @'(7),
where O is the angle of attack of the wing.

Thus, from (4.9), the boundary condition sbove requires that

a
EolW,0,)==5m8, > [ g W3F(a-2, b-7 ;2283 )

2
"m=0 4

1
FhowF Fla+B, b+ T 21:5; W)] =rag(n).

In the attempt to construct an orthogonality relation satisfied
by the solutions of equation (Aet), after celculation of the appropriste
integrating factor that differsntial equation takes the self-adjoint

form
-5t

=2

d— 3 32 _ 4t
e (Wi R o]+ BED (o "\jig' ¥ " Rw)=0 (8.10)

Equetion (A.10) is written in the two forms

d 2 L_‘A'l f 1) _1? - 42
dw [W‘('-W) Ry, (w)] + 'w;f:;'f Cw "\:/(; ) R, (w)=0 (Re30q)
- sA

)l

2 U v =35
d%‘, [w‘o-wf‘,* n(m+) (w-A)(1-w)

Ry (w) = 0. (Aa20,)

Maltiply (80101) by R,av) and maltiply (A.102) by R.,(w) and subtract,
" then integrate throughout the entire supersonic region, from w= A% to

w=1! to get
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-2 l_:_/\_l

[R,xw)jf\, [wﬁu-w) R (w)} ~ R (w)fj, {\ﬁ(l-w) “‘R',,(w)ﬂ dw

1

My

X

.._._-—

+W(m'+6|)a_zrn(qq+l)j (w- /\)(l W) R.. (w) Q‘n (W)C{W =0 | (3\011)

Intograting the first integral by parts reduces (A.11l) %o

=54

(m+)-m(m+1) (w-,\)(l—w)‘A
16 A% A w Tww

1= A
R R d W 22009 F R IR O)-R (IR (], (Be12)

Now R, (w) and R, (W) are any solutions of the differential

equation (&.,10), or its equivalen‘b, (#e4)e Choosing

F?—m (w)= \/\/ F'(CL— , b- ’%1; ‘Z’V:+_?JW)
'n (W) \’\/ F(a 4) b—:}' —_-—-2“4*’3-)\,\/))

the tern in bracketa on the right hend side of (4.12) besomes

(m
R, ()R, (X9 Roy G Ry 0=4 = (AN 332 Fra- 2, b- m 2med .

- - -2m+7 ( B = s
‘Fla-%2, b_'n_4;4; : D) - ’V; ';n;z) Fla-2, b-2; 20, A‘)F(a:"rt A S )]
‘4+(;m+w) 2'm+3 R
m -2m
-A Fla-F,b-% 2770 Fla-F,b- 272222 ) [ 271,

Clearly then, the right hand member of (A.,12) does not venish,
so that the functions R, (w) and R (w) are not orthogonal in the rangs
X' =w =1 and thus there is no simple way of epplying the boundary cone
dition which requires that the flow over the wing be tangent to the wing
puarface.

sn added complication is the difficulty of applying the condition
that only outgoing weves leave the upper and lower surfaces of the air-
foil. There seems to be no direct method of choosing the undetermined

constants in (&.9) so that the solution has this regquired property.
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Fige 21 = Sketch of the Characteristic Nets and Traces

of the Ring Wing of the Numerical Examples




Pigo 22 = Sketch of the Charectsristioc Net and Trace of

the Annular Wing of the Numerical Exemples
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