# **APPENDIX 4**

X-ray Crystallography Reports

Relevant to Chapter 3

#### A4.1 CRYSTAL STRUCTURE ANALYSIS FOR COMPOUND 100f

Ketoester **100f** (>99% ee) was recrystallized from *i*-PrOH/hexanes (liquid/liquid diffusion) to provide suitable crystals for X-ray analysis, mp = 98-99 °C. <u>NOTE:</u> *Crystallographic data have been deposited in the Cambridge Database (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number CCDC 939243.* 

### Figure A4.1.1. ORTEP drawing of 100f.



Table A4.1. Crystal Data and Structure Analysis Details for allylation ketoester 100f.

| Empirical formula       | C19 H18 O3 S           |
|-------------------------|------------------------|
| Formula weight          | 326.39                 |
| Crystallization solvent | <i>i</i> -PrOH/hexanes |
| Crystal shape           | block                  |
| Crystal color           | colourless             |
| Crystal size            | 0.13 x 0.23 x 0.29 mm  |

### **Data Collection**

| Preliminary photograph(s)             | rotation              |        |
|---------------------------------------|-----------------------|--------|
| Type of diffractometer                | Bruker SMART 1000 ccd |        |
| Wavelength                            | 0.71073 Å MoK         |        |
| Data collection temperature           | 100 K                 |        |
| Theta range for 9849 reflections used |                       |        |
| in lattice determination              | 2.30 to 30.92°        |        |
| Unit cell dimensions                  | a = 8.4853(3)  Å      | a= 90° |

|                                          | b = 10.8613(4) Å                 | b= 90°  |
|------------------------------------------|----------------------------------|---------|
|                                          | c = 17.6979(6)  Å                | g = 90° |
| Volume                                   | 1631.06(10) Å <sup>3</sup>       |         |
| Ζ                                        | 4                                |         |
| Crystal system                           | orthorhombic                     |         |
| Space group                              | P 21 21 21 (# 19)                |         |
| Density (calculated)                     | $1.329 \text{ g/cm}^3$           |         |
| F(000)                                   | 688                              |         |
| Theta range for data collection          | 2.2 to 36.7°                     |         |
| Completeness to theta = $25.000^{\circ}$ | 99.9%                            |         |
| Index ranges                             | -14 £ h £ 14, -18 £ k £ 18, -29  | £1£29   |
| Data collection scan type                | and scans                        |         |
| Reflections collected                    | 49310                            |         |
| Independent reflections                  | 7841 [R <sub>int</sub> = 0.0476] |         |
| Reflections $> 2s(I)$                    | 6228                             |         |
| Average s(I)/(net I)                     | 0.0436                           |         |
| Absorption coefficient                   | 0.21 mm <sup>-1</sup>            |         |
| Absorption correction                    | Semi-empirical from equivaler    | its     |
| Max. and min. transmission               | 1.0000 and 0.9025                |         |

## **Structure Solution and Refinement**

| Primary solution method                     | dual                                        |
|---------------------------------------------|---------------------------------------------|
| Secondary solution method                   | ?                                           |
| Hydrogen placement                          | difmap                                      |
| Refinement method                           | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters              | 7841 / 0 / 303                              |
| Treatment of hydrogen atoms                 | refall                                      |
| Goodness-of-fit on F <sup>2</sup>           | 1.55                                        |
| Final R indices [I>2s(I), 6228 reflections] | R1 = 0.0483, wR2 = 0.0806                   |
| R indices (all data)                        | R1 = 0.0694, wR2 = 0.0846                   |
| Type of weighting scheme used               | calc                                        |
| Weighting scheme used                       |                                             |
| Max shift/error                             | 0.000                                       |
| Average shift/error                         | 0.000                                       |
| Absolute structure parameter                | 0.01(3)                                     |
| Extinction coefficient                      | n/a                                         |

```
Largest diff. peak and hole
```

0.37 and -0.24 e·Å<sup>-3</sup>

\_refine\_ls\_abs\_structure\_details;

Flack x determined using 2400 quotients [(I+)-(I-)]/[(I+)+(I-)];

(Parsons and Flack (2004), Acta Cryst. A60, s61).

\_refine\_ls\_abs\_structure\_Flack 0.01(3)

\_refine\_ls\_abs\_structure\_Hooft 0.02(3)

#### **Programs Used**

| Cell refinement      | SAINT V8.27B (Bruker-AXS, 2007)        |
|----------------------|----------------------------------------|
| Data collection      | Bruker SMART v5.054 (Bruker-AXS, 2007) |
| Data reduction       | SAINT V8.27B (Bruker-AXS, 2007)        |
| Structure solution   | SHELXT (Sheldrick, 2012)               |
| Structure refinement | SHELXL-2013/2 (Sheldrick, 2013)        |
| Graphics             | DIAMOND 3 (Crystal Impact, 1999)       |

**Table A4.2**. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters  $(\mathring{A}^2 x \ 10^3)$  for **100f**. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

|       |          |         |         | T.T.  |  |
|-------|----------|---------|---------|-------|--|
|       | Х        | У       | Z       | ∪eq   |  |
|       |          |         |         |       |  |
| S(1)  | 9499(4)  | 3027(2) | 9424(2) | 26(1) |  |
| S(1A) | 7396(4)  | 1194(2) | 8920(1) | 26(1) |  |
| O(1)  | 10909(1) | 3864(1) | 7769(1) | 20(1) |  |
| O(2)  | 6712(1)  | 3819(1) | 6298(1) | 22(1) |  |
| O(3)  | 8198(1)  | 5196(1) | 6915(1) | 20(1) |  |
| C(1)  | 8415(2)  | 3108(1) | 7316(1) | 14(1) |  |
| C(2)  | 10216(2) | 3266(1) | 7292(1) | 14(1) |  |
| C(3)  | 11064(2) | 2667(1) | 6651(1) | 14(1) |  |
| C(4)  | 12665(2) | 2961(1) | 6537(1) | 18(1) |  |
| C(5)  | 13491(2) | 2453(2) | 5941(1) | 21(1) |  |
| C(6)  | 12737(2) | 1641(2) | 5451(1) | 21(1) |  |

| C(7)   | 11165(2) | 1346(1)  | 5556(1) | 18(1) |
|--------|----------|----------|---------|-------|
| C(8)   | 10300(2) | 1842(1)  | 6161(1) | 14(1) |
| C(9)   | 8605(2)  | 1477(1)  | 6273(1) | 16(1) |
| C(10)  | 7999(2)  | 1793(1)  | 7062(1) | 17(1) |
| C(11)  | 7676(2)  | 4054(1)  | 6775(1) | 15(1) |
| C(12)  | 7433(2)  | 6145(2)  | 6468(1) | 27(1) |
| C(13)  | 7740(2)  | 3432(1)  | 8120(1) | 16(1) |
| C(14)  | 8255(2)  | 2565(1)  | 8741(1) | 19(1) |
| C(15)  | 9443(3)  | 1759(2)  | 9876(1) | 44(1) |
| C(16)  | 8455(3)  | 892(2)   | 9630(1) | 42(1) |
| C(17)  | 7757(14) | 1354(11) | 8921(7) | 51(4) |
| C(17A) | 9366(19) | 2793(11) | 9301(7) | 45(3) |
| C(18)  | 5962(2)  | 3506(2)  | 8090(1) | 18(1) |
| C(19)  | 5128(2)  | 4517(2)  | 8192(1) | 25(1) |
|        |          |          |         |       |

Table A4.3. Bond lengths [Å] and angles  $[\circ]$  for 100f.

| S(1)-C(14)  | 1.681(3)   |  |
|-------------|------------|--|
| S(1)-C(15)  | 1.594(4)   |  |
| S(1A)-C(14) | 1.688(3)   |  |
| S(1A)-C(16) | 1.579(3)   |  |
| O(1)-C(2)   | 1.2177(17) |  |
| O(2)-C(11)  | 1.2030(18) |  |
| O(3)-C(11)  | 1.3403(17) |  |
| O(3)-C(12)  | 1.452(2)   |  |
| C(1)-C(2)   | 1.538(2)   |  |
| C(1)-C(10)  | 1.539(2)   |  |
| C(1)-C(11)  | 1.539(2)   |  |
| C(1)-C(13)  | 1.5733(19) |  |
| C(2)-C(3)   | 1.492(2)   |  |
| C(3)-C(4)   | 1.409(2)   |  |
| C(3)-C(8)   | 1.406(2)   |  |
| C(4)-H(4)   | 0.967(17)  |  |
| C(4)-C(5)   | 1.380(2)   |  |
| C(5)-H(5)   | 0.950(19)  |  |

| C(5)-C(6)               | 1.394(2)                 |
|-------------------------|--------------------------|
| C(6)-H(6)               | 0.958(18)                |
| C(6)-C(7)               | 1.385(2)                 |
| C(7)-H(7)               | 0.963(16)                |
| C(7)-C(8)               | 1.405(2)                 |
| C(8)-C(9)               | 1.505(2)                 |
| C(9)-H(9A)              | 0.942(17)                |
| C(9)-H(9B)              | 1.013(17)                |
| C(9)-C(10)              | 1.527(2)                 |
| C(10)-H(10A)            | 0.977(17)                |
| C(10)-H(10B)            | 0.966(18)                |
| C(12)-H(12A)            | 0.96(2)                  |
| C(12)-H(12B)            | 1.03(2)                  |
| C(12)-H(12C)            | 1.02(2)                  |
| С(13)-Н(13)             | 0.996(18)                |
| C(13)-C(14)             | 1.511(2)                 |
| C(13)-C(18)             | 1.511(2)                 |
| C(14)-C(17)             | 1.418(11)                |
| C(14)-C(17A)            | 1.391(12)                |
| C(15)-H(15)             | 0.90(3)                  |
| C(15)-C(16)             | 1.334(3)                 |
| C(15)-C(17A)            | 1.517(15)                |
| C(16)-H(16)             | 0.98(3)                  |
| C(16)-C(17)             | 1.476(12)                |
| C(17)-H(17)             | 1.04(4)                  |
| C(17A)-H(17A)           | 0.97(5)                  |
| C(18)-H(18)             | 0.950(18)                |
| C(18)-C(19)             | 1.319(2)                 |
| C(19)-H(19A)            | 0.97(2)                  |
| C(19)-H(19B)            | 1.01(2)                  |
| C(15) S(1) C(14)        | 94 87(18)                |
| C(16)-S(1A)-C(14)       | 95 (12)                  |
| C(11) - O(3) - C(12)    | 114.07(12)               |
| C(2)-C(1)-C(10)         | 108 86(12)               |
| C(2)-C(1)-C(11)         | 108.00(12)<br>108.20(11) |
| C(2)-C(1)-C(13)         | 111 27(11)               |
| $C(2)^{-}C(1)^{-}C(13)$ | 111.2/(11)               |

| C(10)-C(1)-C(13)    | 112.89(12) |
|---------------------|------------|
| C(11)-C(1)-C(10)    | 110.12(12) |
| C(11)-C(1)-C(13)    | 105.36(11) |
| O(1)-C(2)-C(1)      | 121.30(13) |
| O(1)-C(2)-C(3)      | 121.79(13) |
| C(3)-C(2)-C(1)      | 116.91(12) |
| C(4)-C(3)-C(2)      | 118.41(13) |
| C(8)-C(3)-C(2)      | 121.60(13) |
| C(8)-C(3)-C(4)      | 119.98(13) |
| C(3)-C(4)-H(4)      | 118.7(10)  |
| C(5)-C(4)-C(3)      | 120.59(14) |
| C(5)-C(4)-H(4)      | 120.7(10)  |
| C(4)-C(5)-H(5)      | 120.4(11)  |
| C(4)-C(5)-C(6)      | 119.70(15) |
| C(6)-C(5)-H(5)      | 119.9(11)  |
| C(5)-C(6)-H(6)      | 119.0(11)  |
| C(7)-C(6)-C(5)      | 120.27(15) |
| C(7)-C(6)-H(6)      | 120.7(11)  |
| C(6)-C(7)-H(7)      | 121.4(10)  |
| C(6)-C(7)-C(8)      | 121.19(15) |
| C(8)-C(7)-H(7)      | 117.4(10)  |
| C(3)-C(8)-C(9)      | 121.84(13) |
| C(7)-C(8)-C(3)      | 118.25(13) |
| C(7)-C(8)-C(9)      | 119.90(13) |
| C(8)-C(9)-H(9A)     | 108.3(10)  |
| C(8)-C(9)-H(9B)     | 109.8(10)  |
| C(8)-C(9)-C(10)     | 112.49(12) |
| H(9A)-C(9)-H(9B)    | 104.7(14)  |
| C(10)-C(9)-H(9A)    | 108.8(10)  |
| C(10)-C(9)-H(9B)    | 112.4(9)   |
| C(1)-C(10)-H(10A)   | 107.6(10)  |
| C(1)-C(10)-H(10B)   | 109.6(10)  |
| C(9)-C(10)-C(1)     | 113.53(12) |
| C(9)-C(10)-H(10A)   | 109.2(10)  |
| C(9)-C(10)-H(10B)   | 109.8(10)  |
| H(10A)-C(10)-H(10B) | 106.8(14)  |
| O(2)-C(11)-O(3)     | 123.43(13) |

| O(2)-C(11)-C(1)     | 124.93(13) |
|---------------------|------------|
| O(3)-C(11)-C(1)     | 111.60(12) |
| O(3)-C(12)-H(12A)   | 113.2(14)  |
| O(3)-C(12)-H(12B)   | 106.2(11)  |
| O(3)-C(12)-H(12C)   | 110.2(11)  |
| H(12A)-C(12)-H(12B) | 109.9(18)  |
| H(12A)-C(12)-H(12C) | 106.8(18)  |
| H(12B)-C(12)-H(12C) | 110.5(16)  |
| C(1)-C(13)-H(13)    | 106.6(10)  |
| C(14)-C(13)-C(1)    | 114.33(12) |
| С(14)-С(13)-Н(13)   | 107.1(10)  |
| C(18)-C(13)-C(1)    | 110.12(12) |
| С(18)-С(13)-Н(13)   | 108.2(10)  |
| C(18)-C(13)-C(14)   | 110.28(13) |
| C(13)-C(14)-S(1)    | 121.21(15) |
| C(13)-C(14)-S(1A)   | 124.16(14) |
| C(17)-C(14)-S(1)    | 107.6(5)   |
| C(17)-C(14)-C(13)   | 131.0(5)   |
| C(17A)-C(14)-S(1A)  | 108.4(6)   |
| C(17A)-C(14)-C(13)  | 127.1(6)   |
| S(1)-C(15)-H(15)    | 120.9(19)  |
| C(16)-C(15)-S(1)    | 117.68(19) |
| С(16)-С(15)-Н(15)   | 121.4(19)  |
| C(16)-C(15)-C(17A)  | 106.1(5)   |
| C(17A)-C(15)-H(15)  | 132(2)     |
| S(1A)-C(16)-H(16)   | 113.9(17)  |
| C(15)-C(16)-S(1A)   | 118.07(19) |
| C(15)-C(16)-H(16)   | 128.0(17)  |
| C(15)-C(16)-C(17)   | 106.8(5)   |
| C(17)-C(16)-H(16)   | 125.0(17)  |
| C(14)-C(17)-C(16)   | 112.8(8)   |
| С(14)-С(17)-Н(17)   | 116(2)     |
| С(16)-С(17)-Н(17)   | 131(2)     |
| C(14)-C(17A)-C(15)  | 112.1(9)   |
| C(14)-C(17A)-H(17A) | 124(3)     |
| С(15)-С(17А)-Н(17А) | 124(3)     |
| С(13)-С(18)-Н(18)   | 118.4(11)  |

| C(19)-C(18)-C(13)   | 125.07(16) |
|---------------------|------------|
| C(19)-C(18)-H(18)   | 116.5(11)  |
| С(18)-С(19)-Н(19А)  | 121.1(14)  |
| C(18)-C(19)-H(19B)  | 119.8(11)  |
| H(19A)-C(19)-H(19B) | 119.1(17)  |
|                     |            |

Symmetry transformations used to generate equivalent atoms:

**Table A4.4.** Anisotropic displacement parameters  $(\text{\AA}^2 x \ 10^4)$  for **100f**. The anisotropic displacement factor exponent takes the form:  $-2p^2 [\text{\AA}^2 a^{*2} U^{11} + ... + 2 \text{\AA} k \ a^* b^* U^{12}]$ 

|       | $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |  |
|-------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| S(1)  | 360(9)   | 243(10)         | 173(5)          | 5(6)            | -83(5)          | 58(8)           |  |
| S(1A) | 335(10)  | 229(6)          | 231(7)          | 93(6)           | -46(6)          | -2(6)           |  |
| O(1)  | 198(5)   | 189(5)          | 197(5)          | -39(4)          | -40(4)          | -28(4)          |  |
| O(2)  | 242(6)   | 202(5)          | 213(5)          | -7(4)           | -87(5)          | 5(4)            |  |
| O(3)  | 220(6)   | 136(5)          | 253(6)          | 36(4)           | -82(5)          | -16(4)          |  |
| C(1)  | 145(6)   | 132(6)          | 130(6)          | -2(5)           | -6(5)           | -11(5)          |  |
| C(2)  | 168(7)   | 127(6)          | 140(6)          | 26(5)           | -27(5)          | -4(5)           |  |
| C(3)  | 151(6)   | 139(6)          | 138(6)          | 19(5)           | -17(5)          | -6(5)           |  |
| C(4)  | 166(7)   | 188(7)          | 188(7)          | 24(5)           | -23(6)          | -20(6)          |  |
| C(5)  | 160(7)   | 267(8)          | 204(7)          | 46(6)           | -2(6)           | -6(6)           |  |
| C(6)  | 232(8)   | 258(8)          | 146(7)          | 24(6)           | 23(6)           | 39(6)           |  |
| C(7)  | 223(8)   | 188(7)          | 143(6)          | 4(5)            | -6(6)           | 3(6)            |  |
| C(8)  | 168(7)   | 131(6)          | 136(6)          | 23(5)           | -18(5)          | 4(5)            |  |
| C(9)  | 185(7)   | 142(6)          | 153(6)          | -24(5)          | -2(5)           | -32(5)          |  |
| C(10) | 191(7)   | 139(7)          | 170(7)          | -10(5)          | 10(5)           | -36(5)          |  |
| C(11) | 149(7)   | 150(6)          | 157(6)          | 4(5)            | 14(5)           | -6(5)           |  |
| C(12) | 330(10)  | 151(7)          | 333(9)          | 58(7)           | -107(8)         | 5(7)            |  |
| C(13) | 197(7)   | 140(6)          | 136(6)          | -6(5)           | -7(5)           | 4(5)            |  |
| C(14) | 215(7)   | 198(7)          | 152(7)          | 4(5)            | 7(6)            | 34(6)           |  |
| C(15) | 537(14)  | 571(14)         | 214(9)          | -26(9)          | -113(9)         | 224(12)         |  |
| C(16) | 451(13)  | 329(11)         | 469(12)         | 186(9)          | 150(10)         | 127(10)         |  |
| C(17) | 480(60)  | 540(60)         | 500(50)         | -210(40)        | -180(40)        | 20(40)          |  |

| C(17A) | 510(50) | 330(50) | 510(70) | 90(40) | 70(50) | -90(40) |
|--------|---------|---------|---------|--------|--------|---------|
| C(18)  | 185(7)  | 194(7)  | 163(7)  | 6(6)   | 6(6)   | -3(6)   |
| C(19)  | 262(9)  | 251(9)  | 244(8)  | -56(7) | -34(7) | 49(7)   |

**Table A4.5**. Hydrogen coordinates  $(x \ 10^3)$  and isotropic displacement parameters  $(\mathring{A}^2 x \ 10^3)$  for **100f**.

|        | Х       | У      | Ζ       | U <sub>iso</sub> |
|--------|---------|--------|---------|------------------|
| H(4)   | 1318(2) | 350(2) | 689(1)  | 11(4)            |
| H(5)   | 1457(2) | 265(2) | 587(1)  | 23(5)            |
| H(6)   | 1331(2) | 131(2) | 503(1)  | 18(4)            |
| H(7)   | 1063(2) | 79(1)  | 522(1)  | 12(4)            |
| H(9A)  | 852(2)  | 62(2)  | 620(1)  | 14(4)            |
| H(9B)  | 793(2)  | 185(2) | 586(1)  | 14(4)            |
| H(10A) | 846(2)  | 122(2) | 743(1)  | 14(4)            |
| H(10B) | 687(2)  | 168(2) | 708(1)  | 17(4)            |
| H(12A) | 766(3)  | 608(2) | 594(1)  | 44(6)            |
| H(12B) | 784(2)  | 697(2) | 667(1)  | 32(5)            |
| H(12C) | 624(3)  | 608(2) | 652(1)  | 32(5)            |
| H(13)  | 815(2)  | 426(2) | 825(1)  | 17(4)            |
| H(15)  | 1003(3) | 165(3) | 1030(2) | 72(8)            |
| H(16)  | 827(3)  | 7(3)   | 985(2)  | 80(9)            |
| H(17)  | 689(4)  | 98(3)  | 857(2)  | 10(8)            |
| H(17A) | 1003(5) | 352(4) | 932(2)  | 9(11)            |
| H(18)  | 539(2)  | 277(2) | 799(1)  | 20(4)            |
| H(19A) | 564(3)  | 531(2) | 828(1)  | 40(6)            |
| H(19B) | 394(2)  | 448(2) | 818(1)  | 27(5)            |

Table A4.6. Hydrogen bonds for 100f [Å and °].

| D-HA               | d(D-H)  | d(HA)   | d(DA)    | <(DHA)    |
|--------------------|---------|---------|----------|-----------|
| C(12)-H(12B)O(1)#1 | 1.03(2) | 2.52(2) | 3.539(2) | 173.4(16) |

Symmetry transformations used to generate equivalent atoms: #1 -x+2,y+1/2,-z+3/2