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ABSTRACT 
 

Notwithstanding advances in modern chemical methods, the selective installation of 

sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, 

remains an unsolved problem in organic chemistry.  The prevalence of all-carbon 

quaternary centers in biologically active natural products and pharmaceutical 

compounds provides a strong impetus to address current limitations in the state of the 

art of their generation.  This thesis presents four related projects, all of which share in 

the goal of constructing highly-congested carbon centers in a stereoselective manner, 

and in the use of transition-metal catalyzed alkylation as a means to address that goal. 

The first research described is an extension of allylic alkylation methodology 

previously developed in the Stoltz group to small, strained rings.  This research 

constitutes the first transition metal-catalyzed enantioselective α-alkylation of 

cyclobutanones.  Under Pd-catalysis, this chemistry affords all–carbon α-quaternary 

cyclobutanones in good to excellent yields and enantioselectivities.   

Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of 

enolate precursors, and their application in palladium–catalyzed asymmetric allylic 

alkylation to yield a variety of α-quaternary ketones and lactams.  Independent 

coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-

ketoester substrates; highly functionalized α-quaternary ketones generated by the union 

of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners 

serve to demonstrate the utility of this method for complex fragment coupling. 

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic 

β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and 

all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is 

detailed.  Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated 

products with pinpoint stereochemical control of both chiral centers.  The chemistry is 

then extended to include acyclic β-ketoesters and similar levels of selective and 

functional group tolerance are observed.  Critical to the successful development of this 

method was the employment of iridium catalysis in concert with N-aryl-

phosphoramidite ligands.   
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CHAPTER 1 

Enantioselective Construction of α-Quaternary Cyclobutanones by 

Catalytic Asymmetric Allylic Alkylation1 

 

1.1 INTRODUCTION  

1.1.1 Palladium catalyzed allylic alkylation 

 The synthesis of stereogenic all-carbon quaternary centers remains a formidable 

challenge, notwithstanding the strides made by modern organic chemistry in this regard.1  

Contemporary advances in enolate alkylation have made it a fundamental strategy for the 

construction of C–C bonds.2  Allylic alkylation of tetrasubstituted enolates to give rise to 

 α-quaternary carbonyl compounds has emerged as an efficient solution to this problem.3 

The Tsuji research group was among the first to study this class of transformations and 

pioneering investigations undertaken nearly three decades ago by, which culminated in a 

series of disclosures describing novel decarboxylative entry into the palladium-catalyzed 

allylic alkylation of cyclic ketones (Scheme 1.1.1.1).4  

A simple mechanistic framework for the transformation begins with the oxidative 

addition of Pd0 into the allyl group of an allyl enol carbonate (1), allyl β-ketoesters (2) or 

 
1 This work was performed in collaboration with Christian Eidamshaus and Jimin Kim, postdoctoral 
researchers in the Stoltz group.  This work has been published. See: Reeves, C. M, Eidamshaus, C.; Kim, 
J.; Stoltz, B. M.  Angew. Chem. Int. Ed. 2013, 52, 6718. 
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silyl enol ethers (3) in the presence of an allyl source (4), and gives a palladium π-allyl 

species (6), and the corresponding free carboxylate species.  Spontaneous 

decarboxylation of the free carboxylate yields a tetrasubstituted enolate (5) that may enter 

into a catalytic cycle and furnish α-quaternary ketones (7).  This method of enolate 

formation is particularly attractive in that the so-called “thermodynamic” enolate can be 

selectively generated in situ, in the absence of exogenous base under kinetic control.  

Furthermore, excellent positional fidelity is observed between the site of enolization and 

the site of allylic alkylation.  

 

Scheme 1.1.1.1 Palladium catalyzed allylic alkylation pioneered by Tsuji and coworkers 

 

 

 

Although methods for the alkylation of a number of enolate types (e.g., ester, 

ketone, amide, etc.) with a variety of alkylating agents exist, catalytic enantioselective 

variants of these transformations are relatively rare.5  Of the catalytic asymmetric 

methods available, there have been few examples of general techniques for the 

asymmetric alkylation of carbocyclic systems, and still fewer that have the capacity to 
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deliver all-carbon quaternary stereocenters. 6   While the Merck phase transfer 

methylation, and Koga alkylation of 2-alkyltetralone-derived silyl enol ethers represent 

notable exceptions,4 the breadth of application and utility of these reactions has been 

limited.  In fact, at the outset of investigations by the Stoltz group in this area, there were 

no examples of catalytic enantioselective alkylations of monocyclic 2-substituted 

cycloalkanone enolates in the absence of either α’-blocking groups or α-enolate 

stabilizing groups (e.g., 8, R = aryl, ester, etc., Figure 1.1.1.2).   

 

Scheme 1.1.1.2.  State of the art in asymmetric alkylation of prochiral enolates, 2003.   

 

 

 

 

In 2003, we initiated a program for the catalytic enantioselective synthesis of all-

carbon quaternary stereocenters by allylic alkylation of prochiral cyclic ketone enolates.  

We adapted a protocol originally developed by Tsuji7 to incorporate a chiral ligand 

scaffold, and found that the phosphinooxazoline (PHOX) ligands (e.g., L1, Scheme 

1.1.1.3)8 were optimal for both chemical yields and enantioselectivity.9  The allylic 

alkylation protocol developed in the Stoltz laboratory is robust enough to prevail upon 

several different enolate precursor classes, namely allyl enol carbonates (10), enol silanes 

(11), and β-ketoesters (12) to deliver the desired α-quaternary cyclic ketone products (13) 

in good to excellent yields and enantioselectivies.9,10 

 

O O
R

R
R'

strong base
R'X, MLn*α'

blocked α'
or R = EWG

8 9



Chapter 1 – Enantioselective Construction of α-Quaternary Cyclobutanones by Catalytic 
Asymmetric Allylic Alkylation 
 

4 

Scheme 1.1.1.3.  Stoltz and coworkers’ approach to asymmetric allylic alkylation   

 

 

 

In addition, the reaction is highly tolerant of a broad range of functionality and 

substitution on both the enolate precursors and allyl fragments.  Enolates derived from 

cyclic ketones,9 enones,10 vinylogous esters,11 vinylogous thioesters,12 tetralones,10 and 

dioxanones13 function with similar levels of selectivity in the catalytic asymmetric 

chemistry.  We have also developed a scale-up protocol employing 2.5 mol % Pd that 

allows access to >10 g of enantioenriched material in excellent yields.14  

Concurrent to our work in this area, 10,15 Trost and coworkers have published a 

series of papers that complement our studies in asymmetric alkylation, and which employ 

symmetric bidentate C-2 symmetric bisphosphine ligands (L2, Scheme 1.1.1.4a). 16  

Shortly after this report, Jacobsen and coworkers, as well, have revealed a unique 

enantioselective method involving the chromium-catalyzed reaction of tin-enolates (16) 

with a variety of non-activated alkyl halides (Scheme 1.1.1.4b).6 
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Scheme 1.1.1.4.  Asymmetric allylic alkylation by Trost (A) and Jacobsen (B) 

 

 

 

1.1.2 Palladium-catalyzed allylic alkylation of cyclobutanones 

In the domain of asymmetric allylic alkylation, cyclobutanones have received far 

less attention relative to their five-, six- and seven-membered congeners, despite the fact 

that these compounds and their derivatives are prevalent in important biologically-active 

natural products17 (18–22, Figure 1.1.2.1A).  Additionally, cyclobutanes have been shown 

to serve as highly valuable synthetic intermediates for a variety of transformations.18  The 

dearth of reports describing the asymmetric alkylation of cyclobutanones may be 

attributed to the fact that these compounds possess an estimated 26–28.6 kcal/mol of 

ring-strain19 and, in turn, exhibit enhanced carbonyl electrophilicity.20  The propensity of 

cyclobutanones to alleviate this strain via electrophilic ring opening is often a limiting 

challenge during their manipulation.  Moreover, the energetic requirements for 

enolization of cyclobutanones (23) are compounded by a concomitant increase in ring-

strain to 31–34 kcal/mol (calculated for cyclobutene 24, Figure 1.1.2.1B)18 as well as 

enforced deviation from the more favorable puckered conformation (25→26, Figure 

1.1.2.1C).21  In the case of α-substituted cyclobutanones, enolization is further impeded 
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by the development of torsional strain between the putative enolate substituents (26, 

Figure 1.1.2.1C).22  

 

Figure 1.1.2.1.  (A) Representative cycbutanoid natural products; (B) ring, conformational and 

torsional strain in cyclobutanone enolates 

 

 

 

Given these data, it is not surprising that previous methods for the preparation of 

enantioenriched cyclobutanes have relied primarily on either [2+2] cycloaddition 
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from Toste26 (Scheme 1.1.2.1B) and Echavarren27 (Scheme 1.1.2.1C) that employ gold(I) 

catalysis to affect cyclopropanoid rearrangements have emerged as significant new 

methods for the construction of cyclobutanes, and show the power of transition metals in 

this regard.  Organocatalytic approaches to cyclobutanone synthesis have also gained 
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traction recently. 28   Despite these advances, transformations that produce chiral 

cyclobutanones remain limited in scope, and very few methods exist for the catalytic 

construction of chiral cyclobutanones from achiral starting materials.9b,29 In order to 

address these limitations and to further develop the nucleophilic chemistry of these 

unusually reactive compounds, we report herein the first direct transition metal-catalyzed 

asymmetric α-alkylation of cyclobutanones to form all-carbon quaternary centers.   

 

Scheme 1.1.2.1.  Selected modern methods for the synthesis of cycbutanoids according to (A) 

Baudoin, (B) Toste, and (C) Echavarren 
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quaternary centers.30  In the course of our studies, we have developed a series of 

phosphinooxazoline (PHOX) ligands with varied steric and electronic properties that 

exhibit a range of reactivity and selectivity.  We have found that the use of electron 

deficient ligands (e.g. L6 and L7) often results in superior asymmetric induction in 

certain cases where electron-rich or electron-neutral ligands perform poorly. 31  

Examination of ligand electronic effects would, therefore, help to inform our 

development of a method for the asymmetric allylic alkylation of cyclobutanones.   

We first established a simple and efficient reaction sequence to access allyl 1-

alkyl-2-oxocyclobutanecarboxylate substrates (36) (Scheme 1).  Diazotization of 

commercially available 1,3-cyclopentane dione (34) with para-

acetamidobenzenesulfonyl azide (p-ABSA)32 delivered the corresponding diazodiketone 

(35) in consistently good yields.  Microwave-promoted Wolff rearrangement of diketone 

35 in the presence of an allylic alcohol33 (e.g., allyl alcohol, 37), followed by alkylation 

with an alkyl halide (e.g., benzyl bromide) furnished the allyl 1-alkyl-2-

oxocyclobutanecarboxylates in good yields over two steps.  With a quick and efficient 

method to access the desired substrates at hand, we next examined reaction parameters to 

identify optimal conditions for reactivity and enantioselectivity.  
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Figure 1.2.1.1 Construction of allyl 1-benzyl-2-oxocyclobutane-carboxylate (36) 

 

 

 

1.2.2 Optimization of cyclobutanone allylic alkylation 

Our initial experiments revealed that treatment of allyl 1-benzyl-2-

oxocyclobutanecarboxylate (36) with catalytic Pd2(pmdba)3 in the presence of (S)-t-

BuPHOX (L1) in THF delivered the desired α-quaternary (S)-2-allyl-2-

benzylcyclobutanone (38)34 in 90% yield, albeit in moderate enantioselectivity (Figure 

1.2.2.1, Table 1.2.2.1, Entry 1).  The use of electron-deficient ligands L6 or L7 resulted 

in considerably improved enantioinduction (Table 1.2.2.1, Entries 2 and 5).  Although the 

reaction proceeds well in a number of solvents, toluene was identified as optimal for 

inducing asymmetry.  This solvent effect is likely due to an enhanced binding between 

the enolate and the electrophilic sigma-allyl-Pd(II) center in the catalytic cycle, which 

may reinforce a tight ion pair and lead to an inner-sphere mechanism.35  Finally, at 

temperatures just below ambient, the reaction was found to proceed at a reasonable rate 

and with high enantioselectivity.   
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Figure 1.2.2.1.  General initial reaction parameters and select ligands  

 

 

 

 

Table 1.2.2.1.  Initial optimization of the palladium-catalyzed allylic alkylation reaction 
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selective when carried out in relatively non-polar solvent, a number of different non-polar 

solvents or solvent combinations could be employed without significant detriment to the 

reaction selectivity (Figure 1.2.2.2).  Finally, these studies revealed that, in most cases, 

decreasing the temperature at which the reaction was carried out resulted in an increase in 

selectivity.   

 

Figure 1.2.2.2.  Solvent and temperature optimization of the palladium catalyzed allylic alkylation 

reaction 
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process.  To aid in the isolation of these highly volatile products, we chose coupling 

fragments of higher molecular weights, bearing substitution at both the α-position and 

allyl fragment  (i.e. 2-phenylallyl and 1-alkyl-2-oxocyclobutanecarboxylate).  We were 

pleased to find that α-alkyl substituents were well tolerated with enantiomeric excess up 

to 99% (Figure 1.3.1.1, 40a–40b).  α-Benzyl substituents were found to give the 

respective α-quaternary cyclobutanones with uniformly excellent enantioselectivity 

regardless of the electronic nature of the benzyl moiety (compounds 40c–40e).  In 

addition to alkyl- and benzyl- substituents, allyl-, TMS-protected propargyl and 

heteroaryl substituted 2-carboxyallyl cyclobutanones proved to be eligible substrates in 

the asymmetric allylic alkylation reaction providing cyclobutanones 40f–40h in high 

yields and enantiomeric excess. 
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Figure 1.3.1.1.  Reaction scope with respect to α-quaternary substitution (R1) 

 

 

 

1.3.2 Reaction scope with respect to allyl coupling partner substitution 
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derivatization reactions  (e.g., cycloaddition, annulation or transition metal-catalyzed 

cross-coupling).   

 

Figure 1.3.2.1.  Reaction scope with respect to allyl substitution (R2) 
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Baeyer-Villiger oxidation, treatment with trimethylsilyldiazomethane and Beckmann 

rearrangement all proceeded smoothly to deliver dialkyl γ-lactone 44, α-quaternary 

cyclopentanone 45 and dialkyl γ-lactam 46, respectively.  Additionally, ring-closing 

metathesis of diallyl-substituted cyclobutanone 40f cleanly furnished quaternary [4.5]-

spirocycle 47.  

 

Figure 1.4.1.  Derivatization of α-quaternary cyclobutanones 
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including dialkyl γ-lactams, dialkyl γ-lactones, α-quaternary cyclopentanones and 

quaternary [4.5]-spirocycles.  We believe that this novel synthetic method will enable the 

expeditious synthesis of complex bioactive natural products and pharmaceutical 

components by providing unique access to previously unknown and inaccessible 

enantioenriched α-quaternary cyclobutanones.  Efforts toward this end are currently 

underway in our laboratory. 

 

1.6 EXPERIMENTAL SECTION 

1.6.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an inert atmosphere of argon or nitrogen using dry, deoxygenated solvents.  Reaction 

progress was monitored by thin-layer chromatography (TLC).  THF, Et2O, CH2Cl2, 

toluene, benzene, CH3CN, and dioxane were dried by passage through an activated 

alumina column under argon.  Triethylamine was distilled over CaH2 prior to use.  Brine 

solutions are saturated aqueous solutions of sodium chloride.  1,3-Cyclopentanedione was 

purchased from AK Scientific, Inc., reagent grade acetone was purchased from Aldrich 

and distilled from anhydrous Ca2SO4 and stored over molecular sieves (3 Å) under an 

atmosphere of argon.  para-Acetamidobenzenesulfonyl azide (p-ABSA) was prepared 

following a procedure by Davies et al. 44  2-Phenylprop-2-en-1-ol, 2-(4-

methoxyphenyl)prop-2-en-1-ol and 2-(3-fluorophenyl)prop-2-en-1-ol were prepared 

according to the method by Gouverneur and Brown.45 2-Diazocyclopentane-1,3-dione 

was prepared through diazotization of 1,3-cyclopentanedione with p-ABSA following a 

procedure by Coquerel and Rodriguez.46  Phosphinooxazoline (PHOX) ligands were 
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prepared by methods described in our previous work.9, 47  Tris(4,4’-

methoxydibenzylideneacetone)dipalladium(0) (Pd2(pmdba)3) was prepared according to 

the method of Ibers48 or Fairlamb.49 All other reagents were purchased from Sigma-

Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise 

stated.  Reaction temperatures were controlled by an IKAmag temperature modulator 

unless otherwise indicated. Stirring was accomplished with Teflon® coated magnetic stir 

bars. Microwave-assisted reactions were performed in a Biotage Initiator 2.5 microwave 

reactor.  Glove box manipulations were performed under a N2 atmosphere.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle 

SiliaFlash P60 Academic Silica gel (particle size 0.040-0.063 mm) was used for flash 

column chromatography.  1H NMR spectra were recorded on a Varian Inova 500 MHz 

spectrometer and are reported relative to residual CHCl3 (δ 7.26 ppm), C6H6 (δ 7.16 ppm), 

or CH2Cl2 (δ 5.32 ppm).  13C NMR spectra were recorded on a Varian Inova 500 MHz 

(126 MHz) or Varian Mercury 300 MHz (75 MHz) spectrometer and are reported relative 

to CHCl3 (δ 77.16 ppm) or C6H6 (δ 128.06 ppm).  Data for 1H NMR are reported as 

follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).  

Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = 

pentet, h = heptet, m = multiplet, br s = broad singlet, br d = broad doublet, app = 

apparent.  Data for 13C are reported in terms of chemical shifts (δ ppm).  IR spectra were 

obtained using a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on 

NaCl plates and reported in frequency of absorption (cm–1).  Optical rotations were 

measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm) 
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using a 100 mm path-length cell and are reported as: [α]D
T (concentration in g/100 mL, 

solvent, ee).  Analytical UHPLC-LCMS was performed with an Agilent 1290 Infinity 

Series UHPLC/Agilent 6140 Quadrupole LCMS utilizing an Agilent Eclipse Plus C18 

RRHD 1.8 µm column (2.1 x 50 mm), part number 959757-902.  High-resolution mass 

spectra (HRMS) were obtained from the Caltech Mass Spectral Facility (EI+ or FAB+) or 

on an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed 

(MM: ESI-APCI) ionization mode. 

 
1.6.2 Representative procedure for the preparation of 2-

oxocyclobutanecarboxylates  

 

 

2-Phenylallyl 2-oxocyclobutanecarboxylate.  To a 20 mL microwave vial charged with 

a magnetic stir bar were added 2-diazocyclopentane-1,3-dione (35, 500 mg, 4.03 mmol), 

toluene (13.5 mL) and 2-phenylprop-2-en-1-ol (47, 540 mg, 4.03 mmol).  The vial was 

sealed with a microwave crimp cap and heated to 180 °C for one hour using a Biotage 

Initiator microwave reactor (sensitivity set to low; reaction mixture heated gradually over 

first 2 min by increasing the temperature in 20 °C increments).  After 30 min of stirring, 

the mixture was cooled to ambient temperature and the pressure was released by puncture 

of the crimp cap with a needle.  The reaction vessel was then subsequently irradiated at 

180 °C for an additional 30 min.  The vessel was then cooled to ambient temperature, the 

O
O

Oµ-waves, toluene
180 °C, 1 h

O O

N2

35 48

HO
Ph

Ph

(47, 1 equiv)
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vial uncapped and mixture directly loaded onto a silica gel column followed by elution 

with hexanes to 20% EtOAc in hexanes to afford of 48 (635 mg, 68% yield) as a 

colorless oil. Rf = 0.2 (20% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 7.44−7.30 

(m, 5H), 5.57−5.55 (m, 1H), 5.40−5.39 (m, 1H), 5.06–5.05 (m, 2H), 4.26–4.20 (m, 1H), 

3.20−3.15 (m, 2H), 2.48−2.34 (m, 1H), 2.29–2.16 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 

199.5, 166.5, 142.0, 137.8, 128.5, 128.1, 126.0, 115.4, 66.5, 64.5, 47.1, 13.6; IR (Neat 

Film, NaCl) 3448, 3084, 3057, 3024, 2970, 1956, 1790, 1732, 1633, 1600, 1574, 1497, 

1445, 1387, 1310, 1177, 1046, 915, 780 cm–1; HRMS (MM: ESI-APCI) m/z calc'd for 

C14H15O3 [M+H]+: 231.1016; found 231.1018. 

 

With the exception of compound 48, all 2-carboxyallylcyclobutanone derivatives were 

directly used in the following steps without rigorous characterization due to their 

instability. 

 

1.6.3 Representative procedure for the alkylation of 2-H-2-

oxocyclobutanecarboxylates 

 

 

2-Phenylallyl 1-ethyl-2-oxocyclobutanecarboxylate (39a).  To a solution of 48 (233 

mg, 1.01 mmol) in acetone (14 mL) were added K2CO3 (224 mg, 1.62 mmol) and freshly 

distilled EtI (787 mg, 5.05 mmol).  The mixture was heated to reflux until full 

consumption of the starting material was indicated by TLC analysis (alkylation reaction 

O
O

O

48
Ph

K2CO3, acetone
reflux, 24 h

EtI (excess) O Et
O

O

39a
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times typically ranged from 12 to 24 hours).  Upon completion, the mixture was cooled to 

25 °C, the solids were removed by filtration through filter paper and the mixture was 

concentrated in vacuo.  The crude material was purified by flash column chromatography 

(SiO2, hexanes to 10% EtOAc in hexanes to 20% EtOAc in hexanes) to provide 39a (105 

mg, 40% yield) as a colorless oil.  Rf = 0.3 (20% EtOAc in hexanes); 1H NMR (300 MHz, 

CDCl3) δ 7.42−7.28 (m, 5H), 5.55 (s, 1H), 5.38 (s, 1H), 5.06 (dd, J = 9.0, 1.0 Hz, 2H), 

2.56−2.17 (m, 3H), 1.88-1.63 (m, 3H), 0.69 (t, J = 7.5 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) δ 209.4, 171.5, 142.2, 137.8, 128.5, 128.1, 126.1, 116.5, 66.5, 63.7, 35.5, 30.4, 

27.1, 8.6; IR (Neat Film, NaCl) 3084, 2972, 2880, 1738, 1709, 1460, 1444, 1231, 1207, 

1138 cm–1; HRMS (EI+) m/z calc'd for C16H19O3 [M+H]+: 259.1334; found 259.1326. 

 

1.6.4 Spectroscopic data for novel cyclobutanone β-ketoester substrates 

2-Phenylallyl 1-methyl-2-oxocyclobutanecarboxylate (39b) 

 

 

Compound 39b was isolated by flash column chromatography (SiO2, hexanes to 10% 

EtOAc in hexanes) as a colorless oil. 32% yield. Rf = 0.5 (20% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.40–7.29 (m, 5H), 5.54–553 (m, 1H), 5.35−5.34 (m, 1H), 

5.06 (dq, J = 11.2, 1.0 Hz, 1H), 3.20 (ddd, J = 18.3, 11.3, 7.6 Hz, 1H), 3.10 (ddd, J = 

18.3, 9.9, 6.3 Hz, 1H), 2.53 (td, J = 11.3, 6.3 Hz, 1H), 1.84 (ddd, J = 11.5, 9.9, 7.6 Hz, 

1H), 1.45 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 204.3, 170.0, 142.3, 137.9, 128.5, 

128.1, 126.0, 115.2, 69.4, 66.5, 45.3, 23.1, 18.4; IR (Neat Film, NaCl) 2970, 2930, 1788, 

O Me
O

O

Ph

39b
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1729, 1452, 1274, 1145, 1049 cm–1; HRMS (EI+) m/z calc'd for C15H16O3 [M]+: 244.1100; 

found 244.1103. 

 

2-Phenylallyl 1-benzyl-2-oxocyclobutanecarboxylate (39c) 

 

 

Compound 39c was isolated by flash column chromatography (SiO2, hexanes to 10% 

EtOAc in hexanes) as a colorless oil. 37% yield. Rf = 0.4 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.33−7.14 (m, 8H), 7.04−7.02 (m, 2H), 5.47 (s, 1H), 5.28–

5.27 (m, 1H), 5.01−4.95 (m, 2H), 3.12, 3.10 (AB system, JAB = 14.2 Hz, 2H), 2.95 (ddd, J 

= 18.3, 11.1, 7.3 Hz, 1H), 2.62 (ddd, J = 18.3, 10.3, 6.3 Hz, 1H), 2.39 (ddd, J = 11.9, 

11.1, 6.3 Hz, 1H), 1.93 (ddd, J = 11.9, 10.3, 7.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

203.7, 168.7, 142.1, 137.8, 135.9, 129.7, 128.51, 128.49, 128.1, 126.9, 126.0, 115.5, 75.0, 

66.7, 45.2, 37.9, 19.2; IR (Neat Film, NaCl) 3029, 2924, 1788, 1725, 1496, 1270, 1191, 

1046 cm–1;  HRMS (MM: ESI-APCI) m/z calc'd for C42H40NaO6 [2M+Na]+: 663.2717; 

found 663.2692. 
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2-Phenylallyl 1-(4-fluorobenzyl)-2-oxocyclobutanecarboxylate (39d) 

 

 

Compound 39d was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 6% EtOAc in hexanes) as a colorless oil. 22% yield. Rf = 0.4 (20% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ  7.40−7.29 (m, 5H), 7.08−7.04 (m, 2H), 6.95–

6.91 (m, 2H), 5.54 (s, 1H), 5.34 (d, J = 0.9 Hz, 1H), 5.05 (s, 2H), 3.18, 3.16 (AB system, 

JAB = 14.3 Hz, 2H), 3.05 (ddd, J = 18.4, 11.2, 7.4 Hz, 1H), 2.73 (ddd, J = 18.4, 10.2, 6.2 

Hz, 1H), 2.46 (ddd, J = 11.8, 11.2, 6.2 Hz, 1H), 1.97 (ddd, J = 11.8, 10.2, 7.4 Hz, 1H); 

13C NMR (126 MHz, CDCl3) δ 203.4, 168.6, 161.9 (d, 1JCF = 245.6 Hz), 142.1, 137.8, 

131.6 (d, 4JCF = 3.7 Hz), 131.2 (d, 3JCF = 8.0 Hz), 128.5, 128.1, 126.0, 115.7, 115.3 (d, 2JCF 

= 21.2 Hz), 75.0, 66.8, 45.2, 37.0, 19.3;  IR (Neat Film, NaCl) 3052, 2968, 2928, 1784, 

1717, 1506, 1219, 1186, 1042, 912 cm–1;  HRMS (MM: ESI-APCI) m/z calc'd for 

C21H20
19FO3 [M+H]+: 339.1391; found 339.1387. 
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2-Phenylallyl 1-(4-methoxybenzyl)-2-oxocyclobutanecarboxylate (39e) 

 

 

To a solution of NaI (1.88 g, 12.54 mmol) in acetone (20 mL) was added 4-

methoxybenzyl chloride (1.55 mL, 11.38 mmol). The mixture was stirred at 25 °C  for 2 

hours before K2CO3 (504 mg, 3.65 mmol) and 48 (524 mg, 2.28 mmol) were added. The 

resulting mixture was heated to reflux for 16 hours until full conversion of the starting 

material was indicated by TLC analysis. The mixture was cooled to room temperature, 

the solids removed by filtration and concentrated in vacuo. The crude material was 

purified by flash column chromatography (SiO2, hexanes to 10% EtOAc in hexanes to 

20% EtOAc in hexanes) to provide 39e (506 mg, 63% yield) as a colorless oil. Rf = 0.5 

(20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.41−7.39 (m, 2H), 7.36–7.29 

(m, 3H), 7.04−7.01 (m, 2H), 6.80−6.77 (m, 2H), 5.54 (s, 1H), 5.36−5.35 (m, 1H), 5.08–

5.02 (m, 2H), 3.77 (s, 3H), 3.13 (s, 2H), 3.00 (ddd, J = 18.3, 11.1, 7.2 Hz, 1H), 2.68 (ddd, 

J = 18.3, 10.3, 6.4 Hz, 1H), 2.45 (ddd, J = 11.8, 11.1, 6.4 Hz, 1H), 2.00 (ddd, J = 11.8, 

10.3, 7.2 Hz, 1H);  13C NMR (126 MHz, CDCl3) δ  203.9, 168.8, 158.5, 142.1, 137.8, 

130.7, 128.5, 128.1, 127.8, 126.0, 115.5, 113.9, 75.2, 66.7, 55.2, 45.0, 37.1, 19.1;  IR 

(Neat Film, NaCl) 2957, 2933, 2836, 1788, 1725, 1513, 1248, 1179, 1037 cm–1;  HRMS 

(FAB+) m/z calc'd for C22H23O4 [M+H]+: 351.1596; found 351.1601. 
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2-Phenylallyl 1-allyl-2-oxocyclobutanecarboxylate (39f) 

 

 

Compound 39f was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 4% EtOAc in hexanes) as a colorless oil.  68% yield.  Rf = 0.2 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.49–7.27 (m, 5H), 5.64 (ddt, J = 17.5, 9.7, 7.1 

Hz, 1H), 5.56 (q, J = 0.8 Hz, 1H), 5.38 (q, J = 1.2 Hz, 1H), 5.12–5.08 (m, 2H), 5.07 (dd, 

J = 1.4, 0.7 Hz, 2H), 3.14 (ddd, J = 18.4, 11.0, 7.4 Hz, 1H), 3.02 (ddd, J = 18.4, 10.1, 6.4 

Hz, 1H), 2.70 (ddt, J = 14.3, 7.1, 1.2 Hz, 1H), 2.59–2.44 (m, 2H), 1.99 (ddd, J = 11.9, 

10.1, 7.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 203.4, 168.6, 142.3, 137.9, 131.9, 

128.5, 128.1, 126.1, 119.2, 115.5, 73.6, 66.6, 45.0, 36.7, 19.5; IR (Neat Film, NaCl) 

3072, 2967, 1786, 1725, 1638, 1497, 1440, 1387, 1193, 1142, 1043, 919, 779 cm–1; 

HRMS (MM: ESI-APCI)  m/z calc'd for C17H19O3 [M+H]+: 271.1329; found 271.1330. 

 

2-Phenylallyl 2-oxo-1-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclobutanecarboxylate (39g) 

 

 

Compound 39g was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 7% EtOAc in hexanes) as a colorless oil.  63% yield.  Rf = 0.3 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ  7.42–7.27 (m, 5H), 5.54 (q, J = 0.7 Hz, 1H), 
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5.35 (td, J = 1.3, 0.7 Hz, 1H), 5.10–4.98 (m, 2H), 3.18 (ddd, J = 18.4, 11.0, 7.4 Hz, 1H), 

3.06 (ddd, J = 18.4, 10.4, 6.5 Hz, 1H), 2.82 (d, J = 17.3 Hz, 1H), 2.69 (d, J = 17.3 Hz, 

1H), 2.48 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.27 (ddd, J = 11.8, 10.4, 7.4 Hz, 1H), 0.13 

(s, 9H); 13C NMR (126 MHz, CDCl3) δ 201.9, 168.1, 142.1, 137.8, 128.5, 128.1, 126.0, 

115.4, 100.9, 87.9, 72.1, 66.8, 46.3, 22.8, 19.7, -0.1; IR (Neat Film, NaCl) 3058, 2959, 

2177, 1949, 1794, 1732, 1634, 1575, 1496, 1444, 1422, 1315, 1250, 1194, 1161, 1116, 

1028, 906, 843, 778, 760, 708 cm–1; HRMS (APCI)  m/z calc'd for C20H25O3Si [M+H]+: 

341.1567; found 341.1582. 

 

2-Phenylallyl 1-(benzofuran-2-ylmethyl)-2-oxocyclobutanecarboxylate (39h) 

 

 

Compound 39h was isolated by flash column chromatography (SiO2, 5% EtOAc in 

hexanes to 10% EtOAc in hexanes) as a colorless oil. 27% yield. Rf = 0.6 (20% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ  7.48−7.46 (m, 1H), 7.40−7.38 (m, 3H), 

7.33−7.29 (m, 3H), 7.25−7.18 (m, 2H), 6.37 (d, J = 0.8 Hz, 1H), 5.55 (m, 1H), 5.37 (m, 

1H), 5.09 (s, 2H), 3.43 (d, J = 15.6 Hz, 1H), 3.28 (dd, J = 15.6, 0.8 Hz, 1H), 3.18 (ddd, J 

= 18.4, 11.2, 7.6 Hz, 1H), 2.97 (ddd, J = 18.4, 10.2, 6.1 Hz, 1H), 2.58 (ddd, J = 11.9, 

11.2, 6.1 Hz, 1H), 2.11 (ddd, J = 11.9, 10.2, 7.6 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

202.2, 168.1, 154.8, 153.6, 142.1, 137.7, 128.5, 128.4, 128.1, 126.0, 123.8, 122.7, 120.6, 

115.7, 110.9, 104.9, 73.1, 67.0, 45.8, 30.9, 19.9;  IR (Neat Film, NaCl) 3582, 3056, 3033, 
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2963, 2928, 1790, 1726, 1601, 1586, 1455, 1253, 1193, 1045 cm–1;  HRMS (MM: ESI-

APCI) m/z calc'd for C23H21O4 [M+H]+: 361.1434; found 361.1427. 

 

2-Methylenebut-3-en-1-yl 1-benzyl-2-oxocyclobutanecarboxylate (41a) 

 

 

Compound 41a was isolated by flash column chromatography (SiO2, 1% EtOAc in 

hexanes to 8% EtOAc in hexanes) as a colorless oil.  51% yield. Rf = 0.4 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.33–7.20 (m, 3H), 7.19–7.05 (m, 2H), 6.36 

(ddd, J = 17.9, 11.1, 0.8 Hz, 1H), 5.28–5.09 (m, 4H), 4.89–4.78 (m, 2H), 3.24 (dd, J = 

18.6, 14.2 Hz, 2H), 3.14 (ddd, J = 18.3, 11.0, 7.2 Hz, 1H), 2.75 (ddd, J = 18.3, 10.3, 6.4 

Hz, 1H), 2.58 (ddd, J = 11.8, 11.0, 6.4 Hz, 1H), 2.06 (ddd, J = 11.8, 10.3, 7.2 Hz, 1H); 

13C NMR (126 MHz, CDCl3) δ 203.7, 168.7, 140.0, 136.0, 135.9, 129.7, 128.5, 127.0, 

118.4, 114.8, 75.1, 64.6, 45.2, 38.0, 19.2; IR (Neat Film, NaCl) 3987, 3027, 2929, 1789, 

1725, 1598, 1495, 1454, 1393, 1266, 1192, 1044, 909, 743 cm–1; HRMS (MM: ESI-

APCI)  m/z calc'd for C17H19O3 [M+H]+: 271.1329; found 271.1330. 

 

Bn
O

O
O

41a



Chapter 1 – Enantioselective Construction of α-Quaternary Cyclobutanones by Catalytic 
Asymmetric Allylic Alkylation 
 

27 

2-Methylallyl 1-benzyl-2-oxocyclobutanecarboxylate (41b) 

 

 

Compound 41b was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes) as a colorless oil. 44% yield. Rf = 0.4 (10% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ   7.32−7.24 (m, 3H), 7.19−7.17 (m, 2H), 4.97 (d, J = 15.1 Hz, 2H), 4.60, 

4.56 (AB system, JAB = 13.1 Hz, 2H), 3.28, 3.26 (AB system, JAB = 14.2 Hz, 2H), 3.16 

(ddd, J = 18.3, 11.0, 7.2 Hz, 1H), 2.77 (ddd, J = 18.3, 10.4, 6.5 Hz, 1H), 2.61 (ddd, J = 

11.8, 11.0, 6.5 Hz, 1H), 2.09 (ddd, J = 11.8, 10.4, 7.2 Hz, 1H) 1.70 (d, J = 0.5 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ  203.9, 168.7, 139.3, 134.0, 129.7, 128.5, 127.0, 113.4, 

75.1, 68.7, 45.2, 38.0, 19.4, 19.2; IR (Neat Film, NaCl) 3030, 2974, 2925, 1790, 1727, 

1454, 1271, 1193, 1047, 907 cm–1; HRMS (MM: ESI-APCI) m/z calc'd for C18H19O3 

[M+H]+ 259.1329; found 259.1340. 

 

2-Chloroallyl 1-benzyl-2-oxocyclobutanecarboxylate (41c) 

 

 

Compound 41c was isolated by flash column chromatography (SiO2, 2% EtOAc in 

hexanes to 5% EtOAc in hexanes) as a colorless oil. 63% yield. Rf = 0.3 (10% EtOAc in 

hexanes); 1H NMR (300 MHz, CDCl3) δ  7.33−7.24 (m, 3H), 7.18–7.16 (m, 2H), 

5.44−5.40 (m, 2H), 4.71 (m, 2H), 3.26 (s, 2H), 3.17 (ddd, J = 18.3, 11.0, 7.2 Hz, 1H), 
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2.77 (ddd, J = 18.3, 10.3, 6.5 Hz, 1H), 2.61 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.01 (ddd, J 

= 11.8, 10.3, 7.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ  203.4, 168.2, 135.7, 135.2, 

129.7, 128.6, 127.1, 115.3, 74.9, 66.7, 45.3, 38.0, 19.2; IR (Neat Film, NaCl) 3578, 2918, 

1792, 1734, 1637, 1439, 1268, 1191, 1045 cm–1; HRMS (ESI) m/z calc'd for C15H15ClO3 

[M]+: 278.0710; found 278.0714. 

 

Allyl 1-benzyl-2-oxocyclobutanecarboxylate (36) 

 

 

Compound 36 was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 6% EtOAc in hexanes) as a colorless oil. 87% yield. Rf = 0.3 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.30−7.27 (m, 2H), 7.25−7.22 (m, 1H), 

7.17−7.14 (m, 2H), 5.88 (ddt, J = 17.2, 10.5, 5.7 Hz, 1H), 5.31 (dq, J = 17.2, 1.4 Hz, 1H), 

5.24 (dq, J = 10.5, 1.4 Hz, 1H), 4.64 (dq, J = 5.7, 1.4 Hz, 2H), 3.26, 3.22 (AB system, JAB 

= 14.2 Hz, 2H), 3.14 (ddd, J = 18.3, 11.0, 7.2 Hz, 1H), 2.75 (ddd, J = 18.3, 10.3, 6.5 Hz, 

1H), 2.59 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.07 (ddd, J = 11.8, 10.3, 7.2 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 203.9, 168.6, 136.0, 131.5, 129.7, 128.5, 127.0, 118.7, 75.1, 

66.1, 45.1, 38.1, 19.3;  IR (Neat Film, NaCl) 2916, 2848, 1781, 1715, 1438, 1181, 1040 

cm–1;  HRMS (MM: ESI-APCI) m/z calc'd for C15H17O3 [M+H]+: 245.1172; found 

245.1178. 
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4-(Benzyloxy)-2-methylenebutyl 1-benzyl-2-oxocyclobutanecarboxylate (41d) 

 

 

Compound 41d was isolated by flash column chromatography (SiO2, 1% EtOAc in 

Hexanes to 3% EtOAc in hexanes) as a colorless oil. 51% yield.  Rf = 0.5 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.47–7.12 (m, 10H), 5.11 (q, J = 1.0 Hz, 1H), 

5.04 (h, J = 1.1 Hz, 1H), 4.67, 4.61 (AB system, JAB = 13.3 Hz, 2H), 4.53 (s, 2H), 3.60 (t, 

J = 6.6, 2H), 3.26 (s, 2H), 3.14 (ddd, J = 18.2, 11.0, 7.2 Hz, 1H), 2.76 (ddd, J=18.3, 10.3, 

6.4 Hz, 1H), 2.60 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.42–2.33 (m, 2H), 2.08 (ddd, J = 

11.8, 10.3, 7.2 Hz, 1H);  13C NMR (126 MHz, CDCl3) δ 203.9, 168.7, 140.7, 138.2, 

136.0, 129.7, 128.6, 128.4, 127.7, 127.6, 127.0, 114.4, 75.1, 73.0, 68.5, 68.0, 45.2, 38.1, 

33.5, 19.3; IR (Neat Film, NaCl) 3029, 2920, 2849, 1784, 1717, 1495, 1451, 1360, 1268, 

1187, 1095, 904, 732 cm–1; HRMS (MM: ESI-APCI)  m/z calc'd for C24H27O4 [M+H]+: 

379.1904; found 379.1926. 

 

2-(3-Methoxyphenyl)allyl 1-benzyl-2-oxocyclobutanecarboxylate (41e) 

 

 

Compound 41e was isolated by flash column chromatography (SiO2, 3% EtOAc in 

Hexanes to 7% EtOAc in Hexanes) as a colorless oil.  79% yield.  Rf = 0.35 (10% EtOAc 
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in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.41–7.16 (m, 4H), 7.16–7.09 (m, 2H), 7.05–

6.90 (m, 2H), 6.91–6.82 (m, 1H), 5.60–5.53 (m, 1H), 5.37 (q, J = 1.2 Hz, 1H), 5.12–5.01 

(m, 2H), 3.84 (s, 3H), 3.24, 3.21 (AB system, JAB = 14.13 Hz, 2H), 3.06 (ddd, J = 18.3, 

11.1, 7.3 Hz, 1H), 2.72 (ddd, J = 18.3, 10.2, 6.3 Hz, 1H), 2.51 (ddd, J = 11.9, 11.1, 6.3 

Hz, 1H), 2.04 (ddd, J = 11.8, 10.2, 7.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 203.7, 

168.7, 159.7, 142.1, 139.4, 136.0, 129.7, 129.5, 128.5, 126.9, 118.5, 115.8, 113.6, 111.8, 

75.1, 66.8, 55.3, 45.2, 37.9, 19.2; IR (Neat Film, NaCl) 2957, 2833, 1786, 1720, 1575, 

1494, 1453, 1387, 1221, 1180, 1039, 783 cm–1; HRMS (MM: ESI-APCI)  m/z calc'd for 

C22H23O4 [M+H]+: 351.1591; found 351.1582. 

 

2-(4-Fluorophenyl)allyl 1-benzyl-2-oxocyclobutanecarboxylate (41f) 

 

 

Compound 41f was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 6% EtOAc in hexanes) as a colorless oil.  93% yield.  Rf = 0.3 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ  7.40–7.36 (m, 2H), 7.30–7.23 (m, 3H), 7.14–

7.11 (m, 2H), 7.07–7.02 (m, 2H), 5.51 (s, 1H), 5.36 (s, 1H), 5.07–5.01 (m, 2H),  3.23, 

3.20 (AB system, JAB = 14.2 Hz, 2H), 3.06 (ddd, J = 18.3, 11.0, 7.3 Hz, 1H), 2.74 (ddd, J 

= 18.3, 10.3, 6.4 Hz, 1H), 2.51 (ddd, J = 11.9, 11.0, 6.4 Hz, 1H), 2.05 (ddd, J = 11.9, 

10.3, 7.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 203.5, 168.6, 162.7 (d, 1JCF = 247.5 

Hz), 141.1, 135.9, 133.9 (d, 4JCF = 3.9 Hz), 129.6, 128.5, 127.7 (d, 3JCF = 8.6 Hz), 126.9, 
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115.7, 115.4 (d, 2JCF = 21.4 Hz), 75.0, 66.7, 45.1, 37.8, 19.2; IR (Neat Film, NaCl) 3060, 

3029, 2967, 2928, 1790, 1728, 1634, 1602, 1511, 1454, 1386, 1233, 1193, 1162, 1047, 

917, 840, 744 cm–1; HRMS (MM: ESI-APCI)  m/z calc'd for C21H20
19FO3 [M+H]+: 

339.1391; found 339.1397. 

 

1.6.5 Representative procedure for the asymmetric decarboxylative allylic 

alkylation of 2-oxocyclobutanecarboxylates 

  

(S)-2-Ethyl-2-(2-phenylallyl)cyclobutanone (40a) 

 

 

To a 20 mL scintillation vial with a stir bar were added Pd2(pmdba)3 (16.4 mg, 0.015 

mmol), L6 (21.9 mg, 0.037 mmol) and toluene (9 mL) in a nitrogen-filled glove box. The 

dark purple mixture was stirred at ambient glove box temperature (ca. 30 °C) for 35 min 

at which point the mixture had become red-orange. 2-Carboxyallylcyclobutanone 39a 

(80.0 mg, 0.31 mmol) was then added.  The resulting yellow-greenish reaction mixture 

was stirred at 20 °C until full conversion of the starting material was indicated by TLC 

analysis (reaction times typically ranged from 18 to 36 hours).  The vial was removed 

from the glove box, uncapped and directly purified by flash column chromatography 

(SiO2, pentane to 15% Et2O in pentane) afforded 40a (41 mg, 62% yield) as colorless oil.  

Rf = 0.3 (15% Et2O in pentane); 1H NMR (300 MHz, CDCl3) δ 7.46–7.25 (m, 5H), 5.55 

(d, J = 0.9 Hz, 1H), 5.38 (d, J = 1.1 Hz, 1H), 5.16–4.92 (m, 2H), 2.51 (ddd, J = 14.7, 

O Et
O

O
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10.5, 2.0 Hz, 1H), 2.42–2.30 (m, 1H), 2.29–2.14 (m, 1H), 1.93–1.77 (m, 2H), 1.73–1.59 

(m, 1H), 0.69 (t, J = 7.4 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ  215.1, 145.2, 141.9, 

128.3, 127.6, 126.5, 116.5, 63.8, 42.8, 40.6, 23.5, 21.6, 8.4; IR (Neat Film, NaCl) 3078, 

2966, 1699, 1464, 1443, 905 cm–1; HRMS (FAB+) m/z calc'd for C15H17O [(M+H)−H2]+: 

213.1279; found 213.1274; [α]D
26.0 +8.50 (c 1.00, CHCl3, 99% ee). 

 

1.6.6 Spectroscopic data for novel α-quaternary cyclobutanone products 

(S)-2-Methyl-2-(2-phenylallyl)cyclobutanone (40b)  

 

 

Cyclobutanone 40b was isolated by flash column chromatography (SiO2, 10% Et2O in 

pentane) as a colorless oil. 92% yield. Rf = 0.3 (10% Et2O in pentane); 1H NMR (500 

MHz, CDCl3) δ 7.31−7.19 (m, 5H), 5.25 (d, J = 1.5 Hz, 1H), 5.04−5.03 (m, 1H), 

2.93−2.66 (m, 3 H), 2.56 (d, J = 14.1 Hz, 1H), 1.82 (ddd, J = 11.4, 10.5, 6.9 Hz, 1H), 

1.47 (ddd, J = 11.4, 10.2, 6.6 Hz, 1H), 1.09 (s, 3H); 13C NMR (126 MHz, CDCl3) δ  215.1, 

145.2, 141.9, 128.3, 127.6, 126.5, 116.5, 63.8, 42.8, 40.6, 23.5, 21.6;  IR (Neat Film, 

NaCl) 2080, 2865, 1774, 1443, 1059 cm–1;  HRMS (FAB+) m/z calc'd for C14H17O 

[M+H]+: 201.1279; found 201.1286; [α]D
26.0 −83.9 (c 1.00, CHCl3, 90% ee). 
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(R)-2-Benzyl-2-(2-phenylallyl)cyclobutanone (40c) 

 

 

Cyclobutanone 40c was isolated by flash column chromatography (SiO2, 5% Et2O in 

petroleum ether) as a colorless oil. 81% yield. Rf = 0.6 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.36–7.26 (m, 8H), 7.13−7.11 (m, 2H), 5.37 (d, J = 1.4 Hz, 

1H), 5.15−5.14 (m, 1H), 2.94 (t, J = 14.9 Hz, 2H), 2.72 (t, J = 14.2 Hz, 2H), 2.61 (ddd, J 

= 18.1, 9.6, 7.2 Hz, 1H ), 2.32 (ddd, J = 18.1, 10.0, 7.5 Hz, 1H), 1.86−1.77 (m, 2H);  13C 

NMR (126 MHz, CDCl3) δ  214, 145.0, 141.8, 137.3, 130.0, 128.4, 128.3, 127.7, 126.5, 

126.4, 116.9, 68.8, 43.7, 41.2, 39.9, 20.0;  IR (Neat Film, NaCl) 3028, 2918, 1770, 1494, 

1453, 1074, 905 cm–1; HRMS (EI+) m/z calc'd for C20H21O [M+H]+: 277.1587;  found 

277.1587;  [α]D
26.0 −2.91 (c 1.14, CHCl3, 95% ee). 

 

(R)-2-(4-Fluorobenzyl)-2-(2-phenylallyl)cyclobutanone (40d) 

 

 

Cyclobutanone 40d was isolated by flash column chromatography (SiO2, hexanes to 3% 

Et2O in hexanes) as a colorless oil. 71% yield.  Rf = 0.3 (25% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3)  δ 7.36−7.26 (m, 5H), 7.09–7.05 (m, 2H), 6.97−6.93 (m, 2H), 

5.37 (d, J = 1.4 Hz, 1H), 5.14 (d, J = 0.9 Hz, 1H), 2.93−2.89 (m, 2H), 2.74−2.67 (m, 2H), 

2.33 (ddd, J = 18.1, 10.7, 6.9 Hz, 1H), 2.62 (ddd, J = 18.1, 10.4, 6.5 Hz, 1H), 1.83 (ddd, J 
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= 11.7, 10.4, 6.9 Hz, 1H), 1.75 (ddd, J = 11.7, 10.7, 6.5 Hz, 1H);  13C NMR (126 MHz, 

CDCl3) δ 214.7, 161.7 (d, 1JCF = 244.8 Hz), 144.9, 141.8, 132.9 (d, 4JCF = 3.8 Hz), 131.5 

(d, 3JCF = 8.3 Hz), 128.8, 127.2, 126.4, 117.0, 115.1 (d, 2JCF = 21.1 Hz), 68.7, 43.7, 40.2, 

39.9, 19.9; IR (Neat Film, NaCl) 3047, 2918, 2848, 1772, 1599, 1508, 1221, 1158, 1060 

836 cm–1;  HRMS (MM: ESI-APCI)  m/z calc'd for C20H20
19FO [M+H]+: 294.1420; found 

294.1408;  [α]D
26.0 –9.9 (c 0.59, CHCl3, 94% ee). 

 

(R)-2-(4-Methoxybenzyl)-2-(2-phenylallyl)cyclobutanone (40e) 

 

 

Cyclobutanone 40e was isolated by flash column chromatography (SiO2, 10% EtOAc in 

hexanes) as a colorless oil. 83% yield.  Rf = 0.3 (10% EtOAc in hexanes); 1H NMR (300 

MHz, CDCl3) δ 7.37−7.26 (m, 5H), 7.06−7.01 (m, 2H), 6.83–6.78 (m, 2H), 5.37 (d, J = 

1.2 Hz, 1H), 5.14 (s, 1H), 3.78 (s, 3H), 2.91 (dd, J = 14.5, 3.1 Hz, 2H), 2.69 (dd, J = 14.5, 

1.9 Hz, 2H), 2.64−2.53 (m, 1H), 2.37-2.26 (m, 1H) 1.78 (ddd, J = 10.1, 7.2, 2.6 Hz, 2H); 

13C NMR (126 MHz, CDCl3) δ 215.1, 158.2, 145.0, 141.8, 131.0, 129.2, 128.3, 127.6, 

126.4, 116.8, 113.6, 68.9, 55.1, 43.6, 40.3, 39.8;  IR (Neat Film, NaCl) 3080, 2913, 2835, 

1770, 1611, 1513, 1248, 1179, 1035, 907 cm–1; HRMS (EI+) m/z calc'd for C21H22O2 

[M]+: 306.1620;  found 306.1614;  [α]D
26.0 −0.60 (c 1.00, CHCl3, 95% ee). 
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(R)-2-Allyl-2-(2-phenylallyl)cyclobutanone (40f) 

 

 

Cyclobutanone 40f was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 4% EtOAc in hexanes) as a colorless oil. 86% yield.  Rf = 0.2 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.42–7.25 (m, 5H), 5.84–5.71 (m, 1H), 5.37 (d, 

J = 1.5 Hz, 1H), 5.14 (d, J = 1.0 Hz, 1H), 5.15–5.05 (m, 2H), 2.91, 2.70 (AB system, JAB 

= 14.4 Hz, 2H), 2.87–2.65 (m, 2H), 2.36 (ddt, J = 13.9, 7.1, 1.2 Hz, 1H), 2.27 (ddt, J = 

13.9, 7.6, 1.1 Hz, 1H), 1.85 (ddd, J = 11.7, 10.4, 6.8 Hz, 1H), 1.77–1.64 (m, 1H); 13C 

NMR (126 MHz, CDCl3) δ 214.5, 145.1, 141.8, 133.3, 128.3, 128.3, 126.5, 118.7, 116.9, 

67.5, 43.3, 39.7, 39.1, 20.3; IR (Neat Film, NaCl) 3078, 2921, 1774, 1625, 1493, 1443, 

1387, 1059, 1000, 908, 779 cm–1; HRMS (MM: ESI-APCI)  m/z calc'd for C16H19O 

[M+H]+: 227.1430; found 227.1418; αD
25 –13.98 (c 0.51, CHCl3, 92% ee). 

 

(S)-2-(2-Phenylallyl)-2-[3-(trimethylsilyl)prop-2-yn-1-yl]cyclobutanone (40g) 

 

 

Cyclobutanone 40g was isolated by flash column chromatography (SiO2, 1% EtOAc in 

hexanes to 3% EtOAc in hexanes) as a colorless oil.  90% yield.  Rf = 0.2 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.51–7.08 (m, 5H), 5.37 (d, J = 1.4 Hz, 1H), 
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5.13 (d, J = 1.1 Hz, 1H), 2.93–2.86 (m, 2H), 2.82–2.75 (m, 2H), 2.42, 2.37 (AB system, 

JAB = 17.0 Hz, 2H), 1.96–1.85 (m, 2H) 0.15 (s, 9H);  13C NMR (126 MHz, CDCl3) δ 

212.6, 144.5, 141.4, 128.4, 127.7, 126.4, 116.9, 102.7, 87.2, 66.6, 43.9, 38.9, 25.8, 20.9, 

0.0;  IR (Neat Film, NaCl) 2957, 2169, 1776, 1713, 1444, 1249, 1177, 1061, 1031, 834, 

760 cm–1;  HRMS (MM: ESI-APCI) m/z calc'd for C19H25OSi [M+H]+: 297.1681; found 

297.1683;  [α]D
25 +10.76 (c 0.29, CHCl3, 93% ee). 

 

(S)-2-(Benzofuran-2-ylmethyl)-2-(2-phenylallyl)cyclobutanone (40h) 

 

 

Cyclobutanone 40h was isolated by flash column chromatography (SiO2, hexanes to 10% 

EtOAc in hexanes) as a colorless oil. 82% yield. Rf = 0.5 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.50−7.48 (m, 1H), 7.42−7.40 (m, 1H), 7.38−7.36 (m, 2H), 

7.33−7.28 (m, 3H), 7.25−7.18 (m, 2H), 6.44 (s, 1H), 5.40 (d, J = 1.34 Hz, 1H), 5.17 (m, 

1H), 3.07 (d, J = 15.2 Hz, 1H), 2.98 (dd, J = 14.3, 0.9 Hz, 1H), 2.96 (d, J = 15.0 Hz, 1H), 

2.82 (d, J = 14.3 Hz, 1H), 2.79−2.64 (m, 2H), 1.96−1.86 (m, 2H);  13C NMR (126 MHz, 

CDCl3) δ 213.2, 155.0, 154.7, 144.7, 141.6, 128.5, 128.4, 127.8, 126.4, 123.6, 122.6, 

120.5, 117.2, 110.9, 105.0, 67.2, 43.8, 39.6, 33.7, 20.9;  IR (Neat Film, NaCl) 3054, 

2917, 2849, 1770, 1598, 1585, 1453, 1251, 1104, 1061, 905 cm–1; HRMS (MM ESI-

APCI) m/z calc'd for C22H21O2 [M+H]+: 317.1536;  found 317.1530;  [α]D
26 +56.4 (c 1.00, 

CHCl3, 92% ee). 
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(S)-2-Benzyl-2-(2-methylenebut-3-en-1-yl)cyclobutanone (42a) 

 

 

Cyclobutanone 42a was isolated by flash column chromatography (SiO2, hexanes to 5% 

Et2O in hexanes) as a colorless oil.  92% yield.  Rf = 0.3 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.33–7.27 (m, 3H), 7.25–7.20 (m, 2H), 7.19–7.12 (m, 1H), 

6.59–6.19 (m, 1H), 5.24–5.06 (m, 2H), 5.05 (s, 2H), 3.01 (d, J = 13.6 Hz, 1H), 2.80 (d, J 

= 13.6 Hz, 1H), 2.68 (ddd, J = 18.1, 10.3, 6.8 Hz, 1H), 2.57 (dd, J = 14.4, 1.0 Hz, 1H), 

2.45 (ddd, J = 18.1, 10.3, 6.9 Hz, 1H), 2.40 (d, J = 14.4 Hz, 1H), 1.95 (qdd, J = 11.6, 

10.2, 6.8 Hz, 1H);  13C NMR (126 MHz, CDCl3) δ 215.2, 142.4, 139.4, 137.3, 130.1, 

128.3, 126.6, 119.2, 114.5, 68.6, 43.9, 41.4, 35.5, 20.2;  IR (Neat Film, NaCl) 3022, 

2921, 2843, 1768, 1590, 1493, 1452, 1384, 1065, 989, 898, 755 cm–1;  HRMS (MM: ESI-

APCI)  m/z calc'd for C16H18O [M+H]+: 227.1430; found 227.1433; [α]D
25 +0.44 (c 1.60, 

CHCl3, 91% ee). 

 

(S)-2-Benzyl-2-(2-methylallyl)cyclobutanone (42b) 

 

 

Cyclobutanone 42b was isolated by flash column chromatography (SiO2, 2% Et2O in 

hexanes to 5% Et2O in hexanes) as a colorless oil. 82% yield.  Rf = 0.3 (10% EtOAc in 

O Bn

42a

O Bn

Me

42b



Chapter 1 – Enantioselective Construction of α-Quaternary Cyclobutanones by Catalytic 
Asymmetric Allylic Alkylation 
 

38 

hexanes); 1H NMR (300 MHz, CDCl3) δ 7.41–7.12 (m, 5H), 4.91 (t, J = 1.7 Hz, 1H), 4.78 

(dd, J = 2.0 Hz, 1.0, 1H), 2.88, 2.65 (AB system, JAB = 13.7 Hz, 2H), 2.77 (ddd, J = 18.1, 

9.6, 6.9 Hz, 1H), 2.43–2.33 (m, 1H), 2.33, 2.22 (AB system, JAB = 14.2 Hz,  2H), 1.97 

(ddd, J = 9.4, 7.2, 3.1, 2H), 1.80–1.72 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 215.3, 

141.8, 137.4, 130.1, 128.3, 126.5, 114.8, 68.2, 43.6, 43.2, 40.6, 24.0, 20.7; IR (Neat Film, 

NaCl) 3072, 3027, 2964, 2919, 1772, 1322, 1131, 1062, 894 cm–1;  HRMS (MM: ESI-

APCI)  m/z calc'd for C15H18O [M]+: 214.1358, found 214.1346;  [α]D
26 –2.4° (c 0.48, 

CHCl3, 90% ee).   

(R)-2-Benzyl-2-(2-chloroallyl)cyclobutanone (42c) 

 

 

Cyclobutanone 42c was isolated by flash column chromatography (SiO2, hexanes to 3% 

EtOAc in hexanes) as a colorless oil. 67% yield. Rf = 0.3 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.33−7.21 (m, 3H), 7.18−7.15 (m, 2H), 5.33 (d, J = 1.3 Hz, 

1H), 5.22−5.21 (m, 1H), 2.97 (d, J = 13.7 Hz, 1H), 2.90−2.76 (m, 1H), 2.82 (d, J = 13.7 

Hz, 1H), 2.74 (dd, J = 14.7, 1.0 Hz, 1H), 2.59 (d, J = 14.7 Hz, 1H), 2.43 (ddd, J = 18.1, 

10.8, 7.3 Hz, 1H), 2.19 (ddd, J = 11.8, 10.2, 7.2 Hz, 1H), 2.04 (ddd, J = 11.8, 10.8, 6.1 

Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 213.7, 138.4, 136.7, 130.1, 128.4, 126.8, 116.4, 

67.5, 44.1, 43.8, 40.5, 20.7;  IR (Neat Film, NaCl) 3028, 2919, 2848, 1772, 1631, 1494, 

1453, 1063, 888 cm–1; HRMS (MM ESI-APCI) m/z calc'd for C14H16
35ClO [M+H]+: 

235.0884; found 235.0883; [α]D
26 +1.51 (c 0.56, CHCl3, 94% ee).  
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(S)-2-Allyl-2-benzylcyclobutanone (38) 

 

 

Cyclobutanone 38 was isolated by flash column chromatography (SiO2, 2% Et2O in 

hexanes to 5% Et2O in hexanes) as a colorless oil.  82% yield.  Rf = 0.4 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.30−7.27 (m, 2H), 7.24−7.21 (m, 1H), 

7.16−7.15 (m, 2H), 5.81 (ddt, J = 17.2, 10.0, 7.4 Hz, 1H), 5.16−5.10 (m, 2H), 2.97 (d, J = 

13.7 Hz, 1H), 2.78 (ddd, J = 18.2, 10.3, 6.5 Hz, 1H), 2.72 (d, J = 13.7 Hz, 1H), 2.49 (ddd, 

J = 18.2, 10.6, 6.8 Hz, 1H), 2.39 (ddt, J = 13.9, 7.4, 1.1 Hz, 1H), 2.67 (ddt, J = 13.9, 7.4, 

1.1 Hz, 1H), 1.94 (ddd, J = 11.5, 10.6, 6.5 Hz, 1H), 1.86 (ddd, J = 11.5, 10.3, 6.8 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 214.9, 137.3, 133.2, 130.0, 128.3, 126.5, 118.7, 68.4, 

42.9, 40.3, 39.5, 19.8; IR (Neat Film, NaCl) 3029, 2918, 1771, 1495, 1437, 1454, 1076, 

920 cm–1;  HRMS (MM: ESI-APCI)  m/z calc'd for C14H16O [M]+: 200.1201; found 

200.1199;  [α]D
26 +4.69 (c 0.55, CHCl3, 88% ee).   

 

(S)-2-Benzyl-2-[4-(benzyloxy)-2-methylenebutyl]cyclobutanone (42d) 

 

 

Cyclobutanone 42d was isolated by flash column chromatography (SiO2, 1% EtOAc in 

hexanes to 3% EtOAc in hexanes) as a colorless oil (95% yield).  Rf = 0.2 (10% EtOAc in 

O Bn

38

O Bn

42d

OBn
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hexanes); 1H NMR (500 MHz, CDCl3) δ 7.41–7.12 (m, 10H), 5.01 (q, J = 1.4 Hz, 1H), 

4.93–4.92 (m, 1H), 4.54 (s, 2H), 3.59 (td, J = 6.8, 0.7, 2H), 2.95, 2.73 (AB system, JAB = 

13.7, 2H), 2.83–2.71 (m, 1H), 2.51–2.27 (m, 5H), 2.04–1.92 (m, 2H); 13C NMR (126 

MHz, CDCl3) δ 215.2, 142.6, 138.4, 137.4, 130.1, 128.4, 128.3, 127.7, 127.6, 126.5, 

115.1, 72.9, 68.7, 68.3, 43.6, 41.5, 40.6, 37.0, 20.7; IR (Neat Film, NaCl) 3022, 2923, 

2853, 1768, 1641, 1494, 1452, 1360, 1099, 899, 735 cm -1; HRMS (MM: ESI-APCI)  m/z 

calc'd for C23H27O2 [M+H]+: 335.2006; found 335.2020;  

 

 

Enantiomeric excess determined for the corresponding Baeyer-Villiger product, which 

was obtained by the general procedure below.  Lactone 49 was isolated by flash column 

chromatography (SiO2, 4% EtOAc in hexanes) as a colorless oil (93% yield). Rf = 0.2 

(20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.40–7.18 (m, 10H), 5.09 (q, J = 

1.5 Hz, 1H), 4.98 (dd, J = 1.7, 0.9 Hz, 1H), 4.51 (s, 2H), 3.61 (t, J = 6.5 Hz, 2H), 3.09 (d, 

J = 14.1 Hz, 1H), 2.75 (d, J = 14.1 Hz, 1H), 2.61–2.38 (m, 4H), 2.23 (ddd, J = 17.6, 9.4, 

5.9 Hz, 1H), 2.17–2.03 (m, 2H), 1.68 (ddd, J = 17.6, 10.0, 8.6 Hz, 1H); 13C NMR (126 

MHz, CDCl3) δ 176.9, 141.8, 138.4, 135.5, 130.5, 128.5, 128.3, 127.7, 127.5, 127.1, 

117.1, 87.8, 72.8, 68.5, 46.7, 45.6, 37.0, 29.3, 29.2; IR (Neat Film, NaCl) 3524, 3062, 

3029, 2919, 2855, 1958, 1770, 1642, 1603, 1495, 1454, 1416, 1361, 1271, 1232, 1177, 

1101, 1080, 1029, 932, 741 cm–1; HRMS (MM: ESI-APCI)  m/z calc'd for C23H27O3 

[M+H]+: 351.1955; found 351.1951; αD
25 +21.17 (c 0.44, CHCl3, 89% ee). 

 

H2O2 
(50 % in H2O)

OO

NaOH (1 M), 
MeOH

49

Bn

OBn

O Bn

42d

OBn

93% yield
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(R)-2-Benzyl-2-(2-[3-methoxyphenyl]allyl)cyclobutanone (42e) 

 

 

Cyclobutanone 42e was isolated by flash column chromatography (SiO2, 1% EtOAc in 

hexanes to 3% EtOAc in hexanes) as a colorless oil. 91% yield.  Rf = 0.2 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.37–7.19 (m, 4H), 7.19–7.10 (m, 2H), 6.98 

(ddd, J = 7.7, 1.7, 0.9 Hz, 1H), 6.91 (dd, J = 2.5, 1.6 Hz, 1H), 6.85 (ddd, J = 8.2, 2.6, 0.9 

Hz, 1H), 5.41 (d, J = 1.4 Hz, 1H), 5.17 (q, J = 1.1 Hz, 1H), 3.83 (s, 3H), 3.03–2.86 (m, 

2H), 2.86–2.68 (m, 2H), 2.63 (ddd, J = 18.1, 9.7, 7.1 Hz, 1H), 2.35 (ddd, J = 18.1, 10.1, 

7.4 Hz, 1H), 1.96–1.72 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 215.0, 159.6, 144.9, 

143.5, 137.3, 130.1, 129.4, 128.4, 126.6, 119.0, 117.1, 112.9, 112.4, 68.9, 55.3, 43.8, 

41.2, 40.0, 20.0; IR (Neat Film, NaCl) 2913, 2829, 1766, 1595, 1572, 1488, 1451, 1286, 

1221, 1170, 1039, 898, 873, 779 cm–1; HRMS (MM: ESI-APCI)  m/z calc'd for C21H23O2 

[M+H]+: 307.1693; found 307.1693; αD
25 –4.78 (c 0.45, CHCl3, 92% ee). 

 

(R)-2-Benzyl-2-(2-(4-fluorophenyl)allyl)cyclobutanone (42f) 

 

 

Cyclobutanone 42f was isolated by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 7% EtOAc in hexanes) as a colorless oil.  94% yield.  Rf = 0.3 (10% EtOAc in 

O Bn

42e

OMe

O Bn

42f
F
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hexanes); 1H NMR (500 MHz, CDCl3) δ 7.25–7.12 (m, 5H), 7.05–7.03 (m, 2H), 6.95–

6.90 (m, 2H), 5.25 (d, J = 1.3 Hz, 1H), 5.05 (s, 1H), 2.88 (d, J = 13.7 Hz, 1H), 2.82 (dd, J 

= 14.4, 1.0 Hz, 1H), 2.66 (d, J = 13.7 Hz, 1H), 2.59 (d, J = 14.4 Hz, 1H), 2.54–2.47 (m, 

1H), 2.29–2.22 (m, 1H), 1.73 (t, J = 8.6 Hz, 2H);  13C NMR (126 MHz, CDCl3) δ 214.6, 

162.3 (d, 1JCF = 246.8 Hz), 144.0, 137.8 (d, 4JCF = 3.3 Hz), 137.1, 130.0, 128.3, 128.0 (d, 

3JCF = 7.9 Hz), 126.6, 116.9, 115.2 (d, 2JCF = 21.3 Hz), 68.6, 43.7, 41.2, 40.5, 20.0;  IR 

(Neat Film, NaCl) 2913, 1766, 1597, 1505, 1219, 1055, 837 cm–1;  HRMS (MM: ESI-

APCI) m/z calc'd for C20H20
19FO [M+H]+: 295.1493; found 295.1502; [α]D

25 +3.53 (c 

0.16, CHCl3, 94% ee).  

 

1.6.7 Procedures for derivatization of α-quaternary cyclobutanones and 

determination of absolute stereochemical configuration 

 

 

(R)-5-Benzyl-5-(2-phenylallyl)dihydrofuran-2(3H)-one (44). To a stirred solution of 

cyclobutanone 40c (43 mg, 0.23 mmol) in MeOH (4.6 mL) was added NaOH (1 M in H2O, 

0.23 μL, 0.23 mmol) followed by H2O2 (50 wt% in H2O, 17 mg, 0.46 mmol). The resulting 

mixture was stirred at room temperature for 1 h. The reaction mixture was then acidified to 

pH 7 with 1 N aqueous HCl and extracted with dichloromethane (2 mL x 5). The combined 

organic layers were dried over MgSO4 and concentrated in vacuo. The crude oil was 

purified by flash column chromatography (SiO2, 15% EtOAc in hexanes) to afford lactone 

44 (37 mg, 0.17 mmol, 80% yield) as a colorless oil. Rf = 0.2 (20% EtOAc in hexanes); 1H 

O

Ph

Ph
H2O2 (50 % in H2O) OO

Ph

Ph

NaOH (1 M), MeOH

40c 4480% yield
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NMR (300 MHz, CDCl3) δ 7.41−7.18 (m, 10H), 5.46 (d, J = 1.4 Hz, 1H), 5.27 (s, 1H), 

3.08−2.92 (m, 3H), 2.79 (d, J = 14.1 Hz, 1H), 2.17 (ddd, J = 17.4, 9.8, 6.4 Hz, 1H), 2.04-

−1.86 (m, 2H), 1.76−1.62 (m, 1H);  13C NMR (126 MHz, CDCl3) δ 176.7, 143.4, 141.7, 

135.4, 130.6, 128.6, 128.5, 127.8, 127.0, 126.3, 119.2, 87.7, 46.1, 45.3, 29.3, 28.8; IR 

(Neat Film, NaCl) 3029, 2918, 1771, 1495, 1437, 1454, 1076, 920 cm–1;  HRMS (MM: 

ESI-APCI)  m/z calc'd for C20H21O2 [M+H]+: 293.1536; found 293.1536;  [α]D
26 –0.60 (c 

1.00, CHCl3, 89% ee).  

 

 

(S)-2-(2-Phenylallyl)-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclopentanone (45). To a 

solution of 40g  (0.1023 g, 0.345 mmol) in Et2O (3.5 mL), cooled to 0 °C with a water/ice 

bath, under an atmosphere of N2, was added BF3 etherate (0.112 mL, 0.379 mmol) 

dropwise followed by trimethylsilyldiazomethane (0.345 mL, 2 M solution in hexane) 

dropwise. The mixture was allowed to warm to 25 °C and stirred for 18 hours, at which 

point the reaction was determined to be complete by TLC analysis. To the mixture was 

added 3 mL of saturated aqueous NaHCO3. After stirring for 30 min, this mixture was 

extracted with Et2O (5 mL x 3), dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by flash column chromatography (SiO2, 1% EtOAc in hexanes to 

5% EtOAc in hexanes) to afford α-trimethylsilylcyclopentanone as a colorless oil. The 

identity of the α-trimethylsilylcyclopentanone was confirmed by 1H NMR analysis; the 

product was taken on without further characterization.  Rf = 0.3 (10% EtOAc in hexanes); 

O

Ph

1. TMSCHN2, BF3•Et2O
Et2O, 0 °C to 25 °C

Ph2. HCl (aq.), DCM

TMS

TMS

O

40g 45
69% yield

over two steps
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To a solution of α-trimethylsilylcyclopentanone (61 mg, 0.159 mmol) in 2 ml 

dichloromethane was added 2 mL of 1 N aqueous HCl in H2O at 25 °C. The mixture was 

stirred for 24 hours at which point the reaction was determined to be complete by TLC 

analysis.  The mixture was diluted with dichloromethane (2 ml) and then extracted with 

dichloromethane (5 mL x 3).  The collected organic layers were then washed with brine 

(5 mL), dried over MgSO4, filtered and concentrated in vacuo.  The crude oil was 

purified by flash column chromatography  (SiO2, hexanes to 1% EtOAc in hexanes) to 

afford cyclopentanone 45 (47 mg, 0.153 mmol, 69% yield over two steps) as a colorless 

oil. Rf = 0.3 (10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.58–7.12 (m, 5H), 

5.32 (d, J = 1.6 Hz, 1H), 5.14–4.97 (m, 1H), 2.83–2.73 (m, 2H), 2.22 (dd, J = 16.9, 38.9 

Hz, 2H), 2.16–2.08 (m, 1H), 2.03–1.91 (m, 2H), 1.89–1.71 (m, 3H), 0.14 (s, 9H); 13C 

NMR (126 MHz, CDCl3) δ  221.0, 145.1, 141.6, 128.3, 127.6, 126.5, 117.4, 103.7, 87.1, 

52.2, 39.8, 38.4, 31.4, 27.4, 18.7, 0.0; IR (Neat Film, NaCl) 3080, 2958, 1738, 1623, 

1494, 1447, 1404, 1308, 1249, 1154, 1046, 1029, 973, 904, 841, 778, 759 cm–1;  HRMS 

(EI+)  m/z calc'd for C20H26OSi [M]+: 310.1753; found 310.1765;  [α]D
25 +4.13 (c 0.50, 

CHCl3, 93% ee).  

 

(R)-5-Allyl-5-(2-phenylallyl)pyrrolidin-2-one (46).  To a solution of cyclobutanone 42f 

(65 mg, 0.221 mmol) in 7 mL absolute ethanol was added hydroxylamine hydrochloride 

(76 mg, 1.104 mmol), followed by pyridine (0.27 ml, 3.31 mmol) and the mixture was 

stirred at 25 °C for 24 hours.  The crude mixture was concentrated in vacuo and loaded 

O
Ph

1. HONH2•HCl, 
Pyridine, EtOH

H
N Ph

2. p-TsCl, Et3N,
 DMAP, DCM

O

F

F

42f 46
22% yield

over two steps
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directly onto a flash column.  Flash column chromatography (SiO2, 8% EtOAc in hexanes 

to 11% EtOAc in hexanes) afforded the corresponding oxime, whose identity was 

confirmed by 1H NMR and which was taken on without further characterization; Rf = 0.2 

(25% EtOAc in hexanes); To a mixture of 4-toluenesulfonyl chloride (83 mg, 0.43 

mmol), triethylamine (0.06 mL, 0.43 mmol) and catalytic 4-dimethylaminopyridine in 2.5 

mL of dichloromethane under an atmosphere of N2 was added dropwise a solution of 

oxime (54 mg, 0.175 mmol) in 1 mL of dichloromethane. The mixture was stirred at 25 

°C for 4 hours.  The crude mixture was washed with H2O (5 mL), washed with brine (5 

mL), dried over Na2SO4 and concentrated in vacuo.  The crude oil was purified by flash 

column chromatography  (SiO2, 3% EtOAc in hexanes to EtOAc) to afford lactam 46 (16 

mg, 0.05 mmol, 22% yield over two steps) as a pale yellow oil.  Rf = 0.4 (EtOAc); 1H 

NMR (500 MHz, CDCl3) δ 7.34–7.07 (m, 7H), 7.07–6.96 (m, 2H), 5.35 (d, J = 1.3 Hz, 

1H), 5.26 (s, 1H), 5.15 (q, J = 1.0 Hz, 1H), 2.87–2.63 (m, 4H), 2.06–1.85 (m, 3H), 1.69–

1.55 (m, 1H); 13C NMR (126 MHz, CDCl3) δ = 176.9, 162.4 (d, 1JCF = 247.4 Hz), 143.7, 

138.0 (d, 4JCF = 3.4 Hz), 136.1, 130.3, 128.5, 127.8 (d, 3JCF = 8.0 Hz), 127.0, 118.6, 115.7 

(d, 2JCF = 21.4 Hz), 62.0, 47.0, 46.5, 30.9, 30.1; IR (Neat Film, NaCl) 3196, 3081, 2927, 

1690, 1601, 1507, 1452, 1260, 1224, 1159, 1087, 906, 842, 750 cm–1; HRMS (EI+)  m/z 

calc'd for C20H20ONF [M]+: 309.1529; found 309.1517;  [α]D
25 +53.19 (c 0.08, CHCl3, 

94% ee). 
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(R)-6-phenylspiro[3.4]oct-6-en-1-one (47). To a flask charged with Grubbs-Hoveyda an 

atmosphere of argon was added a solution of cyclobutanone 40f (50 mg, 0.221 mmol) in 

5 mL benzene.  The reaction mixture was heated to 50 °C and stirred for one hour, at 

which point the reaction was determined to be complete by TLC analysis.  The reaction 

vessel was cooled to 25 °C and 1 mL of ethyl vinyl ether was added.  After 30 min of 

stirring, the crude mixture was purified directly by flash column chromatography (SiO2, 

hexanes to 3% EtOAc in hexanes) to afford spirocycle 9 (43 mg, 0.215 mmol, 97% yield) 

as a colorless oil.  Rf = 0.3 (10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3)  δ 

7.37–7.31 (m, 2H), 7.32–7.21 (m, 2H), 7.24–7.15 (m, 1H), 5.97 (p, J = 2.4 Hz, 1H), 3.19 

(dq, J = 16.0, 2.2 Hz, 1H), 3.04 (t, J = 8.61 Hz, 2H), 3.04–2.97 (m, 1H), 2.81 (dq, J = 

16.0, 1.7 Hz, 1H), 2.63 (dtd, J = 17.5, 2.5, 1.4 Hz, 1H), 2.09 (td, J = 8.9, 2.5 Hz, 2H); 13C 

NMR (126 MHz, CDCl3) δ  214.1, 140.0, 135.6, 128.4, 127.3, 125.6, 122.9, 67.9, 43.6, 

43.1, 42.8, 28.3; IR (Neat Film, NaCl) 2890, 2924, 1765, 1595, 1491, 1385, 1298, 1241, 

1056, 747 cm–1; HRMS (MM: ESI-APCI) m/z calc'd for C14H15O [M+H]+: 199.1117; 

found 199.1120;  [α]D
25 –41.23 (c 0.30, CHCl3, 92% ee).  

 

O

benzene, 50 °CPh

O Ph

MesN NMes

Ru
Cl

Cl
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(S)-5-allyl-5-methyldihydrofuran-2(3H)-one (53). Dihydrofuranone 53 was generated 

from 2-carboxyallylcyclobutanone 51, via cyclobutanone 52, following the general 

procedures described above (see SI 3, SI 10 and SI 16).  When compared with known 

compound (5S)-(+)-5-allyl-5-methyldihydrofuran-2(3H)-one, the optical rotation value 

for 53 was found to be of the same sign and of nearly identical magnitude ([α]D
25 +2.96 (c 

1.5, CH3OH), literature value: [α]D
17 +3.33 (c 1.27, CH3OH)). 50  The absolute 

configurations of all other compounds described herein were established by analogy to 

52.  Cyclobutanone 51 was isolated by flash column chromatography (SiO2, 3% Et2O in 

pentane to 7% Et2O in pentane) as a colorless oil.  84% yield. Rf = 0.4 (15% EtOAc in 

hexanes); 1H NMR (300 MHz, CDCl3)  δ 5.90 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.38–5.14 

(m, 2H), 4.63 (dt, J = 5.6, 1.4 Hz, 2H), 3.42–3.06 (m, 2H), 2.65 (td, J = 11.3, 6.3 Hz, 

1H), 1.88 (ddd, J = 11.6, 9.9, 7.5 Hz, 1H), 1.49 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

204.6, 169.8, 131.6, 118.4, 65.9, 45.2, 23.1, 18.6; IR (Neat Film, NaCl) 2933, 1792, 

1730, 1457, 1376, 1274, 1193, 1147, 1050, 983 cm–1; HRMS (MM: ESI-APCI) m/z calc'd 

for C9H12O2 [M+H]+: 153.0910; found 153.0905.  Cyclobutanone 52 was isolated by flash 

column chromatography (SiO2, 1% Et2O in pentane to 5% Et2O in pentane) as a colorless 

oil.  56% yield. Rf = 0.3 (10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3)  δ 5.76 

(ddt, J = 16.6, 10.5, 7.3 Hz, 1H), 5.14–5.05 (m, 2H), 3.08–2.89 (m, 2H), 2.31 (ddt, J = 

13.8, 7.2, 1.2 Hz, 1H), 2.21 (ddt, J = 13.8, 7.5, 1.1 Hz, 1H), 1.98 (ddd, J = 11.3, 10.3, 6.7 

Hz, 1H), 1.73 (ddd, J = 11.3, 10.1, 6.9 Hz, 1H), 1.19 (s, 3H); 13C NMR (126 MHz, 

H2O2 
(50 % in H2O)

OO

NaOH (1 M), 
MeOH 53

O Me
O

O

Pd2(pmdba)3 
(5 mol%)
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(12.5 mol%)
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  20 °C51

O Me
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CDCl3) δ  214.1, 140.0, 135.6, 128.4, 127.3, 125.6, 122.9, 67.9, 43.6, 43.1, 42.8, 28.3; IR 

(Neat Film, NaCl) 2929, 2854, 1728, 1323, 1261, 1170, 1129, 1060, 1019, 799 cm–1; 

HRMS (MM: ESI-APCI) m/z calc'd for C8H12O [M+H]+: 125.0961; found 125.0955.  

Enantiomeric excess was determined for the corresponding Baeyer-Villiger product 53, 

which was isolated as by flash column chromatography (SiO2, 10% Et2O in pentane) as a 

colorless oil (81% yield). Spectroscopic and physical data for 53 were identical to those 

reported in the literature.7 ([α]D
25 +2.96 (c 1.5, CH3OH), 83% ee). 
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1.6.8 Determination of enantiomeric excess 

Table 1.6.8 Determination of enantiomeric excess 

 

 

 

entry compound assay method 
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%ee

1

2

3

4

5

6

7

8

O Me

Ph

O Et

Ph

O

Ph

Ph

90

99

95

O

Ph

O

Ph

O

Ph

F

OMe

O

Ph

O

Ph

97

92

93

92

93

TMS

O

SFC, 10% MeOH in CO2,
 2.5 mL/min, AS-H col. 6.025.31

SFC, 3% MeOH in CO2, 
2.5 mL/min, AS-H col. 3.082.68

SFC, 3% MeOH in CO2, 
3 mL/min, OJ-H col. 8.91 7.93

SFC, 2% MeOH in CO2, 
3 mL/min, OJ-H col. 11.4510.43

SFC, 2% MeOH in CO2, 
2.5 mL/min, AS-H col. 8.388.82

HPLC, 2% iPrOH in
hexanes, 0.6 mL/min, 

AD col.
8.949.74

3.37 3.15SFC, 1% MeOH in CO2
2.5 mL/min, AS-H col.

SFC, 2% MeOH in CO2
3.0 mL/min, OJ-H col. 2.68 4.32
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Table 1.6.8 Determination of enantiomeric excess (continued) 

 

 

 

 

 

9

10

11

12

13

14

15

O Bn

Me

O Bn

Cl

O Bn

90

93

86

O Bn

Bn

O Bn

O Bn

89

91

94

92

OMe

F

OBn

SFC, 1% MeOH in CO2,
3 mL/min, OB-H col. 2.532.76

GC, 110 °C, isotherm
 1 mL/min, GTA col. 11.3410.41

SFC, 1% MeOH in CO2, 
2.5 mL/min, OB-H col. 2.933.38

SFC, 1% MeOH in CO2, 
3 mL/min, AS-H col. 6.787.29

SFC, 1% MeOH in CO2
2.5 mL/min, OB-H col. 3.40 2.83

O

O

SFC, 1% MeOH in CO2,
2.5 mL/min, AS-H col. 16.17 14.84

SFC, 10% MeOH in CO2,
3.0 mL/min, AD-H col. 6.09 7.29

entry compound assay method 
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%ee

16 83GC, 130 °C, isotherm
 1 mL/min, GTA col. 13.3210.15

Me
O

O
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Figure A1.2  Infrared spectrum (thin film/NaCl) of compound 48 
 

Figure A1.3  13C NMR (75 MHz, CDCl3) of compound 48 
 

62



Appendix 1 – Spectra Relevant to Chapter 1 
 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

  

Fi
gu

re
 A

1.
4 

  1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
39
a.

 
 

 

O
Et

O

O

Ph

39
a

63



Appendix 1 – Spectra Relevant to Chapter 1 
 

020406080100120140160180200220
ppm

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A1.5  Infrared spectrum (thin film/NaCl) of compound 39a 
 

Figure A1.6  13C NMR (125 MHz, CDCl3) of compound 39a 
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Figure A1.8  Infrared spectrum (thin film/NaCl) of compound 39b. 

Figure A1.9  13C NMR (125 MHz, CDCl3) of compound 39b. 
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Figure A1.11  Infrared spectrum (thin film/NaCl) of compound 39c. 

Figure A1.12  13C NMR (125 MHz, CDCl3) of compound 39c. 
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Figure A1.14  Infrared spectrum (thin film/NaCl) of compound 39d. 

Figure A1.15  13C NMR (125 MHz, CDCl3) of compound 39d. 
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Figure A1.17  Infrared spectrum (thin film/NaCl) of compound 39e. 

Figure A1.18  13C NMR (125 MHz, CDCl3) of compound 39e. 
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Figure A1.20  Infrared spectrum (thin film/NaCl) of compound 39f. 

Figure A1.21  13C NMR (125 MHz, CDCl3) of compound 39f. 
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Figure A1.23  Infrared spectrum (thin film/NaCl) of compound 39g. 

Figure A1.24  13C NMR (125 MHz, CDCl3) of compound 39g. 
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Figure A1.26  Infrared spectrum (thin film/NaCl) of compound 39h. 

Figure A1.27  13C NMR (125 MHz, CDCl3) of compound 39h. 
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Figure A1.29  Infrared spectrum (thin film/NaCl) of compound 41a. 

Figure A1.30  13C NMR (125 MHz, CDCl3) of compound 41a. 
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Figure A1.32  Infrared spectrum (thin film/NaCl) of compound 41b. 

Figure A1.33  13C NMR (125 MHz, CDCl3) of compound 41b. 
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Figure A1.35  Infrared spectrum (thin film/NaCl) of compound 41c. 

Figure A1.36  13C NMR (125 MHz, CDCl3) of compound 41c. 
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Figure A1.38  Infrared spectrum (thin film/NaCl) of compound 36. 

Figure A1.39  13C NMR (125 MHz, CDCl3) of compound 36. 
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Figure A1.41  Infrared spectrum (thin film/NaCl) of compound 41d. 

Figure A1.42  13C NMR (125 MHz, CDCl3) of compound 41d. 
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Figure A1.44  Infrared spectrum (thin film/NaCl) of compound 41e. 

Figure A1.45  13C NMR (125 MHz, CDCl3) of compound 41e. 
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Figure A1.47  Infrared spectrum (thin film/NaCl) of compound 41f. 

Figure A1.48  13C NMR (125 MHz, CDCl3) of compound 41f. 
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Figure A1.50  Infrared spectrum (thin film/NaCl) of compound 40a. 

Figure A1.51  13C NMR (75 MHz, CDCl3) of compound 40a. 
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Figure A1.53  Infrared spectrum (thin film/NaCl) of compound 40b. 

Figure A1.54  13C NMR (125 MHz, CDCl3) of compound 40b. 
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Figure A1.56  Infrared spectrum (thin film/NaCl) of compound 40c. 

Figure A1.57  13C NMR (125 MHz, CDCl3) of compound 40c. 
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Figure A1.59  Infrared spectrum (thin film/NaCl) of compound 40d. 

Figure A1.60  13C NMR (125 MHz, CDCl3) of compound 40d. 

100



Appendix 1 – Spectra Relevant to Chapter 1 
 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

  

Fi
gu

re
 A

1.
61

  1 H
 N

M
R

 (3
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
40
e.

 

O
Bn

O

O

Ph

39
c

101



Appendix 1 – Spectra Relevant to Chapter 1 
 

020406080100120140160180200220
ppm

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A1.62  Infrared spectrum (thin film/NaCl) of compound 40e. 

Figure A1.63  13C NMR (125 MHz, CDCl3) of compound 40e. 
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Figure A1.65  Infrared spectrum (thin film/NaCl) of compound 40f. 

Figure A1.66  13C NMR (125 MHz, CDCl3) of compound 40f. 
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Figure A1.68  Infrared spectrum (thin film/NaCl) of compound 40g. 

Figure A1.69  13C NMR (125 MHz, CDCl3) of compound 40g. 
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Figure A1.71  Infrared spectrum (thin film/NaCl) of compound 40h. 

Figure A1.72  13C NMR (125 MHz, CDCl3) of compound 40h. 
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Figure A1.74  Infrared spectrum (thin film/NaCl) of compound 42a. 

Figure A1.75  13C NMR (125 MHz, CDCl3) of compound 42a. 
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Figure A1.77  Infrared spectrum (thin film/NaCl) of compound 42b. 

Figure A1.78  13C NMR (125 MHz, CDCl3) of compound 42b. 
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Figure A1.80  Infrared spectrum (thin film/NaCl) of compound 42c. 

Figure A1.81  13C NMR (125 MHz, CDCl3) of compound 42c. 
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Figure A1.83  Infrared spectrum (thin film/NaCl) of compound 38. 

Figure A1.84  13C NMR (125 MHz, CDCl3) of compound 38. 
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Figure A1.86  Infrared spectrum (thin film/NaCl) of compound 42d. 

Figure A1.87  13C NMR (125 MHz, CDCl3) of compound 42d. 
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Figure A1.89  Infrared spectrum (thin film/NaCl) of compound 49. 

Figure A1.90  13C NMR (125 MHz, CDCl3) of compound 49. 
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Figure A1.92  Infrared spectrum (thin film/NaCl) of compound 42e. 

Figure A1.93  13C NMR (125 MHz, CDCl3) of compound 42e. 
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Figure A1.95  Infrared spectrum (thin film/NaCl) of compound 42f. 

Figure A1.96  13C NMR (125 MHz, CDCl3) of compound 42f. 
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Figure A1.98  Infrared spectrum (thin film/NaCl) of compound 44. 

Figure A1.99  13C NMR (125 MHz, CDCl3) of compound 44. 
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Figure A1.101  Infrared spectrum (thin film/NaCl) of compound 45. 

Figure A1.102  13C NMR (125 MHz, CDCl3) of compound 45. 
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Figure A1.104  Infrared spectrum (thin film/NaCl) of compound 46. 

Figure A1.105  13C NMR (125 MHz, CDCl3) of compound 46. 
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Figure A1.107  Infrared spectrum (thin film/NaCl) of compound 47. 

Figure A1.108  13C NMR (125 MHz, CDCl3) of compound 47. 
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Figure A1.110  Infrared spectrum (thin film/NaCl) of compound 51. 

Figure A1.111  13C NMR (125 MHz, CDCl3) of compound 51. 
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Figure A1.113  Infrared spectrum (thin film/NaCl) of compound 52. 

Figure A1.114  13C NMR (125 MHz, CDCl3) of compound 52. 
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CHAPTER 2 

Development of (Trimethylsilyl)Ethyl Ester-Protected Enolates and 

Applications in Palladium–Catalyzed Enantioselective Allylic Alkylation: 

Intermolecular Cross-Coupling of Functionalized Electrophiles1 

 

2.1 INTRODUCTION  

2.1.1 Latent enolates: silyl enol ethers 

Latent or protected enolates such as silyl enol ethers, silyl ketene acetals, allyl 

enol carbonates, allyl β-keto esters and others, have found broad use in organic synthesis 

owing to their mild release and ease of use.51,15  Perhaps the most well studied class of 

protected enolates employ oxygen-bound protecting groups (i.e. silyl enol ethers).  

Unfortunately, the utility of this class of compounds is often limited by poor 

regioselectivity when forming fully substituted enol derivatives.52  Although much effort 

has been devoted to the identification of conditions that allow for selective generation of 

so-called “thermodynamic” enolate isomers, selectivity often drops precipitously when 

sterically demanding α-substitution is introduced (Figure 2.1.1.1).53  For example, in 

previous studies by the Stoltz group, it was found that while formation of the 

 
1 This work was performed in collaboration with Douglas C. Behenna, staff scientist in the Stoltz group.  
This work has been published. See: Reeves, C. M.; Behenna, D. C.; Stoltz, B. M. Org. Lett. 2014, 16, 2314. 



Chapter 2 – Development of TMSE Ester-Protected Enolates and Applications in Palladium–
Catalyzed Enantioselective Allylic Alkylation 
 
 

138 

thermodynamic silyl enol ether derived from 2-methyl cyclohexanone (Figure 2.1.1.1, 

57) proceeded in 84% yield, while the corresponding ethyl substituted enol ether (Figure 

2.1.1.1, 58) was formed in only 41% yield.  

 

Figure 2.1.1.1. Drawbacks of silyl enol ether synthesis   

 

 

 

2.1.2 Latent enolates: β-ketoesters 

The problem of thermodynamic enolate masking would be solved, ideally, by the 

development of enolate precursors that are readily prepared and, when triggered, release 

the “thermodynamic” enolate under kinetic control. In the context of allylic alkylation 

reactions, carboxylate-protected enolates (i.e., allyl β-ketoesters, 61, Figure 2.1.2.1) 

represent a significant advance toward such a solution.  Allyl β-ketoesters enjoy 

relatively uncomplicated, selective synthesis54 from simple ketones (i.e. 59) and undergo 

deprotection upon treatment with a transition metal capable of oxidative addition.  

Oxidative addition affords a transition metal allyl species, in the case at hand, a palladium 

π-allyl species 63, and a free carboxylate 62. The resulting carboxylate may then 

spontaneously release CO2  to give prochiral enolate 64.55  This enolate may then enter 

into a catalytic cycle and undergo α-functionalization.     

 

O
NaI (1.25 equiv), TMSCl (1.15 equiv)

Et3N (1.25 equiv), MeCN

OTMS
R R

OTMS
R

+

• mixtures of kinetic X and thermodynamic X product ranging
  from 4 – 10 : 1
• separated by spinning band distillation
• or by subjecting the product mixture to Segusa–Ito conditions

OTMSOTMS

40.5% yield84.2% yield

54 55 56
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Figure 2.1.2.1. Allyl β-ketoester approach to latent enolate chemistry 

 

 

 

Despite these advantages, allyl β-ketoesters are not without their own limitations. 

Facile nucleophilic attack of the incipient enolate at the transition metal-allyl species 

generated during deprotection often precludes applications that do not involve allylic 

alkylation.56  Moreover, with traditional carboxylate-protected enolates, any functionality 

borne by the allyl fragment (60, R2, Figure 2.1.2.1) must be compatible with the 

conditions required for substrate synthesis (i.e. strong base and reactive electrophiles).  

Tunge and coworkers have demonstrated the utility of acyl-protected enolates, which 

may undergo deprotection via a retro-Claisen condensation to reveal fully-substituted 

enolates, that participate in catalysis.57  However, these reactions often require the use of 

elevated temperatures and alkoxide base to proceed. 

 

2.1.3 Latent enolates: TMSE β-ketoesters 

Conceptually, we envisioned a new class of β-ketoester enolate precursors 

bearing an alkyl ester substituent labile to cleavage (Figure 2.1.3.1, 66). Ideally, facile 

deprotection would liberate this alkyl fragment to reveal a free carboxylate species, 

which, upon spontaneous decarboxylation, would yield the desired tetrasubstituted, 

prochiral enolate (67). Electrophilic trapping of this enolate species in the presence of a 
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chiral catalyst would, in turn, give rise to enantioenriched α–functionalizaed carbonyl 

products (68).    

 

Figure 2.1.3.1. Non-allyl β-ketoester approach to latent enolate chemistry 

 

 

 

In considering novel carboxylate-protected enolates, our design criteria called for 

a substrate that could be synthesized efficiently, deprotected under mild conditions and 

facilitate the convergent union of complex fragments in a synthetic setting.  Our approach 

to this problem was to develop the (trimethylsilyl)ethyl β-ketoester (TMSE β-ketoester) 58 

substrate class (i.e., 69, Figure 2.1.3.2). These compounds boast similar ease of 

preparation as compared with allyl β-ketoesters, but are not susceptible to transition 

metal-mediated deprotection. We hypothesized that use of TMSE β-ketoesters may 

enhance the breadth of functional group tolerance at the allyl coupling partner in 

asymmetric allylic alkylations, relative to allyl β-ketoesters, by virtue of the fact that the 

allyl fragment is not subjected to the conditions of substrate synthesis (Figure 2.1.3.2).  

We further reasoned that by eliminating allyl from the reaction mixture, we would 

obviate the problem of competing reaction pathways in non-allyl enolate trapping 

chemistry, and greatly expand the range of reactions in which carboxylate-protected 

enolates may participate. 
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Figure 2.1.3.2. TMSE β-ketoester approach to latent enolate chemistry 

 

 

 

In this chapter, we describe the preparation and development of this substrate 

class and the evaluation thereof in the enantioselective palladium-catalyzed allylic 

alkylation of 6- and 7-membered ketone and lactam scaffolds.  Furthermore, we go on to 

show how the use of these substrates can enable the union of complex fragments bearing 

functionality that would be incompatible with incorporation into traditional allyl β-

ketoester substrates.  

 

2.2  SYNTHESIS OF AND REACTION OPTIMIZATION WITH TMSE β-

KETOESTERS 

2.2.1 Substrate synthesis 

The initial task pursuant to the goals laid out in Section 2.1.3 was to develop an 

efficient synthesis of TMSE β-ketoester 69.  We were pleased to find that α-methyl 
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commercially available cyclohexanone (59), 2-(trimethylsilyl)ethyl chloroformate (73) 

and methyl iodide (MeI) in good overall yield (Scheme 2.2.1.1).   

 

Scheme 2.2.1.1. TMSE β-ketoester substrate synthesis 

 

 

 

In order to evaluate the substrate’s capacity to engage in transition metal-

mediated catalysis as anticipated, TMSE-β-ketoester 74 was subjected to treatment with 

tetrabutylammonium difluorotriphenylsilicate (TBAT) in THF at ambient temperature 

(Scheme 2.2.1.2).  The reaction was quenched with saturated aqueous ammonium 

chloride, and full deprotection to 2-methyl-cyclohexanone 75 was observed after 30 min. 

This experiment lended proof of principal that our TMSE-β-ketoesters could indeed 

undergo mild deprotection and encourgaed further investigation of the substrate class.  

 

Scheme 2.2.1.2. Fluoride-triggered deprotection of TMSE β-ketoester substrate  
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2.2.2 TMSE-β-ketoester allylic alkylation optimization 

With TMSE β-ketoester 74 in hand, our investigation into this substrate class 

commenced in the context of Pd-catalyzed allylic alkylation.  We were pleased to find 

that exposure of β-ketoester 74 to allyl bromide, TBAT, [Pd2(dba)3] and (S)-t-Bu-

PHOX8,59 in toluene at  40 °C generated the desired α-quaternary ketone 7 in modest 

yield and good enantioselectivity (entry 1, Table 2.2.2.1).  We next explored the scope of 

allyl sources that could be used in the reaction and found that a variety of diverse allyl 

sources were competent in the chemistry, including allyl sulfonates, allyl acetates and 

allyl carbonates (entries 2–5).  Allyl methyl carbonate proved to be the most efficient, 

selective and prudent allyl source, in particular, with respect to the number of the allyl 

equivalents required for optimal reactivity (entry 6).  Reaction parameters including 

relative stoichiometry (entries 7–9), solvent (entries 10–13) and temperature (entry 14) 

were all subsequently explored and we found that a slight excess of mixed carbonate in 

THF at 25 °C delivering the desired ketone in 81% yield and 86% enantioselectivity 

(entry 14).  
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Table 2.2.2.1. TMSE β-ketoester allylic alkylation initial optimization experiments 

 

 

(a) Yield determined by comparison to tridecane internal standard. (b) % ee Determined by chiral 

GC analysis of the crude reaction mixture.  (c) Reaction performed at 25 °C. 

 

A more rigorous investigation of the solvent effects on the reaction was 

subsequently conducted.  Using preliminarily optimized reaction parameters, we 

conducted screening experiment wherein the base substrate 74 was treated with TBAT 

(1.25 equiv), Pd2(dba)3 (5 mol%), ligand L1 (12.5 mol%) and methyl allyl carbonate (1.1 

equiv) in a wide variety of solvent combinations. The results of these experiments are 

shown below in Tables 2.2.2.2 and 2.2.2.3.  The results of these experiments show that 

reaction yield is highly variable based on the solvent employed (Table 2.2.2.2), while 

reaction selectivity remains relatively uniform (Table 2.2.2.3). With respect to variablility 

O O

O
Me

O
Me [Pd2(dba)3] (5 mol %)

 (S)-t-Bu-PHOX(12.5 mol %)
 

TBAT (1.25 equiv)
solvent, 40 °C

entry equiv allyl ee (%)byield (%)a

2

3

4

5

6

7

8

9

1.0

1.0

1.0

1.0

0.75

1.0

1.5

2.0

77

84

82

83

82

84

82

84

43

45

15

78

51

78

74

73

sovent

1,4-dioxane

1,4-dioxane

1,4-dioxane

1,4-dioxane

1,4-dioxane

1 1.0 8355toluene

10

11

12

1.1

1.1

1.1

toluene

MTBE

THF

8681

13 1.1

83

82

84

tol/hex 93

14c 1.1 THF

X

Br

OTs

OMs

OAc

OCO2Allyl

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

1,4-dioxane

1,4-dioxane

1,4-dioxane

33

65

83

45

X

74 7

TMS

76



Chapter 2 – Development of TMSE Ester-Protected Enolates and Applications in Palladium–
Catalyzed Enantioselective Allylic Alkylation 
 
 

145 

in yield, the primary factor at play in these expeirments is hypothesized to be the relative 

solubility of the fluoride source used, TBAT. In toluene, TBAT is only sparingly soluble, 

in MTBE still only somewhat soluble, whereas TBAT is completely soluble in THF and 

p-dioxane, even at higher concentrations, thus accounting for lower observed yields in 

cases where low-dielectric solvents are employed.  The majority of mass balance in low-

yielding experiments is accounted for in recovered starting material. The fluctuation in 

enantioselectivity may be rationalized via the working mechanistic hypothesis for this 

transformation; in particular, that enantioselective allylic alkylation occurs via an inner-

sphere pathway,35 and this pathway is reinforced by less polar solvents.  

 

Table 2.2.2.2. TMSE β-ketoester allylic alkylation solvent effects on reaction yield 
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Table 2.2.2.3. TMSE β-ketoester allylic alkylation solvent effects on reaction selectivity 

 

2.3 PALLADIUM-CATALYZED ALLYLIC ALYLATION WITH TMSE-β-KETOESTERS 

2.3.1 Reaction scope with respect to nucleophile  

Having identified optimal reaction conditions, we turned our attention to 

exploring reaction scope, beginning with tolerance of variability with respect to the 

nucleophile’s α-substitution, ring size, and carbonyl functionality (Figure 2.3.1.1).  

Simple α-alkyl substitutions, such as α-benzyl substituted β-ketoester 77a (R1 = Bn, X = 

CH2, Y = CH2, n = 1, Figure 2), functioned consistently well in the chemistry; the desired 

benzyl substituted α-quaternary ketone 79a was obtained in high yield and 

enantioselectivity.  In addition to simple α-alkyl substrates (i.e. compounds 74 and 77a), 

heteroatom-substituted substrate 77b (R1 = F, X = Y = CH2, n = 1) proved to be a viable 

coupling partner and provided the corresponding α-fluoro-allylic alkylation product 79b 

in good yield and excellent ee. Subjecting methyl ester-bearing substrate 77c (R1 = 

CH2CH2CO2Me, X = Y = CH2, n = 1) to our optimized conditions resulted in an efficient 
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and selective reaction, furnishing enantioenriched ketone 79c in 93% yield and 89% ee.  

Substrates constituted from 7-membered rings, including ketone 77d (R1 = Me, X = Y = 

CH2, n = 2) and vinylogous ester 77e (R1 = Me, X = CH, Y = CO(i-Bu), n = 2), were 

shown to be suitable coupling partners, affording α-quaternary ketone 79d and α-

quaternary vinylogous ester 79e products in 95% and 89% yield and 87% and 92% ee, 

respectively.  Finally, 6- and 7-membered lactams were investigated.  We were pleased to 

find that under slightly modified reaction conditions (40 °C), the desired α-functionalized 

lactam products 79f and 79g were obtained in good to excellent yields and excellent ee’s.  
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Figure 2.3.1.1. Exploration of functional group and scaffold diversity in the fluoride-triggered 

palladium-catalyzed allylic alkylation reaction with respect to nucleophile 

 

(a) Reaction conditions: 3 (1.0 equiv), 5 (1.1 equiv), [Pd2(dba)3] (5 mol%), (S)-t-Bu-PHOX (12.5 

mol%), TBAT (1.25 equiv) in THF (0.033M) at 25 °C for 12–48 h. (b) Reaction performed on 

substrates 77f and 77g at 40 °C. (c) All reported yields are for isolated products. 

 

2.3.2 Reaction scope with respect to electrophile 
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Chloroallyl methyl carbonate (80, R2 = Cl) also participated well in the chemistry, 

furnishing the corresponding α-quaternary ketone 81b in 72% yield and 96% ee.  Allyl 

fragments bearing electron-neutral and electron-deficient aryl groups also functioned well 

in the reaction, delivering the desired allylic alkylation products 81c and 81d, 

respectively, in excellent yields and ee’s. 

 

Figure 2.3.2.1. Exploration of functional group and scaffold diversity in the fluoride-triggered 

palladium-catalyzed allylic alkylation reaction with respect to electrophile 

 

 

(a) Reaction conditions: 3 (1.0 equiv), 5 (1.1 equiv), [Pd2(dba)3] (5 mol%), (S)-t-Bu-PHOX (12.5 

mol%), TBAT (1.25 equiv) in THF (0.033M) at 25 °C for 12–48 h. (b) All reported yields are for 

isolated products. 
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by TMSE-β-ketoesters in allylic alkylation chemistry is the ability to introduce allyl-

coupling partners that would be unstable to the conditions of allyl β-ketoester substrate 

synthesis.  To illustrate this feature of the new chemistry, we synthesized mixed 

carbonates 82 and 83 as coupling partners for palladium-catalyzed allylic alkylation 

(Figure 2.4.1).  Allyl carbonate 82, derived from leucine, bears an epimerizable 

stereocenter that is racemized upon treatment with strong base.60  Since strong base (i.e. 

LDA, LHMDS, etc.) is typically required for enolization and acylation in the preparation 

of standard allyl β-ketoesters, employing electrophiles bearing base labile functionality 

has not previously been possible.  Alternatively, allyl carbonate 83, which was 

synthesized by allylic oxidation of (S)-carvone, also bears functionality that would be 

unstable to the conditions required for standard allyl β-ketoester substrate synthesis.  In 

particular, we envisioned that attempts to acylate a ketone enolate with an allyl chloro- or 

allyl cyanoformate bearing enone 83 would be complicated by undesired conjugate 

addition and enolate chemistries (e.g. Aldol reaction, Michael addition, etc.).  In both 

cases, our new TMSE β-ketoester chemistry allows for the independent preparation and, 

thus, physical separation of nucleophilic and electrophilic components until the fragment 

coupling stage.  

 

Figure 2.4.1. Complex allyl architechtures 
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Subjecting allyl carbonate 82 and TMSE β-ketoester 77a (R1 = Bn, X = Y = CH2, 

n = 1, Figure 2.4.2) to our fluoride-modified allylic alkylation conditions with achiral 

ligand L8 revealed modest substrate-controlled diastereoselection of 1.7:1 (entry 1, 

Figure 2.4.2A).  Use of (S)-t-Bu-PHOX (L1) resulted in a highly efficient and 

diastereoselective reaction giving the desired amino ester 84 in 95% yield and greater 

than 25:1 dr, with no detectable epimerization at the amino ester side chain (entry 2).  

The inherent diastereoselectivity could be completely reversed under catalyst control by 

using (R)-t-Bu-PHOX (L9), without significant loss in selectivity or reactivity (entry 3).  

Likewise, upon exposing carbonate 83 and ketoester 77a to slightly modified allylic 

alkylation conditions (40 °C vs. 25 °C) with achiral ligand L8, we again observed an 

efficient reaction and slight inherent diastereoselectivity (entry 4, Figure 2.4.2B).  This 

bias could be enhanced by using ligand L1 to obtain α-quaternary ketone 86 in 6:1 dr and 

87% yield, or overturned by use of L9 to obtain 87 in 5:1 dr and 77% yield (entries 5 and 

6). 



Chapter 2 – Development of TMSE Ester-Protected Enolates and Applications in Palladium–
Catalyzed Enantioselective Allylic Alkylation 
 
 

152 

Figure 2.4.2. Union of complex fragments by asymmetric allylic alkylationa 

 

(a) Reaction conditions: 77a (1.0 equiv), 82 or 83 (1.1 equiv), [Pd2(dba)3] (5 mol%), Ligand (12.5 

mol%), TBAT (1.25 equiv) in THF (0.033M) at the indicated temperature for 24–48 h. (b) 

Diastereoselectivity determined by 1H NMR analysis of the crude reaction mixture.  (c) Yields are 

reported for combined diastereomeric mixture. 
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including 6- and 7-membered ketones and lactams.  We have further demonstrated the 

value of these compounds for uniting complex coupling partners that would be 

incompatible to preparation via standard allyl β-ketoester based allylic alkylation.  We 

envision that this technology will also enable the convergent cross-coupling of 

synthetically challenging fragments for complex molecule synthesis.  Further studies 

exploring the application of TMSE β-ketoesters in diverse reaction methodologies and 

complex natural product synthesis are ongoing in our laboratory.  

 

2.6 EXPERIMENTAL SECTION 

2.6.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried 

by passage through an activated alumina column under argon.61 Reaction progress was 

monitored by thin-layer chromatography (TLC).  TLC was performed using E. Merck 

silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence 

quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle SiliaFlash® P60 Academic 

Silica gel (particle size 40–63 nm) was used for flash chromatography.  1H NMR spectra 

were recorded on Varian Inova 300 MHz and 500 MHz spectrometers and are reported 

relative to residual CHCl3 (δ 7.26 ppm) or C6HD5 (δ 7.16 ppm).  13C NMR spectra were 

recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and are reported relative 

to CHCl3 (δ 77.16 ppm) or C6HD5 (δ 128.06 ppm). Data for 1H NMR are reported as 

follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).  

Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = 
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pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = 

apparent.  Data for 13C NMR are reported in terms of chemical shifts (δ ppm).  19F NMR 

spectra were recorded on a Varian Mercury 300 spectrometer at 282 MHz, and are 

reported relative to the external standard F3CCO2H (δ –76.53 ppm).  IR spectra were 

obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR 

spectrometer using thin films deposited on NaCl plates and reported in frequency of 

absorption (cm-1).  Optical rotations were measured with a Jasco P-2000 polarimeter 

operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are 

reported as: [α]D
T (concentration in g/100 mL, solvent).  Analytical HPLC was performed 

with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD-H or AS) or Chiralcel (OD-

H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical 

Industries, Ltd. Analytical SFC was performed with a Mettler SFC supercritical CO2 

analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel 

(OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical 

Industries, Ltd. Analytical chiral GC analysis was performed with an Agilent 6850 GC 

utilizing a GTA (30 m x 0.25 mm) column (1.0 mL/min carrier gas flow).  High 

resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an 

Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric 

pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+). 

Reagents were purchased from Sigma-Aldrich, Gelest, Strem, or Alfa Aesar and 

used as received unless otherwise stated. 2-(trimethylsilyl)ethyl chloroformate (78) was 

prepared according to a known procedure.62 Allyl carbonates 82 and 83 were prepared 

from methyl chloroformate and the corresponding allyl alcohols by adaptation of a 
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known procedure. 63  β-Ketoesters 74 and 77a–77g were prepared by adaptation of 

procedures by Stoltz and co-workers.64,15 Data reported herein is for new compounds 

only.  

 

2.6.2  General procedure for TMSE β-ketoester substrate synthesis  

 

 

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocyclohexane-1-carboxylate (74). A flame-dried 

1L round bottom flask was charged with 28.02 g (152.83 mmol, 2.5 equiv) of LiHMDS 

and a magnetic stirring bar in a nitrogen-filled glove box. The flask was sealed, removed 

from the glove-box, fitted with a N2 line, and suspended in a dry ice/acetone bath. 300 

mL of THF was added slowly to the flask and allowed to stir until the LiHMDS had  

completely dissolved. 6.00 g (61.13 mmol, 1.0 equiv) of cyclohexanone 59 in 130 mL of 

THF was added via cannula over 30 min, and the flask was removed from the cooling 

bath and allowed to warm to 23 °C while continuing to stir. After 30 min, the flask was 

suspended in a dry ice/acetone bath and 12.15 g (67.24 mmol, 1.1 equiv) of 

chloroformate 73 in 130 mL of THF was added over 30 min via cannula. This mixture 

was allowed to warm to 23 °C and stirred for 6 h. The flask was then suspended in a 

water/ice bath and 21.69 g (152.83 mmol, 2.5 equiv) of methyl iodide was added 

dropwise. This mixture was allowed to warm to 23 °C and stirred for 6 h, at which time 

an additional 21.69 g (152.83 mmol, 2.5 equiv) of methyl iodide was added dropwise. 
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The mixture was then stirred at 23 °C until full consumption of starting material and 

acylated intermediate was observed by TLC analysis. 300 mL of saturated aqueous 

NH4Cl was then added slowly to the mixture and stirring continued for 2 h. The mixture 

was then extracted with EtOAc (100 mL x 3), the collected organic fractions washed with 

brine, dried over MgSO4, filtered and concentrated in vacuo. The crude residue was 

purified by flash column chromatography (SiO2, hexanes to 3% EtOAc in hexanes) to 

give 11.05 g (43.08 mmol) of ketoester 74 as a pale yellow oil. 70.1% yield. Rf = 0.3 

(10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 4.29–4.12 (m, 2H), 2.57–2.37 

(m, 3H), 2.05–1.95 (m, 1H), 1.76–1.57 (m, 3H), 1.48–1.37 (m, 1H), 1.26 (s, 3H), 1.01–

0.92 (m, 2H), 0.02 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 208.3, 173.2, 63.6, 57.1, 40.7, 

38.2, 27.5, 22.6, 21.2, 17.3, -1.6; IR (Neat Film, NaCl) 3438, 2952, 2897, 2866, 1717, 

1452, 1378, 1336, 1251, 1215, 1121, 1084, 1061, 1041, 938, 861, 834, 763 cm–1; HRMS 

(MM: ESI-APCI+) m/z calc'd for C13H25O3Si [M + H]+: 257.1567; found 257.1556. 

 

2.6.3 Procedures for the syntheses of TMSE β-ketoester intermediate 88 and 

ketoester 77b 

 

 

2-(Trimethylsilyl)ethyl 1-H-2-oxocyclohexane-1-carboxylate (88). A flame-dried 500 

mL round bottom flask was charged with 4.67 g (25.47 mmol, 1.3 equiv) of LiHMDS 

and a magnetic stirring bar in a nitrogen-filled glove-box. The flask was sealed, removed 
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from the glove-box, fitted with a N2 line, and suspended in a dry ice/acetone bath. 100 

mL of THF was added slowly to the flask and allowed to stir until the LiHMDS had been 

completely dissolved. 2.00 g (20.38 mmol, 1.0 equiv)  of cyclohexanone 59 in 50 mL of 

THF was added via cannula over 30 min, and the flask was removed from the cooling 

bath and allowed to warm to 23 °C while continuing to stir. After 30 min, the flask was 

suspended in a dry ice/acetone bath and 4.10 g (22.42 mmol, 1.1 equiv) of chloroformate 

73 in 50 mL of THF was added over 30 min via cannula. This mixture was allowed to 

warm to 23 °C and stirred until full consumption of starting material was observed (ca. 6 

h). 100 mL of saturated aqueous NH4Cl was then added slowly and the mixture stirred for 

20 min before being extracted with EtOAc (30 mL x 3). The collected organic fractions 

were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The crude 

residue was purified by flash column chromatography (SiO2, hexanes to 2% EtOAc in 

hexanes), to give 3.20 g (43.08 mmol) of ketoester 88 as a colorless oil. 64.6% yield. Rf = 

0.5 (20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 12.29 (s, 1H), 4.27–4.21 (m, 

2H), 2.23 (dtt, J = 24.7, 6.3, 1.6 Hz, 4H), 1.76–1.51 (m, 4H), 1.17–0.86 (m, 2H), 0.04 (s, 

9H); 13C NMR (126 MHz, CDCl3) δ  172.9, 171.9, 97.8, 62.4, 29.1, 22.5, 22.4, 21.9, 17.3, 

-1.5; IR (Neat Film, NaCl) 2952, 2899, 2860, 1742, 1718, 1654, 1618, 1453, 1398, 1360, 

1297, 1258, 1219, 1175, 1079, 1060, 936, 859, 837 cm–1; HRMS (MM: ESI-APCI–) m/z 

calc'd for C12H21O3Si [M – H]–: 241.1265; found 241.1270. 
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2-(Trimethylsilyl)ethyl 1-fluoro-2-oxocyclohexane-1-carboxylate (77b). A flame dried 

100 mL round bottom flask was charged with a magnetic stirring bar, 0.35 g 88 (1.44 

mmol, 1.0 equiv), 5 mL of acetonitrile and cooled to 0 °C. To this mixture was added  

0.027 g TiCl4 (0.144 mmol, 0.10 equiv) dropwise over 15 min. To this stirring solution 

was added 0.64 g Selectfluor (1.73 mmol, 1.2 equiv) in 20 mL of acetonitrile over 25 

min. The mixture was then allowed to warm to 23 °C and stirred for 8 h. A 1:1 mixture of 

H2O/EtOAc (20 mL) was added, and the mixture was extracted with EtOAc (20 mL x 3), 

dried over MgSO4 and adsorbed onto 1 g SiO2 by concentration in vacuo. The crude 

product was isolated by flash column chromatography (SiO2, 3% Et2O in pentane to 12% 

Et2O in pentane) to give 0.29 g of 77b as a colorless oil. 79.0% yield. Rf = 0.2 (20% 

EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 4.41–4.26 (m, 2H), 2.84–2.36 (m, 

3H), 2.21–2.04 (m, 1H), 2.00–1.79 (m, 4H), 1.15–0.97 (m, 2H), 0.04 (s, 9H); 13C NMR 

(75 MHz, CDCl3) δ  202.0 (d, 4JCF = 19.5 Hz), 167.0 (d, 2JCF = 24.6 Hz), 96.4 (d, 1JCF = 

197.0 Hz), 65.0, 39.7, 36.0 (d, 3JCF = 21.7 Hz), 26.6 , 21.0 (d, 5JCF = 6.0 Hz), 17.3 , -1.6; 

19F NMR (282 MHz, CDCl3) δ –173.70; IR (Neat Film, NaCl) 2953, 1732, 1452, 1287, 

1251, 1223, 1157, 1093, 1051, 860, 838 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for 

C12H21FO3SiNa [M + Na]+: 283.1136; found 283.1145. 

 

2.6.4 Spectroscopic data for TMSE β-ketoester substrates 

acetonitrile

79% yield

TiCl4,(0.1 equiv)
 Selectfluor (1.2 equiv)
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2-(Trimethylsilyl)ethyl 1-benzyl-2-oxocyclohexane-1-carboxylate (77a) 

 

 

Ketoester 77a was prepared by the general procedure and was isolated by flash column 

chromatography (SiO2, hexanes to 5% EtOAc in hexanes) as a colorless oil. 79.4% yield. 

Rf = 0.3 (20% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 7.48–7.04 (m, 5H), 

4.16 (td, J = 9.8, 7.1 Hz, 2H), 3.13 (dd, J = 125.3, 13.7 Hz, 2H), 2.60–2.35 (m, 2H), 2.05 

(ddd, J = 12.4, 6.1, 3.0 Hz, 1H), 1.83–1.59 (m, 4H), 1.57–1.40 (m, 1H), 0.92 (ddd, J = 

8.9, 7.2, 1.0 Hz, 2H), 0.07 (s, 9H); 13C NMR (75 MHz, CDCl3) δ  208.9, 172.8, 138.3, 

132.0, 129.5, 128.2, 65.2, 63.8, 42.9, 42.0, 37.5, 29.2, 24.1, 18.8, 0.0; IR (Neat Film, 

NaCl) 3029, 2952, 2856, 1713, 1496, 1453, 1439, 1250, 1221, 1177, 1132, 1086, 1053, 

988, 932, 860, 838, 765, 744 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C19H29O3Si 

[M + H]+: 333.1880; found 333.1863. 

 

2-(Trimethylsilyl)ethyl 1-(3-methoxy-3-oxopropyl)-2-oxocyclohexane-1-carboxylate 

(77c) 

 

Ketoester 77c was prepared according to the general procedure, using methyl acrylate in 

place of methyl iodide, and isolated by flash column chromatography (SiO2, 5% EtOAc 

in hexanes to 10% EtOAc in hexanes) as a colorless oil. 81.2% yield. Rf = 0.3 (25% 

O O

O
TMS

Bn
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EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 4.28–4.08 (m, 2H), 3.62 (s, 3H), 2.41 

(dddd, J = 14.6, 12.9, 6.5, 2.7 Hz, 4H), 2.27–2.06 (m, 2H), 2.02–1.92 (m, 1H), 1.92–1.84 

(m, 1H), 1.76–1.51 (m, 3H), 1.40 (ddd, J = 13.5, 12.1, 4.2 Hz, 1H), 1.03–0.91 (m, 2H), 

0.00 (s, 9H); 13C NMR (75 MHz, CDCl3) δ  207.6, 173.5, 171.8, 63.9, 60.0, 51.6, 41.0, 

36.3, 29.7, 29.4, 27.5, 22.5, 17.4, -1.6; IR (Neat Film, NaCl) 3432, 2952, 2899, 2866, 

1740, 1713, 1437, 1377, 1340, 1308, 1250, 1175, 1137, 1093, 1075, 1062, 1040, 943, 

861, 838, 763, 695 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C16H28O5SiNa [M + 

Na]+: 351.1598; found 351.1602. 

 

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocycloheptane-1-carboxylate (77d) 

 

Ketoester 77d was prepared by the general procedure and purified by flash column 

chromatography (SiO2, hexanes to 5%  EtOAc in hexanes) as a colorless oil. 78% yield. 

Rf = 0.4 (20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 4.25–4.14 (m, 2H), 

2.78–2.68 (m, 1H), 2.49 (ddd, J = 12.2, 8.6, 2.5 Hz, 1H), 2.19–2.10 (m, 1H), 1.88–1.71 

(m, 3H), 1.71–1.48 (m, 3H), 1.43–1.34 (m, 1H), 1.33 (s, 3H), 1.06–0.94 (m, 2H), 0.03 (s, 

9H);13C NMR (126 MHz, CDCl3) δ  210.5, 173.7, 63.6, 58.8, 42.0, 35.4, 30.1, 25.8, 24.7, 

21.5, 17.3, -1.6; IR (Neat Film, NaCl) 2949, 2861, 1736, 1710, 1458, 1378, 1250, 1232, 

1152, 1105, 1062, 942, 860, 838 cm–1; HRMS (EI+) m/z calc'd for C14H26O3Si [M + 

Na]+: 293.1543; found 293.1543. 
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2-(Trimethylsilyl)ethyl 4-isobutyl-1-methyl-2-oxocyclohept-3-ene-1-carboxylate (77e) 

 

 

Vinylogous ester 77e was prepared by the general procedure, starting from 3-

isobutoxycyclohept-2-en-1-one, and purified by flash column chromatography (SiO2, 

hexanes to 10%  EtOAc in hexanes) as a colorless oil. 85% yield. Rf = 0.3 (20% EtOAc in 

hexanes); 1H NMR (500 MHz, C6D6) δ 5.66–5.53 (m, 1H), 4.32–4.07 (m, 2H), 3.16–3.00 

(m, 2H), 2.57 (dddd, J = 17.7, 10.1, 3.9, 1.2 Hz, 1H), 2.50–2.37 (m, 1H), 2.20 (ddd, J = 

17.7, 7.0, 3.6 Hz, 1H), 1.77–1.67 (m, 2H), 1.66 (s, 3H), 1.59–1.41 (m, 2H), 0.88 (ddd, J = 

10.0, 7.0, 2.1 Hz, 2H), 0.71 (dd, J = 6.7, 4.2 Hz, 6H), -0.13 (s, 9H); 13C NMR (126 MHz, 

C6D6) δ  197.1, 173.9, 171.7, 105.6, 74.0, 62.9, 58.9, 33.9, 33.7, 27.6, 24.1, 18.7, 18.7, 

17.0, -2.1; IR (Neat Film, NaCl) 2951, 1684, 1452, 1386, 1327, 1281, 1251, 1139, 1053, 

859, 839, 718, 693, 658 cm–1; HRMS (EI+) m/z calc'd for C28H33O3Si [M + H]+: 

341.2143; found 341.2139. 

 

2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxopiperidine-3-carboxylate (77f) 

 

 

Amide ester 77f was prepared by the general procedure, starting from N-benzoyl-2-

piperidone, and purified by flash column chromatography (SiO2, 5%  EtOAc in hexanes 

O
Me
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to 25%  EtOAc in hexanes) as a colorless oil. 89% yield. Rf = 0.3 (35% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.76–7.72 (m, 2H), 7.47 (ddt, J = 8.0, 6.9, 1.3 

Hz, 1H), 7.41–7.36 (m, 2H), 4.38–4.24 (m, 2H), 3.91–3.82 (m, 1H), 3.78 (dtd, J = 12.9, 

5.2, 1.4 Hz, 1H), 2.47 (dddd, J = 13.8, 5.7, 4.3, 1.4 Hz, 1H), 2.06–1.91 (m, 2H), 1.85–

1.74 (m, 1H), 1.46 (s, 3H), 1.14–1.05 (m, 2H), 0.07 (s, 9H); 13C NMR (126 MHz, CDCl3) 

δ  175.0, 173.1, 173.0, 135.9, 131.6, 129.0 128.0, 64.4, 52.9, 46.8, 33.7, 22.4, 20.2, 17.5, 

-1.5; IR (Neat Film, NaCl) 3062, 2953, 2896, 1726, 1703, 1683, 1449, 1389, 1277, 1251, 

1192, 1140, 1062, 932, 859, 838, 723, 694 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for 

C19H27NO4SiNa [M + Na]+: 384.1602; found 384.1611. 

 

2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxoazepane-3-carboxylate (77g) 

 

 

Amide ester 77g was prepared by the general procedure, starting from 1-benzoylazepan-

2-one, and purified by flash column chromatography (SiO2, 5%  EtOAc in hexanes to 

25%  EtOAc in hexanes) as a colorless oil. 77% yield. Rf = 0.3 (35% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 7.72–7.68 (m, 2H), 7.50–7.45 (m, 1H), 7.39 (ddt, J = 8.2, 

6.6, 1.1 Hz, 2H), 4.47–4.39 (m, 1H), 4.38–4.31 (m, 2H), 3.15 (ddd, J = 15.7, 11.2, 1.2 

Hz, 1H), 2.22 (dtd, J = 14.8, 3.6, 1.8 Hz, 1H), 2.01–1.90 (m, 2H), 1.89–1.77 (m, 1H), 

1.61 (dddt, J = 20.7, 12.0, 5.0, 3.2 Hz, 3H), 1.44 (s, 3H), 1.14–1.06 (m, 2H), 0.08 (s, 9H); 

13C NMR (126 MHz, CDCl3) δ  175.6, 174.9, 173.1, 136.4, 131.5, 128.1, 127.9, 64.3, 

BzN

O
Me

O

O
TMS

77g



Chapter 2 – Development of TMSE Ester-Protected Enolates and Applications in Palladium–
Catalyzed Enantioselective Allylic Alkylation 
 
 

163 

55.0, 44.0, 34.4, 27.9, 26.9, 25.0, 17.5, -1.5; IR (Neat Film, NaCl) 2956, 1729, 1661, 

1614, 1455, 1383, 1249, 1169, 1115, 860, 838 cm–1; HRMS (MM: ESI-APCI+) m/z 

calc'd for C20H29NO4SiNa [M + Na]+: 398.1758; found 398.1775. 

 

2.6.5 General procedure for allyl carbonate substrate syntheses 

 

 

2-Chloroallyl methyl carbonate (80b). To a flame-dried 50 mL round bottom flask 

charged with a magnetic stirring bar, 1.00 g 2-chloroallyl alcohol (89) (10.8 mmol, 1.0 

equiv), 2.56 g of pyridine (32.4 mmol, 3.0 equiv), 0.016 g of dimethylaminopyridine 

(0.14 mmol, 0.013 equiv) and 22 mL of DCM at 0 °C, was added 3.06 g of methyl 

chloroformate (32.43 mmol, 3 equiv), dropwise over 10 min.  The solution was allowed 

to warm to 23 °C and stirred for 12 h.  The mixture was then diluted with 40 mL of 

DCM, washed consecutively with 50 mL H2O and 50 mL brine before being dried over 

MgSO4 and directly subjected to flash column chromatography (SiO2, pentane to 5% 

Et2O in pentane).  1.23 g of 2-Chloroallyl methyl carbonate was isolated as a colorless 

oil. 75.6% yield.  Rf = 0.6 (20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.49 

(dt, J = 2.0, 1.2 Hz, 1H), 5.41 (dt, J = 1.8, 0.9 Hz, 1H), 4.68–4.67 (m, 2H), 3.80 (d, J = 

1.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ  155.1, 135.2, 115.2, 69.0, 55.1; IR (Neat 

Film, NaCl) 3008, 2959, 2255, 1752, 1639, 1444, 1383, 1358, 1265, 1182, 1116, 974, 

HO
Cl

methyl chloroformate (3 equiv)
pyridine (3 equiv)

DMAP (0.013 equiv), DCM

89 76% yield

O O

O

Cl
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908, 790, 745 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C5H8ClO3 [M + H]+: 

151.0156; found 151.0150. 

2.6.6. Spectroscopic data for allyl carbonate substrates 

 

 

2-(4-Fluorophenyl)allyl methyl carbonate (80d) was prepared by the general procedure 

from 2-(4-fluorophenyl)allyl alcohol and isolated as a colorless oil by flash column 

chromatography (SiO2, pentane to 5%  Et2O in pentane). 87% yield. Rf = 0.4 (20% EtOAc 

in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.44–7.36 (m, 2H), 7.09–6.99 (m, 2H), 5.51 

(s, 1H), 5.39 (tt, J = 1.2, 0.5 Hz, 1H), 5.00 (dd, J = 1.3, 0.6 Hz, 2H), 3.79 (s, 3H); 13C 

NMR (126 MHz, CDCl3) δ  162.65 (d, 1JCF = 247.0 Hz), 155.54, 141.1, 133.85, 127.74 

(d, 3JCF = 7.8 Hz), 115.85 (d, 4JCF = 1.4 Hz), 115.41 (d, 2JCF = 21.9 Hz), 69.09 , 54.89; 19F 

NMR (282 MHz, CDCl3) δ –126.95; IR (Neat Film, NaCl) 3007, 2959, 1893, 1750, 

1634, 1603, 1511, 1447, 1372, 1260, 1164, 1102, 969, 918, 839, 791, 742 cm–1; HRMS 

(MM: ESI-APCI+) m/z calc'd for C11H12FO3 [M + H]+: 211.0765; found 211.0772. 
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(R)-Methyl (2-(4-methyl-5-oxocyclohex-3-en-1-yl)allyl) carbonate (83) 

 

 

Enone carbonate 83 was prepared by the general method from known allylic alcohol (R)-

5-(3-hydroxyprop-1-en-2-yl)-2-methylcyclohex-2-en-1-one (i.e. (R)-10-hydroxy 

carvone)65 and isolated as a colorless oil by flash column chromatography (SiO2, 5% 

EtOAc in henxanes to 20% EtOAc in hexanes). 91% yield. Rf = 0.2 (20% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 6.74 (ddd, J = 5.9, 2.7, 1.4 Hz, 1H), 5.22 (dt, J = 

1.3, 0.7 Hz, 1H), 5.07 (dd, J = 1.4, 0.7 Hz, 1H), 4.64 (ddt, J = 3.8, 1.2, 0.5 Hz, 2H), 3.79 

(s, 3H), 2.97–2.74 (m, 1H), 2.63 (ddd, J = 16.1, 3.8, 1.6 Hz, 1H), 2.52 (dddt, J = 18.2, 

6.0, 4.5, 1.5 Hz, 1H), 2.39 (dd, J = 16.1, 13.2 Hz, 1H), 2.31 (ddt, J = 18.2, 10.8, 2.5 Hz, 

1H), 1.78 (dt, J = 2.6, 1.3 Hz, 3H);13C NMR (126 MHz, CDCl3) δ  198.9, 155.5, 144.7, 

144.0, 135.6, 114.3, 69.1, 54.9, 42.9, 38.2, 31.3, 15.7; IR (Neat Film, NaCl) 2958, 2928, 

2893, 1750, 1671, 1444, 1364, 1266, 1107, 984, 954, 913, 791 cm–1; HRMS (MM: ESI-

APCI+) m/z calc'd for C12H17O4 [M + H]+: 225.1121; found 225.1118. 
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2.6.7 Procedure for the synthesis allyl carbonate 82 

 

 

Methyl N-(2-(((methoxycarbonyl)oxy)methyl)allyl)-L-leucinate (92). Known hydroxy 

carbonate 9066 was prepared by the general method.  Following the procedure of Altmann 

and co-workers,67 0.77 g of 90 (5.27 mmol, 1.0 equiv) was added to flame-dried round 

bottom flask charged with a magnetic stirring bar and 0.66 mL of acetonitrile.  The 

solution was cooled to 0 °C and 1.80 g of triphenylphosphine (6.83 mmol, 1.3 equiv) and 

0.66 mL of carbontetrachloride (6.85 mmol, 1.3 equiv) were added sequentially.  The 

resulting slurry was allowed to warm to 23 °C and stirred for 2 h before being subjected 

directly to flash column chromatography.  The resulting crude oil, 91 was determined to 

be ca. 95% pure by 1H NMR analysis and used without further purification  

(yield not determined).  Following a known procedure,68 0.47 g of crude allylic chloride 

intermediate 91 (2.855 mmol, 1.5 equiv) was combined with 0.28 g of NaI (1.90 mmol, 

1.0 equiv), 0.346 g of (L)-leucine methyl ester hydrochloride (1.90 mmol, 1.0 equiv), 

0.061 g of tetrabutylammonium bromide (0.19 mmol, 0.1 equiv), 1.01 g Na2CO3 (9.52 

mmol, 5 equiv) and 20 mL acetonitrile in a 50 mL round bottom flask equipped with a 

magnetic stirring bar.  The flask was fitted with a reflux condenser and the mixture stirred 

at 82 °C for 14 h.  The vessel was then cooled to 23 °C and the mixture diluted with 50 

mL Et2O, washed with H2O (20 mL x 2), dried over MgSO4 and concentrated in vacuo.  

MeO2CO OH

PPh3 (1.3 equiv)
CCl4 (1.3 equiv)

MeCN
MeO2CO Cl

NaI (1 equiv)
TBAB (0.1 equiv)
Na2CO3 (5 equiv)
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(1 equiv)
MeO O

O

HN

O

OMe

92

i-Pr

NH3Cl

O

OMei-Pr

9190
66% yield



Chapter 2 – Development of TMSE Ester-Protected Enolates and Applications in Palladium–
Catalyzed Enantioselective Allylic Alkylation 
 
 

167 

The crude oil was purified by flash column chromatography (SiO2, 5% EtOAc in hexanes 

to 15% EtOAc in hexanes) to give 0.52 g of amino ester 92 as a colorless oil.  66.1% 

yield from crude 91.  Rf = 0.2 (40% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 

5.23–5.08 (m, 2H), 4.66 (t, J = 1.0 Hz, 2H), 3.79 (s, 3H), 3.71 (s, 3H), 3.25 (t, J = 7.3 Hz, 

1H), 3.19 (dd, J = 80.0, 13.8 Hz, 1H), 1.74 (dq, J = 13.5, 6.7 Hz, 1H), 1.51 (br s, 2H), 

1.43 (t, J = 7.2 Hz, 2H), 0.89 (dd, J = 9.2, 6.6 Hz, 6H);13C NMR (126 MHz, CDCl3) δ  

176.5, 155.7, 141.7, 115.0, 68.9, 59.1, 54.9, 51.7, 50.4, 42.9, 24.9, 22.9, 22.2; IR (Neat 

Film, NaCl) 2956, 2868, 1750, 1737, 1443, 1368, 1267, 1196, 1151, 980, 943, 792 cm–1; 

HRMS (MM: ESI-APCI+) m/z calc'd for C13H24NO5 [M + H]+: 274.1649; found 

274.1659. 

 

Methyl N-(2-(((methoxycarbonyl)oxy)methyl)allyl)-N-methyl-L-leucinate (82). To a 

10 mL round bottom flask containing a magnetic stirring bar and a solution of 0.37 g 92 

(1.35 mmol, 1.0 equiv) in 4 mL of methanol was added 0.056 g of formaldehyde (1.88 

mmol, 1.4 equiv) as a 37% solution in H2O.  The mixture was stirred at 23 °C for 12 h at 

which point 0.11 g sodium cyanoborohydride was carefully added.  After an additional 

12 h of stirring, the mixture was diluted with H2O (5 mL), extracted with EtOAc (5 mL x 

3), dried over MgSO4, concentrated in vacuo and subjected directly to purification by 

flash column chromatography (SiO2, 10% EtOAc in hexanes to 25% EtOAc in hexanes) 

to yield 0.25 g of carbonate 82 as a colorless oil. 63.8% yield.  Rf = 0.5 (33% EtOAc in 

hexanes); 1H NMR (300 MHz, CDCl3) δ 5.30–5.07 (m, 2H), 4.63 (t, J = 1.0 Hz, 2H), 3.79 
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(s, 3H), 3.69 (s, 3H), 3.34 (dd, J = 8.3, 7.0 Hz, 1H), 3.18 (dd, J = 75.0, 13.8 Hz, 2H), 2.22 

(s, 3H), 1.73–1.61 (m, 1H), 1.61–1.46 (m, 2H), 0.90 (dd, J = 17.5, 6.6 Hz, 6H);13C NMR 

(126 MHz, CDCl3) δ  173.3, 155.6, 141.2, 115.4, 68.5, 63.8, 57.3, 54.7, 50.9, 38.4, 37.0, 

24.7, 22.9, 21.9; IR (Neat Film, NaCl) 2955, 2870, 2803, 1751, 1658, 1444, 1385, 1368, 

1269, 1193, 1157, 1126, 1072, 978, 945, 792 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd 

for C14H26NO5 [M + H]+: 288.1805; found 288.1795. 

 

2.6.8 Optimization of reaction parameters 

Table 2.6.8.1. Optimization of reaction parameters  

 

 

 

General Procedure for Optimization Experiments: Inside a nitrogen-filled glove-box, 

an oven-dried 0.5 dram vial was charged with a magnetic stirring bar, 0.0046 g 

O O

O
Me

O
Me [Pd2(dba)3] (5 mol %)

 (S)-t-Bu-PHOX(12.5 mol %)
 

TBAT (1.25 equiv)
solvent, 40 °C

entry equiv allyl ee (%)byield (%)a

2

3

4

5

6

7

8

9

1.0

1.0

1.0

1.0

0.75

1.0

1.5

2.0

77

84

82

83

82

84

82

84

43

45

15

78

51

78

74

73

sovent

1,4-dioxane

1,4-dioxane

1,4-dioxane

1,4-dioxane

1,4-dioxane

1 1.0 8355toluene

10

11

12

1.1

1.1

1.1

toluene

MTBE

THF

8681

13 1.1

83

82

84

tol/hex 93

14c 1.1 THF

X

Br

OTs

OMs

OAc

OCO2Allyl

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

OCO2Me

1,4-dioxane

1,4-dioxane

1,4-dioxane

33

65

83

45

X

74 7

TMS

76
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[Pd2(dba)3] (0.005 mmol, 0.05 equiv), 0.0047 g (S)-t-Bu-PHOX (0.0125 mmol, 0.125 

equiv), 0.067 g TBAT (0.125 mmol, 1.25 equiv), 0.018 g tridecane (0.10 mmol, 1.0 

equiv) and 3.0 mL THF.  This mixture was stirred at 25 °C for 30 min at which time 

0.026 g of β-ketoester 74 (0.10 mmol, 1.0 equiv) and 0.013 g of allyl methyl carbonate 

(0.11 mmol, 1.1 equiv) were added, neat.  The vial was capped and stirring continued for 

12 h at which time the vial was removed from the glove-box, uncapped and the magnetic 

stirring bar removed.  The reaction mixture was diluted with hexanes (2 mL) and passed 

through a pipette plug (SiO2) with 4 mL of hexanes followed by 4 mL of Et2O.  From the 

combined organic fractions, a sample was prepared and the mixture analyzed by GC. 

 

2.6.9 General procedure for Pd-catalyzed allylic alkylation  

Please note that the absolute configuration for all products 79 and 81 has been inferred by 

analogy to previous studies. For isolated yields, see the main text of vide supra. For 

respective GC, HPLC or SFC conditions, as well as optical rotation data, please refer to 

Table 2.6.11.  

 

(S)-2-benzyl-2-(2-methylallyl)cyclohexan-1-one (81a). Inside a nitrogen filled glove-

box, an oven-dried 20 mL scintillation vial was charged with a magnetic stirring bar, 

0.011 g [Pd2(dba)3] (0.012 mmol, 0.05 equiv), 0.011 g (S)-t-Bu-PHOX (0.029 mmol, 

0.125 equiv), 0.15 g TBAT (0.28 mmol, 1.25 equiv) and 7 mL THF. This mixture was 

[Pd2(dba)3] (5 mol%)
(S)-t-Bu-PHOX (12.5 mol%)

TBAT (1.25 equiv), THF, 25 °C

O O

O
TMS

Bn
O

Bn

Me

MeO

O

O
Me

77a

80a (1.1 equiv)

81a
89% yield
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stirred at 25 °C for 30 min at which time 0.075 g of β-ketoester 77a (0.23 mmol, 1.0 

equiv) and 0.033 g of allyl methyl carbonate (0.25 mmol, 1.1 equiv) were added, neat.  

The vial was capped and stirring continued for 16 h at which time the vial was removed 

from the glove-box, uncapped and magnetic stirring bar removed.  The reaction mixture 

was concentrated in vacuo.  The resulting crude semisolid was purified by flash column 

chromatography (SiO2, hexanes to 2% EtOAc in hexanes) to give ketone 81a as a 

colorless oil.  89% yield.  89% ee, [α]D
25 –20.1 (c 1.2, CHCl3); Rf = 0.3 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.27–7.23 (m, 2H), 7.22–7.17 (m, 1H), 7.15–

7.11 (m, 2H), 4.86 (dd, J = 2.0, 1.4 Hz, 1H), 4.69 (dd, J = 2.0, 1.0 Hz, 1H), 2.93 (dd, J = 

114.0, 13.7 Hz, 2H), 2.60–2.49 (m, 1H), 2.44–2.38 (m, 1H), 2.37 (s, 3H), 1.92–1.84 (m, 

1H), 1.81–1.69 (m, 2H), 1.67 (dd, J = 1.5, 0.8 Hz, 3H), 1.64–1.56 (m, 2H); 13C NMR 

(126 MHz, CDCl3) δ 214.8, 142.2, 137.8, 130.9, 127.9, 126.2, 114.7, 52.5, 43.2, 41.7, 

39.7, 35.7, 26.7, 24.6, 20.8;  IR (Neat Film, NaCl) 3026, 2935, 2863, 1700, 1448, 1123, 

893, 746 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C17H23O [M + H]+: 243.1743, 

found 243.1745; SFC conditions: 1% MeOH, 2.5 mL/min, Chiralpak OD–H column, λ = 

210 nm, tR (min): major = 5.79, minor = 6.48. 
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2.6.10 Spectroscopic data for Pd-catalyzed allylic alkylation products      

(S)-3-Allyl-1-benzoyl-3-methylazepan-2-one (79g) 

 

 

Lactam 79g was prepared by the general procedure and isolated by flash column 

chromatography (SiO2, 5%  EtOAc in hexanes to 25%  EtOAc in hexanes) as a colorless 

oil. 91% yield. 90% ee, [α]D
25 –35.2 (c 1.7, CHCl3); Rf = 0.2 (30% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.52–7.48 (m, 2H), 7.47–7.42 (m, 1H), 7.39–7.35 (m, 2H), 

5.72 (dddd, J = 17.1, 10.3, 7.6, 7.1 Hz, 1H), 5.13–5.06 (m, 2H), 4.13–4.05 (m, 1H), 3.91 

(ddd, J = 14.8, 8.8, 2.0 Hz, 1H), 2.40 (dddt, J = 71.6, 13.7, 7.6, 1.2 Hz, 2H), 1.91–1.78 

(m, 4H), 1.78–1.67 (m, 2H), 1.29 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 182.5, 174.7, 

137.0, 133.7, 131.0, 128.1, 127.4, 118.7, 47.7, 44.7, 42.6, 35.1, 28.0, 24.9, 23.3;  IR (Neat 

Film, NaCl) 3072, 2830, 1676, 1448, 1279, 1244, 1224, 1148, 1117, 1096, 971, 951, 919, 

790, 726, 695 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C17H21NO2 [M + H]+: 

272.1645, found 272.1660; HPLC conditions: 5% IPA, 1.0 mL/min, Chiralpak OJ–H 

column, λ = 220 nm, tR (min): major = 5.60, minor = 5.00. 

 

BzN

O Me

79g
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(R)-2-Benzyl-2-(2-chloroallyl)cyclohexan-1-one (81b) 

 

 

Ketone 81b was prepared according to the general procedure and isolated by flash 

column chromatography (SiO2, 5% EtOAc in hexanes to 10% EtOAc in hexanes) as a 

colorless oil. 72% yield. 96% ee, [α]D
25 –7.0 (c 1.4, CHCl3); Rf = 0.4 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.39–7.16 (m, 2H), 7.20–7.08 (m, 3H), 5.30 (d, 

J = 1.3 Hz, 1H), 5.17 (t, J = 1.2 Hz, 1H), 2.99 (dd, J = 40.6, 14.1 Hz, 2H), 2.69 (dd, J = 

56.9, 15.6 Hz, 2H), 2.66–2.34 (m, 2H), 1.97–1.63 (m, 6H); 13C NMR (126 MHz, CDCl3) 

δ 213.5, 137.0, 130.7, 128.1, 127.7, 126.5, 116.6, 52.5, 43.9, 41.3, 39.7, 35.1, 26.5, 20.9;  

IR (Neat Film, NaCl) 2939, 2858, 1705, 1631, 1494, 1452, 1429, 1118, 1088, 889, 701 

cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C16H20ClO [M + H]+: 263.1197, found 

263.1199; SFC conditions: 3% MeOH, 2.5 mL/min, Chiralpak OD-H column, λ = 210 

nm, tR (min): major = 6.09, minor = 7.04. 

 

O
Bn

Cl

81b



Chapter 2 – Development of TMSE Ester-Protected Enolates and Applications in Palladium–
Catalyzed Enantioselective Allylic Alkylation 
 
 

173 

(R)-2-Benzyl-2-(2-(4-fluorophenyl)allyl)cyclohexan-1-one (81d) 

 

 

Ketone 81d was prepared according to the general procedure, and isolated by flash 

column chromatography (SiO2, 1% EtOAc in hexanes to 3% EtOAc in hexanes) as a 

colorless oil. 91% yield. 95% ee, [α]D
25 –9.9 (c 2.0, CHCl3); Rf = 0.3 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.37–7.12 (m, 5H), 7.11–6.85 (m, 4H), 5.26 (d, 

J = 1.3 Hz, 1H), 5.09 (d, J = 1.5 Hz, 1H), 2.86 (dd, J = 102.0, 13.7 Hz, 2H), 2.87–2.73 

(m, 2H), 2.31 (tt, J = 6.2, 2.5 Hz, 2H), 1.83–1.50 (m 6H) ; 13C NMR (126 MHz, CDCl3) δ 

214.3 , 162.2 (d, 1JCF = 246.2 Hz), 144.5, 139.2 (d, 4JCF = 3.3 Hz), 137.8, 130.7, 128.2 (d, 

3JCF = 7.9 Hz), 127.9, 126.3, 117.6, 115.0 (d, 2JCF = 21.3 Hz), 53.3, 41.7, 40.9, 39.7, 35.1, 

26.1, 20.8; 19F NMR (282 MHz, CDCl3) δ –128.24;  IR (Neat Film, NaCl) 3027, 2939, 

2864, 1703, 1602, 1508, 1453, 1223, 1159, 1126, 905, 841, 750 cm-1; HRMS (MM: ESI-

APCI+) m/z calc’d for C22H24FO [M + H]+: 323.1806, found 323.1809; SFC conditions: 

10% MeOH, 2.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, tR (min): major = 8.59, 

minor = 10.15. 

 

O
Bn

81d
F
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Methyl N-(2-(((R)-1-benzyl-2-oxocyclohexyl)methyl)allyl)-N-methyl-L-leucinate (84) 

 

 

Ketone 84 was prepared by the general procedure and isolated by flash column 

chromatography (SiO2, 2%  EtOAc in hexanes to 5%  EtOAc in hexanes) as a colorless 

oil. 95% yield. >25:1 dr, [α]D
25 –20.57 (c 1.75, CHCl3); Rf = 0.5 (30% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.25–7.21 (m, 2H), 7.21–7.16 (m, 1H), 7.15–

7.11 (m, 2H), 5.12 (q, J = 1.3 Hz, 1H), 4.94–4.88 (m, 1H), 3.67 (s, 3H), 3.33 (t, J = 7.6 

Hz, 1H), 3.05–2.90 (m, 2H), 2.93 (dd, J = 176.8, 13.7 Hz, 2H), 2.67–2.54 (m, 2H), 2.40–

2.31 (m, 1H), 2.25 (dd, J = 15.1, 1.1 Hz, 1H), 2.20 (s, 3H), 1.90 (ddq, J = 8.0, 4.3, 1.9 

Hz, 1H), 1.81–1.47 (m, 8H), 0.90 (dd, J = 11.9, 6.6 Hz, 6H); 13C NMR (126 MHz, CDCl3) 

δ 214.9, 173.3, 143.0, 138.1, 130.9, 127.8, 126.1, 116.5, 62.9, 61.8, 52.6, 50.8, 41.2, 

39.5, 38.9, 38.4, 36.8, 36.5, 26.9, 24.8, 23.0, 22.2, 20.8; IR (Neat Film, NaCl) 2949, 2868, 

1732, 1703, 1641, 1452, 1189, 1152, 1122, 1019, 910, 702 cm-1; HRMS (MM: ESI-

APCI+) m/z calc’d for C25H37NO3 [M + H]+: 400.2836, found 400.2860.  
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O
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O
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Methyl N-(2-(((S)-1-benzyl-2-oxocyclohexyl)methyl)allyl)-N-methyl-L-leucinate (85) 

 

 

Ketone 85 was prepared by the general procedure, using ligand L9 instead of L1, and 

isolated by flash column chromatography (SiO2, 2%  EtOAc in hexanes to 5%  EtOAc in 

hexanes) as a colorless oil. 95% yield. 1:21 dr, [α]D
25 +12.94 (c 1.25, CHCl3); Rf = 0.5 

(30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.25–7.21 (m, 2H), 7.21–7.16 

(m, 1H), 7.16–7.12 (m, 2H), 5.11 (d, J = 1.5 Hz, 1H), 4.89 (d, J = 1.7 Hz, 1H), 3.68 (s, 

3H), 3.29 (dd, J = 7.7, 7.0 Hz, 1H), 3.03–2.93 (m, 2H), 2.92 (dd, J = 197.9, 13.7 Hz, 2H), 

2.68–2.58 (m, 2H), 2.34 (dt, J = 13.8, 4.9 Hz, 1H), 2.27–2.21 (m, 1H), 2.19 (s, 3H), 1.91 

(d, J = 12.8 Hz, 1H), 1.85–1.56 (m, 8H), 0.89 (dd, J = 12.4, 6.3 Hz, 6H); 13C NMR (126 

MHz, CDCl3) δ 214.8, 173.2, 143.2, 138.2, 131.0, 127.8, 126.1, 116.5, 63.3, 61.6, 52.5, 

50.8, 41.1, 39.5, 39.3, 38.2, 36.7, 36.7, 26.9, 24.9, 22.8, 22.5, 20.8;  IR (Neat Film, NaCl) 

3027, 2950, 2867, 1734, 1702, 1641, 1602, 1495, 1452, 1192, 1154, 1125, 1030, 909, 749, 

702 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C25H37NO3 [M + H]+: 400.2846, 

found 400.2855.  
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(R)-5-(3-((S)-1-Benzyl-2-oxocyclohexyl)prop-1-en-2-yl)-2-methylcyclohex-2-en-1-one 

(86) 

 

 

Ketone 86 was prepared by the general procedure, at 40 °C, and isolated by flash column 

chromatography (SiO2, 3%  EtOAc in hexanes to 15%  EtOAc in hexanes) as a colorless 

oil. 87% combined yield (86 and 87). Characterization data reported for major 

diastereomer. 6:1 dr, [α]D
25 +49.25 (c 0.25, CHCl3); Rf = 0.1 (30% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.25–7.18 (m, 3H), 7.12–7.02 (m, 2H), 6.72 (dq, J = 4.2, 1.3 

Hz, 1H), 4.97–4.91 (m, 1H), 4.82 (d, J = 1.2 Hz, 1H), 3.03–2.83 (m, 2H), 2.64–2.49 (m, 

2H), 2.49–2.37 (m, 4H), 2.38–2.09 (m, 3H), 1.85–1.78 (m, 2H), 1.77 (dt, J = 2.6, 1.3 Hz, 

3H), 1.76–1.61 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 214.7, 199.8, 147.4, 144.7, 

137.3, 135.3, 130.6, 128.0, 126.5, 113.1, 52.5, 43.6, 42.2, 41.8, 39.5, 39.4, 35.6, 31.9, 

26.7, 20.8, 15.7;  IR (Neat Film, NaCl) 2923, 2863, 1702, 1672, 1494, 1450, 1365, 1248, 

1109, 901, 750, 703 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C23H28O2Na [M + 

Na]+: 359.1982, found 359.1988. 
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(R)-5-(3-((S)-1-Benzyl-2-oxocyclohexyl)prop-1-en-2-yl)-2-methylcyclohex-2-en-1-one 

(87) 

 

 

Ketone 87 was prepared by the general procedure, at 40 °C, and isolated by flash column 

chromatography (SiO2, 3%  EtOAc in hexanes to 15%  EtOAc in hexanes) as a colorless 

oil. 77% combined yield (86 and 87). Characterization data reported for major 

diastereomer. 6:1 dr, [α]D
25 –10.60 (c 0.50, CHCl3); Rf = 0.1 (30% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.25–7.18 (m, 3H), 7.12–7.02 (m, 2H), 6.73 (dq, J = 4.2, 1.3 

Hz, 1H), 4.98 (s, 1H), 4.84 (s, 1H), 3.01–2.86 (m, 2H), 2.59–2.38 (m, 4H), 2.36–2.11 (m, 

3H), 1.88–1.81 (m, 2H), 1.76 (dt, J = 2.6, 1.3 Hz, 3H), 1.76–1.61 (m, 4H); 13C NMR (126 

MHz, CDCl3) δ 214.6, 199.8, 147.1, 144.5, 137.5, 135.4, 130.6, 128.0, 126.4, 112.7, 

52.5, 43.7, 42.6, 41.7, 39.6, 39.2, 35.9, 31.9, 26.8, 20.8, 15.7;  IR (Neat Film, NaCl) 2923, 

2863, 1702, 1672, 1494, 1450, 1365, 1248, 1109, 901, 750, 703 cm-1; HRMS (MM: ESI-

APCI+) m/z calc’d for C23H28O2Na [M + Na]+: 359.1982, found 359.1985. 
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2.6.11 Determination of enantiomeric excess and optical rotations 

Table 2.6.11.1. Determination of enantiomeric excess and optical rotations 

 

entry compound analytic conditions ee (%)

1

2

3

4

5

6

7

8

GC
G-TA, 105 °C, isotherm
tR (min): major 7.80, minor 8.24

86

88

91

89

87

92

96

90

GC
G-TA, 110 °C, isotherm
tR (min): major 6.45, minor 7.23

HPLC
Chiralcel OD-H, λ = 220 nm
1% IPA/hexanes, 1.0 mL/min
tR(min): major 6.12, minor 7.16

SFC
Chiralpak AD-H, λ = 254 nm
5% MeOH/CO2, 2.5 mL/min,
tR (min):  major 5.54, minor 6.23

HPLC
Chiralcel OJ-H, λ = 220 nm
5% IPA/hexanes, 1.0 mL/min
tR(min): major 5.60, minor 5.00

O
Me

O
Bn

O
F

O
CO2Me

O Me

O Me

i-BuO

BzN

O
Me

BzN

O Me

polarimetry

[α]D²⁵&&–11.7
(c&0.6,&CHCl3)

GC
G-TA, 120 °C, isotherm
tR (min): major 15.3, minor 22.18

GC
G-TA, 110 °C, isotherm
tR (min): major 5.039, minor 5.41

SFC
Chiralpak OJ-H, λ = 210 nm
3% IPA/CO2, 2.5 mL/min,
tR (min):  major 5.74, minor 4.71

[α]D²⁵&–13.6
(c&1.3,&CHCl3)

[α]D²⁵&–68.74
(c&1.5,&CHCl3)

[α]D²⁵&10.51
(c&1.6,&CHCl3)

[α]D²⁵&–22.13
(c&1.4,&CHCl3)

[α]D²⁵&–65.6
(c&1.0,&CHCl3)

[α]D²⁵&–76.5
(c&2.1,&CHCl3)

[α]D²⁵&–35.2
(c&1.7,&CHCl3)

9

10

11

12

89

96

93

95

SFC
Chiralpak OD-H, λ = 210 nm
1% MeOH/CO2, 2.5 mL/min,
tR (min): major 5.79, minor 6.48

SFC
Chiralpak OD-H, λ  = 210 nm
3% MeOH/CO2, 2.5 mL/min
tR (min): major 6.09, minor 7.04

SFC
Chiralpak OJ-H, λ = 210 nm
4% IPA/CO2, 4.0 mL/min
tR (min): major 7.86, minor 8.66

SFC
Chiralcel OJ-H, λ  = 210 nm
10% MeOH/CO2, 2.5 mL/min
tR (min): major 8.59, minor 10.15

O
Bn

Me

O
Bn

F

O
Bn

Cl

O
Bn

[α]D²⁵&–20.1
(c&1.2,&CHCl3)

[α]D²⁵&–7.0
(c&1.4,&CHCl3)

[α]D²⁵&–10.5
(c&0.8,&CHCl3)

[α]D²⁵&–9.9
(c&2.0,&CHCl3)
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Figure A2.2  Infrared spectrum (thin film/NaCl) of compound 74. 

Figure A2.3  13C NMR (125 MHz, CDCl3) of compound 74. 
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Figure A2.5  Infrared spectrum (thin film/NaCl) of compound 88. 

Figure A2.6  13C NMR (125 MHz, CDCl3) of compound 88. 
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Figure A2.8  Infrared spectrum (thin film/NaCl) of compound 77b. 

Figure A2.9  13C NMR (75 MHz, CDCl3) of compound 77b. 
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Figure A2.11  Infrared spectrum (thin film/NaCl) of compound 77a. 

Figure A2.12  13C NMR (125 MHz, CDCl3) of compound 77a. 
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Figure A2.14  Infrared spectrum (thin film/NaCl) of compound 77c. 

Figure A2.15  13C NMR (75 MHz, CDCl3) of compound 77c. 
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Figure A2.17  Infrared spectrum (thin film/NaCl) of compound 77d. 

Figure A2.18  13C NMR (125 MHz, CDCl3) of compound 77d. 
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Figure A2.20  Infrared spectrum (thin film/NaCl) of compound 77e. 

Figure A2.21  13C NMR (125 MHz, CDCl3) of compound 77e. 
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Figure A2.23  Infrared spectrum (thin film/NaCl) of compound 77f. 

Figure A2.24  13C NMR (125 MHz, CDCl3) of compound 77f. 
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Figure A2.26  Infrared spectrum (thin film/NaCl) of compound 77g. 

Figure A2.27  13C NMR (125 MHz, CDCl3) of compound 77g. 
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Figure A2.29  Infrared spectrum (thin film/NaCl) of compound 80b. 

Figure A2.30  13C NMR (125 MHz, CDCl3) of compound 80b. 
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Figure A2.32  Infrared spectrum (thin film/NaCl) of compound 80d. 

Figure A2.33  13C NMR (125 MHz, CDCl3) of compound 80d. 
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Figure A2.35  Infrared spectrum (thin film/NaCl) of compound 83. 

Figure A2.36  13C NMR (125 MHz, CDCl3) of compound 83. 
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Figure A2.38  Infrared spectrum (thin film/NaCl) of compound 92. 

Figure A2.39  13C NMR (125 MHz, CDCl3) of compound 92. 
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Figure A2.41  Infrared spectrum (thin film/NaCl) of compound 82. 

Figure A2.42  13C NMR (125 MHz, CDCl3) of compound 82. 
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Figure A2.44  Infrared spectrum (thin film/NaCl) of compound 81a. 

Figure A2.45  13C NMR (125 MHz, CDCl3) of compound 81a. 
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Figure A2.47  Infrared spectrum (thin film/NaCl) of compound 79g. 

Figure A2.48  13C NMR (125 MHz, CDCl3) of compound 79g. 
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Figure A2.50  Infrared spectrum (thin film/NaCl) of compound 81b. 

Figure A2.51  13C NMR (125 MHz, CDCl3) of compound 81b. 
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Figure A2.53  Infrared spectrum (thin film/NaCl) of compound 81d. 

Figure A2.54  13C NMR (125 MHz, CDCl3) of compound 81d. 
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Figure A2.56  Infrared spectrum (thin film/NaCl) of compound 84. 

Figure A2.57  13C NMR (125 MHz, CDCl3) of compound 84. 
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Figure A2.59  Infrared spectrum (thin film/NaCl) of compound 85. 

Figure A2.60  13C NMR (125 MHz, CDCl3) of compound 85. 
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Figure A2.62  Infrared spectrum (thin film/NaCl) of compound 86 and 87. 

Figure A2.63  13C NMR (125 MHz, CDCl3) of compound 86 and 87. 
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CHAPTER 3 

Construction of Vicinal Tertiary and All-Carbon Quaternary 

Stereocenters via Ir-Catalyzed Regio-, Diastereo-, and Enantioselective 

Allylic Alkylation and Applications in Sequential Pd-Catalysis1  

 

3.1 INTRODUCTION  

3.1.1 State of the art in the asymmetric construction of vicinal quaterary and 

tertiary carbon centers 

 The asymmetric construction of sterically-encumbered, vicinal stereogenic centers 

is of great interest to synthetic chemists due to the prevalence of such structural 

arrangements in natural products and bioactive compounds.69  The limited number of 

methods that provide selective access to vicinal tertiary and all-carbon quaternary 

stereocenters highlights the challenging nature of this task.  Enantioselective approaches 

for accessing this structural dyad have generally relied on asymmetric Michael additions70 

and Claisen rearrangements.71  Among the methods available for forging this motif, only 

a relatively small number have been reported to do so by employing transition metals in a 

 
1 This work was performed in collaboration with Wen-Bo Lui, postdoctoral researcher in the Stoltz group, 
and Scott Virgil, manager of the Caltech Center for Catalysis and Chemical Synthesis.  This work has been 
published. See: Liu, W. -B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 
10626. 
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catalytic, asymmetric fashion.72,73  Thus, further investigations into the development of 

metal-catalyzed methods to directly and selectively generate such stereochemical arrays 

should prove valuable.  

Allylic alkylation chemistry represents a successful strategy for the assembly of 

highly congested chemical architectures by C–C bond formation74 and, within this 

domain, Ir-catalyzed processes are among the most selective and highest yielding.75,76 

Initial reports from the Helmchen77 and Hartwig78 groups demonstrated the utility of Ir-

catalyzed allylic substitutions for the synthesis of enantioenriched 3,3-disubstituted 

(branched) allyl compounds.75  As this research area has developed, Ir/phosphoramidite 

catalysts79 have emerged as privileged scaffolds for the regio- and enantioselective allylic 

alkylation of achiral nucleophiles, such as malonate derivatives and ketone enolates 

(Figure 3.1.1.1, 94 → 93).80  However, methods for Ir-catalyzed intermolecular allylic 

alkylation that employ prochiral nucleophiles and display high (1) regio-, (2) diastereo-, 

and (3) enantioselectively remain elusive (Figure 3.1.1.1, 94 → 96).81  Prior to our 

investigation, only two reports, 82  from the laboratories of Takemoto and Hartwig, 

detailed successful examples in attaining all three of these goals; however, in these 

accounts, the nucleophiles investigated were limited to amino acid derivatives and 

azlactones.83  
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Figure 3.1.1.1. Ir-catalyzed allylic substitution  

 

 

 

In this chapter, we detail the development of a highly regio-, diastereo-, and 

enantioselective Ir-catalyzed α-allylic alkylation of cyclic β-ketoesters that forges vicinal 

tertiary and all-carbon quaternary centers in one step and in excellent yields.  Moreover, 

we describe the deployment of our novel 2-(trimethylsilyl)ethyl β-ketoester (TMSE β-

ketoester) (see Chapter 2), which functions as an oxycarbonyl-protected enolate, enabling 

sequential catalyst-controlled α-allylic alkylations and, in turn, the ability to select the 

diastereomer produced within the nascent stereochemical dyad.  

 

3.2  REACTION DEVELOPMENT AND OPTIMIZATION 

3.2.1 Discovery and optimization of iridium catalyzed regio-, diastereo- and 

enantioselective allylic alkylation of cyclic ketones 

Our preliminary studies focused on probing the effects of different ligands, bases, 

additives, and solvents on the efficiency and selectivity of the reaction.  Cyclic β-

ketoester 97, cinnamyl carbonate 98, and [Ir(cod)Cl]2/phosphoramidite complexes84 were 

chosen as standard reaction components at the outset of our investigations.85  Selected 
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results of these experiments are summarized in Table 3.2.1.1. Our investigations 

commenced with commonly used phosphoramidite ligand L1086 and we were pleased to 

find that the proposed reaction proceeded smoothly under the conditions described (Table 

3.2.1.1), delivering α-quaternary β-ketoester 100a in >95% conversion and in 96% ee.  

Unfortunately, no diastereoselectivity was observed in this case (Table 3.2.1.1, entry 1).  

Use of ligand L11, a diastereoisomer of L10, again produced a high-yielding reaction, 

but in significantly diminished ee (32%) and modest 1:2 dr (entry 2).  Inspired by the 

You group’s use of Ir-N-arylphosphoramidite complexes (derived from [Ir(cod)Cl]2 and 

L12)87 to effect the diastereo- and enantioselective intramolecular allylation of indoles 

and pyrroles,88 we envisioned that analogous Ir complexes may prove valuable for the 

generation of all-carbon quaternary stereocenters.  We were delighted to discover that the 

use of N-aryl-phosphoramidite ligand L12 furnished the desired product in 98% ee, >20:1 

dr, and 95:5 branched to linear ratio (entry 3).  

 

Figure 3.2.1.1.  Selected phosphoramidite and PHOX ligands 
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Table 3.2.1.1.  Optimization of reaction parameters.a     

 

 
a Reactions performed with 0.1 mmol of 98a, 0.2 mmol of 97a at 0.1 M in THF at 20 °C and 

allowed to proceed to complete consumption of 98a.  b Determined by 1H NMR and UHPLC-MS 

analysis of the crude mixture.  c Determined by chiral HPLC analysis of the major diastereomer.  d 

(ee) of the alternate diastereomer.  e (ee) of the major diastereomer.  f Measured after 60 h at 60% 

conversion.  g 1 mol % [Ir(cod)Cl]2 and 2 mol % L12 were used. 

 

Extensive exploration of various bases, including organic and inorganic bases, 

revealed that the use of LiOt-Bu afforded the desired product in comparable selectivities 

as NaH (entries 4–8).  Previous reports demonstrating the marked effect of LiCl on the 

regioselectivity79b,80j,81b in Ir-catalyzed allylic alkylations prompted us to investigate this 

and related additives.  As a result of these efforts (entries 9–10), the combination of LiBr 
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and THF, at 25 °C, was found to provide 100a in >20:1 dr, 95:5 branched:linear ratio, 

and with >99% ee (entry 10). 

 

3.2.2 Further development of the reaction conditions  

Under these superior conditions, several more ligands were examined.  Use of 

ligand L1388b afforded 100a in 96% ee and 12:1 dr (entry 11). Employment of N-aryl-

phosphoramidite scaffolds proved critical to maintaining high diastereoselectivity in the 

reaction.  Phosphinooxazoline (PHOX) type ligands (e.g. L1), first used in Ir-catalyzed 

allylation by Helmchen,77 were also examined, but we found these to be poorly suited for 

our reaction (entry 12).  Finally, we found that the catalyst loading could be reduced to 1 

mol % (entry 13) without loss of selectivity. 

 

3.3 SURVEY OF REACTION SCOPE  

3.3.1 Exploration of the reaction scope with respect to allyl electrophile 

With optimized conditions in hand, the scope of substrates tolerated in the 

reaction was explored.  We found that cinnamyl-derived carbonates bearing either 

electron-donating (–OMe) or electron-withdrawing (–Br, –CF3) groups on the aromatic 

ring gave remarkably high dr, ee and yields (99% ee and 20:1 dr, Table 3.3.1.1, entries 1–

4). The branched to linear ratio (i.e., 100:101) tended to decrease as the electron 

deficiency of the aryl substituents increased (from 95:5 to 71:29, with 4-OMe-C6H4 to 4-

CF3-C6H4, respectively, entries 2–4). Heteroaryl substituents, such as 3-pyridyl, 2-thienyl 

and 2-furanyl, were also installed with uniformly excellent enantioselectivities and high 

diastereoselectivities (95–98% ee and 10:1–17:1 dr, entries 5–7).  In addition to aromatic 
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substituents, methyl sorbyl carbonate was also well tolerated in the chemistry providing 

diene 100h, although with a slight decrease in dr and ee (8:1 dr and 90% ee, entry 8).89  

Moreover, the reaction proceeded smoothly with ethyl β-ketoester 97i, providing the α-

allyl β-ketoester 100i with excellent yield and selectivity (entry 9).  

 

Figure 3.3.1.1.  Substrate scope of Ir-catalyzed allylic alkylation of β-ketoestersa  

 

 
a Reactions performed under the conditions of Table 1, entry 10.  b Determined by 1H NMR analysis 

of the crude mixture.  c Isolated yield of 100 and 101.  d Determined by chiral HPLC or SFC analysis 

of the major diastereomer. 
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3.3.2.1, entries 1–2). Vinylogous ester, tetrahydropyran-4-one, and 4-piperidinone 

derivatives furnished the corresponding products (103d–103f) in high yields (85–99%), 

good diastereoselectivites (13:1–20:1), and enantioselectivities (97–99%, entries 4–6).  

The absolute stereochemistry of the product 103f (>99% ee) was determined as (R,R) by 

single-crystal X-ray analysis.90  

 

Figure 3.3.2.1.  Substrate scope of Ir-catalyzed allylic alkylation of β-ketoesters 

 

 
a Reactions performed under the conditions of Table 1, entry 10.  b Determined by 1H NMR analysis 

of the crude mixture.  c Isolated yield of 103 and 104.  d Determined by chiral HPLC or SFC analysis 

of the major diastereomer. 
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During the course of our investigations, we became intrigued by the possibility of 

developing a sequential allylic alkylation reaction, in which allylation of a dicarbonyl-

stabilized enolate would be followed by palladium-catalyzed decarboxylative allylic 

alkylation and, thus, engender the ability to select among all four possible stereochemical 

outcomes.91,92  In order to realize such a consecutive allylic alkylation, we deployed our 

novel oxycarbonyl-protected enolate, TMSE β-ketoester 88, which we hypothesized 

would successfully undergo Ir-catalyzed allylic alkylation and be poised to subsequently 

participate in Pd catalysis. Specifically, we envisioned that subsequent to Ir-catalyzed 

allylic alkyaltion TMSE β-ketoester 103c could be triggered with fluoride, and the 

resulting prochiral enolate then intercepted and engaged in Pd-catalyzed allylic alkylation 

to deliver α-quaternary ketone 106 or 107 (Figure 3.4.1).  In the case at hand, where β-

ketoester 103c contains a chiral branched R group at the a position, we anticipated that 

with careful choice of catalyst, we could potentially control the newly generated 

stereocenter independent of the absolute stereochemistry of the side chain. 

 

Figure 3.4.1.  Conceptualization of sequential catalysis 
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We were pleased to find that TMSE β-ketoester 88 is a highly competent 

substrate for Ir-catalyzed allylic alkylation and, under standard conditions, gave the 

desired product (103c) with excellent yield and selectivity (Figure 3.3.2.1, entry 3).  

Moreover, exposure of 103c to catalytic Pd2(dba)3/L8 (Figure 3.4.2) in the presence of 

allyl methylcarbonate and tetrabutylammonium difluorotriphenylsilicate (TBAT) 

generated the desired diallylated α-quaternary ketones 106 and 107 in good yield. The 

use of achiral PHOX ligand L8 revealed that substrate 103c displays inherent selectivity 

under Pd catalysis, furnishing 106a93 as the major diastereomer in a 2:1 ratio with 107a 

(Figure 3.4.2, entry 1).  Use of (S)-t-BuPHOX ligand (S)-L1 resulted in modest reversal 

of the inherent diastereoselectivity to generate 107a predominantly (entry 2).  

Furthermore, we were interested to find that use of ligand (S)-L14, possessing both an 

electronically modified phosphine and a smaller i-Pr substituent on the oxazoline ring in 

contrast to the more standard t-Bu, produced 107a with improved diastereoselectivity 

(106a:107a, 1:8 dr) and 91% yield (entry 3).  Alternatively, through judicious choice of 

ligand (e.g., (R)-L15), the inherent selectivity of the system could be enhanced to afford 

106a:107a with up to 18:1 dr favoring 106a (entries 4–5).  Cursory investigation revealed 

that 2-aryl and 2-alkyl substitutions at the allyl carbonate are well tolerated: allylic 

alkylation products 106b and 106c were obtained in good yields and with excellent 

diastereoselectivities. 
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Figure 3.4.2. Development of Pd-catalyzed diastereoselective decarboxylative allylic alkylation of 

TMSE-β-ketoestersa  

 
a Reactions performed with 1.2 equiv of TBAT, and 1.2 equiv of allyl methylcarbonate at 0.03 M.b 

Isolated yield of 106 and 107. c Determined by 1H NMR analysis of the crude mixture and 

confirmed by GC analysis. d 10 mol % ligand was used.   
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mechanisms of these reactions and exploiting their applications in the total synthesis of 

complex natural products are underway in our laboratory. 

 

3.6 EXPERIMENTAL SECTION 

3.6.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried 

by passage through an activated alumina column under argon.61 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS.  TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for flash 

chromatography.  1H NMR spectra were recorded on Varian Inova 500 MHz and 600 

MHz spectrometers and are reported relative to residual CHCl3 (δ 7.26 ppm) or C6HD5 (δ 

7.16 ppm).  13C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer 

(125 MHz) and are reported relative to CHCl3 (δ 77.16 ppm) or C6HD5 (δ 128.06 ppm). 

31P and 19F NMR spectra were recorded on a Varian Mercury 300 MHz (at 121 MHz and 

282 MHz, respectively).  19F NMR spectra were reported relative to CFCl3 (δ 0.0 ppm). 

31P NMR spectra were reported relative to external H3PO4 (δ 0.0 ppm).  Data for 1H NMR 

are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad 

doublet, app = apparent.  Data for 13C NMR are reported in terms of chemical shifts 
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(δ ppm).  IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer 

using thin films deposited on NaCl plates and reported in frequency of absorption (cm-1).  

Optical rotations were measured with a Jasco P-2000 polarimeter operating on the 

sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: [α]D
T 

(concentration in g/100 mL, solvent).  Analytical HPLC was performed with an Agilent 

1100 Series HPLC utilizing a Chiralpak (AD-H or AS) or Chiralcel (OD-H, OJ-H, or 

OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd.  

Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-

H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd.  

High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with 

an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric 

pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated.  Ligands L12–L13,87 ligands L8–L9 

and L14–L15,94 allyl carbonates,95 and β-ketoesters96 were prepared by known methods.   
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3.6.2  Optimization of reaction parameters  

Table 3.6.2.1. Optimization of reaction parameters 

 

 

a  Reactions performed with 0.1 mmol of 98a, 0.2 mmol of 97a in 1 mL of solvent.  b  Determined by 1H 

NMR or UHPLC-MS analysis of the crude reaction mixture.  d  (Ee) of the alternate diasteromer.  e 

Measured on the minor isomer and the number in the parenthesis is ee of the major isomer. f 1 mol % of 

[Ir(cod)Cl]2 and 2 mol % of L12 were used.  g  0.5 mol % of [Ir(cod)Cl]2 and 1 mol % of L12 were used. 

 

General Procedure for Optimization Reaction (Table 3.6.2.1): All experiments 
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added to a vial equipped with a magnetic stirring bar.  The vial was then charged with 

solvent (0.5 mL) and stirred at 20 °C for 10 min, generating an orange solution.  

Cinnamyl carbonate 98a (19.2 mg, 0.1 mmol, 1.0 equiv), β-ketoester 97a (40.4 mg, 0.2 

mmol, 2.0 equiv), base or additive (as indicated below) and another 0.5 mL of solvent 

were added.  The vial was sealed and stirred at 20 °C until allylic carbonate 98a was fully 

consumed, as indicated by TLC or UHPLC-MS anaylsis.  The reaction mixture was 

filtered through a celite pad, rinsed with CH2Cl2, and concentrated under reduced 

pressure.  The ratios of constitutional isomers (branched product to linear product: 

100a:101a) and diastereomers (dr) were determined by 1H NMR or UHPLC-MS.   

 

3.6.3. General procedure for the Ir-catalyzed asymmetric allylic alkylation of β-
ketoesters 
 
Note: the absolute configuration was determined only for compound 100f via X-ray 

analysis (vide infra, Appendix 4).  The absolute configuration for all other products 100 

has been inferred by analogy.  Isolated yields are reported in Figures 3.3.1.1 and 3.3.2.1 

(vida infra).  For respective HPLC or SFC conditions, please refer to Table 3.6.8.1. 
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added to a 2 dram scintillation vial equipped with a magnetic stirring bar.  The vial was 

then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating an orange 

solution.  Cinnamyl carbonate (98a) (38.3 mg, 0.2 mmol, 1.0 equiv), LiBr (17.3 mg, 0.2 

mmol, 1.0 equiv), β-ketoester 97a (80.8 mg, 0.4 mmol, 2.0 equiv) and another 1 mL of 

THF were added.  The vial was sealed and stirred at 20 °C until allylic carbonate 98a was 

fully consumed, as indicated by TLC or UHPLC-MS analysis.  THF was evaporated and 

the crude mixture was then dissolved in CH2Cl2, filtered through a celite pad, rinsed with 

CH2Cl2, and concentrated under reduced pressure.  The regioselectivity (branched 

product to linear product: b:l = 95:5) and diastereoselectivity (dr >20:1) were determined 

by 1H NMR or UHPLC-MS.  The residue was purified by silica gel flash chromatography 

(gradient elution, 2→5% EtOAc in hexanes) to afford 100a and 101a (62.6 mg, 98% 

combined yield).  Allylation product 100a was isolated as a white solid by silica gel 

chromatography (gradient elution, 0→2% EtOAc in hexanes).  >99% ee, [α]D
25 +26.3 (c 

1.11, CHCl3); Rf = 0.3 (5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.03 (dd, J 

= 7.9, 1.2 Hz, 1H), 7.42– 7.39 (m, 3H), 7.28–7.23 (m, 3H), 7.19–7.13 (m, 2H), 6.36 (dt, J 

= 16.8, 10.0 Hz, 1H), 5.21–5.12 (m, 2H), 4.46 (d, J = 10.0 Hz, 1H), 3.56 (s, 3H), 3.23 

(ddd, J = 17.1, 12.1, 4.7 Hz, 1H), 2.88 (ddd, J = 17.6, 5.0, 3.0 Hz, 1H), 2.60 (ddd, J = 

13.7, 4.7, 3.0 Hz, 1H), 2.10 (ddd, J = 13.6, 12.1, 5.0 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 193.2, 170.0, 143.1, 139.8, 136.6, 133.6, 132.5, 130.2, 128.8, 128.4, 128.2, 

126.9, 126.7, 117.9, 62.7, 53.9, 52.6, 28.8, 26.4; IR (Neat Film, NaCl) 3066, 3028, 2948, 

1731, 1685, 1636, 1599, 1491, 1453, 1433, 1358, 1298, 1283, 1238, 1214, 1169, 1108, 

1080, 1032, 1001, 980, 926, 892, 808, 743 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d 
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for C21H21O3 [M+H]+: 321.1485, found 321.1489; HPLC conditions: 2% IPA, 0.6 

mL/min, Chiralcel OD-H column, λ = 254 nm, tR (min): major = 13.80, minor = 17.89. 

 

3.6.4. Spectroscopic data for Ir-catalyzed allylic alkylation products 
 
(R)-methyl 2-((S)-1-(4-methoxyphenyl)allyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (100b) 

 

 

Ketoester 100b was isolated by silica gel chromatography (gradient elution, 0→5% 

EtOAc in hexanes) as a white solid.  >99% ee, [α]D
25 +38.5 (c 0.93, CHCl3); Rf = 0.3 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.03 (dd, J = 7.9, 1.4 Hz, 1H), 7.41 

(td, J = 7.5, 1.5 Hz, 1H), 7.37–7.31 (m, 2H), 7.31–7.21 (m, 1H), 7.21–7.12 (m, 1H), 

6.86–6.75 (m, 2H), 6.32 (dt, J = 16.8, 10.0 Hz, 1H), 5.20–5.09 (m, 2H), 4.41 (d, J = 9.9 

Hz, 1H), 3.75 (s, 3H), 3.56 (s, 3H), 3.23 (ddd, J = 17.1, 12.2, 4.6 Hz, 1H), 2.88 (ddd, J = 

17.6, 4.9, 2.9 Hz, 1H), 2.58 (ddd, J = 13.6, 4.7, 3.0 Hz, 1H), 2.11 (ddd, J = 13.6, 12.2, 5.0 

Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 193.3, 170.1, 158.4, 143.2, 136.8, 133.6, 132.5, 

131.8, 131.2, 128.8, 128.4, 126.7, 117.6, 113.5, 62.8, 55.3, 53.2, 52.6, 28.7, 26.4; IR 

(Neat Film, NaCl) 3073, 3003, 2950, 2836, 1732, 1687, 1636, 1608, 1601, 1581, 1511, 

1454, 1442, 1435, 1357, 1337, 1303, 1242, 1215, 1181, 1114, 1078, 1033, 1000, 981, 923, 

893, 834, 808, 749 cm-1; HRMS (ESI+) m/z calc’d for fragment C10H11O [M-

O CO2Me

100b

OMe
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C11H12O3+H]+: 147.0804, found 147.0807; HPLC conditions: 2% IPA, 0.6 mL/min, 

Chiralpak AD-H column, λ = 254 nm, tR (min): minor = 27.44, major = 37.29. 

 

(R)-methyl 2-((S)-1-(4-bromophenyl)allyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (100c) 

 

 

Ketoester 100c was isolated by silica gel chromatography (gradient elution, 0→3% 

EtOAc in hexanes) as a colorless oil.  99% ee, [α]D
25 +49.1 (c 1.18, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.02 (dd, J = 8.0, 1.4 Hz, 1H), 7.43 

(td, J = 7.5, 1.5 Hz, 1H), 7.39–7.35 (m, 2H), 7.32–7.27 (m, 2H), 7.27–7.25 (m, 1H), 7.15 

(dt, J = 7.7, 0.9 Hz, 1H), 6.29 (dt, J = 16.7, 10.0 Hz, 1H), 5.32–5.03 (m, 2H), 4.37 (d, J = 

9.9 Hz, 1H), 3.54 (s, 3H), 3.29–3.15 (m, 1H), 2.88 (ddd, J = 17.5, 4.9, 2.8 Hz, 1H), 2.57 

(ddd, J = 13.6, 4.7, 2.9 Hz, 1H), 2.09 (ddd, J = 13.5, 12.3, 4.9 Hz, 1H); 13C NMR (126 

MHz, CDCl3) δ 193.2, 169.9, 143.0, 139.0, 136.1, 133.8, 132.4, 132.0, 131.2, 128.8, 

128.4, 126.8, 121.0, 118.5, 62.5, 53.7, 52.7, 29.1, 26.4; IR (Neat Film, NaCl) 3074, 3025, 

2949, 1732, 1687, 1683, 1633, 1601, 1488, 1454, 1435, 1403, 1357, 1297, 1240, 1215, 

1170, 1141, 1112, 1075, 1032, 1010, 981, 925, 892, 831, 808, 750, 741 cm-1; HRMS 

(MM: ESI-APCI+) m/z calc’d for C21H20
79BrO3 [M+H]+: 399.0590, found 399.0585; 

HPLC conditions: 2% IPA, 0.6 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): 

minor = 19.71, major = 23.59.  

O CO2Me

100c

Br
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(R)-methyl 1-oxo-2-((S)-1-(4-(trifluoromethyl)phenyl)allyl)-1,2,3,4-tetrahydronaph-

thalene-2-carboxylate (100d) 

 

 

Ketoester 100d was isolated by silica gel chromatography (gradient elution, 0→5% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +32.4 (c 1.51, CHCl3); Rf = 0.3 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.03 (dd, J = 7.9, 1.4 Hz, 1H), 

7.57 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.44 (td, J = 7.5, 1.4 Hz, 1H), 7.28 (t, J 

= 7.5, 1H), 7.16 (d, J = 7.7 Hz, 1H), 6.34 (dt, J = 16.7, 10.1 Hz, 1H), 5.33–5.08 (m, 2H), 

4.45 (d, J = 10.0 Hz, 1H), 3.54 (s, 3H), 3.29–3.16 (m, 1H), 2.90 (ddd, J = 17.6, 4.9, 2.7 

Hz, 1H), 2.60 (ddd, J = 13.6, 4.7, 2.8 Hz, 1H), 2.11 (ddd, J = 13.5, 12.3, 5.0 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 193.1, 169.9, 144.1, 143.0, 135.8, 133.8, 132.4, 130.6, 129.1 

(q, 2JCF = 32.4 Hz), 128.8, 128.4, 126.8, 125.0 (q, 3JCF = 3.8 Hz), 124.3 (q, 1JCF = 272.0 

Hz), 118.8, 62.5, 54.1, 52.7, 29.3, 26.4; IR (Neat Film, NaCl) 3074, 2952, 1736, 1733, 

1689, 1683, 1616, 1601, 1454, 1435, 1413, 1327, 1241, 1217, 1166, 1123, 1070, 1019, 

927, 846, 809, 751, 742 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C22H20
19F3O3 

[M+H]+: 389.1359, found 389.1346;  SFC conditions: 5% IPA, 4.0 mL/min, Chiralpak 

AD-H column, λ = 254 nm, tR (min): minor = 3.38, major = 3.91.  

 

O CO2Me

100d

CF3
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(R)-methyl 1-oxo-2-((S)-1-(pyridin-3-yl)allyl)-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (100e) 

 

 

Ketoester 100e was isolated by silica gel chromatography (gradient elution 20→50% 

EtOAc in hexanes) as a white solid.  98% ee, [α]D
25 +64.6 (c 0.46, CHCl3); Rf = 0.4 (50% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.60 (s, 1H), 8.43 (dd, J = 5.0, 1.7 Hz, 

1H), 8.02 (dd, J = 8.3, 1.3 Hz, 1H), 7.93 (dt, J = 8.0, 2.0 Hz, 1H), 7.44 (td, J = 7.5, 1.5 

Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.23 (dd, J = 8.0, 4.8 Hz, 1H),  7.17 (d, J = 7.7 Hz, 1H), 

6.36–6.29 (m, 1H), 5.22–5.18 (m, 2H), 4.31 (d, J = 9.8 Hz, 1H), 3.53 (s, 3H), 3.21 (ddd, J 

= 17.2, 12.3, 4.7 Hz, 1H), 2.91 (ddd, J = 17.5, 4.9, 2.7 Hz, 1H), 2.60 (ddd, J = 13.5, 4.7, 

2.8 Hz, 1H), 2.17 (ddd, J = 13.4, 12.3, 4.9 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

193.3, 170.0, 150.9, 147.9, 142.9, 138.4, 136.0, 135.5, 133.9, 132.5, 128.8, 128.4, 126.9, 

123.3, 119.2, 62.4, 52.7, 52.5, 29.7, 26.5; IR (Neat Film, NaCl) 3029, 2950, 2848, 1732, 

1687, 1599, 1573, 1479, 1454, 1429, 1356, 1295, 1274, 1241, 1216, 1171, 1122, 1077, 

1025, 999, 979, 926, 807, 749, 716 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for 

C20H20NO3 [M+H]+: 322.1438, found 322.1442; HPLC conditions: 10% IPA, 1.0 

mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): minor = 13.45, major = 15.72. 

 

O CO2Me

100e

N
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(R)-methyl 1-oxo-2-((R)-1-(thiophen-2-yl)allyl)-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (100f) 

 

 

Ketoester 100f was isolated by silica gel chromatography (gradient elution, 0→3% 

EtOAc in hexanes) as a white solid. 95% ee, [α]D
25 –14.2 (c 0.86, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.08 (dd, J = 7.9, 1.2 Hz, 1H), 7.44 

(td, J = 7.5, 1.4 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.14 (dd, J = 

5.1, 1.2 Hz, 1H), 6.93 (ddd, J = 3.6, 1.2, 0.7 Hz, 1H), 6.88 (dd, J = 5.1, 3.5 Hz, 1H), 6.23 

(dt, J = 16.8, 10.0 Hz, 1H), 5.26–5.12 (m, 2H), 4.76 (d, J = 10.0 Hz, 1H), 3.59 (s, 3H), 

3.25 (ddd, J = 17.2, 12.0, 4.8 Hz, 1H), 2.89 (ddd, J = 17.5, 5.0, 3.1 Hz, 1H), 2.55 (ddd, J 

= 13.7, 4.8, 3.1 Hz, 1H), 2.12 (ddd, J = 13.6, 12.0, 5.0 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 193.2, 169.7, 143.2, 142.3, 135.9, 133.8, 132.3, 128.9, 128.4, 126.9, 126.8, 

126.4, 124.9, 118.3, 62.9, 52.7, 49.5, 28.0, 26.2; IR (Neat Film, NaCl) 3071, 2949, 2925, 

2853, 1731, 1686, 1639, 1599, 1484, 1453, 1433, 1354, 1293, 1272, 1240, 1214, 1170, 

1119, 1078, 1032, 979, 924, 891, 853, 807, 749 cm-1; HRMS (MM: ESI-APCI+) m/z 

calc’d for C19H19SO3 [M+H]+: 327.1049, found 327.1048; SFC conditions: 10% IPA, 4.0 

mL/min, Chiralcel OJ-H column, λ = 254 nm, tR (min): major = 2.96, minor = 3.63. 

 

O CO2Me

100f

S
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(R)-methyl 2-((R)-1-(furan-2-yl)allyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (100g) 

 

 

Ketoester 100g was isolated by silica gel chromatography (gradient elution, 0→3% 

EtOAc in hexanes) as a colorless oil.  95% ee, [α]D
25 +22.5 (c 1.17, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.45 

(td, J = 7.5, 1.5 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.25 (dd, J = 1.9, 0.9 Hz, 1H), 7.17 (d, 

J = 7.7 Hz, 1H), 6.25 (dd, J = 3.2, 1.8 Hz, 1H), 6.19–6.09 (m, 2H), 5.26–5.18 (m, 2H), 

4.63 (d, J = 9.8 Hz, 1H), 3.63 (s, 3H), 3.24 (ddd, J = 17.3, 12.2, 4.8 Hz, 1H), 2.88 (ddd, J 

= 17.5, 4.9, 3.1 Hz, 1H), 2.57 (ddd, J = 13.8, 4.8, 3.1 Hz, 1H), 1.99 (ddd, J = 13.8, 12.1, 

5.0 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 192.7, 169.7, 153.4, 143.3, 141.6, 133.7, 

133.6, 132.1, 128.9, 128.4, 126.7, 119.2, 110.3, 108.4, 62.2, 52.7, 47.9, 28.1, 26.1; IR 

(Neat Film, NaCl) 3116, 3075, 3024, 2950, 2848, 1734, 1731, 1689, 1639, 1600, 1500, 

1485, 1453, 1433, 1356, 1293, 1271, 1243, 1216, 1172, 1155, 1120, 1110, 1078, 1012, 

981, 965, 928, 905, 892, 806, 745, 736 cm-1; HRMS (ESI+) m/z calc’d for C19H19O4 

[M+H]+: 311.1278, found 311.1275; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak 

AD-H column, λ = 254 nm, tR (min): major = 5.21, minor = 6.03.  

 

O CO2Me

100g

O
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(R)-methyl 2-((S,E)-hexa-1,4-dien-3-yl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (100h) 

 

 

Ketoester 100h was isolated by silica gel chromatography (gradient elution, 0→2% 

EtOAc in hexanes) as a colorless oil.  90% ee, [α]D
25 +46.4 (c 1.02, CHCl3); Rf = 0.5 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.05 (dd, J = 7.9, 1.2 Hz, 1H), 7.45 

(td, J = 7.5, 1.5 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 7.7 Hz, 1H), 5.98–5.87 (m, 

1H), 5.74 (ddd, J = 15.3, 8.0, 1.6 Hz, 1H), 5.57–5.48 (m, 1H), 5.08–5.03 (m, 2H), 3.61 (s, 

3H), 3.47 (t, J = 8.4 Hz,  1H), 3.12 (ddd, J = 17.0, 12.0, 4.7 Hz, 1H), 2.91 (dt, J = 17.4, 

4.1 Hz, 1H), 2.45 (ddd, J = 13.7, 4.7, 3.3 Hz, 1H), 2.25 (ddd, J = 13.7, 11.9, 4.9 Hz, 1H), 

1.65 (ddd, J = 6.4, 1.7, 0.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 194.2, 171.0, 143.1, 

136.7, 133.6, 132.8, 129.8, 128.8, 128.2, 128.2, 126.8, 117.6, 62.0, 53.2, 52.4, 29.5, 26.5, 

18.2; IR (Neat Film, NaCl) 3075, 3028, 2951, 2854, 1732, 1688, 1600, 1454, 1438, 1356, 

1300, 1272, 1235, 1214, 1169, 1122, 1090, 999, 974, 917, 890, 803, 747 cm-1; HRMS 

(ESI+) m/z calc’d for C18H21O3 [M+H]+: 288.1485, found 288.1489; SFC conditions: 2% 

MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): minor  = 8.23, major = 

8.87. 

 

O CO2Me

100h
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(R)-ethyl 1-oxo-2-((S)-1-phenylallyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate 

(100i) 

 

 

Ketoester 100i was isolated by silica gel chromatography (gradient elution, 0→5% 

EtOAc in hexanes) as a white solid, >99% ee, [α]D
25 +42.7 (c 1.09, CHCl3); Rf = 0.3 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.03 (dd, J = 7.9, 1.4 Hz, 1H), 7.46–

7.39 (m, 3H), 7.29–7.23 (m, 3H), 7.20–7.12 (m, 2H), 6.37 (dt, J = 16.8, 10.0 Hz, 1H), 

5.20–5.07 (m, 2H), 4.40 (d, J = 9.9 Hz, 1H), 4.07–3.94 (m, 2H), 3.22 (ddd, J = 17.3, 12.2, 

4.8 Hz, 1H), 2.88 (ddd, J = 17.5, 5.0, 2.9 Hz, 1H), 2.58 (ddd, J = 13.6, 4.7, 3.0 Hz, 1H), 

2.12 (ddd, J = 13.6, 12.1, 5.0 Hz, 1H), 1.06 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 193.4, 169.7, 143.0, 140.0, 136.7, 133.5, 132.7, 130.3, 128.7, 128.3, 128.1, 

126.9, 126.7, 117.9, 62.3, 61.6, 54.1, 29.2, 26.4, 14.0; IR (Neat Film, NaCl) 3063, 3027, 

2978, 2934, 1727, 1699, 1689, 1685, 1599, 1490, 1452, 1363, 1298, 1282, 1235, 1212, 

1157, 1107, 1080, 1018, 926, 899, 787, 773, 743 cm-1; HRMS (MM: ESI-APCI+) m/z 

calc’d for C22H23O3 [M+H]+: 335.1642, found 335.1651; SFC conditions:  5% IPA, 2.5 

mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): minor = 13.82, major = 16.53. 

 

O Ph

CO2Et
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(R)-ethyl 2-oxo-1-((S)-1-phenylallyl)cyclopentanecarboxylate (103a) 

 

 

Ketoester 103a was isolated by silica gel chromatography (gradient elution, 0→5% 

EtOAc in hexanes) as a colorless oil.  99% ee, [α]D
25 –52.5 (c 1.04, CHCl3); Rf = 0.3 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.31–7.15 (m, 5H), 6.14–6.03 (m, 

1H), 5.20–5.10 (m, 2H), 4.37 (d, J = 8.9 Hz, 1H), 4.22–4.09 (m, 2H), 2.67 (dddd, J = 

13.4, 7.1, 3.5, 1.7 Hz, 1H), 2.24–2.14 (m, 1H), 2.13–2.02 (m, 1H), 1.84–1.71 (m, 1H), 

1.69–1.59 (m, 1H), 1.59–1.49 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 213.4, 169.2, 139.3, 136.3, 129.9, 128.4, 127.1, 117.8, 65.9, 61.9, 52.8, 38.9, 

28.5, 19.7, 14.2; IR (Neat Film, NaCl) 3083, 3062, 3030, 2979, 2891, 1752, 1719, 1639, 

1601, 1493, 1465, 1452, 1405, 1365, 1315, 1223, 1138, 1105, 1026, 1003, 923, 864, 826, 

757, 707 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C17H21O3 [M+H]+: 273.1485, 

found 273.1483; HPLC conditions:  2% IPA, 0.6 mL/min, Chiralcel OD-H column, λ = 

210 nm, tR (min): major = 11.23, minor = 12.73. 

CO2Et
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(R)-ethyl 2-oxo-1-((S)-1-phenylallyl)cyclohexanecarboxylate (103b) 

 

Ketoester 103b was isolated by silica gel chromatography (gradient elution, 0→5% 

EtOAc in hexanes) as a white solid.  98% ee, [α]D
25 +140.6 (c 1.25, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.36–7.30 (m, 2H), 7.29–7.22 (m, 

2H), 7.21–7.15 (m, 1H), 6.33 (ddd, J = 16.9, 10.2, 9.2 Hz, 1H), 5.13–4.99 (m, 2H), 4.11–

3.96 (m, 2H), 3.93 (d, J = 9.2 Hz, 1H), 2.47–2.39 (m, 2H), 2.36–2.29 (m, 1H), 1.92 

(dddd, J = 9.5, 4.8, 2.7, 1.5 Hz, 1H), 1.79–1.47 (m, 3H), 1.12 (t, J = 7.1 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 206.7, 170.8, 140.0, 137.5, 130.3, 128.0, 126.8, 117.4, 65.5, 

61.4, 54.6, 42.1, 35.0, 27.2, 22.8, 14.0; IR (Neat Film, NaCl) 3077, 3028, 2977, 2939, 

2865, 1714, 1635, 1600, 1491, 1452, 1388, 1365, 1340, 1309, 1262, 1231, 1204, 1133, 

1085, 1020, 1002, 919, 854, 756, 704 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for 

C18H23O3 [M+H]+: 287.1642, found 287.1639; SFC conditions: 10% IPA, 4.0 mL/min, 

Chiralpak IC column, λ = 210 nm, tR (min): minor = 1.69, major = 1.94. 

 

O Ph

CO2Et
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(R)-2-(trimethylsilyl)ethyl 2-oxo-1-((S)-1-phenylallyl)cyclohexanecarboxylate (103c) 

 

 

Ketoester 103c was isolated by silica gel chromatography (gradient elution, 0→2% i-

BuOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +91.6 (c 0.45, CHCl3); Rf = 0.4 

(10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.37–7.32 (m, 2H), 7.24 (ddd, J 

= 8.2, 6.9, 1.4 Hz, 2H), 7.21–7.15 (m, 1H), 6.34 (ddd, J = 16.9, 10.2, 9.2 Hz, 1H), 5.21–

4.86 (m, 2H), 4.05 (dddd, J = 58.0, 11.8, 10.8, 5.9 Hz, 2H), 3.92 (d, J = 9.2 Hz, 1H), 

2.46–2.40 (m, 2H), 2.38–2.28 (m, 1H), 1.98–1.87 (m, 1H), 1.80–1.71 (m, 1H), 1.72–1.47 

(m, 3H), 0.82 (qdd, J = 13.6, 11.7, 5.7 Hz, 2H), 0.01 (s, 9H); 13C NMR (126 MHz, 

CDCl3) δ 206.6, 170.9, 139.9, 137.4, 130.2, 127.9, 126.7, 117.3, 65.4, 63.7, 54.5, 42.0, 

34.9, 27.0, 22.7, 17.2, –1.6; IR (Neat Film, NaCl) 2950, 1712, 1452, 1250, 1231, 1133, 

921, 859, 837 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C21H30NaO3Si [M+Na]+: 

381.1856, found 381.1865; SFC conditions: 3% IPA, 2.5 mL/min, Chiralcel OJ–H 

column, λ = 210 nm, tR (min): minor = 1.93, major = 2.24. 

 

O Ph

CO2CH2CH2TMS
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(R)-methyl 4-isobutoxy-2-oxo-1-((S)-1-phenylallyl)cyclohex-3-enecarboxylate (103d) 

 

 

Ketoester 103d was isolated by silica gel chromatography (gradient elution, 0→10% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +31.5 (c 1.88, CHCl3); Rf = 0.4 

(10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.34–7.29 (m, 2H), 7.27–7.20 

(m, 2H), 7.20–7.13 (m, 1H), 6.24 (dt, J = 16.7, 10.2 Hz, 1H), 5.28 (s, 1H), 5.18 (ddd, J = 

16.8, 1.9, 0.8 Hz, 1H), 5.12 (dd, J = 10.0, 1.8 Hz, 1H), 4.62 (d, J = 10.4 Hz, 1H), 3.64 (s, 

3H), 3.53–3.45 (m, 2H), 2.79 (dddd, J = 18.3, 11.8, 5.1, 1.6 Hz, 1H), 2.43 (ddd, J = 13.4, 

5.1, 2.4 Hz, 1H), 2.26 (ddd, J = 18.2, 5.5, 2.4 Hz, 1H), 1.94 (dt, J = 13.3, 6.7 Hz, 1H), 

1.83 (ddd, J = 13.4, 11.8, 5.5 Hz, 1H), 0.91 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ 192.8, 177.2, 170.0, 139.7, 136.1, 130.2, 128.1, 126.8, 118.0, 102.9, 74.9, 61.1, 

52.6, 52.1, 27.7, 26.7, 25.2, 19.11, 19.08; IR (Neat Film, NaCl) 3073, 3029, 2958, 2874, 

1727, 1664, 1607, 1582, 1491, 1470, 1452, 1443, 1431, 1406, 1384, 1369, 1316, 1298, 

1231, 1193, 1177, 1140, 1116, 1079, 1012, 987, 921, 903, 844, 817, 788, 764, 724 cm-1; 

HRMS (MM: ESI-APCI+) m/z calc’d for C21H27O4 [M+H]+: 343.1904, found 343.1905; 

SFC conditions: 10% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 254 nm, tR (min): 

major = 3.71, minor = 6.24. 

 

O Ph

CO2Me
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(S)-methyl 4-oxo-3-((S)-1-phenylallyl)tetrahydro-2H-pyran-3-carboxylate (103e) 

 

 

Ketoester 103e was isolated by silica gel chromatography (gradient elution, 5→10% 

EtOAc in hexanes) as a colorless oil.  98% ee, [α]D
25 +71.1 (c 0.88, CHCl3); Rf = 0.2 

(10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.35–7.30 (m, 2H), 7.31–7.25 

(m, 2H), 7.24–7.19 (m, 1H), 6.43 (ddd, J = 16.9, 10.2, 9.4 Hz, 1H), 5.19–5.03 (m, 2H), 

4.28 (dd, J = 11.9, 1.2 Hz, 1H), 4.03 (dddd, J = 11.1, 6.2, 4.9, 1.3 Hz, 1H), 3.98 (d, J = 

9.4 Hz, 1H), 3.82 (dddd, J = 11.3, 9.0, 4.5, 0.6 Hz, 1H), 3.67 (d, J = 11.8 Hz, 1H), 3.61 

(s, 3H), 2.70 (ddd, J = 14.5, 8.9, 6.2 Hz, 1H), 2.57 (dt, J = 14.5, 4.7 Hz, 1H); 13C NMR 

(126 MHz, CDCl3) δ 202.8, 169.7, 138.6, 136.7, 129.8, 128.4, 127.4, 118.0, 73.2, 68.6, 

67.1, 52.4, 51.6, 41.9; IR (Neat Film, NaCl) 3063, 3029, 2973, 2951, 2863, 1746, 1716, 

1635, 1600, 1492, 1472, 1454, 1433, 1378, 1360, 1310, 1290, 1229, 1212, 1176, 1140, 

1112, 1085, 1033, 1001, 978, 925, 826, 763, 741 cm-1; HRMS (ESI+) m/z calc’d for 

C16H19O4 [M+H]+: 275.1278, found 275.1282; SFC conditions: 5% IPA, 2.5 mL/min, 

Chiralpak AD-H column, λ = 210 nm, tR (min): minor = 4.65, major = 4.95.  

 

O
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(S)-methyl 1-benzyl-4-oxo-3-((S)-1-phenylallyl)piperidine-3-carboxylate (103f) 

 

 

Ketoester 103f was isolated by silica gel chromatography (gradient elution, 5→10% 

EtOAc in hexanes) as a colorless oil.  97% ee, [α]D
25 +34.3 (c 0.87, CHCl3); Rf = 0.3 

(10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.39–7.29 (m, 5H), 7.28–7.24 

(m, 2H), 7.24–7.14 (m, 3H), 6.44 (ddd, J = 16.9, 10.2, 9.3 Hz, 1H), 5.12–5.04 (m, 2H), 

4.03 (d, J = 9.4 Hz, 1H), 3.59 (s, 3H), 3.64–3.54 (m, 2H), 3.15 (dd, J = 11.9, 2.0 Hz, 1H), 

2.82–2.75 (m, 1H), 2.71 (ddd, J = 14.1, 8.5, 5.7 Hz, 1H), 2.65–2.56 (m, 2H), 2.53 (ddd, J 

= 13.9, 5.4, 4.3 Hz, 1H);  13C NMR (126 MHz, CDCl3) δ 205.3, 170.6, 139.4, 138.0, 

137.4, 129.9, 129.2, 128.5, 128.2, 127.5, 127.1, 117.6, 66.1, 62.0, 60.2, 53.4, 53.0, 52.0, 

40.9; IR (Neat Film, NaCl) 3060, 3027, 2949, 2811, 2765, 1718, 1631, 1600, 1584, 1493, 

1468, 1452, 1432, 1364, 1345, 1310, 1286, 1228, 1194, 1138, 1073, 1047, 1028, 1001, 

973, 922, 821, 740 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C23H26NO3 [M+H]+: 

364.1907, found 364.1908; SFC conditions: 10% IPA, 4.0 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 2.49, minor = 2.94. 
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3.6.5. General procedure for Pd-catalyzed allylic alkylation 
 

 

(R)-2-allyl-2-((S)-1-phenylallyl)cyclohexanone (106a). To a 0.5 dram scintillation vial 

equipped with a magnetic stir bar were added Pd2(dba)3 (1.3 mg, 0.0014 mmol), L8 (1.2 

mg, 0.0035 mmol), TBAT (16.6 mg, 0.031 mmol) and THF (0.9 mL) in a nitrogen-filled 

glove box. The dark purple mixture was stirred at ambient glove box temperature (ca. 30 

°C) for 35 minutes at which point the mixture had become red-orange.  Ketoester 103c 

(10.0 mg, 0.028 mmol) and allyl methylcarbonate (4.1 mg, 0.035 mmol) were then added 

neat to the reaction mixture.  The resulting yellow-green reaction mixture was stirred at 

20 °C until full conversion of the starting material was indicated by TLC analysis 

(reaction times typically ranged from 24 to 36 hours).  The vial was removed from the 

glove box, uncapped and diluted with 2 ml of hexanes.  Filtration through a celite pad 

afforded the crude residue, which was concentrated in vacuo and analyzed by 1H NMR to 

determine the diastereomeric ratio of 106a and 107a (2:1).  The residue was purified by 

silica gel flash chromatography (gradient elution, 0→2% EtOAc in hexanes) to afford 

106a and 107a (6.5 mg, 91% combined yield) as a colorless oil. 99% ee (The 

enantiomeric excesses of the products 106a and 107a are inferred from the corresponding 

Ir-catalyzed allylic alkylation products (103c)). Spectroscopic data for compound 106a is 

as follows: [α]D
25 –1.9 (c 0.48, CHCl3); Rf = 0.3 (0.4% EtOAc in hexanes); 1H NMR (300 

MHz, CDCl3) δ 7.33–7.28 (m, 2H), 7.25–7.20 (m, 3H), 6.20 (dt, J = 16.8, 10.1 Hz, 1H), 

Pd2(dba)3 (5 mol %)
L1 (12.5 mol %),
TBAT, THF, 25 °C

MeO2CO
(1.2 equiv)

PhO

106a

OPh

O

O
TMS

PhO

107a

+

103c
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5.68 (dddd, J = 17.1, 10.1, 8.8, 5.4 Hz, 1H), 5.09 (ddd, J = 10.1, 1.6, 0.4 Hz, 1H), 5.08 

(ddd, J = 16.7, 1.7, 0.8 Hz, 1H), 4.98 (dddd, J = 10.2, 2.3, 1.3, 0.7 Hz, 1H), 4.92–4.86 (m, 

1H), 3.92 (d, J = 9.9 Hz, 1H), 2.75 (dd, J = 13.7, 5.4 Hz, 1H), 2.56–2.10 (m, 2H), 2.11–

1.59 (m, 7H); 13C NMR (126 MHz, CDCl3) δ  212.9, 140.1, 136.3, 134.9, 130.0, 128.1, 

126.8, 117.9, 117.4, 55.7, 52.8, 40.5, 37.6, 31.9, 26.2, 21.1; IR (Neat Film, NaCl) 3073, 

3028, 2937, 2864, 1833, 1701, 1636, 1600, 1452, 1432, 1313, 1219, 1125, 1056, 1002, 

916, 849, 787, 765 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C18H23O [M+H]+: 

255.1754; found 255.1743.  Spectroscopic data for compound 107a is as follows: [α]D
25 

+6.1 (c 0.75, CHCl3); Rf = 0.3 (0.4% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 

7.33–7.28 (m, 2H), 7.25–7.20 (m, 3H), 6.19 (dt, J = 16.8, 10.1 Hz, 1H), 5.65 (dddd, J = 

17.1, 10.1, 8.8, 5.4 Hz, 1H), 5.17 (dd, J = 1.7, 1.0, 1H), 5.15 (dd, J = 1.7, 1.0, 1H) 5.07–

5.02 (m, 2H) 3.95 (d, J = 8.5, 1H), 2.75 (dd, J = 13.7, 5.4 Hz, 1H), 2.56–2.10 (m, 2H), 

2.11–1.59 (m, 7H); 13C NMR (126 MHz, CDCl3) δ  213.2, 140.3, 138.0, 134.1, 129.8, 

128.3, 126.8, 118.0, 117.8, 55.6, 53.4, 40.6, 38.6, 32.2, 25.6, 20.8; IR (Neat Film, NaCl) 

3073, 3028, 2937, 2864, 1833, 1701, 1636, 1600, 1452, 1432, 1313, 1219, 1125, 1056, 

1002, 916, 849, 787, 765 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C18H23O 

[M+H]+: 255.1754; found 255.1750.  
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(R)-2-((S)-1-phenylallyl)-2-(2-phenylallyl)cyclohexanone (106b) 

 

 

Ketone 106b was isolated by silica gel chromatography (gradient elution, 0→1% Et2O in 

hexanes) as a colorless oil.   [α]D
25 –50.9 (c 0.22, CHCl3); Rf = 0.5 (10% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.32–7.13 (m, 10H), 6.24 (dt, J = 16.8, 10.1 Hz, 

1H), 5.29 (d, J = 1.8 Hz, 1H), 5.22–5.02 (m, 3H), 3.92 (d, J = 10.0 Hz, 1H), 2.95 (ddd, J 

= 377.8, 13.8, 0.9 Hz, 2H), 2.15–2.00 (m, 2H), 1.76–1.57 (m, 4H), 1.54–1.43 (m, 2H); 

13C NMR (126 MHz, CDCl3) δ 212.8, 145.6, 142.8, 140.3, 136.2, 129.9, 128.1, 128.0, 

127.0, 126.7, 126.5, 118.2, 117.7, 56.6, 54.4, 40.6, 37.6, 30.6, 24.8, 21.4; IR (Neat Film, 

NaCl) 2937, 2859, 1701, 1624, 1597, 1451, 1310, 1256, 1207, 1125 910, 779 cm-1; 

HRMS (MM: ESI-APCI+) m/z calc’d for C24H26O [M+H]+: 331.2056, found 331.2065. 

 

(R)-2-(2-methylallyl)-2-((S)-1-phenylallyl)cyclohexanone (106c) 

 

 

Ketone 106c was isolated by silica gel chromatography (gradient elution, 0→2% EtOAc 

in hexanes) as a colorless oil.  [α]D
25 –41.7 (c 0.46, CHCl3); Rf = 0.4 (5% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.33–7.28 (m, 2H), 7.25–7.19 (m, 3H), 6.19 (dt, 

PhO
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Ph

PhO
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J = 16.8, 10.1 Hz, 1H), 5.08 (dd, J = 10.2, 1.6 Hz, 1H), 5.03 (ddd, J = 16.8, 1.6, 0.8 Hz, 

1H), 4.74 (ddt, J = 2.7, 1.8, 0.9 Hz, 1H), 4.52 (ddt, J = 2.4, 1.6, 0.9 Hz, 1H), 3.86 (d, J = 

10.0 Hz, 1H), 2.90 (d, J = 13.1 Hz, 1H), 2.37 (dtd, J = 16.2, 4.9, 1.6 Hz, 1H), 2.25 (ddd, J 

= 15.9, 11.3, 6.0 Hz, 1H), 2.00 (d, J = 13.7 Hz, 1H), 1.93–1.78 (m, 2H), 1.74–1.63 (m, 

4H), 1.59 (dt, J = 1.4, 0.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 212.8, 143.0, 140.3, 

136.5, 130.1, 128.2, 126.9, 117.4, 115.3, 55.5, 54.2, 40.7, 40.2, 30.8, 25.5, 25.1, 21.4; IR 

(Neat Film, NaCl) 3071, 3030, 2940, 2865, 1704, 1637, 1599, 1452, 1375, 1314, 1209, 

1124, 994, 916, 893, 756 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C19H25O 

[M+H]+: 269.1920; found 269.1920. 

 

3.6.6. Determination of the relative configuration of compound 106a 
 

The relative configuration of compound 106a was determined via NOE analysis 

of the corresponding spirocycle, 108, obtained via ring-closing metathesis.  The 

experimental procedure by which 108 was generated is as follows:   

 

 

(1S,5R)-1-phenylspiro[4.5]dec-2-en-6-one (108). To a flask charged with Grubbs-

Hoveyda second generation catalyst (1.85 mg, 0.0030 mmol) under an atmosphere of 

argon was added a solution of cyclohexanone 106a (15.0 mg, 0.059 mmol) in 6 mL 

benzene. The reaction mixture was heated to 50 °C and stirred for 4 hours, at which point 

the reaction was determined to be complete by TLC analysis.  The reaction vessel was 

PhO

106a
PhH, 50 °C
(5 mol %)

O

108

Ph

Grubbs-Hoveyda 2

94% yield
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cooled to 25 °C and 0.5 mL of ethyl vinyl ether was added. After 30 minutes of stirring, 

the crude mixture was purified directly by silica gel chromatography (gradient elution, 

0→3% EtOAc in hexanes) to afford spirocycle 108 (12.7 mg, 0.056 mmol, 94% yield) as 

a colorless oil.  [α]D
25 –133.6 (c 0.25, CHCl3); Rf = 0.5 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3)  δ 7.32–7.24 (m, 2H), 7.24–7.18 (m, 1H), 7.18–7.12 (m, 2H), 

6.01–5.52 (m, 1H), 4.75 (p, J = 2.1 Hz, 1H), 2.66–2.56 (m, 2H), 2.56–2.44 (m, 2H), 

1.95–1.85 (m, 1H), 1.64–1.49 (m, 3H), 1.42 (dtd, J = 14.66, 3.6, 2.3 Hz, 1H), 1.35–0.72 

(m, 1H), 1.01 (ddd, J = 13.9, 11.3, 4.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ  212.9, 

140.6, 133.8, 129.3, 128.0, 127.4, 126.4, 59.8, 53.7, 42.8, 39.6, 35.5, 26.8, 22.2; IR (Neat 

Film, NaCl) 3944, 3693, 3053, 2986, 2941, 2866, 2685, 2305, 1698, 1422, 1264, 1129, 

896, 756 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C16H19O [M+H]+: 227.1430; 

found 227.1431. 

 
 
3.6.7. Spectroscopic data for new phosphinooxazoline ligands 

 

Phosphinooxazoline ligands L14 and L15 employed in these studies were 

generously donated by Dr. Robert A. Craig. They were generated following the method 

reported by McDougal and Stoltz. Comprehensive preparatory detail can be found in the 

Thesis of Dr. Craig.   
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(S)-2-(2-(bis(4-(trifluoromethyl)phenyl)phosphino)phenyl)-4-isopropyl-5,5-diphenyl-

4,5-dihydrooxazole (L14) 

 

 

 [α]D
25 –163.33 (c 0.75, CHCl3,); Rf = 0.3 (4:1 hexanes in dichloromethane); 1H NMR 

(500 MHz, C6D6)  δ 8.22 (ddd, J = 7.8, 3.9, 1.4 Hz, 1H), 7.29 (ddd, J = 49.4, 8.4, 1.4 Hz, 

4H), 7.21–7.14 (m, 5H), 7.10–7.02 (m, 7H), 7.02–6.94 (m, 3H), 6.89 (td, J = 7.6, 1.4 Hz, 

1H), 6.81 (ddd, J = 7.9, 3.4, 1.3 Hz, 1H), 4.66 (d, J = 4.5 Hz, 1H), 1.74 (td, J = 6.6, 4.6 

Hz, 1H), 0.83 (d, J = 6.7 Hz, 3H), 0.59 (d, J = 6.5 Hz, 3H);  13C NMR (126 MHz, C6D6) δ 

160.1 (d, JCP = 3.2 Hz), 145.8 , 144.4–143.9 (m) 141.2 , 137.9 (d, JCP = 27.4 Hz), 134.9, 

134.5 (dd, JCP = 70.9, 20.8 Hz), 132.6 (d, JCP = 21.4 HZ), 131.3 , 130.6 (dd, JCP = 32.3, 

18.4 Hz), 130.3 (d, JCP = 3.2 Hz), 129.1, 127.5 (d, JCF = 11.2 Hz), 126.8,  125.3 (ddt, JCF 

= 14.7, 7.6, 3.8 Hz), 124.8 (d, JCF = 273.5 Hz), 93.1, 81.1 (d JCP = 2.0 Hz), 30.60, 22.0; 

19F NMR (282 MHz, C6D6) δ –62.44, –62.53; 31P NMR (121MHz, C6D6) δ –7.59; IR 

(Neat Film, NaCl) 3060, 2961, 1654, 1605, 1493, 1470, 1448, 1396, 1323, 1166, 1127, 

1060, 1016, 954, 832, 756 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for 

C28H30
19F6NOP [M+H]+: 662.2042, found 662.2080.  
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(R)-2-(2-(bis(4-(trifluoromethyl)phenyl)phosphino)-5-(trifluoromethyl)phenyl)-4-

isopropyl-5,5-dimethyl-4,5-dihydrooxazole (L15) 

 

 

 

[α]D
25 +9.45 (c 3.20, CHCl3,); Rf = 0.3 (4:1 hexanes in dichloromethane); 1H NMR (500 

MHz, C6D6)  δ 8.57 (dd, J  = 3.3, 2.0 Hz, 1H), 7.41–7.36 (m, 4H), 7.21–7.15 (m, 4H), 

7.10 (dd, J = 8.2, 2.0 Hz, 1H), 6.78 (dd, J = 8.0, 3.0 Hz, 1H), 3.22 (d, J = 8.4 Hz, 1H), 

1.55 (ddt, J = 13.0, 8.3, 6.5 Hz, 1H), 1.21 (s, 3H), 1.08 (s, 3H), 0.99 (d, J = 6.5 Hz, 3H), 

0.75 (d, J = 6.5 Hz, 3H);  13C NMR (126 MHz, C6D6) δ  159.1 (d, JCP = 4.0 Hz), 143.5 (t, 

JCP = 14.8 Hz), 142.7 (d, JCP = 30.6 Hz), 134.5 (dd, JCP = 21.3, 15.7 Hz), 133.7 (d, JCP = 

19.5 Hz), 131.1 (q, JCF = 3.6 Hz), 126.4–126.1 (m), 125.9 (d, JCF = 3.2 Hz), 126.5–125.0 

(m), 123.8 (d, JCF = 3.3 Hz), 123.3, 87.2, 81.7 (d, JCP = 1.5 Hz), 29.1, 28.8, 21.1, 20.8, 

20.8 (d, JCP = 1.8 Hz); 19F NMR (282 MHz, C6D6) δ –62.63, –62.85; 31P NMR (121MHz, 

C6D6) δ –7.10; IR (Neat Film, NaCl) 2974, 1652, 1397, 1323, 1165, 1128, 1060, 1017, 

832, 756 cm–1; HRMS (FAB+) m/z calc'd for C29H26O19F9NP [M+H]+: 606.1608, found 

606.1585.  

P N

O

CF3

F3C

CF3

L15
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3.6.8 Determination of enantiomeric excess 
 
Table 3.6.8.1. Determination of enantiomeric excess 
 

O CO2Me OMe

O Ph

CO2Me

O CO2Me Br

O CO2Me CF3

O CO2Me

S

O CO2Me

O

O CO2Me

N

O CO2Me

entry compound analytic conditions ee (%)

1

2

3

4

5

6

7

8

HPLC
Chiralcel OD-H, ∈≈ = 254 nm
2% IPA/hexanes, 0.6 mL/min
tR (min): major 13.80, minor 17.89

HPLC
Chiralpak AD-H, ∈≈ = 254 nm
2% IPA/hexanes, 0.6 mL/min
tR (min): minor 27.44, major 37.29

>99

>99

99

>99

98

95

95

90

HPLC
Chiralpak AD-H, ∈≈ = 254 nm
2% IPA/hexanes, 0.6 mL/min
tR (min): minor 19.71, major 23.59

SFC
Chiralpak AD-H, ∈≈ = 254 nm
5% IPA/CO2, 4.0 mL/min
tR (min): minor 3.38, major 3.91

HPLC
Chiralpak AD-H, ∈≈ = 254 nm
90% IPA/hexanes, 1.0 mL/min
tR (min): minor 13.45, major 15.72

SFC 
Chiralcel OJ-H, ∈≈ = 254 nm
10% IPA/CO2, 4.0 mL/min, 
tR (min): major 2.96, minor 3.63

SFC 
Chiralpak AD-H, ∈≈ = 254 nm
10% IPA/CO2, 2.5 mL/min, 
tR (min): major 5.21, minor 6.03

SFC
Chiralpak IC, ∈≈ = 254 nm
2% MeOH/CO2, 2.5 mL/min,
tR (min): minor 8.23, major 8.87
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Table 3.6.8.2 Determination of enantiomeric excess continued 

 

 

 

 

 

 

 

 

O Ph

CO2Et

O Ph

CO2CH2CH2TMS

O Ph

CO2Me
i-BuO

O

O Ph

CO2Me

O Ph

CO2Et

CO2Et

O Ph

N
Bn

O Ph

CO2Me

9

10

11

12

13

14

15

>99

99

98

>99

>99

98

97

SFC
Chiralpak AD-H, ∈≈ = 254 nm
5% IPA/CO2, 2.5 mL/min,
tR (min): minor 13.82, major 16.53

HPLC
Chiralcel OD-H, ∈≈ = 220 nm
2% IPA/hexanes, 0.6 mL/min
tR(min): major 11.23, minor 12.73

SFC
Chiralpak IC,  ∈≈ = 210 nm
10% IPA/CO2, 4.0 mL/min
tR (min): minor 1.69, major 1.94

SFC
Chiralcel OD-H, ∈≈ = 254 nm
10% IPA/CO2, 2.5 mL/min
tR (min): major 3.71, minor 6.24

SFC
Chiralpak AD-H, ∈≈ = 210 nm
5% IPA/CO2, 2.5 mL/min
tR (min): minor 4.65, major 4.95

SFC
Chiralpak AD-H, ∈≈ = 210 nm
10% IPA/CO2, 4.0 mL/min
tR (min): major 2.49, minor 2.94

SFC
Chiralcel OJ-H,  ∈≈ = 210 nm
3% IPA/CO2, 2.5 mL/min
tR (min): minor 1.93, major 2.24

entry compound analytic conditions ee (%)
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Figure A3.2  Infrared spectrum (thin film/NaCl) of compound 100a. 

Figure A3.3  13C NMR (125 MHz, CDCl3) of compound 100a. 
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Figure A3.6  Infrared spectrum (thin film/NaCl) of compound 100b. 

Figure A3.6  13C NMR (125 MHz, CDCl3) of compound 100b. 
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Figure A3.8  Infrared spectrum (thin film/NaCl) of compound 100c. 

Figure A3.9  13C NMR (125 MHz, CDCl3) of compound 100c. 
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Figure A3.11  Infrared spectrum (thin film/NaCl) of compound 100d. 

Figure A3.12  13C NMR (125 MHz, CDCl3) of compound 100d. 
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Figure A3.14  Infrared spectrum (thin film/NaCl) of compound 100e. 

Figure A3.15  13C NMR (125 MHz, CDCl3) of compound 100e. 
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Figure A3.17  Infrared spectrum (thin film/NaCl) of compound 100f. 

Figure A3.18  13C NMR (125 MHz, CDCl3) of compound 100f. 

284



Appendix 3 – Spectra Related to Chapter 3 
 

�
�

	
�



�

�
�

�
�
�

�
�
�

  

Fi
gu

re
 A

3.
19

  1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
10
0g

. 

O
CO

2M
e

10
0g

O

285



Appendix 3 – Spectra Related to Chapter 3 
 

020406080100120140160180200
ppm

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A3.20  Infrared spectrum (thin film/NaCl) of compound 100g. 

Figure A3.21  13C NMR (125 MHz, CDCl3) of compound 100g. 
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Figure A3.23  Infrared spectrum (thin film/NaCl) of compound 100h. 

Figure A3.24  13C NMR (125 MHz, CDCl3) of compound 100h. 
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Figure A3.26  Infrared spectrum (thin film/NaCl) of compound 100i. 

Figure A3.27  13C NMR (125 MHz, CDCl3) of compound 100i. 
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Figure A3.29  Infrared spectrum (thin film/NaCl) of compound 103a. 

Figure A3.30  13C NMR (125 MHz, CDCl3) of compound 103a. 
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Figure A3.32  Infrared spectrum (thin film/NaCl) of compound 103b. 

Figure A3.33  13C NMR (125 MHz, CDCl3) of compound 103b. 
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Figure A3.35  Infrared spectrum (thin film/NaCl) of compound 103c. 

Figure A3.36  13C NMR (125 MHz, CDCl3) of compound 103c. 
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Figure A3.38  Infrared spectrum (thin film/NaCl) of compound 103d. 

Figure A3.39  13C NMR (125 MHz, CDCl3) of compound 103d. 
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Figure A3.41  Infrared spectrum (thin film/NaCl) of compound 103e. 

Figure A3.42  13C NMR (125 MHz, CDCl3) of compound 103e. 
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Figure A3.44  Infrared spectrum (thin film/NaCl) of compound 103f. 

Figure A3.44  13C NMR (125 MHz, CDCl3) of compound 103f. 
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Figure A3.47  Infrared spectrum (thin film/NaCl) of compound 106a and 107a. 

Figure A3.48  13C NMR (125 MHz, CDCl3) of compound 106a and 107a. 
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Figure A3.50  Infrared spectrum (thin film/NaCl) of compound 106b. 

Figure A3.51  13C NMR (125 MHz, CDCl3) of compound 106b. 
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Figure A3.53  Infrared spectrum (thin film/NaCl) of compound 106c. 

Figure A3.54  13C NMR (125 MHz, CDCl3) of compound 106c. 
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Figure A3.56  Infrared spectrum (thin film/NaCl) of compound 108. 

Figure A3.57  13C NMR (125 MHz, CDCl3) of compound 108. 
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Figure A3.59  Infrared spectrum (thin film/NaCl) of compound L14. 

Figure A3.60  13C NMR (125 MHz, C6D6) of compound L14. 
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Figure A3.64  Infrared spectrum (thin film/NaCl) of compound L15. 

Figure A3.65  13C NMR (125 MHz, C6D6) of compound L15. 
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                          APPENDIX 4 

X-ray Crystallography Reports 

Relevant to Chapter 3 

 

A4.1 CRYSTAL STRUCTURE ANALYSIS FOR COMPOUND 100f 

 Ketoester 100f (>99% ee) was recrystallized from i-PrOH/hexanes (liquid/liquid 

diffusion) to provide suitable crystals for X-ray analysis, mp = 98-99 °C. NOTE: 

Crystallographic data have been deposited in the Cambridge Database (CCDC), 12 Union 

Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by 

quoting the publication citation and the deposition number CCDC 939243. 
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Figure A4.1.1. ORTEP drawing of 100f.  

 

 

 

 

 

Table A4.1. Crystal Data and Structure Analysis Details for allylation ketoester 100f. 

 
Empirical formula  C19 H18 O3 S 

Formula weight  326.39 

Crystallization solvent  i-PrOH/hexanes 

Crystal shape  block 

Crystal color  colourless  

Crystal size 0.13 x 0.23 x 0.29 mm 

 

 Data Collection  
Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker SMART 1000 ccd 

Wavelength  0.71073 Å MoK 

Data collection temperature  100 K 

Theta range for 9849 reflections used 

in lattice determination  2.30 to 30.92° 

Unit cell dimensions a = 8.4853(3) Å a= 90° 



Appendix 4 — X-ray Crystallography Reports Relevant to Chapter 3 321 

 b = 10.8613(4) Å b= 90° 

 c = 17.6979(6) Å g = 90° 

Volume 1631.06(10) Å
3
 

Z 4 

Crystal system  orthorhombic 

Space group  P 21 21 21   (# 19) 

Density (calculated) 1.329 g/cm
3
 

F(000) 688 

Theta range for data collection 2.2 to 36.7° 

Completeness to theta = 25.000° 99.9%  

Index ranges -14 £ h £ 14, -18 £ k £ 18, -29 £ l £ 29 

Data collection scan type  and scans 

Reflections collected 49310 

Independent reflections 7841 [Rint= 0.0476] 

Reflections > 2s(I) 6228  

Average s(I)/(net I) 0.0436 

Absorption coefficient 0.21 mm-1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9025  

 

 Structure Solution and Refinement  
Primary solution method  dual 

Secondary solution method  ? 

Hydrogen placement  difmap 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7841 / 0 / 303 

Treatment of hydrogen atoms  refall 

Goodness-of-fit on F2 1.55 

Final R indices [I>2s(I), 6228 reflections] R1 = 0.0483, wR2 = 0.0806 

R indices (all data) R1 = 0.0694, wR2 = 0.0846 

Type of weighting scheme used calc 

Weighting scheme used   

Max shift/error  0.000 

Average shift/error  0.000 

Absolute structure parameter 0.01(3) 

Extinction coefficient n/a 
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Largest diff. peak and hole 0.37 and -0.24 e·Å-3 

 

_refine_ls_abs_structure_details; 

Flack x determined using 2400 quotients [(I+)-(I-)]/[(I+)+(I-)]; 

(Parsons and Flack (2004), Acta Cryst. A60, s61). 

_refine_ls_abs_structure_Flack    0.01(3) 

_refine_ls_abs_structure_Hooft    0.02(3) 

 Programs Used  
Cell refinement   SAINT V8.27B (Bruker-AXS, 2007) 

Data collection   Bruker SMART v5.054 (Bruker-AXS, 2007) 

Data reduction   SAINT V8.27B (Bruker-AXS, 2007) 

Structure solution   SHELXT (Sheldrick, 2012) 

Structure refinement   SHELXL-2013/2 (Sheldrick, 2013) 

Graphics  DIAMOND 3 (Crystal Impact, 1999) 

 

 

 

 

 

Table A4.2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for 100f.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  

_______________________________________________________________________ 
 x y z Ueq 

_______________________________________________________________________ 
S(1) 9499(4) 3027(2) 9424(2) 26(1) 

S(1A) 7396(4) 1194(2) 8920(1) 26(1) 

O(1) 10909(1) 3864(1) 7769(1) 20(1) 

O(2) 6712(1) 3819(1) 6298(1) 22(1) 

O(3) 8198(1) 5196(1) 6915(1) 20(1) 

C(1) 8415(2) 3108(1) 7316(1) 14(1) 

C(2) 10216(2) 3266(1) 7292(1) 14(1) 

C(3) 11064(2) 2667(1) 6651(1) 14(1) 

C(4) 12665(2) 2961(1) 6537(1) 18(1) 

C(5) 13491(2) 2453(2) 5941(1) 21(1) 

C(6) 12737(2) 1641(2) 5451(1) 21(1) 
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C(7) 11165(2) 1346(1) 5556(1) 18(1) 

C(8) 10300(2) 1842(1) 6161(1) 14(1) 

C(9) 8605(2) 1477(1) 6273(1) 16(1) 

C(10) 7999(2) 1793(1) 7062(1) 17(1) 

C(11) 7676(2) 4054(1) 6775(1) 15(1) 

C(12) 7433(2) 6145(2) 6468(1) 27(1) 

C(13) 7740(2) 3432(1) 8120(1) 16(1) 

C(14) 8255(2) 2565(1) 8741(1) 19(1) 

C(15) 9443(3) 1759(2) 9876(1) 44(1) 

C(16) 8455(3) 892(2) 9630(1) 42(1) 

C(17) 7757(14) 1354(11) 8921(7) 51(4) 

C(17A) 9366(19) 2793(11) 9301(7) 45(3) 

C(18) 5962(2) 3506(2) 8090(1) 18(1) 

C(19) 5128(2) 4517(2) 8192(1) 25(1) 

______________________________________________________________________  

 

 
Table A4.3.  Bond lengths [Å] and angles [°] for 100f. 

_______________________________________________________________________  
S(1)-C(14)  1.681(3) 

S(1)-C(15)  1.594(4) 

S(1A)-C(14)  1.688(3) 

S(1A)-C(16)  1.579(3) 

O(1)-C(2)  1.2177(17) 

O(2)-C(11)  1.2030(18) 

O(3)-C(11)  1.3403(17) 

O(3)-C(12)  1.452(2) 

C(1)-C(2)  1.538(2) 

C(1)-C(10)  1.539(2) 

C(1)-C(11)  1.539(2) 

C(1)-C(13)  1.5733(19) 

C(2)-C(3)  1.492(2) 

C(3)-C(4)  1.409(2) 

C(3)-C(8)  1.406(2) 

C(4)-H(4)  0.967(17) 

C(4)-C(5)  1.380(2) 

C(5)-H(5)  0.950(19) 
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C(5)-C(6)  1.394(2) 

C(6)-H(6)  0.958(18) 

C(6)-C(7)  1.385(2) 

C(7)-H(7)  0.963(16) 

C(7)-C(8)  1.405(2) 

C(8)-C(9)  1.505(2) 

C(9)-H(9A)  0.942(17) 

C(9)-H(9B)  1.013(17) 

C(9)-C(10)  1.527(2) 

C(10)-H(10A)  0.977(17) 

C(10)-H(10B)  0.966(18) 

C(12)-H(12A)  0.96(2) 

C(12)-H(12B)  1.03(2) 

C(12)-H(12C)  1.02(2) 

C(13)-H(13)  0.996(18) 

C(13)-C(14)  1.511(2) 

C(13)-C(18)  1.511(2) 

C(14)-C(17)  1.418(11) 

C(14)-C(17A)  1.391(12) 

C(15)-H(15)  0.90(3) 

C(15)-C(16)  1.334(3) 

C(15)-C(17A)  1.517(15) 

C(16)-H(16)  0.98(3) 

C(16)-C(17)  1.476(12) 

C(17)-H(17)  1.04(4) 

C(17A)-H(17A)  0.97(5) 

C(18)-H(18)  0.950(18) 

C(18)-C(19)  1.319(2) 

C(19)-H(19A)  0.97(2) 

C(19)-H(19B)  1.01(2) 

 

C(15)-S(1)-C(14) 94.87(18) 

C(16)-S(1A)-C(14) 95.02(18) 

C(11)-O(3)-C(12) 114.07(12) 

C(2)-C(1)-C(10) 108.86(12) 

C(2)-C(1)-C(11) 108.20(11) 

C(2)-C(1)-C(13) 111.27(11) 
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C(10)-C(1)-C(13) 112.89(12) 

C(11)-C(1)-C(10) 110.12(12) 

C(11)-C(1)-C(13) 105.36(11) 

O(1)-C(2)-C(1) 121.30(13) 

O(1)-C(2)-C(3) 121.79(13) 

C(3)-C(2)-C(1) 116.91(12) 

C(4)-C(3)-C(2) 118.41(13) 

C(8)-C(3)-C(2) 121.60(13) 

C(8)-C(3)-C(4) 119.98(13) 

C(3)-C(4)-H(4) 118.7(10) 

C(5)-C(4)-C(3) 120.59(14) 

C(5)-C(4)-H(4) 120.7(10) 

C(4)-C(5)-H(5) 120.4(11) 

C(4)-C(5)-C(6) 119.70(15) 

C(6)-C(5)-H(5) 119.9(11) 

C(5)-C(6)-H(6) 119.0(11) 

C(7)-C(6)-C(5) 120.27(15) 

C(7)-C(6)-H(6) 120.7(11) 

C(6)-C(7)-H(7) 121.4(10) 

C(6)-C(7)-C(8) 121.19(15) 

C(8)-C(7)-H(7) 117.4(10) 

C(3)-C(8)-C(9) 121.84(13) 

C(7)-C(8)-C(3) 118.25(13) 

C(7)-C(8)-C(9) 119.90(13) 

C(8)-C(9)-H(9A) 108.3(10) 

C(8)-C(9)-H(9B) 109.8(10) 

C(8)-C(9)-C(10) 112.49(12) 

H(9A)-C(9)-H(9B) 104.7(14) 

C(10)-C(9)-H(9A) 108.8(10) 

C(10)-C(9)-H(9B) 112.4(9) 

C(1)-C(10)-H(10A) 107.6(10) 

C(1)-C(10)-H(10B) 109.6(10) 

C(9)-C(10)-C(1) 113.53(12) 

C(9)-C(10)-H(10A) 109.2(10) 

C(9)-C(10)-H(10B) 109.8(10) 

H(10A)-C(10)-H(10B) 106.8(14) 

O(2)-C(11)-O(3) 123.43(13) 
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O(2)-C(11)-C(1) 124.93(13) 

O(3)-C(11)-C(1) 111.60(12) 

O(3)-C(12)-H(12A) 113.2(14) 

O(3)-C(12)-H(12B) 106.2(11) 

O(3)-C(12)-H(12C) 110.2(11) 

H(12A)-C(12)-H(12B) 109.9(18) 

H(12A)-C(12)-H(12C) 106.8(18) 

H(12B)-C(12)-H(12C) 110.5(16) 

C(1)-C(13)-H(13) 106.6(10) 

C(14)-C(13)-C(1) 114.33(12) 

C(14)-C(13)-H(13) 107.1(10) 

C(18)-C(13)-C(1) 110.12(12) 

C(18)-C(13)-H(13) 108.2(10) 

C(18)-C(13)-C(14) 110.28(13) 

C(13)-C(14)-S(1) 121.21(15) 

C(13)-C(14)-S(1A) 124.16(14) 

C(17)-C(14)-S(1) 107.6(5) 

C(17)-C(14)-C(13) 131.0(5) 

C(17A)-C(14)-S(1A) 108.4(6) 

C(17A)-C(14)-C(13) 127.1(6) 

S(1)-C(15)-H(15) 120.9(19) 

C(16)-C(15)-S(1) 117.68(19) 

C(16)-C(15)-H(15) 121.4(19) 

C(16)-C(15)-C(17A) 106.1(5) 

C(17A)-C(15)-H(15) 132(2) 

S(1A)-C(16)-H(16) 113.9(17) 

C(15)-C(16)-S(1A) 118.07(19) 

C(15)-C(16)-H(16) 128.0(17) 

C(15)-C(16)-C(17) 106.8(5) 

C(17)-C(16)-H(16) 125.0(17) 

C(14)-C(17)-C(16) 112.8(8) 

C(14)-C(17)-H(17) 116(2) 

C(16)-C(17)-H(17) 131(2) 

C(14)-C(17A)-C(15) 112.1(9) 

C(14)-C(17A)-H(17A) 124(3) 

C(15)-C(17A)-H(17A) 124(3) 

C(13)-C(18)-H(18) 118.4(11) 
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C(19)-C(18)-C(13) 125.07(16) 

C(19)-C(18)-H(18) 116.5(11) 

C(18)-C(19)-H(19A) 121.1(14) 

C(18)-C(19)-H(19B) 119.8(11) 

H(19A)-C(19)-H(19B) 119.1(17) 

 _______________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  

  

 Table A4.4.  Anisotropic displacement parameters  (Å2x 104 ) for 100f.  The anisotropic displacement 

factor exponent takes the form: -2p2 [ h2 a*2U 11  + ... + 2 h k a* b* U12 ] 

_______________________________________________________________________ 

 U11 U22  U33 U23 U13 U12 

_______________________________________________________________________ 
S(1) 360(9)  243(10) 173(5)  5(6) -83(5)  58(8) 

S(1A) 335(10)  229(6) 231(7)  93(6) -46(6)  -2(6) 

O(1) 198(5)  189(5) 197(5)  -39(4) -40(4)  -28(4) 

O(2) 242(6)  202(5) 213(5)  -7(4) -87(5)  5(4) 

O(3) 220(6)  136(5) 253(6)  36(4) -82(5)  -16(4) 

C(1) 145(6)  132(6) 130(6)  -2(5) -6(5)  -11(5) 

C(2) 168(7)  127(6) 140(6)  26(5) -27(5)  -4(5) 

C(3) 151(6)  139(6) 138(6)  19(5) -17(5)  -6(5) 

C(4) 166(7)  188(7) 188(7)  24(5) -23(6)  -20(6) 

C(5) 160(7)  267(8) 204(7)  46(6) -2(6)  -6(6) 

C(6) 232(8)  258(8) 146(7)  24(6) 23(6)  39(6) 

C(7) 223(8)  188(7) 143(6)  4(5) -6(6)  3(6) 

C(8) 168(7)  131(6) 136(6)  23(5) -18(5)  4(5) 

C(9) 185(7)  142(6) 153(6)  -24(5) -2(5)  -32(5) 

C(10) 191(7)  139(7) 170(7)  -10(5) 10(5)  -36(5) 

C(11) 149(7)  150(6) 157(6)  4(5) 14(5)  -6(5) 

C(12) 330(10)  151(7) 333(9)  58(7) -107(8)  5(7) 

C(13) 197(7)  140(6) 136(6)  -6(5) -7(5)  4(5) 

C(14) 215(7)  198(7) 152(7)  4(5) 7(6)  34(6) 

C(15) 537(14)  571(14) 214(9)  -26(9) -113(9)  224(12) 

C(16) 451(13)  329(11) 469(12)  186(9) 150(10)  127(10) 

C(17) 480(60)  540(60) 500(50)  -210(40) -180(40)  20(40) 
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C(17A) 510(50)  330(50) 510(70)  90(40) 70(50)  -90(40) 

C(18) 185(7)  194(7) 163(7)  6(6) 6(6)  -3(6) 

C(19) 262(9)  251(9) 244(8)  -56(7) -34(7)  49(7) 

 

 

Table A4.5. Hydrogen coordinates ( x 103) and isotropic  displacement parameters (Å2x 103) for 100f. 

_______________________________________________________________________ 
 x  y  z  Uiso 

_______________________________________________________________________  
H(4) 1318(2) 350(2) 689(1) 11(4) 

H(5) 1457(2) 265(2) 587(1) 23(5) 

H(6) 1331(2) 131(2) 503(1) 18(4) 

H(7) 1063(2) 79(1) 522(1) 12(4) 

H(9A) 852(2) 62(2) 620(1) 14(4) 

H(9B) 793(2) 185(2) 586(1) 14(4) 

H(10A) 846(2) 122(2) 743(1) 14(4) 

H(10B) 687(2) 168(2) 708(1) 17(4) 

H(12A) 766(3) 608(2) 594(1) 44(6) 

H(12B) 784(2) 697(2) 667(1) 32(5) 

H(12C) 624(3) 608(2) 652(1) 32(5) 

H(13) 815(2) 426(2) 825(1) 17(4) 

H(15) 1003(3) 165(3) 1030(2) 72(8) 

H(16) 827(3) 7(3) 985(2) 80(9) 

H(17) 689(4) 98(3) 857(2) 10(8) 

H(17A) 1003(5) 352(4) 932(2) 9(11) 

H(18) 539(2) 277(2) 799(1) 20(4) 

H(19A) 564(3) 531(2) 828(1) 40(6) 

H(19B) 394(2) 448(2) 818(1) 27(5) 

_______________________________________________________________________  

 

Table A4.6.  Hydrogen bonds for 100f  [Å and °]. 

 ______________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

_______________________________________________________________________   

 C(12)-H(12B)...O(1)#1 1.03(2) 2.52(2) 3.539(2) 173.4(16) 
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_______________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+2,y+1/2,-z+3/2       
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CHAPTER 4 

Enantio-, Diastereo- and Regioselective Iridium-Catalyzed Asymmetric 

Allylic Alkylation of Acyclic β-Ketoesters1 

 

4.1 INTRODUCTION  

4.1.1 State of the art in the asymmetric construction of vicinal quaternary and 

tertiary carbon centers 

As outlined in Chapter 3 (vide supra), the generation of enantioenriched all-

carbon quaternary centers is complicated by the presence of vicinal tertiary stereocenters 

due to increased steric demands and the introduction of requisite diastereocontrol.  

Modern strategies for accessing these highly-congested stereochemical dyads have relied 

primarily on transition-metal catalysis, notably Pd-catalyzed enolate alkylation 

cascades,30 Pd-catalyzed trimethylenemethane cycloadditions,73b,e Cu-catalyzed 

asymmetric Claisen rearrangements,73f and Mo-73c,d and Ir-catalyzed83 allylic alkylations.  

Common to the majority of these reports is the constraint that the nascent quaternary 

center be formed at a cyclic nucleophile.  At the outset of our studies in this area, only 

two groups had reported success in employing linear nucleophiles to produce vicinal 

 
1 This work was performed in collaboration with Wen-Bo Lui, postdoctoral researcher in the Stoltz group. This 
work has been published. See: Liu, W. -B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 17298.  

. 
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quaternary/tertiary arrays.  Namely, Trost’s communication on the molybdenum-

catalyzed allylic alkylation of β-cyanoesters73d and Carreira’s recent report on the allylic 

alkylation of aldehydes using stereodivergent dual catalysis.83  To address these 

limitations, we initiated studies investigating the asymmetric allylic alkylation of linear 

β-ketoesters.   

As described above, we have shown iridium-N-arylphosphoramidite catalysis87 to 

be a powerful tool for accessing vicinal all-carbon quaternary and tertiary stereocenters. 

The success of our protocol for the regio-, diastereo- and enantioselective asymmetric 

allylic alkylation of cyclic β-ketoesters (Figure 4.1.1.1A)82, 88, 97 combined with the virtual 

absence of reports describing the application of this transformation to acyclic β-

ketoesters encouraged our further exploration of iridium catalysts in the domain of this 

important substrate class. In this chapter, we detail the development of the first highly 

regio-, diastereo- and enantioselective allylic alkylation of acyclic β-ketoesters to forge 

vicinal tertiary, quaternary centers (Figure 4.1.1.1B).   

 

Figure 4.1.1.1.  Representative Ir-catalyzed asymmetric allylic alkylation 
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4.2 DEVELOPMENT AND OPTIMIZATION OF AN IRIDIUM-CATALYZED 

ALLYLIC ALKYLATION OF LINEAR β-KETOESTERS 

Our initial investigations in the domain of Ir-catalyzed allylic alkylation of linear 

β-ketoesters focused on identifying conditions that would afford both reaction efficiency 

and selectivity.  We chose ethyl 2-methyl-3-oxo-3-phenylpropanoate (111a) and 

cinnamyl carbonate (98a) as standard coupling partners, and investigated several 

iridacycle complexes84 at the outset of our studies.  The result of these studies are shown 

in Table 4.2.1 (entries 1–6).  We found that exposure of standard coupling components 

(111a) and (98a) to a combination of catalytic phosphoramidite ligand L10•[Ir(cod)Cl]2 

complex86 and two equivalents of  NaH in THF at ambient temperature afforded the 

desired product with good conversion, ee and regioselectivity, but low levels of 

diastereoselectivity (1:2) (entry 1).  Use of either L11 or L16 under these conditions 

favored instead the reaction pathway yielding the undesired, linear allylic alkylation 

product (113a) in only modest conversion (entries 2 and 4).  Ligands L13 and L1787,98 

gave the desired branched product in good conversion but with diminished 

diastereoselectivity and enantioselectivity and protracted reaction times (entries 5 and 6).  

We were pleased to find that tetrahydroquinoline based ligand L1287 rapidly furnished the 

desired α-quaternary β-ketoester (112a) in greater than 95% conversion, 95:5 

regioselectivity, 13:1 dr and 99% enantiomeric excess (entry 3).  Previous reports 

demonstrating the marked effect of metal cations over regio-99 and diastereoselectivity100 

in iridium-catalyzed allylic alkylations prompted further investigation of both bases and 

additives (entries 7–15).  Contrary to our previous findings (vide infra, Chapter 3), a 
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sluggish reaction was observed when LiBr was used in place of NaH (entry 7), 

presumably due to the decreased α-acidity of acyclic β-ketoesters relative to cyclic 

substrates.  While amine and organic bases did not perform well in the chemistry, the use 

of alkoxide bases resulted in considerably reduced reaction times (entries 8–9).  

Ultimately, it was found that the use of LiOt-Bu as base was optimal, delivering β-

ketoester 112a with an exceptional branched to linear ratio (93:7), >20:1 

diastereoselectivity, and 98% enantioselectivity in only two hours (entry 8). 
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Table 4.2.1.  Optimization of the Ir-catalyzed asymmetric allylic alkylationa     

 

 
a Reactions performed with 0.1 mmol of 98a, 0.2 mmol of 111a at 0.1 M in THF at 20 °C.  b 

Determined by 1H NMR and UHPLC-MS analysis of the crude mixture.  c Determined by chiral SFC 

analysis; parenthetical value is the ee of the alternate diastereomer.  d Not determined. 
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ketoester 111a and various cinnamyl carbonate-derived electrophiles (98) bearing 

electron-donating substitutents about the aryl group, R (Table 4.3.1.1, entries 2–4).  4-

Me- (98i), 4-MeO- (98b), and 3-MeO-substitutions (98j) about the aryl ring gave the 

corresponding α-quaternary β-ketoesters (products 112b-112d) in good to excellent 

yield, dr, ee and branched to linear ratio (Table 4.3.1.1).  Electron deficient aryl 

substituents at the allyl group (entries 5–7) were also well tolerated, delivering the 

branched products 112e–112g101 in good to excellent yield, outstanding ee and dr, and 

with only slightly diminished regioselectivies.  Interestingly, (4-nitro)-aryl substitution at 

the allyl carbonate (entry 8, substrate 98l) led to loss of regioselectivity in the reaction, 

giving equal amounts of products 112h (14:1 dr, 93% ee) and 113h (23% ee).  We were 

pleased to discover, however, that heteroaryl-substituted allyl carbonates (substrates 98j 

and 98g) resulted in smooth reactions and delivered the alkylated products 112i and 112j 

with excellent yield, ee and regioselectivity and with good to excellent dr (entries 9–10).  

Finally, we found that sorbyl carbonate 98h was also a suitable participant in the reaction, 

giving the corresponding β-ketoester product (112k) in good yield and dr and with 

excellent regio- and enantioselectivities (entry 11).    
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Table 4.3.1.1.  Exploration of the reaction scope with respect to allyl electrophilea    

 

 
a Reactions performed under the conditions of Table 1, entry 8.  b Combined isolated yield of 112 

and 113.  c Determined by 1H NMR analysis of the crude mixture.  d Determined by chiral SFC 

analysis of the major diastereomer.  e Conditions of  Table 1, entry 7.   f 23% ee for the linear 

product.  
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Hammett analysis relating the log of the ratio of branched to linear products, which is 

proportional to the relative rates of product formation, to the corresponding Hammett σ-

values.  The negative ρ value observed from this plot suggests that as the magnitude of 

electropositive charge generated at the putative allyl-Ir intermediate8b increases, the 

reaction pathway yielding the branched allylation product becomes more favorable.  This 

analysis can be extended to account, in part, for the poor regioselectivity observed in the 

case of p-nitro substituted allyl component 98. 

 

Figure 4.3.2.1. Hammett plot of the log of product ratios (112:113) from Table 2 versus Hammett 

σ-values 
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delivering products 112l and 112m in excellent yield, dr, ee and branched to linear ratio 

(entries 1 and 2).  Gratifyingly, a wide variety of functional groups are readily permitted 

at the α-position (R2), including alkyl, benzyl, allyl, propargyl, heteroaryl and keto 

groups (substrates 111d–111i, entries 3–8, respectively).  The products of these reactions 

(products 112n–112s, respectively) were obtained with excellent ee and 

regioselectivities, and in good to excellent dr and yield.  To the best of our knowledge, 

substrate 111g represents the first example of a terminal propargyl-substituted 

nucleophile to undergo Ir-catalyzed allylic substitutions. 102   Nitrile-containing 

substituents were tolerated in the reaction as well (substrate 111j), and α-quaternary β-

ketoester 112t was furnished in excellent yield, ee and regioselectivity, albeit with a 

diminished dr of 3:1.  We were pleased to learn that use of certain of α-halogenated 

nucleophiles (substrates 111k and 111l) also resulted in an efficient and selective reaction 

as α-fluoro and α-chloro β-ketoesters 112u and 112v were obtained in excellent yields, 

dr, ee and regioselectivity.  In addition to aryl ketones, cyclohexenyl β-ketoester 111m 

was found to deliver the corresponding product 112w in excellent yield, dr, ee and 

branched to linear ratio with no detectable products resulting from competitive 

bimolecular Michael addition.  Although the use of alkyl β-ketoesters 111n and 111o 

provided the desired products (112x and 112y, respectively) with excellent yields, ee’s 

and regioselectivities, we were disappointed to find that the diastereoselectivities were 

diminished considerably.  Lastly, we found that the use of a sterically-hindered ester 

moiety  (substrate 111p) gave an efficient and highly enantioselective reaction but with a 

concurrent loss in regio- and diastereoselectivity (entry 15).  
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Table 4.3.3.1.  Exploration of the reaction scope with respect to β-ketoester nucleophilea  

 

 
a Reactions performed under the conditions of Table 1, entry 8.  b Combined isolated yield of 112 

and 113.  c Determined by 1H NMR analysis of the crude mixture.  d Determined by chiral SFC 

analysis of the major diastereomer.  e 4 mol % of [Ir(cod)Cl]2 and 8 mol % of L12 were used.  f The 

reaction was run at 0.5 mmol scale.  g ee for the minor diastereomer.  
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products obtained in the course of our studies (Scheme 4.4.1).  Aldol condensation of β-

ketoester 112r gave γ-quaternary cyclohexenone 114 in excellent yield.  Ring-closing 

metathesis of diallyl β-ketoester 112p cleanly furnished cyclohexene 115 in excellent 

yield.  Finally, Pauson–Khand cyclization of progaryl-substituted β-ketoester 112q 

smoothly delivered bicycle 116 in outstanding 99% yield.  

 

Scheme 4.4.1.  Rapid generation of molecular and stereochemical complexity employing allylic 

alkylation products 

 

 

 

4.5 CONCLUDING REMARKS 

In summary, the first enantioselective catalytic allylic alkylation of linear β-

ketoesters to generate vicinal quaternary and tertiary stereocenters in high yield, dr, ee 

and regioselectivity has been developed.  The process hinges on the use of an Ir•N-aryl-

phosphoramidite catalyst (L12).  A variety of substitution patterns at the allyl electrophile 

and β-ketoester are well tolerated in the chemistry.  A number of transformations were 

carried out on reaction products to demonstrate the value this method holds for the rapid 
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generation of highly functionalized chiral building blocks.  Studies utilizing this method 

toward the synthesis of complex biologically active natural products are underway in our 

laboratory and will serve to showcase the utility of the method in synthetic setting.  

Moreover, studies to extend the scope of functionality tolerated about the electrophile in 

the chemistry, in particular non-aromatic substituents, should greatly expand the potential 

applications of this method to total synthesis.     

 

4.6 EXPERIMENTAL SECTION 

4.6.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried 

by passage through an activated alumina column under argon.61 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for flash 

chromatography.  1H NMR spectra were recorded on Varian Inova 500 MHz and 600 

MHz spectrometers and are reported relative to residual CHCl3 (δ 7.26 ppm) or C6HD5 (δ 

7.16 ppm).  13C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer 

(125 MHz) and are reported relative to CHCl3 (δ 77.16 ppm) or C6HD5 (δ 128.06 ppm). 

31P and 19F NMR spectra were recorded on a Varian Mercury 300 MHz (at 121 MHz and 

282 MHz, respectively).  19F NMR spectra were reported relative to CFCl3 (δ 0.0 ppm). 

31P NMR spectra were reported relative to external H3PO4 (δ 0.0 ppm).  Data for 1H NMR 
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are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad 

doublet, app = apparent.  Data for 13C NMR are reported in terms of chemical shifts 

(δ ppm).  IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer 

or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and 

reported in frequency of absorption (cm-1).  Optical rotations were measured with a Jasco 

P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-

length cell and are reported as: [a]D
T (concentration in g/100 mL, solvent).  Analytical 

HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD-H or 

AS) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from 

Daicel Chemical Industries, Ltd.  Analytical SFC was performed with a Mettler SFC 

supercritical CO2 analytical chromatography system utilizing Chiralpak (AD-H, AS-H or 

IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from 

Daicel Chemical Industries, Ltd.  High resolution mass spectra (HRMS) were obtained 

from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or 

mixed ionization mode (MM: ESI-APCI+). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated.  Ligands L12, L13, L16 and L1787 

allyl carbonates 98,95 and β-ketoesters 111103 were prepared by known methods.   
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4.6.2  Optimization of reaction parameters 

Table 4.6.2.1 Optimization of reaction parameters 

 

  

a  Reactions performed with 0.1 mmol of 98a, 0.2 mmol of 111a in 1 mL of THF.  b  Determined 

by 1H NMR or UHPLC-MS analysis of the crude reaction mixture.  c Isolated yield.  d (ee) of the 

alternative diastereomer. 

General Procedure for Optimization Reaction (Table 4.6.2.1): All experiments were 

performed in a nitrogen-filled glove box.  

 Procedure A (for entries 1-9): [Ir(cod)Cl]2 (1.4 mg, 0.002 mmol, 2 mol%), ligand 

L (0.004 mmol, 4 mol%), and TBD (1.4 mg, 0.01 mmol, 10 mol%) were added to a 2 

dram scintillation vial (vial A) equipped with a magnetic stirring bar.  The vial was then 

charged with THF (0.5 mL) and stirred at 25 °C for 10 min, generating an orange 

solution.  To another 2 dram scintillation vial (vial B) was added base (0.2 mmol, 2 

equiv), 0.5 mL of THF and β-ketoester 111a (41.2 mg, 0.2 mmol, 2.0 equiv).  After 
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stirring for 10 min at 25 °C, the pre-formed catalyst solution (vial A) was transferred to 

vial B, and cinnamyl carbonate (98a) (19.2 mg, 0.1 mmol, 1.0 equiv) was added.  The 

vial was sealed and stirred at 25 °C until allylic carbonate 98a was fully consumed, as 

indicated by UHPLC-MS analysis.  Upon completion of the reaction the vial was 

removed from the glove-box and uncapped.  Saturated NH4Cl aqueous solution was 

added and the mixture was extracted with CH2Cl2 (10 mL x 3), the combined organic 

phase was washed with brine, dried over Mg2SO4, filtered and concentrated in vacuo.  

The regioselectivity (branched product to linear product, b:l) and diastereoselectivity (dr) 

were determined by 1H NMR. The residue was purified by silica gel flash 

chromatography (gradient elution, 0→1→2% EtOAc in hexanes) to afford the desired 

product.  

Procedure B (for entries 10-15): [Ir(cod)Cl]2 (1.4 mg, 0.002 mmol, 2 mol%), 

ligand L (0.004 mmol, 4 mol%), and TBD (1.4 mg, 0.01 mmol, 10 mol%) were added to 

a 2 dram scintillation vial equipped with a magnetic stirring bar.  The vial was then 

charged with THF (0.5 mL) and stirred at 25 °C for 10 min, generating an orange 

solution.  Cinnamyl carbonate (98a) (19.2 mg, 0.1 mmol, 1.0 equiv), β-ketoester 111a 

(41.2 mg, 0.2 mmol, 2.0 equiv), base (0.2 mmol, 2 equiv) or additive (0.1 mmol, 1.0 

equiv) and an additional 0.5 mL of THF were added.  The vial was sealed and stirred at 

25 °C until allylic carbonate 98a was fully consumed, as indicated by UHPLC-MS 

analysis.  Upon completion of the reaction the vial was removed from the glove-box and 

uncapped and THF evaporated under reduced pressure.  Et2O was added to the crude 

mixture and the resulting precipitate was filtered through a celite pad, rinsed with Et2O 

and the filtrate was concentrated under reduced pressure. The regioselectivity (branched 
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product to linear product: b:l) and diastereoselectivity (dr) were determined by 1H NMR.  

The residue was purified by silica gel flash chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) to afford the desired product. 

 

4.6.3. General procedure for the Ir-catalyzed asymmetric allylic alkylation of 

acyclic β-ketoesters 

Note that the absolute configuration was determined only for compound 112f via X-ray 

analysis of its derivative (vide infra).  The absolute configuration for all other products 3 

has been inferred by analogy.  Isolated yields are reported in Tables 2 and 3 (see 

manuscript).  For respective SFC conditions, please refer to Table 4.6.8.1. The relative 

configuration of product derivative 116 was determined by 2D NMR studies, see 

appendix A6 for details.  The relative configurations of all other products determined by 

anaolgy.  

 

 

 

      In a nitrogen-filled glove box, [Ir(cod)Cl]2 (1.4 mg, 0.002 mmol, 2 mol%), ligand 

L12 (1.8 mg, 0.004 mmol, 4 mol%), and TBD (1.4 mg, 0.01 mmol, 10 mol%) were 

added to a 2 dram scintillation vial equipped with a magnetic stirring bar.  The vial was 

then charged with THF (0.5 mL) and stirred at 25 °C for 10 min, generating an orange 
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equiv) and 0.5 mL of THF, then β-ketoester 111a (41.2 mg, 0.2 mmol, 2.0 equiv) was 

added.  After stirring for 10 min, the above pre-formed catalyst solution was transferred 

to this vial, followed by cinnamyl carbonate (98a) (19.2 mg, 0.1 mmol, 1.0 equiv).  The 

vial was sealed and stirred at 25 °C until allylic carbonate 98a was fully consumed, as 

indicated by UHPLC-MS analysis.  Upon completion of the reaction the vial was 

removed from the glove-box and uncapped and saturated NH4Cl aqueous solution was 

added.  The mixture was extracted with CH2Cl2 (10 mL x 3), the combined organic layers 

washed with brine, dried over Mg2SO4, filtered and concentrated under reduced pressure.  

The regioselectivity (branched product to linear product: b:l = 93:7) and 

diastereoselectivity (dr >20:1) were determined by 1H NMR of the crude reaction 

mixture. The residue was purified by silica gel flash chromatography (gradient elution, 

0→1→2% EtOAc in hexanes) to afford product (31.2 mg, 97% yield) as a colorless oil. 

 

Ethyl-(2R,3S)-2-benzoyl-2-methyl-3-phenylpent-4-enoate (112a).  

Ketoester 112a was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil. >99% ee, [α]D
25 +76.6 (c 0.77, CHCl3); Rf = 0.4 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.69–7.60 (m, 2H), 7.52–7.43 (m, 

1H), 7.38–7.33 (m, 2H), 7.26–7.15 (m, 5H), 6.35 (ddd, J = 17.0, 10.3, 8.3 Hz, 1H), 5.13 

(ddd, J = 10.2, 1.7, 0.9 Hz, 1H), 5.07 (ddd, J = 17.0, 1.8, 1.2 Hz, 1H), 4.39 (dd, J = 8.3, 

1.1 Hz, 1H), 4.09 (qd, J = 7.2, 0.6 Hz, 2H), 1.53 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 198.0, 173.0, 139.5, 137.8, 137.2, 132.3, 130.1, 128.4, 

128.20, 128.17, 127.1, 117.5, 61.8, 61.6, 54.8, 21.0, 13.8; IR (Neat Film, NaCl) 3062, 

3028, 2981, 2939, 2902, 1731, 1686, 1682, 1597, 1582, 1493, 1452, 1446, 1377, 1311, 
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1243, 1218, 1186, 1096, 1018, 1001, 962, 920, 860, 758 cm-1; HRMS (ESI+) m/z calc’d 

for C21H23O3 [M+H]+: 323.1642, found 323.1647; SFC conditions: 5% IPA, 2.5 mL/min, 

Chiralpak IC column, λ = 254 nm, tR (min): major = 4.12, minor = 6.14. 

 

4.6.4. Spectroscopic data for Ir-catalyzed allylic alkylation products 
 

Ethyl (2R,3S)-2-benzoyl-2-methyl-3-(p-tolyl)pent-4-enoate (112b). 

 

 

Ketoester 112b was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  99% ee, [α]D
25 +80.4 (c 1.82, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.69–7.65 (m, 2H), 7.47 (ddt, J = 8.6, 

7.0, 1.3 Hz, 1H), 7.39–7.33 (m, 2H), 7.11–7.02 (m, 4H), 6.33 (ddd, J = 16.9, 10.2, 8.3 Hz, 

1H), 5.11 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 5.07 (ddd, J = 17.0, 1.9, 1.2 Hz, 1H), 4.38 (dd, 

J = 8.3, 1.2 Hz, 1H), 4.09 (qd, J = 7.1, 2.6 Hz, 2H), 2.29 (s, 3H), 1.54 (s, 3H), 1.05 (t, J = 

7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 198.1, 173.0, 137.9, 137.2, 136.6, 136.4, 

132.3, 129.9, 128.9, 128.4, 128.2, 117.3, 61.8, 61.5, 54.3, 21.1, 20.9, 13.8;  IR (Neat Film, 

NaCl) 3058, 3023, 2981, 2938, 1736, 1732, 1682, 1687, 1636, 1597, 1580, 1513, 1446, 

1376, 1310, 1243, 1219, 1186, 1115, 1104, 1021, 1001, 963, 919, 820, 793 cm-1; HRMS 

(MM: ESI-APCI+) m/z calc’d for C22H25O3 [M+H]+:  337.1798, found 337.1805; SFC 
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conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): major = 

6.71, minor = 9.45. 

 

Ethyl (2R,3S)-2-benzoyl-3-(4-methoxyphenyl)-2-methylpent-4-enoate (112c). 

 

 

Ketoester 112c was isolated by silica gel chromatography (gradient elution, 2→5% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +81.5 (c 2.02, CHCl3); Rf = 0.2 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.70–7.63 (m, 2H), 7.52–7.43 (m, 

1H), 7.38–7.32 (m, 2H), 7.15–7.08 (m, 2H), 6.85–6.74 (m, 2H), 6.32 (ddd, J = 17.0, 10.3, 

8.2 Hz, 1H), 5.11 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 5.05 (ddd, J = 17.0, 1.8, 1.2 Hz, 1H), 

4.37 (d, J = 8.2 Hz, 1H), 4.09 (qd, J = 7.1, 0.9 Hz, 2H), 3.76 (s, 3H), 1.51 (s, 3H), 1.05 (t, 

J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 198.1, 173.0, 158.5, 138.0, 137.3, 132.3, 

131.4, 131.1, 128.4, 128.2, 117.2, 113.5, 61.9, 61.5, 55.3, 53.9, 20.8, 13.9;  IR (Neat Film, 

NaCl) 3067, 2981, 2937, 2904, 2835, 1731, 1686, 1682, 1610, 1597, 1581, 1511, 1446, 

1376, 1302, 1245, 1218, 1181, 1114, 1101, 1034, 963, 922, 830 cm-1; HRMS (ESI+) m/z 

calc’d for fragment C10H11O [M-C11H12O3+H]+: 147.0804, found 147.0808;  SFC 

conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): minor 

= 11.17, major = 12.67. 
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Ethyl (2R,3S)-2-benzoyl-3-(-methoxyphenyl)-2-methylpent-4-enoate (112d). 

 

 

Ketoester 112d was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +85.1 (c 1.21, CHCl3); Rf = 0.3 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.70–7.63 (m, 2H), 7.52–7.43 (m, 

1H), 7.42–7.32 (m, 2H), 7.23–7.11 (m, 1H), 6.82–6.71 (m, 3H), 6.32 (ddd, J = 16.9, 10.3, 

8.3 Hz, 1H), 5.13 (ddd, J = 10.3, 1.8, 0.9 Hz, 1H), 5.09 (ddd, J = 17.0, 1.8, 1.2 Hz, 1H), 

4.37 (dt, J = 8.3, 1.1 Hz, 1H), 4.09 (qd, J = 7.2, 1.3 Hz, 2H), 3.74 (s, 3H), 1.53 (s, 3H), 

1.05 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 198.0, 172.9, 159.3, 141.0, 137.6, 

137.3, 132.3, 129.1, 128.4, 128.2, 122.4, 117.6, 116.0, 112.4, 61.8, 61.6, 55.2, 54.8, 21.0, 

13.8; IR (Neat Film, NaCl) 3078, 2982, 2940, 2835, 1731, 1683, 1598, 1583, 1488, 1454, 

1377, 1315, 1245, 1217, 1186, 1162, 1096, 1049, 1019, 1001, 963, 922, 861, 781 cm-1; 

HRMS (ESI+) m/z calc’d for C22H25O4 [M+H]+:  353.1747, found 353.1761; SFC 

conditions: 2% MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): major = 

12.24, minor = 13.50. 
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Ethyl (2R,3S)-2-benzoyl-3-(3-chlorophenyl)-2-methylpent-4-enoate (112e). 

 

 

Ketoester 112e was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  99% ee, [α]D
25 +99.1 (c 1.13, CHCl3); Rf = 0.3 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.70–7.63 (m, 2H), 7.48 (ddt, J = 7.8, 

6.9, 1.2 Hz, 1H), 7.41–7.33 (m, 2H), 7.22–7.19 (m, 1H), 7.19–7.14 (m, 2H), 7.14–7.08 

(m, 1H), 6.30 (ddd, J = 17.0, 10.2, 8.4 Hz, 1H), 5.15 (ddd, J = 10.3, 1.6, 0.9 Hz, 1H), 

5.07 (dt, J = 17.0, 1.4 Hz, 1H), 4.34 (d, J = 8.4 Hz, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.52 (s, 

3H), 1.06 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.6, 172.6, 141.7, 137.0, 

136.9, 133.9, 132.5, 130.3, 129.3, 128.5, 128.4, 128.3, 127.2, 118.1, 61.7, 61.7, 54.5, 20.9, 

13.8;  IR (Neat Film, NaCl) 3068, 2982, 2943, 1732, 1682, 1595, 1574, 1475, 1446, 1378, 

1301, 1245, 1218, 1194, 1095, 1018, 1001, 963, 924, 784 cm-1; HRMS (MM: ESI-APCI+) 

m/z calc’d for C21H22ClO3 [M+H]+: 357.1252, found 357.1260; SFC conditions: 10% IPA, 

4.0 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): major = 1.59, minor = 1.77. 
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 Ethyl (2R,3S)-2-benzoyl-3-(4-bromophenyl)-2-methylpent-4-enoate (112f). 

 

 

Ketoester 112f was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +89.0 (c 1.42, CHCl3); Rf = 0.3 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.70–7.63 (m, 2H), 7.50–7.45 (m, 

1H), 7.40–7.33 (m, 4H), 7.13–7.08 (m, 2H), 6.29 (ddd, J = 16.9, 10.2, 8.2 Hz, 1H), 5.16–

5.11 (m, 1H), 5.05 (dt, J = 17.0, 1.4 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 4.08 (q, J = 7.1 Hz, 

2H), 1.51 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.6, 172.7, 

138.6, 137.2, 136.9, 132.5, 131.9, 131.2, 128.5, 128.3, 121.1, 117.9, 61.7, 61.6, 54.1, 20.8, 

13.8;  IR (Neat Film, NaCl) 3077, 2981, 2938, 1728, 1683, 1597, 1488, 1446, 1377, 1305, 

1243, 1217, 1186, 1099, 1076, 1010, 963, 922, 822, 802, 716 cm-1; HRMS (MM: ESI-

APCI+) m/z calc’d for C21H22BrO3 [M+H]+:  401.0747, found 401.0754; SFC conditions: 

10% IPA, 4.0 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): minor = 2.95, 

major = 3.47. 
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Ethyl (2R,3S)-2-benzoyl-2-methyl-3-(4-(trifluoromethyl)phenyl)pent-4-enoate (112g). 

 

 

Ketoester 112g was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +77.4 (c 0.94, CHCl3); Rf = 0.3 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.69–7.63 (m, 2H), 7.53–7.45 (m, 

3H), 7.39–7.35 (m, 4H), 6.33 (ddd, J = 16.9, 10.2, 8.4 Hz, 1H), 5.16 (ddd, J = 10.2, 1.6, 

0.9 Hz, 1H), 5.07 (dt, J = 17.0, 1.4 Hz, 1H), 4.44 (d, J = 8.4 Hz, 1H), 4.09 (q, J = 7.1 Hz, 

2H), 1.53 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.5, 172.6, 

143.9, 136.9, 136.8, 132.6, 130.6, 129.2 (q, J = 32.4 Hz), 128.5, 128.3, 125.0 (q, J = 3.7 

Hz), 124.3 (d, J = 271.8 Hz), 118.3, 61.8, 61.6, 54.6, 20.8, 13.8;  IR (Neat Film, NaCl) 

3070, 2984, 2941, 1732, 1687, 1682, 1617, 1597, 1581, 1446, 1413, 1379, 1327, 1245, 

1220, 1166, 1123, 1069, 1018, 964, 924, 846 cm-1; HRMS (ESI+) m/z calc’d for 

C22H22F3O3 [M+H]+: 391.1516, found 391.1517;  SFC conditions: 2% IPA, 2.5 mL/min, 

Chiralpak AD-H column, λ = 254 nm, tR (min): minor = 5.20, major = 6.68. 
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Ethyl (2R,3S)-2-benzoyl-2-methyl-3-(4-nitrophenyl)pent-4-enoate (112h). 

 

 

Ketoester 112h was isolated by silica gel chromatography (5% EtOAc in hexanes) as a 

colorless oil.  93% ee, [α]D
25 +96.8 (c 0.64, CHCl3); Rf = 0.3 (10% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 8.13–8.09 (m, 2H), 7.70–7.63 (m, 2H), 7.52–7.48 (m, 1H), 

7.46–7.43 (m, 2H), 7.40–7.35 (m, 2H), 6.31 (ddd, J = 16.9, 10.2, 8.5 Hz, 1H), 5.23–5.16 

(m, 1H), 5.08 (dt, J = 17.0, 1.3 Hz, 1H), 4.50 (d, J = 8.5 Hz, 1H), 4.10 (qd, J = 7.1, 2.4 

Hz, 2H), 1.54 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.0, 

172.3, 147.4, 146.8, 136.3, 136.1, 132.6, 131.0, 128.4, 128.2, 123.1, 118.8, 61.8, 61.4, 

54.3, 20.5, 13.7;  IR (Neat Film, NaCl) 3080, 2982, 2942, 1731, 1686, 1682, 1597, 1523, 

1519, 1446, 1379, 1346, 1245, 1219, 1111, 1001, 1015, 964, 926, 853 cm-1; HRMS (MM: 

ESI-APCI+) m/z calc’d for C21H22O5N [M+H]+: 368.1492, found 368.1508;  SFC 

conditions: 5% MeOH, 3.0 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): 

minor = 4.47, major = 5.71.  
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Ethyl (E)-2-benzoyl-2-methyl-5-(4-nitrophenyl)pent-4-enoate (113h). 

 

 

Ketoester 113h was isolated by silica gel chromatography (5% EtOAc in hexanes) as a 

yellow solid.  23% ee, [α]D
25 +4.7 (c 0.96, CHCl3); Rf = 0.3 (10% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 8.15 (dt, J = 9.0, 2.5 Hz, 2H), 7.86 (dt, J = 8.5, 2.0 Hz, 2H), 

7.59–7.49 (m, 1H), 7.47–7.40 (m, 4H), 6.45 (dt, J = 15.9, 1.2 Hz, 1H), 6.32 (dt, J = 15.7, 

7.5 Hz, 1H), 4.12 (qd, J = 7.2, 1.1 Hz, 2H), 3.00 (ddd, J = 14.2, 7.3, 1.3 Hz, 1H), 2.90 

(ddd, J = 14.2, 7.7, 1.2 Hz, 1H), 1.58 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 197.0, 173.6, 146.9, 143.6, 135.4, 133.1, 132.1, 130.0, 128.7, 126.8, 

124.1, 61.7, 57.3, 40.6, 21.6, 14.0;  IR (Neat Film, NaCl) 2981, 2936, 1732, 1686, 1682, 

1596, 1519, 1515, 1446, 1342, 1298, 1267, 1239, 1184, 1108, 973, 857 cm-1; HRMS 

(MM: ESI-APCI+) m/z calc’d for C21H22O5N [M+H]+: 368.1492, found 368.1499;  SFC 

conditions: 10% MeOH, 3.0 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): 

major = 7.13, minor = 8.06.  
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Ethyl (2R,3R)-2-benzoyl-2-methyl-3-(thiophen-2-yl)pent-4-enoate (112i). 

 

 

Ketoester 112i was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  95% ee, [α]D
25 +53.0 (c 1.63, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.74–7.68 (m, 2H), 7.51–7.47 (m, 1H), 

7.42–7.35 (m, 2H), 7.16 (dd, J = 5.1, 1.2 Hz, 1H), 6.89 (dd, J = 5.1, 3.5 Hz, 1H), 6.84 

(ddd, J = 3.5, 1.2, 0.7 Hz, 1H), 6.23 (ddd, J = 16.4, 10.6, 9.0 Hz, 1H), 5.23–5.16 (m, 2H), 

4.77 (d, J = 9.0 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 1.52 (s, 3H), 1.09 (t, J = 7.2 Hz, 3H); 

 13C NMR (126 MHz, CDCl3) δ 197.5, 172.3, 142.1, 136.8, 136.6, 132.5, 128.5, 128.4, 

126.9, 126.2, 124.9, 118.2, 62.2, 61.9, 49.8, 19.4, 13.9;  IR (Neat Film, NaCl) 3069, 2981, 

2937, 1732, 1687, 1682, 1597, 1580, 1446, 1383, 1298, 1246, 1221, 1107, 1018, 1001, 

968, 924, 851, 795, 747 cm-1; HRMS (ESI+) m/z calc’d for C19H21O3S [M+H]+: 329.1206, 

found 329.1214;  SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, λ = 254 

nm, tR (min): major = 7.92, minor = 11.24.  
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Ethyl (2R,3R)-2-benzoyl-3-(furan-2-yl)-2-methylpent-4-enoate (112j). 

 

 

Ketoester 112j was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +67.3 (c 1.34, CHCl3); Rf = 0.4 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.73–7.67 (m, 2H), 7.52–7.45 (m, 

1H), 7.40–7.35 (m, 2H), 7.27 (dd, J = 1.8, 0.9 Hz, 1H), 6.25 (dd, J = 3.3, 1.8 Hz, 1H), 

6.17 (ddd, J = 17.0, 10.2, 8.5 Hz, 1H), 6.11 (dt, J = 3.3, 0.7 Hz, 1H), 5.19 (ddd, J = 10.2, 

1.7, 0.8 Hz, 1H), 5.14 (ddd, J = 17.0, 1.7, 1.1 Hz, 1H), 4.62 (dd, J = 8.5, 0.9 Hz, 1H), 

4.12 (q, J = 7.1 Hz, 2H), 1.52 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 196.9, 172.1, 152.9, 141.5, 136.6, 134.4, 132.2, 128.3, 128.2, 118.3, 110.1, 

108.7, 61.6, 61.4, 47.9, 19.3, 13.8; IR (Neat Film, NaCl) 3081, 2983, 2941, 2904, 1732, 

1686, 1597, 1581, 1501, 1446, 1378, 1301, 1246, 1222, 1149, 1096, 1013, 968, 926, 885, 

860, 797, 736 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H21O4 [M+H]+: 

313.1431, found 313.1438;  SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, 

λ = 254 nm, tR (min): major = 5.09, minor = 9.14. 
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Ethyl (2R,3S,E)-2-benzoyl-2-methyl-3-vinylhex-4-enoate (112k). 

 

 

Ketoester 112k was isolated by silica gel chromatography (gradient elution, 0→1→2% 

EtOAc in hexanes) as a colorless oil.  91% ee, [α]D
25 +43.5 (c 1.86, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.80–7.71 (m, 2H), 7.52–7.46 (m, 1H), 

7.42–7.36 (m, 2H), 5.98 (ddd, J = 16.9, 10.5, 7.5 Hz, 1H), 5.47–5.27 (m, 2H), 5.15–5.00 

(m, 2H), 4.09 (qd, J = 7.1, 1.5 Hz, 2H), 3.73–3.69 (m, 1H), 1.65–1.58 (m, 3H), 1.48 (s, 

3H), 1.07 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.4, 173.0, 137.2, 136.8, 

132.4, 129.0, 128.5, 128.4, 128.3, 117.1, 61.4, 60.5, 51.6, 19.2, 18.2, 14.0; IR (Neat Film, 

NaCl) 3077, 2981, 2939, 2913, 1732, 1687, 1682, 1597, 1580, 1446, 1377, 1299, 1245, 

1221, 1100, 1018, 1001, 970, 921, 859 cm-1; HRMS (ESI+) m/z calc’d for C18H23O3 

[M+H]+:  287.1642, found 287.1654; SFC conditions: 2% IPA, 2.5 mL/min, Chiralpak 

AD-H column, λ = 210 nm, tR (min): minor = 4.40, major = 5.52. 

 

Ethyl (2R,3S)-2-(4-methoxybenzoyl)-2-methyl-3-phenylpent-4-enoate (112l). 

 

 

Ketoester 112l was isolated by silica gel chromatography (4% EtOAc in hexanes) as a 

colorless oil.  99% ee, [α]D
25 +53.9 (c 1.51, CHCl3); Rf = 0.3 (10% EtOAc in hexanes); 
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1H NMR (500 MHz, CDCl3) δ7.76–7.69 (m, 2H), 7.25–7.17 (m, 5H), 6.87–6.82 (m, 2H), 

6.36 (ddd, J = 17.0, 10.3, 8.1 Hz, 1H), 5.12 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 5.05 (ddd, J 

= 17.0, 1.8, 1.2 Hz, 1H), 4.39 (dt, J = 8.1, 1.2 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.84 (s, 

3H), 1.53 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 195.8, 173.4, 

162.9, 139.6, 138.0, 130.8, 130.2, 129.5, 128.1, 127.0, 117.3, 113.6, 61.5, 61.3, 55.5, 54.7, 

21.0, 13.9; IR (Neat Film, NaCl) 3083, 2981, 2940, 2842, 1727, 1677, 1600, 1576, 1513, 

1454, 1417, 1376, 1310, 1247, 1221, 1176, 1118, 1031, 964, 842 cm-1; HRMS (ESI+) 

m/z calc’d for C22H25O4 [M+H]+:  353.1747, found 353.1752; SFC conditions: 10% IPA, 

4.0 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): major = 2.67, minor = 3.51. 

 

Methyl (2R,3S)-2-(4-bromobenzoyl)-2-methyl-3-phenylpent-4-enoate (112m). 

 

  

Ketoester 112m was isolated by silica gel chromatography (gradient elution, 1→2 Et2O 

in hexanes) as a colorless oil.  >99% ee, [α]D
25 +65.9 (c 0.50, CHCl3); Rf = 0.3 (10% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.51–7.48 (m, 4H), 7.29–7.09 (m, 5H), 

6.31 (ddd, J = 16.9, 10.3, 8.4 Hz, 1H), 5.21–4.96 (m, 2H), 4.37 (d, J = 8.5 Hz, 1H), 3.62 

(s, 3H), 1.51 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 196.6, 173.3, 139.1, 137.3, 135.7, 

131.7, 130.0, 129.7, 128.2, 127.5, 127.1, 117.7, 61.8, 54.7, 52.5, 20.8; IR (Neat Film, 

NaCl) 3355, 3028, 2997, 2948, 1735, 1685, 1584, 1484, 1452, 1395, 1245, 1221, 1117, 

1073, 966, 922, 841, 756 cm-1; HRMS (ESI+) m/z calc’d for C20H20BrO3 [M+H]+: 
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387.0590, found 387.0612; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H 

column, λ = 254 nm, tR (min): major = 5.35, minor = 5.88.  

 

Ethyl (2R,3S)-2-benzoyl-2-ethyl-3-phenylpent-4-enoate (112n). 

 

 

Ketoester 112n was isolated by silica gel chromatography (gradient elution, 0→2 Et2O in 

hexanes) as a colorless oil.  >99% ee, [α]D
25 +77.4 (c 0.25, CHCl3); Rf = 0.4 (10% EtOAc 

in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.61–7.51 (m, 2H), 7.48–7.38 (m, 1H), 7.35–

7.11 (m, 7H), 6.33 (ddd, J = 17.0, 10.3, 7.8 Hz, 1H), 5.07 (ddd, J = 10.3, 1.8, 1.1 Hz, 1H), 

4.96 (dt, J = 17.1, 1.5 Hz, 1H), 4.38 (dd, J = 7.9, 1.4 Hz, 1H), 4.06 (qd, J = 7.2, 3.3 Hz, 

2H), 2.15 (dq, J = 15.0, 7.5 Hz, 1H), 1.89 (dq, J = 14.9, 7.5 Hz, 1H), 0.99 (t, J = 7.1 Hz, 

3H), 0.78 (t, J = 7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 198.1, 172.9, 139.5, 138.4, 

137.9, 132.0, 129.8, 128.2, 128.1, 127.9, 127.0, 116.6, 65.2, 61.0, 52.2, 27.6, 13.6, 8.5; 

IR (Neat Film, NaCl) 3061, 3028, 2980, 1729, 1679, 1597, 1446, 1386, 1303, 1228, 1208, 

1097, 1028, 993, 917, 759 cm-1; HRMS (ESI+) m/z calc’d for C22H25O3 [M+H]+: 

337.1798, found 337.1813; SFC conditions: 5% MeOH, 2.5 mL/min, Chiralpak AD-H 

column, λ = 254 nm, tR (min): major = 2.48, minor = 2.20.  

 

Ethyl (2R,3S)-2-benzoyl-2-benzyl-3-phenylpent-4-enoate (112o). 
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Ketoester 112o was isolated by silica gel chromatography (gradient elution, 1→2 EtOAc 

in hexanes) as a white solid.  >99% ee, [α]D
25 +37.1 (c 1.29, CHCl3); Rf = 0.4 (5% EtOAc 

in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.33–7.29 (m, 1H), 7.29–7.21 (m, 4H), 7.17–

7.10 (m, 8H), 7.04–7.00 (m, 2H), 6.37 (ddd, J = 17.0, 10.3, 8.1 Hz, 1H), 5.13 (ddd, J = 

10.2, 1.8, 1.0 Hz, 1H), 5.02 (dt, J = 17.0, 1.5 Hz, 1H), 4.42 (d, J = 7.9 Hz, 1H), 3.99 (dq, 

J = 10.7, 7.1 Hz, 1H), 3.80 (dq, J = 10.7, 7.1 Hz, 1H), 3.28 (AB, J = 15.5, 13.5 Hz, 2H), 

0.82 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 200.5, 172.0, 139.7, 139.3, 138.3, 

136.8, 131.4, 131.2, 130.0, 128.4, 128.1, 127.7, 127.6, 127.4, 126.9, 117.6, 67.5, 61.0, 

56.8, 42.1, 13.4; IR (Neat Film, NaCl) 3063, 3029, 2982, 2929, 1729, 1673, 1600, 1582, 

1496, 1448, 1367, 1299, 1241, 1209, 1082, 1066, 1025, 925, 757 cm-1; HRMS (ESI+) 

m/z calc’d for C27H27O3 [M+H]+: 399.1955, found 399.1956; SFC conditions: 4% IPA, 

4.0 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): major = 5.06, minor = 8.94.  

 

Ethyl (2R,3S)-2-allyl-2-benzoyl-3-phenylpent-4-enoate (112p). 

 

 

Ketoester 112p was isolated by silica gel chromatography (2% EtOAc in hexanes) as a 

colorless oil.  >99% ee, [α]D
25 +80.7 (c 0.31, CHCl3); Rf = 0.4 (5% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 7.54–7.49 (m, 2H), 7.43 (ddt, J = 7.7, 7.0, 1.2 Hz, 1H), 
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7.33–7.27 (m, 2H), 7.25–7.19 (m, 3H), 7.18–7.13 (m, 2H), 6.36 (ddd, J = 17.0, 10.3, 8.0 

Hz, 1H), 5.71 (dddd, J = 17.0, 10.2, 7.8, 7.0 Hz, 1H), 5.10 (ddd, J = 10.3, 1.8, 1.1 Hz, 

1H), 5.03 (ddt, J = 10.2, 2.1, 1.0 Hz, 1H), 4.99 (ddd, J = 17.0, 1.8, 1.2 Hz, 1H), 4.92 (dq, 

J = 17.1, 1.7 Hz, 1H), 4.35 (dt, J = 8.0, 1.2 Hz, 1H), 4.14–3.96 (m, 2H), 2.86 (ddt, J = 

14.6, 7.0, 1.3 Hz, 1H), 2.63 (ddt, J = 14.6, 7.7, 1.2 Hz, 1H), 0.99 (t, J = 7.2 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 198.0, 172.4, 139.4, 138.3, 138.2, 132.5, 132.1, 130.1, 128.3, 

128.14, 128.12, 127.2, 119.5, 117.2, 65.2, 61.2, 53.4, 39.4, 13.7; IR (Neat Film, NaCl) 

3079, 3029, 2981, 2933, 1728, 1679, 1638, 1597, 1581, 1493, 1446, 1367, 1257, 1216, 

1181, 1144, 1045, 1023, 1001, 921, 758 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for 

C23H25O3 [M+H]+: 349.1808, found 349.1808; SFC conditions: 3% IPA, 4.0 mL/min, 

Chiralpak IC column, λ = 254 nm, tR (min): major = 7.16, minor = 8.60.  

 

Ethyl (2R,3S)-2-benzoyl-3-phenyl-2-(prop-2-yn-1-yl)pent-4-enoate (112q). 

 

 

Ketoester 112q was isolated by silica gel chromatography (2% EtOAc in hexanes) as a 

colorless oil.  >99% ee, [α]D
25 +57.7 (c 0.94, CHCl3); Rf = 0.3 (5% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 7.62–7.55 (m, 2H), 7.46 (ddt, J = 8.6, 7.0, 1.2 Hz, 1H), 

7.35–7.29 (m, 2H), 7.25–7.23 (m, 5H), 6.37 (ddd, J = 17.0, 10.3, 7.8 Hz, 1H), 5.15 (ddd, 

J = 10.3, 1.8, 1.2 Hz, 1H), 5.09 (dt, J = 17.0, 1.5 Hz, 1H), 4.58 (dt, J = 7.8, 1.3 Hz, 1H), 

4.19–4.05 (m, 2H), 2.97 (dd, J = 17.4, 2.7 Hz, 1H), 2.69 (dd, J = 17.4, 2.7 Hz, 1H), 2.09 
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(t, J = 2.7 Hz, 1H), 1.05 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 196.0, 171.4, 

138.9, 137.6, 137.3, 132.5, 130.1, 128.4, 128.32, 128.27, 127.4, 117.6, 79.3, 72.9, 64.0, 

61.7, 52.5, 25.7, 13.8; IR (Neat Film, NaCl) 3288, 3060, 3030, 2981, 1728, 1682, 1597, 

1580, 1446, 1255, 1213, 1183, 1046, 1001, 925 cm-1; HRMS (ESI+) m/z calc’d for 

C23H23O3 [M+H]+: 347.1642, found 347.1647; SFC conditions: 5% IPA, 2.5 mL/min, 

Chiralcel OD-H column, λ = 254 nm, tR (min): minor = 5.67, major = 6.44.  

 

Ethyl (E)-2-benzoyl-5-phenyl-2-(prop-2-yn-1-yl)pent-4-enoate (113q). 

 

 

Ketoester 113q was isolated by silica gel chromatography (2% EtOAc in hexanes) as a 

colorless oil. 34% ee, [α]D
25 -23.4 (c 0.42, CHCl3); Rf = 0.3 (5% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 7.88–7.85 (m, 2H), 7.59–7.54 (m, 1H), 7.48–7.42 (m, 2H), 

7.30–7.24 (m, 4H), 7.21 (ddd, J = 8.7, 4.9, 3.8 Hz, 1H), 6.43 (dt, J = 15.6, 1.3 Hz, 1H), 

5.90 (dt, J = 15.5, 7.7 Hz, 1H), 4.20 (qq, J = 7.1, 3.6 Hz, 2H), 3.19 (ddd, J = 14.5, 7.9, 1.3 

Hz, 1H), 3.11 (ddd, J = 14.5, 7.5, 1.4 Hz, 1H), 2.98 (d, J = 2.7 Hz, 2H), 2.07 (t, J = 2.7 

Hz, 1H), 1.13 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 195.2, 171.7, 137.1, 

135.7, 134.9, 133.2, 128.8, 128.60, 128.57, 127.6, 126.4, 122.9, 79.0, 72.4, 62.1, 60.6, 

36.5, 23.9, 14.1; IR (Neat Film, NaCl) 3287, 3059, 3026, 2979, 2933, 1729, 1679, 1596, 

1580, 1446, 1367, 1285, 1270, 1239, 1192, 1180, 1094, 1064, 1023, 966, 937 cm-1; 

HRMS (ESI+) m/z calc’d for C23H23O3 [M+H]+: 347.1642, found 347.1651; SFC 
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conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): minor = 

9.81, major = 10.67.  

 

Ethyl (R)-2-benzoyl-5-oxo-2-((S)-1-phenylallyl)hexanoate (112r). 

 

 

Ketoester 112r was isolated by silica gel chromatography (gradient elution, 5→10% 

EtOAc in hexanes) as a colorless oil.  99% ee, [α]D
25 +66.8 (c 1.20, CHCl3); Rf = 0.4 

(25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.59–7.55 (m, 2H), 7.48–7.43 

(m, 1H), 7.37–7.30 (m, 2H), 7.26–7.14 (m, 5H), 6.34 (ddd, J = 17.0, 10.3, 8.1 Hz, 1H), 

5.09 (ddd, J = 10.3, 1.7, 1.0 Hz, 1H), 4.97 (ddd, J = 17.0, 1.7, 1.2 Hz, 1H), 4.36–4.32 (m, 

1H), 4.13–3.99 (m, 2H), 2.46–2.38 (m, 1H), 2.34–2.29 (m, 2H), 2.25–2.17 (m, 1H), 1.99 

(s, 3H), 1.00 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 206.9, 198.0, 172.4, 

139.1, 137.9, 137.8, 132.4, 129.7, 128.4, 128.3, 128.0, 127.3, 117.2, 64.2, 61.3, 53.2, 38.3, 

29.9, 28.0, 13.7; IR (Neat Film, NaCl) 3063, 3030, 2981, 2905, 1733, 1717, 1681, 1637, 

1596, 1582, 1495, 1446, 1419, 1367, 1243, 1214, 1137, 1093, 1029, 1002, 925, 860, 761 

cm-1; HRMS (ESI+) m/z calc’d for C24H27O3 [M+H]+: 379.1904, found 379.1911; SFC 

conditions: 5% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 254 nm, tR (min): minor = 

8.00, major = 10.08.  
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Ethyl (2R,3S)-2-((1H-indol-3-yl)methyl)-2-benzoyl-3-phenylpent-4-enoate (112s). 

 

 

Ketoester 112s was isolated by silica gel chromatography (gradient elution, 5→10% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 –7.7 (c 1.60, CHCl3); Rf = 0.4 

(25% EtOAc in hexanes); 1H NMR (300 MHz, C6D6) δ 7.70–7.65 (m, 1H), 7.36 (dd, J = 

7.2, 1.8 Hz, 2H), 7.24–7.16 (m, 2H), 7.08–6.93 (m, 5H), 6.90–6.63 (m, 6H), 6.56 (br s, 

1H), 5.17–5.12 (m, 1H), 5.10 (t, J = 1.0 Hz, 1H), 4.82 (d, J = 7.8 Hz, 1H), 3.82–3.63 (m, 

3H), 3.62–3.45 (m, 1H), 0.40 (td, J = 6.7, 1.3 Hz, 3H); 13C NMR (126 MHz, C6D6) δ 

199.7, 172.2, 139.7, 139.6, 138.9, 135.5, 130.8, 130.2, 128.4, 128.1, 127.9, 127.8, 127.6, 

126.9, 124.3, 121.6, 119.7, 119.2, 116.9, 110.5, 66.6, 60.4, 56.0, 31.9, 12.9; IR (Neat 

Film, NaCl) 3411, 3060, 1724, 1673, 1456, 1241, 1216, 1096, 1012, 923, 747 cm-1; 

HRMS (ESI+) m/z calc’d for C29H28NO3 [M+H]+: 438.2064, found 438.2070; SFC 

conditions: 10% MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): minor 

= 8.26, major = 9.30.  

 

Ethyl (2R,3S)-2-benzoyl-2-(2-cyanoethyl)-3-phenylpent-4-enoate (112t) and ethyl 

(2S,3S)-2-benzoyl-2-(2-cyanoethyl)-3-phenylpent-4-enoate (112t’).  
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Products 112t and 112t’ were isolated by silica gel chromatography (5% EtOAc in 

hexanes) as a mixture of diastereomers (3:1), which were separated by preparative HPLC 

(20% EtOAc in hexanes). 

 

     

The major diastereomer 112t was isolated as a white solid, >99% ee, [α]D
25 +59.1 (c 

1.81, CHCl3); Rf = 0.2 (10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.52–

7.44 (m, 3H), 7.36–7.30 (m, 2H), 7.26–7.20 (m, 3H), 7.15–7.11 (m, 2H), 6.33 (ddd, J = 

17.0, 10.2, 8.2 Hz, 1H), 5.14 (ddd, J = 10.2, 1.6, 1.0 Hz, 1H), 5.01 (dt, J = 17.0, 1.3 Hz, 

1H), 4.32 (dt, J = 8.0, 1.0 Hz, 1H), 4.15–4.06 (m, 2H), 2.50–2.36 (m, 2H), 2.28 (td, J = 

8.0, 0.8 Hz, 2H), 1.01 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.2, 171.8, 

138.3, 137.5, 137.1, 132.8, 129.7, 128.7, 128.5, 128.1, 127.7, 119.1, 118.1, 64.0, 61.9, 

53.6, 30.6, 13.7, 13.1; IR (Neat Film, NaCl) 3061, 3027, 2981, 2248, 1729, 1675, 1596, 

1580, 1446, 1243, 1214, 1185, 1085, 1017, 971, 924, 757 cm-1; HRMS (MM: ESI-APCI+) 

m/z calc’d for C23H24NO3 [M+H]+:  362.1751, found 362.1766; SFC conditions: 5% IPA, 

2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): major = 9.77, minor = 11.61. 
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The minor diastereomer was isolated as a white solid, >99% ee, [α]D
25 +22.3 (c 0.11, 

CHCl3); Rf = 0.2 (10% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.69–7.63 (m, 

2H), 7.55–7.47 (m, 1H), 7.41–7.32 (m, 2H), 7.31–7.22 (m, 4H), 7.22–7.16 (m, 1H), 6.29 

(dt, J = 16.8, 10.2 Hz, 1H), 5.21–5.11 (m, 2H), 4.35 (d, J = 10.3 Hz, 1H), 4.03 (dq, J = 

10.8, 7.2 Hz, 1H), 3.84 (dq, J = 10.8, 7.2 Hz, 1H), 2.74–2.63 (m, 1H), 2.46–2.28 (m, 2H), 

2.14–2.02 (m, 1H), 0.81 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 196.0, 171.3, 

139.7, 136.7, 136.0, 133.0, 129.7, 128.7, 128.5, 128.3, 127.4, 119.2, 118.9, 63.8, 61.7, 

53.0, 30.7, 13.3, 12.9; IR (Neat Film, NaCl) 3062, 3029, 2982, 2248, 1728, 1678, 1596, 

1580, 1494, 1446, 1367, 1275, 1242, 1215, 1093, 1018, 972, 928, 757 cm-1; HRMS (MM: 

ESI-APCI+) m/z calc’d for C23H24NO3 [M+H]+:  362.1751, found 362.1757; SFC 

conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): major = 

10.65, minor = 12.02. 

 

Ethyl (2S,3S)-2-benzoyl-2-fluoro-3-phenylpent-4-enoate (112u). 

 

 

Ketoester 112u was isolated by silica gel chromatography (gradient elution, 1→2% 

EtOAc in hexanes) as a colorless oil.  95% ee, [α]D
25 +82.0 (c 1.19, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.77 (ddt, J = 7.6, 2.0, 1.2 Hz, 2H), 

7.49 (ddt, J = 7.7, 7.0, 1.3 Hz, 1H), 7.38–7.30 (m, 4H), 7.31–7.14 (m, 3H), 6.20 (ddd, J = 

17.0, 10.2, 9.4 Hz, 1H), 5.27 (ddt, J = 17.0, 1.5, 0.8 Hz, 1H), 5.23 (ddd, J = 10.1, 1.5, 0.6 
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Hz, 1H), 4.65 (dd, J = 33.3 (JH-F), 9.4 Hz, 1H), 4.31 (ddq, J = 39.5, 10.8, 7.2 Hz, 2H), 

1.30 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 192.6 (d, J = 27.1 Hz), 166.3 (d, 

J = 26.4 Hz), 137.4, 134.9 (d, J = 3.5 Hz), 134.5 (d, J = 4.0 Hz), 133.6, 129.9 (d, J = 2.6 

Hz), 129.5 (d, J = 6.7 Hz), 128.5, 128.4, 127.4, 119.1, 103.1 (d, J = 208.4 Hz), 63.1, 54.4 

(d, J = 18.3 Hz), 14.2; 19F NMR (282 MHz, CDCl3) δ -169.39 (d, J = 33.2 Hz); IR (Neat 

Film, NaCl) 3062, 3030, 2982, 2934, 1749, 1694, 1597, 1454, 1447, 1367, 1230, 1187, 

1129, 1038, 929, 856, 743 cm-1; HRMS (ESI+) m/z calc’d for C20H20FO3 [M+H]+: 

327.1391, found 327.1401; SFC conditions: 5% IPA, 4.0 mL/min, Chiralpak IC column, 

λ = 254 nm, tR (min): major = 2.02, minor = 3.18.  

 

Ethyl (2S,3S)-2-benzoyl-2-chloro-3-phenylpent-4-enoate (112v). 

 

 

Ketoester 112v was isolated by silica gel chromatography (gradient elution, 2→3% 

EtOAc in hexanes) as a colorless oil.  >99% ee, [α]D
25 +93.8 (c 1.43, CHCl3); Rf = 0.4 

(5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.84–7.78 (m, 2H), 7.54–7.47 (m, 

1H), 7.47–7.40 (m, 2H), 7.40–7.33 (m, 2H), 7.33–7.18 (m, 3H), 6.36 (ddd, J = 16.9, 10.2, 

8.7 Hz, 1H), 5.20 (ddd, J = 10.2, 1.5, 0.8 Hz, 1H), 5.15 (ddd, J = 16.9, 1.6, 1.0 Hz, 1H), 

4.66 (d, J = 8.6 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 1.12 (t, J = 7.1 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 189.8, 167.3, 138.0, 135.9, 134.8, 133.1, 130.7, 129.3, 128.3, 128.0, 

127.5, 118.7, 77.3, 63.4, 55.8, 13.8; IR (Neat Film, NaCl) 3062, 3029, 2982, 1754, 1696, 
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1597, 1581, 1446, 1367, 1299, 1239, 1207, 1186, 1094, 1075, 1025, 1007, 928, 749 cm-1; 

HRMS (ESI+) m/z calc’d for C20H20ClO3 [M+H]+: 343.1095, found 343.1099; SFC 

conditions: 10% MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): major 

= 2.52, minor = 2.77.  

 

Ethyl (2R,3S)-2-(cyclohex-1-ene-1-carbonyl)-2-methyl-3-phenylpent-4-enoate 

(112w). 

 

 

Ketoester 112w was isolated by silica gel chromatography (1% EtOAc in hexanes) as a 

colorless oil.  99% ee, [α]D
25 +80.8 (c 1.00, CHCl3,); Rf = 0.3 (10% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 7.33–7.13 (m, 5H), 6.47 (td, J = 3.9, 2.0 Hz, 1H), 6.25 

(ddd, J = 16.8, 10.3, 8.0 Hz, 1H), 5.09 (dt, J = 10.2, 1.4 Hz, 1H), 5.00 (dt, J = 16.9, 1.4 

Hz, 1H), 4.29 (dd, J = 8.0, 1.4 Hz, 1H), 3.68 (d, J = 0.8 Hz, 3H), 2.24–2.03 (m, 3H), 

1.97–1.81 (m, 1H), 1.55 (tq, J = 7.0, 4.0, 2.3 Hz, 4H), 1.43 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 198.1, 173.8, 139.4, 138.3, 137.9, 137.2, 130.0, 128.0, 126.8, 117.1, 61.1, 54.5, 

52.2, 25.9, 24.3, 22.0, 21.3, 20.7; IR (Neat Film, NaCl) 2938, 1732, 1671, 1636, 1452, 

1433, 1234, 1113, 984, 917, 703 cm-1; HRMS (ESI+) m/z calc’d for C20H25O3 [M+H]+: 

313.1798, found 313.1785; SFC conditions: 5% MeOH, 4.0 mL/min, Chiralpak IC 

column, λ = 254 nm, tR (min): minor = 5.83, major = 6.55.  
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Methyl (2R,3S)-2-(cyclohexanecarbonyl)-2-methyl-3-phenylpent-4-enoate (112x). 

 

 

Ketoester 112x was isolated by silica gel chromatography (5% EtOAc in hexanes) as a 

mixture of diastereomers (4:1 dr).  For the major isomer: 96% ee, [α]D
25 +57.7 (c 1.54, 

CHCl3, measured with 4:1 dr mixture); Rf = 0.3 (5% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 7.29–7.18 (m, 5H), 6.26 (ddd, J = 17.0, 10.2, 8.5 Hz, 1H), 5.08 (ddd, J = 

10.2, 1.8, 0.9 Hz, 1H), 5.00 (ddd, J = 17.0, 1.8, 1.1 Hz, 1H), 4.18 (dt, J = 8.5, 1.0 Hz, 1H), 

3.71 (s, 3H), 2.50 (tt, J = 11.4, 3.2 Hz, 1H), 1.79–1.56 (m, 5H), 1.53–1.46 (m, 1H), 1.33 

(s, 3H), 1.32–1.11 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 210.3, 172.4, 139.6, 137.8, 

129.9, 128.3, 127.0, 117.4, 64.7, 54.1, 52.2, 48.4, 30.3, 29.6, 25.8, 25.73, 25.71, 18.7; IR 

(Neat Film, NaCl) 2933, 2854, 1729, 1708, 1635, 1495, 1453, 1432, 1380, 1315, 1228, 

1144, 1101, 989, 919 cm-1; HRMS (ESI+) m/z calc’d for C20H26O3 [M+H]+: 315.1955, 

found 315.1955; SFC conditions: 100% CO2, 4.0 mL/min, Chiralcel OJ-H column, λ = 

210 nm, tR (min): minor = 7.28, major = 7.96.  

 

Methyl (2R,3S)-2-acetyl-2-ethyl-3-phenylpent-4-enoate (112y) and methyl (2S,3S)-2-

acetyl-2-ethyl-3-phenylpent-4-enoate (112y’). 

Ketoesters 112y and 112y’ were isolated by silica gel chromatography (gradient elution, 

0→4% EtOAc in hexanes) as mixture of two diastereomers (1.5:1 dr).  The diastereomers 

were separated by preparative HPLC (gradient elution, 60→70% MeCN in H2O).   
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The major diastereomer 112y was isolated as a colorless oil. 90% ee, [α]D
25 +72.7 (c 

0.60, CHCl3); Rf = 0.4 (5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.32–7.25 

(m, 2H), 7.25–7.18 (m, 1H), 7.17–7.07 (m, 2H), 6.28 (ddd, J = 17.0, 10.2, 8.4 Hz, 1H), 

5.08 (ddd, J = 10.2, 1.7, 0.9 Hz, 1H), 4.97 (ddd, J = 17.0, 1.7, 1.1 Hz, 1H), 4.03 (d, J = 

8.5 Hz, 1H), 3.76 (s, 3H), 2.06 (s, 3H), 1.86–1.68 (m, 2H), 0.77 (t, J = 7.5 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 205.8, 172.4, 139.5, 137.7, 129.3, 128.4, 127.3, 117.3, 68.2, 

53.5, 51.9, 29.8, 27.4, 9.1; IR (Neat Film, NaCl) 3083, 3029, 2978, 2950, 2883, 1709, 

1601, 1494, 1434, 1385, 1353, 1301, 1220, 1116, 1029, 993, 919, 755 cm-1; HRMS (MM: 

ESI-APCI+) m/z calc’d for C16H21O3 [M+H]+:  261.1485, found 261.1492; SFC 

conditions: 0.5% IPA, 2.5 mL/min, Chiralcel OJ-H column, λ = 210 nm, tR (min): minor 

= 4.79, major = 7.02. 

 

 

The minor diastereomer 112y’ was isolated as a colorless oil. 91% ee, [α]D
25 +25.3 (c 

0.26, CHCl3); Rf = 0.4 (5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.26–7.23 

(m, 2H), 7.21–7.17 (m, 1H), 7.17–7.13 (m, 2H), 6.31 (ddd, J = 16.9, 10.2, 9.3 Hz, 1H), 

5.15 (ddd, J = 10.2, 1.6, 0.7 Hz, 1H), 5.10 (ddd, J = 17.0, 1.7, 1.0 Hz, 1H), 4.11 (d, J = 

9.4 Hz, 1H), 3.63 (s, 3H), 2.12 (s, 3H), 2.09–1.98 (m, 1H), 1.80 (dq, J = 14.8, 7.5 Hz, 

1H), 0.77 (t, J = 7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 205.3, 172.3, 140.1, 137.3, 
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129.4, 128.2, 127.0, 117.6, 68.0, 52.5, 51.9, 30.1, 26.9, 8.8; IR (Neat Film, NaCl) 3063, 

3030, 2962, 2925, 2850, 1710, 1600, 1446, 1354, 1286, 1260, 1223, 1182, 1118, 1095, 

1023, 921, 864, 801 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C16H21O3 [M+H]+:  

261.1485, found 261.1494; SFC conditions: 0.5% IPA, 2.5 mL/min, Chiralcel OJ-H 

column, λ = 210 nm, tR (min): minor = 6.29, major = 7.02.  

 

tert-Butyl (2R,3S)-2-benzoyl-2-methyl-3-phenylpent-4-enoate (112z). 

 

 

Ketoester 112z was isolated by silica gel chromatography (gradient elution, 0→2→5% 

EtOAc in hexanes) as a colorless oil. >99% ee, [α]D
25 +67.4 (c 1.54, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.74–7.70 (m, 2H), 7.49–7.46 (m, 1H), 

7.39–7.34 (m, 2H), 7.25–7.16 (m, 5H), 6.34 (ddd, J = 17.0, 10.3, 7.9 Hz, 1H), 5.12 (ddd, 

J = 10.3, 1.8, 1.1 Hz, 1H), 5.03 (dt, J = 17.0, 1.6 Hz, 1H), 4.42 (dt, J = 7.9, 1.2 Hz, 1H), 

1.50 (s, 3H), 1.29 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 198.1, 171.8, 139.7, 138.1, 

137.3, 132.2, 130.4, 128.5, 128.3, 128.1, 126.9, 117.1, 82.6, 62.1, 54.6, 27.8, 21.0; IR 

(Neat Film, NaCl) 3061, 3027, 2978, 2934, 1728, 1716, 1687, 1682, 1598, 1454, 1446, 

1251, 1155, 1115, 961, 918, 844 cm-1; HRMS (ESI+) m/z calc’d for C23H27O3 [M+H]+: 

351.1955, found 351.1955; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, 

λ = 254 nm, tR (min): major = 4.14, minor = 5.80.  

 

Ph
Me

PhO

CO2t-Bu

112z
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tert-Butyl (E)-2-benzoyl-2-methyl-5-phenylpent-4-enoate (113z). 

 

 

Ketoester 113z was isolated by silica gel chromatography (gradient elution, 0→2→5% 

EtOAc in hexanes) as a colorless oil. 38% ee, [α]D
25 +3.9 (c 0.74, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.92–7.89 (m, 2H), 7.56–7.51 (m, 1H), 

7.46–7.41 (m, 2H), 7.33–7.27 (m, 4H), 7.23–7.18 (m, 1H), 6.39 (dt, J = 15.8, 1.3 Hz, 1H), 

6.16–6.06 (m, 1H), 2.93 (ddd, J = 14.2, 7.5, 1.4 Hz, 1H), 2.84 (ddd, J = 14.2, 7.7, 1.3 Hz, 

1H), 1.55 (s, 3H), 1.28 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 197.8, 172.8, 137.3, 135.9, 

133.9, 132.7, 128.8, 128.6, 128.5, 127.4, 126.3, 124.7, 82.2, 58.0, 40.7, 27.8, 21.5; IR 

(Neat Film, NaCl) 3058, 3026, 2977, 2933, 1728, 1686, 1682, 1597, 1579, 1447, 1368, 

1249, 1212, 1152, 1111, 970, 845 cm-1; HRMS (ESI+) m/z calc’d for C23H27O3 [M+H]+: 

351.1955, found 351.1949; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, 

λ = 254 nm, tR (min): major = 9.88, minor = 8.48.  

 

Ph
Me

O

CO2t-Bu

113z

Ph
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4.6.5 Procedures for derivatization of allylic alkylation products and 

spectroscopic data of derivatives 

Synthesis of cyclohexenone 114: 

 

 

    To a solution of ketoester 112r (60.4 mg, 0.6 mmol) in t-BuOMe (2 mL) was added 

pyrrolidine (13.7 mg, 0.19 mmol) and AcOH (11.6 mg, 0.19 mmol).  The mixture was 

stirred for 12 h at 25 °C then heated to reflux for 4 h.  The solvent was removed under 

reduced pressure and the residue was subjected to column chromatography on silica gel 

(gradient elution, 10→25% EtOAc in hexanes) to give cyclohexenone 114 (55.1 mg, 

95% yield) as a colorless oil.  [α]D
25 +151.4 (c 1.19, CHCl3); Rf = 0.5 (25% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.34–7.28 (m, 1H), 7.25–7.19 (m, 2H), 7.13–

7.04 (m, 3H), 7.04–6.97 (m, 2H), 6.69–6.63 (m, 2H), 6.33 (ddd, J = 16.9, 10.2, 7.8 Hz, 

1H), 6.07 (s, 1H), 5.10 (ddd, J = 10.2, 1.6, 1.0 Hz, 1H), 4.87 (dt, J = 17.0, 1.5 Hz, 1H), 

4.31 (q, J = 7.1 Hz, 2H), 4.26 (dt, J = 7.5, 1.5 Hz 1H), 2.91–2.77 (m, 1H), 2.62–2.53 (m, 

3H), 1.32 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 198.5, 173.2, 161.6, 139.5, 

139.2, 138.0, 131.9, 129.8, 128.7, 128.2, 128.1, 128.0, 126.7, 118.1, 62.0, 54.0, 53.8, 

34.7, 30.9, 14.3; IR (Neat Film, NaCl) 3058, 3030, 2981, 1725, 1673, 1602, 1492, 1444, 

1326, 1240, 1214, 1170, 1016, 921, 882 cm-1; HRMS (ESI+) m/z calc’d for C24H25O3 

[M+H]+:  361.1798, found 361.1798. 

 

Ph

PhO

CO2Et
pyrrolidine

AcOH

t-BuOMe, 25 °C→reflux
O

PhEtO2C

O Ph

112r 114
95% yield
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Synthesis of bicyclic enone 116: 

 

 

    A dried flask was charged with a solution of enyne 112q (8.6 mg, 0.025 mmol) and 

Co2(CO)8 (11.8 mg, 0.034 mmol) in CH2Cl2 (2 mL) and the mixture was stirred at room 

temperature for 12 h under an atmosphere of argon. After full consumption of 112q was 

observed by TLC analysis, Me3NO•2H2O (7.6 mg, 0.068 mmol) was added.  The mixture 

was stirred for 20 min and an additional portion of Me3NO•2H2O (30.1 mg, 0.27 mmol) 

was added.  Stirring was continued until complete consumption of the cobalt-alkyne 

complex was observed by TLC analysis (about 4 h).  The mixture was filtered through a 

celite pad, washed with CH2Cl2, the solvent removed under reduced pressure, and the 

residue subjected to column chromatography on silica gel (25% EtOAc in hexanes) to 

give the bicyclic enone 116 (9.3 mg, 99% yield) as a colorless oil.  The relative 

stereochemistry of 116 was assigned by 2D-NOESY.  [α]D
25 -178.8 (c 0.79, CHCl3); Rf = 

0.3 (25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.33–7.26 (m, 1H), 7.26–

7.18 (m, 4H), 7.13–7.02 (m, 5H), 6.03 (td, J = 2.2, 1.1 Hz, 1H), 4.11–3.91 (m, 3H), 3.82 

(d, J = 12.3 Hz, 1H), 3.73–3.63 (m, 1H), 3.01 (dq, J = 18.2, 1.1 Hz, 1H), 2.54 (ddd, J = 

18.0, 6.4, 0.8 Hz, 1H), 2.14 (ddd, J = 18.0, 2.5, 1.7 Hz, 1H), 0.86 (t, J = 7.1 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 209.3, 197.1, 183.8, 173.3, 137.1, 136.7, 132.4, 129.5, 128.5, 

128.3, 127.9, 127.8, 126.1, 68.6, 62.0, 55.8, 50.4, 41.7, 39.2, 13.6; IR (Neat Film, NaCl) 

3034, 2979, 2927, 1733, 1714, 1668, 1636, 1600, 1583, 1449, 1409, 1255, 1211, 1183, 

Ph

O

O
EtO2C

Ph

116

H

Ph

PhO

CO2Et

112q

1) Co2(CO)8, CH2Cl2
    25 °C, 12 h

2) Me3NO•2H2O

99% yield
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1071, 1043, 927, 914, 819 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C24H23O4 

[M+H]+:  375.1596, found 375.1592. 

 

Synthesis of compound 115: 

 

    To a flame-dried Schlenk flask was added a solution of 112p (20.8 mg, 0.06 mmol in 

1.5 mL of CH2Cl2) and Hoveyda-Grubbs II catalyst (3.7 mg, 10 mol%).  The reaction 

mixture was stirred for 3 h at 40 °C, filtered through a short silica pad and purified by 

silica gel chromatography (gradient elution, 1→5% EtOAc in hexanes) to give ketoester 

115 (18.3 mg, 96% yield) as a white solid.  [α]D
25 -613.7 (c 0.94, CHCl3); Rf = 0.4 (5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.61–7.55 (m, 2H), 7.38 (ddt, J = 8.6, 

7.1, 1.2 Hz, 1H), 7.28–7.21 (m, 2H), 6.97–6.93 (m, 3H), 6.89–6.83 (m, 2H), 5.90 (ddt, J 

= 6.1, 2.6, 1.8 Hz, 1H), 5.75 (dtd, J = 5.5, 2.6, 1.5 Hz, 1H), 4.92 (q, J = 2.3 Hz, 1H), 4.11 

(q, J = 7.1 Hz, 2H), 4.03 (dtd, J = 18.0, 2.6, 1.9 Hz, 1H), 2.73 (ddd, J = 18.0, 2.6, 1.6 Hz, 

1H), 1.00 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 194.2, 174.4, 138.4, 136.6, 

133.8, 132.5, 129.5, 128.5, 128.1, 128.0, 127.4, 127.0, 68.3, 61.9, 58.0, 41.5, 13.8; IR 

(Neat Film, NaCl) 3060, 3028, 2959, 2932, 2871, 1736, 1732, 1686, 1682, 1598, 1582, 

1492, 1447, 1365, 1258, 1243, 1220, 1157, 1087, 1048, 1004, 966, 922, 876, 761 cm-1; 

HRMS (MM: ESI-APCI+) m/z calc’d for C21H21O3 [M+H]+:  321.1485, found 321.1489. 

 

Ph

PhO

CO2Et

Hoveyda-Grubbs II
 (10 mol%)

CH2Cl2, 40 °C, 3 h

115

EtO2C
Ph

Ph

O

112p

N N

Ru

MesMes

O
Cl

Cl

Hoveyda-Grubbs-II

96% yield
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4.6.6 Determination of the absolute confirmation of compound 112f 

 

 

    To a flame-dried flask was added 112f (98% ee, 62.1 mg, 0.16 mmol), CH2Cl2 (5 mL) 

and this solution was cooled to -78 °C.  DIBAL-H (0.62 mL, 1.0 M solution in hexane) 

was added dropwise by syringe.  The mixture was stirred for 2 h at -78 °C, then allowed 

to warm to 25 °C and stirred for an additional 12 h.  The reaction was then cooled to 0 °C, 

and another 0.62 mL of DIBAL-H solution was added, followed by stirring at 25 °C for 3 

h. The reaction mixture was then quenched with saturated aqueous Rochelle’s salt (20 

mL) and stirred for another 3 h.  The aqueous layer was partitioned with a total of 100 

mL of CH2Cl2 and the combined organic phases washed with brine, dried over MgSO4, 

filtered and concentrated under reduced pressure.  The crude product was purified by 

silica gel chromatography (gradient elution, 5→20% EtOAc in hexanes) to give 40.2 mg 

(72% yield) of 117 as white solid mixture (1:1 dr).  The diastereomers were separated by 

preparative HPLC (gradient elution, 60→90% MeCN in H2O).  For isomer a: white solid, 

[α]D
25 +58.9 (c 0.47, CHCl3); Rf = 0.4 (25% EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ7.46–7.39 (m, 4H), 7.36–7.31 (m, 2H), 7.31–7.27 (m, 1H), 7.27–7.23 (m, 2H), 

6.79 (dt, J = 16.9, 10.1 Hz, 1H), 5.20–5.10 (m, 2H), 5.07 (s, 1H), 3.67 (d, J = 10.1 Hz, 

1H), 3.34 (d, J = 11.2 Hz, 1H), 3.11 (dd, J = 11.1, 0.7 Hz, 1H), 1.56 (br s, 2H), 0.72 (s, 

3H); 13C NMR (126 MHz, CDCl3) δ 141.5, 141.0, 140.4, 131.6, 131.4, 128.04, 128.79, 

Ph
Me

O

CO2Et

112f

Br

DIBAL-H

CH2Cl2, -78 → 25 °C

Ph
Me

OH

CH2OH

117

Br

∼ 1:1 dr mixture
72% yield
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127.8, 120.5, 116.5, 76.0, 66.6, 55.8, 46.2, 15.3; IR (Neat Film, NaCl) 3423, 3070, 2969, 

2923, 1486, 1452, 1403, 1342, 1074, 1012, 916, 827 cm-1; HRMS (ESI+) m/z calc’d for 

fragment C19H18Br [M-H4O2+H]+:  325.0586, found 325.0585.  For isomer b: white solid, 

[α]D
25 +53.4 (c 0.43, CHCl3); Rf = 0.4 (24% EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 7.50–7.45 (m, 2H), 7.35–7.27 (m, 5H), 7.25–7.20 (m, 2H), 6.30 (dt, J = 16.8, 

10.0 Hz, 1H), 5.35 (ddd, J = 16.8, 1.9, 0.8 Hz, 1H), 5.24 (ddd, J = 10.0, 1.9, 0.5 Hz, 1H), 

4.39 (d, J = 10.0 Hz, 1H), 4.26 (s, 1H), 3.64 (d, J = 11.6 Hz, 1H), 3.51 (dd, J = 11.6, 1.8 

Hz, 1H), 1.58 (br s, 2H), 0.48 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 141.0, 140.2, 137.2, 

131.7, 131.3, 128.02, 127.97, 127.8, 120.6, 118.3, 80.0, 65.6, 49.7, 44.5, 15.5; IR (Neat 

Film, NaCl) 3372, 2973, 2938, 2888, 1637, 1486, 1473, 1454, 1402, 1348, 1266, 1203, 

1101, 1077, 1024, 1010, 921, 894, 831, 782 cm-1; HRMS (ESI+) m/z calc’d for fragment 

C19H18Br [M-H4O2+H]+:  325.0586, found 325.0588. 
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4.6.7 Determination of enantiomeric excess 

Table 4.6.7.1. Determination of enantiomeric excess 

 

entry compound SFC analytic conditions ee (%)

1

2

3

4

5

6

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 4.12, minor 6.14

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 6.71, minor 9.45

98

>99

>99

>99

99

>99

Chiralcel OJ-H, λ = 254 nm
4% IPA/CO2, 2.5 mL/min
tR (min): minor 5.64, major 6.84

Chiralpak IC, λ = 254 nm
2% MeOH/CO2, 2.5 mL/min
tR (min): major 12.24, minor 13.50

Chiralpak IC, λ = 254 nm
10% IPA/CO2, 4.0 mL/min
tR (min): major 1.59, minor 1.77

Chiralpak AD-H, λ = 254 nm
10% IPA/CO2, 4.0 mL/min
tR (min): minor 2.95, major 3.17

Ph
Me

PhO

CO2Et

112a

Ph
Me

O

CO2Et

112b

Me

Ph
Me

O

CO2Et

112c

OMe

Ph
Me

O

CO2Et

112d

OMe

Ph
Me

O

CO2Et

112e

Cl

Ph
Me

O

CO2Et

112f

Br

7 >99
Chiralpak AD-H, λ = 254 nm
2% IPA/CO2, 2.5 mL/min
tR (min): minor 5.20, major 6.68

Ph
Me

O

CO2Et

112g

CF3
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8

9

10

93

23

95

Chiralpak AD-H, λ = 254 nm
10% MeOH/CO2, 3.0 mL/min
tR (min): major 7.13, minor 8.06

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 7.92, mino 11.24

Chiralpak AD-H, λ = 254 nm
5% MeOH/CO2, 3.0 mL/min
tR (min): minor 4.47, major 5.71

Ph
Me

O

CO2Et

112h

NO2

Ph
Me

O

CO2Et

113h
NO2

Ph
Me

O

CO2Et

112i

S

Ph
Me

O

CO2Et

112j

O

Ph
Me

O

CO2Et

112k

Me

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 5.09, minor 9.14

Chiralpak AD-H, λ = 210 nm
2% IPA/CO2, 2.5 mL/min
tR (min): minor 4.40, major 5.52

11 >99

9112

Chiralpak IC, λ = 254 nm
10% IPA/CO2, 4.0 mL/min
tR (min): major 2.67, minor 3.51

9913

Chiralpak AD-H, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 5.35, minor = 5.88

>9914

O Ph

CO2Et

112l

Me
MeO

O Ph

CO2Me

112m

Me
Br

entry compound SFC analytic conditions ee (%)

Chiralpak AD-H, λ = 254 nm,
5% MeOH/CO2, 2.5 mL/min,
 tR (min): major = 2.48, minor = 2.20

>9915 Ph
Et

PhO

CO2Et

112n
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Ph

PhO

CO2Et

112p

Chiralpak AD-H, λ = 254 nm
4% MeOH/CO2, 4.0 mL/min
tR (min): major 5.06, minor 8.94

>9916

Chiralpak IC, λ = 254 nm
3% IPA/CO2, 4.0 mL/min
tR (min): major 7.16, minor 8.60

>9917

Chiralcel OD-H, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): minor 5.67, major 6.44

>9918

Ph
Bn

PhO

CO2Et

112o

Ph

PhO

CO2Et

112q

Ph

PhO

CO2Et

112r

O

Chiralcel OD-H, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): minor 10.8, major 8.0

9920

Chiralpak AD-H, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 9.77, minor 11.60

>9922
Ph

PhO

CO2Et

NC

112t

Ph

PhO

CO2Et

NH

112s

Chiralpak IC, λ = 254 nm
10% MeOH/CO2, 2.5 mL/min
tR (min): major 8.26, minor 9.30

>9921

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 10.67, minor 9.81

34
Ph

O

CO2Et

113q

Ph19

entry compound SFC analytic conditions ee (%)

Chiralpak AD-H, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 10.65, minor 12.00

>9923
Ph

PhO

CO2Et

112t'

NC
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Chiralpak IC, λ = 254 nm
5% IPA/CO2, 4.0 mL/min
tR (min): major 2.02, minor 3.18

9524

Chiralpak IC, λ = 254 nm
10% IPA/CO2, 2.5 mL/min
tR (min): major 2.52, minor 2.76

>9925

Chiralpak IC, λ = 254 nm
5% MeOH/CO2, 4 mL/min
tR (min): major 6.56, minor 5.83

9926

Ph
F

PhO

CO2Et

112u

Ph
Cl

PhO

CO2Et

112v

Me

PhO

CO2Me

112w

Chiralcel OJ-H, λ = 210 nm
100% CO2, 4.0 mL/min
tR (min): minor 7.28, major 7.96

9627

Chiralcel OJ-H, λ = 210 nm
0.5% IPA/CO2, 2.5 mL/min
tR (min): minor 4.79, major 5.33

9028

Chiralcel OJ-H, λ = 210 nm
0.5% IPA/CO2, 2.5 mL/min
tR (min): minor 6.29, major 7.02

9129

Me

PhO

CO2Me

112x

Me
Et

PhO

CO2Me

112y

Me
Et

PhO

CO2Me

112y'

Ph
Me

PhO

CO2t-Bu

112z

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 4.14, minor 5.80

>9930

Chiralpak IC, λ = 254 nm
5% IPA/CO2, 2.5 mL/min
tR (min): major 9.88, minor 8.48

38Ph
Me

O

CO2t-Bu

113z

Ph31

entry compound SFC analytic conditions ee (%)
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APPENDIX 5 

Stereochemical Model and Mechanistic Discussion for Iridium-

Catalyzed Allylic Alkylation  

 

A5.1 INTRODUCTION  

Following the first reports of iridium-catalyzed allylic alkylation75 and amination78 

nearly two decades ago, myriad studies investigating the underlying mechanism of regio- 

and enantioselectivity in iridium-catalyzed allylic substitutions, and the nature of role of 

Ir-phosphoramidite complexes in these processes, have been conducted.79  Seminal 

contributions from Hartwig and Helmchen79 confirmed evidence that active species in Ir-

phosphoramidite catalyzed allylic substitution processes are in situ generated iridacycles, 

formed by C–H insertion into the amidite domain of a Feringa type ligand.79a  Moreover, 

Hartwig and coworkers went on the show that only the stereocenter β to the metal center 

is crucial in affecting enantioinduction and that only one such center is requisite for 

stereocontrol.79g, 79h  

Comparatively less investigation has been undertaken to unearth the source of 

diastereoselectivity in iridium-catalyzed allylic substitution processes, in part due to the 

lack of reports describing such findings.  Herein, we speculate as to the source of 
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diastereoselectivity in our iridium catalyzed regio-, diastereo- and enantioselective allylic 

alkylation, and present a plausible catalytic cycle.  

 

A5.2 STEREOCHEMICAL MODEL FOR DIASTEREOSELECTIVITY IN IRIDIUM-

CATALYZED ALLYLIC ALKYLATION 

Feringa-type phosphoramidite ligands have been shown to form iridacycles via 

iridium(I) insertion into the C(sp3)–H bond (118, Figure A5.2.1).  Investigations by You 

and coworkers87 led to the development and N-arylphosphoramidite ligand L12, which 

was then shown to form an active iridacycle via transition metal insertion into the C(sp2)–

H bond of the aryl group (119, Figure A5.2.1). DFT studies and single crystal X-ray 

diffraction analysis conducted by the You group87 revealed that the (π-allyl)-Ir complex 

formed upon oxidative addition of iridium(I) into cinnamyl derived allyl carbonates is 

predominately the exo isomer104 (120, Figure A5.2.1).  This is at odds from what is 

observed with Feringa ligand-derived iridacycles.  We speculate that both the ligand 

structure, in particular the aromatic amine moiety, and the unique allyl orientation may 

play a role in imparting L12 its selectivity profile.  

 

Figure A5.2.1.  Selected iridium-phosphoramidite complexes: 118 Feringa type; 119 N-

arylphosphoramidite (or You) type; 120 (π-allyl)-Ir complex with You type ligand.  
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In the course of our studies in iridium-catalyzed allylic alkylation, we were able to 

recrystallize β-Ketoester 112f from i-PrOH/hexanes such that crystals suitable for X-ray 

analysis were obtained.  Via single crystal X-ray diffraction studies, we were able to 

unambiguously assign the absolute stereochemistry of the products generated in studies 

presented in Chapter 4 (see Appendix 5 vide infra for detail).  With this data in hand, and 

with knowledge of the spatial orientation of (π-allyl)-Ir complex 120, we are able to 

begin speculation as to the origin of stereoselectivity in our allylic alkylation reaction.  

What we believe to be the two most likely approaches of linear enolate 

nucleophiles prior to the bond-forming event are depicted in Figure A5.2.2 (121 and 122).  

In this depiction, the diene ligand, BINOL backbone of the ligand and protruding 

tetrahydroquinoline methyl create a steric environment around the metal center in which 

approach of the nucleophile is necessarily via the bottom-right quadrant.  Our finding that 

aliphatic ketone substrates fare poorly with respect to diastereoselectivity leads us to 

hypothesize a potential π-π stacking interaction between the tetrahydroquinoline and 

ketone aryl group may be important in orienting the nucleophile.  Our finding that lithium 

is a crucial component of the reaction mixture leads us to suppose that rigidly enforced 

enolate geometry is also essential with respect to diastereomeric outcome.  Given these 

data, we believe that the approach shown to the left (121) is most plausible, in that both a 

π-stacking interaction is possible and enolate geometry is enforced.  
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Figure A5.2.2.  Approach of the enolate nucloephile in the Ir-catalyzed allylic alkylation.  

 

 

 

The catalytic cycle we propose to be operative is depicted below in Figure A5.2.3.  

Beginning with dissociation of the precatalyst dimer, and association of an equivalent of 

iridium with ligand, we arrive at species 123.  Base promoted C–H insertion followed by 

loss of an associated ligand delivers the active catalyst species  (119).105  This complex 

may then undergo oxidative addition into cinnamyl carbonate 98 to deliver exo (π-allyl)-

iridium complex 120, which may then be attacked by an enolate nucleophile to give 

olefin-bound iridium complex 126.  Finally, dissociation of the olefin gives the allylated 

product and regenerates the active catalyst species. 

While the cycle presented below is plausible, and is in line with what is known in 

the literature79 it is also conjecture.  More evidence is needed to confirm or support a 

variety of discreet steps; for example the reversibility of C–H insertion (i.e., 125 → 123, 

124 → 123).  Moreover, the discreet steps in such a cycle may change depending on the 

particular precatalyst, base and ligand that are employed.76d As such, further 

investigations to elucidate the mechanism of this iridium-catalyzed allylic alkylation are 
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warranted, and should serve to inform the development of new modes of reactivity for 

these iridium complexes.  

 

Figure A5.2.3.  Proposed catalytic cycle for iridium-N-arylphosphoramidite complex-catalyzed allylic 

alkylation 
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(105) While this has been shown to be the case for Feringa type ligands, unpublished 

work by the You group indicate that in the case of N-aryl phosphoramidite 

ligands, the iridacycle does not coordinate a second equivalent of ligand.  
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Figure A6.2  Infrared spectrum (thin film/NaCl) of compound 112a. 

Figure A6.3  13C NMR (125 MHz, CDCl3) of compound 112a. 
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Figure A6.5 Infrared spectrum (thin film/NaCl) of compound 112b. 

Figure A6.6  13C NMR (125 MHz, CDCl3) of compound 112b. 
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Figure A6.8  Infrared spectrum (thin film/NaCl) of compound 112c. 

Figure A6.9  13C NMR (125 MHz, CDCl3) of compound 112c. 
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Figure A6.11  Infrared spectrum (thin film/NaCl) of compound 112d. 

Figure A6.12  13C NMR (125 MHz, CDCl3) of compound 112d. 
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Figure A6.14  Infrared spectrum (thin film/NaCl) of compound 112e. 

Figure A6.15  13C NMR (125 MHz, CDCl3) of compound 112e. 

400



Appendix 6 – Spectra Related to Chapter 4 
 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

  

Fi
gu

re
 A

6.
16

  1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
11
2f

. 

Ph
M
eO

CO
2E
t

11
2fBr

401



Appendix 6 – Spectra Related to Chapter 4 
 

012345678910
ppm

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A6.17  Infrared spectrum (thin film/NaCl) of compound 112f. 

Figure A6.18  13C NMR (125 MHz, CDCl3) of compound 112f. 
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Figure A6.20  Infrared spectrum (thin film/NaCl) of compound 112g. 

Figure A6.21  13C NMR (125 MHz, CDCl3) of compound 112g. 
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Figure A6.23  Infrared spectrum (thin film/NaCl) of compound 112h. 

Figure A6.24  13C NMR (125 MHz, CDCl3) of compound 112h. 
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Figure A6.26  Infrared spectrum (thin film/NaCl) of compound 113h. 

Figure A6.27  13C NMR (125 MHz, CDCl3) of compound 113h. 
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Figure A6.29  Infrared spectrum (thin film/NaCl) of compound 112i. 

Figure A6.30  13C NMR (125 MHz, CDCl3) of compound 112i. 
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Figure A6.32  Infrared spectrum (thin film/NaCl) of compound 112j. 

Figure A6.33  13C NMR (125 MHz, CDCl3) of compound 112j. 
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Figure A6.35  Infrared spectrum (thin film/NaCl) of compound 112k. 

Figure A6.36  13C NMR (125 MHz, CDCl3) of compound 112k. 
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Figure A6.38  Infrared spectrum (thin film/NaCl) of compound 112l. 

Figure A6.39  13C NMR (125 MHz, CDCl3) of compound 112l. 
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Figure A6.41  Infrared spectrum (thin film/NaCl) of compound 112m. 

Figure A6.42  13C NMR (125 MHz, CDCl3) of compound 112m. 
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Figure A6.44  Infrared spectrum (thin film/NaCl) of compound 112n. 

Figure A6.45  13C NMR (125 MHz, CDCl3) of compound 112n. 
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Figure A6.47  Infrared spectrum (thin film/NaCl) of compound 112o. 

Figure A6.48  13C NMR (125 MHz, CDCl3) of compound 112o. 
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Figure A6.50  Infrared spectrum (thin film/NaCl) of compound 112p. 

Figure A6.51  13C NMR (125 MHz, CDCl3) of compound 112p. 
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Figure A6.53  Infrared spectrum (thin film/NaCl) of compound 112q. 

Figure A6.54  13C NMR (125 MHz, CDCl3) of compound 112q. 
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Figure A6.56  Infrared spectrum (thin film/NaCl) of compound 113q. 

Figure A6.57  13C NMR (125 MHz, CDCl3) of compound 113q. 
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Figure A6.59  Infrared spectrum (thin film/NaCl) of compound 112r. 

Figure A6.60  13C NMR (125 MHz, CDCl3) of compound 112r. 
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Figure A6.62  Infrared spectrum (thin film/NaCl) of compound 112s. 

Figure A6.63  13C NMR (125 MHz, CDCl3) of compound 112s. 
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Figure A6.65  Infrared spectrum (thin film/NaCl) of compound 112t. 

Figure A6.66  13C NMR (125 MHz, CDCl3) of compound 112t. 
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Figure A6.68  Infrared spectrum (thin film/NaCl) of compound 112t’. 

Figure A6.69  13C NMR (125 MHz, CDCl3) of compound 112t’. 
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Figure A6.71  Infrared spectrum (thin film/NaCl) of compound 112u. 

Figure A6.72  13C NMR (125 MHz, CDCl3) of compound 112u. 
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Figure A6.74  Infrared spectrum (thin film/NaCl) of compound 112v. 

Figure A6.75  13C NMR (125 MHz, CDCl3) of compound 112v. 
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Figure A6.77  Infrared spectrum (thin film/NaCl) of compound 112w. 

Figure A6.78  13C NMR (125 MHz, CDCl3) of compound 112w. 
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Figure A6.80  Infrared spectrum (thin film/NaCl) of compound 112x. 

Figure A6.81  13C NMR (125 MHz, CDCl3) of compound 112x. 
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Figure A6.83  Infrared spectrum (thin film/NaCl) of compound 112y. 

Figure A6.84  13C NMR (125 MHz, CDCl3) of compound 112y. 
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Figure A6.86  Infrared spectrum (thin film/NaCl) of compound 112y’. 

Figure A6.87  13C NMR (125 MHz, CDCl3) of compound 112y’. 
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Figure A6.89  Infrared spectrum (thin film/NaCl) of compound 112z. 

Figure A6.90  13C NMR (125 MHz, CDCl3) of compound 112z. 

450



Appendix 6 – Spectra Related to Chapter 4 
 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

  

Fi
gu

re
 A

6.
91

  1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
11
3z

. 

Ph
M
eO

CO
2t
-B
u

11
3z

Ph

451



Appendix 6 – Spectra Related to Chapter 4 
 

020406080100120140160180200
ppm

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A6.92  Infrared spectrum (thin film/NaCl) of compound 113z. 

Figure A6.93  13C NMR (125 MHz, CDCl3) of compound 113z. 
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Figure A6.95  Infrared spectrum (thin film/NaCl) of compound 114. 

Figure A6.96  13C NMR (125 MHz, CDCl3) of compound 114. 
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Figure A6.98  Infrared spectrum (thin film/NaCl) of compound 116. 

Figure A6.99  13C NMR (125 MHz, CDCl3) of compound 116. 
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Figure A6.104  Infrared spectrum (thin film/NaCl) of compound 115. 

Figure A6.105  13C NMR (125 MHz, CDCl3) of compound 115. 
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Figure A6.107  Infrared spectrum (thin film/NaCl) of compound 117a. 

Figure A6.108  13C NMR (125 MHz, CDCl3) of compound 117a. 
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Figure A6.110  Infrared spectrum (thin film/NaCl) of compound 117b. 

Figure A6.111  13C NMR (125 MHz, CDCl3) of compound 117b. 
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APPENDIX 7 

X-ray Crystallography Reports 

Relevant to Chapter 4 

 

A7.1 CRYSTAL STRUCTURE ANALYSIS FOR COMPOUND 117  

The mixture of diastereomers 117 were recrystallized from i-PrOH/heptane (liquid/liquid 

diffusion) to provide crystals suitable for X-ray analysis. NOTE: Crystallographic data 

have been deposited in the Cambridge Database (CCDC), 12 Union Road, Cambridge 

CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the 

publication citation and the deposition number CCDC 959511. 
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Figure A7.1.1. ORTEP drawing of 117.  

 

Table A7.1. Crystal Data and Structure Analysis Details for diol 117. 

Empirical formula  C19 H21 Br O2 

Formula weight  361.27 

Crystallization solvent  i-PrOH/heptane 

Crystal shape  plate 

Crystal color  colourless  

Crystal size 0.06 x 0.16 x 0.45 mm 
 

 Data Collection  
Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker APEX-II CCD 

Wavelength  0.71073 Å  MoK 

Data collection temperature  100 K 

Theta range for 9925 reflections used 
in lattice determination  2.31 to 24.19° 
Unit cell dimensions a = 11.871(3) Å 〈= 90° 
 b = 13.179(3) Å ®= 90° 
 c = 21.761(5) Å © = 90° 
Volume 3404.5(13) Å3 
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Z 8 

Crystal system  orthorhombic 

Space group  P 21 21 21   (# 19) 

Density (calculated) 1.410 g/cm3 

F(000) 1488 

Theta range for data collection 1.8 to 32.3° 

Completeness to theta = 25.000° 99.8%  

Index ranges -17 ″ h ″ 17, -19 ″ k ″ 19, -32 ″ l ″ 32 

Data collection scan type  and	
  scans	
  

Reflections collected 88198 
Independent reflections 11569 [Rint= 0.1174] 

Reflections > 2⌠(I) 8213  

Average ⌠(I)/(net I) 0.0905 

Absorption coefficient 2.42 mm-1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.6406  

 

Structure Solution and Refinement 
Primary solution method  dual 

Secondary solution method  ? 

Hydrogen placement  geom 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11569 / 0 / 403 

Treatment of hydrogen atoms  constr 

Goodness-of-fit on F2 1.31 

Final R indices [I>2⌠(I), 8213 reflections] R1 = 0.0549, wR2 = 0.1052 

R indices (all data) R1 = 0.0967, wR2 = 0.1137 

Type of weighting scheme used calc 

Weighting scheme used w=1/[^2^(Fo^2^)+(0.0300P)^2^] where 

P=(Fo^2^+2Fc^2^)/3 

Max shift/error  0.000 

Average shift/error  0.000 

Absolute structure parameter 0.032(5) 

Extinction coefficient n/a 

Largest diff. peak and hole 1.70 and -0.98 e·Å-3 
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  Programs Used  
Cell refinement   SAINT V8.32B (Bruker-AXS, 2007) 
Data collection   APEX2 2013.6-2 (Bruker-AXS, 2007) 
Data reduction   SAINT V8.32B (Bruker-AXS, 2007) 
Structure solution   SHELXT (Sheldrick, 2012) 
Structure refinement   SHELXL-2013/2 (Sheldrick, 2013) 
Graphics  DIAMOND 3 (Crystal Impact, 1999) 
 
Table A7.2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for 117.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
________________________________________________________________________________  
 x y z Ueq 
________________________________________________________________________________   
Br(1) 6018(1) 702(1) 2623(1) 24(1) 
Br(1B) 2988(1) 6376(1) 6793(1) 29(1) 
O(1) 2594(3) 2303(2) 5173(1) 17(1) 
O(1B) 7801(3) 4619(2) 5244(2) 18(1) 
O(2B) 9886(3) 5315(3) 5428(2) 24(1) 
O(2) 1686(3) 4120(3) 5230(2) 24(1) 
C(12) 4092(4) 2845(3) 5863(2) 16(1) 
C(18) 2777(4) 4578(3) 5206(2) 18(1) 
C(9) 3015(5) 4701(4) 3852(2) 18(1) 
C(18B) 9487(4) 6230(4) 5137(2) 19(1) 
C(8B) 6117(4) 7301(3) 6134(2) 17(1) 
C(2B) 8002(4) 6397(4) 5956(2) 15(1) 
C(1B) 8221(4) 6404(4) 5243(2) 16(1) 
C(1) 3608(4) 3879(3) 4879(2) 15(1) 
C(15) 4893(5) 2837(4) 7069(2) 24(1) 
C(14) 3765(4) 3049(4) 6953(2) 22(1) 
C(11) 3668(4) 2816(4) 5202(2) 16(1) 
C(6) 5187(4) 1642(4) 3110(2) 18(1) 
C(17) 5219(4) 2643(4) 5991(2) 21(1) 
C(2) 3195(4) 3711(4) 4194(2) 16(1) 
C(7B) 4982(4) 7302(4) 6324(2) 18(1) 
C(8) 4928(4) 3307(4) 3522(2) 20(1) 
C(3) 3933(4) 2995(3) 3819(2) 14(1) 
C(13) 3366(4) 3055(4) 6356(2) 17(1) 
C(19B) 7923(4) 7429(4) 4952(2) 19(1) 
C(12B) 7652(4) 5450(4) 4243(2) 18(1) 
C(6B) 4508(4) 6393(4) 6517(2) 21(1) 
C(19) 4775(4) 4374(4) 4898(2) 20(1) 
C(16) 5615(4) 2644(4) 6592(2) 22(1) 
C(11B) 7514(4) 5552(3) 4936(2) 15(1) 
C(4) 3595(4) 1989(4) 3747(2) 16(1) 
C(5) 4218(4) 1308(4) 3397(2) 19(1) 
C(3B) 6758(4) 6422(4) 6135(2) 15(1) 
C(9B) 8651(4) 7213(4) 6288(2) 21(1) 
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C(7) 5550(4) 2637(4) 3168(2) 19(1) 
C(13B) 8529(4) 4866(4) 3986(2) 22(1) 
C(14B) 8635(5) 4779(4) 3355(2) 25(1) 
C(4B) 6236(4) 5523(4) 6338(2) 18(1) 
C(10B) 9604(4) 7033(4) 6590(2) 27(1) 
C(10) 2036(5) 4974(4) 3618(2) 27(1) 
C(15B) 7867(5) 5270(4) 2970(2) 28(1) 
C(17B) 6896(4) 5927(4) 3852(2) 22(1) 
C(5B) 5122(4) 5503(4) 6526(2) 21(1) 
C(16B) 7008(5) 5844(4) 3217(2) 28(1) 
________________________________________________________________________________  
 
Table A7.3.   Bond lengths [Å] and angles [°] for 117. 
___________________________________________________________________________________  
Br(1)-C(6)  1.906(5) 
Br(1B)-C(6B)  1.902(5) 
O(1)-H(1)  0.8400 
O(1)-C(11)  1.445(5) 
O(1B)-H(1B)  0.8400 
O(1B)-C(11B)  1.443(5) 
O(2B)-H(2B)  0.8400 
O(2B)-C(18B)  1.442(6) 
O(2)-H(2)  0.8400 
O(2)-C(18)  1.430(5) 
C(12)-C(11)  1.525(6) 
C(12)-C(17)  1.391(7) 
C(12)-C(13)  1.404(6) 
C(18)-H(18A)  0.9900 
C(18)-H(18B)  0.9900 
C(18)-C(1)  1.527(6) 
C(9)-H(9)  0.9500 
C(9)-C(2)  1.517(6) 
C(9)-C(10)  1.319(7) 
C(18B)-H(18C)  0.9900 
C(18B)-H(18D)  0.9900 
C(18B)-C(1B)  1.538(6) 
C(8B)-H(8B)  0.9500 
C(8B)-C(7B)  1.409(7) 
C(8B)-C(3B)  1.386(7) 
C(2B)-H(2BA)  1.0000 
C(2B)-C(1B)  1.574(6) 
C(2B)-C(3B)  1.527(6) 
C(2B)-C(9B)  1.507(7) 
C(1B)-C(19B)  1.532(6) 
C(1B)-C(11B)  1.553(6) 
C(1)-C(11)  1.568(6) 
C(1)-C(2)  1.585(6) 
C(1)-C(19)  1.531(6) 
C(15)-H(15)  0.9500 
C(15)-C(14)  1.391(7) 
C(15)-C(16)  1.369(7) 
C(14)-H(14)  0.9500 
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C(14)-C(13)  1.382(7) 
C(11)-H(11)  1.0000 
C(6)-C(5)  1.381(7) 
C(6)-C(7)  1.386(7) 
C(17)-H(17)  0.9500 
C(17)-C(16)  1.391(6) 
C(2)-H(2A)  1.0000 
C(2)-C(3)  1.524(6) 
C(7B)-H(7B)  0.9500 
C(7B)-C(6B)  1.389(7) 
C(8)-H(8)  0.9500 
C(8)-C(3)  1.408(6) 
C(8)-C(7)  1.385(7) 
C(3)-C(4)  1.394(7) 
C(13)-H(13)  0.9500 
C(19B)-H(19D)  0.9800 
C(19B)-H(19E)  0.9800 
C(19B)-H(19F)  0.9800 
C(12B)-C(11B)  1.522(6) 
C(12B)-C(13B)  1.411(7) 
C(12B)-C(17B)  1.387(7) 
C(6B)-C(5B)  1.381(7) 
C(19)-H(19A)  0.9800 
C(19)-H(19B)  0.9800 
C(19)-H(19C)  0.9800 
C(16)-H(16)  0.9500 
C(11B)-H(11B)  1.0000 
C(4)-H(4)  0.9500 
C(4)-C(5)  1.391(7) 
C(5)-H(5)  0.9500 
C(3B)-C(4B)  1.408(7) 
C(9B)-H(9B)  0.9500 
C(9B)-C(10B)  1.329(7) 
C(7)-H(7)  0.9500 
C(13B)-H(13B)  0.9500 
C(13B)-C(14B)  1.384(7) 
C(14B)-H(14B)  0.9500 
C(14B)-C(15B)  1.398(8) 
C(4B)-H(4B)  0.9500 
C(4B)-C(5B)  1.385(7) 
C(10B)-H(10C)  0.9500 
C(10B)-H(10D)  0.9500 
C(10)-H(10A)  0.9500 
C(10)-H(10B)  0.9500 
C(15B)-H(15B)  0.9500 
C(15B)-C(16B)  1.379(8) 
C(17B)-H(17B)  0.9500 
C(17B)-C(16B)  1.392(7) 
C(5B)-H(5B)  0.9500 
C(16B)-H(16B)  0.9500 
 
C(11)-O(1)-H(1) 109.5 
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C(11B)-O(1B)-H(1B) 109.5 
C(18B)-O(2B)-H(2B) 109.5 
C(18)-O(2)-H(2) 109.5 
C(17)-C(12)-C(11) 120.1(4) 
C(17)-C(12)-C(13) 118.4(4) 
C(13)-C(12)-C(11) 121.5(4) 
O(2)-C(18)-H(18A) 109.6 
O(2)-C(18)-H(18B) 109.6 
O(2)-C(18)-C(1) 110.3(4) 
H(18A)-C(18)-H(18B) 108.1 
C(1)-C(18)-H(18A) 109.6 
C(1)-C(18)-H(18B) 109.6 
C(2)-C(9)-H(9) 118.4 
C(10)-C(9)-H(9) 118.4 
C(10)-C(9)-C(2) 123.3(5) 
O(2B)-C(18B)-H(18C) 109.1 
O(2B)-C(18B)-H(18D) 109.1 
O(2B)-C(18B)-C(1B) 112.3(4) 
H(18C)-C(18B)-H(18D) 107.9 
C(1B)-C(18B)-H(18C) 109.1 
C(1B)-C(18B)-H(18D) 109.1 
C(7B)-C(8B)-H(8B) 119.2 
C(3B)-C(8B)-H(8B) 119.2 
C(3B)-C(8B)-C(7B) 121.7(4) 
C(1B)-C(2B)-H(2BA) 106.1 
C(3B)-C(2B)-H(2BA) 106.1 
C(3B)-C(2B)-C(1B) 114.3(3) 
C(9B)-C(2B)-H(2BA) 106.1 
C(9B)-C(2B)-C(1B) 112.5(4) 
C(9B)-C(2B)-C(3B) 110.9(4) 
C(18B)-C(1B)-C(2B) 108.0(4) 
C(18B)-C(1B)-C(11B) 110.8(4) 
C(19B)-C(1B)-C(18B) 107.2(4) 
C(19B)-C(1B)-C(2B) 112.0(4) 
C(19B)-C(1B)-C(11B) 109.6(4) 
C(11B)-C(1B)-C(2B) 109.3(4) 
C(18)-C(1)-C(11) 111.0(4) 
C(18)-C(1)-C(2) 108.8(4) 
C(18)-C(1)-C(19) 108.3(4) 
C(11)-C(1)-C(2) 108.1(4) 
C(19)-C(1)-C(11) 109.2(4) 
C(19)-C(1)-C(2) 111.4(4) 
C(14)-C(15)-H(15) 119.9 
C(16)-C(15)-H(15) 119.9 
C(16)-C(15)-C(14) 120.2(4) 
C(15)-C(14)-H(14) 120.0 
C(13)-C(14)-C(15) 120.1(4) 
C(13)-C(14)-H(14) 120.0 
O(1)-C(11)-C(12) 110.2(4) 
O(1)-C(11)-C(1) 111.0(3) 
O(1)-C(11)-H(11) 106.9 
C(12)-C(11)-C(1) 114.5(4) 
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C(12)-C(11)-H(11) 106.9 
C(1)-C(11)-H(11) 106.9 
C(5)-C(6)-Br(1) 118.3(4) 
C(5)-C(6)-C(7) 121.3(4) 
C(7)-C(6)-Br(1) 120.4(4) 
C(12)-C(17)-H(17) 119.6 
C(12)-C(17)-C(16) 120.8(4) 
C(16)-C(17)-H(17) 119.6 
C(9)-C(2)-C(1) 112.6(4) 
C(9)-C(2)-H(2A) 106.2 
C(9)-C(2)-C(3) 110.5(4) 
C(1)-C(2)-H(2A) 106.2 
C(3)-C(2)-C(1) 114.3(4) 
C(3)-C(2)-H(2A) 106.2 
C(8B)-C(7B)-H(7B) 120.8 
C(6B)-C(7B)-C(8B) 118.4(4) 
C(6B)-C(7B)-H(7B) 120.8 
C(3)-C(8)-H(8) 119.4 
C(7)-C(8)-H(8) 119.4 
C(7)-C(8)-C(3) 121.1(4) 
C(8)-C(3)-C(2) 123.2(4) 
C(4)-C(3)-C(2) 118.9(4) 
C(4)-C(3)-C(8) 117.8(4) 
C(12)-C(13)-H(13) 119.8 
C(14)-C(13)-C(12) 120.4(4) 
C(14)-C(13)-H(13) 119.8 
C(1B)-C(19B)-H(19D) 109.5 
C(1B)-C(19B)-H(19E) 109.5 
C(1B)-C(19B)-H(19F) 109.5 
H(19D)-C(19B)-H(19E) 109.5 
H(19D)-C(19B)-H(19F) 109.5 
H(19E)-C(19B)-H(19F) 109.5 
C(13B)-C(12B)-C(11B) 121.4(4) 
C(17B)-C(12B)-C(11B) 119.9(4) 
C(17B)-C(12B)-C(13B) 118.8(4) 
C(7B)-C(6B)-Br(1B) 119.3(4) 
C(5B)-C(6B)-Br(1B) 119.1(4) 
C(5B)-C(6B)-C(7B) 121.6(4) 
C(1)-C(19)-H(19A) 109.5 
C(1)-C(19)-H(19B) 109.5 
C(1)-C(19)-H(19C) 109.5 
H(19A)-C(19)-H(19B) 109.5 
H(19A)-C(19)-H(19C) 109.5 
H(19B)-C(19)-H(19C) 109.5 
C(15)-C(16)-C(17) 120.1(5) 
C(15)-C(16)-H(16) 120.0 
C(17)-C(16)-H(16) 120.0 
O(1B)-C(11B)-C(1B) 106.8(3) 
O(1B)-C(11B)-C(12B) 111.1(4) 
O(1B)-C(11B)-H(11B) 107.7 
C(1B)-C(11B)-H(11B) 107.7 
C(12B)-C(11B)-C(1B) 115.5(4) 
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C(12B)-C(11B)-H(11B) 107.7 
C(3)-C(4)-H(4) 119.2 
C(5)-C(4)-C(3) 121.5(4) 
C(5)-C(4)-H(4) 119.2 
C(6)-C(5)-C(4) 119.0(5) 
C(6)-C(5)-H(5) 120.5 
C(4)-C(5)-H(5) 120.5 
C(8B)-C(3B)-C(2B) 123.3(4) 
C(8B)-C(3B)-C(4B) 117.5(4) 
C(4B)-C(3B)-C(2B) 119.2(4) 
C(2B)-C(9B)-H(9B) 118.5 
C(10B)-C(9B)-C(2B) 123.0(5) 
C(10B)-C(9B)-H(9B) 118.5 
C(6)-C(7)-H(7) 120.4 
C(8)-C(7)-C(6) 119.2(4) 
C(8)-C(7)-H(7) 120.4 
C(12B)-C(13B)-H(13B) 119.8 
C(14B)-C(13B)-C(12B) 120.4(5) 
C(14B)-C(13B)-H(13B) 119.8 
C(13B)-C(14B)-H(14B) 120.1 
C(13B)-C(14B)-C(15B) 119.8(5) 
C(15B)-C(14B)-H(14B) 120.1 
C(3B)-C(4B)-H(4B) 119.0 
C(5B)-C(4B)-C(3B) 122.0(4) 
C(5B)-C(4B)-H(4B) 119.0 
C(9B)-C(10B)-H(10C) 120.0 
C(9B)-C(10B)-H(10D) 120.0 
H(10C)-C(10B)-H(10D) 120.0 
C(9)-C(10)-H(10A) 120.0 
C(9)-C(10)-H(10B) 120.0 
H(10A)-C(10)-H(10B) 120.0 
C(14B)-C(15B)-H(15B) 119.9 
C(16B)-C(15B)-C(14B) 120.2(5) 
C(16B)-C(15B)-H(15B) 119.9 
C(12B)-C(17B)-H(17B) 119.6 
C(12B)-C(17B)-C(16B) 120.8(5) 
C(16B)-C(17B)-H(17B) 119.6 
C(6B)-C(5B)-C(4B) 118.9(5) 
C(6B)-C(5B)-H(5B) 120.6 
C(4B)-C(5B)-H(5B) 120.6 
C(15B)-C(16B)-C(17B) 120.1(5) 
C(15B)-C(16B)-H(16B) 120.0 
C(17B)-C(16B)-H(16B) 120.0 
  ___________________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
  

Table A7.4.   Anisotropic displacement parameters  (Å2x 104 ) for 117.  The anisotropic 
displacement factor exponent takes the form 

-2π2 [ h2 a*2U 11  + ... + 2 h k a* b* U12 ] 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
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______________________________________________________________________________  
Br(1) 216(2)  209(2) 285(2)  -37(2) 36(2)  57(2) 
Br(1B) 176(2)  307(3) 382(3)  10(2) 76(2)  -18(2) 
O(1) 164(16)  123(16) 218(17)  -4(14) -13(13)  -28(13) 
O(1B) 158(17)  130(16) 254(17)  27(13) -4(14)  -4(13) 
O(2B) 144(17)  223(19) 340(20)  29(15) 19(15)  75(15) 
O(2) 149(16)  138(18) 430(20)  -13(16) 45(15)  28(13) 
C(12) 160(20)  120(20) 190(20)  -7(17) 17(18)  -13(19) 
C(18) 140(20)  120(20) 260(20)  -3(18) 8(18)  -9(17) 
C(9) 240(20)  120(20) 200(20)  -3(17) -10(20)  0(20) 
C(18B) 160(20)  150(20) 260(20)  20(20) 33(18)  -3(19) 
C(8B) 200(20)  110(20) 190(20)  -5(17) 5(19)  -20(20) 
C(2B) 131(19)  120(20) 200(20)  15(18) -1(18)  20(20) 
C(1B) 150(20)  110(20) 220(20)  21(19) -13(17)  0(18) 
C(1) 150(20)  120(20) 190(20)  -8(17) 0(17)  8(17) 
C(15) 360(30)  220(30) 130(20)  13(19) -30(20)  -30(20) 
C(14) 270(30)  200(20) 170(20)  11(18) 60(19)  -20(20) 
C(11) 120(20)  130(20) 210(20)  20(18) 20(17)  -36(17) 
C(6) 170(20)  190(20) 180(20)  10(18) -5(18)  56(18) 
C(17) 180(20)  240(30) 210(20)  10(20) 16(19)  10(20) 
C(2) 140(20)  140(20) 200(20)  10(18) 6(17)  13(18) 
C(7B) 180(20)  150(20) 210(20)  -17(18) 11(19)  20(20) 
C(8) 150(20)  190(20) 250(20)  -13(19) -1(19)  -20(19) 
C(3) 140(20)  150(20) 136(19)  -1(16) -2(17)  15(19) 
C(13) 140(20)  190(20) 200(20)  5(19) 37(18)  -7(19) 
C(19B) 200(20)  140(20) 230(20)  -3(18) 40(20)  10(20) 
C(12B) 180(20)  140(20) 220(20)  5(18) -18(18)  -6(18) 
C(6B) 170(20)  250(30) 200(20)  -10(20) 3(18)  0(20) 
C(19) 170(20)  240(30) 200(20)  0(20) -18(17)  -60(20) 
C(16) 200(20)  230(30) 240(30)  30(20) -33(19)  10(20) 
C(11B) 150(20)  130(20) 170(20)  20(17) -14(17)  10(18) 
C(4) 150(20)  160(20) 180(20)  0(18) -5(17)  -22(18) 
C(5) 210(20)  140(20) 210(20)  21(18) 0(17)  0(20) 
C(3B) 150(20)  140(20) 160(20)  -4(18) -8(16)  -5(18) 
C(9B) 190(20)  190(20) 240(20)  -40(20) 31(19)  -40(20) 
C(7) 150(20)  220(20) 200(20)  0(20) 13(19)  3(19) 
C(13B) 230(30)  170(20) 240(30)  -20(20) 0(20)  20(20) 
C(14B) 260(30)  220(30) 260(30)  -50(20) 40(20)  40(20) 
C(4B) 210(30)  140(20) 180(20)  2(17) 0(18)  10(19) 
C(10B) 210(30)  260(30) 330(30)  -50(20) -10(20)  -20(20) 
C(10) 330(30)  200(30) 280(30)  40(20) -30(20)  20(30) 
C(15B) 310(30)  330(30) 220(20)  -50(20) 20(20)  -10(30) 
C(17B) 190(20)  200(30) 270(20)  -9(19) -20(20)  40(20) 
C(5B) 230(30)  160(30) 240(20)  0(19) 30(20)  -50(20) 
C(16B) 280(30)  310(30) 230(20)  10(20) -30(20)  40(20) 
______________________________________________________________________________  
 

Table A7.5.   Hydrogen coordinates ( x 103) and isotropic  displacement parameters (Å2x 103) for 
117. 
________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
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H(1) 239 225 480 25 
H(1B) 849 462 533 27 
H(2B) 1057 523 535 36 
H(2) 175 351 533 36 
H(18A) 304 472 563 21 
H(18B) 273 523 498 21 
H(9) 364 515 380 22 
H(18C) 963 619 469 23 
H(18D) 991 682 530 23 
H(8B) 645 792 600 20 
H(2BA) 830 574 611 18 
H(15) 516 283 748 28 
H(14) 327 319 728 26 
H(11) 422 240 496 19 
H(17) 572 250 566 25 
H(2A) 244 338 422 19 
H(7B) 455 791 632 22 
H(8) 518 399 356 24 
H(13) 260 320 628 21 
H(19D) 838 796 514 29 
H(19E) 712 757 502 29 
H(19F) 808 740 451 29 
H(19A) 476 502 467 30 
H(19B) 533 392 471 30 
H(19C) 499 451 533 30 
H(16) 639 251 667 27 
H(11B) 670 570 502 18 
H(4) 292 176 394 20 
H(5) 398 62 336 23 
H(9B) 837 789 628 25 
H(7) 622 286 297 23 
H(13B) 905 453 425 26 
H(14B) 923 439 318 30 
H(4B) 666 491 635 21 
H(10C) 990 637 660 32 
H(10D) 998 757 679 32 
H(10A) 140 454 366 32 
H(10B) 197 560 341 32 
H(15B) 794 521 254 34 
H(17B) 630 632 402 26 
H(5B) 479 489 666 25 
H(16B) 649 618 295 33 
________________________________________________________________________________  
 
Table A7.6. Hydrogen bonds for 117  [Å and °]. 
 _______________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________ 
 O(1B)-H(1B)...O(2B) 0.84 1.91 2.669(5) 150.6 
 O(2B)-H(2B)...O(2)#1 0.84 1.99 2.689(5) 140.2 
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 O(2)-H(2)...O(1) 0.84 1.91 2.629(5) 142.7 
_______________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms:  
#1 x+1,y,z       
________________________________________________________________________________ 
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 Table A7.7. Torsion angles [°] for 117. 
________________________________________________________________  
Br(1)-C(6)-C(5)-C(4) -179.3(3) 
Br(1)-C(6)-C(7)-C(8) 179.6(3) 
Br(1B)-C(6B)-C(5B)-C(4B) -178.6(3) 
O(2B)-C(18B)-C(1B)-C(2B) 55.2(5) 
O(2B)-C(18B)-C(1B)-C(19B) 176.0(4) 
O(2B)-C(18B)-C(1B)-C(11B) -64.4(5) 
O(2)-C(18)-C(1)-C(11) -57.0(5) 
O(2)-C(18)-C(1)-C(2) 61.9(5) 
O(2)-C(18)-C(1)-C(19) -176.9(4) 
C(12)-C(17)-C(16)-C(15) 0.5(8) 
C(18)-C(1)-C(11)-O(1) 63.0(5) 
C(18)-C(1)-C(11)-C(12) -62.6(5) 
C(18)-C(1)-C(2)-C(9) 54.6(5) 
C(18)-C(1)-C(2)-C(3) -178.1(4) 
C(9)-C(2)-C(3)-C(8) 45.4(6) 
C(9)-C(2)-C(3)-C(4) -132.4(4) 
C(18B)-C(1B)-C(11B)-O(1B) 64.1(5) 
C(18B)-C(1B)-C(11B)-C(12B) -60.1(5) 
C(8B)-C(7B)-C(6B)-Br(1B) 178.6(3) 
C(8B)-C(7B)-C(6B)-C(5B) 0.0(7) 
C(8B)-C(3B)-C(4B)-C(5B) 0.6(7) 
C(2B)-C(1B)-C(11B)-O(1B) -54.8(5) 
C(2B)-C(1B)-C(11B)-C(12B) -179.0(4) 
C(2B)-C(3B)-C(4B)-C(5B) 177.8(4) 
C(1B)-C(2B)-C(3B)-C(8B) -79.4(5) 
C(1B)-C(2B)-C(3B)-C(4B) 103.6(5) 
C(1B)-C(2B)-C(9B)-C(10B) -100.3(5) 
C(1)-C(2)-C(3)-C(8) -83.0(5) 
C(1)-C(2)-C(3)-C(4) 99.3(5) 
C(15)-C(14)-C(13)-C(12) 0.1(7) 
C(14)-C(15)-C(16)-C(17) -1.0(8) 
C(11)-C(12)-C(17)-C(16) -178.5(4) 
C(11)-C(12)-C(13)-C(14) 178.2(4) 
C(11)-C(1)-C(2)-C(9) 175.3(4) 
C(11)-C(1)-C(2)-C(3) -57.4(5) 
C(17)-C(12)-C(11)-O(1) 137.1(4) 
C(17)-C(12)-C(11)-C(1) -97.0(5) 
C(17)-C(12)-C(13)-C(14) -0.6(7) 
C(2)-C(1)-C(11)-O(1) -56.4(5) 
C(2)-C(1)-C(11)-C(12) 178.1(4) 
C(2)-C(3)-C(4)-C(5) 178.2(4) 
C(7B)-C(8B)-C(3B)-C(2B) -177.6(4) 
C(7B)-C(8B)-C(3B)-C(4B) -0.6(6) 
C(7B)-C(6B)-C(5B)-C(4B) 0.0(7) 
C(8)-C(3)-C(4)-C(5) 0.3(7) 
C(3)-C(8)-C(7)-C(6) -0.2(7) 
C(3)-C(4)-C(5)-C(6) -0.6(7) 
C(13)-C(12)-C(11)-O(1) -41.8(6) 
C(13)-C(12)-C(11)-C(1) 84.2(5) 
C(13)-C(12)-C(17)-C(16) 0.3(7) 
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C(19B)-C(1B)-C(11B)-O(1B) -177.8(3) 
C(19B)-C(1B)-C(11B)-C(12B) 58.0(5) 
C(12B)-C(13B)-C(14B)-C(15B) -0.1(8) 
C(12B)-C(17B)-C(16B)-C(15B) 1.0(8) 
C(19)-C(1)-C(11)-O(1) -177.7(4) 
C(19)-C(1)-C(11)-C(12) 56.8(5) 
C(19)-C(1)-C(2)-C(9) -64.8(5) 
C(19)-C(1)-C(2)-C(3) 62.5(5) 
C(16)-C(15)-C(14)-C(13) 0.7(8) 
C(11B)-C(12B)-C(13B)-C(14B) 179.6(5) 
C(11B)-C(12B)-C(17B)-C(16B) 180.0(5) 
C(5)-C(6)-C(7)-C(8) 0.0(7) 
C(3B)-C(8B)-C(7B)-C(6B) 0.3(7) 
C(3B)-C(2B)-C(1B)-C(18B) -172.3(4) 
C(3B)-C(2B)-C(1B)-C(19B) 69.9(5) 
C(3B)-C(2B)-C(1B)-C(11B) -51.7(5) 
C(3B)-C(2B)-C(9B)-C(10B) 130.2(5) 
C(3B)-C(4B)-C(5B)-C(6B) -0.3(7) 
C(9B)-C(2B)-C(1B)-C(18B) 60.0(5) 
C(9B)-C(2B)-C(1B)-C(19B) -57.8(5) 
C(9B)-C(2B)-C(1B)-C(11B) -179.4(4) 
C(9B)-C(2B)-C(3B)-C(8B) 49.2(6) 
C(9B)-C(2B)-C(3B)-C(4B) -127.9(4) 
C(7)-C(6)-C(5)-C(4) 0.4(7) 
C(7)-C(8)-C(3)-C(2) -177.7(4) 
C(7)-C(8)-C(3)-C(4) 0.0(7) 
C(13B)-C(12B)-C(11B)-O(1B) -36.2(6) 
C(13B)-C(12B)-C(11B)-C(1B) 85.7(5) 
C(13B)-C(12B)-C(17B)-C(16B) -0.9(7) 
C(13B)-C(14B)-C(15B)-C(16B) 0.2(8) 
C(14B)-C(15B)-C(16B)-C(17B) -0.7(8) 
C(10)-C(9)-C(2)-C(1) -120.1(5) 
C(10)-C(9)-C(2)-C(3) 110.7(5) 
C(17B)-C(12B)-C(11B)-O(1B) 142.9(4) 
C(17B)-C(12B)-C(11B)-C(1B) -95.2(5) 
C(17B)-C(12B)-C(13B)-C(14B) 0.5(7) 
________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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APPENDIX 8 

Development of an α-Arylation Reaction of TMSE β-Ketoesters 

 

A8.1 INTRODUCTION  

A8.1.1 Background and state of the art in the α-arylation of cyclic ketones 

The ubiquity of all-carbon quaternary stereocenters in natural products and other 

compounds that possess antibiotic, antimicrobial, antifungal, anti-tumor and other 

therapeutic properties provides a strong impetus for researchers to continue to seek out 

new methods for the construction of this important motif.106  Within this domain, benzylic 

quaternary ketones have received a significant amount of attention, owing in part to the 

presence of an excellent functional group handle (i.e. the carbonyl) as well as the 

prevalence of arylated quaternary centers in medicinally important compounds107 (Figure 

A8.1.1). 

 

Figure A8.1.1.1.  Natural products containing benzylic quaternary stereocenters 
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The development of methods for the preparation of arylated quaternary centers 

via the α-arylation of nonstabilized ketones has been a subject of intense research for the 

past two decades.108 Early reports of transition-metal catalysis in this reaction focused on 

the use of palladium catalysts bound by sterically encumbered, electron-rich phosphine 

ligands.  A milestone publication by Buchwald109 and coworkers demonstrated that 

Pd2(dba)3, bound with p-tol-Binap (L18) as ligand, serves as an efficient catalyst for the 

direct arylation of ketone enolates (Scheme A8.1.1.1A).  Concurrent this to publication, 

Hartwig 110  disclosed a report describing the use of a 1,1′-Bis(di-o-

tolylphosphino)ferrocene (L19, DTPF)/Pd2(dba)3 catalyst system for α-arylation that 

capably provided α-arylated α-quaternary ketones (Scheme A8.1.1.1B).  These two 

publications represent the first examples of direct catalytic α-arylations of nonstabilized 

ketones.  

 

Scheme A8.1.1.1.  Initial Reports of Direct α-Arylation of Ketones by Buchwald (A) and Hartwig (B) 
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 Ensuing reports from a number of research groups, following these initial 

communications, revealed the superiority of extremely sterically bulky phosphine ligands 

in the formation of quaternary centers via this transformation.111 The Hartwig and 

Buchwald groups have remained at the forefront of these developments.  The reported 

improvements to their respective catalytic systems constitute the most successful α-

arylation of nonstabilized enolates in the absence of blocking groups to date (Scheme 

A8.1.1.2, A112 and B113). 

 

Scheme A8.1.1.2.  Improved Catalyst Systems for α-Arylation by Hartwig (A) and Buchwald (B) 

 

 

 
A8.1.2 State of the art in the asymmetric α-arylation of cyclic ketones 
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form all–carbon quaternary centers is exemplified, again, by the research efforts of the 

Hartwig and Buchwald groups.  Studies by Buchwald and co-workers have focused on 

the use of α’ blocked α-methylcyclopentanone derivatives (136) as substrates (Scheme 

A8.1.2.1A).114 Sterically encumbered mono-phosphine ligand (L20) has been shown to 

efficiently catalyze the transformation (Scheme A8.1.2.1A) in good yields and excellent 
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enantiomeric excess.  Unfortunately, the tolerance of the transformation to substrate 

variability has been highly limited and even seemingly innocuous adjustments to the 

substrate, such as employing the corresponding 6-membered α’-blocked α-

methylcyclohexanone derivative, results in substantially diminished selectivity with ee’s 

no higher than 70%.  All attempts by Buchwald and coworkers, thus far, to generalize 

this reaction have proven nonviable.  

Hartwig and co-workers obviated the need for an α’-blocking group by focusing 

their studies exclusively on substrates which inherently lack more than one enolizable 

proton, namely tetralone and indanone derivatives (138).  Their work has shown that the 

use of chiral phosphine difluorphos (L22) under palladium catalysis is highly effective in 

promoting the α-arylation of tetralone and indanone substrates, delivering the 

corresponding α-quaternary ketone products (139) in moderate to excellent yields and 

uniformly excellent ee’s (Scheme A8.1.2.1B).  More recently, Hartwig and co-workers 

have also shown pre-formed nickel complex [((R)-BINAP)Ni(η2-NC-Ph)] to be an 

effective metal source for the heteroarylation of tetralone and indanone substrates 

(Scheme A8.1.2.1C).  
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Scheme A8.1.2.1.  Current State of the Art in Catalytic Asymmetric α-Arylation to Form α-

Quaternary Ketones 
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Considerable investigation by the Stoltz group has been devoted to advancing and 

extending the palladium-catalyzed asymmetric allylic alkylation methodology described 

in Chapters 1 and 2.15 Beginning with work by Behenna and Stoltz, it was shown that a 

variety of enolate precursors, including allyl enol carbonates (1), allyl β-ketoesters (2) 

and silyl enol ethers (3), are all amenable to asymmetric catalysis through the use of a 

chiral phosphinooxazoline ligand ((S)-t-BuPHOX, L1).9 All three of these substrate 

classes function well in the chemistry, to provide α–quaternary ketones (7) in good to 

excellent yields and enantioselectivities.10 The striking uniformity in enantiomeric excess 

between these substrate classes suggested to us the possibility of a common mechanistic 

pathway; studies to elucidate the catalytic cycle of this reaction led by members of the 

Stoltz group resulted in an intriguing mechanistic picture (Scheme 5.2.1.1).35  

The catalytic cycle begins with the oxidative addition of a palladium(0) species 

into an allyl fragment (2) to generate an η1-palladium allyl species, which is also bound 

to the carboxylate in what has been shown to be the catalytic resting state species (140, 

Scheme A8.5.2.1.1).35a  Decarboxylation may then occur, to give Pd-bound prochiral 

enolate species (141).  The resulting complex may then undergo an alkylation event via a 

7-membered inner-sphere transition state to deliver the α-allylated product (7) and 

regenerate the catalyst (142). 
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Scheme A8.2.1.1.  Proposed catalytic cycle of asymmetric allylic alkylation  
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and tertiary stereocenters in excellent yields and good to excellent enantioselectivities 

(Scheme A8.2.1.2B).30a 

 

Scheme A8.2.1.2.  A. Asymmetric protonation of allyl β-ketoesters; B. Stereoselective conjugate 

addition–allylation cascade reaction.  
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 We reasoned that by eliminating allyl from the reaction mixture, we would 

obviate the problem of competing reaction pathways, and greatly expand the repertoire of 

in situ generated enolates of this type.  We envisioned that our TMSE β-ketoester 

substrate (see Chapter 2) would be an ideal candidate to enable an investigation of this 

hypothesis.  Specifically, we believed that electrophilic trapping of the enolate species 

(67) generated upon treatment of TMSE β-ketoester (66) with fluoride in the presence of 

a chiral catalyst may give rise to enantioenriched α–quaternary carbonyl products (68).    

 

Figure A8.2.2.1.  Proposed catalytic cycle for the α-arylation of cyclic ketones using in situ 

generated enolates 
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cycle and furnish the desired α-quaternary ketone product (149) and regenerate palladium 

(0) intermediate 150.  

 

Figure A8.2.2.2.  Proposed catalytic cycle for the α-arylation of cyclic ketones using in situ 

generated enolates 
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Pd2(dba)3 was used as the metal source, an equivalent of TBAT served to activate our 

substrate for deprotection and a slight molar excess of phenyl bromide was supplied as 

the aryl coupling partner.  In our first such screen, a variety of phosphine ligands were 

employed at several temperatures against a number of solvents ranging broadly in 

polarity, dielectric constant and σ-donor ability.  As this screening approach is 

combinatorial, the number of reactions per screen is easily calculated by multiplying the 

number of variables: in the case of Scheme A8.3.1.1, the product of 6 ligands, 4 solvents 

and 3 temperatures gives 72 reactions total.  The best results for these experiments were 

obtained for reactions held at 60 °C, and the data for that screen are shown in Figure 

A8.3.1.1. 

As can be seen in the Figure A8.3.1.1, very modest yields were seen in the first 

screen.  While most reactions resulted in deprotection and protonation of starting β-

ketoester 74 the combination of DMF as solvent and tricyclohexylphosphine (P(Cy)3) 

yielded the best result – a 5% yield of the desired α-quaternary ketone 149a.  These 

results indicated to us the importance of highly polar solvents and electron-rich 

phosphine ligands.      

Scheme A8.3.1.1.  Initial screens for α-arylation reactivity 
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Figure A8.3.1.1.  Summarized resultsa of screen 1 at 60 °C 

 

a. yield determined by GC analysis of tridecane internal standard 
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that sterically bulky, electron-rich phosphine ligand and polar solvents perform well in 

the reaction.  

 

Scheme A8.3.2.1.  Revised screens for α-arylation reactivity 
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Figure A8.3.2.1.  Summarized resultsa of screen 2 at 60 °C 

 

a. yield determined by GC analysis of tridecane internal standard 
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experiments were uniformly disappointing, with poor yields observed in the best cases.  

Ligands that Buchwald and coworkers have shown to be effective in palladium catalyzed 

α-arylation chemistry, such as the Brett–, John– and XPhos ligands (L23–L25), as well 

as t-Bu-JosiPhos (L29), delivered minimal amounts of the desired product.114   Likewise, 

ligands that Hartwig and coworkers have employed in the α-arylation of tetralone 

derivatives, such as SegPhos (L28) also failed to deliver the desired product.112   In 

addition to mono- and bisphosphine ligands, P,N type phosphinooxazoline ligands were 

also explored to no fruitful end.  

To tease out the relative importance of sterics and electronics in the ligand 

scaffold, a series of mono-phosphine of varying polarity and steric encumbrance were 

investigated.  The observation that tripentafluorophenylphosphine (L30), which is both 

electron-poor and sterically large, possessing a ligand cone angle115 of greater than 180°, 

was not a proficient ligand suggests that excess electron density about palladium is a 

prerequisite feature of successful catalyst systems for this transformation.  Steric 

hindrance about the ligand also proved to be essential to reaction efficiency, inasmuch as 

substituting one phosphine tert-butyl substituent with a cyclohexyl  (i.e., ligand L33) 

resulted in a halving of the best previously observed yield.  
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Figure A8.4.1.  Elaborated ligand searcha 

 

a. yield determined by GC analysis of tridecane internal standard 
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time and temperature, as well, only served to demonstrate that the conditions that we had 

previously identified worked best in the chemistry.  

Figure A8.4.2.  Optimization of fluoride donor, reaction time and temperature  

 

 

a. yield determined by GC analysis of tridecane internal standard; b. isolated yield. 
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Figure A8.4.3.  Further optimization of ligand, solvent and temperature  

 

 

a. yield determined by GC analysis of tridecane internal standard 
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Figure A8.4.4.  Further optimization of ligand, solvent and temperature  

 

 

a. yield determined by GC analysis of tridecane internal standard 

 

One screen that produced results meriting discussion was that which explored 

reaction efficiency with respect to varying ratios of ligand and metal source (Figure 

A8.4.5).  Interestingly, when the ratio of P(t-Bu)3 to palladium was 1:1, a considerable 

amount of starting material remain in the product mixture, even in the presence of excess 

fluoride source (Figure A8.4.5, entry 1).  As we increased the ligand loading, we 
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observed a sharp decline in the amount of starting material remaining until the ratio of 

palladium to ligand surpassed 2:1.  Noting the stability of the palladium carboxylate 

species formed in our allylic alkylation reaction, we believe it is plausible that the correct 

stoichiometry of palladium and ligand is needed for the formation of a catalyst complex 

capable of chelating the β-dicarbonyl, which in turn may be required to activate our (2-

TMS)ethyl β-ketoester substrate for deprotection by TBAT.  

 

Figure A8.4.5.  Importance of metal source to ligand ratio 

 

 

a. yield determined by GC analysis of tridecane internal standard 

 

A8.5 OUTLOOK AND FUTURE DIRECTIONS FOR CARBOXYLATE PROTECTED 

ENOLATES IN α -ARYLATION 

A8.5.1 Hypotheses that remain to be tested in α-arylation of TMSE β-ketoesters 

We have, at this point, a number of unanswered questions regarding our catalyst 

system and reaction as developed thus far.  For example, we would like to determine the 

role of our catalyst in promoting the deprotection of our substrate.  We would like to 
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devise a method to determine the particular mode of reductive elimination operative in 

our reaction.  Our inability to make direct comparisons between the reaction we have 

developed and existing methods for α-arylation, due to the nature of our substrate, is an 

unfortunate limitation of the TMSE β-ketoester substrate class, elimination of which we 

believe would help to answer a number of our questions.  For instance, every example of 

asymmetric α-arylation published to date employs toluene as solvent; however, TBAT is 

insoluble in toluene to the point of being completely ineffectual.  In view of work by 

Rawal116 and others,117 demonstrating the importance of the presence or absence of metal 

salts in determining α-arylation reaction outcomes, we would like to examine the 

efficiency of our reaction in the absence of fluoride salts.  However, successful solvents 

for our reaction, DMF and 1,4-dioxane in particular, also ensure that salts generated in 

the course of the reaction remain soluble.  We believe that the use of an alternative 

substrate may afford us the opportunity to better dissect our reaction and determine the 

relative importance of the factors enumerated above.  In particular, we envision that 

substrates that follow a deacylative pathway into catalysis may be highly valuable in this 

regard.   

 

A8.5.2 Deacylative in situ access to prochiral enolates  

Recent reports by Tunge and co-workers118 inspired us to consider a deacylative 

pathway into catalysis.  Tunge has shown that treatment of α-electron withdrawing acetyl 

compounds (Scheme A8.5.2.1, 151) with sodium allyloxide produces a molecule of allyl 

acetate (153) and generates the α-stabilized carbanion (152).  In the presence of a 

palladium catalyst, an equivalent of acetate ion is liberated in the formation of a 
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palladium π-allyl species, which are labile to attack by 152, and results in allylic 

alkylation to generate an α-quaternary carbon stereocenter (7).  

We envisioned a deacylative allylic alkylation scenario (Scheme A8.5.2.1) in 

which to test our substrate.  Upon combining catalytic palladium (0) and an alkyl allyl 

carbonate, the co-catalytic amount of alkoxide generated would attack substrate 156 and 

generate the desired prochiral enolate and byproduct ester 157.  Trapping of the enolate 

with an allyl palladium species would complete the catalytic cycle to deliver 7 (Scheme 

A8.5.2.1B).  In the case of α-arylation, we imagined that subjecting substrate 156 to a 

nucleophile like sodium ethoxide would provide access to a prochiral enolate, which 

could subsequently participate in palladium catalysis and afford α-arylated products (149, 

Scheme A8.5.2.1C). 

 

Scheme A8.5.2.1.  Conceptual schemes for deacylative enolate formation: A. previous research by 

Tunge and coworkers; B. proposed allylic alkylation via deacylative pathway; C. proposed  α-

arylation via deacylative pathway 
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A number of potential benefits are inherent in this substrate class.  The 

commercial starting materials needed to make derivatives of 156 (e.g., acetic anhydride, 

trichloroacetyl chloride or trifluoroethyl acetate) all cost less than one dollar per gram, 

whereas the 2-TMS-ethanol needed to make our (2-TMS)ethyl β-ketoester substrate is 

priced at nine dollars per gram.  Furthermore, these substrates will allow us to investigate 

the conditions we have developed in a broader range of solvents, such as toluene, in the 

absence of fluoride salts and explore a catalytic cycle in which the decarboxylation step is 

absent.  However, synthesis of substrate 156 has thus far proven challenging, and our 

attempts to make any such substrate following the procedure of Tunge and coworkers 

have failed.  

 
A8.6 CONCLUDING REMARKS 

This appendix details our development of an α-arylation reaction of carboxylate-

protected enolates, which makes use of the TMSE β-ketoester substrate class that we 

have developed.  The best observed results for this transformation occurred with a 

combination of Pd2(dba)3 as metal source and P(t-Bu)3 as ligand, phenyl bromide the aryl 

source, TBAT the fluoride source, DMF as solvent,  and at 60 °C, with a 45% isolated 

yield of the racemic desired product.  Notably, arylation occurs strictly at the site of 

deprotection to afford α-quaternary arylated compounds, despite the presence of other 

enolizable protons.  This constitutes a significant inroad to a highly challenging, unsolved 

problem–the efficient and enantioselective α-arylation of carbonyl compounds bearing 

more than one enolizable proton.  Given this promising beginning, it is our hope that 

further investigation of alternative ligand (for example N-heterocarbene ligands), 
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alternative metal sources (including an exhaustive investigation of nickel catalysts) and 

alternative substrate classes (such as the 1,3-diketones discussed above) will reveal 

conditions that confer synthetic utility to this potentially valuable transformation.  

 

A8.7 EXPERIMENTAL SECTION 

A8.7.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried 

by passage through an activated alumina column under argon.61 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for flash 

chromatography.  All reagents were purchased from Sigma-Aldrich, Acros Organics, 

Strem, or Alfa Aesar and used as received unless otherwise stated.  Reaction 

temperatures were controlled by an IKAmag temperature modulator unless otherwise 

indicated. Stirring was accomplished with Teflon® coated magnetic stir bars.  Glove-box 

manipulations were performed under a N2 atmosphere.  1H NMR spectra were recorded 

on Varian Inova 500 MHz and 600 MHz spectrometers and evaluated relative to residual 

CHCl3 (δ 7.26 ppm) or C6HD5 (δ 7.16 ppm).  13C NMR spectra were recorded on a 

Varian Inova 500 MHz spectrometer (125 MHz) and evaluated relative to CHCl3 (δ 77.16 

ppm) or C6HD5 (δ 128.06 ppm).  Analytical chiral GC analysis was performed with an 
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Agilent 6850 GC using a GT-A column (0.25 m × 30.00 m) employing a 130 °C isotherm 

and a flow rate of 1.0 mL/min. 

 

A8.6.2  Procedure for Symyx assisted screening of α-arylation 

 

 

This description will use the screen described in Scheme A8.3.1.1 as a 

representative example.  All Symyx reaction screenings were conducted in a nitrogen-

filled glove-box at the Caltech Center for Catalysis and Chemical Synthesis using 

solvents that were degassed with nitrogen after passage through an activated alumina 

column under argon.  Overall screen design was predicated by the desired individual 

reaction volume (in the case at hand 0.33 mL with a 0.1 M substrate concentration), and 

by the number of reactions to be conducted.  All stock solutions were prepared in ca. 1.5 

times excess to the exact amount of compound required for screening. 

First, a stock solution of Pd2(dba)3 was prepared by combining 0.1448 g of  

Pd2(dba)3 with 20 mL of THF in a 20 mL scintillation vial.119  The Symyx robot arm was 

then used to dispense 0.208 mL of this stock solution into each of the 72 half-dram 

reaction vials.  Using the Symyx Automation Studios program a sequence for the robot 

arm was loaded, the arm was initialized and flushed with 7 mL of the backing solvent, 

THF.  Multi-dispense mode was used and a 10 µL airgap, source overshoot of 5%, draw 

speed of 20 µL/second (lowered from the normal draw speed due to viscosity), dispense 

speed of 150 µL/second (again, due to viscosity),  1 mm draw distance from bottom 

O O

O
Me Pd2(dba)3 5 mol %, 

ligand 12.5 mol %

electrophile, TBAT (1 equiv)
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O
Me
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(calibrated prior to each screen) and 1 mL rinse of backing solvent prior to each draw 

were employed. Upon completion of the addition, the dispense needle was flushed with 

an additional 5 mL of THF.  The 72 reaction vials were then separated onto 2 36 reaction 

well plates and stripped of solvent by vacuum centrifugation using a Thermo Electro 

Corporation SDP 121P vacuum centrifuge until a pressure of 1.5 torr was reached (ca. 1 h 

under vacuum).  Thus, each vial then contained 1.51 mg (0.00165 mmol) of Pd2(dba)3.  

 Stock solutions for all other compounds were prepared according to the amount 

of volume to be dispensed and the number of reactions planned.  For example, for the 

screen at hand, 8.5 mg of TMSE β-ketoester substrate (74, 0.033 mmol) were to be 

dispensed in 0.08325 mL of solvent to each reaction vessel.  Total masses to be used in 

each stock solution were calculated by multiplying (mass per reaction) x (total number of 

planned reactions per solvent) x 1.5; in the present case, 0.0085 g x 18 x 1.5 = 0.23 g of 

74 per stock solution.  Stock solutions of 74 were prepared thusly by combining 0.1956 g, 

0.2126 g, 0.2275 g and 0.2313 g of 74 with 1.916 mL, 2.080 mL, 2.228 mL and 2.265 

mL of dioxane, toluene, DMF and DMSO, respectively.  For each of these stock 

solutions, 0.08325 mL of solution contains 8.5 mg of compound.  TBAT stock solutions 

were then prepared in the same fashion, such that TBAT could be dispensed in 0.1665 

mL of solvent.  Finally, ligand stock solutions were prepared in the same fashion, such 

that the ligand could be dispensed in 0.08325 mL of solvent.  Phenyl bromide and 

tridecane (internal standard) would be added neat, and their volumes considered 

negligible.  Therefore, each reaction vessel would contain 0.33 mL of solvent total 

(0.08325 mL + 0.08325 mL + 0.1665 mL) once all reaction components had been added 

to the reaction vessel.  As the Symyx robot is only capable of dispensing homogenous 
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liquid solutions, and some of the reaction components are only sparingly soluble in the 

desired solvents, some compounds had to be added manually, by hand.  This proved to be 

the case for BINAP, as BINAP is minimally soluble in all solvents other than THF.  

Once all of the stock solutions were prepared and compounds for which stock 

solutions could not be prepared had been added manually, the reactions were split evenly 

onto 3 plates (24 reactions per plate).  For bookkeeping, the reactions were each given a 

number according to the position on the plate, and organized accordingly.  For example, 

reactions contained in the plate held at 60 °C are given the following designations: 

 

 

 

In a similar fashion, number values are assigned to all other reactions in 

increasing order, such that a similar chart depicting plate number 3 (held at 110 °C) 

would put reaction number 72 in the bottom right hand corner. 

The robot arm was then used to dispense compounds to the individual reaction 

vials.  Using the same sequence, the robot arm was again initialized and flushed with 5 

mL of the backing solvent, THF.  Multi-dispense mode was used and a 10 µL airgap, 

source overshoot of 5%, draw speed of 20 µL/second (lowered from the normal draw 

speed of 50 µL, due to viscosity), dispense speed of 150 µL/second (again, due to 

viscosity),  1 mm draw distance from bottom (calibrated prior to each screen) and 1 mL 
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rinse of backing solvent prior to each draw were employed.  The compounds were then 

added in the following order: ligand (solution), substrate (74, solution), bromobenzene 

(neat), TBAT (solution), tridecane (neat).  Teflon® coated magnetic stirring bars were 

then added to each vial and each vial was fitted with a Teflon® lined screw cap.  The 

plates were then set into heated stirring wells set to 60, 80 and 110 °C, and stirred at a 

rate of 400 rpm.  

After stirring at the indicated temperatures for 24 hours the reactions were 

removed from the glovebox, and processed manually.  The workup procedure for 

reactions run in dioxane and toluene is as follows: each reaction is diluted to a total 

volume of 2 mL with hexanes and then pushed through a plug of silica with compressed 

air and collected in a 20 mL scintillation vial.  Silica plugs were made by crushing one 

forth of a Watman fiberglass pad (1” diameter) into a 6” pipette and then filling the 

pipette with ca. 1 mL of silica.  After passing the reaction solution through the pipette 

plug, it was rinsed with 3 mL of hexanes and the collected eluents diluted further with 

hexanes until 10 mL total volume was reached.  1.5 mL of this solution is then used to 

prepare a sample for GC analysis.  For reactions run in DMF or DMSO, each reaction 

was first transferred to a 20 mL scintillation vial, diluted with 5 mL hexanes, washed 

thoroughly with water, extracted and then passed through a pipette plug of silica.  These 

samples were diluted with hexanes to 10 mL volume total and analytical samples 

prepared by taking ca. 1.5 mL of this solution.     

GC analysis was of the analytical samples was then carried out. Retention time 

(tR) for tridecane – 3.3l min, tR for 74 – 27.04, 27.79 min, tR for 149a – 17.097, 17.33 
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min. All other screening experiments discussed in the text that were carried using the 

Symyx automation system, were conducted by adaptation of the above procedure.  

 

A8.6.3 Procedure for manual screening of α-arylation 

 

 

To a 2 mL scintillation vial with a stir bar were added Pd2(dba)3 (16.4 mg, 0.015 mmol), 

P(t-Bu)3 (21.9 mg, 0.037 mmol) and DMF (9 mL) in a nitrogen-filled glove-box. The 

dark purple mixture was stirred at ambient glove-box temperature (ca. 30 °C) for 35 

minutes at which point the mixture had become red-orange.  TBAT (80.0 mg, 0.31 mmol) 

was added to the reaction mixture, followed by phenyl bromide (80.0 mg, 0.31 mmol) 

and tridecane (80.0 mg, 0.31 mmol).  Finally, TMSE β-ketoester 74 (80.0 mg, 0.31 

mmol) was added as a solution in DMF (x.x M).  The resulting yellow-green reaction 

mixture was stirred at 60 °C until full conversion of the starting material was indicated by 

TLC analysis (reaction times typically ranged 18 to 36 hours).  The vial was removed 

from the glove-box, diluted with 3 mL of Et2O, extracted with 3 mL H2O (x3), dried over 

Mg2SO4 directly purified by flash column chromatography (SiO2, 2% EtOAc in hexanes 

to 10% EtOAc in hexanes) afforded 149a (41 mg, 45% yield) as colorless oil.  Rf = 0.3 

(15% Et2O in pentane); Spectroscopic data for this compound matched that reported in 

the literature. 
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APPENDIX 9 

Studies Toward the Enantioselective Total Synthesis of (+)-Lingzhiol 

 

A9.1 INTRODUCTION  

A9.1.1 Isolation studies of the lingzhiols 

The Ganoderma genus of mushrooms is native to southern China and contains 

around 80 species of mushrooms, many of which have long been used in traditional 

eastern medicine for ailments of the kidneys.120  Recently, investigation into this genus 

led to the isolation of (+)-lingzhiol (158) and (–)-lingzhiol (159) from the Ganoderma 

lucidum mushroom (commonly called the Lingzhi mushroom) (Figure A9.1.1.1).121  (+)-

Lingzhiol (158) and (–)-lingzhiol (159) are a pair of enantiomeric meroterpenoids, or 

natural products bearing both polyketide and terpenoid sub-units.  Vicinal all-carbon 

quaternary stereocenters (C-3’–C-7’) define a common axis about which three of the four 

rings in the novel 5/5/6/6 rotor-like structure of the lingzhiols hinge.  Extensive NMR 

studies and single crystal X-ray diffraction studies of 158 and 159 enabled the 

unambiguous assignment of the stereochemistry of the compounds.121   To date, only one 

total synthesis of lingzhiol has been reported.122 
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Figure A9.1.1.1.  The structures of (+)-lingzhiol and (–)-lingzhiol 

 

 

 

 

A9.1.2 Biological studies on and bioactivity profile of lingzhiol 

Studies conducted subsequent to the isolation lingzhiol have shown it to possess a 

swath of biological activity against pathogenesis in diabetic nephropathy and renal 

fibrosis.  Diabetic nephropathy and renal fibrosis are prevalent complications that arise in 

longstanding cases of diabetes and may lead to liver failure, which is usually life-

threatening.123  Pathogenic factors contributing to diabetic nephropathy and renal fibrosis 

include oxidative stress,124 extra cellular matrix (ECM) buildup, chronic inflammation 

and associated disorder of the TGF-β/Smads signaling pathways.125  Lingzhiol has been 

shown to both inhibit ROS directly and to induce nuclear factor erythroid 2-related factor 

2 (Nrf2), which up-regulates the production of protective antioxidant species in instances 

of high oxidative stress.126  Chronic inflammation and buildup of ECM in chronic kidney 

disease have been linked to the deregulation of TGF-β/Smad signaling pathway; in 

particular, the hyper-phosphorylation of Smad2/3 and loss of Smad 7 have been 

implicated in the renal scar formation, diabetic nephropathy and renal fibrosis. 127  

Lingzhiol has been shown to selectively inhibit Smad3 phosphorylation, while allowing 

Smad 2 phosphorylation, which, when taken alone, may have a renal protective role.121  
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This striking biological profile has prompted our investigation into the total synthesis of 

lingzhiol.  

 

A9.2 RETROSYNTHETIC ANALYSIS OF (+)-LINGZHIOL 

 Retrosynthetically, we envisioned that (+)-lingzhiol (158) could originate from 

tetracycle 160 via oxidative manipulation.  Tetracycle 160 could arise from the 

intramolecular (3+2) dipolar cycloaddition of a pendant nitrile oxide across the exocyclic 

olefin bourn by tetralone derivative 161.  The oxime precursor to tetralone derivative 

161, 162, would then be obtained by simple condensation subsequent to oxidation of 

alcohol 163.  Alcohol 163, in turn, would arise from elaboration of α-quaternary ketone 

164.  α-Quaternary ketone 164 would be derived in enantioselective fashion from the 

decarboxylative allylic alkylation of β-ketoester 165, which may be prepared by the 

acylation and aldol reaction of tetralone derivative 166.  Bicycle 166 would be generated 

via benzylic oxidation of known tetralone derivative 167, which may be prepared from 

Fries rearrangement of benzannulated lactone 168.  Finally, lactone 168 may be prepared 

via the Baeyer-Villiger oxidation of commercially available 7-methoxy tetralone 169.  
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Scheme A9.2.1.  First-generation retrosynthetic analysis for (+)-lingzhiol 

 

 

 

A9.3 MODEL STUDIES TO INVESTIGATE KEY (3+2) CYCLOADDITION IN THE 

SYNTHESIS (+)-LINGZHIOL 

A9.3.1 Retrosynthetic plan for lingzhiol model system 

In order to rapidly evaluate the viability of our proposed key (3 + 2) 

cycloadditions, we began our investigation into the total synthesis of (+)-lingzhiol in the 

context of a somewhat simplified model system.  We reasoned that by eliminating much 

of the oxidation about the core of lingzhiol we could streamline access to the carbocyclic 

core (170) and, thereby, rapidly arrive at a capable (3+2) cycloaddition substrate such as 

nitrile oxide 171 (Figure A9.3.1.1).  Oxime 172 could arise from the condensation of 

hydroxylamine onto aldehyde 173, which could be accessed via the oxidation of primary 
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alcohol 174.  Carefully orchestrated hydroboration/oxidation and Grignard 

addition/elimination sequences of known tetralone derivative 176 were planned to access 

styrenyl alcohol 175.  Tetralone derivative 176 could then be delivered via a palladium 

catalyzed allylic alkylation.  

 

Scheme A9.3.1.1.  First-generation retrosynthetic analysis for (+)-lingzhiol model system 

 

 

 

A9.3.2 Synthesis of lingzhiol model system and testing of key (3+2) cycloaddition 

 Known α-quaternary ketone was accessed in a racemic fashion via the palladium-

catalyzed allylic alkylation of allyl β-ketoester 176 (see Chapter 1, vide infra).  Although 

ketone to olefin transposition is known to proceed via methyl Grignard 

addition/elimination, we decided to first explore a Peterson olefination as opposed to 

something less exotic: our reasoning was twofold (Figure A9.3.2.1A).  On one hand, we 

believed that simple methyl Grignard addition to α-quaternary ketone 176 followed by 

elimination would give diene 177 and require a subsequent regioselective 

hydroboration/oxidation.  On the other hand, if hydroboration oxidation was carried out 

prior to methyl Grignard addition, elimination of the tertiary alcohol would be 
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complicated by the presence of the primary alcohol, 179, and require an additional 

protection/deprotection sequence.  Peterson olefination, however, would obviate these 

issues, and allow for simultaneous olefin formation and oxidation.  After some 

optimization we found that the desired tertiary alcohol 181 could be prepared in 90% 

yield from addition of the Grignard of (chloromethyl)trimethylsilane to ketone 176 

(Figure A9.3.2.1B). 

 

Scheme A9.3.2.1 A. Foreseeable difficulties in advancing methyl Grignard addition to ketone 176; 

B. Synthesis of olefin 181 

 

 

 

With tertiary alcohol 181 in hand, we began studies to identify effective 

hydroboration/oxidation conditions to access primary alcohol 174.  We were encouraged 

to find that treatment of olefin 181 with BH3•THF complex, followed by aqueous 

hydrogen peroxide and sodium hydroxide, delivered the primary alcohol with concurrent 

elimination of trimethylsilyl alcohol to afford the desired styrenyl alcohol in 86% yield, 

when performed on 0.05 g scale (Scheme A9.3.2.2, entry 1).  Unfortunately, this result 

proved difficult to replicate when carried out on larger scale, or when newly purchased 

reagents were employed (entry 2).  Similarly, BH3•DMS complex proved to be less 
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efficient than the THF complex.  To our delight, we discovered that conditions for the 

iridium-catalyzed regioselective hydroboration/oxidation developed by Crudden and 

coworkers,128 delivered the desired product in excellent and consistent yields irrespective 

of reaction scale (entries 4–6).  

 

Scheme A9.3.2.2.  Optimization studies for the tandem hydroboration/oxidation elimination of 181 

 

 

 

Dess-Martin periodinane (DMP) oxidation of primary alcohol 174 proceeded 

smoothly, to give aldehyde 173, which was observed by 1H NMR, and without rigorous 

isolation subjected conditions for oxime formation (Scheme A9.3.2.3).  When crude 

aldehyde 173 was treated with hydroxylamine hydrochloride (5 equiv), pyridine (15 

equiv), in EtOH a 25% yield (over 2 steps) of oxime 172 was observed.  However, by 

changing the base employed to sodium acetate and reducing the equivalents of 

hydroxylamine hydrochloride (below, Scheme A9.3.2.3), an 88% yield was observed for 

the formation of oxime 172.  Pleased with these results, we next attempted to affect our 
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key (3+2) cycloaddition addition reaction, via the in situ formation of the corresponding 

nitrile oxide.129  Attempts using chloramine-T130 in ethanol at a variety of temperature 

failed to deliver anything other than complex mixtures.  Likewise, attempts at nitrile 

oxide formation/(3+2) cycloaddition using N-chlorosuccinamide (NCS) and other 

oxidants131 also delivered complex mixtures of products, none of which appeared to be 

the desired tetracycle.  

 

Scheme A9.3.2.3.  Synthesis of oxime 172 and attempts at (3+2) cycloaddition 

 

 

 

While we were discouraged by these results, we reasoned that the styrene 

functionality of oxime 172 may be unstable, and that attempting a (3+2) cycloaddition 

via the corresponding nitrone might be less harsh and limit the degree of undesired 

reactivity observed.  We therefore subjected aldehyde 173 to N-methylhydroxylamine 

hydrochloride and sodium acetate in benzene at increasing temperature and, finally, 

observed a (3+2) cycloaddition in 61% yield.  Unfortunately, the regioselectivity by 

which the cycloaddition proceeded afforded the undesired, albeit interesting bridged 

product (183, Scheme A9.3.2.4).  
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Scheme A9.3.2.4.  The intramolecular (3+2) cycloaddition of nitrone 182 to form tetracycle 183 

 

 
a Unless otherwise noted, full characterization data for compounds depicted in this scheme have not 

been collected. 

 

A9.4 REVISED MODEL STUDIES TO INVESTIGATE KEY (3+2) CYCLOADDITION 

IN THE SYNTHESIS (+)-LINGZHIOL 

A9.4.1 Rationale and revised plan for (+)-lingzhiol model system 

 With the disappointing results described in Section A9.3 in mind, we returned to 

our model system with the goal of biasing the electronics of the styrene olefin, such that 

we could invert the regioselectivity observed in the (3+2) cycloaddition.  We believe that, 

due to inductive donation from the aryl group, a partial positive charge is present at the 

terminal position of the exocyclic olefin and that this was, in part, the source of 

regioselectivity we observed in the intramolecular cycloaddition of nitrone 182 (Figure 

A9.4.1.1).  We reasoned that by introducing the ketone present in the natural product at 

an earlier stage, the benzylogous enolate resonance contributor might serve to invert the 

electronics of the exocyclic olefin in 184 (Figure A9.4.1.1).  By this rationale, we 

hypothesized that we might affect an inversion in the regioselectivity of the (3+2) 

cycloaddition in favor of the desired pathway.  Therefore, we set about constructing a 

new model compound with which we would test our key cycloaddition.  
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Figure A9.4.1.1.  A hypothesis regarding the electronics of exocyclic olefin 182 

 

 

 

A9.4.2 Synthesis of the revised model system for (+)-lingzhiol 

 As we wished to install the requisite ketone via late stage benzylic oxidation, our 

early experiments towards a revised model system involved attempts to directly oxidize 

substrates generated in our previous model system.  However, as most benzylic oxidation 

processes involve the formation of a benzylic radical, the presence of an exocyclic 

styrenyl olefin or allyl group in the benzylic oxidation substrate proved troublesome.  As 

a consequence of this, a new route in which formation of the styrenyl olefin and 

hydroboration were reordered was required.  

Ultimately we chose to pursue the route shown below in Scheme A9.4.2.1.  

Beginning with acylated tetralone derivative 186, aldol reaction with formaldehyde, 

palladium catalyzed allylic alkylation, and silyl protection of the primary alcohol 

proceeded smoothly to give silyl ether 188 in 56% yield over the three steps.  The 

reaction of ketone 188 with methyl Grignard reagent furnished tertiary alcohol 189 in 

90% yield.  This alcohol was then elaborated to bicycle 190 by iridium-catalyzed 

hydroboration, oxidation with sodium perborate and, finally, acetate protection, all of 

which proceeded in 58% yield overall.  
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Scheme A9.4.2.1.  Synthesis of revised model for (3+2) cycloaddition studies 

 

 

 

 

With acetate 190 in hand, we were poised to explore benzylic oxidation strategies.  

After numerous failed attempts to first brominate and then affect a Kornblum-type 

oxidation, we turned to a report from Doyle and co-workers,132 in which benzylic 

oxidation is catalyzed by dirhodium tetracaprolactamate.  This strategy proved successful 

in the event, and we were pleased to isolate benzylic ketone 192 in 96% yield in just a 

single step from bicycle 191 (Scheme A9.4.2.2).  An uneventful deprotection of the 

primary acetate under standard conditions liberated primary alcohol 193, which was 

oxidized to a 2.7:1 mixture of lactol 194 and aldehyde 195 and via Swern oxidation.  This 

mixture was then subjected directly to the conditions for oxime formation with which we 

had previous success.  In the present case, these conditions furnished oxime 196 in 81% 

yield overall from primary alcohol 193.  
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Scheme A9.4.2.2.  Synthesis of revised model for (3+2) cycloaddition studies 

 

 

 

With a reliable route to access oxime 196 in place, we set about attempting to 

affect the formation of our desired (3+2) cycloaddition precursor.  Concerned over the 

stability of the pendant oxime, we began our investigation by employing relatively mild 

dehydrating agents such as Martin sulfurane133 and Burgess reagent.134  Unfortunately, 

neither of these experiments nor experiments employing harsher reagents such as thionyl 

chloride proved fruitful, and in all cases resulted in complex mixtures of products, none 

of which were believed to be the desired styrene (Scheme A9.4.2.3).  We believe these 

disappointing results may be, in part, accounted for by the incompatibility of an 

electrophilic styrene moiety and nucleophilic oxime oxygen both present in the desired 

product.  Efforts to first form the α-chloro oxime using NCS129 and subsequently affect 

simultaneous olefin and nitrile oxide formation were also met with failure.  Noting the 

relative instability of the oxime moiety to the conditions required for dehydration, we 

attempted to preclude these difficulties by dehydrating at an earlier point in the synthesis.  

However, efforts to advance styrenyl compounds in which the protected alcohol had yet 
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to be oxidized were met with what we believe to be hetero-Michael addition processes by 

the alcohol oxygen into the styrene olefin.  

 

Scheme A9.4.2.3.  Studies toward the dehydration of tertiary alcohol 196 

 

 

 

A9.5 REVISED STRATEGY FOR THE SYNTHESIS OF (+)-LINGZHIOL 

Disappointed with the failure of our model system, we sought to take advantage 

of the lessons learned in our attempts to model (+)-lingzhiol in a revised overall strategy.  

One thing that became apparent over the course of our revised model system studies was 

the high electrophilicity of the styrene moiety once the benzylic ketone was in place.  

Indeed, this system could also aptly be described as a benzylogous enone.  We believe 

that this reactivity can be exploited and efforts toward a new route to do so are underway.  

A revised retrosynthetic analysis detailing how such reactivity may be harnessed is 

depicted below in Scheme A9.5.1.  

While much of our initial retrosynthesis (Scheme A9.1.1.2, vide infra) is survived 

in the revised version shown below, the benzylogous enone moiety (i.e., 162) is unveiled 

later in the synthesis, such that oxidative manipulation of the primary alcohol formed 

from hydroboration/oxidation (198) of the allyl fragment is already complete (Scheme 

A9.5.1).  We believe this reordering to be crucial to the success of the route.   
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Scheme A9.5.1.  Second-generation retrosynthetic analysis toward the synthesis of (+)-lingzhiol 

 

 

 

An additional benefit inherent to the revised synthetic plan is that it will enable 

our exploration of alternative endgame strategies that exploit the high electrophilicity of 

the benzylogous enone moiety.  In particular, we believe that by simultaneously 

deprotecting both the silyl enol ether and primary silyl (PG = SiR3) in bicycle 197, we 

may be able to affect a conjugate addition/aldol cascade, wherein alkoxide 204 acts as a 

nucleophile and undergoes intramolecular conjugate addition to afford benzylogous 

enolate 205 (Scheme A9.5.2).  Intramolecular aldol addition of the benzylogous enolate 

205 to the pendent aldehyde may then take place to furnish tetracycle 206.  Tetracycle 

206 may then undergo oxidative manipulation to furnish the natural product.  
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Scheme A9.5.2.  Second-generation retrosynthetic analysis toward the synthesis of (+)-lingzhiol 

 

 

 

A9.6 CONCLUDING REMARKS 

 Described herein is our progress toward the asymmetric total synthesis of marine 

natural product (+)-lingzhiol.  Two iterations of model systems were explored in order to 

evaluate the feasibility of a proposed key intramolecular (3+2) cycloaddition, which 

would furnish vicinal quaternary carbons and two rings in a single step.  Key discoveries 

uncovered in our model systems include the use of interrupted Peterson olefination to 

install a sterically-hindered exocyclic olefin and the successful employment of dirhodium 

tetracaprolactamate catalysis to affect the benzylic oxidation of highly functionalized 

intermediate 191.  Finally, a new retrosynthetic analysis, which makes use of information 

gained in our model studies, is presented.   
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silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence 

quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle SiliaFlash® P60 Academic 

Silica gel (particle size 40–63 nm) was used for flash chromatography.  1H NMR spectra 

were recorded on Varian Inova 300 MHz and 500 MHz spectrometers and are reported 

relative to residual CHCl3 (δ 7.26 ppm) or C6HD5 (δ 7.16 ppm).  13C NMR spectra were 

recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and are reported relative 

to CHCl3 (δ 77.16 ppm) or C6HD5 (δ 128.06 ppm). Data for 1H NMR are reported as 

follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).  

Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = 

pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = 

apparent.  Data for 13C NMR are reported in terms of chemical shifts (δ ppm).  IR spectra 

were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 

FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency 

of absorption (cm-1). Reagents were purchased from Sigma-Aldrich, Gelest, Strem, or 

Alfa Aesar and used as received unless otherwise stated. 

 

A9.7.2 Procedures for the preparation of and spectroscopic data for compounds in 

scheme A9.3.2.1 
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which was fitted with a rubber septum, and the remaining two necks of the flask were 

O

176

HO
TMS

181

0 °C to rt 12 h

90% yield

Cl TMS
Mg, Et2O



Appendix 9 – Studies Toward the Enantioselective Total Synthesis of (+)-Lingzhiol 
 
 

527 

also capped rubber septa.  The flask was put under vacuum and vigorously flame dried 

for ca. 5 min.  The flask was allowed to cool under vacuum for 15 min, at which point it 

was back filled with Ar2 (x3).  0.05 mL of 1,2-dibromoethane was added, along with a 

minimal amount of Et2O, ca. 0.5 mL.  A syringe containing 2.5 mL of Et2O was fitted 

through one septum where it remained until the addition of reagents was complete.  A 

second syringe containing 0.7 mL (chloromethyl)trimethylsilane (5.0 mmol) was fitted 

through another septum and added in a drop-wise fashion until an exotherm was 

perceptible by touching the bottom of the flask.  Shortly after the generation of heat had 

become perceptible, the reaction mixture began to boil.  Additional 

(chloromethyl)trimethylsilane was added to the flask at a rate that maintained a gentle 

reflux.  If ever the exotherm went beyond that of a gentle boil, additional Et2O was added 

to slow the exotherm.  This process was continued until the addition of 

(chloromethyl)trimethylsilane was complete, at which point the reaction was heated to 

40 °C via oil bath and allowed to stir for 2 hours.  At this point only trace magnesium 

turnings remained in the reaction mixture.  The reaction vessel was removed from the oil 

bath, and placed in a water ice bath and an additional 2 mL of Et2O were added.  Finally, 

0.10 g of α-quaternary ketone 176 (0.5 mmol) in 0.5 mL of Et2O was added drop-wise 

and the reaction was allowed to warm to 25 °C and stirred for an hour.  The reaction was 

then judged to be complete by TLC analysis and then carefully quenched with saturated 

aqueous NH4Cl, acidified to pH 5 by the addition of 1 N aqueous HCl, and extracted with 

EtOAc (10 mL x3).  The combined organic washings were dried over MgSO4, filtered 

and concentrated in vacuo.  0.13 g of tertiary alcohol 181 (0.4 mmol) in a 6:1 ratio of 

diastereomers was then isolated by flash column chromatography (SiO2, 5% EtOAc in 
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hexanes to 15% EtOAc in hexanes) as a colorless oil. 90% yield. Rf = 0.4 (10% EtOAc in 

hexanes); 1H NMR for minor diastereomer (300 MHz, CDCl3) δ 8.05 (dd, J = 7.8, 1.4 

Hz, 1H), 7.46 (td, J = 7.4, 1.4 Hz, 1H), 7.34–7.28 (m, 1H), 7.23 (d, J = 7.7 Hz, 1H), 5.79 

(ddt, J = 15.2, 10.8, 7.4 Hz, 1H), 5.13 (d, J = 9.9 Hz, 1H), 5.09–5.06 (m, 1H), 2.99 (q, J = 

5.7 Hz, 2H), 2.28 (dd, J = 13.9, 7.6 Hz, 1H), 2.13–2.08 (m, 1H), 1.96–1.90 (m, 1H), 

1.73–1.69 (m, 1H), 1.20 (s, 3H), -0.12 (s, 17H); 1H NMR for major diastereomer (300 

MHz, CDCl3) δ 7.63 (dd, J = 7.6, 1.7 Hz, 1H), 7.20–7.10 (m, 2H), 7.07–7.00 (m, 1H), 

6.06–5.87 (m, 1H), 5.10 (td, J = 4.9, 3.7, 1.8 Hz, 1H), 5.04–4.86 (m, 1H), 2.79 (td, J = 

8.8, 4.6 Hz, 2H), 2.27 (ddd, J = 207.5, 13.6, 7.8 Hz, 1H), 1.86 (ddd, J = 14.4, 9.0, 5.9 Hz, 

2H), 1.74–1.62 (m, 2H), 1.37 (dd, J = 14.9, 1.3 Hz, 1H), 1.10 (s, 2H), 1.05 (dd, J = 14.9, 

1.3 Hz, 1H), 0.81 (s, 1H), -0.11 (d, J = 2.2 Hz, 9H); 13C NMR for minor diastereomer (75 

MHz, CDCl3) δ 144.6, 136.3, 134.7, 128.3, 126.3, 125.7, 125.6, 117.2, 41.4, 41.1, 33.3, 

30.6, 28.5, 25.2, 21.9, 18.9, 0.3; 13C NMR for major diastereomer (75 MHz, CDCl3) δ  

144.7, 136.6, 135.0, 128.4, 126.3, 125.6, 125.4, 117.4, 41.4, 41.2, 39.0, 30.2, 29.4, 24.9, 

20.2, 0.3. 

  

A9.7.3 Procedures for the preparation of and spectroscopic data for compounds in 

scheme A9.3.2.2 

 

 

HO
TMS

2) NaOH, H2O2

1) BH3•THF

86% yield

OH

181 174
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General procedure for the hydroboration/oxidation of tertiary alcohol 181 by 

borane•THF complex: To a solution of 0.05 g of tertiary alcohol 181  (0.173 mmol) in 1.7 

mL of Et2O was added 0.21 mL of 1 M BH3•THF complex solution (0.21 mmol, 1.2 

equiv) in a drop-wise fashion over 5 min at 25 °C.  The reaction mixture was then 

allowed to stir for an additional 2 hours, at which point 0.020 mL of H2O2 (34% aqueous 

solution, 0.21 mmol, 1.2 equiv) and 0.692 mL of 1 N aqueous NaOH (0.692 mmol, 0.4 

equiv) were added sequentially.  This mixture was allowed to stir for 12 hours, at which 

point it was poured into 5 mL of H2O, acidified to pH 7 with 1 N aqueous HCl, and 

extracted with Et2O (5 mL x 4).  The combined organic fractions were dried over MgSO4, 

and concentrated in vacuo.  0.032 g of primary alcohol 174 (0.4 mmol) was then isolated 

by flash column chromatography (SiO2, 1% EtOAc in hexanes to 25% EtOAc in 

hexanes) as a colorless oil. 86% yield. Rf = 0.3 (25% EtOAc in hexanes); 1H NMR (300 

MHz, CDCl3) δ 7.56 (dd, J = 7.3, 2.0 Hz, 1H), 7.22–7.12 (m, 2H), 7.12–7.01 (m, 1H), 

5.49 (s, 1H), 5.03 (s, 1H), 3.60–3.50 (m, 2H), 2.99–2.71 (m, 2H), 1.80–1.66 (m, 2H), 

1.65–1.37 (m, 5H), 1.30–1.20 (m, 2H), 1.19 (s, 3H). 

 

 

The general procedure for the hydroboration/oxidation of tertiary alcohol 181 by 

iridium catalysis was adapted from a procedure reported by Crudden and coworkers: In a 

nitrogen-filled glove box, a previously flame dried 50 mL round bottom flask charged 

with magnetic stirring bar was charged with 0.062 g of [Ir(cod)Cl]2 (0.093 mmol, 0.025 

equiv), and 0.08 g of 1,4-bis(diphenylphosphino)butane (0.186 mmol, 0.05 equiv) and 

1) [Ir(cod)Cl]2, HBPin, THF
HO

TMS

92% yield

OH

181 174

2) NaBO3, THF/H2O
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dissolved in 4 mL of THF.  To this solution, 1.07 g of tertiary alcohol 181  (3.71 mmol, 1 

equiv) in 6 mL of THF was added and the mixture was allowed to stir at 25 °C for 15 min.  

0.63 g of pinacolborane (4.34 mmol, 1.2 equiv) was then added, the reaction vessel 

capped with a rubber septum and the mixture allowed to stir for an additional 24 hours. 

At this point the reaction mixture was removed from the glove-box and concentrated in 

vacuo.  The crude reaction mixture was subject then taken up in 17 mL of THF, and 

combined with 17 mL of H2O, 1.58 g of NaBO3•4H2O (10.3 mmol, 3 equiv) and stirred 

for an additional 12 hours.  This mixture was then extracted with EtOAc (10 mL x 3), the 

combined organic fractions were dried over MgSO4, and concentrated in vacuo.  0.74 g 

of primary alcohol 174 (0.4 mmol) was then isolated by flash column chromatography 

(SiO2, 10% EtOAc in hexanes to 25% EtOAc in hexanes) as a colorless oil. 92% yield.  

 

A9.7.4 Procedures for the preparation of and spectroscopic data for compounds in 

scheme A9.3.2.3 

 

 

 

Dess-Martin periodinane (DMP) was prepared following literature procedure.135  

0.185 g of primary alcohol 174 (0.856 mmol, 1 equiv) was transferred to a 25 mL round 

bottom flask with 0.93 mL of CH2Cl2 containing 0.417 g of DMP (0.984 mmol, 1.15 

equiv) in 2.5 mL of CH2Cl2.  The reaction was judged to be complete in 10 min, at which 

point the reaction mixture was poured into 7 mL of saturated aqueous NaHCO3 

DMP, DCM
dark,10 min

not isolated

HONH3•Cl (2 equiv)
NaOAc (3 equiv)

EtOH/H2O

88% yield
over two steps

172173174

O N
OH

OH
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containing 10 weight % Na2S2O3 (1.85 g), and this mixture stirred for 5 min. The mixture 

was then extracted with 7 mL of Et2O, and the organic fraction was washed with 3 mL of 

saturated aqueous NaHCO3, dried over MgSO4, filtered and concentrated in vacuo.  The 

crude reaction mixture was >95% pure by 1H NMR, and taken on without further 

purification.  1H NMR for aldehyde 173 (300 MHz, CDCl3) δ 9.78–9.51 (m, 1H), 7.55 

(dd, J = 7.0, 2.2 Hz, 1H), 7.24–7.02 (m, 3H), 5.53 (s, 1H), 5.03 (s, 1H), 3.06–2.71 (m, 

3H), 2.55–2.25 (m, 2H), 2.01–1.60 (m, 5H), 1.18 (s, 3H). 

To 0.055 g of freshly prepared aldehyde 173 (0.259 mmol, 1 equiv), in 1.7 mL of 

H2O and 3.3 mL of EtOH was added 0.036 g of H3NO•HCl (0.518 mmol, 2 equiv), and 

the reaction mixture was cooled to 0 °C using an ice water bath.  To the cooled reaction 

mixture, 0.064 g of NaOAc (0.777 mmol, 3 equiv) was added portion-wise over 15 min 

and the mixture was allowed to warm to room temperature and stir for 12 hours, at which 

point the reaction was judged to be complete by TLC analysis. The EtOH was removed in 

vacuo and the remaining aqueous mixture was extracted with EtOAc (5 mL x 3).  The 

combined organic fractions were dried over MgSO4, concentrated in vacuo, and the 

resulting crude oil was purified by flash column chromatography (SiO2, 3% EtOAc in 

hexanes to 4% EtOAc in hexanes) to give 0.052 g of oxime 172 as a colorless oil. 88% 

yield over two steps. Rf = 0.5 (25% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 

7.56 (dd, J = 7.3, 2.0 Hz, 1H), 7.34 (t, J = 5.9 Hz, 1H), 7.21–7.13 (m, 2H), 7.09 (ddd, J = 

6.3, 2.7, 0.9 Hz, 1H), 6.78 (s, 1H), 5.51 (s, 1H), 5.03 (s, 1H), 2.99–2.74 (m, 2H), 2.31–

1.98 (m, 2H), 1.84–1.70 (m, 2H), 1.68–1.58 (m, 1H), 1.20 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ  152.7, 150.4, 135.9, 135.0, 128.7, 127.5, 126.1, 125.5, 108.2, 37.4, 35.4, 34.2, 

25.9, 25.6, 24.8. 
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A9.7.5 Procedures for the preparation of and spectroscopic data for compounds in 

scheme A9.3.2.4 

 

 

To a flame dried 5 mL microwave vial was charged 0.015 g of crude aldehyde 

172 (0.07 mmol, 1 equiv), 0.006 g of MeH2NOH•HCl (0.07 mmol, 1 equiv), 0.0193 g of 

K2CO3 (0.14 mmol, 2 equiv), and 1 mL of benzene.  The microwave vial was capped 

with a rubber septum and stirred for 6 hours at room temperature, at which point all 

starting materials had by consumed by TLC analysis.  The reaction mixture was then 

heated to 100 °C for 24 hours.  The mixture was then concentrated in vacuo, and the 

crude oil was purified directly by flash column chromatography (SiO2, 12% EtOAc in 

hexanes to 60% EtOAc in hexanes) to give 0.0103 g of tetracycle 183 as a colorless oil. 

61% yield.  Rf = 0.3 (25% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 7.50 (dd, J 

= 7.3, 1.9 Hz, 1H), 7.24–7.17 (m, 2H), 7.13–7.09 (m, 1H), 3.44 (t, J = 4.7 Hz, 1H), 2.93–

2.82 (m, 1H), 2.81 (s, 3H), 2.79–2.66 (m, 2H), 2.17 (d, J = 12.2 Hz, 1H), 2.07 (td, J = 

13.2, 5.8 Hz, 1H), 1.92–1.79 (m, 2H), 1.78–1.68 (m, 1H), 1.37–1.29 (m, 2H), 0.95 (t, J = 

0.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) 138.9, 133.7, 129.7, 127.7, 127.1, 126.3, 66.0, 

64.8, 53.6, 47.7, 36.9, 34.5, 33.7, 32.9, 28.3, 25.9. 

 

MeONH3•Cl (1 equiv)
NaOAc (2 equiv)

PhH, 23 –> 100 °C 61% yield

O NMe

173 182 183

N
OO
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A9.7.6 Procedures for the preparation of and spectroscopic data for compounds in 

scheme A9.4.2.1 

 

To a 100 mL round bottom flask containing a magnetic stirring bar was added 3.8 

g of β-ketoester 186 (16.5 mmol, 1 equiv), 4.95 g of KHCO3 (49.5 mmol, 3 equiv) and 47 

mL of THF.  The mixture was cooled to 0 °C via an ice water bath, and 9.24 mL of 37 

wt. % formaldehyde in H2O (113.9 mmol, 6.9 equiv) was added slowly over 5 min.  The 

mixture was then allowed to warm to room temperature and stirred for 12 hours, at which 

point the reaction was judged to be complete by TLC analysis.  The crude reaction 

mixture was diluted with H2O (50 mL), and CH2Cl2 (100 mL) and extracted with CH2Cl2 

(30 mL x 4).  The combined organic fractions were dried over MgSO4, filtered and 

concentrated in vacuo.  The crude oil was then purified by flash column chromatography 

(SiO2, 20% EtOAc in hexanes to 25% EtOAc in hexanes) to give 3.96 g of alcohol 187 as 

a colorless oil. 92% yield. Rf = 0.2 (33% EtOAc in hexanes); 1H NMR (300 MHz, 

CDCl3) δ 8.07 (ddd, J = 7.9, 1.6, 0.5, 1H), 7.51 (td, J = 7.5, 1.5, 1H), 7.34 (dddd, J = 8.0, 

7.3, 1.4, 0.7, 1H), 7.24 (dd, J = 7.2, 1.2, 1H), 5.80 (ddt, J = 17.5, 10.2, 5.5, 1H), 5.21–

5.15 (m, 1H), 5.14–5.10 (m, 1H), 4.68–4.57 (m, 2H), 4.06–3.85 (m, 2H), 3.42–3.25 (m, 

1H), 3.00 (dt, J = 9.6, 4.8, 2H), 2.46 (dt, J = 13.6, 4.5, 1H), 2.18 (ddd, J = 13.6, 10.6, 5.6, 

1H). 

 

O

O

O HCOH, 
KHCO3

O

O

O

92% yield

OH

187186
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In a nitrogen-filled glove-box at 27 °C, a 250 mL round bottom flask containing a 

magnetic stirring bar was charged with 0.156 g of Pd2(dba)3 (0.171 mmol, 0.025 equiv), 

0.107 g of PPh3 (0.41 mmol, 0.06 equiv) and 100 mL of THF, and allowed to stir for 30 

min.  To this mixture was added 1.78 g of β-ketoester 187 as a solution in 35 mL THF, 

the flask was capped with a rubber septum, the lip of the septum sealed with electrical 

tape, and the flask removed from the glove-box.  After stirring for 12 hours, the reaction 

was judged to be complete by TLC analysis.  The crude reaction mixture was 

concentrated in vacuo and the resulting oil was passed through a silica plug (SiO2, 20% 

EtOAc in hexanes to 30% EtOAc in hexanes), to give 1.47 g of crude product.  This oil 

was then taken on without further purification. Rf = 0.2 (25% EtOAc in hexanes). 

To a 200 mL round bottom flask containing a magnetic stirring bar was added 

1.47 of the crude ketone, 1.54 g of TBSCl (10.25 mmol, 1.5 equiv based on previous 

reaction),  2.32 g of imidizole (34.15 mmol, 5 equiv based on previous reaction),  and 70 

mL of CH2Cl2, at 25 °C and the reaction mixture wa allowed to stir for 12 hours, at which 

point the reaction was judged to be complete by TLC analysis. The crude reaction 

mixture was poured into 100 mL of H2O and extracted with CH2Cl2 (50 mL x 4), washed 

with saturated aqueous NH4Cl (50 mL), washed with brine (50 mL), and then 

concentrated in vacuo.  The crude oil was then purified by flash column chromatography 

(SiO2, 3% EtOAc in hexanes to 10% EtOAc in hexanes) to give 1.38 g of silyl ether 188 

(4.18 mmol) as a colorless oil. 61% yield over two steps. Rf = 0.4 (10% EtOAc in 

hexanes); 1H NMR data for the precursor alcohol 188’ (300 MHz, CDCl3) δ δ 8.01 (dd, J 

O

O

O

OH

1) Pd2(dba)3 (2.5 mol%)
PPh3 (6 mol %), THF

O OTBS

2) TBSCl, imidizole
CH2Cl2

61% yield over two steps 188187
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= 7.9, 1.4 Hz, 1H), 7.48 (td, J = 7.5, 1.4 Hz, 1H), 7.35–7.27 (m, 1H), 7.26–7.22 (m, 1H), 

5.95–5.66 (m, 1H), 5.25–5.14 (m, 1H), 5.13 (q, J = 1.1 Hz, 1H), 3.70 (qd, J = 11.5, 1.0 

Hz, 2H), 3.24–3.03 (m, 1H), 2.94 (t, J = 4.6 Hz, 1H), 2.88 (t, J = 4.6 Hz, 1H), 2.58–2.26 

(m, 2H), 2.14–1.98 (m, 1H), 1.98–1.84 (m, 1H). 

 

 

Tertiary alcohol 188 was prepared following the same procedure as that which 

was employed to prepare tertiary alcohol 181 (vide supra).  Compound 189 was isolated 

by flash column chromatography (SiO2, 5% EtOAc in hexanes to 10% EtOAc in 

hexanes) as a colorless oil. 90% yield. Rf = 0.4 (10% EtOAc in hexanes); 1H NMR (300 

MHz, CDCl3) δ 7.74 (dd, J = 7.6, 1.6 Hz, 1H), 7.65 (dd, J = 7.8, 1.5 Hz, 2H), 6.01–5.71 

(m, 2H), 5.23–5.03 (m, 5H), 4.15 (s, 2H), 3.69–3.65 (m, 3H), 3.61 (d, J = 10.3 Hz, 1H), 

3.54–3.50 (m, 2H), 3.47 (t, J = 7.0 Hz, 4H), 3.06–2.50 (m, 9H), 2.16 (dd, J = 13.7, 7.3 

Hz, 1H), 1.96 (dd, J = 14.7, 6.9 Hz, 2H), 1.82–1.65 (m, 2H), 1.53 (s, 5H), 1.48–1.40 (m, 

2H), 1.37 (s, 3H), 1.21 (t, J = 7.0 Hz, 8H), 0.96 (s, 15H), 0.81 (s, 9H), 0.13 (d, J = 5.6 Hz, 

10H), -0.11 (d, J = 31.4 Hz, 6H). 

 

 

Hydroboration and oxidation of olefin 189 was accomplished following the 

general procedure detailed above for the synthesis of alcohol 174 (vide supra), beginning 

O OTBS

188

HO

189

0 °C to rt 12 h

90% yield

MeI, Mg, Et2O

OTBS

HO

189

OTBS
HO

OTBS

OAc
1) [Ir(cod)Cl]2, HBPin, THF 

2) NaBO3, THF/H2O

3) acetic anhydride 
Hunig's base, DMAP 

CH2Cl2 190/191

58% yield over three steps
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with 1.3 g of olefin 189.  The crude reaction mixture was extracted with EtOAc, the 

combined organic  fractions were dried over MgSO4, and concentrated in vacuo to give 

1.35 g of the intermediate diol as a colorless oil. Rf = 0.4 (10% EtOAc in hexanes); 1H 

NMR for diastereomer 1 of boronate intermediate (300 MHz, CDCl3) δ 7.63 (dd, J = 7.7, 

1.5 Hz, 1H), 7.18 (ddd, J = 8.8, 7.5, 1.4 Hz, 1H), 7.10 (td, J = 7.3, 1.5 Hz, 1H), 7.03–6.98 

(m, 1H), 4.13 (s, 1H), 3.69 (s, 2H), 2.91 (dt, J = 18.6, 9.7 Hz, 1H), 2.69 (dt, J = 17.5, 3.9 

Hz, 1H), 1.92 (ddd, J = 14.0, 11.3, 5.6 Hz, 1H), 1.58 (d, J = 5.3 Hz, 1H), 1.52 (s, 3H), 

1.50–1.42 (m, 2H), 1.41–1.31 (m, 1H), 1.29–1.17 (m, 3H), 1.13 (d, J = 6.8 Hz, 12H), 

0.94 (s, 9H), 0.85 (d, J = 19.9 Hz, 1H), 0.77–0.65 (m, 1H), 0.13 (d, J = 4.1 Hz, 5H).  1H 

NMR for diastereomer 2 of boronate intermediate (300 MHz, CDCl3) δ 7.72 (dd, J = 7.7, 

1.6 Hz, 1H), 7.15 (dtd, J = 18.9, 7.3, 1.7 Hz, 2H), 7.03–6.96 (m, 1H), 4.79 (s, 1H), 3.62 

(s, 2H), 2.90–2.61 (m, 2H), 2.06–1.91 (m, 1H), 1.89–1.78 (m, 1H), 1.77–1.65 (m, 1H), 

1.58 (dd, J = 7.6, 3.6 Hz, 1H), 1.54–1.38 (m, 2H), 1.35 (s, 3H), 1.23 (s, 12H), 1.14 (d, J = 

4.7 Hz, 2H), 0.92 (s, 1H), 0.81 (s, 10H), 0.13 (s, 1H), -0.09 (d, J = 32.0 Hz, 6H). 

A 25 mL round bottom flask was charged with 1.35 g of the crude diol, 0.77 g of 

Hunig’s base (4.44 mmol, 1.2 equiv based on previous reactions),  0.045 g of DMAP 

(0.37 mmol, 0.1 equiv based on previous reactions),  and 5.3 mL of CH2Cl2, and cooled 

to 0 °C. 0.378 mL of acetic anhydride was then added drop-wise to the cooled solution 

and the mixture was stirred for 3 hours, at which point the reaction was judged to be 

complete by TLC analysis.  The crude reaction mixture was quenched with 5 wt. % HCl 

in H2O, neutralized with 1 N NaOH (ca. 5 mL) and washed with brine.  The organic 

fraction was dried over MgSO4 and then concentrated in vacuo.  The crude oil was then 

purified by flash column chromatography (SiO2, 5% EtOAc in hexanes to 10% EtOAc in 
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hexanes) and the diastereomers separated.  0.5 g of diastereomer A (190) and 0.380 g of 

diastereomer B (191) were isolated as colorless oils.  58% yield over three steps. Rf = 0.3 

(10% EtOAc in hexanes); 1H NMR for diastereomer 1 (190) (300 MHz, CDCl3) δ 7.73–

7.59 (m, 1H), 7.23–7.09 (m, 2H), 7.08–7.00 (m, 1H), 2.91–2.64 (m, 3H), 1.74 (ddd, J = 

8.1, 6.7, 2.8 Hz, 2H), 1.58 (d, J = 3.6 Hz, 3H), 1.44 (d, J = 1.2 Hz, 3H), 1.41–1.18 (m, 

3H), 1.01 (d, J = 0.5 Hz, 2H), 0.98–0.92 (m, 2H), 0.91–0.86 (m, 2H).; 1H NMR for 

diastereomer 2 (191) (300 MHz, CDCl3) δ 7.74 (dd, J = 7.7, 1.6 Hz, 1H), 7.25–7.07 (m, 

2H), 7.07–6.95 (m, 1H), 4.61 (s, 1H), 4.19–4.03 (m, 2H), 3.69–3.49 (m, 2H), 2.90–2.60 

(m, 2H), 2.23–2.09 (m, 1H), 2.05 (d, J = 0.6 Hz, 3H), 1.70 (dddd, J = 15.4, 12.0, 8.1, 5.0 

Hz, 4H), 1.48–1.36 (m, 1H), 1.34 (s, 3H), 1.28–1.24 (m, 3H), 0.98–0.84 (m, 3H), 0.81 (d, 

J = 0.6 Hz, 9H), -0.10 (d, J = 34.0 Hz, 5H); 13C NMR for diastereomer 2 (191) (75 MHz, 

CDCl3) δ  171.2, 145.3, 133.6, 127.8, 126.3, 126.3, 126.1, 126.1, 125.5, 66.2, 65.4, 65.2, 

41.4, 27.4, 27.0, 26.7, 26.0, 25.9, 25.8, 25.8, 25.7, 25.6, 24.6, 23.2, 21.0, 17.9, -6.0, -6.1 

   

A9.7.7 Procedures for the preparation of and spectroscopic data for compounds in 

scheme A9.4.2.2 

 

 

To a 1 mL microwave vial containing a magnetic stirring bar 25 °C, was charged 

with 0.05 g of diastereomer A of tertiary alcohol 191 (0.123 mmol, 1 equiv), 0.0004 g or 

Rh2(cap)4 (0.0006 mmol, 0.005 equiv), 0.005 g of NaHCO3 (0.0615 mmol, 0.5 equiv) and 

0.5 mL of DCE.  This mixture was then allowed to stir for 30 min until all of tertiary 

HO OTBS

OAc Rh2cap4

TBHP, NaHCO3
DCE

HO OTBS

OAc

O
96% yield191 192
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alcohol 191 was solubilized.  To this mixture was added 0.06 mL of TBHP (0.615 mmol, 

5 equiv), and the flask was fitted with a balloon filled with Ar2 and heated to 40 °C.  

After stirring for 3 hours, an additional 0.0004 g or Rh2(cap)4 (0.0006 mmol, 0.005 equiv) 

and 0.06 mL of TBHP (0.615 mmol, 5 equiv) were added.  The reaction was stirred for 

36 hours, at which point it was judged to be complete by TLC analysis.  The crude 

reaction mixture was adsorbed into 0.1 g SiO2 by concentration in vacuo and the resulting 

fine particulate was then purified by flash column chromatography (SiO2, 2% EtOAc in 

hexanes to 25% EtOAc in hexanes), to give 0.05 g of ketone 192 as a colorless oil. 96% 

yield.  Rf = 0.3 (25% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 7.92 (dddd, J = 

9.1, 7.9, 1.4, 0.6 Hz, 2H), 7.65 (ddd, J = 7.9, 7.3, 1.4 Hz, 1H), 7.38 (td, J = 7.5, 1.2 Hz, 

1H), 5.06 (d, J = 1.7 Hz, 1H), 4.14 (dt, J = 7.9, 6.3 Hz, 2H), 3.74–3.50 (m, 2H), 2.62 (d, J 

= 18.5 Hz, 1H), 2.46 (d, J = 18.5 Hz, 1H), 2.29 (td, J = 12.8, 4.4 Hz, 1H), 2.08 (s, 3H), 

1.75–1.59 (m, 3H), 1.51 (d, J = 61.1 Hz, 12H), 0.82 (s, 9H), -0.10 (d, J = 67.5 Hz, 5H). 

 

 

To 0.350 g of ketone 192 (0.832 mmol, 1 equiv) was added 0.138 g of K2CO3 (1.0 

mmol, 1.2 equiv), 3 mL of THF and 1 mL of MeOH.  The mixture was stirred at 25 °C 

for 12 hours and then judged to be complete by TLC analysis.  The crude mixture was 

diluted with 20 mL EtOAc, washed with 10 mL H2O, 10 mL brine, dried over MgSO4, 

and concentrated in vacuo.  The resulting crude oil was then purified by flash column 

chromatography (SiO2, 20% EtOAc in hexanes to 60% EtOAc in hexanes), to give 3.14 g 

of primary alcohol 193 as a colorless oil. 99% yield.  Rf = 0.3 (50% EtOAc in hexanes); 

HO OTBS

OAc

O
192

HO OTBS

OH

O

K2CO3
THF/MeOH

99% yield 193
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1H NMR for diastereomer 1 (500 MHz, CDCl3) δ 7.90 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 

7.9 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 3.87 (d, J = 10.4 Hz, 1H), 

3.61 (d, J = 10.4 Hz, 1H), 3.43 (t, J = 6.7 Hz, 2H), 2.43 (d, J = 17.3 Hz, 1H), 2.32 (d, J = 

17.4 Hz, 1H), 1.99 (ddd, J = 14.3, 12.2, 4.8 Hz, 1H), 1.61 (s, 3H), 1.48–1.32 (m, 2H), 

1.28–1.18 (m, 1H), 0.93 (d, J = 1.6 Hz, 9H), 0.14 (d, J = 13.7 Hz, 5H); 13C NMR for 

diastereomer 1 (75 MHz, CDCl3) δ  195.5, 149.9, 134.6, 129.7, 127.0, 125.9, 125.8, 76.1, 

65.9, 63.0, 45.3, 41.5, 28.5, 27.1, 25.7, 18.0, -5.7, -5.8; 1H NMR for diastereomer 2 (193) 

(500 MHz, CDCl3) δ 7.91 (dddd, J = 13.3, 8.0, 1.4, 0.6 Hz, 2H), 7.64 (ddd, J = 7.8, 7.3, 

1.4 Hz, 1H), 7.38 (td, J = 7.5, 1.2 Hz, 1H), 5.09 (s, 1H), 3.80–3.70 (m, 2H), 3.70–3.59 

(m, 2H), 2.61 (d, J = 18.6 Hz, 1H), 2.50 (d, J = 18.6 Hz, 1H), 2.29–2.19 (m, 1H), 1.60 

(dddd, J = 15.7, 12.2, 8.6, 6.2 Hz, 3H), 1.46 (s, 3H), 0.81 (s, 9H), -0.10 (d, J = 64.7 Hz, 

5H); 13C NMR for diastereomer 2 (193) (75 MHz, CDCl3) δ  196.1, 151.1, 134.5, 130.1, 

127.2, 126.3, 125.4, 66.7, 63.4, 44.5, 44.0, 27.2, 26.8, 26.6, 25.5, 17.8, -6.0, -6.2. 

 

 

To a septum capped 1 mL microwave vial containing a magnetic stirring bar was 

added 5.43 µL of oxalyl chloride (0.06 mmol, 1.48 equiv) in 0.25 mL of CH2Cl2.  The 

mixture was cooled to –78 °C and 7.5 µL of DMSO (0.1056 mmol, 2 equiv) in 0.25 mL 

CH2Cl2 was added drop-wise over 20 min and the mixture was stirred for an additional 30 

min.  0.02 g of diastereomer 1 of primary alcohol 193 (0.053 mmol, 1 equiv) in 0.5 mL 

CH2Cl2 was then added drop-wise over 45 min and the mixture was stirred for an 

HO
OTBS

OH

O

oxalyl chloride
DMSO, Et3N

CH2Cl2

O

O

OTBS
+

O

OTBS

OH

OH O

193 195194
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additional 30 min.  30.0 µL of Et3N was then added neat over 1 minute, and the mixture 

was stirred vigorously for 30 min as it was allowed to warm to 0 °C.  1 mL of H2O was 

then added , the mixture was washed with 0.5 M HCl (1 mL), H2O (1 mL), saturated 

aqueous NaHCO3 (1 mL) and brine (1 mL).  The organic fraction was dried over MgSO4, 

and concentrated in vacuo to give 0.0197 g of lactol 194 and aldehyde 195 as a 2.7:1 

mixture.  Lactol 194 and aldehyde 195 were taken on without further purification. 1H 

NMR for lactol 194 (300 MHz, CDCl3) δ 8.08–7.93 (m, 1H), 7.67–7.52 (m, 2H), 7.38 

(ddd, J = 7.8, 6.5, 2.0 Hz, 1H), 6.37 (ddd, J = 6.2, 2.4, 1.5 Hz, 1H), 4.56 (td, J = 5.6, 5.0, 

2.2 Hz, 1H), 3.87–3.61 (m, 2H), 2.81 (d, J = 2.1 Hz, 2H), 2.10 (ddd, J = 17.9, 5.1, 1.5 Hz, 

1H), 1.69–1.58 (m, 2H), 1.54 (s, 3H), 0.89 (s, 11H), 0.05 (d, J = 3.8 Hz, 6H); 1H NMR 

for aldehyde 195 (300 MHz, CDCl3) δ 8.01 (ddd, J = 7.9, 1.4, 0.6 Hz, 1H), 7.74–7.61 (m, 

2H), 7.50–7.40 (m, 1H), 3.91–3.71 (m, 2H), 2.79 (d, J = 3.2 Hz, 2H), 2.53 (dt, J = 18.1, 

8.9 Hz, 1H), 2.21 (ddd, J = 18.5, 8.5, 3.6 Hz, 1H), 2.07–1.94 (m, 1H), 1.75 (dt, J = 14.3, 

8.9 Hz, 1H), 1.67 (d, J = 0.6 Hz, 3H), 0.91 (d, J = 0.6 Hz, 10H), 0.10 (d, J = 2.3 Hz, 6H); 

13C NMR for aldehyde 195 (75 MHz, CDCl3) δ  194.9, 170.5, 147.0, 135.3, 129.7, 128.5, 

126.8, 125.6, 84.4, 64.6, 44.7, 27.1, 26.4, 25.8, 24.8, 18.2, -5.6, -5.7. 

 

 

0.01 g of the mixture of crude diastereomer 2 of lactol 194 and diastereomer 2 of 

aldehyde 195 were combined with 0.0037 g of HONH2•HCl (0.053 mmol, 2 equiv from 

previous reaction), 0.0065 g NaOAc (0.0797 mmol, 3 equiv), 0.18 mL H2O and 0.35 mL 

HONH3•Cl (2 equiv)
NaOAc (3 equiv)

EtOH/H2O

O

O

OTBS +

O

OTBS

OH

OH O
HO OTBS

N

O

81% yield over two steps
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EtOH in a 1 mL microwave containing a magnetic stirring bar and stirred at 25 °C for 12 

hours.  The crude reaction mixture was adsorbed into 0.1 g SiO2 by concentration in 

vacuo and the resulting fine particulate was then purified by flash column 

chromatography (SiO2, 10% EtOAc in hexanes to 40% EtOAc in hexanes), to give 0.085 

g of a mixture of E and Z oximes 196 as a colorless oil. 81% yield over two steps.  Rf = 

0.2 (33% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3) δ 7.99–7.82 (m, 2H), 7.64 (td, 

J = 7.6, 1.5 Hz, 1H), 7.49 (t, J = 5.7 Hz, 0H), 7.45–7.31 (m, 1H), 6.82 (s, 1H), 5.06 (s, 

1H), 3.75–3.54 (m, 2H), 3.53–3.43 (m, 0H), 2.66 (d, J = 3.2 Hz, 0H), 2.60 (d, J = 3.1 Hz, 

1H), 2.51 (d, J = 7.4 Hz, 1H), 2.48–2.41 (m, 1H), 2.33–2.23 (m, 1H), 2.10 (s, 1H), 2.04 

(s, 1H), 1.84–1.63 (m, 1H), 1.44 (s, 3H), 1.33–1.13 (m, 2H), 0.96–0.85 (m, 0H), 0.80 (d, 

J = 0.8 Hz, 9H), -0.05 (d, J = 1.1 Hz, 3H), -0.19 (s, 3H). 
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