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ABSTRACT

Notwithstanding advances in modern chemical methods, the selective installation of
sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers,
remains an unsolved problem in organic chemistry. The prevalence of all-carbon
quaternary centers in biologically active natural products and pharmaceutical
compounds provides a strong impetus to address current limitations in the state of the
art of their generation. This thesis presents four related projects, all of which share in
the goal of constructing highly-congested carbon centers in a stereoselective manner,
and in the use of transition-metal catalyzed alkylation as a means to address that goal.

The first research described is an extension of allylic alkylation methodology
previously developed in the Stoltz group to small, strained rings. This research
constitutes the first transition metal-catalyzed enantioselective «-alkylation of
cyclobutanones. Under Pd-catalysis, this chemistry affords all-carbon o-quaternary
cyclobutanones in good to excellent yields and enantioselectivities.

Next is described our development of a (trimethylsilyl)ethyl B-ketoester class of
enolate precursors, and their application in palladium—catalyzed asymmetric allylic
alkylation to yield a variety of o-quaternary ketones and lactams. Independent
coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl B-
ketoester substrates; highly functionalized o-quaternary ketones generated by the union
of our fluoride-triggered B-ketoesters and sensitive allylic alkylation coupling partners
serve to demonstrate the utility of this method for complex fragment coupling.

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic
[B-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and
all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is
detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated
products with pinpoint stereochemical control of both chiral centers. The chemistry is
then extended to include acyclic PB-ketoesters and similar levels of selective and
functional group tolerance are observed. Critical to the successful development of this
method was the employment of iridium catalysis in concert with N-aryl-

phosphoramidite ligands.
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CHAPTER 1

Enantioselective Construction of a-Quaternary Cyclobutanones by

Catalytic Asymmetric Allylic Alkylation’

1.1 INTRODUCTION
1.1.1 Palladium catalyzed allylic alkylation

The synthesis of stereogenic all-carbon quaternary centers remains a formidable
challenge, notwithstanding the strides made by modern organic chemistry in this regard.’
Contemporary advances in enolate alkylation have made it a fundamental strategy for the
construction of C—C bonds.> Allylic alkylation of tetrasubstituted enolates to give rise to
o-quaternary carbonyl compounds has emerged as an efficient solution to this problem.’
The Tsuji research group was among the first to study this class of transformations and
pioneering investigations undertaken nearly three decades ago by, which culminated in a
series of disclosures describing novel decarboxylative entry into the palladium-catalyzed
allylic alkylation of cyclic ketones (Scheme 1.1.1.1).*

A simple mechanistic framework for the transformation begins with the oxidative
addition of Pd’ into the allyl group of an allyl enol carbonate (1), allyl B-ketoesters (2) or
! This work was performed in collaboration with Christian Eidamshaus and Jimin Kim, postdoctoral

researchers in the Stoltz group. This work has been published. See: Reeves, C. M, Eidamshaus, C.; Kim,
J.; Stoltz, B. M. Angew. Chem. Int. Ed. 2013, 52,6718.
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silyl enol ethers (3) in the presence of an allyl source (4), and gives a palladium s-allyl
species (6), and the corresponding free carboxylate species. Spontaneous
decarboxylation of the free carboxylate yields a tetrasubstituted enolate (S) that may enter
into a catalytic cycle and furnish o-quaternary ketones (7). This method of enolate
formation is particularly attractive in that the so-called “thermodynamic” enolate can be
selectively generated in situ, in the absence of exogenous base under kinetic control.
Furthermore, excellent positional fidelity is observed between the site of enolization and

the site of allylic alkylation.

Scheme 1.1.1.1 Palladium catalyzed allylic alkylation pioneered by Tsuji and coworkers

[o]
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@)\o/\/
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Q§//~\0)J
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Although methods for the alkylation of a number of enolate types (e.g., ester,
ketone, amide, etc.) with a variety of alkylating agents exist, catalytic enantioselective
variants of these transformations are relatively rare.” Of the catalytic asymmetric
methods available, there have been few examples of general techniques for the

asymmetric alkylation of carbocyclic systems, and still fewer that have the capacity to
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deliver all-carbon quaternary stereocenters. ©° While the Merck phase transfer
methylation, and Koga alkylation of 2-alkyltetralone-derived silyl enol ethers represent
notable exceptions,’ the breadth of application and utility of these reactions has been
limited. In fact, at the outset of investigations by the Stoltz group in this area, there were
no examples of catalytic enantioselective alkylations of monocyclic 2-substituted
cycloalkanone enolates in the absence of either o’-blocking groups or o-enolate

stabilizing groups (e.g., 8, R = aryl, ester, etc., Figure 1.1.1.2).

Scheme 1.1.1.2. State of the art in asymmetric alkylation of prochiral enolates, 2003.

o strong base o R
. R'X, ML, * .
rl_. o R n f." X | R
A blocked o/ A
e or R =EWG e
8 9

In 2003, we initiated a program for the catalytic enantioselective synthesis of all-
carbon quaternary stereocenters by allylic alkylation of prochiral cyclic ketone enolates.
We adapted a protocol originally developed by Tsuji’ to incorporate a chiral ligand
scaffold, and found that the phosphinooxazoline (PHOX) ligands (e.g., L1, Scheme
1.1.1.3)* were optimal for both chemical yields and enantioselectivity.” The allylic
alkylation protocol developed in the Stoltz laboratory is robust enough to prevail upon
several different enolate precursor classes, namely allyl enol carbonates (10), enol silanes
(11), and B-ketoesters (12) to deliver the desired o-quaternary cyclic ketone products (13)

in good to excellent yields and enantioselectivies.”"
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Scheme 1.1.1.3. Stoltz and coworkers’ approach to asymmetric allylic alkylation

o
oTMs R
U (S)-+-Bu-PHOX (L1) o Q\/
o 0/\% B Y o
N R R" Y Pdydba), —@ R" ona NIJ
R=t ke Solvent, 25 °C h 13 2 4
OR OR tBu

Three different substrate types, up to 99% yield L1
10 n=01.2 equivalent selectivity up to 94% ee

In addition, the reaction is highly tolerant of a broad range of functionality and
substitution on both the enolate precursors and allyl fragments. Enolates derived from
cyclic ketones,” enones,"” vinylogous esters,'' vinylogous thioesters,' tetralones," and
dioxanones " function with similar levels of selectivity in the catalytic asymmetric
chemistry. We have also developed a scale-up protocol employing 2.5 mol % Pd that
allows access to >10 g of enantioenriched material in excellent yields."

Concurrent to our work in this area, '™ Trost and coworkers have published a
series of papers that complement our studies in asymmetric alkylation, and which employ
symmetric bidentate C-2 symmetric bisphosphine ligands (L2, Scheme 1.1.1.4a)."°
Shortly after this report, Jacobsen and coworkers, as well, have revealed a unique

enantioselective method involving the chromium-catalyzed reaction of tin-enolates (16)

with a variety of non-activated alkyl halides (Scheme 1.1.1.4b).°
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Scheme 1.1.1.4. Asymmetric allylic alkylation by Trost (A) and Jacobsen (B)

A og 0 Q
Pd,(dba); (2.5 mol%) R,
- R2 L1 (5.5-6.25 mol%) fﬁ\/
>
THF, 25 °C ﬁ"” ”"ﬁ
n n
PPh, Ph,P

14 15

B

OSnBuj;
L3MCI (2.5-10 mol%)

. O
Me i L :Me =N, /“—
- ~— R Cr
RX (4 equiv), PhH +Bu o Yo tBu
n 0°C )n
17 t-Bu t-Bu

16

L3M

1.1.2 Palladium-catalyzed allylic alkylation of cyclobutanones

In the domain of asymmetric allylic alkylation, cyclobutanones have received far
less attention relative to their five-, six- and seven-membered congeners, despite the fact
that these compounds and their derivatives are prevalent in important biologically-active
natural products'’ (18-22, Figure 1.1.2.1A). Additionally, cyclobutanes have been shown
to serve as highly valuable synthetic intermediates for a variety of transformations.'"® The
dearth of reports describing the asymmetric alkylation of cyclobutanones may be
attributed to the fact that these compounds possess an estimated 26-28.6 kcal/mol of
ring-strain'® and, in turn, exhibit enhanced carbonyl electrophilicity.® The propensity of
cyclobutanones to alleviate this strain via electrophilic ring opening is often a limiting
challenge during their manipulation. = Moreover, the energetic requirements for
enolization of cyclobutanones (23) are compounded by a concomitant increase in ring-
strain to 31-34 kcal/mol (calculated for cyclobutene 24, Figure 1.1.2.1B)" as well as

enforced deviation from the more favorable puckered conformation (25—26, Figure

1.1.2.1C).*" In the case of o-substituted cyclobutanones, enolization is further impeded
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by the development of torsional strain between the putative enolate substituents (26,

Figure 1.1.2.1C).*

Figure 1.1.2.1. (A) Representative cycbutanoid natural products; (B) ring, conformational and

torsional strain in cyclobutanone enolates
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me H o
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tl H (o]
vs H f F—o —
|j : R —‘\(
23 24 :
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increased conformational and

increased ring strain upon torsional strain

enolization

Given these data, it is not surprising that previous methods for the preparation of
enantioenriched cyclobutanes have relied primarily on either [2+2] cycloaddition
reactions™ or ring expansion from various cyclopropane derivatives.”* Recent reports
from Baudoin on annulating C—H activation® (Scheme 1.1.2.1A) as well as disclosures
from Toste*® (Scheme 1.1.2.1B) and Echavarren®’ (Scheme 1.1.2.1C) that employ gold(I)
catalysis to affect cyclopropanoid rearrangements have emerged as significant new
methods for the construction of cyclobutanes, and show the power of transition metals in

this regard. Organocatalytic approaches to cyclobutanone synthesis have also gained
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traction recently.”® Despite these advances, transformations that produce chiral
cyclobutanones remain limited in scope, and very few methods exist for the catalytic
construction of chiral cyclobutanones from achiral starting materials.”* In order to
address these limitations and to further develop the nucleophilic chemistry of these

unusually reactive compounds, we report herein the first direct transition metal-catalyzed

asymmetric o-alkylation of cyclobutanones to form all-carbon quaternary centers.

Scheme 1.1.2.1. Selected modern methods for the synthesis of cycbutanoids according to (A)

Baudoin, (B) Toste, and (C) Echavarren

A COzMe  pd,(dba),
[(+-Bu);PH]BF, __co,Me
K,CO,, dmf
Br
27 28
B R L4(AuCl), Rl
HO NaBARF o O
_ ——— N
1,2-DCE ﬁ/\ MeO P(xylyl),AuCl
MeO P(xylyl),AuCl
29 30 (xylyl)2
L4(AucCl),
R2
(] Ré L5 +Bu It-Bu
22— + PUS
R2— Ra\)\ﬂs W ]j_ﬂs ?—AuNCMe
31 R® R i-Pr
" s | O
i-Pr

1.2 PREPARATION OF CYCLOBUTANONE [B-KETOESTER SUBSTRATES AND
REACTION OPTIMIZATION
1.2.1 Cyclobutanone [3-ketoester substrate synthesis

A longstanding interest of our research group has been the transition metal-

catalyzed asymmetric o-functionalization of carbonyl compounds to form all-carbon
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° In the course of our studies, we have developed a series of

quaternary centers.’
phosphinooxazoline (PHOX) ligands with varied steric and electronic properties that
exhibit a range of reactivity and selectivity. We have found that the use of electron
deficient ligands (e.g. L6 and L7) often results in superior asymmetric induction in
certain cases where electron-rich or electron-neutral ligands perform poorly. *'
Examination of ligand electronic effects would, therefore, help to inform our
development of a method for the asymmetric allylic alkylation of cyclobutanones.

We first established a simple and efficient reaction sequence to access allyl 1-
alkyl-2-oxocyclobutanecarboxylate substrates (36) (Scheme 1). Diazotization of
commercially available 1,3-cyclopentane dione 34) with para-
acetamidobenzenesulfonyl azide (p-ABSA)* delivered the corresponding diazodiketone
(35) in consistently good yields. Microwave-promoted Wolff rearrangement of diketone
35 in the presence of an allylic alcohol™ (e.g., allyl alcohol, 37), followed by alkylation
with an alkyl halide (e.g., benzyl bromide) furnished the allyl 1-alkyl-2-
oxocyclobutanecarboxylates in good yields over two steps. With a quick and efficient

method to access the desired substrates at hand, we next examined reaction parameters to

identify optimal conditions for reactivity and enantioselectivity.
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Figure 1.2.1.1 Construction of allyl 1-benzyl-2-oxocyclobutane-carboxylate (36)

o)
o p-ABSA, N2 1) 37, u-wave, o Bn
\I\:>= Et,N \l\i>'= toluene, 180 °C, 1 h o0 F
o ——>» o ——————————>»
MeCN 2) BnBr, K,CO,
23°C,12h acetone ANE
34 35 50°C,12 h % |
(86% yield) (71% yield, 2 steps)

1.2.2 Optimization of cyclobutanone allylic alkylation

Our initial experiments revealed that treatment of allyl 1-benzyl-2-
oxocyclobutanecarboxylate (36) with catalytic Pd,(pmdba), in the presence of (S)-7-
BuPHOX (L1) in THF delivered the desired o-quaternary (S)-2-allyl-2-
benzylcyclobutanone (38)** in 90% yield, albeit in moderate enantioselectivity (Figure
1.2.2.1, Table 1.2.2.1, Entry 1). The use of electron-deficient ligands L6 or L7 resulted
in considerably improved enantioinduction (Table 1.2.2.1, Entries 2 and 5). Although the
reaction proceeds well in a number of solvents, toluene was identified as optimal for
inducing asymmetry. This solvent effect is likely due to an enhanced binding between
the enolate and the electrophilic sigma-allyl-Pd(II) center in the catalytic cycle, which
may reinforce a tight ion pair and lead to an inner-sphere mechanism.” Finally, at
temperatures just below ambient, the reaction was found to proceed at a reasonable rate

and with high enantioselectivity.
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Figure 1.2.2.1. General initial reaction parameters and select ligands

Bl Pd,(pmdba)s (5 mol%) o Bn
° 0 NF LX(128mol%) RN
solvent, temp (°C)
36 38

Table 1.2.2.1. Initial optimization of the palladium-catalyzed allylic alkylation reaction

Entry Ligand Solvent T[°C] ee [%]
1 L1 THF 25 58
2 L6 THF 25 75
3 L6 p-dioxane 25 84
4 L6 benzene 25 84
5 L7 toluene 25 84
6 L6 toluene 25 85

In order to fully explore the effects of solvent on the reactions selectivity, we
made use of the reaction automation system in the Caltech Center for Catalysis and
Chemical Synthesis. A Symyx systems robot was employed to expedite a panel of
experiments that varied solvent and temperature, while holding constant reaction
variables that were found be to optimal during preliminary screening (i.e., ligand L6 and

relatively non-polar solvent).”® These studies illustrated that while the reaction was most
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selective when carried out in relatively non-polar solvent, a number of different non-polar
solvents or solvent combinations could be employed without significant detriment to the
reaction selectivity (Figure 1.2.2.2). Finally, these studies revealed that, in most cases,
decreasing the temperature at which the reaction was carried out resulted in an increase in

selectivity.

Figure 1.2.2.2. Solvent and temperature optimization of the palladium catalyzed allylic alkylation

reaction
o
Bn Pd,(pmdba); (5 mol%) o Bn
o o AN L6 (12.5 mol%) > SN F
solvent, temp (°C)
36 38
ee (%)

Solvent

1.3 EXPLORATION OF THE REACTION SCOPE
1.3.1 Reaction scope with respect to enolate o-substitution
With these optimized conditions identified, we next explored the influence of

different o-substituents (R', Figure 1.3.1.1) on the efficacy of the allylic alkylation
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process. To aid in the isolation of these highly volatile products, we chose coupling
fragments of higher molecular weights, bearing substitution at both the o-position and
allyl fragment (i.e. 2-phenylallyl and 1-alkyl-2-oxocyclobutanecarboxylate). We were
pleased to find that o-alkyl substituents were well tolerated with enantiomeric excess up
to 99% (Figure 1.3.1.1, 40a—40b). o-Benzyl substituents were found to give the
respective o-quaternary cyclobutanones with uniformly excellent enantioselectivity
regardless of the electronic nature of the benzyl moiety (compounds 40c—40e). In
addition to alkyl- and benzyl- substituents, allyl-, TMS-protected propargyl and
heteroaryl substituted 2-carboxyallyl cyclobutanones proved to be eligible substrates in
the asymmetric allylic alkylation reaction providing cyclobutanones 40f—40h in high

yields and enantiomeric excess.
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Figure 1.3.1.1. Reaction scope with respect to a-quaternary substitution (R')
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1.3.2 Reaction scope with respect to allyl coupling partner substitution

Having surveyed the scope of the process with respect to various substituents at
the quaternary center, we were poised to investigate the influence of different allyl
substitution on the process (R?, Figure 1.3.2.1). In accord with previous studies on the
palladium-catalyzed asymmetric allylic alkylation, the catalytic system was found to be
relatively inactive when terminally-substituted or cyclic allyl fragments were employed."
As such, we limited our survey to carboxyallyl fragments bearing substituents at the 2-
allyl position. Gratifyingly, diverse substituents were well tolerated (Figure 1.3.2.1). All
o-quaternary cyclobutanones were obtained in moderate to high yield and with
outstanding enantiopurity. Particularly interesting are compounds 42a, 42¢, and 42d
featuring a butadiene, a vinyl chloro and a benzyl ether moiety, respectively. Each of

these diverse functional groups may potentially serve as handles for various
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derivatization reactions (e.g., cycloaddition, annulation or transition metal-catalyzed

cross-coupling).

Figure 1.3.2.1. Reaction scope with respect to allyl substitution (R?)
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89% ee 92% ee 94% ee

1.4 DERIVATIZATION OF REACTION PRODUCTS

Myriad studies have shown cyclobutanoids to be highly valuable synthetic
intermediates, allowing access to enantioenriched oxazepines, *’ piperidines, **
tetrahydropyrans,” o- and B-quaternary cyclopentanones,'” benzannulated polycycles® as

well as B-quaternary linear ketones.” Cyclobutanones may participate directly in a
variety of robust classical transformations, such as Baeyer-Villiger oxidation and
Beckmann rearrangement,'’ as well as transition metal-catalyzed ring expansion," ring
contraction*” and ring-opening processes.” To demonstrate the utility of our asymmetric
synthesis of cyclobutanones within this domain, we carried out a number of

transformations on the chiral cyclobutanones generated in this study. Ring expansion by
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Baeyer-Villiger oxidation, treatment with trimethylsilyldiazomethane and Beckmann
rearrangement all proceeded smoothly to deliver dialkyl y-lactone 44, o-quaternary
cyclopentanone 45 and dialkyl y-lactam 46, respectively. Additionally, ring-closing

metathesis of diallyl-substituted cyclobutanone 40f cleanly furnished quaternary [4.5]-

spirocycle 47.

Figure 1.4.1. Derivatization of a-quaternary cyclobutanones

ON-0 gy 56 H0 (55 it in H,0) . 0
., 1 M NaOH, MeOH, 23°C O . Grubbs-Hoveyda G2, PhH
0 - \'/ > /]
\A\ 80% yield L 97% yield Ph
dialkyl Ph 43 quaternary
y-lactones 44 47 spirocycles
(o]
fo) H
N Bn
"y, \\ TMSCHN,, BF 3°Et,0, Et,0 HONH,HCI, pyridine, EtOH o,
\A\ ™S HCI (ag.), DCM p-TsCl, Et;N, DMAP, DCM x
- - F)CGH
Ph 69% yield, two steps 22% yield, two steps (PF)CeH,
45 46
o-quaternary dialkyl
cyclopentanones v-lactams

In summary, we have developed the first transition metal-catalyzed
enantioselective o-alkylation of cyclobutanones. This method employs palladium
catalysis and an electron-deficient PHOX type ligand to afford o-quaternary
cyclobutanones in good to excellent yields and enantioselectivities. A wide variety of
substituents are tolerated at both the o-keto and 2-allyl positions. The mild nature of our
method is reflected in 1its compatibility with otherwise highly electrophilic
cyclobutanones. We have further demonstrated the utility of chiral cyclobutanones as

synthetic building blocks to access a variety of enantioenriched derivative compounds
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including dialkyl 7-lactams, dialkyl vy-lactones, o-quaternary cyclopentanones and
quaternary [4.5]-spirocycles. We believe that this novel synthetic method will enable the
expeditious synthesis of complex bioactive natural products and pharmaceutical
components by providing unique access to previously unknown and inaccessible
enantioenriched o-quaternary cyclobutanones. Efforts toward this end are currently

underway in our laboratory.

1.6 EXPERIMENTAL SECTION
1.6.1 Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under
an inert atmosphere of argon or nitrogen using dry, deoxygenated solvents. Reaction
progress was monitored by thin-layer chromatography (TLC). THF, Et,0, CH,Cl,,
toluene, benzene, CH;CN, and dioxane were dried by passage through an activated
alumina column under argon. Triethylamine was distilled over CaH, prior to use. Brine
solutions are saturated aqueous solutions of sodium chloride. 1,3-Cyclopentanedione was
purchased from AK Scientific, Inc., reagent grade acetone was purchased from Aldrich
and distilled from anhydrous Ca,SO, and stored over molecular sieves (3 A) under an
atmosphere of argon. para-Acetamidobenzenesulfonyl azide (p-ABSA) was prepared

44

following a procedure by Davies et al. 2-Phenylprop-2-en-1-ol, 2-(4-
methoxyphenyl)prop-2-en-1-ol and 2-(3-fluorophenyl)prop-2-en-1-ol were prepared
according to the method by Gouverneur and Brown.” 2-Diazocyclopentane-1,3-dione

was prepared through diazotization of 1,3-cyclopentanedione with p-ABSA following a

procedure by Coquerel and Rodriguez.* Phosphinooxazoline (PHOX) ligands were
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prepared by methods described in our previous work.” ¥ Tris(4,4’-
methoxydibenzylideneacetone)dipalladium(0) (Pd,(pmdba);) was prepared according to
the method of Ibers® or Fairlamb.” All other reagents were purchased from Sigma-
Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise
stated. Reaction temperatures were controlled by an IKAmag temperature modulator
unless otherwise indicated. Stirring was accomplished with Teflon® coated magnetic stir
bars. Microwave-assisted reactions were performed in a Biotage Initiator 2.5 microwave
reactor. Glove box manipulations were performed under a N, atmosphere. TLC was
performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and
visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO, staining. Silicycle
SiliaFlash P60 Academic Silica gel (particle size 0.040-0.063 mm) was used for flash
column chromatography. '"H NMR spectra were recorded on a Varian Inova 500 MHz
spectrometer and are reported relative to residual CHC, (8 7.26 ppm), C¢H, (8 7.16 ppm),
or CH,Cl, (8 5.32 ppm). C NMR spectra were recorded on a Varian Inova 500 MHz
(126 MHz) or Varian Mercury 300 MHz (75 MHz) spectrometer and are reported relative
to CHCL, (8 77.16 ppm) or C,H (6128.06 ppm). Data for 'H NMR are reported as
follows: chemical shift (8§ ppm) (multiplicity, coupling constant (Hz), integration).
Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p =
pentet, h = heptet, m = multiplet, br s = broad singlet, br d = broad doublet, app =
apparent. Data for °C are reported in terms of chemical shifts (5 ppm). IR spectra were
obtained using a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on
NaCl plates and reported in frequency of absorption (cm™). Optical rotations were

measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm)
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using a 100 mm path-length cell and are reported as: [0]," (concentration in g/100 mL,
solvent, ee). Analytical UHPLC-LCMS was performed with an Agilent 1290 Infinity
Series UHPLC/Agilent 6140 Quadrupole LCMS utilizing an Agilent Eclipse Plus C18
RRHD 1.8 um column (2.1 x 50 mm), part number 959757-902. High-resolution mass
spectra (HRMS) were obtained from the Caltech Mass Spectral Facility (EI+ or FAB+) or
on an Agilent 6200 Series TOF with an Agilent G1978 A Multimode source in
electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed

(MM: ESI-APCI) ionization mode.

1.6.2  Representative  procedure  for  the  preparation of  2-

oxocyclobutanecarboxylates

HO
N, o)

47,1 e;:lliv) o) P

oﬁé;o p-waves, toluene o \(

180°C,1h Ph

35 48

2-Phenylallyl 2-oxocyclobutanecarboxylate. To a 20 mL microwave vial charged with
a magnetic stir bar were added 2-diazocyclopentane-1,3-dione (35, 500 mg, 4.03 mmol),
toluene (13.5 mL) and 2-phenylprop-2-en-1-ol (47, 540 mg, 4.03 mmol). The vial was
sealed with a microwave crimp cap and heated to 180 °C for one hour using a Biotage
Initiator microwave reactor (sensitivity set to low; reaction mixture heated gradually over
first 2 min by increasing the temperature in 20 °C increments). After 30 min of stirring,
the mixture was cooled to ambient temperature and the pressure was released by puncture

of the crimp cap with a needle. The reaction vessel was then subsequently irradiated at

180 °C for an additional 30 min. The vessel was then cooled to ambient temperature, the
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vial uncapped and mixture directly loaded onto a silica gel column followed by elution
with hexanes to 20% EtOAc in hexanes to afford of 48 (635 mg, 68% yield) as a
colorless oil. R, = 0.2 (20% EtOAc in hexanes); 'H NMR (300 MHz, CDCl,) § 7.44-7.30
(m, 5H), 5.57-5.55 (m, 1H), 5.40-5.39 (m, 1H), 5.06-5.05 (m, 2H), 4.26—4.20 (m, 1H),
3.20-3.15 (m, 2H), 2.48-2.34 (m, 1H), 2.29-2.16 (m, 1H); "C NMR (75 MHz, CDCl,) &
1995, 166.5, 1420, 137.8, 128.5, 128.1, 126.0, 1154, 66.5, 64.5, 47.1, 13.6; IR (Neat
Film, NaCl) 3448, 3084, 3057, 3024, 2970, 1956, 1790, 1732, 1633, 1600, 1574, 1497,
1445, 1387, 1310, 1177, 1046, 915, 780 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for

C,,H,.0, [M+H]": 231.1016; found 231.1018.

With the exception of compound 48, all 2-carboxyallylcyclobutanone derivatives were
directly used in the following steps without rigorous characterization due to their

instability.

1.6.3  Representative  procedure  for  the alkylation of  2-H-2-

oxocyclobutanecarboxylates

o] o]
o Etl (excess) o E
-
o /\( K,CO;, acetone o /\(
Ph reflux, 24 h Ph
48

39a
2-Phenylallyl 1-ethyl-2-oxocyclobutanecarboxylate (39a). To a solution of 48 (233
mg, 1.01 mmol) in acetone (14 mL) were added K,CO; (224 mg, 1.62 mmol) and freshly
distilled EtI (787 mg, 5.05 mmol). The mixture was heated to reflux until full

consumption of the starting material was indicated by TLC analysis (alkylation reaction
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times typically ranged from 12 to 24 hours). Upon completion, the mixture was cooled to
25 °C, the solids were removed by filtration through filter paper and the mixture was
concentrated in vacuo. The crude material was purified by flash column chromatography
(S10,, hexanes to 10% EtOAc in hexanes to 20% EtOAc in hexanes) to provide 39a (105
mg, 40% yield) as a colorless oil. R,=0.3 (20% EtOAc in hexanes); '"H NMR (300 MHz,
CDCl,) & 7.42-7.28 (m, 5H), 5.55 (s, 1H), 5.38 (s, 1H), 5.06 (dd, J = 9.0, 1.0 Hz, 2H),
2.56-2.17 (m, 3H), 1.88-1.63 (m, 3H), 0.69 (t, J = 7.5 Hz, 3H); "C NMR (75 MHz,
CDCl,) 8 2094, 171.5, 142.2, 137.8, 128.5, 128.1, 126.1, 116.5, 66.5, 63.7, 35.5, 30 4,
27.1, 8.6; IR (Neat Film, NaCl) 3084, 2972, 2880, 1738, 1709, 1460, 1444, 1231, 1207,

1138 cm™'; HRMS (EI+) m/z calc'd for C,H,,0, [M+H]": 259.1334; found 259.1326.

1.6.4 Spectroscopic data for novel cyclobutanone B-ketoester substrates

2-Phenylallyl 1-methyl-2-oxocyclobutanecarboxylate (39b)

o Me0
ﬁ)ko/\?
Ph
39b
Compound 39b was isolated by flash column chromatography (SiO,, hexanes to 10%
EtOAc in hexanes) as a colorless oil. 32% yield. R, = 0.5 (20% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl;) 8 7.40-7.29 (m, 5H), 5.54-553 (m, 1H), 5.35-5.34 (m, 1H),
506 (dq, J =11.2, 1.0 Hz, 1H), 3.20 (ddd, J = 18.3, 11.3, 7.6 Hz, 1H), 3.10 (ddd, J =
183,99, 6.3 Hz, 1H), 253 (td, J = 11.3, 6.3 Hz, 1H), 1.84 (ddd, J =11.5,9.9, 7.6 Hz,

1H), 1.45 (s, 3H); "C NMR (126 MHz, CDCl,) § 204.3, 1700, 142.3, 137.9, 128.5,

128.1,126.0,115.2,69.4,66.5,45.3,23.1, 18.4; IR (Neat Film, NaCl) 2970, 2930, 1788,
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1729, 1452, 1274, 1145, 1049 cm™'; HRMS (EI+) m/z calc'd for C,sH,;O; [M]*: 244.1100;

found 244.1103.

2-Phenylallyl 1-benzyl-2-oxocyclobutanecarboxylate (39¢)

(o]
o Bn
t')\o/\(
Ph
39¢c

Compound 39¢ was isolated by flash column chromatography (SiO,, hexanes to 10%
EtOAc in hexanes) as a colorless oil. 37% yield. R, = 0.4 (10% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl;) 87.33=7.14 (m, 8H), 7.04-7.02 (m, 2H), 5.47 (s, 1H), 5.28-
5.27 (m, 1H), 5.01-4.95 (m, 2H), 3.12, 3.10 (AB system, J,z = 14.2 Hz, 2H), 2.95 (ddd, J
= 18.3, 11.1, 7.3 Hz, 1H), 2.62 (ddd, J = 18.3, 10.3, 6.3 Hz, 1H), 2.39 (ddd, J = 11.9,
11.1, 6.3 Hz, 1H), 1.93 (ddd, J = 11.9, 10.3, 7.3 Hz, 1H); "C NMR (126 MHz, CDCl,) &
203.7,168.7,142.1,137.8,135.9,129.7, 128 .51, 128.49, 128.1, 126 .9, 126.0, 115.5,75.0,
66.7,45.2,379, 19.2; IR (Neat Film, NaCl) 3029, 2924, 1788, 1725, 1496, 1270, 1191,
1046 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,,H,,NaO, [2M+Na]": 663.2717;

found 663.2692.
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2-Phenylallyl 1-(4-fluorobenzyl)-2-oxocyclobutanecarboxylate (39d)

F
0
o
) /\]7
Ph
39d

Compound 39d was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes to 6% EtOAc in hexanes) as a colorless oil. 22% yield. R, = 0.4 (20% EtOAc in
hexanes); 'H NMR (500 MHz, CDCl;) §7.40-7.29 (m, 5H), 7.08-7.04 (m, 2H), 6.95—
691 (m, 2H), 5.54 (s, 1H), 5.34 (d,J = 0.9 Hz, 1H), 5.05 (s, 2H), 3.18, 3.16 (AB system,
Jag = 143 Hz, 2H),3.05 (ddd, J = 18.4,11.2,7.4 Hz, 1H),2.73 (ddd, J = 18.4,10.2,6.2
Hz, 1H), 2.46 (ddd, J =118, 11.2, 6.2 Hz, 1H), 1.97 (ddd, J = 11.8, 10.2, 7.4 Hz, 1H);
"C NMR (126 MHz, CDCl;) § 203.4, 168.6, 161.9 (d, 'Jo = 245.6 Hz), 142.1, 137.8,
131.6 (d,*Jor = 3.7 Hz), 131.2 (d, *J = 8.0 Hz), 128.5, 128.1, 126.0, 115.7, 115.3 (d, *J ¢
=212 Hz),75.0, 66.8,45.2, 370, 19.3; IR (Neat Film, NaCl) 3052, 2968, 2928, 1784,
1717, 1506, 1219, 1186, 1042, 912 cm™; HRMS (MM: ESI-APCI) m/z calc'd for

C,,H,,°FO, [M+H]": 339.1391; found 339.1387.
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2-Phenylallyl 1-(4-methoxybenzyl)-2-oxocyclobutanecarboxylate (39e)

oMe
N
o
Ph
39e
To a solution of Nal (1.88 g, 12.54 mmol) in acetone (20 mL) was added 4-
methoxybenzyl chloride (1.55 mL, 11.38 mmol). The mixture was stirred at 25 °C for 2
hours before K,CO, (504 mg, 3.65 mmol) and 48 (524 mg, 2.28 mmol) were added. The
resulting mixture was heated to reflux for 16 hours until full conversion of the starting
material was indicated by TLC analysis. The mixture was cooled to room temperature,
the solids removed by filtration and concentrated in vacuo. The crude material was
purified by flash column chromatography (SiO,, hexanes to 10% EtOAc in hexanes to
20% EtOAc in hexanes) to provide 39e (506 mg, 63% yield) as a colorless oil. R, = 0.5
(20% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) & 7.41-7.39 (m, 2H), 7.36-7.29
(m, 3H), 7.04-7.01 (m, 2H), 6.80-6.77 (m, 2H), 5.54 (s, 1H), 5.36-5.35 (m, 1H), 5.08—
5.02 (m, 2H), 3.77 (s, 3H), 3.13 (s, 2H), 3.00 (ddd, J = 18.3, 11.1, 7.2 Hz, 1H), 2.68 (ddd,
J=183,10.3,64 Hz, 1H), 2.45 (ddd, J = 11.8, 11.1, 6.4 Hz, 1H), 2.00 (ddd, J = 11.8,
10.3, 7.2 Hz, 1H); “C NMR (126 MHz, CDCl;) §203.9, 168.8, 158.5, 142.1, 137.8,
130.7, 128.5, 128.1, 127.8, 126.0, 115.5, 1139, 75.2, 66.7, 55.2, 45.0, 37.1, 19.1; IR

(Neat Film, NaCl) 2957, 2933, 2836, 1788, 1725, 1513, 1248, 1179, 1037 cm™'; HRMS

(FAB+) m/z calc'd for C,,H,,0, [M+H]": 351.1596; found 351.1601.
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2-Phenylallyl 1-allyl-2-oxocyclobutanecarboxylate (39f)

éi
o
o™

Ph

39f

Compound 39f was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes to 4% EtOAc in hexanes) as a colorless oil. 68% yield. R,=0.2 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) 6 7.49-7.27 (m, 5H), 5.64 (ddt, J=17.5,9.7,7.1
Hz, 1H), 5.56 (q, /= 0.8 Hz, 1H), 5.38 (q, /= 1.2 Hz, 1H), 5.12-5.08 (m, 2H), 5.07 (dd,
J=14,0.7Hz,2H),3.14 (ddd,J=184,11.0,7.4 Hz, 1H),3.02 (ddd,J=18.4,10.1,6 .4
Hz, 1H), 2.70 (ddt, J = 14.3, 7.1, 1.2 Hz, 1H), 2.59-2.44 (m, 2H), 1.99 (ddd, J = 11.9,
10.1, 7.4 Hz, 1H); "C NMR (126 MHz, CDCl;) & 203.4, 168.6, 142.3, 137.9, 131.9,
128.5, 128.1, 126.1, 119.2, 115.5, 73.6, 66.6, 45.0, 36.7, 19.5; IR (Neat Film, NaCl)

3072, 2967, 1786, 1725, 1638, 1497, 1440, 1387, 1193, 1142, 1043, 919, 779 cm™;

HRMS (MM: ESI-APCI) m/z calc'd for C,;H,,O; [M+H]": 271.1329; found 271.1330.

2-Phenylallyl 2-oxo0-1-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclobutanecarboxylate (39g)

399
Compound 39g was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes to 7% EtOAc in hexanes) as a colorless oil. 63% yield. R,=0.3 (10% EtOAc in

hexanes); 'H NMR (500 MHz, CDCL,) § 7.42-7.27 (m, 5H), 5.54 (q, J = 0.7 Hz, 1H),
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535 (td,J = 1.3,0.7 Hz, 1H), 5.10-4.98 (m, 2H), 3.18 (ddd, J = 18.4, 11.0, 7.4 Hz, 1H),
3.06 (ddd, J = 18.4, 104, 6.5 Hz, 1H), 2.82 (d, J = 17.3 Hz, 1H), 2.69 (d, J = 17.3 Hz,
1H), 2.48 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.27 (ddd, J = 11.8, 10.4, 7.4 Hz, 1H), 0.13
(s, 9H); C NMR (126 MHz, CDCL,) § 201.9, 168.1, 142.1, 137.8, 128.5, 128.1, 126.0,
1154, 100.9, 87.9, 72.1, 66.8, 463, 22.8, 19.7, -0.1; IR (Neat Film, NaCl) 3058, 2959,
2177, 1949, 1794, 1732, 1634, 1575, 1496, 1444, 1422, 1315, 1250, 1194, 1161, 1116,
1028, 906, 843, 778, 760, 708 cm™'; HRMS (APCI) m/z calc'd for C,H,s0,Si [M+H]":

341.1567; found 341.1582.

2-Phenylallyl 1-(benzofuran-2-ylmethyl)-2-oxocyclobutanecarboxylate (39h)

)
e~
0
o
) ’\(
Ph
39h

Compound 39h was isolated by flash column chromatography (SiO,, 5% EtOAc in
hexanes to 10% EtOAc in hexanes) as a colorless oil. 27% yield. R, = 0.6 (20% EtOAc in
hexanes); 'H NMR (500 MHz, CDCl,) §7.48-746 (m, 1H), 7.40-7.38 (m, 3H),
7.33-7.29 (m, 3H), 7.25-7.18 (m, 2H), 6.37 (d, /= 0.8 Hz, 1H), 5.55 (m, 1H), 5.37 (m,
1H), 5.09 (s, 2H), 343 (d,J = 15.6 Hz, 1H), 3.28 (dd, J = 15.6,0.8 Hz, 1H), 3.18 (ddd, J
=184, 11.2,7.6 Hz, 1H), 2.97 (ddd, J = 184, 10.2, 6.1 Hz, 1H), 2.58 (ddd, J = 11.9,
11.2,6.1 Hz, 1H), 2.11 (ddd, J = 11.9, 10.2, 7.6 Hz, 1H); "C NMR (126 MHz, CDCl,) &
202.2,168.1, 154.8, 153.6, 142.1, 137.7, 128.5, 128 4, 128.1, 126.0, 123.8, 122.7, 120.6,

115.7,1109, 104.9,73.1,67.0,45.8,30.9, 19.9; IR (Neat Film, NaCl) 3582, 3056, 3033,
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2963, 2928, 1790, 1726, 1601, 1586, 1455, 1253, 1193, 1045 cm™'; HRMS (MM: ESI-

APCI) m/z calc'd for C,;H,,0, [M+H]": 361.1434; found 361.1427.

2-Methylenebut-3-en-1-yl 1-benzyl-2-oxocyclobutanecarboxylate (41a)

o
o
/\<
41a
Compound 41a was isolated by flash column chromatography (SiO,, 1% EtOAc in
hexanes to 8% EtOAc in hexanes) as a colorless oil. 51% yield. R, = 0.4 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) § 7.33-7.20 (m, 3H), 7.19-7.05 (m, 2H), 6.36
(ddd, J =179, 11.1, 0.8 Hz, 1H), 5.28-5.09 (m, 4H), 4.89-4.78 (m, 2H), 3.24 (dd, J =
18.6, 14.2 Hz, 2H), 3.14 (ddd, J = 18.3, 11.0, 7.2 Hz, 1H), 2.75 (ddd, J = 18.3, 10.3, 6.4
Hz, 1H), 2.58 (ddd, J = 11.8, 11.0, 6.4 Hz, 1H), 2.06 (ddd, J = 11.8, 10.3, 7.2 Hz, 1H);
B3C NMR (126 MHz, CDCL,) & 203.7, 168.7, 140.0, 136.0, 135.9, 129.7, 128.5, 127.0,
118.4, 114.8, 75.1, 64.6, 45.2, 38.0, 19.2; IR (Neat Film, NaCl) 3987, 3027, 2929, 1789,

1725, 1598, 1495, 1454, 1393, 1266, 1192, 1044, 909, 743 cm'; HRMS (MM: ESI-

APCI) m/z calc'd for C,,H,,0, [M+H]": 271.1329; found 271.1330.
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2-Methylallyl 1-benzyl-2-oxocyclobutanecarboxylate (41b)

o B0l
41b

Compound 41b was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes) as a colorless oil. 44% yield. R, = 0.4 (10% EtOAc in hexanes); 'H NMR (500
MHz, CDCl,) é 7.32-7.24 (m, 3H), 7.19-7.17 (m, 2H), 4.97 (d, J = 15.1 Hz, 2H), 4.60,
4.56 (AB system, J,; = 13.1 Hz, 2H), 3.28, 3.26 (AB system, J,; = 14.2 Hz, 2H), 3.16
(ddd,J=183,11.0,7.2 Hz, 1H), 2.77 (ddd, J = 18.3, 104, 6.5 Hz, 1H), 2.61 (ddd, J =
11.8,11.0,6.5 Hz, 1H), 2.09 (ddd, J =11.8, 104, 7.2 Hz, 1H) 1.70 (d, /= 0.5 Hz, 3H);
"C NMR (126 MHz, CDCl,) & 203.9, 168.7, 139.3, 134.0, 129.7, 128.5, 127.0, 113 4,
75.1, 68.7,45.2,38.0, 194, 19.2; IR (Neat Film, NaCl) 3030, 2974, 2925, 1790, 1727,

1454, 1271, 1193, 1047, 907 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,H,,0,

[M+H]* 259.1329; found 259.1340.

2-Chloroallyl 1-benzyl-2-oxocyclobutanecarboxylate (41c)

) Bno
ﬁ)ko/\(
Cl
41c
Compound 41c¢ was isolated by flash column chromatography (SiO,, 2% EtOAc in
hexanes to 5% EtOAc in hexanes) as a colorless oil. 63% yield. R, = 0.3 (10% EtOAc in

hexanes); 'H NMR (300 MHz, CDCl,) $7.33-7.24 (m, 3H), 7.18-7.16 (m, 2H),

544-5.40 (m, 2H), 4.71 (m, 2H), 3.26 (s, 2H), 3.17 (ddd, J = 18.3, 11.0, 7.2 Hz, 1H),
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2.77(ddd,J=18.3,10.3,6.5 Hz, 1H), 2.61 (ddd,J=11.8,11.0,6.5 Hz, 1H),2.01 (ddd, J
= 11.8, 10.3, 7.2 Hz, 1H); "C NMR (126 MHz, CDCl,) 5 2034, 168.2, 135.7, 135.2,
129.7,128.6,127.1,115.3,74.9,66.7,45.3, 38.0, 19.2; IR (Neat Film, NaCl) 3578, 2918,
1792, 1734, 1637, 1439, 1268, 1191, 1045 cm™'; HRMS (ESI) m/z calc'd for C,sH,sCl1O,

[M]*: 278.0710; found 278.0714.

Allyl 1-benzyl-2-oxocyclobutanecarboxylate (36)

o Bn0 P
ti)J\o/\/

36
Compound 36 was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes to 6% EtOAc in hexanes) as a colorless oil. 87% yield. R, = 0.3 (10% EtOAc in
hexanes); 'H NMR (500 MHz, CDCl,) 87.30-7.27 (m, 2H), 7.25-7.22 (m, 1H),
7.17-7.14 (m, 2H), 5.88 (ddt,J =17.2,10.5,5.7 Hz, 1H), 5.31 (dq,J = 17.2, 1.4 Hz, 1H),
524 (dq,J=105,14Hz, 1H),4.64 (dq,J=5.7,1.4 Hz, 2H), 3.26,3.22 (AB system, J,,
=142 Hz, 2H), 3.14 (ddd, J = 18.3,11.0,7.2 Hz, 1H), 2.75 (ddd, J = 18.3, 10.3, 6.5 Hz,
1H), 2.59 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.07 (ddd, J = 11.8, 10.3, 7.2 Hz, 1H); °C
NMR (126 MHz, CDCl,) §203.9, 168.6, 136.0, 131.5, 129.7, 128.5, 127.0, 118.7, 75.1,
66.1,45.1, 38.1, 19.3; IR (Neat Film, NaCl) 2916, 2848, 1781, 1715, 1438, 1181, 1040
cm™'; HRMS (MM: ESI-APCI) m/z calc'd for CH,,0, [M+H]": 245.1172; found

245.1178.
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4-(Benzyloxy)-2-methylenebutyl 1-benzyl-2-oxocyclobutanecarboxylate (41d)

o
o Bn
o/\i
OBn
41d

Compound 41d was isolated by flash column chromatography (SiO,, 1% EtOAc in
Hexanes to 3% EtOAc in hexanes) as a colorless oil. 51% yield. R,=0.5 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) 6 7.47-7.12 (m, 10H), 5.11 (q, J = 1.0 Hz, 1H),
504 (h,J=1.1 Hz, 1H),4.67,4.61 (AB system, J,; = 13.3 Hz, 2H), 4.53 (s, 2H), 3.60 (t,
J=6.6,2H),3.26 (s,2H), 3.14 (ddd, J=18.2,11.0,7.2 Hz, 1H), 2.76 (ddd, J=18.3, 10.3,
6.4 Hz, 1H), 2.60 (ddd, J = 11.8, 11.0, 6.5 Hz, 1H), 2.42-2.33 (m, 2H), 2.08 (ddd, J =
11.8, 10.3, 7.2 Hz, 1H); "“C NMR (126 MHz, CDCl,) 6 203.9, 168.7, 140.7, 138.2,
136.0, 129.7, 128.6, 1284, 127.7, 127.6, 127.0, 114.4,75.1, 73.0, 68.5, 68.0, 45.2, 38.1,
33.5,19.3; IR (Neat Film, NaCl) 3029, 2920, 2849, 1784, 1717, 1495, 1451, 1360, 1268,
1187, 1095, 904, 732 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,,H,,0, [M+H]":

379.1904; found 379.1926.

2-(3-Methoxyphenyl)allyl 1-benzyl-2-oxocyclobutanecarboxylate (41e)

o
0 Bn
0/5\
OMe
41e

Compound 41e was isolated by flash column chromatography (SiO,, 3% EtOAc in

Hexanes to 7% EtOAc in Hexanes) as a colorless oil. 79% yield. R;=0.35 (10% EtOAc
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in hexanes); '"H NMR (500 MHz, CDCl,) 6 7.41-7.16 (m, 4H), 7.16-7.09 (m, 2H), 7.05—
6.90 (m, 2H), 6.91-6.82 (m, 1H), 5.60-5.53 (m, 1H), 537 (q, /= 1.2 Hz, 1H), 5.12-5.01
(m, 2H), 3.84 (s, 3H), 3.24, 3.21 (AB system, J,z = 14.13 Hz, 2H), 3.06 (ddd, J = 18.3,
11.1, 7.3 Hz, 1H), 2.72 (ddd, J = 18.3, 10.2, 6.3 Hz, 1H), 2.51 (ddd, /=119, 11.1, 6.3
Hz, 1H), 2.04 (ddd, J = 11.8, 10.2, 7.3 Hz, 1H); "C NMR (126 MHz, CDCL,) 6 203.7,
168.7,159.7,142.1, 139.4, 136 0, 129.7, 129.5, 128.5, 126 9, 118.5, 115.8, 113.6, 111.8,
75.1, 66.8, 553,452,379, 19.2; IR (Neat Film, NaCl) 2957, 2833, 1786, 1720, 1575,
1494, 1453, 1387, 1221, 1180, 1039, 783 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for

C,,H,;0, [M+H]": 351.1591; found 351.1582.

2-(4-Fluorophenyl)allyl 1-benzyl-2-oxocyclobutanecarboxylate (41f)

(o}
o Bn
ﬁ*og

F

41f
Compound 41f was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes to 6% EtOAc in hexanes) as a colorless oil. 93% yield. R,=0.3 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) 8§ 7.40-7.36 (m, 2H), 7.30-7.23 (m, 3H), 7.14—
7.11 (m, 2H), 7.07-7.02 (m, 2H), 5.51 (s, 1H), 5.36 (s, 1H), 5.07-5.01 (m, 2H), 3.23,
3.20 (AB system, J,; = 14.2 Hz, 2H), 3.06 (ddd, J = 18.3,11.0, 7.3 Hz, 1H), 2.74 (ddd, J
=183, 10.3, 6.4 Hz, 1H), 2.51 (ddd, J = 119, 11.0, 6.4 Hz, 1H), 2.05 (ddd, J = 11.9,

10.3, 7.3 Hz, 1H); "C NMR (126 MHz, CDCl,) & 203.5, 168.6, 162.7 (d, 'Jo = 247.5

Hz), 141.1,135.9, 133.9 (d, *Jox = 3.9 Hz), 129.6, 128.5, 127.7 (d, *J = 8.6 Hz), 126.9,
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115.7,1154 (d, *Jo = 21.4 Hz), 75.0, 66.7,45.1,37.8, 19.2; IR (Neat Film, NaCl) 3060,
3029, 2967, 2928, 1790, 1728, 1634, 1602, 1511, 1454, 1386, 1233, 1193, 1162, 1047,
917, 840, 744 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,H,,°FO, [M+H]":

339.1391; found 339.1397.

1.6.5 Representative procedure for the asymmetric decarboxylative allylic

alkylation of 2-oxocyclobutanecarboxylates

(S)-2-Ethyl-2-(2-phenylallyl)cyclobutanone (40a)

o E a Pd,(pmdbal)s (5 mol%) o E
o .
ﬁ)l\o /\( (S)-L2 (12.5 mol%) - \\1 !\ \]/
Ph toluene, 20 °C

Ph
39a 40a

To a 20 mL scintillation vial with a stir bar were added Pd,(pmdba); (16.4 mg, 0.015
mmol), L6 (21.9 mg, 0.037 mmol) and toluene (9 mL) in a nitrogen—filled glove box. The

dark purple mixture was stirred at ambient glove box temperature (ca. 30 °C) for 35 min
at which point the mixture had become red-orange. 2-Carboxyallylcyclobutanone 39a
(80.0 mg, 0.31 mmol) was then added. The resulting yellow-greenish reaction mixture
was stirred at 20 °C until full conversion of the starting material was indicated by TLC
analysis (reaction times typically ranged from 18 to 36 hours). The vial was removed
from the glove box, uncapped and directly purified by flash column chromatography
(Si0O,, pentane to 15% Et,0O in pentane) afforded 40a (41 mg, 62% yield) as colorless oil.
R;=0.3 (15% Et,0 in pentane); 'H NMR (300 MHz, CDCl,) § 7.46-7.25 (m, 5H), 5.55

(d, J= 0.9 Hz, 1H), 5.38 (d, J= 1.1 Hz, 1H), 5.16-4.92 (m, 2H), 2.51 (ddd, J = 14.7,
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10.5, 2.0 Hz, 1H), 2.42-2.30 (m, 1H), 2.29-2.14 (m, 1H), 1.93-1.77 (m, 2H), 1.73-1.59
(m, 1H), 0.69 (t, J = 7.4 Hz, 3H); °C NMR (75 MHz, CDCl,) §215.1, 1452, 1419,
1283, 127.6, 126.5, 116.5, 63.8, 42.8, 40.6, 23.5, 21.6, 8.4; IR (Neat Film, NaCl) 3078,
2966, 1699, 1464, 1443, 905 cm™'; HRMS (FAB+) m/z calc'd for C,sH,,0 [(M+H)-H,]":

213.1279; found 213.1274; [a],*” +8.50 (¢ 1.00, CHCI,, 99% ee).

1.6.6 Spectroscopic data for novel a-quaternary cyclobutanone products

(S)-2-Methyl-2-(2-phenylallyl)cyclobutanone (40b)

o Me
Ph
40b

Cyclobutanone 40b was isolated by flash column chromatography (SiO,, 10% Et,O in
pentane) as a colorless oil. 92% yield. R, = 0.3 (10% Et,0O in pentane); '"H NMR (500
MHz, CDCly) & 7.31-7.19 (m, 5H), 525 (d, J = 1.5 Hz, 1H), 5.04-5.03 (m, 1H),
293-2.66 (m, 3 H), 2.56 (d, J = 14.1 Hz, 1H), 1.82 (ddd, J = 114, 10.5, 6.9 Hz, 1H),
1.47 (ddd,J=11.4,10.2,6.6 Hz, 1H), 1.09 (s, 3H); "C NMR (126 MHz, CDCl,) 5 215.1,
145.2, 1419, 128.3, 127.6, 126.5, 116.5, 63.8, 42.8, 40.6, 23.5, 21.6; IR (Neat Film,
NaCl) 2080, 2865, 1774, 1443, 1059 cm™'; HRMS (FAB+) m/z calc'd for C H,;0

[M+H]": 201.1279; found 201.1286; [o],**" —83.9 (¢ 1.00, CHCl,, 90% ee).
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(R)-2-Benzyl-2-(2-phenylallyl)cyclobutanone (40c)

Ph
0 o

Ph
40c
Cyclobutanone 40c¢ was isolated by flash column chromatography (SiO,, 5% Et,O in
petroleum ether) as a colorless oil. 81% yield. R, = 0.6 (10% EtOAc in hexanes); 'H
NMR (500 MHz, CDCly) § 7.36-7.26 (m, 8H), 7.13=7.11 (m, 2H), 5.37 (d, J = 1.4 Hz,
1H), 5.15-5.14 (m, 1H), 2.94 (t,J = 149 Hz, 2H), 2.72 (t, J = 14.2 Hz, 2H), 2.61 (ddd, J
=18.1,9.6,72 Hz, 1H ), 2.32 (ddd, J = 18.1, 10.0, 7.5 Hz, 1H), 1.86—1.77 (m, 2H); "“C
NMR (126 MHz, CDCl,) §214, 145.0, 141.8, 137.3, 130.0, 128.4, 128.3, 127.7, 126.5,
126.4,116.9, 68.8,43.7,41.2,39.9,20.0; IR (Neat Film, NaCl) 3028, 2918, 1770, 1494,
1453, 1074, 905 cm™'; HRMS (EI+) m/z calc'd for C,H,, O [M+H]*: 277.1587; found

277.1587; [o],*” =291 (¢ 1.14, CHCI,, 95% ee).

(R)-2-(4-Fluorobenzyl)-2-(2-phenylallyl)cyclobutanone (40d)

E
oﬂg
Ph

Cyclobutanone 40d was isolated by flash column chromatography (SiO,, hexanes to 3%
Et,0 in hexanes) as a colorless oil. 71% yield. R, = 0.3 (25% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl;) §7.36=7.26 (m, 5SH), 7.09-7.05 (m, 2H), 6.97-6.93 (m, 2H),
537(d,J=14Hz, 1H),5.14 (d,J =09 Hz, 1H), 2.93-2.89 (m, 2H), 2.74-2.67 (m, 2H),

2.33 (ddd,J=18.1,10.7,6.9 Hz, 1H), 2.62 (ddd, J = 18.1, 104, 6.5 Hz, 1H), 1.83 (ddd, J
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=11.7,104,69 Hz, 1H), 1.75 (ddd, J = 11.7, 10.7, 6.5 Hz, 1H); “C NMR (126 MHz,
CDCl,) 6 214.7,161.7 (d, 'Jo = 244 .8 Hz), 1449, 141.8, 1329 (d, *J+ = 3.8 Hz), 131.5
(d,’Jes = 8.3 Hz), 128.8,127.2,126.4, 1170, 115.1 (d, °J = 21.1 Hz), 68.7,43.7, 40.2,
39.9, 19.9; IR (Neat Film, NaCl) 3047, 2918, 2848, 1772, 1599, 1508, 1221, 1158, 1060
836 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,H,,'"FO [M+H]": 294.1420; found

294.1408; [0, 9.9 (¢ 0.59, CHCl;, 94% ee).

(R)-2-(4-Methoxybenzyl)-2-(2-phenylallyl)cyclobutanone (40e)

OMe
Ph

40e
Cyclobutanone 40e was isolated by flash column chromatography (SiO,, 10% EtOAc in
hexanes) as a colorless oil. 83% yield. R;= 0.3 (10% EtOAc in hexanes); '"H NMR (300
MHz, CDCl,) 67.37-7.26 (m, 5SH), 7.06-7.01 (m, 2H), 6.83-6.78 (m, 2H), 5.37 (d, J =
1.2 Hz, 1H), 5.14 (s, 1H), 3.78 (s, 3H),2.91 (dd, J = 14.5,3.1 Hz, 2H), 2.69 (dd, J = 145,
1.9 Hz, 2H), 2.64-2.53 (m, 1H), 2.37-2.26 (m, 1H) 1.78 (ddd, J = 10.1,7.2, 2.6 Hz, 2H);
"C NMR (126 MHz, CDCl,) 8215.1, 158.2, 145.0, 141.8, 131.0, 129.2, 128.3, 127.6,
126.4, 116.8, 113.6, 68.9, 55.1, 43.6, 40.3, 39.8; IR (Neat Film, NaCl) 3080, 2913, 2835,
1770, 1611, 1513, 1248, 1179, 1035, 907 cm™'; HRMS (El+) m/z calc'd for C,H,,0,

[M]*: 306.1620; found 306.1614; [a],**° -0.60 (c 1.00, CHCl;, 95% ee).
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(R)-2-Allyl-2-(2-phenylallyl)cyclobutanone (40f)

I

40f
Cyclobutanone 40f was isolated by flash column chromatography (SiO,, 3% EtOAc in
hexanes to 4% EtOAc in hexanes) as a colorless oil. 86% yield. R,=0.2 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) & 7.42-7.25 (m, 5H), 5.84-5.71 (m, 1H), 5.37 (d,
J=15Hz, 1H),5.14 (d, J= 1.0 Hz, 1H), 5.15-5.05 (m, 2H), 2.91, 2.70 (AB system, J,5
= 144 Hz, 2H), 2.87-2.65 (m, 2H), 2.36 (ddt, J = 139, 7.1, 1.2 Hz, 1H), 2.27 (ddt, J =
139, 7.6, 1.1 Hz, 1H), 1.85 (ddd, J = 11.7, 104, 6.8 Hz, 1H), 1.77-1.64 (m, 1H); “C
NMR (126 MHz, CDCl;) 6 214.5, 145.1, 141.8, 133.3, 128.3, 128.3, 126.5, 118.7, 116 .9,
67.5,43.3,39.7,39.1, 20.3; IR (Neat Film, NaCl) 3078, 2921, 1774, 1625, 1493, 1443,
1387, 1059, 1000, 908, 779 cm™; HRMS (MM: ESI-APCI) m/z calc'd for C,H,;,0

[M+H]": 227.1430; found 227.1418; 0, —13.98 (¢ 0.51, CHCl,, 92% ee).

(S)-2-(2-Phenylallyl)-2-[3-(trimethylsilyl)prop-2-yn-1-yl]cyclobutanone (40g)

T™MS
Z
0 R
i
Ph
409
Cyclobutanone 40g was isolated by flash column chromatography (SiO,, 1% EtOAc in

hexanes to 3% EtOAc in hexanes) as a colorless oil. 90% yield. R,=0.2 (10% EtOAc in

hexanes); '"H NMR (500 MHz, CDCl,) & 7.51-7.08 (m, 5H), 5.37 (d, J = 1.4 Hz, 1H),
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5.13(d,J=1.1 Hz, 1H), 2.93-2.86 (m, 2H), 2.82-2.75 (m, 2H), 2.42, 2.37 (AB system,
Jus = 17.0 Hz, 2H), 1.96-1.85 (m, 2H) 0.15 (s, 9H); “C NMR (126 MHz, CDCl,) &
212.6,144.5,141.4, 1284, 127.7,126 4, 1169, 102.7, 87.2, 66.6, 43.9, 38.9, 25.8, 20.9,
0.0; IR (Neat Film, NaCl) 2957, 2169, 1776, 1713, 1444, 1249, 1177, 1061, 1031, 834,

760 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,,H,;OSi [M+H]*: 297.1681; found

297.1683; [a],” +10.76 (¢ 0.29, CHCl;, 93% ee).

(S)-2-(Benzofuran-2-ylmethyl)-2-(2-phenylallyl)cyclobutanone (40h)

40h

Cyclobutanone 40h was isolated by flash column chromatography (SiO,, hexanes to 10%
EtOAc in hexanes) as a colorless oil. 82% yield. R, = 0.5 (10% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl,) & 7.50-7.48 (m, 1H), 7.42-7.40 (m, 1H), 7.38=7.36 (m, 2H),
7.33=7.28 (m, 3H), 7.25-7.18 (m, 2H), 6.44 (s, 1H), 540 (d, J = 1.34 Hz, 1H), 5.17 (m,
1H),3.07 (d,J =152 Hz, 1H),2.98 (dd,J=14.3,09 Hz, 1H),2.96 (d, /= 15.0 Hz, 1H),
2.82 (d,J = 14.3 Hz, 1H), 2.79-2.64 (m, 2H), 1.96-1.86 (m, 2H); "“C NMR (126 MHz,
CDCly) & 213.2, 1550, 154.7, 144.7, 141.6, 128.5, 128.4, 127.8, 1264, 123.6, 122.6,
1205, 117.2, 1109, 105.0, 67.2, 43.8, 39.6, 33.7, 20.9; IR (Neat Film, NaCl) 3054,
2917, 2849, 1770, 1598, 1585, 1453, 1251, 1104, 1061, 905 cm™'; HRMS (MM ESI-
APCI) m/z calc'd for Cy,H,,0, [M+H]*: 317.1536; found 317.1530; [o],”® +56.4 (c 1.00,

CHCl,;, 92% ee).
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(S)-2-Benzyl-2-(2-methylenebut-3-en-1-yl)cyclobutanone (42a)

o\tTm
42a >
Cyclobutanone 42a was isolated by flash column chromatography (SiO,, hexanes to 5%
Et,0 in hexanes) as a colorless oil. 92% yield. R, = 0.3 (10% EtOAc in hexanes); 'H
NMR (500 MHz, CDCly) & 7.33-7.27 (m, 3H), 7.25-7.20 (m, 2H), 7.19-7.12 (m, 1H),
6.59-6.19 (m, 1H), 5.24-5.06 (m, 2H), 5.05 (s, 2H), 3.01 (d, /= 13.6 Hz, 1H), 2.80 (d, J
=13.6 Hz, 1H), 2.68 (ddd, J = 18.1, 10.3, 6.8 Hz, 1H), 2.57 (dd, J = 14.4, 1.0 Hz, 1H),
245 (ddd, J = 18.1, 10.3, 6.9 Hz, 1H), 2.40 (d, J = 14.4 Hz, 1H), 1.95 (qdd, J = 11.6,
10.2, 6.8 Hz, 1H); “C NMR (126 MHz, CDCL,) & 215.2, 142.4, 139.4, 137.3, 130.1,
128.3, 126.6, 119.2, 114.5, 68.6, 43.9, 41.4, 35.5, 20.2; IR (Neat Film, NaCl) 3022,
2921, 2843, 1768, 1590, 1493, 1452, 1384, 1065, 989, 898, 755 cm '; HRMS (MM: ESI-
APCI) m/z calc'd for C ;(H,;O [M+H]*: 227.1430; found 227.1433; [a],” +0.44 (¢ 1.60,

CHCl,;, 91% ee).
(5)-2-Benzyl-2-(2-methylallyl)cyclobutanone (42b)
o B
oy
Me
42b

Cyclobutanone 42b was isolated by flash column chromatography (SiO,, 2% Et,O in

hexanes to 5% Et,0 in hexanes) as a colorless oil. 82% yield. R, = 0.3 (10% EtOAc in
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hexanes); '"H NMR (300 MHz, CDCl,) §7.41-7.12 (m, 5H), 4.91 (t,J= 1.7 Hz, 1H), 4.78
(dd, J=2.0 Hz, 1.0, 1H), 2.88, 2.65 (AB system, Jag = 13.7 Hz, 2H), 2.77 (ddd, J = 18.1,
9.6, 6.9 Hz, 1H), 2.43-2.33 (m, 1H), 2.33, 2.22 (AB system, Jag = 14.2 Hz, 2H), 1.97
(ddd, J =94, 7.2, 3.1, 2H), 1.80-1.72 (m, 3H); "C NMR (126 MHz, CDCl,) §215.3,
141.8,137.4,130.1, 128.3, 126.5, 114.8, 68.2,43.6,43.2,40.6, 24.0, 20.7; IR (Neat Film,
NaCl) 3072, 3027, 2964, 2919, 1772, 1322, 1131, 1062, 894 cm™'; HRMS (MM: ESI-
APCI) m/z calc'd for C;sH,;O [M]": 214.1358, found 214.1346; [o],® —2.4° (c 0.48,
CHCl,;, 90% ee).

(R)-2-Benzyl-2-(2-chloroallyl)cyclobutanone (42c)

Bn

oﬁf

42c
Cyclobutanone 42¢ was isolated by flash column chromatography (SiO,, hexanes to 3%
EtOAc in hexanes) as a colorless oil. 67% yield. R, = 0.3 (10% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl,) & 7.33=7.21 (m, 3H), 7.18=7.15 (m, 2H), 5.33 (d, J = 1.3 Hz,
1H), 5.22-5.21 (m, 1H), 2.97 (d, J = 13.7 Hz, 1H), 2.90-2.76 (m, 1H), 2.82 (d, J = 13.7
Hz, 1H), 2.74 (dd, J = 14.7,1.0 Hz, 1H), 2.59 (d, J = 14.7 Hz, 1H), 2.43 (ddd, J = 18.1,
10.8, 7.3 Hz, 1H), 2.19 (ddd, J = 11.8, 10.2, 7.2 Hz, 1H), 2.04 (ddd, J = 11.8, 10.8, 6.1
Hz, 1H); "C NMR (126 MHz, CDCl,)  213.7, 138.4, 136.7, 130.1, 128.4, 126.8, 116 4,
67.5,44.1,43.8,40.5,20.7; IR (Neat Film, NaCl) 3028, 2919, 2848, 1772, 1631, 1494,
1453, 1063, 888 cm™'; HRMS (MM ESI-APCI) m/z calc'd for C,,H,;°CIO [M+H]":

235.0884; found 235.0883; [a],® +1.51 (¢ 0.56, CHCl,, 94% ee).
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(S)-2-Allyl-2-benzylcyclobutanone (38)

o B:‘

38
Cyclobutanone 38 was isolated by flash column chromatography (SiO,, 2% Et,O in
hexanes to 5% Et,0 in hexanes) as a colorless oil. 82% yield. R,= 0.4 (10% EtOAc in
hexanes); 'H NMR (500 MHz, CDCl,) §7.30-7.27 (m, 2H), 7.24-7.21 (m, 1H),
7.16=7.15 (m, 2H), 5.81 (ddt,J=17.2,10.0, 7.4 Hz, 1H), 5.16-5.10 (m, 2H), 297 (d, J =
13.7Hz, 1H),2.78 (ddd, J = 18.2,10.3,6.5 Hz, 1H),2.72 (d,J = 13.7 Hz, 1H), 2.49 (ddd,
J=182,10.6,6.8 Hz, 1H), 2.39 (ddt,J = 139,74, 1.1 Hz, 1H), 2.67 (ddt,J =139, 7 4,
1.1 Hz, 1H), 1.94 (ddd, J = 11.5, 10.6, 6.5 Hz, 1H), 1.86 (ddd, J = 11.5, 10.3, 6.8 Hz,
1H); "C NMR (126 MHz, CDCl,) §214.9, 137.3, 133.2, 130.0, 128.3, 126.5, 118.7, 68 4,
429,403,395, 19.8; IR (Neat Film, NaCl) 3029, 2918, 1771, 1495, 1437, 1454, 1076,
920 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,,H,;O [M]*: 200.1201; found

200.1199; [o],® +4.69 (c 0.55, CHCl;, 88% ee).

(S)-2-Benzyl-2-[4-(benzyloxy)-2-methylenebutyl]cyclobutanone (42d)

o, ?"‘\f
OBn
42d

Cyclobutanone 42d was isolated by flash column chromatography (SiO,, 1% EtOAc in

hexanes to 3% EtOAc in hexanes) as a colorless oil (95% yield). R,=0.2 (10% EtOAc in
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hexanes); '"H NMR (500 MHz, CDCL5) § 7.41-7.12 (m, 10H), 5.01 (q, /= 1.4 Hz, 1H),
4.93-4.92 (m, 1H), 4.54 (s, 2H), 3.59 (td, J= 6.8, 0.7, 2H), 2.95, 2.73 (AB system, Jap =
13.7, 2H), 2.83-2.71 (m, 1H), 2.51-2.27 (m, 5H), 2.04-1.92 (m, 2H); *C NMR (126
MHz, CDCls) § 215.2, 142.6, 138.4, 137.4, 130.1, 128.4, 128.3, 127.7, 127.6, 126.5,
115.1, 72.9, 68.7, 68.3, 43.6, 41.5, 40.6, 37.0, 20.7; IR (Neat Film, NaCl) 3022, 2923,
2853, 1768, 1641, 1494, 1452, 1360, 1099, 899, 735 cm '; HRMS (MM: ESI-APCI) m/z

calc'd for C,;H,,0, [M+H]": 335.2006; found 335.2020;

hui f e
93% yield 49
Enantiomeric excess determined for the corresponding Baeyer-Villiger product, which
was obtained by the general procedure below. Lactone 49 was isolated by flash column
chromatography (SiO,, 4% EtOAc in hexanes) as a colorless oil (93% yield). R, = 0.2
(20% EtOAc in hexanes); '"H NMR (500 MHz, CDCl5) 5 7.40-7.18 (m, 10H), 5.09 (q, J =
1.5 Hz, 1H), 4.98 (dd, J= 1.7, 0.9 Hz, 1H), 4.51 (s, 2H), 3.61 (t, /= 6.5 Hz, 2H), 3.09 (d,
J=14.1 Hz, 1H), 2.75 (d, J= 14.1 Hz, 1H), 2.61-2.38 (m, 4H), 2.23 (ddd, J=17.6, 9.4,
5.9 Hz, 1H), 2.17-2.03 (m, 2H), 1.68 (ddd, J= 17.6, 10.0, 8.6 Hz, 1H); °C NMR (126
MHz, CDCl3) 6 176.9, 141.8, 138.4, 135.5, 130.5, 128.5, 128.3, 127.7, 127.5, 127.1,
117.1, 87.8, 72.8, 68.5, 46.7, 45.6, 37.0, 29.3, 29.2; IR (Neat Film, NaCl) 3524, 3062,
3029, 2919, 2855, 1958, 1770, 1642, 1603, 1495, 1454, 1416, 1361, 1271, 1232, 1177,

1101, 1080, 1029, 932, 741 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for Cp,H,,0,

[M+H]": 351.1955; found 351.1951; 0, +21.17 (¢ 0.44, CHCI,, 89% ee).
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(R)-2-Benzyl-2-(2-[3-methoxyphenyl]allyl)cyclobutanone (42¢)

o Bn‘\
f OMe
42e

Cyclobutanone 42e was isolated by flash column chromatography (SiO,, 1% EtOAc in
hexanes to 3% EtOAc in hexanes) as a colorless oil. 91% yield. R,=0.2 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) 6 7.37-7.19 (m, 4H), 7.19-7.10 (m, 2H), 6.98
(ddd, J=7.7, 1.7, 0.9 Hz, 1H), 6.91 (dd, J= 2.5, 1.6 Hz, 1H), 6.85 (ddd, /= 8.2, 2.6, 0.9
Hz, 1H), 5.41 (d, J= 1.4 Hz, 1H), 5.17 (q, J= 1.1 Hz, 1H), 3.83 (s, 3H), 3.03-2.86 (m,
2H), 2.86-2.68 (m, 2H), 2.63 (ddd, J= 18.1, 9.7, 7.1 Hz, 1H), 2.35 (ddd, J = 18.1, 10.1,
7.4 Hz, 1H), 1.96-1.72 (m, 2H); "C NMR (126 MHz, CDCl,) & 215.0, 159.6, 144.9,
1435, 137.3, 130.1, 1294, 1284, 126.6, 119.0, 117.1, 1129, 1124, 68.9, 55.3, 438,
41.2,40.0, 20.0; IR (Neat Film, NaCl) 2913, 2829, 1766, 1595, 1572, 1488, 1451, 1286,
1221, 1170, 1039, 898, 873, 779 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,,H,,0,

[M+H]": 307.1693; found 307.1693; 0,> —4.78 (¢ 0.45, CHCl;, 92% ee).

(R)-2-Benzyl-2-(2-(4-fluorophenyl)allyl)cyclobutanone (42f)

Bn

OQ l o

F
42f

Cyclobutanone 42f was isolated by flash column chromatography (SiO,, 3% EtOAc in

hexanes to 7% EtOAc in hexanes) as a colorless oil. 94% yield. R,=0.3 (10% EtOAc in
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hexanes); '"H NMR (500 MHz, CDCl,) § 7.25-7.12 (m, 5H), 7.05-7.03 (m, 2H), 6.95-
6.90 (m, 2H), 5.25 (d,J = 1.3 Hz, 1H), 5.05 (s, 1H), 2.88 (d,J = 13.7 Hz, 1H), 2.82 (dd, J
= 144,10 Hz, 1H), 2.66 (d, J = 13.7 Hz, 1H), 2.59 (d, J = 14.4 Hz, 1H), 2.54-2.47 (m,
1H), 2.29-2.22 (m, 1H), 1.73 (t, J = 8.6 Hz, 2H); *C NMR (126 MHz, CDCl,) § 214.6,
1623 (d, 'Jop = 246 .8 Hz), 144.0, 137.8 (d, *Jo = 3.3 Hz), 137.1, 130.0, 128.3, 128.0 (d,
Jep = 7.9 Hz), 126.6, 1169, 1152 (d, *Jos = 21.3 Hz), 68.6, 43.7,41.2, 40.5, 20.0; IR
(Neat Film, NaCl) 2913, 1766, 1597, 1505, 1219, 1055, 837 cm™'; HRMS (MM: ESI-
APCI) m/z calc'd for C,H,'°FO [M+H]": 295.1493; found 295.1502; [o],> +3.53 (c

0.16, CHCl;, 94% ee).

1.6.7 Procedures for derivatization of a-quaternary cyclobutanones and

determination of absolute stereochemical configuration

NaOH (1 M), MeOH

Ph
o H,0, (50 % in H,0) 0{74\”‘
\Y >—Ph
Ph

40c 80% yield 44
(R)-5-Benzyl-5-(2-phenylallyl)dihydrofuran-2(3H)-one (44). To a stirred solution of
cyclobutanone 40c (43 mg, 0.23 mmol) in MeOH (4.6 mL) was added NaOH (1 M in H,0,
0.23 uL, 0.23 mmol) followed by H,O, (50 wt% in H,0O, 17 mg, 0.46 mmol). The resulting
mixture was stirred at room temperature for 1 h. The reaction mixture was then acidified to
pH 7 with 1 N aqueous HCI and extracted with dichloromethane (2 mL x 5). The combined
organic layers were dried over MgSO, and concentrated in vacuo. The crude oil was
purified by flash column chromatography (Si0,, 15% EtOAc in hexanes) to afford lactone

44 (37 mg, 0.17 mmol, 80% yield) as a colorless oil. R,= 0.2 (20% EtOAc in hexanes); 'H
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NMR (300 MHz, CDCl,) §7.41-7.18 (m, 10H), 5.46 (d, J = 1.4 Hz, 1H), 527 (s, 1H),
3.08-2.92 (m, 3H), 2.79 (d,J = 14.1 Hz, 1H), 2.17 (ddd, J = 17.4,9.8, 6.4 Hz, 1H), 2.04-
~1.86 (m, 2H), 1.76-1.62 (m, 1H); "*C NMR (126 MHz, CDCL,) §176.7, 1434, 141.7,
1354, 130.6, 128.6, 128.5, 127.8, 127.0, 126.3, 1192, 87.7, 46.1, 45.3, 29.3, 28.8; IR
(Neat Film, NaCl) 3029, 2918, 1771, 1495, 1437, 1454, 1076, 920 cm™; HRMS (MM:
ESI-APCI) m/z calc'd for C,H,,0, [M+H]": 293.1536; found 293.1536; [0, —0.60 (c

1.00, CHCl;, 89% ee).

T™MS fo)

&= 1. TMSCHN,, BF ;-Et,0
Et,0,0°Cto25°C =
o) . > Yo T™S
= \( 2. HCI (aq.), DCM }-ph
Ph 69% yield
409 over two steps 45

(S)-2-(2-Phenylallyl)-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclopentanone (45). To a
solution of 40g (0.1023 g, 0.345 mmol) in Et,0 (3.5 mL), cooled to 0 °C with a water/ice
bath, under an atmosphere of N,, was added BF; etherate (0.112 mL, 0.379 mmol)
dropwise followed by trimethylsilyldiazomethane (0.345 mL, 2 M solution in hexane)
dropwise. The mixture was allowed to warm to 25 °C and stirred for 18 hours, at which
point the reaction was determined to be complete by TLC analysis. To the mixture was
added 3 mL of saturated aqueous NaHCO;. After stirring for 30 min, this mixture was
extracted with Et,0 (5 mL x 3), dried over MgSO, and concentrated in vacuo. The crude
product was purified by flash column chromatography (SiO,, 1% EtOAc in hexanes to

5% EtOAc in hexanes) to afford o-trimethylsilylcyclopentanone as a colorless oil. The

identity of the o-trimethylsilylcyclopentanone was confirmed by 'H NMR analysis; the

product was taken on without further characterization. R,=0.3 (10% EtOAc in hexanes);
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To a solution of o-trimethylsilylcyclopentanone (61 mg, 0.159 mmol) in 2 ml
dichloromethane was added 2 mL of 1 N aqueous HCI in H,O at 25 °C. The mixture was
stirred for 24 hours at which point the reaction was determined to be complete by TLC
analysis. The mixture was diluted with dichloromethane (2 ml) and then extracted with
dichloromethane (5 mL x 3). The collected organic layers were then washed with brine
(5 mL), dried over MgSQO,, filtered and concentrated in vacuo. The crude oil was
purified by flash column chromatography (SiO,, hexanes to 1% EtOAc in hexanes) to
afford cyclopentanone 45 (47 mg, 0.153 mmol, 69% yield over two steps) as a colorless
oil. R,= 0.3 (10% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) & 7.58-7.12 (m, 5H),
532 (d, J=1.6 Hz, 1H), 5.144.97 (m, 1H), 2.83-2.73 (m, 2H), 2.22 (dd, J= 16.9, 38.9
Hz, 2H), 2.16-2.08 (m, 1H), 2.03-1.91 (m, 2H), 1.89-1.71 (m, 3H), 0.14 (s, 9H);"C
NMR (126 MHz, CDCl,) 6 221.0, 145.1, 141.6, 128.3, 127.6, 126.5, 117.4, 103.7, 87.1,
52.2, 39.8, 384, 31.4, 27.4, 18.7, 0.0; IR (Neat Film, NaCl) 3080, 2958, 1738, 1623,
1494, 1447, 1404, 1308, 1249, 1154, 1046, 1029, 973, 904, 841, 778, 759 cm™'; HRMS
(EI+) m/z calc'd for CyH,,OSi [M]": 310.1753; found 310.1765; [o],> +4.13 (¢ 0.50,

CHC1,,93% ee).

1. HONH*HCI, H

Pyndme EtOH Oﬁdﬁph

2, p-TsCI EtN, }’@‘F
DMAP, DCM

22% yield
over two steps

(R)-5-Allyl-5-(2-phenylallyl)pyrrolidin-2-one (46). To a solution of cyclobutanone 42f
(65 mg, 0.221 mmol) in 7 mL absolute ethanol was added hydroxylamine hydrochloride
(76 mg, 1.104 mmol), followed by pyridine (0.27 ml, 3.31 mmol) and the mixture was

stirred at 25 °C for 24 hours. The crude mixture was concentrated in vacuo and loaded
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directly onto a flash column. Flash column chromatography (SiO,, 8% EtOAc in hexanes
to 11% EtOAc in hexanes) afforded the corresponding oxime, whose identity was
confirmed by "H NMR and which was taken on without further characterization; R,=0.2
(25% EtOAc in hexanes); To a mixture of 4-toluenesulfonyl chloride (83 mg, 0.43
mmol), triethylamine (0.06 mL, 0.43 mmol) and catalytic 4-dimethylaminopyridine in 2.5
mL of dichloromethane under an atmosphere of N, was added dropwise a solution of
oxime (54 mg, 0.175 mmol) in 1 mL of dichloromethane. The mixture was stirred at 25
°C for 4 hours. The crude mixture was washed with H,O (5 mL), washed with brine (5
mL), dried over Na,SO, and concentrated in vacuo. The crude oil was purified by flash
column chromatography (SiO,, 3% EtOAc in hexanes to EtOAc) to afford lactam 46 (16
mg, 0.05 mmol, 22% yield over two steps) as a pale yellow oil. R, = 0.4 (EtOAc); 'H
NMR (500 MHz, CDCl;) & 7.34-7.07 (m, 7H), 7.07-6.96 (m, 2H), 5.35 (d, J= 1.3 Hz,
1H), 5.26 (s, 1H), 5.15 (q, /= 1.0 Hz, 1H), 2.87-2.63 (m, 4H), 2.06—1.85 (m, 3H), 1.69—
1.55 (m, 1H); "C NMR (126 MHz, CDCl,) § = 176.9, 162.4 (d, 'Joz = 247.4 Hz), 143.7,
138.0 (d, *Jor = 3.4 Hz), 136.1, 130.3, 128.5, 127.8 (d, *Jx = 8.0 Hz), 127.0, 118.6, 115.7
(d, *Jor = 21.4 Hz), 62.0, 47.0, 46.5, 30.9, 30.1;IR (Neat Film, NaCl) 3196, 3081, 2927,
1690, 1601, 1507, 1452, 1260, 1224, 1159, 1087, 906, 842, 750 cm™'; HRMS (EI+) m/z
calc'd for C,,H, ONF [M]": 309.1529; found 309.1517; [a],> +53.19 (¢ 0.08, CHCl,,

94% ee).
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'
MesN YNMes
Cl, Ru—
| |
Y° 50
Ph
o Y - 1) N
Grubbs-Hoveyda2(5mol%) | |
Ph benzene, 50 °C

40f 97% yield 47

(R)-6-phenylspiro[3.4]oct-6-en-1-one (47). To a flask charged with Grubbs-Hoveyda an
atmosphere of argon was added a solution of cyclobutanone 40f (50 mg, 0.221 mmol) in
5 mL benzene. The reaction mixture was heated to 50 °C and stirred for one hour, at
which point the reaction was determined to be complete by TLC analysis. The reaction
vessel was cooled to 25 °C and 1 mL of ethyl vinyl ether was added. After 30 min of
stirring, the crude mixture was purified directly by flash column chromatography (SiO,,
hexanes to 3% EtOAc in hexanes) to afford spirocycle 9 (43 mg, 0.215 mmol, 97% yield)
as a colorless oil. R, = 0.3 (10% EtOAc in hexanes); '"H NMR (500 MHz, CDCl,) §
7.37-7.31 (m, 2H), 7.32-7.21 (m, 2H), 7.24-7.15 (m, 1H), 5.97 (p, /= 2.4 Hz, 1H), 3.19
(dq, J=16.0, 2.2 Hz, 1H), 3.04 (t, J = 8.61 Hz, 2H), 3.04-2.97 (m, 1H), 2.81 (dq, J =
16.0, 1.7 Hz, 1H), 2.63 (dtd, J=17.5, 2.5, 1.4 Hz, 1H), 2.09 (td, J = 8.9, 2.5 Hz, 2H); °C
NMR (126 MHz, CDCl,) 6 214.1, 140.0, 135.6, 128.4, 127.3, 125.6, 122.9, 67.9, 43.6,
43.1, 42.8, 28.3; IR (Neat Film, NaCl) 2890, 2924, 1765, 1595, 1491, 1385, 1298, 1241,
1056, 747 cm™'; HRMS (MM: ESI-APCI) m/z calc'd for C,;H,;O [M+H]": 199.1117;

found 199.1120; [o],” —41.23 (¢ 0.30, CHCl,, 92% ee).
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Pd,(pmdba);
M o (5 mol%)
o] e (S)-L2 o
t')‘\o/\/ (12.5 mol%) H "N 50 / n Hzo) RN A \
toluene NaOH (1 M),
51 20°C 53
56% vyield 81% yield

(S)-5-allyl-5-methyldihydrofuran-2(3/)-one (53). Dihydrofuranone 53 was generated
from 2-carboxyallylcyclobutanone 51, via cyclobutanone 52, following the general
procedures described above (see SI 3, SI 10 and SI 16). When compared with known
compound (55)-(+)-5-allyl-5-methyldihydrofuran-2(3H)-one, the optical rotation value
for 53 was found to be of the same sign and of nearly identical magnitude ([ot],>> +2.96 (¢
1.5, CHs;OH), literature value: [o],” +3.33 (¢ 1.27, CH;OH)).*® The absolute
configurations of all other compounds described herein were established by analogy to
52. Cyclobutanone 51 was isolated by flash column chromatography (SiO,, 3% Et,0O in
pentane to 7% Et,0 in pentane) as a colorless oil. 84% yield. R, = 0.4 (15% EtOAc in
hexanes); '"H NMR (300 MHz, CDCI,) § 5.90 (ddt, J=17.2, 10.5, 5.6 Hz, 1H), 5.38-5.14
(m, 2H), 4.63 (dt, J = 5.6, 1.4 Hz, 2H), 3.42-3.06 (m, 2H), 2.65 (td, J = 11.3, 6.3 Hz,
1H), 1.88 (ddd, J=11.6, 9.9, 7.5 Hz, 1H), 1.49 (s, 3H); "C NMR (126 MHz, CDCl,) &
204.6, 169.8, 131.6, 118.4, 65.9, 45.2, 23.1, 18.6; IR (Neat Film, NaCl) 2933, 1792,
1730, 1457, 1376, 1274, 1193, 1147, 1050, 983 cm™'; HRMS (MM: ESI-APCI) m/z calc'd
for C,H,,0, [M+H]": 153.0910; found 153.0905. Cyclobutanone 52 was isolated by flash
column chromatography (SiO,, 1% Et,O in pentane to 5% Et,O in pentane) as a colorless
oil. 56% yield. R, = 0.3 (10% EtOAc in hexanes); 'H NMR (500 MHz, CDCI,) & 5.76
(ddt, J=16.6, 10.5, 7.3 Hz, 1H), 5.14-5.05 (m, 2H), 3.08-2.89 (m, 2H), 2.31 (ddt, J =
13.8,7.2, 1.2 Hz, 1H), 2.21 (ddt, J=13.8, 7.5, 1.1 Hz, 1H), 1.98 (ddd, J=11.3, 10.3, 6.7

Hz, 1H), 1.73 (ddd, J = 11.3, 10.1, 6.9 Hz, 1H), 1.19 (s, 3H); *C NMR (126 MHz,



Chapter 1 — Enantioselective Construction of a-Quaternary Cyclobutanones by Catalytic 48
Asymmetric Allylic Alkylation

CDCly) 6 214.1, 140.0, 135.6, 128.4, 127.3, 125.6, 122.9, 67.9, 43.6, 43.1, 42.8, 28.3; IR
(Neat Film, NaCl) 2929, 2854, 1728, 1323, 1261, 1170, 1129, 1060, 1019, 799 cm™;
HRMS (MM: ESI-APCI) m/z calc'd for CgH,,O [M+H]": 125.0961; found 125.0955.
Enantiomeric excess was determined for the corresponding Baeyer-Villiger product 53,
which was isolated as by flash column chromatography (SiO,, 10% Et,O in pentane) as a

colorless oil (81% yield). Spectroscopic and physical data for 53 were identical to those

reported in the literature.” ([o], +2.96 (c 1.5, CH;0H), 83% ee).
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1.6.8 Determination of enantiomeric excess
Table 1.6.8 Determination of enantiomeric excess
retention time retention time
entry compound :ﬁzagowgitgggs of major isomer of minor isomer %ee
(min) (min)
o I s OH in CO
[ FC, 10% MeOH in CO,,
1 \]L_' \I/ 2.5 mL/min, AS-H col. 5.31 6.02 99
Ph
o ¢ SFC, 3% MeOH in CO
n , 3% MeOH in CO,,
2 ﬁ \l/ 2.5 mL/min, AS-H col. 2.68 3.08 90
Ph
Ph
0 . SFC, 3% MeOH in CO,,
8 ; \l/ 3 mL/min, OJ-H col. 8.91 7.93 95
Ph
F
SFC, 2% MeOH in CO,,
4 0 o 3 mL/min, OJ-H col. s 11.45 93
Ph
OMe
SFC, 2% MeOH in CO,,
5 o “‘Y 2.5 mL/min, AS-H col. 8.82 8.38 97
Ph
o SFC, 1% MeOH in CO,
6 \( 2.5 mL/min, AS-H col. 3.37 3.15 92
Ph
TMS
. Z SFC, 2% MeOH in CO, 068 132 93
0 . Y 3.0 mL/min, OJ-H col. . :
Ph
HPLC, 2% iPrOH in
8 hexanes, 0.6 mL/min, 9.74 8.94 92

AD col.
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Table 1.6.8 Determination of enantiomeric excess (continued)

assay method

retention time

retention time

entry compound P of major isomer of minor isomer %ee
and conditions (min) (min)
o) Bn
o SFC, 1% MeOH in CO,
9 ﬁ 2.5 mL/min, OB-H col. 3.40 2.83 91
>
o I SFC, 1% MeOH in CO
R ’ o VIe n 2,
10 ﬁ Y 3 mL/min, OB-H col. 2.76 2.53 90
Me
0 Bn
o GC, 110 °C, isotherm
1 ﬁ Y 1 mL/min, GTA col. 10.41 11.34 93
Cl
o " SFC, 1% MeOH in CO
oW ’ ° 2;
12 ﬁ 7 2.5 mL/min, OB-H col. 3.38 2.93 86
Bn
o—\" SFC, 10% MeOH in CO
’ ° 2
13 D 3.0 mL/min, AD-H col. 6.09 7.29 89
o
OBn
o B
I | SFC, 1% MeOH in CO,,
14 5\ 2.5 mL/min, AS-H col. 16.17 14.84 92
OMe
0, B’ n
SFC, 1% MeOH in CO,,
15 5 3 mL/min, AS-H col. 7.29 6.78 94
F
Me =
SN on
16 0 GC, 130 °C, isotherm 10.15 13.32 83

o

1 mL/min, GTA col.
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Figure A1.36 >C NMR (125 MHz, CDCl;) of compound 41c.
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95

Appendix 1 — Spectra Relevant to Chapter 1

"qo¥ punodwod Jo (F1DAD “ZHN 00€) NN H, € [V 24n3L]

wdd
€ v S 9 YA
L L L L 1 L L L L 1 L L L L 1

o1

ud

qo0v

A,

aN



Appendix 1 — Spectra Relevant to Chapter 1

90 ]

85

80

75

70 |
%T

65|

60|

55

50

45
43.3

T T T T 1
4000.0 3000 2000 1500 1000 700.0
cm-1

Figure A1.53 Infrared spectrum (thin film/NaCl) of compound 40b.

T T T T T T T T T T T
220 200 180 160 140 120 100 80 60 40 20
ppm

Figure A1.54 >C NMR (125 MHz, CDCl;) of compound 40b.
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Figure A1.57 >C NMR (125 MHz, CDCl;) of compound 40c.
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Figure A1.60 >C NMR (125 MHz, CDCl;) of compound 40d.
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Figure A1.66 ">C NMR (125 MHz, CDCls) of compound 40f,
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Figure A1.69 *C NMR (125 MHz, CDCl;) of compound 40g.
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Figure A1.72 >C NMR (125 MHz, CDCl;) of compound 40h.
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Figure A1.75 *C NMR (125 MHz, CDCl;) of compound 42a.




111

Appendix 1 — Spectra Relevant to Chapter 1

"qz punodwod Jo (F1DAD ‘ZHN 00S) NN H, 9 [V 24n3L]

wdd

Il L L L L Il L L L L Il

o1

qcy

&N
PRy

ug



Appendix 1 — Spectra Relevant to Chapter 1 112

92.4_
90

85

80

75

70

65|
%T

60|

55

50|

45

40

36.8

T T T T |
4000.0 3000 2000 1500 1000 700.0
cm-1

Figure A1.77 Infrared spectrum (thin film/NaCl) of compound 42b.

TR TR —— . PSS S———

120 100 80 60 40 20 0

ppm

Figure A1.78 >C NMR (125 MHz, CDCl;) of compound 42b.
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Figure A1.81 *C NMR (125 MHz, CDCl;) of compound 42c.
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Figure A1.84 >C NMR (125 MHz, CDCls) of compound 38.
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Figure A1.87 >C NMR (125 MHz, CDCl;) of compound 42d.



119

Appendix 1 — Spectra Relevant to Chapter 1

‘6% punodwod jo (S1DAD ‘ZHIN 00S) NN H, 88 [V 24n3L]

wdd
€ v S 9 YA
L L L L 1 L L L L 1 L L L L 1

o1

5 § ,T

6v

ug



Appendix 1 — Spectra Relevant to Chapter 1 120

100.3

98]
96 |
94 |
92 ]
90|
88
86|
84 ]
a1 82
80 ]
78]
76 ]

74 |

72
70
68|

66|

64.5

T T T T |
4000.0 3000 2000 1500 1000 700.0
cm-1

Figure A1.89 Infrared spectrum (thin film/NaCl) of compound 49.

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A1.90 *C NMR (125 MHz, CDCls) of compound 49.
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Figure A1.93 *C NMR (125 MHz, CDCl;) of compound 42e.
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Figure A1.96 >C NMR (125 MHz, CDCls) of compound 42f.
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Figure A1.99 >C NMR (125 MHz, CDCls) of compound 44.
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Figure A1.104 Infrared spectrum (thin film/NaCl) of compound 46.
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Figure A1.105 C NMR (125 MHz, CDCls) of compound 46.
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Figure A1.108 >C NMR (125 MHz, CDCls) of compound 47.
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Figure A1.110 Infrared spectrum (thin film/NaCl) of compound 51.
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Figure A1.111 “C NMR (125 MHz, CDCls) of compound 51.
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CHAPTER 2

Development of (Trimethylsilyl)Ethyl Ester-Protected Enolates and
Applications in Palladium—Catalyzed Enantioselective Allylic Alkylation:

Intermolecular Cross-Coupling of Functionalized Electrophiles’

2.1 INTRODUCTION
2.1.1 Latent enolates: silyl enol ethers

Latent or protected enolates such as silyl enol ethers, silyl ketene acetals, allyl
enol carbonates, allyl B-keto esters and others, have found broad use in organic synthesis
owing to their mild release and ease of use.”"'"> Perhaps the most well studied class of
protected enolates employ oxygen-bound protecting groups (i.e. silyl enol ethers).
Unfortunately, the utility of this class of compounds is often limited by poor
regioselectivity when forming fully substituted enol derivatives.”® Although much effort
has been devoted to the identification of conditions that allow for selective generation of
so-called “thermodynamic” enolate isomers, selectivity often drops precipitously when
sterically demanding o.-substitution is introduced (Figure 2.1.1.1).”> For example, in
previous studies by the Stoltz group, it was found that while formation of the

! This work was performed in collaboration with Douglas C. Behenna, staff scientist in the Stoltz group.
This work has been published. See: Reeves, C. M.; Behenna, D. C.; Stoltz, B. M. Org. Lett. 2014, 16, 2314.
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thermodynamic silyl enol ether derived from 2-methyl cyclohexanone (Figure 2.1.1.1,
57) proceeded in 84% yield, while the corresponding ethyl substituted enol ether (Figure

2.1.1.1, 58) was formed in only 41% yield.

Figure 2.1.1.1. Drawbacks of silyl enol ether synthesis

(o] OTMS OTMS H
R Nal (1.25 equiv), TMSCI (1.15 equiv) R R ! oTMS oTmMs

’ + !

Et3N (1.25 equiv), MeCN :

54 55 56 :

. I . . 57 58
+ mixtures of kinetic X and thermodynamic X product ranging
from4-10:1 ) .
84.2% yield 40.5% yield

- separated by spinning band distillation
- or by subjecting the product mixture to Segusa-Ito conditions

2.1.2 Latent enolates: B-ketoesters

The problem of thermodynamic enolate masking would be solved, ideally, by the
development of enolate precursors that are readily prepared and, when triggered, release
the “thermodynamic” enolate under kinetic control. In the context of allylic alkylation

reactions, carboxylate-protected enolates (i.e., allyl B-ketoesters, 61, Figure 2.1.2.1)

represent a significant advance toward such a solution. Allyl B-ketoesters enjoy
relatively uncomplicated, selective synthesis’ from simple ketones (i.e. 59) and undergo
deprotection upon treatment with a transition metal capable of oxidative addition.
Oxidative addition affords a transition metal allyl species, in the case at hand, a palladium
m-allyl species 63, and a free carboxylate 62. The resulting carboxylate may then
spontaneously release CO, to give prochiral enolate 64.> This enolate may then enter

into a catalytic cycle and undergo o-functionalization.
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Figure 2.1.2.1. Allyl B-ketoester approach to latent enolate chemistry

o
i LGJ\OY 7 0wl o° [Pd] i &
R? © | [Pd] cat. R? S
60 + | | o
—— oY 0 ~~ hd
1. Enolization R2 -CO, R2
61 62 64 63 65

2. Acylation
59 Alkylation

Despite these advantages, allyl B-ketoesters are not without their own limitations.
Facile nucleophilic attack of the incipient enolate at the transition metal-allyl species
generated during deprotection often precludes applications that do not involve allylic
alkylation.” Moreover, with traditional carboxylate-protected enolates, any functionality
borne by the allyl fragment (60, R?>, Figure 2.1.2.1) must be compatible with the
conditions required for substrate synthesis (i.e. strong base and reactive electrophiles).
Tunge and coworkers have demonstrated the utility of acyl-protected enolates, which
may undergo deprotection via a retro-Claisen condensation to reveal fully-substituted
enolates, that participate in catalysis.”” However, these reactions often require the use of

elevated temperatures and alkoxide base to proceed.

2.1.3 Latent enolates: TMSE B-ketoesters

Conceptually, we envisioned a new class of [B-ketoester enolate precursors
bearing an alkyl ester substituent labile to cleavage (Figure 2.1.3.1, 66). Ideally, facile
deprotection would liberate this alkyl fragment to reveal a free carboxylate species,
which, upon spontaneous decarboxylation, would yield the desired tetrasubstituted,

prochiral enolate (67). Electrophilic trapping of this enolate species in the presence of a
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chiral catalyst would, in turn, give rise to enantioenriched o—functionalizaed carbonyl

products (68).

Figure 2.1.3.1. Non-allyl f-ketoester approach to latent enolate chemistry

o o mild removal o o)
R PG of pr %‘Z"t’"g o electrophile E
o Rl "R
spontaneous enantio-
loss of CO, induction
66 67 68

In considering novel carboxylate-protected enolates, our design criteria called for
a substrate that could be synthesized efficiently, deprotected under mild conditions and
facilitate the convergent union of complex fragments in a synthetic setting. Our approach
to this problem was to develop the (trimethylsilyl)ethyl B-ketoester (TMSE B-ketoester) **
substrate class (i.e., 69, Figure 2.1.3.2). These compounds boast similar ease of

preparation as compared with allyl B-ketoesters, but are not susceptible to transition

metal-mediated deprotection. We hypothesized that use of TMSE B-ketoesters may
enhance the breadth of functional group tolerance at the allyl coupling partner in
asymmetric allylic alkylations, relative to allyl B-ketoesters, by virtue of the fact that the
allyl fragment is not subjected to the conditions of substrate synthesis (Figure 2.1.3.2).
We further reasoned that by eliminating allyl from the reaction mixture, we would
obviate the problem of competing reaction pathways in non-allyl enolate trapping
chemistry, and greatly expand the range of reactions in which carboxylate-protected

enolates may participate.
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Figure 2.1.3.2. TMSE [-ketoester approach to latent enolate chemistry
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In this chapter, we describe the preparation and development of this substrate
class and the evaluation thereof in the enantioselective palladium-catalyzed allylic
alkylation of 6- and 7-membered ketone and lactam scaffolds. Furthermore, we go on to

show how the use of these substrates can enable the union of complex fragments bearing
functionality that would be incompatible with incorporation into traditional allyl -

ketoester substrates.

2.2 SYNTHESIS OF AND REACTION OPTIMIZATION WITH TMSE p-
KETOESTERS
2.2.1 Substrate synthesis

The initial task pursuant to the goals laid out in Section 2.1.3 was to develop an
efficient synthesis of TMSE [B-ketoester 69. We were pleased to find that o-methyl

TMSE [-ketoester (74) could be prepared in a single synthetic operation from
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commercially available cyclohexanone (59), 2-(trimethylsilyl)ethyl chloroformate (73)

and methyl iodide (Mel) in good overall yield (Scheme 2.2.1.1).

Scheme 2.2.1.1. TMSE [B-ketoester substrate synthesis

0
™
o c,)j\o/\/ S 0

Meo
73, (1.1 equiv) - o/\/TMS
’ o
LiHMDS (2.5 equiv)
then Mel (5 equiv)

59 THF, -78°C -0°C —» 23 °C 74
70% yield

In order to evaluate the substrate’s capacity to engage in transition metal-
mediated catalysis as anticipated, TMSE-B-ketoester 74 was subjected to treatment with
tetrabutylammonium difluorotriphenylsilicate (TBAT) in THF at ambient temperature
(Scheme 2.2.1.2). The reaction was quenched with saturated aqueous ammonium
chloride, and full deprotection to 2-methyl-cyclohexanone 75 was observed after 30 min.
This experiment lended proof of principal that our TMSE-B-ketoesters could indeed

undergo mild deprotection and encourgaed further investigation of the substrate class.

Scheme 2.2.1.2. Fluoride-triggered deprotection of TMSE B-ketoester substrate

o]

o] o
Me . M
o/\/TMS TBAT (2 equiv) > e
THF, 23°C

59 75

>99% conversion
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2.2.2 TMSE-[-ketoester allylic alkylation optimization

With TMSE B-ketoester 74 in hand, our investigation into this substrate class
commenced in the context of Pd-catalyzed allylic alkylation. We were pleased to find
that exposure of P-ketoester 74 to allyl bromide, TBAT, [Pd,(dba),] and (S)-#-Bu-

PHOX®*” in toluene at 40 °C generated the desired o-quaternary ketone 7 in modest
yield and good enantioselectivity (entry 1, Table 2.2.2.1). We next explored the scope of
allyl sources that could be used in the reaction and found that a variety of diverse allyl
sources were competent in the chemistry, including allyl sulfonates, allyl acetates and
allyl carbonates (entries 2-5). Allyl methyl carbonate proved to be the most efficient,
selective and prudent allyl source, in particular, with respect to the number of the allyl
equivalents required for optimal reactivity (entry 6). Reaction parameters including
relative stoichiometry (entries 7-9), solvent (entries 10-13) and temperature (entry 14)
were all subsequently explored and we found that a slight excess of mixed carbonate in
THF at 25 °C delivering the desired ketone in 81% yield and 86% enantioselectivity

(entry 14).
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Table 2.2.2.1. TMSE [-ketoester allylic alkylation initial optimization experiments

X 76

[o}
7 mell [Pd(dba),] (5 mol %) Me
o/\/TMS (S)-+-Bu-PHOX(12.5 mol %) B4
>
TBAT (1.25 equiv) -

solvent, 40 °C

74 7
entry X equiv allyl sovent yield (%)2 ee (%)°
1 Br 1.0 toluene 55 83
2 OTs 1.0 1,4-dioxane 43 77
3 OMs 1.0 1,4-dioxane 45 84
4 OAc 1.0 1,4-dioxane 15 82
5 OCOLAllyl 1.0 1,4-dioxane 78 83
6 0OCO,Me 1.0 1,4-dioxane 78 84
7 0CO,Me 0.75 1,4-dioxane 51 82
8 0OCO,Me 1.5 1,4-dioxane 74 82
9 0CO,Me 2.0 1,4-dioxane 73 84
10 0OCO,Me 1.1 toluene 33 82
1 0OCO,Me 1.1 MTBE 65 84
12 0CO,Me 11 THF 83 83
13 0CO,Me 11 tol/hex 45 93
14¢ 0OCO,Me 1.1 THF 81 86

(a) Yield determined by comparison to tridecane internal standard. (b) % ee Determined by chiral

GC analysis of the crude reaction mixture. (c) Reaction performed at 25 °C.

A more rigorous investigation of the solvent effects on the reaction was
subsequently conducted. Using preliminarily optimized reaction parameters, we
conducted screening experiment wherein the base substrate 74 was treated with TBAT
(1.25 equiv), Pd,(dba), (5 mol%), ligand L1 (12.5 mol%) and methyl allyl carbonate (1.1
equiv) in a wide variety of solvent combinations. The results of these experiments are
shown below in Tables 2.2.2.2 and 2.2.2.3. The results of these experiments show that
reaction yield is highly variable based on the solvent employed (Table 2.2.2.2), while

reaction selectivity remains relatively uniform (Table 2.2.2.3). With respect to variablility
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in yield, the primary factor at play in these expeirments is hypothesized to be the relative
solubility of the fluoride source used, TBAT. In toluene, TBAT is only sparingly soluble,
in MTBE still only somewhat soluble, whereas TBAT is completely soluble in THF and
p-dioxane, even at higher concentrations, thus accounting for lower observed yields in
cases where low-dielectric solvents are employed. The majority of mass balance in low-
yielding experiments is accounted for in recovered starting material. The fluctuation in
enantioselectivity may be rationalized via the working mechanistic hypothesis for this
transformation; in particular, that enantioselective allylic alkylation occurs via an inner-

sphere pathway,” and this pathway is reinforced by less polar solvents.

Table 2.2.2.2. TMSE [-ketoester allylic alkylation solvent effects on reaction yield

100.0
80.0
60.0
%yield
40.0
20.0

0.0

solvent combination
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Table 2.2.2.3. TMSE [-ketoester allylic alkylation solvent effects on reaction selectivity

100.0
80.0
60.0
%ee
40.0
20.0

0.0

Diox pj
2z " o THE THF
' : 1:2 :
L8 M1T.ZBE '\"1T1BE MTBE
: 2:1

solvent combination

2.3 PALLADIUM-CATALYZED ALLYLIC ALYLATION WITH TMSE-B-KETOESTERS
2.3.1 Reaction scope with respect to nucleophile

Having identified optimal reaction conditions, we turned our attention to
exploring reaction scope, beginning with tolerance of variability with respect to the
nucleophile’s o-substitution, ring size, and carbonyl functionality (Figure 2.3.1.1).
Simple a-alkyl substitutions, such as o-benzyl substituted B-ketoester 77a (R' = Bn, X =
CH,, Y = CH,,n = 1, Figure 2), functioned consistently well in the chemistry; the desired
benzyl substituted o-quaternary ketone 79a was obtained in high yield and
enantioselectivity. In addition to simple o-alkyl substrates (i.e. compounds 74 and 77a),
heteroatom-substituted substrate 77b (R' = F, X = Y = CH,, n = 1) proved to be a viable
coupling partner and provided the corresponding o-fluoro-allylic alkylation product 79b
in good yield and excellent ee. Subjecting methyl ester-bearing substrate 77¢ (R' =

CH,CH,CO,Me, X =Y = CH,,n = 1) to our optimized conditions resulted in an efficient
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and selective reaction, furnishing enantioenriched ketone 79¢ in 93% yield and 89% ee.
Substrates constituted from 7-membered rings, including ketone 77d (R' =Me, X =Y =
CH,, n = 2) and vinylogous ester 77¢ (R' = Me, X = CH, Y = CO(i-Bu), n = 2), were
shown to be suitable coupling partners, affording o-quaternary ketone 79d and o-
quaternary vinylogous ester 79e products in 95% and 89% yield and 87% and 92% ee,
respectively. Finally, 6- and 7-membered lactams were investigated. We were pleased to
find that under slightly modified reaction conditions (40 °C), the desired o-functionalized

lactam products 79f and 79g were obtained in good to excellent yields and excellent ee’s.
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Figure 2.3.1.1. Exploration of functional group and scaffold diversity in the fluoride-triggered

palladium-catalyzed allylic alkylation reaction with respect to nucleophile

MeO JI\o ~F
o] R1 o] o] R1
78 (1.1 equiv)
X o A~ Tus > N
| [Pd,(dba);] (5 mol %) |
Y 77 (S)+-Bu-PHOX (125 mol %) Y 79
B TBAT (1.25 equiv), THF, 25 °Cab n
o o)
Me Bn 0 F
SN F iﬂ,\\\/ é_“\\\/
7 79a 79b
82% yield® 85% yield 78% yield
86% ee 88% ee 91% ee
CO,Me o o
Me Me
| SNF RN
i-BuO
79¢c 79d 79
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89% ee 87% ee 92% ee
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o
BzN :ﬂ\% Bz@“ ~F
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(a) Reaction conditions: 3 (1.0 equiv), 5 (1.1 equiv), [Pd,(dba);] (5 mol%), (S)-t-Bu-PHOX (12.5
mol%), TBAT (1.25 equiv) in THF (0.033M) at 25 °C for 12-48 h. (b) Reaction performed on

substrates 77f and 77g at 40 °C. (c) All reported yields are for isolated products.

2.3.2 Reaction scope with respect to electrophile

Having surveyed the scope of the reaction with respect to nucleophile o-
substitution and scaffold type, we next probed the allylic alkylation with respect to
substitution at the 2-allyl position. We were pleased to find that a variety of functional
groups could be introduced through the use of differentially substituted allyl carbonates
(80, R* # H, Figure 2.3.2.1). Simple alkyl substitution at the internal allyl position was

well tolerated as 2-methylallyl ketone 81a was obtained in 89% yield and 89% ee. 2-
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Chloroallyl methyl carbonate (80, R* = Cl) also participated well in the chemistry,
furnishing the corresponding o-quaternary ketone 81b in 72% yield and 96% ee. Allyl
fragments bearing electron-neutral and electron-deficient aryl groups also functioned well
in the reaction, delivering the desired allylic alkylation products 81c¢ and 81d,

respectively, in excellent yields and ee’s.

Figure 2.3.2.1. Exploration of functional group and scaffold diversity in the fluoride-triggered

palladium-catalyzed allylic alkylation reaction with respect to electrophile

o o MeoJ\o/\/

Bn R2 ? Bn
o/\/TMS 80 (1.1 equiv) »“Y
[Pdy(dba)s] (5 mol %) R2

(8)-t-Bu-PHOX (12.5 mol %)

77a TBAT (1.25 equiv), THF, 25 °Cab 81
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(a) Reaction conditions: 3 (1.0 equiv), 5 (1.1 equiv), [Pd,(dba);] (5 mol%), (S)-t-Bu-PHOX (12.5
mol%), TBAT (1.25 equiv) in THF (0.033M) at 25 °C for 12-48 h. (b) All reported yields are for

isolated products.

2.4 COUPLING OF TMSE B-KETOESTERS WITH FUNCTIONALLY COMPLEX
ELECTROPHILIC PARTNERS

While the new fluoride-triggered chemistry described thus far permits alternative

access to structures previously available by allylic alkylation, a distinct advantage offered
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by TMSE-B-ketoesters in allylic alkylation chemistry is the ability to introduce allyl-

coupling partners that would be unstable to the conditions of allyl B-ketoester substrate
synthesis. To illustrate this feature of the new chemistry, we synthesized mixed
carbonates 82 and 83 as coupling partners for palladium-catalyzed allylic alkylation
(Figure 2.4.1). Allyl carbonate 82, derived from leucine, bears an epimerizable
stereocenter that is racemized upon treatment with strong base.”’ Since strong base (i.e.
LDA, LHMDS, etc.) is typically required for enolization and acylation in the preparation
of standard allyl B-ketoesters, employing electrophiles bearing base labile functionality
has not previously been possible. Alternatively, allyl carbonate 83, which was
synthesized by allylic oxidation of (S)-carvone, also bears functionality that would be
unstable to the conditions required for standard allyl B-ketoester substrate synthesis. In
particular, we envisioned that attempts to acylate a ketone enolate with an allyl chloro- or
allyl cyanoformate bearing enone 83 would be complicated by undesired conjugate
addition and enolate chemistries (e.g. Aldol reaction, Michael addition, etc.). In both
cases, our new TMSE B-ketoester chemistry allows for the independent preparation and,
thus, physical separation of nucleophilic and electrophilic components until the fragment

coupling stage.

Figure 2.4.1. Complex allyl architechtures
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Subjecting allyl carbonate 82 and TMSE B-ketoester 77a (R' = Bn, X = Y = CH,,
n = 1, Figure 2.4.2) to our fluoride-modified allylic alkylation conditions with achiral
ligand L8 revealed modest substrate-controlled diastereoselection of 1.7:1 (entry 1,
Figure 2.42A). Use of (S)--Bu-PHOX (L1) resulted in a highly efficient and
diastereoselective reaction giving the desired amino ester 84 in 95% yield and greater
than 25:1 dr, with no detectable epimerization at the amino ester side chain (entry 2).
The inherent diastereoselectivity could be completely reversed under catalyst control by
using (R)--Bu-PHOX (L.9), without significant loss in selectivity or reactivity (entry 3).
Likewise, upon exposing carbonate 83 and ketoester 77a to slightly modified allylic
alkylation conditions (40 °C vs. 25 °C) with achiral ligand L8, we again observed an
efficient reaction and slight inherent diastereoselectivity (entry 4, Figure 2.4.2B). This
bias could be enhanced by using ligand L1 to obtain o-quaternary ketone 86 in 6:1 dr and
87% yield, or overturned by use of L9 to obtain 87 in 5:1 dr and 77% yield (entries 5 and

6).
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Figure 2.4.2. Union of complex fragments by asymmetric allylic alkylation®

A

o
. OJ\O 77a (1.0 equiv)
© _[Pds(dba)l
MeN L TBAT, THF MeN
P %°C -P OMe i-P
Pr Me IPr (o e i-Pr Me

82 © 84 0
entry ligand dr (84:85)° yield (%)¢
1 L1 1.7:1 91
2 L2 >25:1 95
3 L3 1:21 93

o]

(o] o
Bn Bn
MeoJl\o/\/ 77a (1.0 equiv) -““\/ : &
I [Pdy(dba)g] : :
—_— +
Lt~ 07 L0
40 °C
[¢] (o] o

Me Me

83 Me 86 87
entry ligand dr (86:87)° yield (%)¢
4 L1 1.4:1 85
5 L2 6:1 87
Ph,P Ph,P Ph,P
L8 L1 L9

(a) Reaction conditions: 77a (1.0 equiv), 82 or 83 (1.1 equiv), [Pd,(dba);] (5 mol%), Ligand (12.5
mol%), TBAT (1.25 equiv) in THF (0.033M) at the indicated temperature for 24-48 h. (b)
Diastereoselectivity determined by '"H NMR analysis of the crude reaction mixture. (c) Yields are

reported for combined diastereomeric mixture.

2.5 CONCLUDING REMARKS

In conclusion, we have developed a new class of substrates for enolate alkylation
chemistry that benefit from ease of preparation and mild deprotection conditions that are
orthogonal to those used for traditional allyl B-ketoesters. We examined the application
of these compounds in palladium-catalyzed asymmetric allylic alkylation chemistry and

found that a wide range of functional groups and substrate scaffolds are well tolerated,
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including 6- and 7-membered ketones and lactams. We have further demonstrated the
value of these compounds for uniting complex coupling partners that would be
incompatible to preparation via standard allyl B-ketoester based allylic alkylation. We
envision that this technology will also enable the convergent cross-coupling of
synthetically challenging fragments for complex molecule synthesis. Further studies
exploring the application of TMSE [B-ketoesters in diverse reaction methodologies and

complex natural product synthesis are ongoing in our laboratory.

2.6 EXPERIMENTAL SECTION
2.6.1 Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under
an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried
by passage through an activated alumina column under argon.®' Reaction progress was
monitored by thin-layer chromatography (TLC). TLC was performed using E. Merck
silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence
quenching, p-anisaldehyde, or KMnOy staining. Silicycle SiliaFlash® P60 Academic
Silica gel (particle size 40—63 nm) was used for flash chromatography. 'H NMR spectra
were recorded on Varian Inova 300 MHz and 500 MHz spectrometers and are reported
relative to residual CHCls (5 7.26 ppm) or C¢HDs (5 7.16 ppm). >C NMR spectra were
recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and are reported relative
to CHCl; (8 77.16 ppm) or C¢HDs (8 128.06 ppm). Data for 'H NMR are reported as
follows: chemical shift (6 ppm) (multiplicity, coupling constant (Hz), integration).

Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p =



Chapter 2 — Development of TMSE Ester-Protected Enolates and Applications in Palladium— 154
Catalyzed Enantioselective Allylic Alkylation

pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app =
apparent. Data for C NMR are reported in terms of chemical shifts (5 ppm). '°F NMR
spectra were recorded on a Varian Mercury 300 spectrometer at 282 MHz, and are
reported relative to the external standard F3CCO,H (8 —76.53 ppm). IR spectra were
obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR
spectrometer using thin films deposited on NaCl plates and reported in frequency of
absorption (cm™). Optical rotations were measured with a Jasco P-2000 polarimeter
operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are
reported as: [o]p' (concentration in g/100 mL, solvent). Analytical HPLC was performed
with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD-H or AS) or Chiralcel (OD-
H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical
Industries, Ltd. Analytical SFC was performed with a Mettler SFC supercritical CO,
analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel
(OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical
Industries, Ltd. Analytical chiral GC analysis was performed with an Agilent 6850 GC
utilizing a GTA (30 m x 0.25 mm) column (1.0 mL/min carrier gas flow). High
resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an
Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric
pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).
Reagents were purchased from Sigma-Aldrich, Gelest, Strem, or Alfa Aesar and
used as received unless otherwise stated. 2-(trimethylsilyl)ethyl chloroformate (78) was
prepared according to a known procedure.®” Allyl carbonates 82 and 83 were prepared

from methyl chloroformate and the corresponding allyl alcohols by adaptation of a
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known procedure.” B-Ketoesters 74 and 77a-77g were prepared by adaptation of

procedures by Stoltz and co-workers.”*"” Data reported herein is for new compounds

only.

2.6.2 General procedure for TMSE [-ketoester substrate synthesis

0

T™S
[0} c| /\/
73, (1.1 equiv) /\/TMS
LiHMDS (2.5 equiv)
then Mel (5 equiv)
59 THF, =78 °C -0 °C — 23 °C
70% yield

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocyclohexane-1-carboxylate (74). A flame-dried
1L round bottom flask was charged with 28.02 g (152.83 mmol, 2.5 equiv) of LIHMDS
and a magnetic stirring bar in a nitrogen-filled glove box. The flask was sealed, removed
from the glove-box, fitted with a N, line, and suspended in a dry ice/acetone bath. 300
mL of THF was added slowly to the flask and allowed to stir until the LIHMDS had
completely dissolved. 6.00 g (61.13 mmol, 1.0 equiv) of cyclohexanone 59 in 130 mL of
THF was added via cannula over 30 min, and the flask was removed from the cooling
bath and allowed to warm to 23 °C while continuing to stir. After 30 min, the flask was
suspended in a dry ice/acetone bath and 12.15 g (67.24 mmol, 1.1 equiv) of
chloroformate 73 in 130 mL of THF was added over 30 min via cannula. This mixture
was allowed to warm to 23 °C and stirred for 6 h. The flask was then suspended in a
water/ice bath and 21.69 g (152.83 mmol, 2.5 equiv) of methyl iodide was added
dropwise. This mixture was allowed to warm to 23 °C and stirred for 6 h, at which time

an additional 21.69 g (152.83 mmol, 2.5 equiv) of methyl iodide was added dropwise.
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The mixture was then stirred at 23 °C until full consumption of starting material and
acylated intermediate was observed by TLC analysis. 300 mL of saturated aqueous
NH4Cl was then added slowly to the mixture and stirring continued for 2 h. The mixture
was then extracted with EtOAc (100 mL x 3), the collected organic fractions washed with
brine, dried over MgSOQ,, filtered and concentrated in vacuo. The crude residue was
purified by flash column chromatography (SiO,, hexanes to 3% EtOAc in hexanes) to
give 11.05 g (43.08 mmol) of ketoester 74 as a pale yellow oil. 70.1% yield. Ry = 0.3
(10% EtOAc in hexanes); '"H NMR (500 MHz, CDCls) § 4.29-4.12 (m, 2H), 2.57-2.37
(m, 3H), 2.05-1.95 (m, 1H), 1.76-1.57 (m, 3H), 1.48-1.37 (m, 1H), 1.26 (s, 3H), 1.01—
0.92 (m, 2H), 0.02 (s, 9H); *C NMR (126 MHz, CDCls) § 208.3, 173.2, 63.6, 57.1, 40.7,
38.2, 27.5, 22.6, 21.2, 17.3, -1.6; IR (Neat Film, NaCl) 3438, 2952, 2897, 2866, 1717,
1452, 1378, 1336, 1251, 1215, 1121, 1084, 1061, 1041, 938, 861, 834, 763 cm™'; HRMS

(MM: ESI-APCI+) m/z calc'd for C13H,503S1 [M + H]+: 257.1567; found 257.1556.

2.6.3 Procedures for the syntheses of TMSE [-ketoester intermediate 88 and

ketoester 77b

o]

) ¢l )Lo/\/“"s o o
73, (1.1 equiv) - o/\/TMS
LiHMDS (2.5 equiv) -
59 65% yield 88

2-(Trimethylsilyl)ethyl 1-H-2-oxocyclohexane-1-carboxylate (88). A flame-dried 500
mL round bottom flask was charged with 4.67 g (25.47 mmol, 1.3 equiv) of LIHMDS

and a magnetic stirring bar in a nitrogen-filled glove-box. The flask was sealed, removed
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from the glove-box, fitted with a N, line, and suspended in a dry ice/acetone bath. 100
mL of THF was added slowly to the flask and allowed to stir until the LIHMDS had been
completely dissolved. 2.00 g (20.38 mmol, 1.0 equiv) of cyclohexanone 59 in 50 mL of
THF was added via cannula over 30 min, and the flask was removed from the cooling
bath and allowed to warm to 23 °C while continuing to stir. After 30 min, the flask was
suspended in a dry ice/acetone bath and 4.10 g (22.42 mmol, 1.1 equiv) of chloroformate
73 in 50 mL of THF was added over 30 min via cannula. This mixture was allowed to
warm to 23 °C and stirred until full consumption of starting material was observed (ca. 6
h). 100 mL of saturated aqueous NH,C1 was then added slowly and the mixture stirred for
20 min before being extracted with EtOAc (30 mL x 3). The collected organic fractions
were washed with brine, dried over MgSO,, filtered and concentrated in vacuo. The crude
residue was purified by flash column chromatography (SiO,, hexanes to 2% EtOAc in
hexanes), to give 3.20 g (43.08 mmol) of ketoester 88 as a colorless oil. 64.6% yield. R, =
0.5 (20% EtOAc in hexanes); 'H NMR (500 MHz, CDCI;) 6 12.29 (s, 1H), 4.27-4.21 (m,
2H), 2.23 (dtt,J =24.7,6.3,1.6 Hz, 4H), 1.76-1.51 (m, 4H), 1.17-0.86 (m, 2H), 0.04 (s,
9H); "C NMR (126 MHz, CDCl;) § 172.9,171.9,97.8,62.4,29.1,22.5,22.4,21.9,17.3,
-1.5; IR (Neat Film, NaCl) 2952, 2899, 2860, 1742, 1718, 1654, 1618, 1453, 1398, 1360,
1297, 1258, 1219, 1175, 1079, 1060, 936, 859, 837 cm™'; HRMS (MM: ESI-APCI-) m/z

calc'd for C,,H,,0,Si [M — H]: 241.1265; found 241.1270.
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(o] o] TiCl,,(0.1 equiv) o (o]

: F
Selectfluor (1.2 equiv
0~ TVS (2equv) 0~ TMS
acetonitrile

88 77b
79% yield

2-(Trimethylsilyl)ethyl 1-fluoro-2-oxocyclohexane-1-carboxylate (77b). A flame dried
100 mL round bottom flask was charged with a magnetic stirring bar, 0.35 g 88 (1.44
mmol, 1.0 equiv), 5 mL of acetonitrile and cooled to 0 °C. To this mixture was added
0.027 g TiCl,(0.144 mmol, 0.10 equiv) dropwise over 15 min. To this stirring solution
was added 0.64 g Selectfluor (1.73 mmol, 1.2 equiv) in 20 mL of acetonitrile over 25
min. The mixture was then allowed to warm to 23 °C and stirred for 8 h. A 1:1 mixture of
H,O/EtOAc (20 mL) was added, and the mixture was extracted with EtOAc (20 mL x 3),
dried over MgSO, and adsorbed onto 1 g SiO, by concentration in vacuo. The crude
product was isolated by flash column chromatography (Si0O,, 3% Et,0O in pentane to 12%
Et,0 in pentane) to give 0.29 g of 77b as a colorless oil. 79.0% yield. R, = 0.2 (20%
EtOAc in hexanes); 'H NMR (300 MHz, CDCl,) 6 4.41-4.26 (m, 2H), 2.84-2.36 (m,
3H), 2.21-2.04 (m, 1H), 2.00-1.79 (m, 4H), 1.15-0.97 (m, 2H), 0.04 (s, 9H); "C NMR
(75 MHz, CDCL,) § 202.0 (d, *Jcr = 19.5 Hz), 167.0 (d, *Jer = 24.6 Hz), 96.4 (d, 'Jcr =
197.0 Hz), 65.0,39.7,36.0 (d, *Jcr = 21.7 Hz), 26.6 , 21.0 (d, *Jcr = 6.0 Hz), 17.3 , -1.6;
“F NMR (282 MHz, CDCl;) 6 —173.70; IR (Neat Film, NaCl) 2953, 1732, 1452, 1287,
1251, 1223, 1157, 1093, 1051, 860, 838 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for

C,,H,,FO,SiNa [M + Na]*: 283.1136; found 283.1145.

2.6.4 Spectroscopic data for TMSE B-ketoester substrates
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2-(Trimethylsilyl)ethyl 1-benzyl-2-oxocyclohexane-1-carboxylate (77a)

o] o]
Bn
iﬁ)\O/\/TMS

77a
Ketoester 77a was prepared by the general procedure and was isolated by flash column
chromatography (Si0O,, hexanes to 5% EtOAc in hexanes) as a colorless oil. 79.4% yield.
Ry = 0.3 (20% EtOAc in hexanes); 'H NMR (300 MHz, CDCl3) & 7.48-7.04 (m, 5H),
4.16 (td, J=9.8, 7.1 Hz, 2H), 3.13 (dd, J = 125.3, 13.7 Hz, 2H), 2.60-2.35 (m, 2H), 2.05
(ddd, J =124, 6.1, 3.0 Hz, 1H), 1.83-1.59 (m, 4H), 1.57-1.40 (m, 1H), 0.92 (ddd, J =
8.9, 7.2, 1.0 Hz, 2H), 0.07 (s, 9H); *C NMR (75 MHz, CDCl;) & 208.9, 172.8, 138.3,
132.0, 129.5, 128.2, 65.2, 63.8, 42.9, 42.0, 37.5, 29.2, 24.1, 18.8, 0.0; IR (Neat Film,
NaCl) 3029, 2952, 2856, 1713, 1496, 1453, 1439, 1250, 1221, 1177, 1132, 1086, 1053,
988, 932, 860, 838, 765, 744 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C 9H03Si

[M + H]": 333.1880; found 333.1863.

2-(Trimethylsilyl)ethyl 1-(3-methoxy-3-oxopropyl)-2-oxocyclohexane-1-carboxylate

(77¢)
o] o]
o /\/TMS
OMe
(0]
77c
Ketoester 77¢ was prepared according to the general procedure, using methyl acrylate in

place of methyl iodide, and isolated by flash column chromatography (SiO,, 5% EtOAc

in hexanes to 10% EtOAc in hexanes) as a colorless oil. 81.2% yield. Ry = 0.3 (25%
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EtOAc in hexanes); 'H NMR (300 MHz, CDCls) & 4.28-4.08 (m, 2H), 3.62 (s, 3H), 2.41
(dddd, J = 14.6, 12.9, 6.5, 2.7 Hz, 4H), 2.27-2.06 (m, 2H), 2.02-1.92 (m, 1H), 1.92—-1.84
(m, 1H), 1.76-1.51 (m, 3H), 1.40 (ddd, J = 13.5, 12.1, 4.2 Hz, 1H), 1.03-0.91 (m, 2H),
0.00 (s, 9H); *C NMR (75 MHz, CDCLs) § 207.6, 173.5, 171.8, 63.9, 60.0, 51.6, 41.0,
36.3, 29.7, 29.4, 27.5, 22.5, 17.4, -1.6; IR (Neat Film, NaCl) 3432, 2952, 2899, 2866,
1740, 1713, 1437, 1377, 1340, 1308, 1250, 1175, 1137, 1093, 1075, 1062, 1040, 943,
861, 838, 763, 695 cm_l; HRMS (MM: ESI-APCI+) m/z calc'd for C;sH305SiNa [M +

Na]": 351.1598; found 351.1602.

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocycloheptane-1-carboxylate (77d)

o] o]
Me
@)‘\o/\/TMS

77d
Ketoester 77d was prepared by the general procedure and purified by flash column
chromatography (SiO,, hexanes to 5% EtOAc in hexanes) as a colorless oil. 78% yield.
Ry = 0.4 (20% EtOAc in hexanes); 'H NMR (500 MHz, CDCl3) & 4.25-4.14 (m, 2H),
2.78-2.68 (m, 1H), 2.49 (ddd, J = 12.2, 8.6, 2.5 Hz, 1H), 2.19-2.10 (m, 1H), 1.88-1.71
(m, 3H), 1.71-1.48 (m, 3H), 1.43-1.34 (m, 1H), 1.33 (s, 3H), 1.06-0.94 (m, 2H), 0.03 (s,
9H);"*C NMR (126 MHz, CDCl3) § 210.5, 173.7, 63.6, 58.8, 42.0, 35.4, 30.1, 25.8, 24.7,
21.5,17.3, -1.6; IR (Neat Film, NaCl) 2949, 2861, 1736, 1710, 1458, 1378, 1250, 1232,
1152, 1105, 1062, 942, 860, 838 cm'; HRMS (EI+) m/z calc'd for C 4Hy60:Si [M +

Na]": 293.1543; found 293.1543.
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2-(Trimethylsilyl)ethyl 4-isobutyl-1-methyl-2-oxocyclohept-3-ene-1-carboxylate (77e)

[0} [0}
Me
o A~ T™MS
(i-Bu)0

77e
Vinylogous ester 77e was prepared by the general procedure, starting from 3-
isobutoxycyclohept-2-en-1-one, and purified by flash column chromatography (SiO»,
hexanes to 10% EtOAc in hexanes) as a colorless oil. 85% yield. Rr= 0.3 (20% EtOAc in
hexanes); '"H NMR (500 MHz, CsDs) & 5.66-5.53 (m, 1H), 4.32-4.07 (m, 2H), 3.16-3.00
(m, 2H), 2.57 (dddd, J = 17.7, 10.1, 3.9, 1.2 Hz, 1H), 2.50-2.37 (m, 1H), 2.20 (ddd, J =
17.7,7.0, 3.6 Hz, 1H), 1.77-1.67 (m, 2H), 1.66 (s, 3H), 1.59—-1.41 (m, 2H), 0.88 (ddd, J =
10.0, 7.0, 2.1 Hz, 2H), 0.71 (dd, J = 6.7, 4.2 Hz, 6H), -0.13 (s, 9H); °*C NMR (126 MHz,
CsDg) & 197.1, 173.9, 171.7, 105.6, 74.0, 62.9, 58.9, 33.9, 33.7, 27.6, 24.1, 18.7, 18.7,
17.0, -2.1; IR (Neat Film, NaCl) 2951, 1684, 1452, 1386, 1327, 1281, 1251, 1139, 1053,
859, 839, 718, 693, 658 cm_l; HRMS (EI+) m/z calc'd for C,3H3303S1 [M + H]+:

341.2143; found 341.2139.

2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxopiperidine-3-carboxylate (77f)

0o o
e ™S
BzN :ﬂ/lo N~

77f

Amide ester 77f was prepared by the general procedure, starting from N-benzoyl-2-

piperidone, and purified by flash column chromatography (SiO,, 5% EtOAc in hexanes
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to 25% EtOAc in hexanes) as a colorless oil. 89% yield. Ry = 0.3 (35% EtOAc in
hexanes); "H NMR (500 MHz, CDCl3) 6 7.76-7.72 (m, 2H), 7.47 (ddt, J = 8.0, 6.9, 1.3
Hz, 1H), 7.41-7.36 (m, 2H), 4.38-4.24 (m, 2H), 3.91-3.82 (m, 1H), 3.78 (dtd, J = 12.9,
5.2, 1.4 Hz, 1H), 2.47 (dddd, J = 13.8, 5.7, 4.3, 1.4 Hz, 1H), 2.06-1.91 (m, 2H), 1.85—
1.74 (m, 1H), 1.46 (s, 3H), 1.14-1.05 (m, 2H), 0.07 (s, 9H); *C NMR (126 MHz, CDCls)
6 175.0,173.1, 173.0, 135.9, 131.6, 129.0 128.0, 64.4, 52.9, 46.8, 33.7, 22.4, 20.2, 17.5,
-1.5; IR (Neat Film, NaCl) 3062, 2953, 2896, 1726, 1703, 1683, 1449, 1389, 1277, 1251,
1192, 1140, 1062, 932, 859, 838, 723, 694 cm '; HRMS (MM: ESI-APCI+) m/z calc'd for

C1oH27NO4SiNa [M + Na]': 384.1602; found 384.1611.

2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxoazepane-3-carboxylate (77g)

o]

(o]
Me ™S
Bz@)L o AN

779
Amide ester 77g was prepared by the general procedure, starting from 1-benzoylazepan-
2-one, and purified by flash column chromatography (SiO,, 5% EtOAc in hexanes to
25% EtOAc in hexanes) as a colorless oil. 77% yield. R,= 0.3 (35% EtOAc in hexanes);
'H NMR (500 MHz, CDCl3) & 7.72—7.68 (m, 2H), 7.50-7.45 (m, 1H), 7.39 (ddt, J = 8.2,
6.6, 1.1 Hz, 2H), 4.47-4.39 (m, 1H), 4.38-4.31 (m, 2H), 3.15 (ddd, J = 15.7, 11.2, 1.2
Hz, 1H), 2.22 (dtd, J = 14.8, 3.6, 1.8 Hz, 1H), 2.01-1.90 (m, 2H), 1.89-1.77 (m, 1H),
1.61 (dddt, J=20.7, 12.0, 5.0, 3.2 Hz, 3H), 1.44 (s, 3H), 1.14-1.06 (m, 2H), 0.08 (s, 9H);

C NMR (126 MHz, CDCl3) § 175.6, 174.9, 173.1, 136.4, 131.5, 128.1, 127.9, 64.3,
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55.0, 44.0, 34.4, 27.9, 26.9, 25.0, 17.5, -1.5; IR (Neat Film, NaCl) 2956, 1729, 1661,
1614, 1455, 1383, 1249, 1169, 1115, 860, 838 cm'; HRMS (MM: ESI-APCI+) m/z

calc'd for Cy0H2oNO4SiNa [M + Na]+: 398.1758; found 398.1775.

2.6.5 General procedure for allyl carbonate substrate syntheses

methyl chloroformate (3 equiv)

pyridine (3 equiv)
HO /\( - OJ\ O/\%

cl DMAP (0.013 equiv), DCM
89 76% yield 80b

2-Chloroallyl methyl carbonate (80b). To a flame-dried 50 mL round bottom flask
charged with a magnetic stirring bar, 1.00 g 2-chloroallyl alcohol (89) (10.8 mmol, 1.0
equiv), 2.56 g of pyridine (32.4 mmol, 3.0 equiv), 0.016 g of dimethylaminopyridine
(0.14 mmol, 0.013 equiv) and 22 mL of DCM at 0 °C, was added 3.06 g of methyl
chloroformate (32.43 mmol, 3 equiv), dropwise over 10 min. The solution was allowed
to warm to 23 °C and stirred for 12 h. The mixture was then diluted with 40 mL of
DCM, washed consecutively with 50 mL H,O and 50 mL brine before being dried over
MgSO, and directly subjected to flash column chromatography (SiO,, pentane to 5%
Et,O in pentane). 1.23 g of 2-Chloroallyl methyl carbonate was isolated as a colorless
oil. 75.6% yield. R;= 0.6 (20% EtOAc in hexanes); '"H NMR (500 MHz, CDCl,) 6 5.49
(dt,J =20, 1.2 Hz, 1H), 541 (dt,J = 1.8,0.9 Hz, 1H), 4.68-4.67 (m, 2H), 3.80 (d, J =
1.2 Hz, 3H); "C NMR (126 MHz, CDCl,) & 155.1, 135.2, 115.2, 69.0, 55.1; IR (Neat

Film, NaCl) 3008, 2959, 2255, 1752, 1639, 1444, 1383, 1358, 1265, 1182, 1116, 974,
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908, 790, 745 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C;H,CIO; [M + H]":
151.0156; found 151.0150.

2.6.6. Spectroscopic data for allyl carbonate substrates

2-(4-Fluorophenyl)allyl methyl carbonate (80d) was prepared by the general procedure
from 2-(4-fluorophenyl)allyl alcohol and isolated as a colorless oil by flash column
chromatography (SiO,, pentane to 5% Et,O in pentane). 87% yield. R, = 0.4 (20% EtOAc
in hexanes); '"H NMR (500 MHz, CDCl;) § 7.44-7.36 (m, 2H), 7.09-6.99 (m, 2H), 5.51
(s, 1H), 5.39 (tt, J = 1.2, 0.5 Hz, 1H), 5.00 (dd, J = 1.3, 0.6 Hz, 2H), 3.79 (s, 3H); "C
NMR (126 MHz, CDCl,) 8 162.65 (d, 'Jo = 247.0 Hz), 155.54, 141.1, 133.85, 127.74
(d,’Jer = 7.8 Hz), 115.85 (d, *Jor = 1.4 Hz), 115.41 (d, *J o = 21.9 Hz), 69.09 , 54.89; "°F
NMR (282 MHz, CDCl,) 8 -126.95; IR (Neat Film, NaCl) 3007, 2959, 1893, 1750,
1634, 1603, 1511, 1447, 1372, 1260, 1164, 1102, 969, 918, 839, 791, 742 cm™'; HRMS

(MM: ESI-APCI+) m/z calc'd for C,,H,,FO, [M + H]": 211.0765; found 211.0772.
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(R)-Methyl (2-(4-methyl-5-oxocyclohex-3-en-1-yl)allyl) carbonate (83)

o]

PR

MeO (0]

/\/
0

g3 Ve
Enone carbonate 83 was prepared by the general method from known allylic alcohol (R)-
5-(3-hydroxyprop-1-en-2-yl)-2-methylcyclohex-2-en-1-one (.e. (R)-10-hydroxy
carvone)® and isolated as a colorless oil by flash column chromatography (SiO,, 5%
EtOAc in henxanes to 20% EtOAc in hexanes). 91% yield. R, = 0.2 (20% EtOAc in
hexanes); 'H NMR (500 MHz, CDCl,) 8 6.74 (ddd, J=5.9,2.7, 1.4 Hz, 1H), 5.22 (dt, J =
1.3,0.7 Hz, 1H), 507 (dd,J = 1.4,0.7 Hz, 1H), 4.64 (ddt, J = 3.8, 1.2, 0.5 Hz, 2H), 3.79
(s, 3H), 2.97-2.74 (m, 1H), 2.63 (ddd, J = 16.1, 3.8, 1.6 Hz, 1H), 2.52 (dddt, J = 18.2,
6.0,4.5,1.5 Hz, 1H), 239 (dd, J = 16.1, 13.2 Hz, 1H), 2.31 (ddt, J = 18.2, 10.8, 2.5 Hz,
1H), 1.78 (dt, J = 2.6, 1.3 Hz, 3H);""C NMR (126 MHz, CDCl;) § 198.9, 155.5, 144.7,
144.0,135.6, 1143, 69.1, 54.9,429, 38.2, 31.3, 15.7; IR (Neat Film, NaCl) 2958, 2928,
2893, 1750, 1671, 1444, 1364, 1266, 1107, 984, 954, 913, 791 cm™'; HRMS (MM: ESI-

APCI+) m/z calc'd for C,,H;;0, [M + H]": 225.1121; found 225.1118.
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2.6.7 Procedure for the synthesis allyl carbonate 82

NH;CI
Pr o OMe

)
MeoJ\o
“ equg)
MeOZCO/\"/\CI BT HN
(1 equiv) i-Pr OMe

TBAB (0.1 equiv) N
Na,COj; (5 equiv)
91 MeCN 92 ©
66% yield

PPh; (1.3 equiv)
CCly4 (1.3 equiv)

MeOZCO/\"/\OH

90

Methyl N-(2-(((methoxycarbonyl)oxy)methyl)allyl)-L-leucinate (92). Known hydroxy
carbonate 90°° was prepared by the general method. Following the procedure of Altmann
and co-workers,” 0.77 g of 90 (5.27 mmol, 1.0 equiv) was added to flame-dried round
bottom flask charged with a magnetic stirring bar and 0.66 mL of acetonitrile. The
solution was cooled to 0 °C and 1.80 g of triphenylphosphine (6.83 mmol, 1.3 equiv) and
0.66 mL of carbontetrachloride (6.85 mmol, 1.3 equiv) were added sequentially. The
resulting slurry was allowed to warm to 23 °C and stirred for 2 h before being subjected
directly to flash column chromatography. The resulting crude oil, 91 was determined to
be ca. 95% pure by 'H NMR analysis and used without further purification
(yield not determined). Following a known procedure,”® 0.47 g of crude allylic chloride
intermediate 91 (2.855 mmol, 1.5 equiv) was combined with 0.28 g of Nal (1.90 mmol,
1.0 equiv), 0.346 g of (L)-leucine methyl ester hydrochloride (1.90 mmol, 1.0 equiv),
0.061 g of tetrabutylammonium bromide (0.19 mmol, 0.1 equiv), 1.01 g Na,CO; (9.52
mmol, 5 equiv) and 20 mL acetonitrile in a 50 mL round bottom flask equipped with a
magnetic stirring bar. The flask was fitted with a reflux condenser and the mixture stirred
at 82 °C for 14 h. The vessel was then cooled to 23 °C and the mixture diluted with 50

mL Et,0, washed with H,O (20 mL x 2), dried over MgSO, and concentrated in vacuo.
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The crude oil was purified by flash column chromatography (SiO,, 5% EtOAc in hexanes
to 15% EtOAc in hexanes) to give 0.52 g of amino ester 92 as a colorless oil. 66.1%
yield from crude 91. R;= 0.2 (40% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) &
5.23-5.08 (m, 2H), 4.66 (t,J = 1.0 Hz, 2H), 3.79 (s, 3H), 3.71 (s, 3H), 3.25 (t,/ = 7.3 Hz,
1H), 3.19 (dd, J = 80.0, 13.8 Hz, 1H), 1.74 (dq, J = 13.5, 6.7 Hz, 1H), 1.51 (br s, 2H),
1.43 (t,J = 7.2 Hz, 2H), 0.89 (dd, J = 9.2, 6.6 Hz, 6H);"’C NMR (126 MHz, CDCl,) &
176.5, 155.7, 141.7, 115.0, 68.9, 59.1, 54.9, 51.7, 504, 429, 24.9, 229, 22.2; IR (Neat
Film, NaCl) 2956, 2868, 1750, 1737, 1443, 1368, 1267, 1196, 1151, 980, 943, 792 cm™';

HRMS (MM: ESI-APCI+) m/z calc'd for C,;H,NO; [M + HJ": 274.1649; found

274.1659.
X X
MeO o/j/ HCHO (1.4 equiv)  Me© o/j/
MeOH
HN ) MeN
iPr \\\,“kn/OMe then NaBH,CN iPr \\\.«‘kn/ome
g2 O 64% yield g2 O

Methyl N-(2-(((methoxycarbonyl)oxy)methyl)allyl)-N-methyl-L-leucinate (82). To a
10 mL round bottom flask containing a magnetic stirring bar and a solution of 0.37 g 92
(1.35 mmol, 1.0 equiv) in 4 mL of methanol was added 0.056 g of formaldehyde (1.88
mmol, 1.4 equiv) as a 37% solution in H,0. The mixture was stirred at 23 °C for 12 h at
which point 0.11 g sodium cyanoborohydride was carefully added. After an additional
12 h of stirring, the mixture was diluted with H,O (5 mL), extracted with EtOAc (5 mL x
3), dried over MgSO,, concentrated in vacuo and subjected directly to purification by
flash column chromatography (SiO,, 10% EtOAc in hexanes to 25% EtOAc in hexanes)

to yield 0.25 g of carbonate 82 as a colorless oil. 63.8% yield. R,= 0.5 (33% EtOAc in

hexanes); '"H NMR (300 MHz, CDCl,) & 5.30-5.07 (m, 2H), 4.63 (t,J = 1.0 Hz, 2H), 3.79
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(s,3H),3.69 (s,3H),3.34 (dd,J =8.3,7.0 Hz, 1H), 3.18 (dd, J = 75.0, 13.8 Hz, 2H), 2.22
(s, 3H), 1.73-1.61 (m, 1H), 1.61-1.46 (m, 2H), 0.90 (dd, J = 17.5, 6.6 Hz, 6H);"’C NMR
(126 MHz, CDCL,) & 173.3, 155.6,141.2,115.4,68.5,63.8,57.3,54.7,50.9, 384,370,
24.7,22.9,21.9; IR (Neat Film, NaCl) 2955, 2870, 2803, 1751, 1658, 1444, 1385, 1368,
1269, 1193, 1157, 1126, 1072, 978, 945, 792 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd

for C,,H,.NO, [M + H]": 288.1805; found 288.1795.

2.6.8 Optimization of reaction parameters

Table 2.6.8.1. Optimization of reaction parameters

AKX 76

8 Me0 [Pdy(dba)3] (5 mol %) 7 Me
é)( o/\/TMS (S)-t-Bu-PHOX(12.5 mol %)} iﬂ\\/
TBAT (1.25 equiv)
74
X

solvent, 40 °C

7
entry equiv allyl sovent yield (%)2 ee (%)°
1 Br 1.0 toluene 55 83
2 OTs 1.0 1,4-dioxane 43 77
3 OMs 1.0 1,4-dioxane 45 84
4 OAc 1.0 1,4-dioxane 15 82
5 OCOLAllyl 1.0 1,4-dioxane 78 83
6 0OCO,Me 1.0 1,4-dioxane 78 84
7 0OCO,Me 0.75 1,4-dioxane 51 82
8 0OCO,Me 15 1,4-dioxane 74 82
9 0OCO,Me 2.0 1,4-dioxane 73 84
10 0CO,Me 1.1 toluene 33 82
1 0OCO,Me 11 MTBE 65 84
12 0CO,Me 11 THF 83 83
13 0CO,Me 1.1 tol/hex 45 93
14¢ 0OCO,Me 1.1 THF 81 86

General Procedure for Optimization Experiments: Inside a nitrogen-filled glove-box,

an oven-dried 0.5 dram vial was charged with a magnetic stirring bar, 0.0046 g
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[Pdy(dba)s] (0.005 mmol, 0.05 equiv), 0.0047 g (S)--Bu-PHOX (0.0125 mmol, 0.125
equiv), 0.067 g TBAT (0.125 mmol, 1.25 equiv), 0.018 g tridecane (0.10 mmol, 1.0
equiv) and 3.0 mL THF. This mixture was stirred at 25 °C for 30 min at which time
0.026 g of B-ketoester 74 (0.10 mmol, 1.0 equiv) and 0.013 g of allyl methyl carbonate
(0.11 mmol, 1.1 equiv) were added, neat. The vial was capped and stirring continued for
12 h at which time the vial was removed from the glove-box, uncapped and the magnetic
stirring bar removed. The reaction mixture was diluted with hexanes (2 mL) and passed
through a pipette plug (SiO,) with 4 mL of hexanes followed by 4 mL of Et;O. From the

combined organic fractions, a sample was prepared and the mixture analyzed by GC.

2.6.9 General procedure for Pd-catalyzed allylic alkylation
Please note that the absolute configuration for all products 79 and 81 has been inferred by
analogy to previous studies. For isolated yields, see the main text of vide supra. For

respective GC, HPLC or SFC conditions, as well as optical rotation data, please refer to

Table 2.6.11.

MeoJ\o/Y

Me

(o] B o o .
n 80a (1.1 equiv) n
T™MS '
é/u\o/\/ - é‘,‘ \(
[Pd,(dba);] (5 mol%)
(S)-t-Bu-PHOX (12.5 mol%) Me
77a

TBAT (1.25 equiv), THF, 25 °C
81a

89% yield
(S)-2-benzyl-2-(2-methylallyl)cyclohexan-1-one (81a). Inside a nitrogen filled glove-
box, an oven-dried 20 mL scintillation vial was charged with a magnetic stirring bar,
0.011 g [Pd,(dba),;] (0.012 mmol, 0.05 equiv), 0.011 g (S)-+~-Bu-PHOX (0.029 mmol,

0.125 equiv), 0.15 g TBAT (0.28 mmol, 1.25 equiv) and 7 mL THF. This mixture was
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stirred at 25 °C for 30 min at which time 0.075 g of B-ketoester 77a (0.23 mmol, 1.0
equiv) and 0.033 g of allyl methyl carbonate (0.25 mmol, 1.1 equiv) were added, neat.
The vial was capped and stirring continued for 16 h at which time the vial was removed
from the glove-box, uncapped and magnetic stirring bar removed. The reaction mixture
was concentrated in vacuo. The resulting crude semisolid was purified by flash column
chromatography (SiO,, hexanes to 2% EtOAc in hexanes) to give ketone 81la as a
colorless oil. 89% yield. 89% ee, [a],> —20.1 (¢ 1.2, CHCL,); R;=0.3 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) § 7.27-7.23 (m, 2H), 7.22-7.17 (m, 1H), 7.15-
7.11 (m, 2H),4.86 (dd,J =20, 1.4 Hz, 1H),4.69 (dd,J =2.0,1.0 Hz, 1H),2.93 (dd, J =
114.0, 13.7 Hz, 2H), 2.60-2.49 (m, 1H), 2.44-2.38 (m, 1H), 2.37 (s, 3H), 1.92-1.84 (m,
1H), 1.81-1.69 (m, 2H), 1.67 (dd, J = 1.5, 0.8 Hz, 3H), 1.64-1.56 (m, 2H); "C NMR
(126 MHz, CDCl,) & 214.8, 142.2, 137.8, 1309, 1279, 1262, 114.7, 525,432, 41.7,
39.7,35.7,26.7, 24.6, 20.8; IR (Neat Film, NaCl) 3026, 2935, 2863, 1700, 1448, 1123,
893, 746 cm’'; HRMS (MM: ESI-APCI+) m/z calc’d for C;H,;0 [M + H]*: 243.1743,
found 243.1745; SFC conditions: 1% MeOH, 2.5 mL/min, Chiralpak OD-H column, A =

210 nm, t; (min): major = 5.79, minor = 6.48.
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2.6.10 Spectroscopic data for Pd-catalyzed allylic alkylation products

(S)-3-Allyl-1-benzoyl-3-methylazepan-2-one (79g)

[o}

Me P
Bz@“‘\\/

799
Lactam 79g was prepared by the general procedure and isolated by flash column
chromatography (SiO,, 5% EtOAc in hexanes to 25% EtOAc in hexanes) as a colorless
oil. 91% yield. 90% ee, [at],” -35.2 (¢ 1.7, CHCL,); R,= 0.2 (30% EtOAc in hexanes); 'H
NMR (500 MHz, CDCL,) § 7.52-7.48 (m, 2H), 7.47-7.42 (m, 1H), 7.39-7.35 (m, 2H),
5.72 (dddd, J = 17.1, 10.3, 7.6, 7.1 Hz, 1H), 5.13-5.06 (m, 2H), 4.13—4.05 (m, 1H), 3.91
(ddd, J = 14.8, 8.8, 2.0 Hz, 1H), 2.40 (dddt, J = 71.6, 13.7, 7.6, 1.2 Hz, 2H), 1.91-1.78
(m, 4H), 1.78-1.67 (m, 2H), 1.29 (s, 3H); "C NMR (126 MHz, CDCl,) & 182.5, 174.7,
137.0, 133.7, 131.0, 128.1, 127.4, 118.7,47.7, 44.7, 42.6, 35.1, 28.0, 24.9, 23.3; IR (Neat
Film, NaCl) 3072, 2830, 1676, 1448, 1279, 1244, 1224, 1148, 1117, 1096, 971,951,919,
790, 726, 695 cm'; HRMS (MM: ESI-APCI+) m/z calc’d for C,;H,,NO, [M + HJ":
272.1645, found 272.1660; HPLC conditions: 5% IPA, 1.0 mL/min, Chiralpak OJ-H

column, A = 220 nm, t; (min): major = 5.60, minor = 5.00.
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(R)-2-Benzyl-2-(2-chloroallyl)cyclohexan-1-one (81b)

o

81b
Ketone 81b was prepared according to the general procedure and isolated by flash
column chromatography (SiO,, 5% EtOAc in hexanes to 10% EtOAc in hexanes) as a
colorless oil. 72% yield. 96% ee, [a],” =7.0 (¢ 1.4, CHCL,); R; =04 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl;) 6 7.39-7.16 (m, 2H), 7.20-7.08 (m, 3H), 5.30 (d,
J=13Hz, 1H), 5.17 (t, J = 1.2 Hz, 1H), 2.99 (dd, J = 40.6, 14.1 Hz, 2H), 2.69 (dd, J =
56.9, 15.6 Hz, 2H), 2.66-2.34 (m, 2H), 1.97-1.63 (m, 6H); "C NMR (126 MHz, CDCl;)
0 213.5,137.0, 130.7, 128.1, 127.7, 126.5, 116.6, 52.5, 43.9, 41.3, 39.7, 35.1, 26.5, 20.9;
IR (Neat Film, NaCl) 2939, 2858, 1705, 1631, 1494, 1452, 1429, 1118, 1088, 889, 701
cm’'; HRMS (MM: ESI-APCI+) m/z calc’d for C,(H,,CIO [M + H]": 263.1197, found
263.1199; SFC conditions: 3% MeOH, 2.5 mL/min, Chiralpak OD-H column, A = 210

nm, t; (min): major = 6.09, minor = 7.04.
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(R)-2-Benzyl-2-(2-(4-fluorophenyl)allyl)cyclohexan-1-one (81d)

[o}
T Bn
F
81d

Ketone 81d was prepared according to the general procedure, and isolated by flash
column chromatography (SiO,, 1% EtOAc in hexanes to 3% EtOAc in hexanes) as a
colorless oil. 91% yield. 95% ee, [a],” —9.9 (¢ 2.0, CHCL,); R; = 0.3 (10% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) 6 7.37-7.12 (m, 5H), 7.11-6.85 (m, 4H), 5.26 (d,
J=13 Hz, 1H), 5.09 (d, J = 1.5 Hz, 1H), 2.86 (dd, J = 102.0, 13.7 Hz, 2H), 2.87-2.73
(m, 2H), 2.31 (it, J = 6.2, 2.5 Hz, 2H), 1.83-1.50 (m 6H) ; "C NMR (126 MHz, CDCl;) &
214.3,162.2 (d, 'Jos = 246.2 Hz), 144.5, 139.2 (d, *J = 3.3 Hz), 137.8, 130.7, 128.2 (d,
*Jor = 7.9 Hz), 127.9, 126.3, 117.6, 115.0 (d, *Jo = 21.3 Hz), 53.3, 41.7, 40.9, 39.7, 35.1,
26.1, 20.8; ""F NMR (282 MHz, CDCl;) 6 —128.24; IR (Neat Film, NaCl) 3027, 2939,
2864, 1703, 1602, 1508, 1453, 1223, 1159, 1126, 905, 841, 750 cm™'; HRMS (MM: ESI-
APCI+) m/z calc’d for C,,H,,FO [M + HJ": 323.1806, found 323.1809; SFC conditions:
10% MeOH, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, t; (min): major = 8.59,

minor = 10.15.
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Methyl N-(2-(((R)-1-benzyl-2-oxocyclohexyl)methyl)allyl)-N-methyl-L-leucinate (84)

i-Pr ~

0 Bn
0

84
Ketone 84 was prepared by the general procedure and isolated by flash column
chromatography (SiO,, 2% EtOAc in hexanes to 5% EtOAc in hexanes) as a colorless
oil. 95% yield. >25:1 dr, [0, —20.57 (¢ 1.75, CHCL); R, = 0.5 (30% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl,) & 7.25-7.21 (m, 2H), 7.21-7.16 (m, 1H), 7.15—
7.11 (m, 2H), 5.12 (q, J = 1.3 Hz, 1H), 4.94-4.88 (m, 1H), 3.67 (s, 3H), 3.33 (t, /= 7.6
Hz, 1H), 3.05-2.90 (m, 2H), 2.93 (dd, J = 176.8, 13.7 Hz, 2H), 2.67-2.54 (m, 2H), 2.40—
2.31 (m, 1H), 2.25 (dd, J = 15.1, 1.1 Hz, 1H), 2.20 (s, 3H), 1.90 (ddq, J = 8.0, 4.3, 1.9
Hz, 1H), 1.81-1.47 (m, 8H), 0.90 (dd, J = 11.9, 6.6 Hz, 6H); °C NMR (126 MHz, CDCl,)
0 214.9, 173.3, 143.0, 138.1, 130.9, 127.8, 126.1, 116.5, 62.9, 61.8, 52.6, 50.8, 41.2,
39.5, 38.9, 38.4, 36.8, 36.5, 26.9, 24.8, 23.0, 22.2, 20.8; IR (Neat Film, NaCl) 2949, 2868,
1732, 1703, 1641, 1452, 1189, 1152, 1122, 1019, 910, 702 ¢cm™'; HRMS (MM: ESI-

APCI+) m/z calc’d for C,sH,,NO, [M + H]*: 400.2836, found 400.2860.
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Methyl N-(2-(((S)-1-benzyl-2-oxocyclohexyl)methyl)allyl)-N-methyl-L-leucinate (85)

-
LY
P \\““Kg/om
85
Ketone 85 was prepared by the general procedure, using ligand L9 instead of L1, and
isolated by flash column chromatography (SiO,, 2% EtOAc in hexanes to 5% EtOAc in
hexanes) as a colorless oil. 95% yield. 1:21 dr, [a],” +12.94 (¢ 1.25, CHCL); R, = 0.5
(30% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) 8 7.25-7.21 (m, 2H), 7.21-7.16
(m, 1H), 7.16-7.12 (m, 2H), 5.11 (d, J = 1.5 Hz, 1H), 4.89 (d, J = 1.7 Hz, 1H), 3.68 (s,
3H), 3.29 (dd, J=17.7, 7.0 Hz, 1H), 3.03-2.93 (m, 2H), 2.92 (dd, J=197.9, 13.7 Hz, 2H),
2.68-2.58 (m, 2H), 2.34 (dt, J = 13.8, 4.9 Hz, 1H), 2.27-2.21 (m, 1H), 2.19 (s, 3H), 1.91
(d, J=12.8 Hz, 1H), 1.85-1.56 (m, 8H), 0.89 (dd, J = 12.4, 6.3 Hz, 6H); "C NMR (126
MHz, CDCL,) 6 214.8, 173.2, 143.2, 138.2, 131.0, 127.8, 126.1, 116.5, 63.3, 61.6, 52.5,
50.8,41.1, 39.5, 39.3, 38.2, 36.7, 36.7, 26.9, 24.9, 22.8, 22.5, 20.8; IR (Neat Film, NaCl)
3027, 2950, 2867, 1734, 1702, 1641, 1602, 1495, 1452, 1192, 1154, 1125, 1030, 909, 749,
702 cm’'; HRMS (MM: ESI-APCI+) m/z calc’d for C,sH;;NO; [M + HJ]*: 400.2846,

found 400.2855.
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(R)-5-(3-((S)-1-Benzyl-2-oxocyclohexyl)prop-1-en-2-yl)-2-methylcyclohex-2-en-1-one

(86)

o
Bn
@.‘“\ \/

o

86 Me

Ketone 86 was prepared by the general procedure, at 40 °C, and isolated by flash column
chromatography (SiO,, 3% EtOAc in hexanes to 15% EtOAc in hexanes) as a colorless
oil. 87% combined yield (86 and 87). Characterization data reported for major
diastereomer. 6:1 dr, [at],” +49.25 (¢ 0.25, CHCL); R, = 0.1 (30% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl,) 6 7.25-7.18 (m, 3H), 7.12-7.02 (m, 2H), 6.72 (dq, J=4.2, 1.3
Hz, 1H), 4.97-4.91 (m, 1H), 4.82 (d, J = 1.2 Hz, 1H), 3.03-2.83 (m, 2H), 2.64-2.49 (m,
2H), 2.49-2.37 (m, 4H), 2.38-2.09 (m, 3H), 1.85-1.78 (m, 2H), 1.77 (dt, J = 2.6, 1.3 Hz,
3H), 1.76-1.61 (m, 4H); "C NMR (126 MHz, CDCl;) 6 214.7, 199.8, 147.4, 144.7,
137.3, 135.3, 130.6, 128.0, 126.5, 113.1, 52.5, 43.6, 42.2, 41.8, 39.5, 39.4, 35.6, 31.9,
26.7,20.8, 15.7; IR (Neat Film, NaCl) 2923, 2863, 1702, 1672, 1494, 1450, 1365, 1248,
1109, 901, 750, 703 cm™; HRMS (MM: ESI-APCI+) m/z calc’d for C,;H,;O,Na [M +

Na]*: 359.1982, found 359.1988.
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(R)-5-(3-((S)-1-Benzyl-2-oxocyclohexyl)prop-1-en-2-yl)-2-methylcyclohex-2-en-1-one

87)

o]

g7 Me

Ketone 87 was prepared by the general procedure, at 40 °C, and isolated by flash column
chromatography (SiO,, 3% EtOAc in hexanes to 15% EtOAc in hexanes) as a colorless
oil. 77% combined yield (86 and 87). Characterization data reported for major
diastereomer. 6:1 dr, [o],* —10.60 (c 0.50, CHCLy); R, = 0.1 (30% EtOAc in hexanes); 'H
NMR (500 MHz, CDCl,) 6 7.25-7.18 (m, 3H), 7.12-7.02 (m, 2H), 6.73 (dq, /=4.2, 1.3
Hz, 1H), 4.98 (s, 1H), 4.84 (s, 1H), 3.01-2.86 (m, 2H), 2.59-2.38 (m, 4H), 2.36-2.11 (m,
3H), 1.88-1.81 (m, 2H), 1.76 (dt, J= 2.6, 1.3 Hz, 3H), 1.76-1.61 (m, 4H); "C NMR (126
MHz, CDCl,) § 214.6, 199.8, 147.1, 144.5, 137.5, 135.4, 130.6, 128.0, 126.4, 112.7,
52.5,43.7,42.6,41.7,39.6, 39.2, 35.9, 31.9, 26.8, 20.8, 15.7; IR (Neat Film, NaCl) 2923,
2863, 1702, 1672, 1494, 1450, 1365, 1248, 1109, 901, 750, 703 cm™'; HRMS (MM: ESI-

APCI+) m/z calc’d for C,;H,,O,Na [M + Na]*: 359.1982, found 359.1985.
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2.6.11 Determination of enantiomeric excess and optical rotations

Table 2.6.11.1. Determination of enantiomeric excess and optical rotations

entry compound analytic conditions ee (%) polarimetry
o
Me GC 25
1 AN G-TA, 105 °C, isotherm 86 [olp ~-117
tz (min): major 7.80, minor 8.24 (c 0.6, CHCl3)
2 Bn SFC ;
SN Chiralpak OJ-H, A =210 nm [a]p -13.6
2 3% IPA/CO,, 2.5 mL/min, 88 (c1.3, CHCl3)
tg (min): major 5.74, minor 4.71
o
F GC ®_cp74
3 W N\F G-TA, 110 °C, isotherm 91 [olp -G8
tz (min): major 5.039, minor 5.41 (c1.5, CHCl)
CO,Me
o GC 2
a o~ G-TA, 120 °C, isotherm 89 [o]p 10.51
u tg (min): major 15.3, minor 22.18 (c1.6, CHCI3)
(o]
Me
o~ GC ER
5 SN G-TA, 110 °C, isotherm 87 [olp 2213
tz (min): major 6.45, minor 7.23 (c 1.4, CHCl5)
9 e HPLC
6 NP Chiralcel OD-H, 2 = 220 nm 9 [olp” -65.6
1% IPA/hexanes, 1.0 mL/min (c 1.0, CHCl3)
i-BuO tgr(min): major 6.12, minor 7.16
Me SFC
SN F Chiralpak AD-H, A = 254 nm [alp -76.5
7 BzN 5% MeOH/CO,, 2.5 mL/min, 9% (c2.