
 
 

New Catalysts for the Renewable Production of 
 

Monomers for Bioplastics 
 
 

Thesis by 
 

Joshua J. Pacheco 
 

 
 

In Partial Fulfillment of the Requirements for  
 

the Degree of Doctor of Philosophy 
 
 
 
 

 
 
 

California Institute of Technology 
 

Pasadena, CA 
 

2015 
 

(Defended May 12, 2015) 



ii 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2015 
 

Joshua J. Pacheco 
 

All Rights Reserved 



iii 

 
 

ACKNOWLEDGMENTS 
 

Many thanks and appreciation is given to my family for their never-ending 

love and support during my time as a Ph.D. student.   

My fellow Ph.D. students and postdocs within the M.E. Davis group were 

indispensable during my graduate studies. It was truly a pleasure to have been 

able to work every day with some of the hardest working and brightest 

researchers in the field.  Without the many great ideas that had arisen from 

discussions with them, this work would not have been possible. 

To many others at Caltech, including Dr. Jay Labinger, Dr. Mona 

Shahgholi, Dr. Chi Ma, and Dr. David VanderVelde,  I am greatly thankful for the 

advice and assistance that you offered me. 

Lastly, I express my great appreciation to my advisor, Prof. Mark Davis, 

for bringing me into his research group and giving me the opportunity to join the 

exciting field of zeolite synthesis and catalysis.   

 
 
 
 
 
 
 
 
  



iv 

 
 

ABSTRACT 
 

Terephthalic acid (PTA) is one of the monomers used for the synthesis of 

the polyester, polyethylene terephthalate (PET), that is used for the large-scale 

manufacture of synthetic fibers and plastic bottles.  PTA is largely produced from 

the liquid-phase oxidation of petroleum-derived p-xylene (PX). However, there 

are now ongoing worldwide efforts exploring alternative routes for producing PTA 

from renewable, biomass resources.  

In this thesis, I present a new route to PTA starting from the biomass-

derived platform chemical, 5-hydroxymethylfurfural (HMF).  This route utilizes 

new, selective Diels-Alder-dehydration reactions involving ethylene and is 

advantageous over the previously proposed Diels-Alder-dehydration route to 

PTA from HMF via 2,5-dimethylfuran (DMF) since the H2 reduction of HMF to 

DMF is avoided.  Specifically, oxidized derivatives of HMF are reacted as is, or 

after etherification-esterification with methanol, with ethylene over solid Lewis 

acid catalysts that do not contain strong Brønsted acids in order to synthesize 

intermediates of PTA and its equally important diester, dimethyl terephthalate 

(DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA) is 

reacted with high pressure ethylene over a pure-silica molecular sieve catalyst 

containing framework tin (Sn-Beta) to produce the Diels-Alder-dehydration 

product,  4-(hydroxymethyl)benzoic acid (HMBA), with ~30% selectivity at ~20% 

yield.  If HMFA is protected with methanol to form methyl 5-

(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in 

the presence of a pure-silica molecular sieve containing framework zirconium 
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(Zr-Beta) to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 

>70% selectivity at >20% yield. HMBA and MMBC can then be oxidized to 

produce PTA and DMT, respectively.  When Lewis acid containing mesoporous 

silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-

Beta), are used as catalysts, a significant decrease in selectivity/yield of the 

Diels-Alder-dehydration product is observed.   

An investigation to elucidate the reaction network and side products in the 

conversion of MMFC to MMBC was performed, and the main side products are 

found to be methyl 4-formylcyclohexa-1,3-diene-1-carboxylate and the ethylene 

Diels-Alder adduct of this cyclohexadiene.  These products presumably form by a 

different dehydration pathway of the MMFC/ethylene Diels-Alder adduct and 

should be included when determining the overall selectivity to PTA or DMT since, 

like MMBC, these compounds are precursors to PTA or DMT. 

Fundamental physical and chemical information on the ethylene Diels-

Alder-dehydration reactions catalyzed by the Lewis acid-containing molecular 

sieves was obtained.  Madon-Boudart experiments using Zr-Beta as catalyst 

show that the reaction rates are limited by chemical kinetics only (physical 

transport limitations are not present), all the Zr4+ centers are incorporated into the 

framework of the molecular sieve, and the whole molecular sieve crystal is 

accessible for catalysis. Apparent activation energies using Zr-Beta are low, 

suggesting that the overall activation energy of the system may be determined by 

a collection of terms and is not the true activation energy of a single chemical 

step. 
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