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Abstract

Synthetic biology combines biological parts from different sources in order to engineer non-native,

functional systems. While there is a lot of potential for synthetic biology to revolutionize processes,

such as the production of pharmaceuticals, engineering synthetic systems has been challenging. It is

oftentimes necessary to explore a large design space to balance the levels of interacting components

in the circuit. There are also times where it is desirable to incorporate enzymes that have non-

biological functions into a synthetic circuit. Tuning the levels of different components, however, is

often restricted to a fixed operating point, and this makes synthetic systems sensitive to changes in

the environment. Natural systems are able to respond dynamically to a changing environment by

obtaining information relevant to the function of the circuit. This work addresses these problems

by establishing frameworks and mechanisms that allow synthetic circuits to communicate with the

environment, maintain fixed ratios between components, and potentially add new parts that are

outside the realm of current biological function. These frameworks provide a way for synthetic

circuits to behave more like natural circuits by enabling a dynamic response, and provide a systematic

and rational way to search design space to an experimentally tractable size where likely solutions

exist. We hope that the contributions described below will aid in allowing synthetic biology to

realize its potential.
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Chapter 1

Introduction

Synthetic biology aims to take advantage of biological processes to engineer systems and devices with

novel and useful functions. One promising application is the engineering of organisms to produce

a wide range of products from fuels to cosmetics to pharmaceuticals. Perhaps the most successful

example of the potential of synthetic biology is the story of artemisinin, a potent anti-malarial drug.

Researchers engineered yeast to produce artemisinic acid, a precursor of artemisinin, in a practical

and scalable way [1]. This method of producing artemisinic acid was used by Sanofi Aventis as part

of a fully implemented industrial process to produce the drug semi-synthetically [2]. The process

involves the fermentation of artemisinic acid by genetically modified yeast developed by Keasling

and Amyris, followed by an efficient synthetic process to convert artemisinic acid to artemisinin. In

2014, sixty tons of artemisinin were produced in this way, supplementing the highly volatile supply

which involves the drugs extraction from the leaves of Artemisia annua [2]. While highlighting the

promise of synthetic biology as a transformative technology, the artemisinin story is also informative

to the areas where research and development are needed in order for synthetic biology to realize its

full potential.

Developing an industrially feasible process for the production of artemisinin was a massive effort

that took more than ten years. The first report on genetically engineered yeast for the production

of artemisinic acid came out in 2006 [1]. This work leveraged even older work done on engineering

a mevalonate pathway in E. coli, published in 2003, for the production of terpenoids, the class of

molecules to which artemisinin belongs [3]. Even after the successful development of a yeast strain
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that produced artemisinic acid, seven years of further strain optimization to optimize gene levels,

induction, and the addition of new genes were required to engineer yeast that produced commercially

relevant quantities of the drug precursor [4].

Even at its current state, the price of artemisinin derived from the process realized by synthetic

biology is still comparable to the product derived from agriculture [5]. It serves as another source of

artemisinin and reduces the price volatility, but the promise of cheap artemisinin from the synthetic

biology derived process to meet the world’s global supply has not been realized. The leaders of the

artemisinin project have been criticized for overselling and under-delivering the technology. They

have also been criticized for oversimplifying the global health problem that also involves multiple

factors outside of science and technology, such as the socioeconomic effects of cheap artemisinin of

Artemisia farmers and the economics of requiring combination therapies of anti-malarial drugs in

the developing world.

Further development of the technology involved in the process of developing a synthetic biology

route to produce artemisinin can address some of these concerns. Demonstrating the ability to use

synthetic biology to tackle the development of other small molecules in an industrially relevant scale

can show that artemisinin is not a single success story, but a way forward, where the molecules tar-

geted are determined by considering the different complex factors involved. Having other molecules

to point to can also help reduce the tendency to oversell the impact of artemisinin as we can begin

to refer to a process to obtain target molecules of interest using synthetic biology instead of just

having a single molecule as an example. While some of the technology and lessons learned from the

development of the artemisinin like the bioinformatics, genetic engineering, and metabolic modeling

techniques can readily be applied in future efforts. It is currently unclear how much effort would

be necessary to develop strains that produce industrially relevant quantities of compounds that are

chemically different and thus are at a different metabolic space from isoprenoids.

This is particularly relevant in the discovery and development of new antibiotics to combat multi-

drug resistant bacteria. Since bacteria have developed mechanisms of resistance to the commonly

used chemical scaffolds in existing antibiotics, it is possible that new antibiotics discovered that we
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would want to mass produce are based on new chemical scaffolds whose production is mediated by

genes and biosynthetic pathways that are not well characterized [6, 7].

To this end, we need to develop a set of readily generalizable frameworks and tools that accelerate

the process from a target molecule to a fully realized industrial process. This thesis describes our

efforts towards this. Chapter 2 describes a way to give the cell information about the circuit it

is executing. This is done by engineering a transcription factor to sense a small molecule that

can be related to the particular pathway of interest. Chapter 3 addresses the problem of having

genes from different sources causing imbalances in the gene network by regulating the ratios of

different genes in a dynamic and tunable way. To achieve this, we use synthetic scaffolds coupled

with a histidine kinase-response regulator pair that is independent of the gene circuit. Chapter 4,

provides a framework for synthetic metabolic pathways to reach new areas of chemical space by

designing enzymes that have novel function, and translating desired reactions into a language that

cells can process. We do this by systematically searching the space of possibilities in a systematic

way, narrowing down a list of potential solutions to a few proteins that we can test experimentally.

Appendix A discusses our work to engineer a mechanism for general allosteric control in proteins

through the insertion of a domain that changes conformation upon phosphorylation. This attempt

was hampered by our inability to find a reliable high-throughput assay.

The work here contains two major themes: first, the design of tools that allow dynamical response

in synthetic circuits, and second, the development of frameworks to systematically and rationally

search a large design space.

Cells are able to dynamically respond to their environment. They execute genetic programs that

are able to sense the available resources and molecules around them and alter the specific proteins

they produce and their quantity based on their surroundings. This is mediated by a set of sensors

and regulators whose exact mechanisms and functions we are still discovering. These components

form the basis for the genetic controllers that execute programs and allow the cells dynamic response.

Synthetic biologists have used these components to create synthetic circuits that perform operations

needed for dynamically responsive genetic controllers. While these circuits are useful, as they are
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able to display the function and logic necessary for a controller, such as an “and” operation or an

“on” signal, their use is often limited to a proof-of-concept or model examples, since they respond

to signals related to the original function of the circuit they are taken from [8]. Cells will have the

machinery in place to know when they have too much or too little of a metabolite they encounter,

or too much of a specific protein in the specific context that the circuit evolved. However, since

synthetic circuits implement non-native programs in their hosts, the cells have no such machinery in

place when we want them to respond to this foreign genetic program. The cell does not “know” what

the program is trying to accomplish. This is problematic in the case when the circuit you are trying

to implement contains toxic intermediates, or requires the careful balancing of different proteins in

the circuit. To enable native-like behavior in synthetic circuits, we need to establish a framework

that facilitates communication between the cell and the new gene circuit. The ability to track and

obtain information about a circuit you wish to control is essential for this, as it allows us to “teach”

the cell about the program we want it to execute and enables it to alter specific parts of the circuit

with changing environmental contions. The benefits of a dynamical response in a pathway enabled

by molecules tied to the actual pathway have been demonstrated in the increased yields in efforts

to produce fatty acid derived chemicals and fuels in E. coli [9].

We aim to address this by developing mechanisms in which cells can track levels of different small

molecules (Chapter 2), or proteins (Chapter 3). Chapter 2 discusses a framework that can enable

the development of sensors that are able to detect levels of specific small molecules. This enables

one to turn on and off specific genes based on their necessity. Chapter 3 covers a complementary

sensing mechanism that is able to track the level of a specified protein and match it to a reference

level of another specified protein. These two systems could be used in conjunction to allow the cell

to efficiently allocate its resources to maximize the production of non-native products, as it is able

to respond to levels of small molecules and proteins that are specifically part of that pathway as if

it were a native program in the cell. The small molecule sensors in Chapter 2 can set the overall

protein levels for the circuit, while a scaffold based mechanism in Chapter 3 would ensure that the

ratios of enzymes in the circuit are at the optimum level.
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Part of the strain engineering required to increase the yield of artemisinin to industrially relevant

quantities involved modifying promoters to respond to different signals, and using different sets of

promoters to match gene expression levels. Since these were not tied to genes and molecules in the

artemisinin pathway, they are optimized for specific conditions and cannot respond dynamically to

changes in the environment that directly affect the target pathway.

In the process of designing tools that had specific desired function, we encountered the problem

of searching through large design spaces. The number of potential mechanisms and solutions that

could address a problem was large. It was not feasible or tractable to explore the entire design space.

As such, it was necessary to develop frameworks that allowed us to systematically and rationally

reduce the design space we wanted to explore to a point where it was experimentally tractable.

Chapter 2 covers the framework we used in systematically reducing the design space in order to

obtain the sensors to the small molecules we desired. Chapter 4 discusses the systematic exploration

of design space in our efforts to engineer de novo an enzymatic function into an inactive scaffold. In

both of these cases, the systematic reduction of the area of design space to explore was necessary for

the work to proceed. Neither of the projects would have been attempted had such a framework not

existed since the design space would simply have been too large. Appendix A describes our attempt

in engineering modular allosteric feedback, and also provides an example of the challenges when no

such framework to systematically explore a large design space is in place.

Advances in DNA sequencing and synthesis make systematic methods to explore design space

become even more important in synthetic biology. The large amount of data that is being collected

gives us a large repository of sequences that can be used both as functional components for other

synthetic circuits or the foundations of gene circuits that produce molecules with interesting prop-

erties. The reduced cost of DNA synthesis allows us to test these components even if their source is

unculturable or unknown. However this can be a double-edged sword. It is impossible to character-

ize and test all of the functional sequences we obtain given the limited experimental resources. A

framework for the systematic exploration of these sequences to determine areas that warrant further

exploration is necessary. Intelligent exploration and characterization of the information and parts
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we have will ensure that we are maximizing the resources we have and realizing the potential we

have from these technological advances.

The different tools and frameworks discussed in this work expand the toolkit that is available for

use in the rational design of genetic programs into cells and are a step in fully realizing the potential

of synthetic biology.
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Chapter 2

Engineering Transcriptional
Regulator Effector Specificity using
Computational Design and In
Vitro Rapid Prototyping:
Developing a Vanillin Sensor

2.1 Introduction

The pursuit of engineering cells that contain circuits and novel metabolic pathways of increasing

complexity and robustness in synthetic biology will require engineering new regulatory tools. The

utility of a synthetic genetic circuits for real world applications is dependent on the ability to

effectively trigger the circuit. While we can control the expression of target genes with transcriptional

regulators, triggers for these transcriptional regulators are limited to a small number of molecules

and other inputs (e.g., light) [10]. As a consequence, most synthetic circuits right now are limited

to proof-of-principle demonstrations without being extendable to real world applications. Feedback

control based on relevant molecules, including toxic intermediates and environmental signals, would

enable genetic circuits to react appropriately to changing conditions. This requires us to be able to

transmit the levels of the relevant molecules to existing transcriptional control machinery.

This chapter develops a framework to use a combination of sequence generation by computational
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Computationally 
aided selection of 

sequences for 
screen 

(35,577,057,600
sequences)

Is 
there a 
sensor? 

Rapid in vitro 
screening of mutants 

(28 mutants)

in vitro verification of hits 
(2 mutants)

Is there a hit?

in vivo testing and 
characterization 

(2 mutants)

Optimize to desired 
specifications

No

Yes

No

Yes

Figure 2.1: Workflow for generating novel sensors. The in vitro TX-TL platform allows for
the rapid screening of sequences selected with the help of computational protein design. Hits from
the in vitro screen are then verified by further in vitro testing. In vivo testing and characterization
can then be performed to see if they meet the desired specifications. Further refinement of the
hits through directed evolution or further computational design can be performed until necessary
specifications are achieved. Numbers in parentheses are the number of sequences considered by the
computational algorithm, or the number of mutants assayed at the specified step for vanillin.

protein design (CPD) and rapid prototyping using a cell-free transcription-translation (TX-TL)

system to switch effector specificity of existing transcriptional regulators to respond to targeted

small molecules of interest (Figure 2.1).

The small molecule we chose to target was vanillin, a byproduct from the lignin degradation

done in the acid pre-treatment of ligno-cellulosic biomass for ethanol fermentation. Lignin crosslinks

cellulose and hemi-cellulose, the main carbon source in biofuel production, making them difficult

to access. However, the resulting byproducts from lignin are growth inhibitors and are difficult to

separate [11]. In developing a sensor for vanillin or similar lignin degradation byproducts, we can

design a synthetic feedback loop for stress response to these growth inhibitors. This can be done

by controlling the expression of genes to mitigate vanillin toxicity such as through efflux pumps, or

by enzymes which convert vanillin into a less toxic molecule. The expression of some of these genes

could be metabolically expensive for the cell and their constitutive expression could have a negative

effect on biofuel yield and cell growth.

Transcription factor engineering has primarily focused on modifying DNA-binding specificity [12]



15

Figure 2.2: QacR bound to DNA. Cartoon representation of a crystal structure of qacR (PDB
ID: 1JT0), a tetR-family repressor, bound to DNA. The helix-turn-helix domain is colored in yellow
and the ligand-binding domain is colored in cyan. QacR binds to DNA as a dimer.

or altering the effector specificity to similar molecules from the original effector [13]. To the best

of our knowledge, this is the first instance of effector specificity engineering where the target small

molecule effector was chosen independent of the transcriptional repressor and was an unrelated,

dissimilar small molecule to its natural effectors. A version of this chapter has been submitted

to ACS Synthetic Biology and is available online in the bioRxiv [14]. The work described here

was a collaboration between myself and Joseph Meyerowitz. I came up with the concept of using

computational protein design to switch the effector specificity of a transcription factor. Joseph

suggested vanillin and performed the preliminary in vitro screens. I performed the further in vitro

characterization and the in vivo tests.

2.2 Background

The tetR family is a large family of transcriptional regulators found in bacteria. They are named

after the tetR repressor, which controls the expression of tetA, an efflux pump for tetracycline [15].

They contain two domains: a helical-bundle ligand-binding domain and a helix-turn-helix DNA-
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binding domain. In the absence of their inducing molecule, tetR repressors bind to DNA, preventing

the transcription of downstream genes (Figure 2.2). Inducer binding to the ligand-binding domain

causes a conformational change in the DNA binding domain that causes dissociation from the DNA,

allowing transcription of downstream genes. The tetR transcriptional regulation machinery has been

used in the design of synthetic circuits, including the repressilator [16] and the toggle switch [17].

QacR is a tetR-family repressor found in S. aureus that controls the transcription of qacA, an

efflux pump that confers resistance to a large number of quaternary anionic compounds. The protein

has been studied because it is induced by a broad range of structurally dissimilar compounds [18].

Structural examination of qacR in complex with different small molecules has shown that qacR has

two different binding regions inside a large binding pocket. While qacR has multiple binding modes

for various inducers, in all cases for which there are structures, binding of the inducer causes a

tyrosine expulsion that moves one of the helices and alters the conformation of the DNA binding

domain, rendering qacR unable to bind DNA [19, 20, 21]. Crystal structures of inducer-bound

forms of qacR and the qacR-DNA complex coupled with a definitive structural mechanism for qacR

induction make it the ideal starting point for CPD of new transcriptional regulators. In this work,

we describe our efforts to apply our framework to engineer qacR to sense vanillin, a phenolic growth

inhibitor that is a byproduct of lignin degradation performed during the processing of biomass into

intermediate feedstock in biofuel production [22].

2.3 Results and Discussion

2.3.1 Computationally Aided Selection of QacR Mutant Sequences

We created a computational model of vanillin to place into a crystal structure of QacR (PDB

ID: 1JTO). A computational protein design algorithm was used to find potential vanillin binding

sites close to the location of the tyrosine expulsion in the binding pocket of qacR (Figure 2.3A-

B) while being in the proximity of amino acid positions that allowed for favorable pi-stacking and

hydrogen bonding interactions. We used targeted ligand placement [23] to find potential binding
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(a)

(b) (c)

Figure 2.3: Computationally aided selection of qacR mutants. (a) PDB structures of the non-
ligand bound (cyan, PDB ID: 1JTO) and ligand bound (magenta, PDB ID: 3BQZ) conformations of
qacR. A conformational shift in the binding pocket occurs upon entry of the small molecule, causing
the protein to dissociate from DNA. (b) A closer look at the binding pocket of qacR: the binding
of the ligand in green causes the displacement of three tyrosine residues, shown as sticks in cyan
and magenta. (c) Computational model for potential vanillin binding sites. Vanillin is shown as a
different color in each of the four sites. A protein design algorithm was asked to suggest mutations
for amino acids close to the potential binding sites to support the placement of vanillin in these sites.
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Table 2.1: Initial qacR mutants chosen through computationally guided design. List of the
amino acid mutations by position of the initial set of qacR mutants selected. Low energy sequences
from different optimization runs were analyzed and a set of 10 mutants was selected for testing.

Protein Amino Acid Position

50 54 57 58 61 86 89 90 93 96 99 102 116 119 120 126 154 157 161

qacR-wt F L E E W S T E Y Q I F M L E A N N T

mutant1 A W Q L Y S T Q Y M Q S Q Y Q A M Q M

mutant2 A W Q L Y S T Q Y Q Q F Q Y Q A M L M

mutant3 A W Q L Y S T Q Y Q I S Q Y Q A M L M

mutant4 A W Q L Y S T Q Y M Q Q M Y Q A M Q M

mutant5 A W E E Y S T Q Y M Q S Q Y Q A N N T

mutant6 A W E E Y S T Q Y Q Q F Q Y Q A N N T

mutant7 A W E E Y S T Q Y Q I S Q Y Q A N N T

mutant8 A W E E Y S T Q Y M Q Q M Y Q A N N T

mutant9 A W Q L W S T Q Y M Q S Q Y Q A M Q M

mutant10 A W E E W S T Q Y Q I F M Y Q A N N T

positions for vanillin by defining an idealized binding site for the molecule. The algorithm yielded

four potential binding positions for vanillin (Figure 2.3C). Computational protein sequence design

was then used to select amino acid residues at positions around the potential vanillin binding sites.

In order to minimize the possibility of steric clashes in the protein, we also performed calculations

that considered both the DNA-bound state and the ligand-bound state using a multi-state design

algorithm [24]. Finally, we also ran calculations that included an energy bias to favor the wild-type

residue. The lowest energy sequences from these four calculations (single-state biased, single-state

non-biased, multi-state biased, and multi-state non-biased) were analyzed, and used as a guide to

compile a set of ten mutants (Table 2.1) for in vitro testing. A more detailed description of the

computational methods used can be found in the Materials and Methods section.

2.3.2 In Vitro Screening of Generated Sequences

We first decided to validate function of the wild-type protein. This was done by placing green

fluorescent protein (GFP) downstream of the qacA promoter sequence (PQacA). While we observed

a hundred-fold decrease in fluorescence in cells containing plasmids encoding the wild-type qacR

gene in addition to PQacA–GFP, addition of berberine, a native qacR inducer, yielded no observable

difference in fluorescence (Figure 2.4). We hypothesized that the inducer was not getting into

the cells due to the differences in cell wall permeability between gram-positive and gram-negative
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bacteria. Because of this, we decided to use an in vitro transcription-translation (TX-TL) system

to test the mutants [25].

qacR GFP qacR
+ GFP

water
berberine

Figure 2.4: Initial qacR induction test. Fluorescence of cells encoding wild-type qacR was
compared in the presence and absence of berberine, a native qacR inducer. While we observed
repression upon the addition of qacR, we did not observe induction when berberine was added.

(a) (b)

Figure 2.5: TX-TL allows us to prototype circuits in vitro (a) TX-TL contains the transcrip-
tional and translational machinery allowing you to express proteins in the reaction. Adding plasmid
DNA encoding proteins allows for their expression and detection in TX-TL. (b) deGFP expression
from a TX-TL reaction with plasmid encoding GFP. (b) adapted from [26]

The TX-TL system contains whole cell lysate from BL21 E. coli Rosetta 2, with no endogenous

mRNA or DNA. A TX-TL reaction is typically done in a 10µL reaction volume and contains the

cell extract, an energy solution consisting of amino acids, nucleotides and 3-PGA, and DNA. It
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contains the transcriptional and translational machinery of E. coli, allowing one to express proteins

by adding plasmid DNA encoding genes one wants expressed (Figure 2.5). Protein concentration

can be controlled directly by varying the amount of DNA placed in the reaction. One can execute

genetic networks in a TX-TL reaction by adding plasmids that contain proteins that interact. The

TX-TL prototyping provides advantages over in vivo circuit testing, as it allows us to control protein

levels without worrying about promoter and ribosomal binding site strength. Cell wall permeability

and protein toxicity are also not issues in the TX-TL system.

We first tested the wild-type protein in our TX-TL system. We observed an increase in GFP

fluorescence as we increased the concentration of plasmid encoding PQacA–GFP from 2 nM to 8

nM (Figure 2.6A). The addition of plasmid encoding the qacR repressor to the system resulted in a

decrease in fluorescence. Because of the high autofluorescence of berberine, we used dequalinium, a

colorless native qacR inducer. The addition of dequalinium resulted in an increase in fluorescence

until about 85% of the fluorescence when no DNA encoding repressor was present (Figure 2.6B).

These results demonstrated a functional wild-type qacR repressor in TX-TL. After validating the

function of wild-type protein in TX-TL, we used the system to look at the functionality of the qacR

mutants.

None of the initial mutants showed any repression of GFP fluorescence. We analyzed the ligand-

bound and DNA-bound computational models of one of the qacR mutants that contained only three

amino acid substitutions from a qacR mutant that was previously shown to be functional by Peters

et al. [21]. The computational model showed the potential for some mutations to cause steric clashes

in the DNA bound state (Figure 2.7). We created a second library reverting either the 50th and

54th positions (A50F/W54L) or the 119th position (Y119L) to their wild-type identity (Table 2.2)

In order to determine if any of the mutants of our library warranted further characterization, we

performed a rapid screen of 17 qacR mutants in TX-TL (Figure 2.8). Plasmids containing DNA that

encoded each of the qacR variants or the wild-type qacR sequence were placed into a TX-TL reaction

containing either water, dequalinium, or vanillin. QacR activity was monitored by a plasmid that

encoded GFP downstream of PQacA. Two of the mutants, qacR2 and qacR5, displayed an increase
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Figure 2.6: Validation of TX-TL screening. (a) GFP signal after three hours of a TX-TL
reaction. Plasmid encoding GFP downstream of the native qac promoter was added to the TX-TL
platform. Higher concentrations of plasmid yielded more GFP signal. (b) Response of wild-type
qacR to dequalinium. DNA encoding GFP and wild-type qacR was added to the TX-TL system.
Increasing fluorescent signal is observed with increasing concentrations of dequalinium. The highest
fluorescent signal is observed when there is no repressor in the system, demonstrating the ability of
TX-TL to test for qacR repression and de-repression.
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(a)
(b)

Figure 2.7: Steric clashes from computational model. We looked at a computational model
(red) of the DNA-bound qacR structure that was three mutations away from a qacR mutant that
was previously shown to be functional. The wild-type residues from the structure are shown in cyan.
These mutations could have been causing steric clashes in the DNA-bound state. We observed a
potential steric clash between the tryptophan (position 54) and tyrosine (position 119) mutations.
Based on this model we grouped two of the mutations together and reverted them to their wild-type
identity F50A/L54W (a) and Y119L (b), to relieve this potential clash.
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Figure 2.8: Timetrace of qacR mutant screen. GFP fluorescence time traces for TX-TL reac-
tions set-up to screen for qacR mutants that were sensitive to vanillin. Reactions contained DNA
encoding a qacR variant, T7 RNA polymerase, a fluorescent reporter, and either water, dequalinium,
or vanillin.

in fluorescence in the presence of vanillin and dequalinium over water (Figure 2.9). QacR1 was not

selected due to its low signal without inducer. We focused on these two mutants for further in vitro

and in vivo characterization.
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Table 2.2: QacR mutants tested List of the amino acid mutations by position of the second set
of qacR mutants tested in the second TX-TL screen. The amino acid identities of the wild-type
protein for the positions considered are also shown.

Protein Amino Acid Position

50 54 57 58 61 86 89 90 93 96 99 102 116 119 120 126 154 157 161

qacR-wt F L E E W S T E Y Q I F M L E A N N T

qacR1 F L Q L Y S T Q Y M Q S Q Y Q A M Q M

qacR2 F L Q L Y S T Q Y Q Q F Q Y Q A M L M

qacR3 F L Q L Y S T Q Y Q I S Q Y Q A M L M

qacR4 F L Q L Y S T Q Y M Q Q M Y Q A M Q M

qacR5 F L E E Y S T Q Y M Q S Q Y Q A N N T

qacR6 F L E E Y S T Q Y Q Q F Q Y Q A N N T

qacR7 F L E E Y S T Q Y Q I S Q Y Q A N N T

qacR8 F L Q L W S T Q Y M Q S Q Y Q A M Q M

qacR9 A W Q L Y S T Q Y M Q S Q L Q A M Q M

qacR10 A W Q L Y S T Q Y Q Q F Q L Q A M L M

qacR11 A W Q L Y S T Q Y Q I S Q L Q A M L M

qacR12 A W Q L Y S T Q Y M Q Q M L Q A M Q M

qacR13 A W E E Y S T Q Y M Q S Q L Q A N N T

qacR14 A W E E Y S T Q Y Q Q F Q L Q A N N T

qacR15 A W E E Y S T Q Y Q I S Q L Q A N N T

qacR16 A W Q L W S T Q Y M Q S Q L Q A M Q M

qacR17 A W E E W S T Q Y Q I F M L Q A N N T

qacR variants
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Figure 2.9: In vitro TX-TL screen of qacR mutants found potential candidates for further
testing. Fold change in maximum fluorescence between water and inducer for qacR mutants.
Seventeen qacR mutants were screened using TX-TL. Plasmids containing DNA encoding each of
the qacR variants were placed into the system along with water, dequalinium (native qacR inducer),
and vanillin. To monitor qacR response, a plasmid encoding GFP downstream of the native qacA
promoter was also added to the system. qacR2 and qacR5 were selected for further characterization.
qacR1 was not selected due to low signal (Figure 2.8)
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2.3.3 Further In Vitro Testing of QacR2 and QacR5

In order to verify the response of qacR2 and qacR5 to vanillin, we performed more extensive TX-TL

tests on the mutants. TX-TL reactions were set up with a constant amount of reporter (PQacA–

deGFP) plasmid and either no repressor (water), or plasmids encoding wild-type qacR, qacR2, or

qacR5. Reactions were incubated for 85 minutes at 29 degrees Celsius to produce the repressor

protein. This bulk reaction was then added to solution containing dequalinium, vanillin, or water.

We monitored the rate of GFP production between the first and third hours of the reaction, where

the rate of protein production appeared linear.

(a)

(b)

Figure 2.10: In vitro testing of qacR2 and qacR5. (a) TX-TL reactions were set up with
plasmids containing GFP downstream of a qacR sensitive promoter in the presence and absence of
plasmids containing the qacR variants under different inducer conditions. To account for inducer
toxicity to the TX-TL reaction, and resource limitations from the production of the qacR repressor,
we normalized each condition to the reactions that only contained the GFP plasmid under differ-
ent inducer conditions. (b) Ratio of the rate of GFP production between TX-TL reactions with
and without repressor DNA. 10 µM of dequalinium and 5 mM of vanillin was used to induce the
production of GFP for each of the qacR variants tested.

Figure 2.10 shows the ratio of GFP fluorescence between the case where there is no repressor,

and each of the repressors tested with the different inducers. The wild-type qacR is able to inhibit

the production of fluorescence to around 15% of its maximum value. The mutants are less efficient

at repressing the production of GFP. Three times and four times more repressor DNA was added
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to the reactions of qacR2 and qacR5, respectively. In spite of the additional DNA, we do not

observe the same level of repression that we see with the wild-type protein. Wild-type qacR is well

induced by the native inducer, and we observed full derepression at the dequalinium concentration

used. Induction of qacR2 and qacR5 with dequalinium is also observed, although to a lesser degree

than the wild-type protein. QacR2 and qacR5 display a response to vanillin at the concentration

we tested, while no response to vanillin was detected for the wild-type protein. The mutations

introduced to the protein decrease the ability of the mutants to repress DNA. This could be due

to protein instability, or due to a weaker protein-DNA interaction. However, these mutations also

increase the sensitivity of the mutants to vanillin, allowing their response to be detectable in our in

vitro platform.

We assumed that the maximum amount of GFP fluorescence that can be achieved for a specific

inducer condition was when there is no repressor present. This takes into account potential toxicity

of the inducer to the TX-TL reaction. The factors that can affect the ability of the particular

repressor to reach this the no repressor case are resource limitations due to additional load from the

production of the repressor DNA, and response of the repressor to the inducer in the reaction. We

expect that resource limitations would have a negative effect on the ability of the repressor to reach

the maximum fluorescence level. Conversely, response to repressor should have a positive effect in

reaching the maximum fluorescence level.

2.3.4 In Vivo Testing of QacR2 and QacR5

In order to further characterize the qacR mutants, and to see if we could detect vanillin in a more

complex system, we decided to test the in vivo response of the qacR variants to vanillin. Plasmids

containing genes that encode the wild-type qacR sequence, qacR2 or qacR5 downstream of PTet

and GFP downstream of PQacA, were cloned into DH5αZ1 cells (Figure 2.11). We performed some

testing of the response of the wild-type circuit to dequalinium in vivo. In our limited testing,

we did not detect a significant difference in response in the wild-type circuit when induced with

vanillin or dequalinium at the dequalinium concentrations we tested. For each of the qacR variants,
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Figure 2.11: Circuit layout for in vivo tests. Genes encoding GFP under the control of the
native qac promoter, and our QacR designs under the control of a tet-inducible promoter were placed
in a single plasmid and transformed into DH5αZ1 cells. qacR levels were controlled using aTc for
varying vanillin concentrations. Candidate designs that are responsive to vanillin should show an
increase in fluorescence with increasing vanillin concentrations.

we compared differences in fluorescence signal across increasing vanillin concentrations. We tested

different repressor concentrations by varying the amount of anhydrous tetracycline (aTc) in the

system. Similar to the in vitro experiments, and in order to get an idea for the maximum fluorescence

the system could achieve, we grew cells that only contained GFP downstream of PQacA without any

repressor. Cells that were grown in higher aTc concentrations had a lower measured optical density

(OD), indicating a slower doubling time. We hypothesize that this is due to the toxicity of the qacR

repressor to the E. coli strain. Since qacR is not a native protein, it is possible that qacR is binding

to locations in the E. coli genome. Interestingly, the differences in optical density measurements

become less pronounced with increasing vanillin concentration, suggesting that vanillin may provide a

mitigating effect to this toxicity. In order to account for differences in OD, fluorescence measurements

were normalized to OD.

The lowest OD measurements were observed for cells encoding the wild-type qacR at 12 ng/mL

aTc, where very little growth was observed for cells expressing the wild-type protein. At this aTc

concentration, all of the cells expressing repressor exhibited lower optical densities when compared

to cells that were only expressing fluorescent protein. The differences in optical density are less

pronounced at lower aTc concentrations. When no aTc is present in the system, cells at the higher

vanillin concentrations had lower ODs. At higher aTc concentrations, cells at higher vanillin con-

centrations had higher ODs. This implies that both the vanillin concentration and the expression
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of the repressor have an effect on cellular growth. The optical densities for the cells at different aTc

and vanillin concentrations are shown in Tables 2.8-2.11.

(a)
(b)

Figure 2.12: In vivo response of qacR to vanillin. Cells expressing GFP without any repressor
were used as a control to normalize for differences in fluorescence due to aTc and vanillin levels. (a)
All of the proteins are able to repress the expression of GFP. The wild-type protein is able to inhibit
the expression of GFP at lower aTc concentrations, while higher aTc concentrations are necessary
for the mutants to achieve a similar level of repression. (b) QacR mutants respond to vanillin in a
concentration dependent manner.

Figure 2.12A shows the effect of increasing the aTc concentration on the fluorescence of cells

in the absence of vanillin. Similar to the in vitro tests, fluorescence was normalized to the no

repressor case. Increasing the aTc concentration decreased the fluorescence of cells in the absence

of vanillin, confirming that the qacR mutants are able to repress the expression of GFP at higher

protein concentrations.

The response of wild-type qacR, qacR2, and qacR5 to increasing vanillin concentrations is shown

in Figure 2.12B. The response curves for each protein are plotted for the minimum aTc concentration

such that maximum GFP repression is observed. This corresponds to aTc concentrations of 4, 8,

and 12 ng/mL for wild-type qacR, qacR2, and qacR5 respectively. This is consistent with the in

vitro data that more qacR2 and qacR5 DNA was required to repress the expression of GFP. Similar

to the in vitro tests, we expect the ability of the cell to reach the maximum fluorescence level to be

dependent on its response to inducer, and toxicity from vanillin and qacR. Indeed, cells expressing
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the qacR mutants exhibited an increase in fluorescence with increasing vanillin levels demonstrating

that they are capable of sensing vanillin. While all three proteins appear to be sensitive to vanillin,

the mutants exhibit a marked increase in sensitivity to vanillin. QacR2 displays a response that goes

from approximately 20 % of the fluorescence of the cells not expressing any repressor to matching

the fluorescence of the non-repressed cells at 1 mM vanillin. QacR5 saturates at around 40 % of

the fluorescence of the non-repressed cells. This correlates with the in vitro data that show qacR2

achieving close to the non-repressed fluorescence, with qacR5 less sensitive to vanillin (Figure 2.10).

Figure 2.16 shows the vanillin dosage response of qacR wild-type, qacR2, and qacR5 for different

aTc concentrations tested.

2.3.5 Analysis of Mutations of QacR2 and QacR5

(a) (b)

Figure 2.13: Model of vanillin bound to qacR2 and qacR5. Model from computational design
software of vanillin bound to (a) qacR2 and (b) qacR5 centered on vanillin. Residues that are
mutated from wild-type are colored in cyan. In both qacR2 and qacR5 key mutations seem to
be a tyrosine (position 119) above the vanillin forming a pi-stacking interaction, and a glutamine
(position 116) that forms a potential hydrogen bond with the aldehyde group of the vanillin (potential
interaction denoted by the yellow dotted line).

In order to evaluate the contribution of the mutations from the computational design on the

protein’s increased sensitivity to vanillin, we analyzed the computational models of the vanillin

bound to qacR2 and qacR5. In both cases, there are three key interactions that the CPD algorithm

suggests: (1) a hydrogen bond between the aldehyde group of the vanillin and Q116 (mutated from
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methionine), (2) a pi-stacking interaction between vanillin and Y119 (mutated from leucine), and (3)

hydrogen bond interactions between the hydroxyl group of Y123 and the ether and hydroxyl groups

of vanillin (wild-type residue) (Figure 2.13). We examined the role of the first two interactions

on vanillin sensitivity by measuring the response of point mutants that reverted residues 116 and

119 back to their wild-type identity. To investigate the role of the third interaction, we examined

Y123A point mutants of qacR2 and qacR5. Figure 2.14 shows the normalized fluorescence for

increasing concentrations of vanillin. None of the point mutations seemed to significantly affect

vanillin sensitivity of either qacR2 or qacR5. This suggests that either the combination of the

remaining interactions is still able to confer an increase in vanillin sensitivity for the protein, or that

the mechanism of vanillin sensitivity is different from what the computational model suggests.

(a) (b)

Figure 2.14: Vanillin dosage response curves for point mutants of qacR2 (a) and qacR5
(b). GFP normalized to optical density for varying vanillin concentrations.

2.3.6 Framework Enables Engineering of Sensors through Rational Re-

duction of Design Space

The framework developed— a combination of sequence generation using computationally-aided de-

sign, preliminary screening with TX-TL, and in vitro and in vivo validation—can be used for other

small molecule targets, potentially facilitating the design of more sensors in synthetic circuits. While

it is possible that the computational model of vanillin binding was inaccurate, the computational

design provided value in drastically reducing the amount of sequences to test into a number that
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was experimentally tractable. Without the computational design to reduce the size of the design

space, we would not have had starting points to attempt the engineering of a vanillin sensor.

The use of the in vitro cell-free system in a preliminary screen provides many advantages. It

allows the screening of more mutants in a shorter amount of time. The simpler system also reduces

the number of variables to consider. Factors such as cell membrane permeability and cell growth do

not need to be considered during this part of the screen. Repressors whose native inducers cannot

enter the target organism can be used as starting points with the cell-free system. Finally, we can

use this framework to target molecules that are known to be toxic to cells.

2.3.7 Future Directions

As a result of this process, we now have functional vanillin sensors that can be used in a feedback

circuit that dynamically responds to vanillin. QacR2 and qacR5 can be used as a starting point for a

synthetic circuit that responds to vanillin concentrations. While we only tested the protein in E. coli,

recent work has developed a process that facilitates the transfer of prokaryotic transcription factors

into eukaryotic cells, increasing the flexibility of the molecules for use in metabolic engineering [27].

The first step would be to see if you can use a similar process to obtain vanillin responsive promoters

in S. cerevisiae.

If the designed promoters are able to show a dynamic response to vanillin concentrations, we can

use this system in a feedback loop that will allow S. cerevisiae to dynamically respond to vanillin.

We aim to do this by placing these promoters downstream of genes that we have reason to believe

can increase vanillin tolerance in yeast, specifically PDR12, YHK8, and ADH6. These genes were

discovered as part of a screen that looked at the increased sensitivity of a yeast knockout library

to phenolic byproducts of lignin degradation [11]. Some of these genes are predicted to be efflux

pumps (YHK8 and PDR12) and thus metabolically expensive to produce [28]. Before using these in

a feedback circuit, we would first have to verify that these genes provide a benefit to the growth of

the yeast in the presence of vanillin. We would then aim to show that it there is a growth advantage

to the vanillin mediated expression of these genes as opposed to their constitutive expression.
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Challenges in this part of the project include balancing gene expression levels to make sure that

the components are in the correct operating regimes for the vanillin concentration encountered.

Furthermore, it remains to be seen whether the sensors developed will have the required dynamic

range or sensitivity for a functional feedback circuit; however, if a better sensor is needed then these

proteins can be used as a starting point for directed evolution in order to obtain a sensor with the

desired properties.

2.4 Materials and Methods

2.4.1 Computationally Aided Selection of Mutant Sequences

Figure 2.15: Crystal Structure of Vanillin Bound to a Protein (PDBID 2VSU). A model
of vanillin binding was constructed by building vanillin off a native tyrosine residue similar to what
we observe here. The hydroxyl group of the tyrosine has potential hydrogen-bonding interactions
with the methoxy and hydroxyl groups of the vanillin.

An in silico model of vanillin was constructed using the Schrödinger software suite. Partial

charges for vanillin were computed using Optimization in Jaguar version 7.6 [29] using HF/6-311G**

as the basis set. Vanillin rotamers were chosen by looking at the ideal angles for the carbon hybrid

orbitals. A model of an idealized vanillin binding pocket was designed by looking at the protein data

bank for proteins that bound small molecules similar to vanillin, specifically PDBID 2VSU. Models

of vanillin in the qacR binding pocket were generated using the Phoenix Match algorithm [23].

Vanillin was built off a native tyrosine residue (Y123), the primary interaction considered for

the algorithm was a hydrogen bonding interaction between the hydroxyl group of the tyrosine with
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the methoxy and hydroxyl groups of the vanillin (Figure 2.15). We modified the energy function to

include an energy bias of −100 kcal/mol for potential pi-stacking interactions between vanillin and

tyrosine, phenylalanine, or tryptophan residues. We also included an energy bias hydrogen-bonding

interactions with the methoxy, hydroxyl, and aldehyde groups of vanillin with serine, threonine,

tyrosine, glutamine, or asparagine residues. Tables 2.3-2.6 show the geometry ranges used for the

energy bias function. The Phoenix Match algorithm was asked to return potential vanillin binding

locations that contained interaction with the native tyrosine, at least one pi-stacking interaction,

and at least two other hydrogen bonding interactions. Solutions from the algorithm were grouped

together and resulted in four potential spots for vanillin. These locations were used as vanillin

“rotamers” for computational protein design.

Table 2.3: Geometry definitions for tyrosine to vanillin methoxy and hydroxyl group
interaction. Geometry definitions for the bias function for the interaction between vanillin and the
wild-type tyrosine (position 123) in qacR. [A, B] indicates the centroid of the coordinates of the two
atoms specified

Vanillin Atoms Residue Atoms (Tyrosine) Range

Distance [O1,O3] CZ 2.8–3.0 Å

Angle 1 O3, [O1,O3] CZ 69◦–110◦

Angle 2 [O1,O3] CZ, CE1 100◦–140◦

Dihedral 1 C6, O3, [O1,O3] CZ 120◦–240◦

Dihedral 2 [O1,O3] CZ, CE1, CE2 160◦–200◦

Dihedral 3 O3, [O1,O3] CZ, CE1 0◦–360◦

Table 2.4: Geometry definitions for pi-stacking interaction above vanillin. Geometry defi-
nitions for the bias function for the interaction between vanillin and an aromatic residue in qacR. [A,
B] indicates the centroid of the coordinates of the two atoms specified. Atom identities for specific
amino acids: tyrosine/phenylalanine: A–CE1, B–CD2, C–CG, tryptophan: A–CE2, B–CD2, C–CE3

Residue Atoms Vanillin Atoms Range

Distance [A,B] [C1,C4] 3.0–4.0 Å

Torsion [A,B] [C1,C4], C6, C1 0◦–180◦

Plane [A,B,C] C1, C3, C5 0◦–40◦

Table 2.5: Geometry definitions for pi-stacking interaction below vanillin. Geometry defi-
nitions for the bias function for the interaction between vanillin and an aromatic residue in qacR. [A,
B] indicates the centroid of the coordinates of the two atoms specified. Atom identities for specific
amino acids: tyrosine/phenylalanine: A–CE1, B–CD2, C–CG, tryptophan: A–CE2, B–CD2, C–CE3

Residue Atoms Vanillin Atoms Range

Distance [A,B] [C1,C4] 3.0–4.0 Å

Torsion [A,B] [C1,C4], C6, C1 180◦–360◦

Plane [A,B,C] C1, C3, C5 0◦–40◦
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Table 2.6: Geometry definitions for hydrogen bonds between qacR and vanillin aldehyde.
Geometry definitions for the bias function for the interaction between vanillin and a hydroxyl con-
taining residue in qacR. Atom identities for specific amino acids: tyrosine: A–OH, B–HH, serine:
A–OG, B–HG, threonine: A–OG1, B–HG1, glutamine: A–NE2, B–1HE2, or 2HE2, asparagine:
A–ND2, B–1HD1, or 1HD2

Residue Atoms Vanillin Atoms Range

Distance B O2 1.6–2.0 Å

Angle 1 A, B O2 155◦–180◦

Angle 2 B O2, C7 100◦–140◦

Monte Carlo with simulated annealing [30] and FASTER [31] were used to sample conformational

space. A backbone independent conformer library with a 1.0 Å resolution was used for the designed

residues [23]. Designed residues were chosen by compiling a list of amino acid residues within 15 Å

of vanillin. Table 2.7 shows the amino acid design positions, and the allowed amino acid residues for

each position. Allowed amino residues for each site were selected by visually inspecting the qacR

cyrstal structure with the potential vanillin binding locations. Rotamer optimization was allowed for

other residues in the 15 Å shell in which mutations were not allowed. Computational models of qacR

with vanillin present were scored using the PHOENIX forcefield with the inclusion of an additional

geometry bias term that favored pi-stacking and hydrogen bonding interactions [23] that we used

to find potential vanillin active sites. We considered solutions that both included and excluded −20

kcal/mol wild-type bias term in the energy function.

2.4.2 Cell-Free In Vitro Transcription-Translation System and Reactions

The transcription-translation reaction consists of crude cytoplasmic extract from BL21 Rosetta 2

E. coli [25]. Preliminary tests were done with plasmids and inducers at the specified concentrations.

For the initial screen, the qacR mutants were downstream of a T7 promoter. TX-TL reactions

were run with 2 nM of the plasmid encoding the qacR variant, 0.1 nM plasmid encoding T7 RNA

polymerase, and 8 nM plasmid encoding PQacA–deGFP. Vanillin was added at a concentration of

2.5 mM and dequalinium was added at 10 µM.

For the in vitro tests to further characterize the hits, plasmids encoding qacR2 or qacR5 down-

stream of a tet-responsive promoter were used along with a plasmid encoding deGFP downstream
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Table 2.7: Design Positions for CPD. Residues around the potential vanillin binding sites were
examined in the context of the crystal structure and allowed amino acids were chosen based on the
location of the specific residue and the potential interactions with vanillin.

Residue ID Wild-Type Identity Allowed Amino Acids

50 F FWYILMA
54 L STNQYWF
57 E STNQYWF
58 E WFYMLIQNST
61 W FWY
86 S FWYILM
89 T FWYILMQNSVT
90 E FWYILMQNSTV
96 Q WFYMLVIQNST
99 I FWYSTNQ
102 F WYQNST
116 M FWYIQNST
119 L FWYQNST
120 Q FWYQN
126 A FWYILMV
154 N WFYMLVIQNST
157 N QVILFWY
162 T WFYMLVIQNST

of a qac-responsive promoter. Plasmids were prepared using the Macherey-Nagel NucleoBond Xtra

Midi/Maxi Kit. Plasmid DNA was eluted in water and concentrated by vacufuge to the desired

concentration. TX-TL reactions were set up as follows: 5 µL of buffer, 2.5 µL of cell extract and 1.5

µL repressor DNA at a specific concentration was mixed and incubated at 29 C for 75 minutes to

facilitate the production of repressor DNA. This mix was then added to a mixture of 1 µL deGFP

plasmid and 1 µL of an inducer stock. Measurements were made in a Biotek plate reader at 3 minute

intervals using excitation/emission wavelengths set at 485/525 nm. Stock repressor plasmid concen-

trations were 243 nM , 729 nM , and 972 nM for qacR wild-type, qacR2, and qacR5, respectively.

The deGFP plasmid concentration was approximately 397 nM. Inducer concentrations were 5 mM

for vanillin, and 10 µM for dequalinium.

Experimental conditions were done in triplicate and the error bars are the error propagated from

the standard deviation of the means.
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2.4.3 Cell Strain and Media

The circuit was implemented in the E.coli cell strain DH5αZ1, a variant of DH5α that contains

a chromosomal integration of the Z1 cassette [32]. The Z1 cassette constitutively expresses the

TetR and LacI proteins. All cell culture was done in optically clear M9ca minimal media (Teknova

M8010).

2.4.4 Genes and Plasmids

DNA encoding the qacR genes was constructed using overlap extension PCR. Plasmids used con-

tained chloramphenicol resistance with a p15a origin of replication.

2.4.5 In Vivo Experiments

Cells were grown in at least two consecutive overnight cultures in M9ca minimal media. On the day

of the experiment, overnight cultures were diluted 1:100 and grown for 5 hours to ensure that the

cells were in log phase. Cells were then diluted 1:100 into fresh media at the specified experimental

condition. Cells were grown in these conditions at 37C for 12–15 hours in Axygen 96 well plates

while shaking at 1100 rpm. Endpoint fluorescence was measured by transferring the cells to clear

bottomed 96-well microplates (PerkinElmer, ViewPlate, 6005182) . GFP was read at 488/525 with

gain 100.

Analysis of the data was done by taking fluorescence readings for each independent well. Exper-

imental conditions of the qacR proteins were done in triplicate and repeats were averaged. Error

bars shown are the error propagated originating from the standard deviation of the mean.
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(a) 0 ng/ml aTc. (b) 4 ng/ml aTc.

(c) 8 ng/ml aTc. (d) 12 ng/ml aTc.

Figure 2.16: Vanillin dosage response curves. Cells expressing GFP without any repressor were
used as a control to normalize for differences in fluorescence due to aTc and vanillin levels. Fluores-
cence was measured for different inducer concentrations. Mutants display an increased sensitivity
to vanillin concentrations for most of the range of aTc concentrations tested.
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Table 2.8: OD600 of cells at 0 ng/mL aTc.

Table 2.9: OD600 of cells at 4 ng/mL aTc.

Table 2.10: OD600 of cells at 8 ng/mL aTc.

Table 2.11: OD600 of cells at 12 ng/mL aTc.
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Chapter 3

Design and Implementation of a
Biomolecular Circuit for Tracking
Protein Concentration

3.1 Introduction

As biomolecular circuits in synthetic biology increase in complexity, the incorporation of closed loop

feedback controllers into circuit designs will become necessary for robust performance. In order to

do this in a biochemical circuit, a mechanism that can track the difference in the amount of an

output to a given reference value is required. With this in mind, we designed a sequestration-based

negative feedback circuit, in which one protein tracks the level of another protein, which we consider

to be our reference.

This chapter discusses the design, modeling, and biochemical implementation of this circuit. In

this circuit, we set the level of our reference, protein A. The presence of protein A conditionally

activates the synthesis of protein B, our desired output. Protein B is designed to have regions that

interact with protein A, creating a negative feedback loop that shuts down the synthesis of protein

B when the levels of A and B are equal.

The design of this circuit was partially inspired by a circuit designed by Franco et al. [33] where

an in vitro RNA transcription circuit coupled the levels of two double stranded DNA species through

sequestration and transcriptional regulation. A mathematical model consisting of a set of ODEs is

derived from mass action laws and Hill function approximations of protein production. Steady-state
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analysis of the model is used to predict parameter sensitivity and experimental behavior. We used

the model to explore parameter space and look at the tunability of certain aspects of the circuit

such as the ratio between proteins A and B.

The work described in this chapter is primarily derived from a conference paper that was pre-

sented in the 2012 American Controls Conference [34]. The work was a collaboration between me,

Victoria Hsiao, and Weston Whitaker. I conceptualized the idea of a protein tracker and designed

the scaffold-based mechanism with Weston. I then worked on construction and sensitivity analysis

of the initial model, and wrote the ACC paper. Victoria worked on the model and did the exper-

imental work for this paper. She continued the work on this project by adding a phosphatase to

the model and exploring the predicted effects of adding more response regulator and phosphatase to

the protein ratios and maximum scaffold occupancy limit. She performed steady-state and dynamic

experiments based on the new model, leading to a publication in ACS Synthetic Biology [35]. This

chapter mainly covers the conceptualization of the circuit and the framework of the model. A more

detailed explanation of the experimental results and refinement of the model can be found in the

ACS Synthetic Biology paper.

3.2 Background

Synthetic feedback regulation is a critical hurdle for the design and engineering of complex syn-

thetic circuits. Recent theoretical work by Ang et al. [36] proposed and modeled a two-promoter

transcription-level system for implementing integral control. Stapleton et al. [37] demonstrated a

transcription-level negative feedback circuit in mammalian cells, in which an RNA binding protein

repressed translation of its own mRNA. Here, we model and demonstrate a protein-level negative

feedback circuit.

Previously, Dueber et al. showed that synthetic scaffold proteins could be used to co-localize

intermediates in the production of a metabolic product [38]. They designed synthetic scaffolds out of

single protein binding domains linked together by short repeating peptide sequences. Further work by

Whitaker et al. showed that prokaryotic two-component systems could be selectively phosphorylated
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Figure 3.1: A visual schematic of our circuit design. The circuit regulates the production of the
amount of target protein with respect to the amount of reference protein. This is done using
programmable scaffold domains. Expression of the target is dependent on the amount of free scaffold.
The target contains domains that sequester free scaffold, creating a negative feedback loop.

using these eukaryotic scaffolds [39].

Two-component systems are naturally found in bacteria as environmental sensor and response

systems [39, 40]. A transmembrane histidine kinase senses environmental conditions, such as os-

molarity or pH, and phosphorylates a response regulator protein. The phosphorylated response

regulator becomes an active transcription factor, allowing the transcription and translation of target

genes.

Building off of this previous work [39], our circuit uses a two-domain synthetic protein scaffold

as our reference protein (scaffold) that activates transcription of our target (Fig. 3.1). The target

is designed to bind to the scaffold, creating a negative feedback loop via sequestration.

3.3 Circuit Description

The circuit consists of four major components: a synthetic scaffold protein (Sc), a histidine kinase

(HK), a response regulator (RR), and a target protein. The synthetic scaffold serves as our reference

level. It consists of two pairs of small protein-protein binding domains: the SH3-peptide/SH3-

domain and the leucine zipper LZx/LZX, which have been previously used and characterized [41].

The HK and RR are commonly found in bacterial signaling systems. In our system, they serve as

the mechanism for conditional activation of the target protein based on the reference levels.
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In natural systems, there are hundreds of HK/RR pairs that perform signaling functions with

minimal crosstalk. Since we desire activation of the RR to be conditional on our reference protein, we

have selected a non-cognate pair of histidine kinase and response regulator, known to be orthogonal

in vivo. Based on previous designs by Whitaker et al., the HK is bound to a SH3 ligand and the

RR is bound to a LZx domain, which both bind to Sc [39]. When both HK and RR are bound

to the scaffold, the RR becomes an active transcription factor, resulting in the expression of our

target protein [39]. The target protein contains domains for both the SH3 ligand and LZx, which

are complementary to the scaffold binding domains. This allows the target to out-compete both

the HK and RR for binding to the scaffold, effectively sequestering the scaffold, and repressing its

own production. We expect that with this circuit design, we can regulate the relative steady-state

concentrations of scaffold to anti-scaffold. Figure 3.1 shows a schematic description of our circuit

design.

3.4 Mathematical Model

We constructed an ODE-based dynamical model of our circuit from the chemical reactions occurring

in our system [42]. The model consists of 19 species corresponding to the active and non-active states

of the HK and RR, and the different two-species and three-species complexes that can be formed.

The model contains 56 different reactions that describe production and degradation of our basic

species (Sc, HK, RR, and target), activation of HK and RR, binding of HK and RR to Sc, and

sequestration of Sc by our target. With the exception of the formation of our target protein (AS),

mass-action kinetics was used to describe the rate laws of the reactions. Parameters were selected

from experimental values found in the literature where available [41, 40, 43, 44]. A complete list of

chemical reactions and parameters for the model can be found in section 3.8.

The HK is activated via auto-phosphorylation to form HKp, and the transfer of this phosphate

group activates the RR to RRp. RRp is inactivated either through phosphatase activity of the HK
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or auto-dephosphorylation. Key reactions that describe this process in our model are:

HK
kfHKp−−−⇀↽−−−
krHKp

HKp, (3.1)

HKp + RR
kfNCP−−−⇀↽−−−
krNCP

HK + RRp, (3.2)

RRp

kdephos−−−−→ RR. (3.3)

Since our design is dependent on activation of the RR with respect to the amount of reference

protein (scaffold) that is available for binding, we expect the non-scaffold mediated rate of RR

activation (described by reaction 3.2) to be low. Accordingly, rate constants were chosen to be similar

to those between a HK and its non-cognate RR [40]. We assume that our reference protein has two

independent binding sites to which a RR and HK can bind, and that this binding is independent

of the phosphorylation state of HK and RR. When both HKp and RR are bound to a scaffold, RR

activation occurs at a faster rate, chosen to be similar to the rate of phosphorylation between a HK

and its cognate RR. Some of the reactions that describe this process in our model are:

Sc + HKp

kfSH3−−−⇀↽−−−
krSH3

ScHKp, (3.4)

ScHKp + RR
kfLZX−−−⇀↽−−−
krLZX

ScHKpRR, (3.5)

ScHKpRR
kfCP−−⇀↽−−
krCP

ScHKRRp. (3.6)

Activated RR, RRp allows for the production of our target protein, AS with the reaction:

RRp
βAS−−−→ RRp + AS (3.7)

The creation of the anti-scaffold uses a Hill equation to describe its kinetic rate. We assume that the

rate of production of AS from RRp is unaffected by any other molecules RRp is bound to. Therefore,

the rate of production of AS is:
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d[AS]

dt
=βAS

[
β0 +Kd

(
f

g

)]
(3.8)

f =RRp + ScRRp + ScHKRRp + ScHKpRRp + ScRRpAS

g =Kd + RRp + ScRRp + ScHKRRp + ScHKpRRp + ScRRpAS

AS contains the same protein domains as RR and HK, enabling it to competitively bind to and

sequester Sc. As with HK and RR binding to Sc, we assume that As can bind to either of these sites

independently. However, once AS is bound to Sc, if an occupied binding site becomes available, we

assume that AS is able to bind to and sequester this site very rapidly. Furthermore, we assume that

once AS is bound to both of the sites in Sc, the sequestration of Sc by AS is irreversible. Some of

the reactions that describe AS sequestration of Sc are:

Sc + AS
kfseq−−→ ScAS (3.9)

ScHK + AS
kfLZX−−−⇀↽−−−
krLZX

ScHKAS
krSH3−−−→ ScAS + HK (3.10)

ScRR + AS
kfSH3−−−⇀↽−−−
krSH3

ScRRAS
krLZX−−−→ ScAS + RR (3.11)

We have implemented our model using the SimBiology toolkit in MATLAB, which converts the

reactions into a set of ODEs. Using the numerical solver ode23t, the simulations were run until

each of the species reached steady-state. To evaluate the behavior of our circuit, simulations were

performed over a range of steady-state Sc and RR concentrations. This was done by changing the

rate of synthesis of the corresponding species. We compared the results of this simulation to the

open loop circuit, which used the same model without the sequestration reactions. Figures 3.2 and

3.3 summarize the results of these simulations.

In the simulations, the addition of the negative feedback regulates the level of our target protein

dependent on the amount of Sc in the system. The maximum reference level that our target is

capable of tracking is dependent on the amount of RR in the system, which mediates the scaffold-



44

0 2000 4000 6000 8000
0

200

400

600

800

Time (s)

A
n
ti
−

S
c
a
ff
o
ld

 (
n
M

)

Open Loop

 

 

1 nM

72 nM

215 nM

429 nM

643 nM

857 nM

0 2000 4000 6000 8000
0

200

400

600

800

Time (s)

A
n
ti
−

S
c
a
ff
o
ld

 (
n
M

)

Closed Loop

 

 

1 nM

72 nM

215 nM

429 nM

643 nM

857 nM

Figure 3.2: Time trace of total anti-scaffold (AS) concentration for varying scaffold(Sc) concentra-
tions at a fixed response regulator concentration (350 nM).
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Figure 3.3: Steady-state simulations for different Sc and RR concentrations. The presence of the
negative feedback loop is able to regulate the level of our target molecule, the anti-scaffold (AS),
allowing it to track the level of our reference, the scaffold (Sc).
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dependent expression of our target protein. As we increase the RR levels, we achieve the maximum

amount of target protein that can be produced. The range in which the target protein is able

to track the reference protein also increases. For a fixed RR concentration, the amount of target

protein decreases from a maximum value as Sc increases. This is because co-localization of the HK

and RR decreases if there is too much scaffold in the system. The regulation of the production of

the target protein by the feedback loop is evident when compared to the open loop case where the

target protein level quickly reaches its maximum concentration, and then decreases due to the loss

of co-localization with increasing Sc.

In order to further characterize our circuit, and to determine which parameters our system were

most sensitive to, we used the SimBiology toolkit to numerically calculate the sensitivity of our

output, and the total target protein concentration (xTOT) with respect to the different parameters

in our model. Specifically we calculated:

dxTOT

xTOT

/
dθe
θe

Figure 3.4 shows the normalized sensitivities of the total amount of target protein with respect to

different parameters for a fixed scaffold concentration (572 nM) and increasing RR concentrations.

We reasoned that increasing RR concentrations would be analogous to increasing the gain of our

feedback circuit. Our circuit is most sensitive to parameters affecting the phosphorylation rates

of the HK and RR, kfHKp ,krHKp , kdephos, parameters dealing with sequestration, kfSH3
, krSH3

, krLZX,

krLZX, krseq, and parameters affecting the production of HK, Sc, and RR, βSc, βRR, and βHK . The

sensitivity analysis informs us on which parameters have the most impact on circuit performance.

By choosing to focus on parameters that are more easily tuned experimentally, we can utilize the

model to optimize the circuit design process.
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Figure 3.4: Sensitivity analysis showing the normalized sensitivity of total anti-scaffold to the differ-
ent parameters in our model. The total amount of anti-scaffold is most dependent on the production
and degradation rates of the various species, the affinity of the programmable scaffolds, and the de-
activation rate of the response regulator. For the level of histidine kinase used in these simulations (2
nM), the total anti-scaffold concentration is invariant with the auto-activation rates of the histidine
kinase. Colors indicate different levels of response regulator concentrations from the lowest value (1
nM, blue) to the highest value (500 nM, red) sampled.
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3.5 Preliminary Experimental Results

Using plasmids obtained from WR Whitaker and JE Dueber, standard cloning practices were used to

assemble the circuit onto three plasmids. The reference (scaffold) component was cloned into a high-

copy plasmid under a tetracycline-inducible promoter. The histidine kinase (Taz) was cloned into a

low-copy plasmid under a constitutive promoter. The response regulator (CusR) and target (anti-

scaffold) were cloned into a medium-copy plasmid, with the response regulator under an arabinose-

inducible promoter and the anti-scaffold under a response-regulator-activated promoter.

We implemented our circuit in vivo in a ∆CusS ∆CusR strain of E. coli [39]. This was done

to reduce any non-scaffold mediated activation of the RR. In the absence of CusS, activated CusR

proteins remain phosphorylated. This is because CusS serves as both the histidine kinase and the

phosphatase in the native system.

Characterization of circuit behavior was done by independently varying the levels of Sc and RR.

The inducible promoters allowed for the tunable expression of Sc and RR by anhydrous tetracycline

(aTc) and arabinose, respectively. The Sc and AS were fused to fluorescent reporters, providing

real-time circuit behavior data in bulk and single cell measurements. Cells were induced with 0–150

nM of anhydrous tetracycline (aTc) and 0 - 0.01% arabinose. A modified version of MOPS EZ Rich

media (Teknova, M2105) is used to reduce the effect of media coloration on fluorescence measure-

ments. Induced cultures are grown overnight (20 hrs, 37C) and bulk fluorescence measurements

(GFP:488/520nm, RFP:580/610nm) are taken with a BioTek H1F microplate reader. An open loop

version of the circuit, which contained a fluorescent reporter but none of the domains required to

sequester the Sc, was tested in parallel with our closed loop circuit.

Overnight cultures for the open and closed loop circuits were grown overnight and steady state

fluorescence values for the scaffold-mCherry, GFP (open loop), and anti-scaffold-GFP (closed loop)

fusion proteins were measured. Figures 3.5–3.6 show the steady state values of scaffold versus anti-

scaffold in terms of total normalized RFP versus GFP fluorescence.

In the open loop circuit (Figure 3.5), we see that with no response regulator (Ara 0%), GFP

induction is close to zero. As response regulator concentration increases, the steady state level
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Figure 3.5: Steady state fluorescence values for the open loop circuit with scaffold-mCherry fluo-
rescence on the x-axis (0 - 150nM aTc induction, L-R) and GFP values on the y-axis. Increasing
arabinose concentrations indicate increasing response regulator concentrations.

of GFP peaks at some optimal concentration of scaffold (2–3 × 104 a.u) and then decreases with

increasing scaffold induction. We hypothesize that as scaffold concentrations exceed those of the

response regulator and histidine kinase, each free scaffold will be bound to only one or the other,

effectively reducing the amount of activated response regulators. This single-occupancy effect is

one that has previously been shown [41]. We also see that with higher concentrations of response

regulator, the scaffold seemed to saturate at a lower maximum concentration, resulting in the curves

shown for 0.005% and 0.01% arabinose. Finally, the effect of leaky promoter activation should also

be considered. In the case of no scaffold induction (0 nM aTc, first data point), we would expect

to still see some background level of scaffold production, which, when combined with an excess of

response regulator and histidine kinases to occupy those scaffolds, results in increasing background

levels of anti-scaffold. Looking at the x-axis of Figure 3.5, we see that scaffold concentrations start

at 1×104 a.u. with 0 nM aTc induction. As the arabinose induction of response regulator increases,

so too does the steady state concentration of anti-scaffold.

In the closed loop circuit (Figure 3.6), we expect the steady state anti-scaffold concentrations

to increase more gradually with increasing scaffold concentrations, which is apparent in the experi-

mental data.

Rather than peaking at 2 × 104 a.u. scaffold fluorescence, the closed loop circuit asymptotes

closer to 4 × 104 a.u. and does not yet show the effects of single scaffold occupancy. We believe
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Figure 3.6: Steady state fluorescence values for the closed loop circuit with scaffold-mCherry fluo-
rescence on the x-axis (0 - 150nM aTc induction, L-R) and anti-scaffold-GFP values on the y-axis.
Increasing arabinose concentrations indicate increasing response regulator concentrations.

this is consistent with our model, since anti-scaffold sequestration effectively reduces the amount of

free scaffold such that it actually lessens the probability of single-scaffold occupancy. Based on the

model, we predict that if the scaffold induction range were increased beyond 150 nM, the steady

state anti-scaffold concentration would show a similar decrease as the open loop, just at higher

scaffold concentrations. Finally we see that although it has nearly the same level of leaky scaffold

production, the anti-scaffold levels are much lower than their open-loop counterparts.

3.6 Modifications to the Model and Experimental Results

As we characterized the circuit more, we observed that we were seeing higher than expected acti-

vation of proteins downstream of the CusR promoter. We noted that our circuit was implemented

in a ∆CusS ∆CusR E. coli knockout strain [45]. In the absence of CusS, the native bifunctional

histidine kinase/phosphatase partner for CusR, activated CusR proteins remain phosphorylated.

Accordingly, we re-introduced a CusS(G448A) mutant behind an inducible promoter to tune re-

sponse regulator deactivation. The G448A mutation disrupts the ATP binding site, eliminating

kinase auto-phosphorylation without affecting phosphatase activity [46, 47]. We modified the model

to reflect this change by changing reaction 3.3 to
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RRp + Ph
kfPh−−⇀↽−−
krPh

RRp: Ph
kdephos−−−−→ RR + Ph

Since the activated response regulator dimerizes when it serves as a transcription factor, we

changed the hill coefficient in the anti-scaffold synthesis equation to 2. Reaction (3.8) was modified

to reflect this:

d[AS]

dt
=βAS

[
β0 +

(
f2

K2
D + f2

)]

f =RRp + ScRRp + ScHKRRp + ScHKpRRp + ScRRpAS

Dephosphorylation is now modeled enzymatically as a two-step reaction where the phosphatase

binds to the phosphorylated response regulator first and then the phosphate is removed irreversibly,

in a Michalis-Menten reaction. This is consistent with previous models [48].

The final model consists of 80 reactions, 25 differential equations, and 26 parameters. Many

parameters were selected from experimental values found in the literature [43, 49, 44], and others

were estimated within a physiologically reasonable range.

Experimental data recapitulated the model predictions for the circuit in steady-state conditions

(Figure 3.7). The circuit was also able to respond dynamically to increases in aTc concentration,

closely following the predictions of the model (Figure 3.8). Interestingly, a model based exploration

of parameter space predicted that the ratio between the scaffold and the anti-scaffold could be tuned

by varying the phosphatase and response regulator concentrations (Figure 3.9). This corresponded

to tunable knobs, we could alter the response regulator concentration experimentally by varying the

arabinose concentration. Experimental results suggested that this was the case using YFP/RFP as

a proxy for this ratio (Figure 3.10). The final circuit not only serves as a biomolecular concentration

tracker, but it provides a mechanism to maintain two proteins at a tunable fixed ratio dynamically
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with changing environmental conditions.

(a) (b)

Figure 3.7: Open loop versus closed loop. (a) Model predictions of scaffold circuit with and
without negative feedback. Solid lines show anti-scaffold output over a range of scaffold concentra-
tions (0 - 1000 nM) for open and closed loop circuits with constant response regulator (100 nM).
Dotted lines show lack of output in the absence of response regulator. Open loop circuit shows
scaffold single occupancy effect at lower levels of scaffold. (b) Steady state experimental data of
open and closed loop circuits with and without response regulator matches model predictions. Both
sets of experimental data were normalized by the autofluorescence of a control E. coli strain. Figure
and caption obtained from [35].

3.7 Conclusion

In this chapter, we have mathematically modeled and shown experimental results for a biomolecular

concentration tracker. We believe that this is a promising mechanism for regulating the level of

protein in the cells based on changing conditions. By linking the level of the reference protein to

a signal of interest, you can dynamically affect the levels of downstream proteins, or keep the ratio

between proteins fixed. We believe that allowing proteins to maintain a fixed ratio, tunable by

different components in the circuit, is particularly useful in synthetic metabolic pathways, where

altering the ratios of enzymes from different sources to balance flux can yield an increase in overall

yield [38]. This circuit enables that at the protein level and can potentially replace promoter tuning

for synthetic circuits. Promoter tuning balances circuit component levels more indirectly, since it

operates at the DNA level, and dynamic response is also slower and more difficult to implement.
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We note that the circuit presented here can serve as a template for the dynamically maintaining

proteins at fixed ratios and will be a valuable addition to the synthetic biology toolkit.

(a)

(b)

Figure 3.8: Multi-step induction of tracker circuit. (a) Simulation results for a three step
induction show overlapping response times with each curve decreasing based on degradation rate
after induction ceases. Upper panel shows aTc induction pattern with one hour steps increasing in
50 nM increments starting 30 minutes after start of experiment. (b) Experimental time traces for
Sc-RFP show overlapping fluorescence output, with each curve decreasing at a time proportional to
the number of steps. Corresponding anti-scaffold-YFP data show similar overlaps and proportional
decreases. Fluorescent measurements are normalized such that the maximum value of the one step
curve is 1 a.u. to better visualize fold change. Figure and caption obtained from [35].
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Figure 3.9: Model predicted tunability of anti-scaffold to scaffold ratio. Heat map showing
anti-scaffold to scaffold ratio. Increasing response regulator results in greater AS/Sc ratios. Gray box
represents estimated experimental phosphatase induction range. Black box estimates experimental
response regulator induction range. Figure and caption adapted from [35].
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(a) (b)

(c)

Figure 3.10: Steady state experimental tuning of response regulator. (a) Simulation data
of input-output curves with increasing response regulator concentrations (01000 nM). Increasing
response regulator increases the scaffold occupancy limit as well as overall AS/Sc ratio. (b) Ex-
perimental data of steady state scaffold to anti-scaffold curves with 10-fold increases in response
regulator induction (00.01% arabinose). (c) Ratios of YFP/RFP from part B as a proxy for As/Sc
ratios with increasing response regulator.Figure and caption adapted from [35].
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3.8 Model Reactions and Parameters

3.8.1 Chemical Reactions

Production and Degradation Reactions (other species are degraded with rate γ and not produced):

φ
βHK−−−⇀↽−−−
γ

HK (3.12)

φ
βRR−−−⇀↽−−−
γ

RR (3.13)

φ
βSc−−⇀↽−−
γ

Sc (3.14)

Auto-phosphorylation of Histidine Kinase:

HK
kfHKp−−−−⇀↽−−−−
krHKp

HKp (3.15)

ScHK
kfHKp−−−−⇀↽−−−−
krHKp

ScHKp (3.16)

ScHKRR
kfHKp−−−−⇀↽−−−−
krHKp

ScHKpRR (3.17)

Non-scaffold mediated background phosphorylation:

HKp +RR
kfNonCog−−−−−−⇀↽−−−−−−
krNonCog

HK +RRp (3.18)

Scaffold binding to HK (SH3) or RR (LZX):

Sc+HK
kfScHK−−−−−⇀↽−−−−−
krScHK

ScHK (3.19)

Sc+HKp

kfScHK−−−−−⇀↽−−−−−
krScHK

ScHKp (3.20)

Sc+RR
kfScRR−−−−−⇀↽−−−−−
krScRR

ScRR (3.21)

Sc+RRp
kfScHK−−−−−⇀↽−−−−−
krScHK

ScRRp (3.22)
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Trimer formation:

ScHK +RR
kfScRR−−−−−⇀↽−−−−−
krScRR

ScHKRR (3.23)

ScHKp +RR
kfScRR−−−−−⇀↽−−−−−
krScRR

ScHKpRR (3.24)

ScHK +RRp
kfScRR−−−−−⇀↽−−−−−
krScRR

ScHKRRp (3.25)

ScHKp +RR+ p
kfScRR−−−−−⇀↽−−−−−
krScRR

ScHKpRRp (3.26)

ScRR+HK
kfScHK−−−−−⇀↽−−−−−
krScHK

ScHKRR (3.27)

ScRR+HKp

kfScHK−−−−−⇀↽−−−−−
krScHK

ScHKpRR (3.28)

ScRRp +HK
kfScHK−−−−−⇀↽−−−−−
krScHK

ScHKRRp (3.29)

ScRRp +HKp

kfScHK−−−−−⇀↽−−−−−
krScHK

ScHKpRRp (3.30)

Phosphorylation and Auto-dephosphorylation of Response Regulator (in ACS Synthetic Biology

paper, these reactions are replaced with enzymatic dephosphorylation):

ScHKpRR
kfCogP−−−−−⇀↽−−−−−
krCogP

ScHKRRp (3.31)

RRp
kAutoDephos−−−−−−−−→ RR (3.32)

ScRRp
kAutoDephos−−−−−−−−→ ScRR (3.33)

ScHKRRp
kAutoDephos−−−−−−−−→ ScHKRR (3.34)

ScHKpRRp
kAutoDephos−−−−−−−−→ ScHKpRR (3.35)

ScRRpAS
kAutoDephos−−−−−−−−→ ScRRAS (3.36)

Sequestration of Scaffold by Anti-scaffold:

Sc+AS
kfScAS−−−−−→ ScAS (3.37)

ScHK +AS
kfASLZX−−−−−−⇀↽−−−−−−
krASLZX

ScHKAS
krASSH3−−−−−−→ ScAS +HK (3.38)
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ScHKp +AS
kfASLZX−−−−−−⇀↽−−−−−−
krASLZX

ScHKpAS
krASSH3−−−−−−→ ScAS +HKp (3.39)

ScRR+AS
kfASSH3−−−−−−⇀↽−−−−−−
krASSH3

ScRRAS
krASLZX−−−−−−→ ScAS +RR (3.40)

ScRRp +AS
kfASSH3−−−−−−⇀↽−−−−−−
krASSH3

ScRRpAS
krASLZX−−−−−−→ ScAS +RRp (3.41)

Synthesis of Anti-Scaffold:

φ
kf−⇀↽−
γ
As

3.8.2 Parameters

Parameter Value Units Description

βAS 10 nM s−1 anti-scaffold production from RRp

βHK , βRR, βsc [steady-state value]/γ nM s−1 these were constants and set
as input values for the model

β0 0.01 leaky anti-scaffold production
(1% of total induction)

γ 3.84 x 10−4 s−1 degradation and dilution [49, 50]
KD 100 nM constant in anti-scaffold activation

Hill Function



58

Forward and Reverse Reaction Rates
Parameter Value Unit Description
kHKp kf 0.003 s−1 HK auto-phosphorylation [49]

kr 0.0001 s−1 [43]
kcogp kf 102.1 s−1 cognate HK-RR phosphorylation [49]

kr 0.00294 s−1 [49]

knoncog kf 0.0031 M−1 s−1 non-cognate HK-RR phosphorylation [49]

kr 0.0002 M−1 s−1 [49]

kSH3 kf 1 x 105 M−1 s−1 SH3 domain/ligand binding [44]
kr kf:SH3 (0.1 x 10−6) s−1 KD = 0.1M [41]

kLZX kf 1 x 105 M−1 s−1 leucine zipper binding
kr kf:LZX (0.01 x 10−6) s−1 KD = 0.01M [41]

kSc:HK kf 4kf:SH3 M−1 s−1 scaffold binding to HK with 4 SH3 domains
kr kr:SH3 s−1

kSc:RR kf kf:LZX M−1 s−1 scaffold binding to RR with 1 LZX domain
kr kr:LZX s−1

kSc:AS kf kf:LZX + kf:SH3 M−1 s−1 scaffold binding to anti-scaffold
kr 0.001kr:LZX s−1

kAS-SH3 kf kf:SH3 s−1 anti-scaffold binding to Sc:RR complex
kr 0.001kr:SH3 s−1

kAS-LZX kf kf:LZX M−1 s−1 anti-scaffold binding to Sc:HK complex
kr 0.001kr:LZX s−1
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Chapter 4

Design of a Workflow for De Novo
Computational Enzyme Design

4.1 Introduction

One of the big promises of computational protein design (CPD) is its potential for engineering de-

signer enzymes. Enzymes are truly amazing catalysts, providing rate accelerations of up to 1019 over

uncatalyzed reactions with great regio- and stereo-selectivity. Being able to harness this potential

in a general way will provide a great boon by reducing the need for multistep organic syntheses

with protecting groups and hazardous solvents. From a synthetic biology perspective, a general

framework to build designer enzymes is potentially one of the biggest contributions that CPD can

provide to augment the synthetic toolkit. Custom-built enzymes in synthetic pathways can stream-

line metabolic engineering of novel products and allow us to program cells with new functions that

nature has not previously accessed.

Recent advances [51, 52, 53, 54] in de novo enzyme design have bolstered our confidence that

designer enzymes will one day become a reality. However, much work needs to be done in order

for this to be accomplished. Rate accelerations from computationally designed enzymes are several

orders of magnitude below natural enzymes. Furthermore, attempts at computational design of

certain, well-characterized reactions, such as the chorismate mutase reaction, have so far proven to
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be unsuccessful.

This chapter describes a mostly automated workflow we developed to find suitable scaffolds for

the chorismate mutase reaction with the goal of engineering chorismate mutase activity de novo into

an inactive protein scaffold (Figure 4.1). The workflow begins with crystal structures from the PDB

that meet a set of criteria for scaffolds for computational protein design. Structures that had ligands

that were similar in size to our target substrate and contained a wild-type arginine, a key amino

acid for the chorismate mutase reaction, were selected for targeted ligand placement. After targeted

ligand placement, designs were down-selected by visual inspection of the computational models of the

active site. Molecular dynamics was then performed to look for promising candidates. Candidates

that passed certain criteria from the molecular dynamics screen were synthesized and characterized

experimentally. Results from experimental characterization can then be used to guide more in silico

exploration of the design space. We believe that this workflow can serve as a template for future

enzyme design projects alternating iteratively between computational screening and experimental

characterization until we obtain an enzyme with the desired properties.

Figure 4.1: Workflow for Enzyme Design. The workflow leverages advances in computational
protein design to focus a search of a large space of design possibilities into smaller areas that
are experimentally tractable. Results from the experiments can then inform computational design
algorithms to provide suggestions on other areas of design space to focus on, or areas to apply more
computational power on to explore the space even more.

The work described in this chapter was a collaboration between myself, Timothy Wannier, and

Bernardo Sosa Padilla Araujo. I conceptualized designing a framework to automate enzyme design.
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Timothy and I wrote the scripts and performed the experiments. Preliminary molecular dynamics

work was done by Bernardo, which I then continued adapting his scripts and protocol.

4.2 Background

Chorismate mutase catalyzes the pericyclic rearrangement of chorismate to prephenate (Figure

4.2A). It is one of the steps in the phenylalanine and tyrosine biosynthetic pathways. While cru-

cial to central metabolism in lower organisms, this reaction is absent in mammals, making it an

attractive target for antibiotics, fungicides, and herbicides. Because of this, the mechanism and

transition state of the catalyzed reaction has been studied extensively [55, 56]. These studies have

shown that enzymatic catalysis is achieved by stabilizing the chair-like transition state through elec-

trostatic interactions with sidechains. Chorismate mutase seemed like a classic target for de novo

computational enzyme design because of its straightforward mechanism—one-step reaction where

the transition state was stabilized through electrostatic interactions, and because of ab initio calcu-

lations done to predict its transition state by the Houk Lab [56]. In fact, chorismate mutase was one

of the enzymes that was used as a benchmark for the targeted ligand placement method developed

at the Mayo lab [23]. In the study, the Phoenix Match algorithm (Targeted Ligand Placement) [23]

was used to recapitulate enzyme active sites, including that of chorismate mutase. Phoenix Match

was able to place an ab initio transition-state structure into the active site of chorismate mutase

with the proper wild-type contacts. However, in spite of this success in recapitulating the active site

in a wild-type scaffold, to the best of our knowledge, attempts to engineering chorismate mutase

activity into a non-native scaffold have been unsuccessful.

In retrospect, engineering chorismate mutase activity is fairly challenging because of the multiple

catalytic contacts that are required. An ideal chorismate mutase active site would preferentially bind

the diaxial form of chorismate, as it is closer to the transition state (Figure 4.2B). This requires seven

catalytic contacts including two buried arginines (Figure 4.2C), making targeted ligand placement

into a new scaffold difficult. However, recent advances in enzyme design and increased computational

resources allowing for large-scale targeted ligand placement and the use of molecular dynamics (MD)



62

as a prescreen [53, 54, 57] have encouraged us to revisit this problem. We attempted to use the

increase in computational resources to do a broad, automated, systematic survey of the design space

to achieve the de novo engineering of a chorismate mutase.

Figure 4.2: Chorismate mutase reaction. (A) Chorismate mutase catalyzes the conversion of
chorismate to prephenate, the first committed step on the aromatic amino acid synthesis pathways.
(B) Different conformations of chorismate; because the transition state is closer to the diaxial
conformation, the enzyme stabilizes the diaxial form. (C) Active site of E. coli chorismate mutase.
Multiple contacts bind preferentially to the diaxial form of chorismate, which helps stabilize the
transition state. Figures 1A and 1C were adapted from [23] Figure 1B was generated in PYMOL.
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4.3 Computational Enzyme Design Workflow for Chorismate

Mutase

4.3.1 Finding Suitable Scaffolds from the Protein Data Bank

One of the challenges in enzyme design is finding appropriate scaffolds for Phoenix Match. This is

especially true in the case of chorismate mutase, as it has proven difficult to find scaffolds with large

pockets that contain at least one core arginine. We decided to automate the scaffold search process

by starting with a set of structures from the Protein Data Bank that could be used for future active

site searches.

We constructed a set of criteria (Table 4.1), taking into consideration features we usually look

for when picking scaffolds for CPD such as resolution and expression organism. We downloaded

7,561 structures matching our criteria from the PDB. This set of structures is not specific to the

chorismate mutase reaction and can be used for future scaffold searches.

Table 4.1: Criteria for PDB Download. List of criteria that used to filter the initial download
from the Protein Data Bank.

Criterion Value
Expression Organism Escherichia coli

“Has ligands” Yes

X-ray Resolution 0.1 Å–2.8 Å
Chain Length 1–500 residues

Contains Protein Yes
Contains DNA No
Contains RNA No

Contains DNA/RNA Hybrid No
Number of Entities 1
Number of Chains 1–2

Remove similar sequences at 90% identity

To find potential scaffolds for chorismate mutase, we wrote a PYMOL script that analyzed the

downloaded structures. The script first searched for structures that contained ligands with a similar

radius of gyration to the chorismate mutase transition state (2.63 Å). Specifically, we searched for

structures that contained ligands that had a radius of gyration between 1.95 and 4 Å. We defined the

residues in the ligand binding pocket to be residues within a 4.5 Å shell of the ligand. We filtered the
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list of structures to those that contained a buried arginine (less than 15 Å
2

surface area exposed) in

the ligand-binding pocket. Applying this filter to our list of scaffolds returned 451 potential scaffolds

for the chorismate mutase reaction.

4.3.2 Active Site Search

We ran each of the scaffolds through proteinProcess, a Triad structure preparation script that adds

hydrogens, builds missing residues and atoms, and resolves structural ambiguity for asparagine, glu-

tamine, and histidine using a specified energy function (Biograf [58]). Most of the structures (429

of 451) passed through proteinProcess. Reasons for failing varied from too many missing residues

to multiple atom densities. Phoenix Match was then performed on the remaining scaffolds using

geometry definitions described in Lasilla et al. [23] using both backbone dependent (resolution 1.0

Å) and backbone independent (resolution 1.8 Å) conformer libraries [23]. We considered transition

state placement to be successful if Phoenix Match returned a result that contained carboxyl inter-

actions with 2 arginines (Figure 4.3A). The active-site search with the backbone-dependent library

yielded 239 successful ligand placements, and the backbone-independent conformer library yielded

246 successes.

4.3.3 Refining the Active Site Search Hits

For each of the successful active sites, standard computational protein design was performed in

Phoenix. Because of the smaller number of structures to analyze, we were able to use more compu-

tational resources per structure. This allowed us to greater explore paramater space. Specifically, we

allowed for small rotations and translations of the ligand and used a finer resolution confomer library

(1.0 Å for backbone-independent library and 0.1 Å for backbone-dependent library). In addition

to the regular 100 kcal/mol energy bias that is standard in Phoenix Match, we included an energy

bias of 50.0 kcal/mol for existing contacts or for the wild-type residue. The purpose of this bias

was to minimize the number of mutations to the starting structure. There was no energy penalty

for amino acids that did not make any of the required contacts. We analyzed the decoys outputted



65

(a) (b)

Figure 4.3: Sample active site search and refinement. Active site searches were done on 429
PDB structures using geometry definitions modified from Lasilla et al. [23] with both backbone-
dependent and -independent conformer libraries. (a) An active site search was considered successful
if it had two arginine contacts to carboxyl groups. This is a sample of a successful active site search
(scaffold PDB ID: 2RJH). (b) Successful active site searches were refined with a higher resolution
rotamer library, allowing for small rotations and translations in the substrate. Shown here is the
result following refinement of the active site search from Figure 2A. Extra catalytic contacts from
a lysine and tyrosine are now present. Successful refinements (2 arginine contacts and a contact to
the ether oxygen) were examined by eye and structures were chosen for MD simulations.
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by the algorithm and evaluated designs to select candidates for further analysis. Specifically, we

chose results that retained the dual arginine contacts and had at least one hydrogen bond inter-

action to the ether oxygen (which was found to be a key contact in previous mechanism studies)

as candidates for further analysis (Figure 4.3B). Repacking with the backbone-dependent library

returned 68 candidate structures, and repacking with the backbone-independent library returned 91

candidate structures. We visually inspected each of these structures and removed structures with

unusual rotamers for catalytic contacts and whose designed active sites were too solvent exposed.

After this analysis, 121 decoys were chosen for further screening with molecular dynamics.

4.3.4 Molecular Dynamics Screening

We performed molecular dynamics (MD) simulations on 121 candidate designs. Previous results

have demonstrated the ability of MD simulations to predict the activity of E. coli chorismate mu-

tase mutants that were previously generated in our lab (Figure 4.4A) [23, 57]. We used a similar

molecular dynamics protocol to that applied to the E. coli chorismate mutase mutants, the MD

simulations were run using the AMBER12 forcefield in an isothermal-isobaric (NPT) ensemble. The

MD protocol consisted of three steps. First, the decoys went through 1000 steps of minimization

under the AMBER forcefield. This was followed by a 10 picosecond equilibration step where the

molecule and substrate started with harmonic energy constraints that were released as the simulation

progressed. Finally, an unconstrained 10 nanosecond MD simulation was run. Through the course

of the simulation, we monitored the distance between the C6 and C8 carbons, the two carbons where

a new bond is formed. We also monitored the dihedral angles related to this bond, in order to give

us an indication of whether or not the substrate stayed in the diaxial conformation, or moved to the

diequatorial conformation (Figure 4.4B). Using this to analyze the decoys, we selected 10 hits from

the 121 starting potential enzyme designs for experimental characterization (Table 4.2).
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(a)

(b)

Figure 4.4: Using molecular dynamics as a prescreen. (a) Molecular dynamics simulations on
E. coli chorismate mutase demonstrated its potential to be used as a pre-screen for enzyme design
[57]. The protocol included looking at the stability of the C8-C6 distance (a bond forms here during
the Claisen rearrangement) and the dihedral angles to monitor the diaxial and diequatorial states.
A histogram and time-trace of the C8-C6 distance between the wild-type enzyme (top) and a less
functional mutant (bottom) are shown. The wild-type enzyme has a tight histogram centered under
4 Å while the less functional mutant has a broader histogram with a greater C6-C8 distance. Figure
adapted from [59]. (b) Example of an MD hit. The C8-C6 distance and the dihedral angles appear
to be stable throughout the entire 10 ns simulation.
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Table 4.2: Molecular Dynamics Hits

Scaffold PDB ID Mutations from Wild-Type
1RQJ K46S, R97N, T183R
2B69 V191G, N194R, R215K, I249D, D275N
2FVY Y34G, F40G, M41R, D260K, N280G
2FVY Y34G, F40K. M41R, K116N, N280S
2GBB Q67R, I97N, Q104K
2RJH V33S, K35S, Y39N, Y344K
2UVJ W36S, W68S, K306R
3G5T Y14A, Y150K, Y242S, W289S
3QT6 W20N, S108K, M244R
3QT9 W62K, E129S, E393R, F408N

4.3.5 Experimental Characterization of Hits from Molecular Dynamics

Screen

We assembled genes encoding the MD hits using overlap extension PCR. As a control, we also

assembled genes encoding the wild-type sequence of each of the scaffolds used. We evaluated the

potential activity of each of the hits with an in vivo complementation assay [60] and an in vitro

plate reader assay.

(a) (b)

Figure 4.5: In vitro assays of Molecular Dynamics Hits (a) SDS-PAGE gels of purified proteins
used for assay (b) Activity assay for purified enzymes. The decrease in substrate concentration was
monitored by looking at the absorbance at 275 nm.

The complementation assay uses a strain of E. coli that has its wild-type chorismate mutase

activity knocked out. When grown in media without tyrosine and phenylalanine, cells that do not
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have a plasmid encoding an active chorismate mutase enzyme are unable to grow. None of the designs

was able to successfully complement the chorismate mutase activity of the E. coli strain used in this

assay. On the other hand, cells that contained plasmid encoding the wild-type E. coli chorismate

mutase and the wild-type sequence of one of the scaffolds used, 2GBB grew in the selective media.

Wild-type 2GBB encodes another chorismate mutase from Y. Pestis. In order to account for the

possibility that the in vivo complementation assay could be too stringent and that we had an active

enzyme that was not efficient enough to complement activity in a knockout strain, we purified them

for in vitro assays (Figure 4.5A). We used the assay conditions previously used by Lasilla et. al to

measure the activity of different mutants of wild-type E. coli chorismate mutase [61]. We measured

the decrease in absorbance at 275 nm for each of the designs (Figure 4.5B). Again, it was only 1ECM

(wild-type E. coli chorismate mutase, and wild-type 2GBB that showed chorismate mutase activity.

(a)

(b)

Figure 4.6: X-ray Crystallography of Inactive Design. (a) Comparison of active site of decoy
(blue) and structure (red) one of the catalytic arginines is misplaced. (b) Interactions between R393
and R405 cause movement of the backbone displacing one of the catalytic residues.

In order to gain more information from the failed designs, we set up larger expression cultures of

the best expressing mutants (1RQJ, 2B69, 2FVY B, 2RJH, 3G5T, and 3QT9). Cells containing the

proteins in pET-DEST expression vectors were grown in 1L cultures seeded by a 25 mL overnight

starter culture at 37◦C until they reached an optical density of 0.6. They were then induced with
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100µM IPTG and moved to 22◦C and allowed to grow overnight (∼ 16 hours). Cells were spun at

4000 RPM for 30 minutes. We resuspended the cells in buffer containing 150 mM NaCl, 50 mM, 10

mM imidazole, and 0.1 % Triton-X at pH 8.0. Cells were lysed by sonication (4:00 total ON time,

with 3 second pulses and 5 second recovery). We spun the solution at 15000 RPM for 15 minutes

and recovered the soluble protein with a nickel resin gravity column.

This was done to set up trays for x-ray crystallography of the designs. We looped around 30

crystals to send for x-ray crystallography. From these, we were able to collect a data set at 1.5 Å

from one of the crystals corresponding to 3QT9.

Conditions for crystallization were as follows: the protein was concentrated at 13 mg/mL and

the crystallant was 0.1 M CHES, and 30% PEG 3000 at a pH of 9.5. This was part of the Wizard I

& II screen. We used parafin oil as our cryoprotectant.

When we compared the crystal structure to the design, we observed that the backbone had moved

when compared to the starting structure we had used as a scaffold for our design, and this moved

one of the catalytic arginines out of position from the design (Figure 4.6). This highlights one of

the limitations of the design algorithm that was used which relies on a fixed backbone for rotamer

placement. Based on the crystal structure, we decided to focus our enzyme design efforts on 3QT9–

the protein expressed and crystallized well. Using the insights gained from the crystal structure, we

ran a second round of computational protein design with 3QT9 as the starting scaffold.

4.3.6 Second Round of Designs based on 3QT9

Looking at the location of the active site for the initial 3QT9 enzyme design, we determined that

the active site location may have been too solvent exposed. We selected a more buried arginine

reside, R64, as the starting residue for Targeted Ligand Placement. We modified the geometry

definitions for the energy biases that favored stabilizing interactions for the transition state in the

design algorithm (Tables 4.3–4.6). Specifically, we changed the range of allowable distances and

angles to be closer to the idealized molecular orbital geometries. We also allowed a greater set of

interactions between amino acids and the transition state to be favored to include any potential
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Figure 4.7: One Redesign with the crystallized scaffold. New designs were built off an arginine
residue that was more buried than the initial designs. Interactions between residues were also looked
at more carefully and geometry definitions were modified.

hydrogen bond interaction (Figure 4.7). We also used a higher resolution (0.9 Å) conformer library.

While these changes increased the size of the search space for the computational design problem,

we were able to use TRIAD, protein design software from Protabit to quickly explore this design

space. We evaluated potential designs from the second round of calculations and chose 8 designs to

run MD calculations on. Unfortunately, none of these designs were predicted to be active by the

molecular dynamics prescreen.

Table 4.3: Modified geometry definitions for first arginine interaction. Geometry defini-
tions for the bias function for the interaction between one of the catalytic arginines and CMX (the
transition state of chorismate mutase reaction). [A, B] indicates the centroid of the coordinates
of the two atoms specified. We allowed for the six possible interactions of the arginine with the
substrate due to symmetry of the guanidino group: (A,B) = (NE,NH2), (NH1,NH2), or (NE, NH1).
This was one of three required interaction for Targeted Ligand Placement.

CMX Atoms Residue Atoms (Arginine) Range

Distance [O13,O14] [A,B] 2.50–3.30 Å

Angle 1 [O13,O14] [A,B], A 70◦–110◦

Angle 2 O13 or O14, [O13,O14] [A,B] 70◦–110◦

Dihedral 1 [O13,O14] [A,B], A, CZ 160◦–200◦

Dihedral 2 O13 or O14, [O13,O14] [A, B], A -20◦–20◦

Dihedral 3 C11, O13 or O13, [O13,O14] [A,B] 160◦–200◦
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Table 4.4: Modified geometry definitions for second arginine interaction. Geometry def-
initions for the bias function for the interaction between one of the catalytic arginines and CMX
(the transition state of chorismate mutase reaction). [A, B] indicates the centroid of the coordinates
of the two atoms specified. We allowed for the six possible interactions of the arginine with the
substrate due to symmetry of the guanidino group: (A,B) = (NE,NH2), (NH1,NH2), or (NE, NH1).
This was one of three required interactions for Targeted Ligand Placement.

CMX Atoms Residue Atoms (Arginine) Range

Distance [O11,O12] [A,B] 2.50–3.30 Å

Angle 1 [O11,O12] [A,B], A 70◦–110◦

Angle 2 O11 or O12, [O11,O12] [A,B] 70◦–110◦

Dihedral 1 [O11,O12] [A,B], A, CZ 160◦–200◦

Dihedral 2 O11 or O12, [O11,O12] [A, B], A -20◦–20◦

Dihedral 3 C10, O11 or O12, [O11,O12] [A,B] 160◦–200◦

Table 4.5: Geometry definitions for hydrogen bond between protein and developing
carbonyl of CMX. Geometry definitions for the bias function for the interaction between a residue
in scaffold and a developing carbonyl in the transition state. This oxygen is predicted to be negative
so a lysine interaction is preferred. Atom identities for specific amino acids: lysine: A–NZ, glutamine:
A–NE2, asparagine: A–ND2. This was one of the three required interactions for Targeted Ligand
Placement.

CMX Atoms Residue Atoms (Arginine) Range

Distance O7 A 2.50–3.30 Å

Angle 1 C8 , O7 A 89.50◦–129.50◦

Angle 2 C5 , O7 A 89.50◦–129.50◦

Table 4.6: Geometry definitions for hydrogen bond between protein and hydroxyl of
CMX Geometry definitions for the bias function for the interaction between a residue in scaffold
and a hydroxyl in CMX. Atom identities for specific amino acids: serine: A–OG, B–HG, threonine:
A–OG1, B–HG1, glutamine: A–NE2, B–1HE2 or 2HE2, asparagine: A–ND2, B–1HD2 or 2HD2

CMX Atoms Residue Atoms (Arginine) Range

Distance O4 A 2.50–3.30 Å

Angle 1 C4, O4 A 89.50◦–129.50◦

Angle 2 O4 B, A 160◦–180◦
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4.4 Conclusion and Outlook

While the workflow failed to yield a successful design, this work contributed to the field by setting

up a framework for a focused and systematic effort in computational enzyme design. One of the

problems in enyzme design is the large space of potential proteins to assay. By applying multiple

filters based on scientifically grounded hypotheses, we are able to drastically reduce to space of

candidates to test into smaller problems that are experimentally tractable. The results of these

experiments could then be looped back into the computational methods, providing new directions

or new areas of the design space to explore (Figure 4.1). Advances in computational protein design,

such as design with moveable backbones, coupled with advances computing power that allow us to

explore more of the design space, will increase the efficacy of this workflow by providing us with

more accurate answers towards which parts of the space to explore experimentally.
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Chapter 5

Conclusion and Future Directions

5.1 Summary of Contributions

Synthetic biology has the potential to be a transformative technology. Particularly exciting is the

impact it can have in the discovery and production of pharmaceuticals. The research required in

order for this to occur draws from many different disciplines. Part of the work required is the

development of frameworks that allow synthetic circuits to behave more like natural circuits. This

thesis lays some of groundwork by proposing and implementing new mechanisms in which this can

occur and are steps towards this goal.

In Chapter 2, we proposed and implemented a mechanism in which cells can talk to a synthetic

circuit by engineering a transcription factor to sense vanillin, a small molecule that is relevant

in biofuel fermentation. We see this process as a framework that can be implemented to create

transcription factors that are able to transmit information in other synthetic circuits leading to

dynamic regulation of a synthetic circuit by molecules specifically tied to that circuit, mimicking

the behavior of natural circuits. To the best of our knowledge, this is the first instance of rational

transcription factor engineering where the target effector was unrelated to the ligands that the

native transcription factor was sensitive to. QacR and vanillin were chosen independently and the

framework is agnostic to the choice of small molecule and transcription factor to engineer.

Chapter 3 demonstrates a mechanism for dynamically fixing the ratio between two proteins.

Mathematical modeling suggests that this ratio is tunable by altering the levels of response regulator
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and phosphatase, which change the gain of the system and are independent of the proteins whose

ratios we wish to control. This addresses the problem that arises when proteins from different

organisms are placed together in a synthetic circuit. Since they do not operate together in a natural

context, the output of one enzyme may not be optimized to the input of the succeeding enzyme,

and fixing the ratios between these proteins allows their productivity to match more closely and can

increase yields in a synthetic metabolic network [38]. The work here expands this by combining a

feedback loop with scaffold-dependent phosphorylation and we allow the proteins to interact and

maintain their ratio with changing environmental conditions. To the best of our knowledge, this is

the first time that dynamic tracking of a signal was achieved entirely in the context of the cell, since

the components of the tracker were proteins.

While unsuccessful in developing an enzyme that had novel chorismate mutase activity, Chapter

4 lays a framework for tackling enzyme engineering challenges in a systematic way. This framework

is flexible and allows for advances in both computational resources and advances in computational

protein design. We can readily apply this framework for other reactions that have a known mecha-

nism and target. Reactions must be chosen so they are chemically feasible, but do not have to be

naturally observable. With the proper choice of target reactions, we can expand the space that is

chemically accessible to synthetic metabolic networks, further increasing the potential of synthetic

biology.

5.2 Future Directions

One can imagine combining the different components in this thesis to create a synthetic metabolic

network that performs like a natural gene network. This metabolic network would respond to

changing conditions regulating genes based on the amount needed to process a substrate (Chapter

2). Enzymes in the network would maintain the optimal ratio for maximum target yield (Chapter

3) and the target could be a molecule that is not naturally produced by any organism (Chapter 4).

The ability to do this rationally and systematically for many targets would mean synthetic biology

fully realizing its potential. Much work is necessary in order to achieve this.
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Applying the framework for switching effector specificity on another target small molecule or

another transcription factor would increase our confidence that we can use this as a general method

to communicate with our synthetic circuits. Using the vanillin sensor specifically in a closed feedback

loop to allow the cell to respond to vanillin toxicity would also show that dynamical responses are

beneficial to cells; an engineered stress response to vanillin is something we are interested in pursuing.

More characterization of the biomolecular concentration tracker to understand the amount of

control we have on the ratio between the two proteins will be necessary in order to use it as a

mechanism for control in a synthetic metabolic circuit. The addition of another feedback loop may

also be necessary to allow the system to respond to decreases in small molecule concentration, as

well as increases, so as not to overburden the cell’s protein degradation machinery. The mechanism

can also be extended to maintain the ratio of more than two proteins, since metabolic circuits are

rarely composed of only two enzymes.

The framework for computational enzyme design has to be successfully applied to the design of

an enzyme in a metabolically relevant pathway. It can also be modified to take advantage of the

more recent advances in computational enzyme design.

Finally, it would be advantageous to integrate more modeling of the different components that

compose a synthetic metabolic pathway. This can be a combination of metabolic flux models and

differential equation based models of protein-protein, protein-DNA, and protein-small molecule in-

teractions. Oftentimes, optimization and design of synthetic circuits is done by screening large

libraries of combinations promoters and ribosomal binding sites, essentially randomly searching de-

sign space to find the combination that gives the desired behavior. Integrating more systems based

modeling could help address this.

While there is a lot of work still to be done, the research described here is hopefully a step in

the right direction towards fully realizing the benefits we can attain from synthetic biology.
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Appendix A

Engineering Post-Translational
Modification Switchable Domains
for Fast, Programmable Allosteric
Feedback

A.1 Introduction

Regulators such as pBAD [62] and pLac [63] are an important part of the synthetic toolkit because

they allow for control of output in synthetic circuits. However, both these regulators operate on

the DNA-level and modulate their downstream signals by allowing the production of new proteins.

This mechanism causes responses from inputs to occur at the slower time scales. In natural systems,

phosphorylation and other post-translational modifications are used when a rapid response to a signal

is necessary. A classic example of this is the chemotaxis circuit in E. coli, which is governed by a

series of protein signaling cascades mediated by protein-protein interactions and post-translational

modifications, namely, phosphorylation and methylation [64]. By operating at the protein level,

E. coli is able to rapidly respond to an external signal (a chemoattractant) in the seconds time scale.

To be able to achieve similar performance, synthetic circuits must incorporate control elements at

the protein level and use “protein switches.”

The insertion of ligand-binding domains into different types of proteins allows one to tune a

proteins function using triggers such as calcium [65], maltose [66], or small peptides [67]. Erster
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and colleagues showed that inserting a tetracysteine (4C) motif into different proteins results in a

FlAsH-dependent modulation of activity: catalytic activity was altered by about 5-fold in TEM-1 β-

lactamase [68] and seven-fold in ERK [69], a yeast MAP Kinase. Reynolds and colleagues have also

developed a light sensitive dihydrofolate reductase enzyme (DHFR) by inserting a photo-sensitive

LOV domain into DHFR [70]. These results suggest that domain insertions can provide a general

method to modulate protein activity. Although in most cases the exact mechanism of activity

modulation is unknown, it is possible that structural changes in the inserted domain due to ligand

binding propagate throughout the protein altering its activity.

While ligand-sensitive protein switches operate on the protein level, their generalizability is lim-

ited because of their dependence on a specific small molecule. Furthermore, the use of small molecules

makes reversibility of the switch problematic. In natural systems such as the two-component systems

in bacteria and the MAPK cascades in eukaryotes, external signals (including small molecules) are

processed and converted into signaling cascades that use post-translational modifications such as

phosphorylation to transmit the signal through a protein network.

Post-translational modifications effect allosteric changes on their target proteins, thereby altering

their functionality. Protein phosphorylation causes conformational changes both in natural [71] and

synthetic systems [72]. Riemen and Waters designed the Trp-switch, a short peptide that transitioned

from a β-sheet to a random coil upon phosphorylation of a serine residue. This result showed that

designing short phospho-sensitive peptides that are enzymatic targets is feasible. Signarvic and

DeGrado used computationally aided protein design with an idealized coiled coil model to design

sequences that tetramerize upon phosphorylation of an N-capping serine residue [73].

This chapter describes my efforts to engineer a general mechanism for allostery in proteins. The

way I proposed to do this was by engineering a phosphorylatable domain that had two different con-

formations in its phosphorylated and non-phosphorylated states. The hypothesis was that inserting

this domain into an enzyme would result in phosphorylation-dependent modulation in activity, as

structural changes in the domain would propagate through the enzyme and cause changes in its

activity (Figure A.1).
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Figure A.1: Schematic representation of programmable protein structure. A linker is
inserted between two sections of a naturally occurring protein. In the top configuration, phospho-
rylation of the linker will bring together the sections of the original protein such that the protein is
functional. In the bottom configuration, phosphorylation has the opposite effect.

A.2 Characterizing and Finding Potential Enzymes for Ac-

tivity Assays

Wanting to build on previous work, I looked at enzymes that had either been sucessfully split

and reconstituted, or had been active after domain insertions. I first attempted to insert the Trp-

Switch [72], a 12 amino acid long peptide designed by Riemen and Waters [72], between amino

acids 96 and 97 (TEM-1 96) and amino acids 215 and 216 (TEM-1 215) of E. coli β-lactamase.

Erster et al. had previously shown that insertion of a tetracysteine domain into these locations

caused a FlAsH-dependent modulation in activity [68]. Rieman and Waters demonstrated that the

Trp-switch, normally in a β-hairpin conformation, becomes unstructured upon phosphorylation of

a serine residue by protein kinase A (PKA). By inserting this short peptide into locations that

have previously been demonstrated to be amenable to peptide insertions that could induce changes

in enzyme activity, I hoped to demonstrate some modulation in β-lactamase activity due to the

phosphorylation of the Trp-switch. I was unable to successfully purify the protein with the Trp-

switch insertions for further characterization. Expression at both 18◦C and 37◦C at IPTG induction

levels of 1 mM and 0.01 mM did not yield soluble protein. I attempted to refold the protein from

the insoluble fraction using the protocol described by Erster et al. [68]. However, while I was able
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to successfully refold the wild-type protein, the protocol did not successfully refold the proteins

containing the domain insertions. One of the requirements I wanted for the enzyme I used in the

assay was its compatibility with medium and high throughput screens. A refolding step before the

assay would significantly reduce the throughput of any screen. Because of this, I looked at other

proteins.

The second protein I explored was luciferase from P. pyralis. Luciferase was an interesting

candidate because of the modularity of its N and C-terminal domains demonstrated by the use of

split luciferase in the study of protein-protein interactions. I cloned genes encoding the wild-type

firefly luciferase and a Trp-switch domain inserted luciferase into expression vectors. The domain

inserted luciferase construct consisted of an N-terminal domain (residues 1-416), followed by the

Trp-switch, and the C-terminal domain (residues 398-550). The luciferase fragments I selected had

previously been shown to give high signal-to-noise ratios in an FRB/FKBP protein interaction study

[74]. I was able to successfully purify both constructs. Both constructs were shown to be folded

(by circular dichroism) and active (by a luciferin activity assay). However, when I tried to set up

reaction conditions to phosphorylate the domain inserted construct, it crashed out of solution. The

general instability of the luciferase constructs led me to look for another model enzyme to assay.

I finally settled on using E. coli dihydrofolate reductase (DHFR). DHFR had previously been

made light-sensitive by Reynolds and colleagues by inserting photo-responsive LOV domains in three

different locations [70]. Using DHFR provided many advantages over the previous enzymes tried

due to its small size (∼ 20 kDa), simple purification protocol, and overall general stability. DHFR

activity could be assayed by an in vitro plate assay that measured the decrease in absorbance at 340

nm, which tracks the reduction of NADPH to NADH, a co-factor in the reaction, or an in vivo cell

growth assay [70].

A.3 Designing a Phosphoswitchable Domain

Since we cannot directly design for the phospho-switching activity, I focused on domains with tar-

get structures that would potentially correlate to the function we wished to design. In this case, I
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wanted to maximize the energy gap between a folded state with a short end-to-end distance and an

unfolded state with a longer end-to-end distance with phosphorylation as the trigger between these

two states. The underlying hypothesis is that when in the folded (structured) state, the engineered

domain would have a short end-to-end distance, allowing for its non-deleterious insertion into a pro-

tein. We want to strategically select the domain insertion points such that they are locations at the

surface of the protein that are potentially sensitive such that unfolding of the insertion domain will

propagate through and destabilize the entire protein. Reynolds et al. demonstrated the existence of

these insertion points by using co-evolutionary analysis of different surface residues in DHFR to find

“hotspot” residues that were on the surface of DHFR but were connected to a network of residues

linking to the active site of the protein [70]. Another design constraint that I included was that the

target residues for phosphorylation must be targets for enzymatic phosphorylation by PKA. Enzy-

matic phosphorylation of domains is required to increase throughput of the screening. PKA was

selected because it is a relatively well-characterized kinase, its consensus phosphorylation site is rel-

atively flexible (R-R-X-S/T-Φ) [75], and because its active form can be expressed in E. coli [76]. The

Figure A.2: No detectable DHFR activity with the LacI Tetramerization Domain In-
serted Absorbance at 340 nm of wild-type DHFR, or DHFR with an insertion of a single-chain
version of the LacI tetramerization domain. A functional enzyme will correspond to a decrease in
absorbance as NADPH is reduced as part of the reaction. The domain insertions have no detectable
activity.
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first domain I tried was based on the tetramerization domain of the lacI protein (LacI-tet). When

lacI is a monomer, this domain is mostly unstructured; however, when the protein tetramerizes, the

monomers adopt an anti-parallel four-helix bundle conformation. Signarvic and DeGrado created

variants of LacI-tet that promoted tetramerization upon enzymatic phosphorylation of an N-capping

serine residue; phosphorylation serves to stabilize two arginines by balancing their charges, allowing

the monomers to become more structured and tetramerize [73]. The phosphorylated peptides they

designed favored tetramerization with an energy difference of up to −4.6 kcal/mol when compared

to their unphosphorylated state. To see if I could use a similar concept as a starting point, I designed

single-chain versions of the wild-type lacI tetramerization domain (sc-wtLacI-tet) and the mutant

tetramerization domain that was phosphorylation sensitive (sc-RRSLacI-tet) and inserted them into

DHFR. The insertion of these domains into DHFR and sites determined by the Reynolds [70] caused

the enzyme to lose any measurable activity (Figure A.2). Circular Dichroism conducted on the puri-

fied sc-wtLacI-tet domain as a separate peptide suggested that it was stable and folded. I was unable

to express sc-RRSLacI-tet on its own. I hypothesized that the domain insertion was too big for the

enzyme to accomodate and started to look for alternative domains. I wanted to continue exploring

Figure A.3: DHFR with Interacting Leucine Zipper Domain Insertion Shows Activity.
Activity was detected in DHFR containing a domain insertion with interacting leucine zippers at
two different insertion points (red and cyan). No activity was detected when non-interacting leucine
zippers were inserted.
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the potential of using alpha-helical interactions as the mechanism for phosphoswitchable activity.

The Keating lab had characterized a set of synthetic leucine zipper interactions, and they specifically

looked at the different properties in their coiled-coil interactions, including cross-talk and direction-

ality (parallel vs. anti-parallel) [77]. I focused on the Synzip 17-Synzip 18 interaction (17+18),

since it was the only anti-parallel interaction characterized. This made it amenable for insertion

into an enzyme as a single chain coiled-coil domain. To see if I could use leucine zipper dimerization

as a mechanism for creating phosphoswitchable domains, I inserted single-chain versions of leucine

zippers that I obtained from the Keating lab that they had determined to be interacting (17+18)

or non-interacting (1+5 and 1+6) into DHFR. If leucine zipper dimerization was a mechanism that

warranted further exploration, we would expect to see activity when 17+18 was inserted into DHFR,

and observe less or no enzyme activity when 1+5 or 1+6 was inserted. This is what was observed.

When I inserted the domains in the locations of DHFR previously determined by Reynolds et al., I

detected DHFR activity for the enzymes with 17+18 inserted and no activity for the enzymes with

1+5 or 1+6 inserted (Figure A.3). This was an encouraging result and I started to look more closely

at the 17+18 interaction to find ways to stabilize and destabilize it using phosphorylation.

A.4 Modifying the 17+18 Domain to be Sensitive to Phos-

phorylation

Having demonstrated the potential of having the interaction between leucine zipper domains mediate

changes in enzyme activity. I began to examine potential mutations to synzips 17 and 18 to both

introduce the PKA recognition motif (RRxS/TΦ) and provide a change in stability upon phospho-

rylation of the key residue in the motif. I put the PKA phosphorylation domain at the N-terminus

of each of the leucine zippers. This is the strategy used by Signarvic and deGrado to achieve a

difference in stability for tetramerization of the lacI-derived monomers between the phosphorylated

and non-phosphorylated states [73]. The PKA phosphorylation domain contains positively charged

arginines. Placing it on the N-terminus of an alpha-helix increases the dipole moment and destabi-
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Figure A.4: Mutations to 17+18 sequences do not decrease enzyme activity. DHFR activity
was measured for enzymes inserted with modified 17+18 sequences (17a and 17b) at two different
locations (121 and 127).

lizes the helix. Phosphorylation of the serine residue in the motif adds negative charge to stabilize the

helix. Further stability is added by hydrogen bonding between the phosphate and the guanadinium

groups of the arginine. In this case, we expect the enzymes that have the domains inserted to be

less active when non-phosphorylated as phosphorylation of the serine residues in the N-terminus of

the leucine zippers would stabilize the coiled coil interaction. However, when I assayed the enzymes

containing the the modified 17+18 inserts, the activity was similar or higher than enzymes that

contained the original 17+18 sequences (Figure A.4). We hypothesized that the coiled-coil might

have been too stable since the measured melting temperature of the peptide was greater than 95

◦C. The original 17+18 synzip from the Keating lab was six heptads long and consisted of forty-two

interacting residues. I cut out two heptads from each of the leucine zippers to try to destabilize

the coiled-coil interaction. I inserted the truncated 17+18 peptide (17+18s) into DHFR. I was only

able to detect DHFR activity for one of the insert locations (before the 121st residue, DHFR 121).

After confirming the activity of the 17:18s DHFR 121 protein, I proceeded to mutate residues of

at the N-terminii of the leucine zippers to introduce a PKA recognition motif and destabilize the



85

helix. I inserted two different versions of the domain into DHFR, one in which the second residue

of each of the leucine zippers was a serine (this was the target residue for phosphorylation by PKA

(DHFR 121 RRS)); the second version had glutamate as the second residue of the leucine zippers

(DHFR 121 RRE). Glutamate is commonly used as a mimic for a phosphorylated serine. Differences

in activity between RRS and RRE would suggest that it was possible to get modulation in activity

by phosphorylation of the serine residue in RRS. I was able to observe some difference in activity

between RRS and RRE (Figure A.5). RRS appeared to be less active than RRE, consistent with our

hypothesis that additional positive charge on the N-terminus of the helix would increase the dipole

and lead to instability of the coiled-coil interaction. However, when I set up a reaction where I first

incubated the enzyme with PKA, I did not see any difference in activity between RRS that was

pre-incubated in PKA or blank reaction buffer (Figure A.6). I hypothesized that this was because

the enzyme was not getting phosphorylated. I had difficulty in testing this hypothesis.
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Figure A.5: Apparent differences in activity between DHFR 121 RRS and DHFR 121
RRE. The rate in decrease of absorbance was plotted for different concentrations of DHFR with
domain insertions with either an unphosphorylated (RRS) or phospho-mimic (RRE) variant of a
leucine zipper pair. The enzyme with the RRS insert appears to be less active, consistent with our
hypothesis that positive charges on the N-terminus of the leucine zipper will destabilize the domain.
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Figure A.6: No Difference in Activity Between DHFR 121 RRS incubated with and
without PKA. Purified DHFR 121 RRS was preincubated with PKA or blank reaction buffer.
There was no difference observed in DHFR activity.

A.5 Difficulties in Phosphorylating Enzyme and Assaying for

Phosphorylation Made Progress Difficult

I could not find a good way to test for PKA activity. The idealized substrate of PKA, the Kemptide,

was a small 7 amino acid peptide that was 772 daltons. It was difficult to trap in an acrylamide gel

when I tried a radio-labeled phospho-transfer assay. I tried liquid-chromatography mass spectrome-

try, but I could not find a column that would trap the phosphorylated version of the kemptide. The

size of the peptide and my uncertainty about the antibody I was using also made it difficult to find

the right conditions for Western Blotting.

Another alternative I explored was to place the phosphoserine in ribosomally using a system

developed in the Rinehart lab that consisted of a phosphoserine amber tRNA–tRNA synthetase

pair [78]. This would allow me to assay differences in enzyme activity between the enzyme with

and without phosphorylated serine residues, independent of enzymatic phosphorylation. In my

hands, I was not able to detect protein expression of any of the DHFR mutants, or a sfGFP amber
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mutant via commassie staining using either a BL21∆serB E. coli strain, or an EcAR7.SEP strain,

which has RF-1 deleted and some amber and opal mutations that showed an increase in phospho-

serine insertion in purified proteins [79]. Discussions with the Rinehart lab confirmed that overall

expression even with the modified strain were low and that Western Blots were typically necessary to

detect protein. I ultimately decided to abandon this approach because the length of time required to

express the purified proteins, coupled with the low yields, would make obtaining enough protein for

assays difficult. Furthermore, even if we were able to detect differences in enzyme activity using this

approach the designs would have to be modified to be compatibile for enzymatic phosphorylation

regardless for use in a synthetic circuit. While I was working on a method to detect phosphorylation

Figure A.7: Activity assay for modified DHFR 121 enzymes with idealized phosphoryla-
tion sites. Rate of decrease of absorbance at 340 nm for the first 50 seconds of the reaction for two
different enzyme concentrations. DHFR with the phospho-mimic domain inserted (EE) appears to
be more active than DHFR with the unphosphorylated domain inserted (SS).

of residues, I also looked at ways that I could optimize the kinase recognition sequences to increase the

likelihood that the enzymes with domain inserts could be enzymatically phosphorylated. Songyang

et. al used a peptide library to determine the optimal substrate for PKA [80]. Looking at their data,

I decided to mutate the preceding residue of the recognition domain to arginine, and the residue after

the target serine to an isoleucine. When I compared unphosphorylated versions of these enzymes

with their corresponding phospho-mimics, I observed the difference in activity in the modified PKA

motifs (Figure A.7).

A.6 Potential Next Steps

In this section, I briefly outline some of the potential next steps that I believe are worth exploring

to continue research in this project.
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A.6.1 In Silico Pre-screen Using Molecular Dynamics

Dagliyan and colleagues used Replica Exchange Discrete Molecular Dynamics (RexDMD) to design

a domain based on the rapamycin-dependent interaction between FKB12 (iFKBP)–FKBP12 and

rapamycin binding protein (FRB) [81]. Starting with iFKBP, which had previously been shown

to maintain its structure when inserted as a domain, they added the rapamycin-binding surface of

FRB. They also grafted helices from FRB to add stability to the domain. They used RexDMD

to computationally test the stability of their domain in the presence and absence of rapamycin.

Specifically, they used RexDMD to estimate the termini distance and specific heat of the domain.

By looking at the shift in the peak of the specific heat curve, which would correspond to a folding

transition in the presence and absence of rapamycin, they were able to evaluate whether their domain

had the desired properties computationally before experimental testing. One could use a similar

approach and simulate the coiled-coil interaction between phosphorylated and non-phosphorylated

versions of the domain.

A.6.2 High-throughput Screening Assay for DHFR activity

Instead of measuring the absorbance at 340 nm, which is time sensitive and requires monitoring

immediately after injection of substrate, Kumar and his colleagues developed a high throughput

coupled assay for DHFR activity using diaphorase and resazurin [82]. The DHFR reaction is run

for a set time and then stopped. Diaphorase consumes the remaining NADPH to make a colored

product, the emission of the product is measured and is used as a proxy for DHFR activity. Setting

up reactions in this way would enable one to test more candidate designs. However, the bottleneck

for needing to purify the enzyme and normalize the concentration for the reaction is still present.

A.7 Outlook for the Project

The project was hampered by the difficulty in testing for enzymatic phosphorylation. I have no

clear solution to this problem. I have not tried dot blotting with the anti-phosphoserine antibody as
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a method to detect the phosphorylated peptide. If that is unable to detect the difference between

the kemptide and phosphorylated kemptide, it is not clear what the next step would be. The lack

of a good assay led me to abandon this project. Furthermore, even if this project were successful,

there still exists the problem of fast signaling. One would need a signal that operates at a similarly

fast time scale, that would turn on the kinase to modulate the protein activity. Otherwise, the

bottleneck for a slow response would still exist. Recent advances in tunable protein degradation [83]

and light-based activation and sequestration [70, 84] from when I started the project seem to be

more promising avenues to get modulation of activity of enzymes at a fast time scale.
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