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ABSTRACT 

Oxygenic photosynthesis fundamentally transformed our planet by releasing molecular oxygen and 

altering major biogeochemical cycles, and this exceptional metabolism relies on a redox-active 

cubane cluster of four manganese atoms. Not only is manganese essential for producing oxygen, but 

manganese is also only oxidized by oxygen and oxygen-derived species. Thus the history of 

manganese oxidation provides a valuable perspective on our planet’s environmental past, the 

ancient availability of oxygen, and the evolution of oxygenic photosynthesis. Broadly, the general 

trends of the geologic record of manganese deposition is a chronicle of ancient manganese 

oxidation: manganese is introduced into the fluid Earth as Mn(II) and it will remain only a trace 

component in sedimentary rocks until it is oxidized, forming Mn(III,IV) insoluble precipitates that 

are concentrated in the rock record. Because these manganese oxides are highly favorable electron 

acceptors, they often undergo reduction in sediments through anaerobic respiration and abiotic 

reaction pathways.  

The following dissertation presents five chapters investigating manganese cycling both by 

examining ancient examples of manganese enrichments in the geologic record and exploring the 

mineralogical products of various pathways of manganese oxide reduction that may occur in 

sediments. The first chapter explores the mineralogical record of manganese and reports abundant 

manganese reduction recorded in six representative manganese-enriched sedimentary sequences. 

This is followed by a second chapter that further analyzes the earliest significant manganese deposit 

2.4 billon years ago, and determines that it predated the origin of oxygenic photosynthesis and thus 

is supporting evidence for manganese-oxidizing photosynthesis as an evolutionary precursor prior 

to oxygenic photosynthesis. The lack of oxygen during this early manganese deposition was 

partially established using oxygen-sensitive detrital grains, and so a third chapter delves into what 

these grains mean for oxygen constraints using a mathematical model. The fourth chapter returns to 

processes affecting manganese post-deposition, and explores the relationships between manganese 

mineral products and (bio)geochemical reduction processes to understand how various manganese 

minerals can reveal ancient environmental conditions and biological metabolisms. Finally, a fifth 

chapter considers whether manganese can be mobilized and enriched in sedimentary rocks and 

determines that manganese was concentrated secondarily in a 2.5 billion-year-old example from 

South Africa. Overall, this thesis demonstrates how microbial processes, namely photosynthesis and 

metal oxide-reducing metabolisms, are linked to and recorded in the rich complexity of the 

manganese mineralogical record. 
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I n t r o d u c t i o n

The invention of oxygenic photosynthesis was difficult – it  only  occurred once relatively 

late in Earth history  – and yet the oxygen this metabolism released fundamentally and 

forever changed our planet. The emergence of oxygen altered the biogeochemical cycles 

of iron, sulfur, carbon, nitrogen, and manganese, and transformed the fitness landscape 

for life - laying the foundations for the evolution of complex multicellularity. Manganese 

is critically  important for the functioning of oxygenic photosynthesis, and thus the history 

of manganese is linked to one of the most pivotal evolutionary  innovations on ancient 

Earth. Manganese oxides are also uniquely  sensitive as proxies for ancient oxygen, and 

thus the geologic record of manganese offers compelling insights into both the history  of 

environmental oxygen and oxygenic photosynthesis. 

The use of manganese in oxygenic photosynthesis and its specific reactivity with oxygen 

stem from the thermodynamic properties of manganese. Manganese has a very high 

reduction-oxidation (or redox) potential, and consequently the only  common 

environmental oxidants that can oxidize manganese are oxygen and oxygen-derived 

products like superoxide (Figure 1). Its redox potential and multiple stable redox states 

also make it an ideal cofactor for oxygenic photosynthesis: four manganese atoms in the 

water-oxidizing complex each donate an electron to Photosystem II, building oxidizing 

potential until they can split water and generate an O-O bond to form O2. The integral 

1



role of manganese in water oxidation forms the basis of an evolutionary hypothesis that 

manganese-oxidizing photosynthesis was a transitional step between anoxygenic 

photosynthesis (PSI, RCI, RCII in Figure 1) and high-potential oxygenic photosynthesis 

(PSII in Figure 1).

Manganese has a further advantage: the dominant  way for manganese to become 

concentrated in the sedimentary record is through oxidation, which requires oxygen or a 

high-potential photosystem to be present. So the presence of manganese oxides in the 

rock record can be understood as proxies for either oxygen or high-potential phototrophy 

using a photosystem oxidizing manganese (Figure 2). Without either of these two 

oxidation sources, manganese enters the fluid Earth from weathering of igneous rocks or 

2

Figure 1: Redox tower 
highlighting manganese and 
oxygen. Photosystems plotted 
alongside for comparison.
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hydrothermal sources as Mn2+ and remains as an aqueous cation. The main sink for 

reduced manganese is substitution for calcium in carbonates, and this does not form a 

significant manganese enrichment (Figure 2). 

There are several potential problems with this simplified manganese model. Post-

depositional processes (diagenesis) often affect the chemistry  of sediments as they 

become lithified into a sedimentary rock, and the high redox potential of manganese 

makes manganese oxides an especially susceptible phase for diagenesis. Manganese 

oxides are highly  favorable and reactive electron acceptors for a variety of organic carbon 

species, sulfur species, and iron species (Figure 1). Studying the geologic record of 

manganese therefore first requires an understanding of how diagenesis affects original 

deposits of manganese precipitates. Another potential complexity, especially important in 

very ancient sedimentary  rocks, is that inferring manganese oxidation from manganese 

concentrates in the rock record only is accurate if manganese cannot enter the rocks 

another way. Secondary  introduction of manganese needs to be always considered as an 

alternative hypothesis, and careful analysis is required to resolve whether manganese is 

3

Figure 2: Schematic representation of manganese redox cycle, including how manganese 
enters the sedimentary record. 
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from original sedimentary processes or later introduction via metamorphic and 

metasomatic processes.  

To study manganese in ancient, complicated rocks, we developed a multi-faceted 

approach applied throughout this dissertation. Inductively-coupled plasma mass 

spectrometry  assessed bulk manganese concentrations. Synchrotron X-ray  spectroscopic 

imaging and X-ray absorption spectroscopy were used to measure and map Mn redox and 

mineralogical state on a micron-scale. Textural relationships between mineral phases 

were established to understand relative timing of different manganese-bearing minerals 

using optical and electron microscopy, secondary ion mass spectrometry, and Raman 

spectroscopy. These whole-rock and in-situ techniques were all highly complimentary 

and proved essential to understanding the diagenetic history of the manganese minerals in 

ancient sediments. 

The following dissertation focuses on how manganese minerals in the rock record can be 

proxies for diverse microbial processes, including photosynthesis and microbially-

mediated manganese oxide reduction during diagenesis. Chapter 1 reviews the current 

literature on the various ways manganese can be oxidized and reduced, and presents a 

compilation of manganese-enriched sedimentary rock deposits (‘manganese deposits’) 

through geologic time. Selected manganese deposits were interrogated for manganese 

mineralogy  and redox state, and these results led to a model proposing the mineralogical 

4



changes induced during the diagenesis of manganese oxides. Chapter 2 employs South 

African drill cores obtained by the Agouron Drilling Project to investigate a hypothesis 

from evolutionary biology that Mn-oxidizing photosynthesis was a precursor to oxygenic 

photosynthesis. The cores had evidence of primary  manganese oxides but two lines of 

evidence indicated oxygen was not present, and thus this manganese deposit  is geologic 

evidence for a transitional Mn metabolism predicted by modern biology. One key 

observation to constrain oxygen levels here was redox-sensitive detrital pyrite, and so in 

Chapter 3 we expanded upon our findings and added the presence of a second oxygen-

sensitive mineral, uraninite, and constructed a mathematical model to quantify  the 

oxygen levels implied by these grains. Results from six ancient manganese deposits, 

presented in Chapter 1 and Chapter 2, all indicated that manganese is reduced during 

diagenesis, potentially via microbially-mediated mechanisms. These results inspired 

Chapter 4, in which a flow-through system at the synchrotron was developed to measure 

the phase transitions and mineralogical products during bacterial and abiotic manganese 

reduction. Chapter 5 returns to scrutinize the assumptions made in Figure 2 and uses a 

natural laboratory of correlated strata throughout South Africa that have seen 

dramatically  different levels of heat, pressure, and hydrothermal fluids (i.e., 

metamorphism). Manganese concentrations increased and mineral speciation changed 

with increasing metamorphism, suggesting manganese can be mobilized and enriched by 

post-depositional processes but this can be understood using texture-specific techniques.
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