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ABSTRACT 

Redox-sensitive detrital grains such as pyrite and uraninite in sedimentary 

successions provide one of the most conspicuous geological clues to a different 

composition of the Archean and early Paleoproterozoic atmosphere. Today these 

minerals are rapidly chemically weathered within short transport distances. Prior to 

the rise of oxygen, low O2 concentrations allowed for their survival in siliciclastic 

deposits with grain erosion tied only to physical transport processes. After the rise 

of oxygen, redox-sensitive detrital grains effectively vanish from the sedimentary 

record. To get a better understanding of the timing of this transition, we examined 

sandstones recorded in a scientific drill core from the South African 2.415 Ga 

Koegas Subgroup, a mixed siliciclastic and iron formation-bearing unit deposited on 

the western deltaic margin of the Kaapvaal Craton in early Paleoproterozoic time. 
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We observed detrital pyrite and uraninite grains throughout all investigated 

sandstone beds in the section, indicating that the rise of oxygen is younger than 

2.415 Ga. To better understand how observations of detrital pyrite and uraninite in 

sedimentary rocks can quantitatively constrain Earth surface redox conditions, we 

constructed a model of grain erosion from chemical weathering and physical 

abrasion to place an upper limit on ancient environmental O2 concentrations. Even 

conservative model calculations for deltaic depositional systems with sufficient 

transport distances (ca. hundreds of kilometers) show that redox-sensitive detrital 

grains are remarkably sensitive to environmental O2 concentrations, and constrain 

the Archean and early Paleoproterozoic atmosphere to have < 3.2*10-5 atm of 

molecular O2. These levels are lower than previously hypothesized for redox-

sensitive detrital grains, but are consistent with estimates made from other redox 

proxy data, including the anomalous fractionation of sulfur isotopes. The binary loss 

of detrital pyrite and uraninite from the sedimentary record coincident with the rise 

of oxygen indicates that atmospheric O2 concentrations rose substantially at this 

time and were never again sufficiently low (< 0.01 atm) to enable survival and 

preservation of these grains in short transport systems. 

 

 

INTRODUCTION 

As early as the 1950s, geologists observed striking differences between the composition 

of grains found in conglomerates and sandstones from early Precambrian (ca. 2.4 Ga to 
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>3.25 Ga) sedimentary successions compared to modern deposits: the ancient 

sedimentary rocks contained grains of pyrite and uraninite (and occasionally siderite) in 

addition to the quartz, feldspar, lithic fragments, and heavy mineral grains (such as 

zircon, garnet, and monazite) commonly found in sediments of all age. The 

paleoenvironmental significance of these grains lies in their preservation during 

weathering and sediment transport. Both pyrite and uraninite minerals are prone to rapid 

oxidative chemical weathering (Grandstaff, 1976; Williamson and Rimstidt, 1994), and 

thus their relative abundance and preservation in siliciclastic successions implies that the 

Earth surface environments of weathering and sediment transport once contained less 

molecular oxygen (O2) than today (Grandstaff, 1980; Holland, 1984; Prasad and Roscoe, 

1996; Rasmussen and Buick, 1999).  

 

The preservation of redox-sensitive detrital grains are one of several basic and 

fundamental geologic observations, including the secular distribution of banded iron 

formations, red beds, and the behavior of iron in paleosols, that indicate there was 

significantly less oxygen on the early Earth (Cloud, 1968, 1972; Holland, 1984). Redox-

sensitive detrital grains have been documented in many studies, highlighting the global 

prevalence and magnitude of these deposits, albeit limited in time. To illustrate this 

secular distribution, we compiled a list of occurrences of redox-sensitive grains 

throughout the geologic record (Table 1). These grains are common in Archean strata, 

with the most recent occurrences documented in earliest Paleoproterozoic successions. It 

is likely that more occurrences exist waiting to be discovered, but a general pattern 
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emerges pointing to loss of redox-sensitive detrital grains from the sedimentary record 

sometime after 2.415 billion years ago (Johnson et al., 2013). Early Paleoproterozoic 

sedimentary deposits dated between 2.1 and 2.3 Ga (Kozhevnikov et al., 2010) appear to 

lack redox-sensitive detrital grains (the Jatulian Conglomerates; Clemmey and Badham, 

1982). It is important to note that the presence of detrital pyrite and uraninite suggests the 

rise of atmospheric oxygen occurred sometime between 2.415 and ~2.1 Ga—timing 

consistent with the loss of multiple sulfur isotope anomalous fractionation and a range of 

other geological and geochemical proxies for oxygen, including the appearance of fluvial 

and nearshore marine red beds and gypsum deposits marking the onset of oxidative 

weathering in terrestrial environments (Roscoe, 1973; Cameron, 1982; Holland, 1984; 

Prasad and Roscoe, 1996; Rye and Holland, 1998; Tabakh et al., 1999; Beukes et al., 

2002; Utsunomiya et al., 2003; Bekker et al., 2004; Papineau et al., 2007; Guo et al., 

2009; Pufahl and Hiatt, 2012). 

 

Compared to many other proposed proxies for O2—which involve subtle and complex 

geochemical systems that remain poorly understood in both modern environments and 

geological materials—redox-sensitive detrital grains present a simple and straightforward 

redox proxy because they are easy to observe using light and electron microscopy and the 

mechanics behind the proxy are well understood. This notwithstanding, two broad 

challenges remain. 1) We still have a limited understanding of the secular distribution of 

these deposits (Table 1). Despite the relative ease of identifying these grains, many 

Archean and early Paleoproterozoic siliciclastic rocks have not been studied in detail for 
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the presence of redox sensitive detrital grains. Furthermore, few geochronological 

constraints, particularly in deposits surrounding the rise of O2 (Hoffman, 2013), make it 

challenging to compare and contrast occurrences between basins with confidence. 2) 

While it is clear that lower O2 concentrations are required to preserve redox-sensitive 

detrital grains through weathering and transport, the intertwined processes of chemical 

and physical weathering responsible for the destruction of these grains make it 

challenging to derive a quantitative constraint about environmental O2 levels that allows 

for their preservation.  

 

We recently reported detrital pyrite in a ~2.415 Ga sedimentary deposit from the western 

margin of the Kaapvaal Craton in South Africa (Johnson et al., 2013). Here we build on 

that report and address both of these challenges, beginning with a more detailed 

description and analysis of redox-sensitive detrital grains (including uraninite) throughout 

this early Paleoproterozoic deposit. Then, guided by these observations, but with broad 

applicability to all occurrences in the sedimentary record (Table 1), we describe the 

construction and results of a model combining a classic physical abrasion framework 

with previously determined chemical weathering rate laws to study grain erosion 

processes under different transport scenarios and environmental O2 levels. This approach 

offers novel constraints and an upper limit on ancient oxygen concentrations for grain 

preservation across a range of different transport scenarios and depositional 

environments. 
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OBSERVATIONS FROM THE TRANSVAAL SUPERGROUP, SOUTH AFRICA 

The South African Kaapvaal craton (Fig. 1A) harbors the first discovered and most well-

known deposit with redox-sensitive detrital grains, the ~2.85 Ga Witwatersrand 

Supergroup placer deposits in the Central Rand Group (Liebenberg, 1955; Ramdohr, 

1958), but also possesses several other key sedimentary successions of different ages that 

contain detrital pyrite and uraninite. The earlier ~3.08 Rhenosterspruit Formation bears 

detrital pyrite grains in a quartz-dominated conglomerate (Hiemstra, 1968; Simpson and 

Bowles, 1977; Hofmann et al., 2009), and the Mozaan Group has a granular quartz 

conglomerate at ~2.95 Ga with abundant pyrite pebbles (Hegner et al., 1994; Hofmann et 

al., 2009; Orberger et al., 2011). The ~2.7 Ga Ventersdorp Supergroup overlying the 

Witwatersrand is an unconformity-bound mixed volcanic and sedimentary succession 

with a basal unit of interbedded conglomerate and sandstone (Krapez, 1985). This unit 

has been well-characterized and has uraninite and pyrite grains in the sandy matrix of 

channel body conglomerates (Krapez, 1985). Heating and crustal thinning during 

Ventersdorp deposition created thermal subsidence, eventually allowing a marine 

platform to cover the craton (Schmitz and Bowring, 2003; Sumner and Beukes, 2006). 

Overlying the Ventersdorp is the Transvaal Supergroup, which begins with the Wolkberg 

Group in the eastern Transvaal basin and the Schmidtsdrif Subgroup in the western 

Griqualand West basin (Sumner and Beukes, 2006). The Wolkberg Group is 

unconformably overlain by the Black Reef Quartzite Formation, a thin conglomerate and 

quartzite unit with abundant pyrite and uraninite grains dated by basinal correlation to 

~2.64 but constrained by an ash bed 100 m above to slightly older than or ~2.59 Ga 
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(Walraven and Martini, 1995; Martin et al., 1998; England et al., 2002; Hofmann et al., 

2009).  

 

The Kaapvaal Craton was subsequently flooded by a shallow epicratonic sea, resulting in 

a long-lived carbonate platform (the Campbellrand-Malmani Platform, Fig. 2) originally 

deposited over the entire craton, an area >600,000 km2 (Beukes, 1987; Sumner and 

Beukes, 2006). At ~2.521 to 2.46 Ga, the carbonate platform gradually drowned and 

transitioned into deeper water deposition of iron formation, which is found in both the 

Transvaal basin (Penge Iron Formation) and Griqualand West (Kuruman Iron Formation) 

structural basins (Beukes, 1987; Simonson and Hassler, 1996; Sumner and Bowring, 

1996; Sumner and Beukes, 2006). In the Griqualand basin, the Griquatown Iron 

Formation overlying the Kuruman records the filling of accommodation space on the 

western margin of the craton, from banded into shallower water granular iron formation 

(Beukes and Klein, 1992). The sequence continues to shoal into the ~2.415 Ga Koegas 

Subgroup which contains key intervals of siliciclastics. While the Black Reef Quartzite is 

the youngest unit underlying the Campbellrand-Malmani Platform to have facies 

appropriate for bearing redox-sensitive detrital grains, the Koegas Subgroup marks the 

first deposits overlying the carbonate platform with the appropriate lithologies to examine 

for redox-sensitive detrital grains (Fig. 2). 

 

The Koegas Subgroup from Griqualand West, South Africa, is composed of early 

Paleoproterozoic-age mixed siliciclastic and iron formation strata from a marine deltaic 
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system on the western margin of the Kaapvaal craton (Beukes 1978, Schroeder et al. 

2011; Fig. 1). Strata of the Koegas Subgroup are composed of interbedded deltaic 

tongues of siliciclastic deposits and granular and banded iron formation, with current and 

wave-ripple cross-stratification and lower plane bed laminations, respectively. The 

siliciclastic sediments were fed by a river system that reflects the uplift and erosion of 

much of the pre-Koegas strata across the Kaapvaal Craton, and ended a 100-million year 

interval of deposition of largely chemical sediments (carbonates and iron formation) 

across the craton (Schröder et al., 2011). The abundance of potassium feldspar, monazite 

and zircons (e.g., Fig. 4) suggest a felsic igneous source for the Koegas sediments, and 

paleocurrent and sequence stratigraphic data indicate a sediment source to the east, as the 

deltaic strata prograde to the west and northwest (Schröder et al., 2011). Taken together, 

these observations suggest either the removal of a substantial thickness (>2 km) of flat-

lying sedimentary cover (iron formation and carbonate; see Fig. 2 and previous text) from 

the central platform to expose Ventersdorp or older bedrock or, perhaps more likely, 

materials were sourced from a magmatic arc to the east of the Kaapvaal Craton (Schröder 

et al., 2011). Geological constraints on the sediment provenance thus suggest transport 

from at least the central Kaapvaal craton (>300 km) or across the entire craton (>1000 

km), with either possibility recording a substantial craton-scale river system delivering 

materials to the Koegas sedimentary basin. Iron formation facies developed during 

intervals and in areas with low relative siliclastic input. The iron formations are diverse 

mineralogically, with laminations composed of intimate and gradational mixtures now 

composed of microcrystalline hematite, siderite, magnetite, and iron silicates. Zircons 
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from an ash bed in the Rooinekke Formation of the Koegas Subgroup were dated to 2415 

± 6 Ma (Gutzmer, Jens and Beukes, Nicolas, 1998). Other known ages are consistent with 

this date (Fig. 2), with the underlying Kuruman and Griquatown formations dated at 2460 

± 5 Ma and 2432 ± 31 Ma, respectively (Pickard, 2003; Trendall et al., 1990; Nelson et 

al., 1999), and with the overlying Ongeluk Formation constrained to 2222 ± 12 Ma 

(Cornell et al., 1996).  

 

Drill cores capturing Koegas Subgroup strata were retrieved by the South African 

Agouron Drilling Project in 2006 (Fig. 3; (Schröder et al., 2011; Johnson et al., 2013). 

Drill core materials are important here because the surface of southern Africa has not 

been glaciated since Permian time and is deeply weathered by oxidative chemical 

weathering processes that have impacted sandstones as well as iron formations. One core 

(GTF-01) was drilled in a proximal location in the Koegas basin, while a second core 

(GEC-01) was collected downdip in more distal facies that lack siliciclastic units of 

sufficient grain size that can be examined for redox-sensitive detrital grains, such as 

sandstones and conglomerates. A previous report described the stratigraphy and 

sedimentology of the Koegas Subgroup, including the lithostratigraphy of GTF-01 

(Schröder et al., 2011). We present a similar stratigraphic column, slightly revised to 

reflect our petrographic work that re-described several intervals originally marked as 

sandstones as cross-stratified granular iron formation (Fig. 3). The general stratigraphy 

captured by the drill core records a dynamic interplay between iron formation and 

terrigenous siliciclastic deposition (Fig. 3). The contact between the lowermost unit 
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Koegas Subgroup, the Pannetjie Formation, and the underlying Griquatown Iron 

Formation is sharp and associated with a thin, 10 cm-thick conglomerate of iron 

formation clasts (Beukes and Gutzmer, 2008). The Pannetjie Formation marks the onset 

of widespread delivery of siliciclastic sediments to the basin, and is composed of shale to 

very fine-grained sandstones. The thin, overlying Doradale Formation begins with a 

coarse bed of granular iron formation, and then is mainly finely laminated mixtures of 

ferrous and ferric-rich iron formation with abundant diagenetic chert and carbonate 

nodules. The Naragas Formation, starting around 250m depth, begins with another influx 

of siliclastic deposits corresponding to the progradation and lobe switching of an ancient 

delta. We observed a thin (<10 m) unit of deeper iron formation in the thick ~100 m 

Naragas Formation, but as Schröder et al. (2011) noted, this formation is mainly 

comprised of cross-stratified detrital deltaic sandstones. The abundance of fine to 

medium-coarse sandstones, with common quartz and feldspar grains and occasional 

detrital zircon and monazite and interbedded with shales, presented ideal targets for 

redox-sensitive grain investigation. The overlying Heynskop Formation begins as mainly 

mixed ferric and ferrous iron formation with chert nodules and thin sandstone beds. The 

Heynskop then shallows in the upper half, first with beds of granular iron formation, then 

shale, and finally ~5 m of sandstone beds. Above the sandstones, there is a rapid 

deepening, including a brief ~1 m-thick microbially-textured carbonate-rich bed before 

banded iron formation deposition resumes in the Rooinekke Formation. From point count 

data of thin sections, Schröder et al. (2011) characterized the Heynskop and Naragas 

sandstones as subarkosic.  



 

165 
 
 

In a previous study, we noted the presence of detrital pyrite and confirmed its detrital and 

distinct origin from authigenic pyrite using in situ measurements of multiple sulfur 

isotopes (Johnson et al., 2013). Here we explore in depth the sandstone intervals from the 

Koegas Subgroup using the GTF-01 core and report the discovery of detrital uraninite 

and a characterization of the detrital pyrite abundance in representative petrographic thin 

sections of sandstone beds throughout the drill core.  

 

Methods 

Sandstone units from throughout the Koegas Subgroup were investigated for oxygen-

sensitive pyrite and uraninite grains using light and electron microscopy of microprobe-

quality polished thin sections. We focused on the thickest sandstone interval, ehivh  was 

deposited in the upper Naragas Formation, with several smaller intervals in the lower 

Naragas and in the Heynskop formations (Fig. 3). Twenty billets approximately 27 x 46 x 

5 mm in size were cut from the core using a rock saw, sampling sandstones at 76-84 m 

(10 billets), 158-190 m (6), 203 m (2), and 243 m (2). These were then made into 30 µm-

thick thin sections and polished to obtain a microprobe quality surface. Thin sections 

were subsequently examined and mapped on a Leica polarizing microscope using 

reflected and transmitted light microscopy. Samples containing abundant well-rounded 

pyrite grains identified using reflected light microscopy were then carbon coated with 7-

15 nm using a Cressington Carbon Coater in preparation for study on the scanning 

electron microscope (SEM) and electron microprobe (E-probe). 
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Pyrite and uraninite were identified and imaged on a Zeiss 1550 VP Field Emission 

Scanning Electron Microscope (SEM) using an attached Oxford INCA Energy 300 X-ray 

Energy Dispersive Spectrometer (EDS) system. Coated samples were set at a working 

distance of 8 mm and probed with a 15 keV electron current. Kα X-ray fluorescence 

measurements used energy-dispersive spectroscopy to confirm phase identification, with 

quantitative elemental analyses providing relative accuracy of 5% or better. Grains were 

photographed on the SEM using the backscatter electron detector mode to enhance 

compositional contrast. For cathodoluminescence (CL) imaging, the detector was set on 

Variable Pressure Secondary Electron at a working distance of 10mm, and photographs 

were taken to assess grain shape and abrasion by truncation of internal zonation in 

feldspar and quartz grains.   

 

To measure the abundance of detrital pyrite, elemental maps of four representative 

sections were produced using a JEOL JXA-8200 Advanced Electron Probe Micro-

analyzer (E-probe) equipped with tungsten and LaB6 electron sources and five 

wavelength dispersive X-ray spectrometers (WDS). Intensity maps of sulfur, zirconium, 

and phosphorus abundance were measured over approximately 90% of the thin section 

area to determine heavy mineral compositions of the sandstones (relative abundance of 

pyrite, zircon, and apatite+monazite, respectively). The data matrices were reduced using 

a scaling function to select significant concentrations of S, P, and Zr. The abundance of 

pyrite, zircon, and apatite+monazite were determined by calculating the fraction of area 
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they occupied and adjusting for porosity (estimated visually to be 20%, within a normal 

range for sandstones; Boggs, 2006) (Table 2). These estimates are subject to similar 

logical uncertainties as classic point counting, but our use of E-probe produced elemental 

maps should eliminate human counting and identification errors and biases.  

 

Results 

Redox-sensitive detrital grains were definitively identified in every sandstone bed we 

examined from the Koegas Subgroup (Fig. 3),. The most common grains, quartz and 

feldspar, varied from sub-angular to well-rounded (Folk, 1957) and were fine to medium 

sand in size (after Wentworth, 1922). Both quartz and feldspar show compositional 

zonations highlighted by cathodoluminesence, with abundant evidence of truncation by 

physical abrasion (Fig. 4). Detrital pyrite grains were also common (Fig. 4, 5, 6). These 

can be distinguished from authigenic pyrite using a series of qualification standards 

(Rasmussen and Buick, 1999). Detrital grains occur as clear sedimentary grains in grain-

supported sandstones. The grains themselves have rounded profiles, distinct grain 

boundaries, and inclusions of other mineral phases, and are commonly hydrodynamically 

concentrated with other heavy (i.e., dense) mineral grains such as zircon and apatite (Fig. 

5, 6). Quantification of the relative abundances showed that the amount of pyrite 

generally scales with zircon and apatite+monazite, with the exception of an especially 

pyrite-rich sandstone sample at 77 m (Table 2). Some detrital pyrite grains show grain-

boundary truncations (Fig. 6) and frequently the pyrite is concentrated on heavy mineral 

bands associated with cross-bed foresets (Fig. 5). Because of density differences (quartz 
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= 2.66 g/cm3, potassium feldspar/orthoclase = 2.56 g/cm3, pyrite = 5 g/cm3) pyrite grains 

in hydraulic equilibrium are smaller (very coarse silt to very fine sand, when converted 

from 2D spherical segments to 3D spherical diameters; Kong et al., 2005) and more 

rounded (rounded to well-rounded; Folk, 1957) than surrounding quartz and feldspar sand 

grains. These detrital pyrite grains are easily differentiated from authigenic pyrite derived 

from post-depositional fluids, which precipitate as euhedral to subhedral crystals or in 

overgrowth, pore-filling, and replacement textures. The detrital grains show no signs of 

weathering rinds or reaction rims, which might occur if chemical erosion occurred (from 

dissolved oxygen) in addition to physical abrasion. This implies that physical abrasion 

was the dominant (and perhaps only) component of grain erosion.  

 

Detrital uraninite is far more rare and was only detected from a thin section at 203.65m in 

GTF-01 (Fig. 6j). The uraninite has since undergone radioactive decay and been altered 

to uraninite-uranothorite (UO2-U,ThSiO4) with galena and bitumen inclusions. This 

mineralogy and auto-brecciation is expected from an original uraninite grain as 

radioactive decay of uranium yields helium, thorium, and lead as daughter products. The 

addition of helium causes structural strain, and its release along grain boundaries causes 

crack development and produces a paths for interaction with later fluids (Ono, 2001). 

Later, sulfur-bearing fluids reacted with radiogenic lead to produce the galena inclusions 

observed (Ono, 2001). Because galena has a larger molar volume than uraninite (31.5 

cm3/mol vs. ∼24.6 cm3/mol), this also promotes fragmentation of uraninite (Finch and 

Murakami, 1999; Ono, 2001). Coffinization of uraninite, or diagenetic replacement of 
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uraninite with coffinite (USiO4), is a common reaction when reducing fluids with high 

silica activity are present (Janeczek and Ewing, 1992). Additionally, mobile 

hydrocarbons are known to solidify from radiation-induced polymerization as bitumen 

solids (i.e., radiobitumen) in and around the uraninite, which subsequently enhances the 

dissolution and fragmentation of the uraninite grain (Janeczek and Ewing, 1992; England 

et al., 2001). The presence of each of these features in the Koegas Subgroup allows the 

confident identification of detrital uraninite in addition to detrital pyrite.  

 

We did not observe any clear examples of detrital carbonate grains, including siderite. 

Two examples from the literature of detrital siderite grains (Table 1, (Rasmussen and 

Buick, 1999)) likely underwent less weathering. With the longer transport distance of the 

Koegas sediments, any softer siderite grains (Moh’s hardness = 3.5 to 4.5)—which are 

also substantially more susceptible to chemical dissolution from meteoric waters—eroded 

while the sturdier pyrite and uraninite grains survived (Moh’s hardness = 6.5 and 5 - 6, 

respectively).  

 

The discovery of uraninite and pyrite detrital grains in the Koegas Subgroup is interesting 

in light of the overall geologic context of the Transvaal Supergroup and constraints on the 

timing of the rise of oxygen. With the pyrite- and uraninite-bearing Black Reef Quartzite 

Formation at the base of the Transvaal Supergroup, the discovery of redox-sensitive 

detrital grains throughout the overlying Koegas subgroup neatly brackets the long-lived 

Campbellrand-Malmani carbonate platform between two siliciclastic successions 
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deposited under low O2 conditions (Fig. 2). Our observations of (abundant) detrital pyrite 

and (more rare) detrital uraninite further suggest that at 2.415 Ga, the O2 levels were not 

sufficiently high to oxidize these minerals during weathering and transport and remove 

them from the record. The presence of detrital pyrite and uraninite at 2.415 Ga marks the 

youngest redox-sensitive detrital grains currently known with geochronological 

constraints, setting an upper age for the Great Oxidation Event.  

 

COMBINING PHYSICAL AND CHEMICAL WEATHERING PROCESSES TO 
CONSTRAIN ANCIENT O2 LEVELS 

 
Redox-sensitive detrital grains present a simple and attractive proxy for O2 in Earth 

surface environments. They are easily observed and the mechanics behind their 

preservation in fluvial and nearshore marine conglomerates and sandstones are known. A 

remaining challenge concerns how observations of detrital pyrite and uraninite in a given 

sedimentary context translate into quantitative constraints of the amount of O2 present in 

the environment. The presence of these grains during weathering and physical transport 

indicates low O2 levels, but how low is low? Very few sedimentary redox proxies (many 

of which are marine in concept) exist that can be directly inverted for O2 concentrations. 

To provide new insight into this problem we developed a mathematical framework that 

captures the processes that destroy detrital pyrite and uraninite grains by coupling 

chemical weathering rates to physical processes that abrade grains with insight from 

process sedimentology (e.g., Sternberg, 1875; Sklar et al., 2006; Le Bouteiller et al., 

2011).  



 

171 
 
 

The rates of chemical weathering of pyrite and uraninite and their sensitivity to oxygen 

levels have been studied (Grandstaff, 1976, 1980; Williamson and Rimstidt, 1994; Ono, 

2001), with O2 estimates derived solely from the chemical dissolution rate laws of these 

redox-sensitive minerals. In principal, both the chemical weathering of uraninite and 

pyrite are sensitive to oxygen (Holland, 1984; Stumm and Morgan, 1996), as shown at 

pH ≥ 6 as: 

𝑈𝑂!   +   
!
!
𝑂!   +   2  𝐻𝐶𝑂!!   ⇌     𝑈𝑂! 𝐶𝑂! !

!! +   𝐻!𝑂      (1) 

𝐹𝑒𝑆!   +    !!  𝑂!   +   𝐻!𝑂   ⇌     𝐹𝑒!!   +   2  𝑆𝑂!!!   +   2  𝐻!     (2) 

 

Laboratory rate laws have been constructed for both O2-dependent dissolution reactions. 

Grandstaff (1976) produced a chemical oxidation rate law for uraninite based on 

experiments oxidizing insoluble uraninite to soluble uranyl ions, with dissolution 

dependent on surface area, pH, organic compounds, the amount of non-uranium cations, 

the total dissolved carbonate, the temperature, and the dissolved oxygen content. From 

the rate law, estimates were applied to riverine conditions of organic content, cation 

content, CO2, temperature, alkalinity, residence time, and grain specific surface area for 

the Witwatersrand and Elliot Lake deposits (Grandstaff, 1980). Surface areas were 

chosen using the average grain diameters found in these deposits (75 µm) and 

Precambrian atmospheric estimates of 5 to 100 times the present levels of carbon dioxide 

or 0.0016 to 0.032 atm CO2. An average temperature of 15°C and travel distance of 10 to 
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500 km from earlier estimates of these deposits were used (McDowell, 1957; Hallbauer 

and Utter, 1977). Noting that the average sediment transport velocities of the Mississippi 

and Columbia rivers were on the order of 1 km yr-1, Grandstaff (1980) decided the 

Witwatersrand and Elliot Lake deposits had higher velocities of 1.5-7.5 km yr-1 based on 

their larger average grain size. Yet since sediments often reside temporarily in alluvial 

deposits, drastically increasing their residence time by tens of thousands of years, they 

could also be potentially exposed to oxygen for thousands of years or more before 

removal from the source rock and after deposition. These varying time intervals of 

sediment storage were accounted for by inputting variable amounts of residence times for 

soil, river, and depositional time periods, from 600 to 110,000 years. Together, these 

estimates allowed Grandstaff to use his chemical dissolution rate law to invert for paleo-

oxygen levels (Grandstaff, 1980).  

 

Grandstaff deduced that for uraninite to be present in Archean and Paleoproterozoic 

siliciclastic deposits, ancient O2 concentrations must have been less than ~2.1*10-3 to 

2.1*10-6 atm (Grandstaff, 1980). At the lowest CO2 levels he considered, ancient O2 

constraints were higher, from around 0.001 atm to 0.0001 atm, while higher carbon 

dioxide levels (100 times our preindustrial atmosphere) decreased the O2 constraints to 

closer to 1*10-5 and 1*10-6 atm. Though the CO2 levels of the early atmosphere remain 

somewhat poorly constrained and a topic of substantial debate (e.g., Rye et al., 1995; 

Sheldon, 2006), more recent estimates suggest an early atmosphere with even higher CO2 

levels of approximately 0.03 to 5 atm, with an upper bound of 0.3 atm by early 
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Proterozoic time (Grotzinger and Kasting, 1993; Halevy et al., 2009). Furthermore, these 

previous calculations assumed physical erosion processes consumed half the mass of a 

detrital uraninite grain without incorporating rules for physical abrasion. Grandstaff was 

also careful to point out that these estimates are upper bounds as they do not take the 

potential impacts of uraninite-oxidizing microbes into account, as biologically driven 

catalysis of this reaction would occur at faster rates for a given O2 concentration 

(Grandstaff, 1980).  

 

A rate law was similarly produced for the chemical weathering, or oxidation at neutral 

pH, of pyrite by O2 using a compilation of measured (defect-free) pyrite oxidation rates 

(Williamson and Rimstidt, 1994), with the dissolution solely dependent on pH and 

dissolved oxygen. Estimates of O2 following this pyrite oxidation rate law have suggested 

a constraint of approximately 2.1*10-6 atm when detrital pyrite is found (Anbar et al., 

2007; Reinhard et al., 2009). As these rates are for pyrite free of defects, using this law 

provides an upper boundary for O2 estimates, as natural pyrite samples would likely 

oxidize at higher rates (Anbar et al., 2007; Reinhard et al., 2009). One study applied this 

rate law to a very fine sand-sized (side length = 100 µm) cubic pyrite crystal under a 

range of pH and oxygen levels and found that oxidation was extremely slow at O2 ~1*10-

14 atm, taking 100 million years or more to dissolve the crystal (Reinhard et al., 2009). 

However, at O2 levels near the upper constraints from multiple sulfur isotopes, ~2.1*10-6 

atm (e.g., Pavlov and Kasting, 2002), dissolution was much more rapid, taking only tens 

of thousands of years (Reinhard et al., 2009). In a similar application, Anbar et al. (2007) 
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used Williamson’s rate law to determine that a similarly-sized pyrite crystal would 

dissolve at ~2.1*10-6 atm in less than 20,000 years (Anbar et al., 2007). Both of these 

calculations aimed to demonstrate how oxidative pyrite weathering might occur at ca. 2.5 

Ga even at exceedingly low oxygen concentrations, and they highlight the sensitivity of 

pyrite to very low O2 levels, albeit at small initial grain diameters.  

 

No previous work has combined these chemical weathering rate laws with models of 

physical erosion to assess the conditions required for preservation of redox-sensitive 

detrital grains in the geological record. It is certain that physical abrasion of sediment 

particles occurred during sediment transport, as evidenced by the rounding of particles 

and their occurrence in sedimentary structures that indicate transport (at least regionally) 

in bedload (Fig. 5, Fig. 6). It is crucial, therefore, to incorporate physical erosion into 

models of grain survival to arrive at higher quality constraints on paleoenvironmental O2 

concentrations.  

 

The presence of redox-sensitive detrital grains will be sensitive to the amount of physical 

abrasion, which relates in the simplest sense to the distance the grain has traveled, as well 

as the amount of chemical weathering, which reflects the total time of exposure and the 

amount of oxygen. We treat sedimentary grains as spheres and rewrite the previously 

derived chemical oxidation rate law for uraninite (Ono, 2001; Grandstaff, 1980) to 

produce an expression in terms of radial erosion rate (Ruran) in meters per year: 
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𝑅!"#$ =   6.29  𝑥  10!" 𝑅𝐹!! 10!!".!!"# Σ𝐶𝑂! (𝐻!) 𝑝𝑂!   exp  (!!"#$! )  𝑀𝑊!  𝜌!! , (3) 

 

where RF is the organic retardation factor, NOC is the mole fraction of non-uranium 

cations in uraninite, ∑CO2 is the total dissolved carbonate, pO2 is atmospheric oxygen in 

PAL, T is the absolute temperature, MWu is the molecular weight of uraninite, and ρ is 

the uraninite density, 11 g cm-3. We set RF = 20 for a mid-range organic retardation 

factor, NOC = 0.17 for a mid-range cation mole fraction, and T = 298 K or 25°C 

(Grandstaff, 1980). We used 0.1 atm as a mid-range value of ancient CO2 estimates for 

the early Proterozoic atmosphere (Grotzinger and Kasting, 1993). 

 

Similarly, for pyrite dissolution, the equation of Williamson and Rimstidt (1994) can be 

rewritten in terms of radial erosion rate (Rpyr) in meters per year:  

 

𝑅!"#   =   0.135   𝐷𝑂!.!   𝑀𝑊!  ρ!!(𝐻!)!!.!! ,     (4) 

 

where ρ = 5.01 x 106 g m-3,  MWp = 119.98 g mol-1, and DO is the dissolved oxygen 

content in mol L-1.  

 

To incorporate physical weathering, we applied Sternberg’s Law, which describes the 

widely observed exponential reduction of particle diameter with transport distance due to 

abrasion of particles (Sternberg, 1875): 
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𝐷   =   𝐷!  𝑒𝑥𝑝(− 𝑥 𝑥!)    ,        (5) 

where D is particle diameter at distance x, D0 is the initial diameter, x is the distance grain 

has traveled, and xo is a material specific length scale of erodability (Sternberg, 1875). 

The term x/x0 describes the transport distance relative to the characteristic distance to 

radially erode a grain by a factor of e. This model for physical abrasion of grains is 

widely used (Lewin and Brewer, 2002; Sklar et al., 2006; Le Bouteiller et al., 2011).  

 

Combining both physical abrasion and chemical weathering yields an equation for grain-

size evolution, with physical erosion as a function of transport distance and chemical 

weathering as a function of time (t):  

 

𝐷   =   𝐷!  𝑒𝑥𝑝(− 𝑥 𝑥!)   −   𝑅  𝑡  ,       (6) 

 

where R denotes the chemical weathering rate for either grain designated. We note that 

this model implicitly assumes that physical and chemical erosion rates are independent 

and additive, which may not be true. Several recent studies have shown that physical 

abrasion exposing new surfaces is an important control on chemical weathering rates, 

revealing these two processes are tightly coupled (Riebe et al., 2003; Ferrier and 

Kirchner, 2008). Thus O2 estimates from our approach should be treated as conservative 

constraints, because in more realistic scenarios physical and chemical erosion would 

feedback on and amplify each other. Nevertheless, this model determines an upper bound 

on ancient O2 concentrations and a lends stepping-stone for future modeling efforts once 
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the feedbacks between chemical and physical weathering are quantitatively realized for 

different redox-sensitive detrital minerals. 

 

We seek to obtain this upper bound on oxygen levels using redox-sensitive grain 

survival; therefore, we are interested in the time it takes for a given grain of pyrite or 

uraninite to become effectively undetectable in the sedimentary record as a function of O2 

concentrations. We assign a critical grain diameter (Dcr) set at 10 µm—a size below 

which grains are too small to uniquely and routinely distinguish detrital from authigenic 

phases in a siltstone or shale. Setting D equal to Dcr in equation (6), dividing the equation 

by Dcr and rearranging results in: 

 

𝑅  𝑡
𝐷!"     =   

𝐷!  
𝐷!"   𝑒𝑥𝑝(− 𝑥 𝑥!)   −   1      (7) 

 

Equation (7) contains three important dimensionless parameters. The term on the left 

hand side of the equation represents the total amount of chemical weathering relative to 

the critical grain diameter, which we rename for convenience as:  

 

𝑟!   =   𝑅  𝑡 𝐷!"          (8) 
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The second dimensionless parameter is the initial sediment diameter as compared to the 

critical ‘undetectable’ size (Do/Dcr), and the third parameter is the total transport distance 

relative to a material-specific erodibility length constant (x/xo).  

 

The erodibility length coefficient, xo, is not well-known for pyrite and uraninite. 

Measurements of xo have produced variable results depending on experimental design. 

One study found that for 0-128 mm sieved river sediments, the erodibility coefficient 

varied from 50 to 333 km using abrasion experiments (Mikoš, 1995). Another 

experimental investigation using slightly weathered chert grains measured a larger range 

of erodibility coefficients, from 8 km to 794 km (Kodama, 1994). However, a study of 

rivers in Canada determined that many laboratory abrasion experiments underestimate the 

erodibility coefficient, finding that quartzite, limestone, and granitic sediments varied 

from 333 km to 925 km (Shaw and Kellerhals, 1982). These workers suggested that 

because coarse grains are often “at rest”, the estimates of abrasion from laboratory 

abrasion mills predict too small xo (Shaw and Kellerhals, 1982). Earlier laboratory studies 

using less vigorous abrasion techniques determined erodibility coefficients for chert of 

∼1000 km to 10,000 km (see Kodama, 1994 for a compilation). Indeed, sediments at the 

deltas of long continental-scale rivers such as the 6650 km Nile River would indicate that 

the erodibility coefficient of these sediments is greater than a few hundred kilometers, or 

that fluxes of new large grains enter the river to replenish the comminuted sediment (e.g., 

Sklar et al., 2006). In addition to material properties, xo might also depend on the mode of 

transport (e.g., bedload versus suspended load) and particle size. For example, particle-
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bed impacts are viscously damped for small particles with low impact velocities. Using a 

Stokes number threshold of 30 for viscously damped impacts (Schmeeckle et al., 2001; 

Joseph and Hunt, 2004), we find that particle-bed impacts from dense pyrite and uraninite 

grains can be damped for diameters finer than fine- to very-fine sand when falling in still 

water, thereby effectively increasing xo. However, particle velocities can increase 

substantially in turbulent flow due to suspension (e.g., (Lamb et al., 2008), so that even 

silt-sized grains still erode depending on the transport mode. No estimates of the 

erodibility coefficient of pyrite or uraninite have been measured, but the relatively similar 

Moh’s hardness for quartz (7), uraninite (5-6), and pyrite (6.5) suggests similar 

erodibility coefficients. To keep our analysis tractable for analyzing ancient rocks, we 

employ a constant xo of 1000 km for both pyrite and uraninite for comparison when 

dimensionalizing equation (7). Note that while we will discuss the dimensionless 

parameter x/xo as increasing by distance traveled, the term can also be thought of as 

increasing with more erodible material or more energetic grain-to-bed impacts (i.e., 

smaller xo). 

 

To determine a set of practical rc values, we used physical constraints on the initial grain 

sizes and final distances traveled. We chose a range of reasonable initial grain sizes, 

varying from Do = 5 mm (e.g., from an igneous source) to Do = 20 µm similar to a 

disseminated sedimentary pyrite source. We later input conservative rc values for D0 up 

to 5 mm for pyrite grains as these are often found in Archean conglomerates at 1-2 mm 

(England, 2002) but used a maximum of 1 mm for uraninite grains, which are commonly 
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observed to be smaller in conglomerates, maximally ca. 100 µm (England et al., 2001). 

Dividing by Dcr (10 µm), the parameter Do/Dcr therefore varies from 1 to 500. Total travel 

distances were set to range from 10 to 10,000 km, encompassing short-transport systems 

such as Malibu Creek, CA (22 km) to long continental rivers such as the Mississippi 

River (3734 km) and the Nile River (6650 km). When divided by an x0 of 1000 km, the 

x/xo parameter has a range of 0.01 to 10. Under these transport conditions, spanning 

reasonable ranges in initial sizes and total travel distances, rc values were calculated to 

show the ranges and relationships between these variables in equation (7) (Fig. 7A). Note 

that choosing a different erodibility coefficient (x0) simply shifts the solution space either 

right or left, but the range of rc needed to fill the parameter space remains similar.  

 

Figure 7A shows that for x/x0 less than ∼0.1 (i.e., transport distances less than 100 km 

with x0 = 1000 km), only the initial grain size D0 is relevant for determining the erosion 

rate. Chemical erosion dominates this domain: rc is essentially constant for a given D0 

and there is no relationship between amount of chemical erosion and relative travel 

distance or x/x0. This solution space encompasses previous work on the chemical erosion 

rates of redox-sensitive detrital grains where physical erosion was neglected. Such high 

rates of chemical erosion consequently require higher levels of O2.  

 

As x/x0 increases from mid-length streams (like the Hudson River, 507 km) to 

transcontinental rivers (like the Mississippi River, 3734 km), physical erosion becomes 

more important (Fig. 7A). At these large transport distances, the initial grain size 
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becomes less determinate and distance traveled is a larger factor in grain survival. Lines 

of low rc at large total travel distances (large x/x0) represent extensive river systems with 

grains abrading under low chemical erosion. This is likely the case for grains preserved in 

the proximal part of the basin during deposition of the Koegas Subgroup, which likely 

traversed much of the Kaapvaal craton (Sumner and Beukes, 2006; Schröder et al., 2011). 

For these larger river systems, Figure 7A illustrates that chemical erosion and physical 

abrasion are both important factors in grain survival.  

 

To help conceptualize the factors that affect the relative chemical erosion (rc), we 

produced two plots showing rc when one parameter (either the relative initial grain size or 

the relative distance) is held constant. The solution shown in Figure 7B, and in Figure 7A 

as a dashed line marked “(B)”, demonstrates how the portion of chemical erosion changes 

with increasing distance for a set grain size (in this case, a diameter of 1 mm). At short 

distances, a large amount of chemical erosion is required to erode the 1 mm grain to the 

critical diameter of 10 µm—implying that a high level of oxygen is also required to 

generate this high degree of chemical erosion. At longer distances, however, physical 

abrasion increases and relative chemical erosion decreases, resulting in lower and lower 

rc values. At around 4500 km, physical abrasion erodes nearly all of the grain, and thus 

no chemical erosion is needed to explain the absence of grains larger than 10 µm.  At 

larger distances (shaded in grey), physical abrasion is so strong that 1 mm grains would 

not have survived to these distances at a size above our detectable limit of 10 µm.  
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Figure 7C, shown in Figure 7A as a dashed line marked “(C)”, illustrates the grain size 

control under a set travel distance of 1000 km. Grains beginning at diameters of ∼30 µm 

or smaller would no longer exist after 1000 km of travel. Particles starting at ∼100 µm or 

smaller would require very little chemical erosion as physical abrasion would cause most 

of the grain destruction, although viscous damping may reduce physical abrasion rates for 

these small sediment sizes depending on the transport mode. As the initial grain size 

increases, the relative amount of chemical erosion necessary for grain destruction also 

increases, and large grains several millimeters in diameter would require a large degree of 

chemical erosion to be destroyed by 1000 km of travel.  

 

Because the relative amount of chemical erosion, rc, is environmentally controlled, 

estimates of the ancient rc for specific deposits can be informed by the sedimentary 

context of the redox-sensitive grains. Observable differences in grain sizes, chemistry, 

provenance, sedimentary structures, basin size, and sequence stratigraphy can be applied 

to inform transport conditions (distances and times) and thus O2 constraints. Armed with 

estimates of the transport conditions, one can estimate an appropriate range of rc values 

for a given sedimentary deposit bearing detrital pyrite or uraninite grains.  

 

As rc is a function of the oxygen-dependent chemical erosion for both pyrite and 

uraninite, the dissolved oxygen (DO) content of weathering fluids (river water, ground 

water, pore fluids in soils and sediments, and seawater) can be constrained using both the 

uraninite and pyrite erosion equations, yielding predictions of O2 (in atm) from both 
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minerals, assuming gas exchange equilibrium. We input rc values previously determined 

using reasonable but conservative ranges of D0/Dcr and x/x0 (Fig. 7A). We used a range of 

0 to 300 for pyrite, as it commonly has larger initial grain sizes, and 0 to 150 for 

uraninite. We solved Eqn. 8 for O2, using the appropriate rate laws for pyrite and 

uraninite (Eqn. 3, Eqn. 4), inputting a typical riverine pH of 6, modern CO2 values (Fig. 

8A) and a mid-range paleo-CO2 estimate of 0.1 atm (see previous discussion, Fig. 8B). 

These functions denote oxygen concentrations required for grain erosion to 10 µm (Dcr) 

for a given amount of time (Fig. 8). A model calculation for current day conditions has 

modern oxygen levels marked, indicating where pyrite and uraninite grains would be 

stable under today’s atmosphere (Fig. 8A). According to these estimates both pyrite and 

uraninite appear to be stable (as long as the initial grains are large enough) for about 

10,000 years under today’s atmosphere. Modeling ancient atmospheric conditions shifted 

the uraninite destruction field considerably but did not alter the O2 requirements for 

pyrite grain destruction, because of the CO2 dependence of uraninite dissolution (Fig. 8B; 

Eqn. 3). Changing the pH of weathering fluids to 5 causes estimates based on pyrite to 

vary imperceptibly while this change decreases the uraninite upper bounds by 

approximately an order of magnitude. At pH = 7, pyrite constraints on O2 similarly do not 

significantly change but uraninite O2 constraints are relaxed by a factor of ten, increasing 

the maximum oxygen levels that are allowed by the preservation of detrital uraninite 

grains.  
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Because the O2 estimates indicate the oxygen levels where pyrite and uraninite should be 

undetectable, these calculated levels can be used as the maximum oxygen levels at which 

pyrite and/or uraninite will still survive and be recognizable detrital components of a 

clastic sedimentary rock. The O2 constraint estimates are shown for a range of solutions 

that account for the diversity of environments and transport regimes affecting sediment 

supply and physical erosion (i.e., ranges of expected D0 and x). The time allowed for 

grain destruction is also a corollary of different paleoenvironments and deposit types, as 

these relate to travel time. The ranges marked with rc values show the influence of 

physical conditions, such as initial grain size and total distance traveled, with higher rc 

corresponding to a higher degree of chemical erosion and lower rc representing lower 

proportion of chemical erosion. Higher rc would be anticipated for rivers with low total 

travel distance and larger initial grain sizes like proglacial or coastal mountain streams 

(left side of Fig. 8B marked “Short Rivers”). Lower rc represents a lower proportion of 

chemical erosion and more physical erosion, with smaller saltating grains and larger total 

travel distances like in large continental river and delta systems (right side of Fig. 8B 

marked “Long Rivers”). Figure 7A suggests that the highest levels of chemical erosion 

would not allow pyrite and uraninite grains to still be present at long distances. Thus, 

longer continental rivers such as the Mississippi can only have rc values up to ∼5 (Fig. 

7A). Consequently, in our longer river estimates, we conservatively constrain rc to be 50 

or less. 
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We can also add time constraints on different river system types using recent work 

applying U-series disequilibrium techniques to measuring sediment transport times. 

Transport time starts when the grains are first excised from their source bedrock, and 

integrates both the time the sediments spend being transported and their temporary 

storage on hillslopes and in floodplains, on the riverbed and in fluvial bedforms (like 

bars). As U and Th have different mobility and are consequently fractionated during 

initial weathering from bedrock in secular equilibrium (i.e., a closed system for > 1 

million years), the degree to which this isotope decay series is in disequilibrium can be 

inverted to calculate the time since initial removal from source bedrock (Chabaux et al., 

2003; DePaolo et al., 2006; Dosseto et al., 2008). This technique has been applied to both 

the suspended load and bedload of several rivers. In mountain streams, cobbles and 

boulders are typically in bedload, and consequently they have longer transport times than 

the suspended and dissolved load. The <5 mm pyrite and <1 mm uraninite mineral grains 

would be in the suspended load in such systems. Measurements in short rivers have 

ranged from mountain streams in the Andes to Icelandic glacial streams, where the 

suspended sediment load transport time has been measured at 3 to 4 kyr in the ∼200km 

Andes tributaries (Dosseto et al., 2006) and 1 to 10 kyr in short Icelandic rivers (∼40-200 

km) (Vigier et al., 2006). In a different type of measurement, Lauer and Parker (2008) 

modeled a tracer from mining contamination to estimate the transport of clay and silt (the 

suspended load) of the upper ∼70 km of the Clark Fork River would take thousands of 

years (Lauer and Parker, 2008). We therefore posit that mountain, glacial, and shorter 

rivers (1000km or less) will have total transport times of 1000 to 10,000 years, and add a 
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label to Figure 8 for ‘Short Rivers’ to constrain the oxygen levels from finding detrital 

uraninite and pyrite from these river systems.  

 

Larger rivers with broad floodplains have much longer grain transport times (e.g., 

Bradley and Tucker, 2013), and this distance-time relationship is enhanced by the 

transport mode. In rivers such as the Mississippi or Nile, sandy bedforms indicate that 

sand-sized particles travel in bedload and silt-sized grains are typically in suspension. 

Figure 7A indicates that at these long distances all preserved grains likely started >500 

µm in diameter. These grains probably started out in hillslopes, first weathering from 

bedrock, and then were transported in mountain streams as suspended load, and finally as 

bedload in larger rivers. Only a few studies have examined the bedload transport time 

using the U-series method. For example, Granet et al. (2010) determined that the 

transport time from the Himalayas to the Ganges delta in Bengal (Manihari, India) was 

>300 kyr for bedload grains to move ∼2200 km. They also studied the bedload of 

Himalayan feeder streams (650-1000 km) and estimated that transport time from the 

source bedrock to the confluence with the main Ganges river was ∼100 kyr (Granet et al., 

2007). These are significantly longer than estimates for the suspended sediment load, 

where only 20-25 kyr was measured for these shorter Himalayan feeder streams (Granet 

et al., 2010). Another study found a similarly short transport time (10 to 28 kyr) for the 

suspended sediments of the ∼1700 km Mackenzie River in Canada (Vigier et al., 2001); 

however, the authors noted that erosion in this river system was affected by recent 

glaciations. Dosseto et al. (2006) observed that in Amazon lowland rivers, the suspended 
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load took 100 to 500 kyr to travel 760 km to several thousand km. We therefore suggest 

that for long, > 1000 km river systems, total sediment transport time ranges from 100 to 

500 kyr. While the U-series approach is still being refined (e.g., see Lee et al., 2010; 

Handley et al., 2013), we applied these estimates of bedload transport time (i.e., 1 kyr to 

10 kyr for short river systems and 100 kyr to 500 kyr for long river systems) to compare 

depositional environments (Fig. 8).   

 

With these timing constraints of river sediment transport and our estimates of rc, we can 

place upper boundaries on ancient oxygen levels. Short rivers, such as mountain or 

glacial streams, show some pyrite being stable up to O2 concentrations of 40 atm, or ∼190 

times the oxygen content of the modern atmosphere. Finding detrital uraninite in ancient 

mountain (cobble-bedded) rivers, however, constrains the atmospheric oxygen levels to a 

maximum of 10-2 atm. Longer river systems with small initial grains and long transport 

distances, like the Amazon or Mississippi rivers, constrain O2 to much lower levels. The 

presence of both pyrite and uraninite in these systems implies an upper limit of ancient 

O2 on the order of 1*10-5 or 1*10-6 atm, with all pyrite being destroyed before 1*10-4 atm 

and uraninite no longer preserved at 3.2*10-5 atm. Thus, if grain provenance and/or travel 

distance for an ancient river system can be determined, the presence of redox-sensitive 

detrital grains can provide powerful redox constraints.  

 

For our study area, the deltaic sediments of the Koegas Subgroup, our model provides a 

mechanism to determine an upper bound on the paleo-oxygen levels. For a craton-scale 
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sediment transport system (ca. 1000 km, our best estimate for Koegas provenance), we 

can use the estimates at ∼100,000 years to predict a maximal oxygen level of 3.2*10-5 

atm at 2.415 billion years ago. This estimate is an upper limit for the largest pyrite and 

uraninite grains to be preserved: for all pyrite and uraninite particles to be preserved, 

oxygen levels can be constrained to more like 1*10-7 atm. As we do not observe reaction 

rims suggestive of chemical erosion, this lower estimate may be a more appropriate upper 

bound for Earth surface O2 levels at this time.  

 

DISCUSSION AND CONCLUSIONS 

Detrital uraninite and pyrite have long been recognized and interpreted as a robust but 

qualitative measure of low O2 levels on the early Earth. In the context of our combined 

chemical and physical erosion framework, the preservation of these grains in Archean 

and early Paleoproterozoic siliciclastic sedimentary rocks (like those in the Koegas 

Subgroup) can be viewed through a more quantitative lens. We examined the plausible 

range of O2 values necessary to erode (to a critical diameter set at 10 µm) pyrite and 

uraninite grains under different environmental and transport conditions (Fig. 6). The 

minimum O2 levels to cause pyrite and uraninite destruction thus become maximum 

oxygen concentrations for these detrital grains to be preserved, and these values constrain 

the O2 levels of Archean and early Paleoproterozoic Earth surface environments.  

 

Due to differences in their oxidative weathering kinetics, the erosion rates of pyrite and 

uraninite—and consequently the maximum O2 constraints generated from their 
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preservation in sedimentary successions—have different sensitivities to O2 under various 

physical transport scenarios. These calculations predict that in modern short-transport 

systems, one might find detrital pyrite and uraninite present if they began as very large 

grains and if both were present in the source protolith (Fig. 8A). This prediction is 

consistent with our modern observations: we only occasionally find detrital pyrite and 

uraninite, in areas with rapid erosion and transport or high aridity (Holland, 1984). 

Indeed, pyrite and uraninite are known from some high-gradient alpine streams (Simpson 

and Bowles, 1977, 1981; Maynard et al., 1991). Yet this pyrite is being actively 

oxidatively weathered during transport in our current atmosphere and these grains do not 

survive into terminal deposits. Clearly by the end of even short rivers, even the largest 

initial pyrite and uraninite grains do not survive (Fig. 8A).  

 

Our model is, however, limited by the accuracy of the chemical rate laws. Ono (2001) 

examined the Grandstaff chemical erosion relationship and found that some of the 

parameters, such as the factored dependence on oxygen, proton, and bicarbonate 

concentrations and his use of a geometric surface area in his calculations, may not be 

accurate or under certain conditions appropriate (Ono, 2001). This highlights the value of 

further experimental studies examining the controls on the oxidation of natural uraninite 

by O2. Nevertheless, the ability to observe the weathering behavior of these two different 

minerals in systems—particularly with independent information from observations of the 

sedimentary geology about transport processes, distances, and provenance (such as in 

Hofmann et al., 2009)—provides more precise O2 constraints. An understanding of the 
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ancient basin geology and process sedimentology can indicate the paleo-river parameters, 

enabling a determination of river length and initial grain size. Knowing these river 

specifications, our model framework facilitates an understanding of ancient O2 levels at 

the time of fluvial or marine deposition. These predictions can be applied in the context 

of Archean or Paleoproterozoic river systems, where the presence of redox-sensitive 

detrital grains in deposits provides an estimate of maximal O2 in the atmosphere, or for 

later post-rise of oxygen successions from which the absence of these grains provides a 

lower bound on O2 concentrations. For example, observing detrital pyrite grains in short-

traveled conglomerates provides a less strict constraint on ancient O2 levels. For the most 

part, these active systems are less likely to be preserved in the geological record over 

long timescales. Locally-sourced fluvial deposits associated with small isolated basins 

(ca. 100km2) during early phases of rifting, or glacial deposits (e.g., Williford et al., 

2011) with a limited amount of transport and without any knowledge of the initial grain 

size, would be examples of systems with short travel distances. The presence of pyrite 

grains in these rapid transport systems does not constrain the O2 to any lower than today, 

while the discovery of uraninite in these systems does constrain paleo-oxygen levels to at 

most 0.01 atm (Fig. 8A).  

 

Redox-sensitive detrital grains observed in sedimentary rocks deposited at the termini of 

larger riverine systems—including the detrital pyrite and uraninite in the 2.415 Ga 

Koegas Subgroup deltaic deposits described here—constrain the O2 concentrations to a 

much better extent because they offer a greater window of time for chemical erosion to 
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manifest even at exceedingly low O2 concentrations. In the 100,000 to 500,000 year time 

span of large ancient rivers similar to the Amazon lowland and Ganges rivers (Granet et 

al., 2007; Dosseto et al., 2008), pyrite and uraninite both constrain the maximum O2 

levels to be 1*10-4 and 3.2*10-5 atm, respectively (Fig. 8B). A constraint of 3.2*10-5 atm 

effectively means environmental fluids in contact with these pyrite and uraninite grains 

had dissolved oxygen concentrations less than ∼40 nM—perhaps substantially less. These 

are upper estimates, made purposefully conservative. In addition to modeling physical 

and chemical erosion processes separately rather than (more realistically) coupled, we 

have also only considered the chemical erosion of pyrite and uraninite by O2 from abiotic 

oxidation rates and defect-free grains. This approach provides very conservative 

estimates for O2, as much faster kinetics are expected by biological oxidation processes 

(e.g. Konhauser et al., 2011) and naturally-occurring pyrite and uraninite (Anbar et al., 

2007; Reinhard et al., 2009).  

 

The O2 constraints from redox-sensitive detrital grains can be used to reflect on the 

interpretations made from other redox proxies. Though the nature and origin of mass 

anomalous sulfur isotope fractionations are not well-understood, our results support 

estimates from photochemical models that suggest this isotopic proxy is sensitive to very 

low O2 levels (Pavlov and Kasting, 2002; Zahnle et al., 2006; Zerkle et al., 2012). In 

addition, widespread observations of redox-sensitive detrital grains provide an integrated 

first-order view of the lack of oxidative weathering processes across a range of 

environments on early Earth—from hillslopes to river channels, floodplains, and 
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nearshore marine environments. Though in our model framework some amounts of 

chemical erosion of grains can be permitted under certain transport scenarios (i.e., large 

initial size and low transport distance; Fig. 8), it is intriguing to wonder how much 

oxidative surface weathering did indeed occur during Archean and early Proterozoic 

time. A number of authors have proposed substantial amounts of pyrite weathering, yet 

the presence of well-preserved and rounded detrital pyrite grains throughout this interval 

without evidence for chemical erosion conflicts with these hypotheses (Anbar et al., 

2007; Kaufman et al., 2007; Reinhard et al., 2009). Lastly, our observations imply the 

rise of oxygen is younger than 2.415 Ga, and is consistent with a wide range of results 

from sulfur isotope studies of Kaapvaal Craton strata (Bekker et al., 2004; Guo et al., 

2009; Ono et al. 2009a; 2009b; Johnson et al. 2013).  

 

The chemical erosion rate laws of pyrite and uraninite (equations 1 and 2) are directly 

responsible for differences in their weathering behavior and paleo-O2 estimates from our 

calculations (Fig. 8). Despite the potential uncertainty with current understanding of the 

uraninite chemical erosion rate law (Ono, 2001), it is reasonable to think that these 

mineral phases will behave differently during oxidative weathering as a function of 

environmental O2 concentrations. This forms the logic for an approach to identify 

intervals in Earth history wherein the atmosphere contained intermediate O2 

concentrations (e.g., levels that destroy uraninite but preserve pyrite in short-traveled 

fluvial systems). Systematic studies of the behavior of redox-sensitive detrital grains in 

Proterozoic-age siliciclastic successions would be valuable to test ideas of intermediate 
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oxygen concentrations following the initial rise of oxygen. It is important to note, 

however, that our current database of deposits shows uraninite and pyrite disappearing at 

about the same time from Canada (Pienaar, 1963; Robinson and Spooner, 1982; Krogh et 

al., 1984; Prasad and Roscoe, 1996), Brazil (Figueiredo, 1989), and South Africa 

(Johnson et al., 2013). The O2 sensitivity and binary nature of the secular distribution of 

redox-sensitive grains in siliciclastic deposits suggests that the initial rise of oxygen was 

very substantial and oxygen levels never again dropped low enough to allow significant 

amounts of transport and preservation of either of these grains in either short- or long-

traveled Earth surface weathering systems.  
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Figure 3: Stratigraphic section of GTF01 indicating formations and locations of redox-
sensitive detrital grains photographed in Fig. 6. 
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Figure 4: Sandstone textures from electron microscopy. Left panels show backscatter 
electron photomicrographs with detrital quartz, feldspar, and pyrite grains. Right panels 
depict the same view using variable pressure secondary electron images, highlighting via 
cathodoluminesence (CL) the rounding and truncation of quartz and feldspar zonation 
caused by physical abrasion. Scale bars are 100 µm.  
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Figure 5: Pyrite distributions along ripple foreset laminae. A. GTF 78.75m, B. GTF 
178.45m, C. GTF 182m, all showing (left to right) thin section image with target area 
marked in red, reflected light photograph of area indicating pyrite as bright white grains, 
and transmitted light photograph of same region. Scale bars are 100 µm. 
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Figure 6: Backscatter electron photomicrographs showing examples of detrital pyrite and 
detrital uraninite found throughout thin sections of sandstones sampled from drill core. 
Letters correspond to specific stratigraphic samples shown in Fig. 3. Note inset of the 
pyrite grain in (e) with compositional differences and truncated internal zonation 
highlighted by high contrast. A detrital uraninite grain shown in (j) is now composed of 
uraninite-uranothorite with galena and bitumen inclusions due to radioactive decay (see 
text for details). Scale bars are 20 µm. 
 
Figure 7 (below): A) Contours of the relative amount of chemical weathering (rc) as a 
function of initial relative sediment diameter and relative grain travel distance for the 
parameter space realistic for Earth surface environments. Examples of initial sediment 
diameters (D0) and river systems (with different lengths: x) are listed for comparison, 
assuming a critical sediment size for detection of Dcr = 10 µm and an erodibility 
coefficient of x0 = 1000 km. Dashed lines marked “(B)” and “(C)” denote slices through 
solution space plotted in panels (B) and (C).  B) Relative amount of chemical weathering 
(rc) as a function of the relative distance traveled (x/x0) of a grain with fixed relative 
initial size of D0 = 10 µm.  C) Relative amount of chemical weathering (rc) as a function 
of relative initial sediment size (D0/Dcr) for a fixed relative travel distance (x = 1000 km). 
The shaded zones in all three panels are regions of parameter space where all grains are 
predicted to be smaller than the detection limit (i.e., D < Dcr). 
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Figure 8: Upper bounds on environmental O2 levels calculated for pyrite and uraninite 
preservation and destruction for the modern and Paleoproterozoic-Archean environment. 
The bounding values of relative chemical weathering in short river systems for pyrite (1 < 
rc < 300; thin black lines) and uraninite (1 < rc < 150; thick black lines) and long river 
systems for pyrite (1 < rc < 50; thin black lines) and uraninite (1 < rc < 50; thick black 
lines) come from the full range of environmental conditions explored in Figure 7A (see 
text for discussion), which incorporate a wide range of reasonable physical grain erosion 
rates and initial grain sizes.  Dashed lines between the upper rc estimates represent 
uncertainty as to when it is appropriate to change upper rc bounds. Darkest grey area 
represents preservation of all pyrite and uraninite grains and white region represents no 
grain preservation, with intermediate shades of grey representing various scenarios of 
either pyrite or uraninite or both types of grains being only partially preserved. Labels for 
“Short Rivers” and “Long Rivers” from U-series disequilibria estimates (see text). A) 
Predicted levels of O2 required for grain preservation and destruction as a function of 
transport time under modern (pre-industrial) CO2 conditions. For modern O2 levels 
(horizontal dotted line in pale grey), the model predicts preservation of pyrite and 
uraninite (shaded regions) over only relatively short timescales and relatively large rc 
values, corresponding to environments with large protolith grain sizes and short transport 
distances. B) Calculated concentrations of O2 for grain preservation and destruction as a 
function of transport time for a Paleoproterozoic or Archean environment with 0.1 atm of 
CO2. Upper estimates on paleo-oxygen levels can be determined if reasonable knowledge 
of paleo-river distance and/or initial grain sizes are known.  
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Table 1: Reported occurrences of redox-sensitive detrital grains. 
 
 

Sample % pyrite % 
zircon 

% apatite + 
monazite 

% zircon + apatite + 
monazite 

GTF 77.53m 0.4091 0.0055 0.2297 0.2352 
GTF 163.65m 0.0398 0.0055 0.17 0.1755 
GTF 203.65m 0.2638 0.0083 0.2688 0.2771 
GTF 243.00m 0.1341 0.00075 0.2236 0.22435 

 
Table 2: Abundances of detrital grains by mineralogy. Estimated using elemental 
abundance maps of S, Zr, and P as proxies for pyrite, zircon, and apatite+monazite 
from four representative sections. Note abundance of pyrite scales with abundance 
of combined heavy minerals (% zircon+apatite+monazite).  
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